Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Ptrace user space interface.
4 *
5 * Copyright IBM Corp. 1999, 2010
6 * Author(s): Denis Joseph Barrow
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 */
9
10#include "asm/ptrace.h"
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/sched/task_stack.h>
14#include <linux/mm.h>
15#include <linux/smp.h>
16#include <linux/errno.h>
17#include <linux/ptrace.h>
18#include <linux/user.h>
19#include <linux/security.h>
20#include <linux/audit.h>
21#include <linux/signal.h>
22#include <linux/elf.h>
23#include <linux/regset.h>
24#include <linux/seccomp.h>
25#include <linux/compat.h>
26#include <trace/syscall.h>
27#include <asm/page.h>
28#include <linux/uaccess.h>
29#include <asm/unistd.h>
30#include <asm/switch_to.h>
31#include <asm/runtime_instr.h>
32#include <asm/facility.h>
33
34#include "entry.h"
35
36#ifdef CONFIG_COMPAT
37#include "compat_ptrace.h"
38#endif
39
40void update_cr_regs(struct task_struct *task)
41{
42 struct pt_regs *regs = task_pt_regs(task);
43 struct thread_struct *thread = &task->thread;
44 struct per_regs old, new;
45 union ctlreg0 cr0_old, cr0_new;
46 union ctlreg2 cr2_old, cr2_new;
47 int cr0_changed, cr2_changed;
48
49 __ctl_store(cr0_old.val, 0, 0);
50 __ctl_store(cr2_old.val, 2, 2);
51 cr0_new = cr0_old;
52 cr2_new = cr2_old;
53 /* Take care of the enable/disable of transactional execution. */
54 if (MACHINE_HAS_TE) {
55 /* Set or clear transaction execution TXC bit 8. */
56 cr0_new.tcx = 1;
57 if (task->thread.per_flags & PER_FLAG_NO_TE)
58 cr0_new.tcx = 0;
59 /* Set or clear transaction execution TDC bits 62 and 63. */
60 cr2_new.tdc = 0;
61 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
62 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
63 cr2_new.tdc = 1;
64 else
65 cr2_new.tdc = 2;
66 }
67 }
68 /* Take care of enable/disable of guarded storage. */
69 if (MACHINE_HAS_GS) {
70 cr2_new.gse = 0;
71 if (task->thread.gs_cb)
72 cr2_new.gse = 1;
73 }
74 /* Load control register 0/2 iff changed */
75 cr0_changed = cr0_new.val != cr0_old.val;
76 cr2_changed = cr2_new.val != cr2_old.val;
77 if (cr0_changed)
78 __ctl_load(cr0_new.val, 0, 0);
79 if (cr2_changed)
80 __ctl_load(cr2_new.val, 2, 2);
81 /* Copy user specified PER registers */
82 new.control = thread->per_user.control;
83 new.start = thread->per_user.start;
84 new.end = thread->per_user.end;
85
86 /* merge TIF_SINGLE_STEP into user specified PER registers. */
87 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
88 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
89 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
90 new.control |= PER_EVENT_BRANCH;
91 else
92 new.control |= PER_EVENT_IFETCH;
93 new.control |= PER_CONTROL_SUSPENSION;
94 new.control |= PER_EVENT_TRANSACTION_END;
95 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
96 new.control |= PER_EVENT_IFETCH;
97 new.start = 0;
98 new.end = -1UL;
99 }
100
101 /* Take care of the PER enablement bit in the PSW. */
102 if (!(new.control & PER_EVENT_MASK)) {
103 regs->psw.mask &= ~PSW_MASK_PER;
104 return;
105 }
106 regs->psw.mask |= PSW_MASK_PER;
107 __ctl_store(old, 9, 11);
108 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
109 __ctl_load(new, 9, 11);
110}
111
112void user_enable_single_step(struct task_struct *task)
113{
114 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
115 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
116}
117
118void user_disable_single_step(struct task_struct *task)
119{
120 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
121 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
122}
123
124void user_enable_block_step(struct task_struct *task)
125{
126 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
127 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
128}
129
130/*
131 * Called by kernel/ptrace.c when detaching..
132 *
133 * Clear all debugging related fields.
134 */
135void ptrace_disable(struct task_struct *task)
136{
137 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
138 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
139 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
140 clear_tsk_thread_flag(task, TIF_PER_TRAP);
141 task->thread.per_flags = 0;
142}
143
144#define __ADDR_MASK 7
145
146static inline unsigned long __peek_user_per(struct task_struct *child,
147 addr_t addr)
148{
149 if (addr == offsetof(struct per_struct_kernel, cr9))
150 /* Control bits of the active per set. */
151 return test_thread_flag(TIF_SINGLE_STEP) ?
152 PER_EVENT_IFETCH : child->thread.per_user.control;
153 else if (addr == offsetof(struct per_struct_kernel, cr10))
154 /* Start address of the active per set. */
155 return test_thread_flag(TIF_SINGLE_STEP) ?
156 0 : child->thread.per_user.start;
157 else if (addr == offsetof(struct per_struct_kernel, cr11))
158 /* End address of the active per set. */
159 return test_thread_flag(TIF_SINGLE_STEP) ?
160 -1UL : child->thread.per_user.end;
161 else if (addr == offsetof(struct per_struct_kernel, bits))
162 /* Single-step bit. */
163 return test_thread_flag(TIF_SINGLE_STEP) ?
164 (1UL << (BITS_PER_LONG - 1)) : 0;
165 else if (addr == offsetof(struct per_struct_kernel, starting_addr))
166 /* Start address of the user specified per set. */
167 return child->thread.per_user.start;
168 else if (addr == offsetof(struct per_struct_kernel, ending_addr))
169 /* End address of the user specified per set. */
170 return child->thread.per_user.end;
171 else if (addr == offsetof(struct per_struct_kernel, perc_atmid))
172 /* PER code, ATMID and AI of the last PER trap */
173 return (unsigned long)
174 child->thread.per_event.cause << (BITS_PER_LONG - 16);
175 else if (addr == offsetof(struct per_struct_kernel, address))
176 /* Address of the last PER trap */
177 return child->thread.per_event.address;
178 else if (addr == offsetof(struct per_struct_kernel, access_id))
179 /* Access id of the last PER trap */
180 return (unsigned long)
181 child->thread.per_event.paid << (BITS_PER_LONG - 8);
182 return 0;
183}
184
185/*
186 * Read the word at offset addr from the user area of a process. The
187 * trouble here is that the information is littered over different
188 * locations. The process registers are found on the kernel stack,
189 * the floating point stuff and the trace settings are stored in
190 * the task structure. In addition the different structures in
191 * struct user contain pad bytes that should be read as zeroes.
192 * Lovely...
193 */
194static unsigned long __peek_user(struct task_struct *child, addr_t addr)
195{
196 addr_t offset, tmp;
197
198 if (addr < offsetof(struct user, regs.acrs)) {
199 /*
200 * psw and gprs are stored on the stack
201 */
202 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
203 if (addr == offsetof(struct user, regs.psw.mask)) {
204 /* Return a clean psw mask. */
205 tmp &= PSW_MASK_USER | PSW_MASK_RI;
206 tmp |= PSW_USER_BITS;
207 }
208
209 } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
210 /*
211 * access registers are stored in the thread structure
212 */
213 offset = addr - offsetof(struct user, regs.acrs);
214 /*
215 * Very special case: old & broken 64 bit gdb reading
216 * from acrs[15]. Result is a 64 bit value. Read the
217 * 32 bit acrs[15] value and shift it by 32. Sick...
218 */
219 if (addr == offsetof(struct user, regs.acrs[15]))
220 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
221 else
222 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
223
224 } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
225 /*
226 * orig_gpr2 is stored on the kernel stack
227 */
228 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
229
230 } else if (addr < offsetof(struct user, regs.fp_regs)) {
231 /*
232 * prevent reads of padding hole between
233 * orig_gpr2 and fp_regs on s390.
234 */
235 tmp = 0;
236
237 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
238 /*
239 * floating point control reg. is in the thread structure
240 */
241 tmp = child->thread.fpu.fpc;
242 tmp <<= BITS_PER_LONG - 32;
243
244 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
245 /*
246 * floating point regs. are either in child->thread.fpu
247 * or the child->thread.fpu.vxrs array
248 */
249 offset = addr - offsetof(struct user, regs.fp_regs.fprs);
250 if (MACHINE_HAS_VX)
251 tmp = *(addr_t *)
252 ((addr_t) child->thread.fpu.vxrs + 2*offset);
253 else
254 tmp = *(addr_t *)
255 ((addr_t) child->thread.fpu.fprs + offset);
256
257 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
258 /*
259 * Handle access to the per_info structure.
260 */
261 addr -= offsetof(struct user, regs.per_info);
262 tmp = __peek_user_per(child, addr);
263
264 } else
265 tmp = 0;
266
267 return tmp;
268}
269
270static int
271peek_user(struct task_struct *child, addr_t addr, addr_t data)
272{
273 addr_t tmp, mask;
274
275 /*
276 * Stupid gdb peeks/pokes the access registers in 64 bit with
277 * an alignment of 4. Programmers from hell...
278 */
279 mask = __ADDR_MASK;
280 if (addr >= offsetof(struct user, regs.acrs) &&
281 addr < offsetof(struct user, regs.orig_gpr2))
282 mask = 3;
283 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
284 return -EIO;
285
286 tmp = __peek_user(child, addr);
287 return put_user(tmp, (addr_t __user *) data);
288}
289
290static inline void __poke_user_per(struct task_struct *child,
291 addr_t addr, addr_t data)
292{
293 /*
294 * There are only three fields in the per_info struct that the
295 * debugger user can write to.
296 * 1) cr9: the debugger wants to set a new PER event mask
297 * 2) starting_addr: the debugger wants to set a new starting
298 * address to use with the PER event mask.
299 * 3) ending_addr: the debugger wants to set a new ending
300 * address to use with the PER event mask.
301 * The user specified PER event mask and the start and end
302 * addresses are used only if single stepping is not in effect.
303 * Writes to any other field in per_info are ignored.
304 */
305 if (addr == offsetof(struct per_struct_kernel, cr9))
306 /* PER event mask of the user specified per set. */
307 child->thread.per_user.control =
308 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
309 else if (addr == offsetof(struct per_struct_kernel, starting_addr))
310 /* Starting address of the user specified per set. */
311 child->thread.per_user.start = data;
312 else if (addr == offsetof(struct per_struct_kernel, ending_addr))
313 /* Ending address of the user specified per set. */
314 child->thread.per_user.end = data;
315}
316
317/*
318 * Write a word to the user area of a process at location addr. This
319 * operation does have an additional problem compared to peek_user.
320 * Stores to the program status word and on the floating point
321 * control register needs to get checked for validity.
322 */
323static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
324{
325 addr_t offset;
326
327
328 if (addr < offsetof(struct user, regs.acrs)) {
329 struct pt_regs *regs = task_pt_regs(child);
330 /*
331 * psw and gprs are stored on the stack
332 */
333 if (addr == offsetof(struct user, regs.psw.mask)) {
334 unsigned long mask = PSW_MASK_USER;
335
336 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
337 if ((data ^ PSW_USER_BITS) & ~mask)
338 /* Invalid psw mask. */
339 return -EINVAL;
340 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
341 /* Invalid address-space-control bits */
342 return -EINVAL;
343 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
344 /* Invalid addressing mode bits */
345 return -EINVAL;
346 }
347
348 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
349 addr == offsetof(struct user, regs.gprs[2])) {
350 struct pt_regs *regs = task_pt_regs(child);
351
352 regs->int_code = 0x20000 | (data & 0xffff);
353 }
354 *(addr_t *)((addr_t) ®s->psw + addr) = data;
355 } else if (addr < offsetof(struct user, regs.orig_gpr2)) {
356 /*
357 * access registers are stored in the thread structure
358 */
359 offset = addr - offsetof(struct user, regs.acrs);
360 /*
361 * Very special case: old & broken 64 bit gdb writing
362 * to acrs[15] with a 64 bit value. Ignore the lower
363 * half of the value and write the upper 32 bit to
364 * acrs[15]. Sick...
365 */
366 if (addr == offsetof(struct user, regs.acrs[15]))
367 child->thread.acrs[15] = (unsigned int) (data >> 32);
368 else
369 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
370
371 } else if (addr == offsetof(struct user, regs.orig_gpr2)) {
372 /*
373 * orig_gpr2 is stored on the kernel stack
374 */
375 task_pt_regs(child)->orig_gpr2 = data;
376
377 } else if (addr < offsetof(struct user, regs.fp_regs)) {
378 /*
379 * prevent writes of padding hole between
380 * orig_gpr2 and fp_regs on s390.
381 */
382 return 0;
383
384 } else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
385 /*
386 * floating point control reg. is in the thread structure
387 */
388 if ((unsigned int) data != 0 ||
389 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
390 return -EINVAL;
391 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
392
393 } else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
394 /*
395 * floating point regs. are either in child->thread.fpu
396 * or the child->thread.fpu.vxrs array
397 */
398 offset = addr - offsetof(struct user, regs.fp_regs.fprs);
399 if (MACHINE_HAS_VX)
400 *(addr_t *)((addr_t)
401 child->thread.fpu.vxrs + 2*offset) = data;
402 else
403 *(addr_t *)((addr_t)
404 child->thread.fpu.fprs + offset) = data;
405
406 } else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
407 /*
408 * Handle access to the per_info structure.
409 */
410 addr -= offsetof(struct user, regs.per_info);
411 __poke_user_per(child, addr, data);
412
413 }
414
415 return 0;
416}
417
418static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
419{
420 addr_t mask;
421
422 /*
423 * Stupid gdb peeks/pokes the access registers in 64 bit with
424 * an alignment of 4. Programmers from hell indeed...
425 */
426 mask = __ADDR_MASK;
427 if (addr >= offsetof(struct user, regs.acrs) &&
428 addr < offsetof(struct user, regs.orig_gpr2))
429 mask = 3;
430 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
431 return -EIO;
432
433 return __poke_user(child, addr, data);
434}
435
436long arch_ptrace(struct task_struct *child, long request,
437 unsigned long addr, unsigned long data)
438{
439 ptrace_area parea;
440 int copied, ret;
441
442 switch (request) {
443 case PTRACE_PEEKUSR:
444 /* read the word at location addr in the USER area. */
445 return peek_user(child, addr, data);
446
447 case PTRACE_POKEUSR:
448 /* write the word at location addr in the USER area */
449 return poke_user(child, addr, data);
450
451 case PTRACE_PEEKUSR_AREA:
452 case PTRACE_POKEUSR_AREA:
453 if (copy_from_user(&parea, (void __force __user *) addr,
454 sizeof(parea)))
455 return -EFAULT;
456 addr = parea.kernel_addr;
457 data = parea.process_addr;
458 copied = 0;
459 while (copied < parea.len) {
460 if (request == PTRACE_PEEKUSR_AREA)
461 ret = peek_user(child, addr, data);
462 else {
463 addr_t utmp;
464 if (get_user(utmp,
465 (addr_t __force __user *) data))
466 return -EFAULT;
467 ret = poke_user(child, addr, utmp);
468 }
469 if (ret)
470 return ret;
471 addr += sizeof(unsigned long);
472 data += sizeof(unsigned long);
473 copied += sizeof(unsigned long);
474 }
475 return 0;
476 case PTRACE_GET_LAST_BREAK:
477 put_user(child->thread.last_break,
478 (unsigned long __user *) data);
479 return 0;
480 case PTRACE_ENABLE_TE:
481 if (!MACHINE_HAS_TE)
482 return -EIO;
483 child->thread.per_flags &= ~PER_FLAG_NO_TE;
484 return 0;
485 case PTRACE_DISABLE_TE:
486 if (!MACHINE_HAS_TE)
487 return -EIO;
488 child->thread.per_flags |= PER_FLAG_NO_TE;
489 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
490 return 0;
491 case PTRACE_TE_ABORT_RAND:
492 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
493 return -EIO;
494 switch (data) {
495 case 0UL:
496 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
497 break;
498 case 1UL:
499 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
500 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
501 break;
502 case 2UL:
503 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
504 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
505 break;
506 default:
507 return -EINVAL;
508 }
509 return 0;
510 default:
511 return ptrace_request(child, request, addr, data);
512 }
513}
514
515#ifdef CONFIG_COMPAT
516/*
517 * Now the fun part starts... a 31 bit program running in the
518 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
519 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
520 * to handle, the difference to the 64 bit versions of the requests
521 * is that the access is done in multiples of 4 byte instead of
522 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
523 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
524 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
525 * is a 31 bit program too, the content of struct user can be
526 * emulated. A 31 bit program peeking into the struct user of
527 * a 64 bit program is a no-no.
528 */
529
530/*
531 * Same as peek_user_per but for a 31 bit program.
532 */
533static inline __u32 __peek_user_per_compat(struct task_struct *child,
534 addr_t addr)
535{
536 if (addr == offsetof(struct compat_per_struct_kernel, cr9))
537 /* Control bits of the active per set. */
538 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
539 PER_EVENT_IFETCH : child->thread.per_user.control;
540 else if (addr == offsetof(struct compat_per_struct_kernel, cr10))
541 /* Start address of the active per set. */
542 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
543 0 : child->thread.per_user.start;
544 else if (addr == offsetof(struct compat_per_struct_kernel, cr11))
545 /* End address of the active per set. */
546 return test_thread_flag(TIF_SINGLE_STEP) ?
547 PSW32_ADDR_INSN : child->thread.per_user.end;
548 else if (addr == offsetof(struct compat_per_struct_kernel, bits))
549 /* Single-step bit. */
550 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
551 0x80000000 : 0;
552 else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
553 /* Start address of the user specified per set. */
554 return (__u32) child->thread.per_user.start;
555 else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
556 /* End address of the user specified per set. */
557 return (__u32) child->thread.per_user.end;
558 else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid))
559 /* PER code, ATMID and AI of the last PER trap */
560 return (__u32) child->thread.per_event.cause << 16;
561 else if (addr == offsetof(struct compat_per_struct_kernel, address))
562 /* Address of the last PER trap */
563 return (__u32) child->thread.per_event.address;
564 else if (addr == offsetof(struct compat_per_struct_kernel, access_id))
565 /* Access id of the last PER trap */
566 return (__u32) child->thread.per_event.paid << 24;
567 return 0;
568}
569
570/*
571 * Same as peek_user but for a 31 bit program.
572 */
573static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
574{
575 addr_t offset;
576 __u32 tmp;
577
578 if (addr < offsetof(struct compat_user, regs.acrs)) {
579 struct pt_regs *regs = task_pt_regs(child);
580 /*
581 * psw and gprs are stored on the stack
582 */
583 if (addr == offsetof(struct compat_user, regs.psw.mask)) {
584 /* Fake a 31 bit psw mask. */
585 tmp = (__u32)(regs->psw.mask >> 32);
586 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
587 tmp |= PSW32_USER_BITS;
588 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
589 /* Fake a 31 bit psw address. */
590 tmp = (__u32) regs->psw.addr |
591 (__u32)(regs->psw.mask & PSW_MASK_BA);
592 } else {
593 /* gpr 0-15 */
594 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
595 }
596 } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
597 /*
598 * access registers are stored in the thread structure
599 */
600 offset = addr - offsetof(struct compat_user, regs.acrs);
601 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
602
603 } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
604 /*
605 * orig_gpr2 is stored on the kernel stack
606 */
607 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
608
609 } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
610 /*
611 * prevent reads of padding hole between
612 * orig_gpr2 and fp_regs on s390.
613 */
614 tmp = 0;
615
616 } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
617 /*
618 * floating point control reg. is in the thread structure
619 */
620 tmp = child->thread.fpu.fpc;
621
622 } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
623 /*
624 * floating point regs. are either in child->thread.fpu
625 * or the child->thread.fpu.vxrs array
626 */
627 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
628 if (MACHINE_HAS_VX)
629 tmp = *(__u32 *)
630 ((addr_t) child->thread.fpu.vxrs + 2*offset);
631 else
632 tmp = *(__u32 *)
633 ((addr_t) child->thread.fpu.fprs + offset);
634
635 } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
636 /*
637 * Handle access to the per_info structure.
638 */
639 addr -= offsetof(struct compat_user, regs.per_info);
640 tmp = __peek_user_per_compat(child, addr);
641
642 } else
643 tmp = 0;
644
645 return tmp;
646}
647
648static int peek_user_compat(struct task_struct *child,
649 addr_t addr, addr_t data)
650{
651 __u32 tmp;
652
653 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
654 return -EIO;
655
656 tmp = __peek_user_compat(child, addr);
657 return put_user(tmp, (__u32 __user *) data);
658}
659
660/*
661 * Same as poke_user_per but for a 31 bit program.
662 */
663static inline void __poke_user_per_compat(struct task_struct *child,
664 addr_t addr, __u32 data)
665{
666 if (addr == offsetof(struct compat_per_struct_kernel, cr9))
667 /* PER event mask of the user specified per set. */
668 child->thread.per_user.control =
669 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
670 else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
671 /* Starting address of the user specified per set. */
672 child->thread.per_user.start = data;
673 else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
674 /* Ending address of the user specified per set. */
675 child->thread.per_user.end = data;
676}
677
678/*
679 * Same as poke_user but for a 31 bit program.
680 */
681static int __poke_user_compat(struct task_struct *child,
682 addr_t addr, addr_t data)
683{
684 __u32 tmp = (__u32) data;
685 addr_t offset;
686
687 if (addr < offsetof(struct compat_user, regs.acrs)) {
688 struct pt_regs *regs = task_pt_regs(child);
689 /*
690 * psw, gprs, acrs and orig_gpr2 are stored on the stack
691 */
692 if (addr == offsetof(struct compat_user, regs.psw.mask)) {
693 __u32 mask = PSW32_MASK_USER;
694
695 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
696 /* Build a 64 bit psw mask from 31 bit mask. */
697 if ((tmp ^ PSW32_USER_BITS) & ~mask)
698 /* Invalid psw mask. */
699 return -EINVAL;
700 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
701 /* Invalid address-space-control bits */
702 return -EINVAL;
703 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
704 (regs->psw.mask & PSW_MASK_BA) |
705 (__u64)(tmp & mask) << 32;
706 } else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
707 /* Build a 64 bit psw address from 31 bit address. */
708 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
709 /* Transfer 31 bit amode bit to psw mask. */
710 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
711 (__u64)(tmp & PSW32_ADDR_AMODE);
712 } else {
713 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
714 addr == offsetof(struct compat_user, regs.gprs[2])) {
715 struct pt_regs *regs = task_pt_regs(child);
716
717 regs->int_code = 0x20000 | (data & 0xffff);
718 }
719 /* gpr 0-15 */
720 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
721 }
722 } else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
723 /*
724 * access registers are stored in the thread structure
725 */
726 offset = addr - offsetof(struct compat_user, regs.acrs);
727 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
728
729 } else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
730 /*
731 * orig_gpr2 is stored on the kernel stack
732 */
733 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
734
735 } else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
736 /*
737 * prevent writess of padding hole between
738 * orig_gpr2 and fp_regs on s390.
739 */
740 return 0;
741
742 } else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
743 /*
744 * floating point control reg. is in the thread structure
745 */
746 if (test_fp_ctl(tmp))
747 return -EINVAL;
748 child->thread.fpu.fpc = data;
749
750 } else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
751 /*
752 * floating point regs. are either in child->thread.fpu
753 * or the child->thread.fpu.vxrs array
754 */
755 offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
756 if (MACHINE_HAS_VX)
757 *(__u32 *)((addr_t)
758 child->thread.fpu.vxrs + 2*offset) = tmp;
759 else
760 *(__u32 *)((addr_t)
761 child->thread.fpu.fprs + offset) = tmp;
762
763 } else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
764 /*
765 * Handle access to the per_info structure.
766 */
767 addr -= offsetof(struct compat_user, regs.per_info);
768 __poke_user_per_compat(child, addr, data);
769 }
770
771 return 0;
772}
773
774static int poke_user_compat(struct task_struct *child,
775 addr_t addr, addr_t data)
776{
777 if (!is_compat_task() || (addr & 3) ||
778 addr > sizeof(struct compat_user) - 3)
779 return -EIO;
780
781 return __poke_user_compat(child, addr, data);
782}
783
784long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
785 compat_ulong_t caddr, compat_ulong_t cdata)
786{
787 unsigned long addr = caddr;
788 unsigned long data = cdata;
789 compat_ptrace_area parea;
790 int copied, ret;
791
792 switch (request) {
793 case PTRACE_PEEKUSR:
794 /* read the word at location addr in the USER area. */
795 return peek_user_compat(child, addr, data);
796
797 case PTRACE_POKEUSR:
798 /* write the word at location addr in the USER area */
799 return poke_user_compat(child, addr, data);
800
801 case PTRACE_PEEKUSR_AREA:
802 case PTRACE_POKEUSR_AREA:
803 if (copy_from_user(&parea, (void __force __user *) addr,
804 sizeof(parea)))
805 return -EFAULT;
806 addr = parea.kernel_addr;
807 data = parea.process_addr;
808 copied = 0;
809 while (copied < parea.len) {
810 if (request == PTRACE_PEEKUSR_AREA)
811 ret = peek_user_compat(child, addr, data);
812 else {
813 __u32 utmp;
814 if (get_user(utmp,
815 (__u32 __force __user *) data))
816 return -EFAULT;
817 ret = poke_user_compat(child, addr, utmp);
818 }
819 if (ret)
820 return ret;
821 addr += sizeof(unsigned int);
822 data += sizeof(unsigned int);
823 copied += sizeof(unsigned int);
824 }
825 return 0;
826 case PTRACE_GET_LAST_BREAK:
827 put_user(child->thread.last_break,
828 (unsigned int __user *) data);
829 return 0;
830 }
831 return compat_ptrace_request(child, request, addr, data);
832}
833#endif
834
835/*
836 * user_regset definitions.
837 */
838
839static int s390_regs_get(struct task_struct *target,
840 const struct user_regset *regset,
841 struct membuf to)
842{
843 unsigned pos;
844 if (target == current)
845 save_access_regs(target->thread.acrs);
846
847 for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
848 membuf_store(&to, __peek_user(target, pos));
849 return 0;
850}
851
852static int s390_regs_set(struct task_struct *target,
853 const struct user_regset *regset,
854 unsigned int pos, unsigned int count,
855 const void *kbuf, const void __user *ubuf)
856{
857 int rc = 0;
858
859 if (target == current)
860 save_access_regs(target->thread.acrs);
861
862 if (kbuf) {
863 const unsigned long *k = kbuf;
864 while (count > 0 && !rc) {
865 rc = __poke_user(target, pos, *k++);
866 count -= sizeof(*k);
867 pos += sizeof(*k);
868 }
869 } else {
870 const unsigned long __user *u = ubuf;
871 while (count > 0 && !rc) {
872 unsigned long word;
873 rc = __get_user(word, u++);
874 if (rc)
875 break;
876 rc = __poke_user(target, pos, word);
877 count -= sizeof(*u);
878 pos += sizeof(*u);
879 }
880 }
881
882 if (rc == 0 && target == current)
883 restore_access_regs(target->thread.acrs);
884
885 return rc;
886}
887
888static int s390_fpregs_get(struct task_struct *target,
889 const struct user_regset *regset,
890 struct membuf to)
891{
892 _s390_fp_regs fp_regs;
893
894 if (target == current)
895 save_fpu_regs();
896
897 fp_regs.fpc = target->thread.fpu.fpc;
898 fpregs_store(&fp_regs, &target->thread.fpu);
899
900 return membuf_write(&to, &fp_regs, sizeof(fp_regs));
901}
902
903static int s390_fpregs_set(struct task_struct *target,
904 const struct user_regset *regset, unsigned int pos,
905 unsigned int count, const void *kbuf,
906 const void __user *ubuf)
907{
908 int rc = 0;
909 freg_t fprs[__NUM_FPRS];
910
911 if (target == current)
912 save_fpu_regs();
913
914 if (MACHINE_HAS_VX)
915 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
916 else
917 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
918
919 /* If setting FPC, must validate it first. */
920 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
921 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
922 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
923 0, offsetof(s390_fp_regs, fprs));
924 if (rc)
925 return rc;
926 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
927 return -EINVAL;
928 target->thread.fpu.fpc = ufpc[0];
929 }
930
931 if (rc == 0 && count > 0)
932 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
933 fprs, offsetof(s390_fp_regs, fprs), -1);
934 if (rc)
935 return rc;
936
937 if (MACHINE_HAS_VX)
938 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
939 else
940 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
941
942 return rc;
943}
944
945static int s390_last_break_get(struct task_struct *target,
946 const struct user_regset *regset,
947 struct membuf to)
948{
949 return membuf_store(&to, target->thread.last_break);
950}
951
952static int s390_last_break_set(struct task_struct *target,
953 const struct user_regset *regset,
954 unsigned int pos, unsigned int count,
955 const void *kbuf, const void __user *ubuf)
956{
957 return 0;
958}
959
960static int s390_tdb_get(struct task_struct *target,
961 const struct user_regset *regset,
962 struct membuf to)
963{
964 struct pt_regs *regs = task_pt_regs(target);
965 size_t size;
966
967 if (!(regs->int_code & 0x200))
968 return -ENODATA;
969 size = sizeof(target->thread.trap_tdb.data);
970 return membuf_write(&to, target->thread.trap_tdb.data, size);
971}
972
973static int s390_tdb_set(struct task_struct *target,
974 const struct user_regset *regset,
975 unsigned int pos, unsigned int count,
976 const void *kbuf, const void __user *ubuf)
977{
978 return 0;
979}
980
981static int s390_vxrs_low_get(struct task_struct *target,
982 const struct user_regset *regset,
983 struct membuf to)
984{
985 __u64 vxrs[__NUM_VXRS_LOW];
986 int i;
987
988 if (!MACHINE_HAS_VX)
989 return -ENODEV;
990 if (target == current)
991 save_fpu_regs();
992 for (i = 0; i < __NUM_VXRS_LOW; i++)
993 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
994 return membuf_write(&to, vxrs, sizeof(vxrs));
995}
996
997static int s390_vxrs_low_set(struct task_struct *target,
998 const struct user_regset *regset,
999 unsigned int pos, unsigned int count,
1000 const void *kbuf, const void __user *ubuf)
1001{
1002 __u64 vxrs[__NUM_VXRS_LOW];
1003 int i, rc;
1004
1005 if (!MACHINE_HAS_VX)
1006 return -ENODEV;
1007 if (target == current)
1008 save_fpu_regs();
1009
1010 for (i = 0; i < __NUM_VXRS_LOW; i++)
1011 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1012
1013 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1014 if (rc == 0)
1015 for (i = 0; i < __NUM_VXRS_LOW; i++)
1016 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1017
1018 return rc;
1019}
1020
1021static int s390_vxrs_high_get(struct task_struct *target,
1022 const struct user_regset *regset,
1023 struct membuf to)
1024{
1025 if (!MACHINE_HAS_VX)
1026 return -ENODEV;
1027 if (target == current)
1028 save_fpu_regs();
1029 return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1030 __NUM_VXRS_HIGH * sizeof(__vector128));
1031}
1032
1033static int s390_vxrs_high_set(struct task_struct *target,
1034 const struct user_regset *regset,
1035 unsigned int pos, unsigned int count,
1036 const void *kbuf, const void __user *ubuf)
1037{
1038 int rc;
1039
1040 if (!MACHINE_HAS_VX)
1041 return -ENODEV;
1042 if (target == current)
1043 save_fpu_regs();
1044
1045 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1046 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1047 return rc;
1048}
1049
1050static int s390_system_call_get(struct task_struct *target,
1051 const struct user_regset *regset,
1052 struct membuf to)
1053{
1054 return membuf_store(&to, target->thread.system_call);
1055}
1056
1057static int s390_system_call_set(struct task_struct *target,
1058 const struct user_regset *regset,
1059 unsigned int pos, unsigned int count,
1060 const void *kbuf, const void __user *ubuf)
1061{
1062 unsigned int *data = &target->thread.system_call;
1063 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1064 data, 0, sizeof(unsigned int));
1065}
1066
1067static int s390_gs_cb_get(struct task_struct *target,
1068 const struct user_regset *regset,
1069 struct membuf to)
1070{
1071 struct gs_cb *data = target->thread.gs_cb;
1072
1073 if (!MACHINE_HAS_GS)
1074 return -ENODEV;
1075 if (!data)
1076 return -ENODATA;
1077 if (target == current)
1078 save_gs_cb(data);
1079 return membuf_write(&to, data, sizeof(struct gs_cb));
1080}
1081
1082static int s390_gs_cb_set(struct task_struct *target,
1083 const struct user_regset *regset,
1084 unsigned int pos, unsigned int count,
1085 const void *kbuf, const void __user *ubuf)
1086{
1087 struct gs_cb gs_cb = { }, *data = NULL;
1088 int rc;
1089
1090 if (!MACHINE_HAS_GS)
1091 return -ENODEV;
1092 if (!target->thread.gs_cb) {
1093 data = kzalloc(sizeof(*data), GFP_KERNEL);
1094 if (!data)
1095 return -ENOMEM;
1096 }
1097 if (!target->thread.gs_cb)
1098 gs_cb.gsd = 25;
1099 else if (target == current)
1100 save_gs_cb(&gs_cb);
1101 else
1102 gs_cb = *target->thread.gs_cb;
1103 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1104 &gs_cb, 0, sizeof(gs_cb));
1105 if (rc) {
1106 kfree(data);
1107 return -EFAULT;
1108 }
1109 preempt_disable();
1110 if (!target->thread.gs_cb)
1111 target->thread.gs_cb = data;
1112 *target->thread.gs_cb = gs_cb;
1113 if (target == current) {
1114 __ctl_set_bit(2, 4);
1115 restore_gs_cb(target->thread.gs_cb);
1116 }
1117 preempt_enable();
1118 return rc;
1119}
1120
1121static int s390_gs_bc_get(struct task_struct *target,
1122 const struct user_regset *regset,
1123 struct membuf to)
1124{
1125 struct gs_cb *data = target->thread.gs_bc_cb;
1126
1127 if (!MACHINE_HAS_GS)
1128 return -ENODEV;
1129 if (!data)
1130 return -ENODATA;
1131 return membuf_write(&to, data, sizeof(struct gs_cb));
1132}
1133
1134static int s390_gs_bc_set(struct task_struct *target,
1135 const struct user_regset *regset,
1136 unsigned int pos, unsigned int count,
1137 const void *kbuf, const void __user *ubuf)
1138{
1139 struct gs_cb *data = target->thread.gs_bc_cb;
1140
1141 if (!MACHINE_HAS_GS)
1142 return -ENODEV;
1143 if (!data) {
1144 data = kzalloc(sizeof(*data), GFP_KERNEL);
1145 if (!data)
1146 return -ENOMEM;
1147 target->thread.gs_bc_cb = data;
1148 }
1149 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150 data, 0, sizeof(struct gs_cb));
1151}
1152
1153static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1154{
1155 return (cb->rca & 0x1f) == 0 &&
1156 (cb->roa & 0xfff) == 0 &&
1157 (cb->rla & 0xfff) == 0xfff &&
1158 cb->s == 1 &&
1159 cb->k == 1 &&
1160 cb->h == 0 &&
1161 cb->reserved1 == 0 &&
1162 cb->ps == 1 &&
1163 cb->qs == 0 &&
1164 cb->pc == 1 &&
1165 cb->qc == 0 &&
1166 cb->reserved2 == 0 &&
1167 cb->reserved3 == 0 &&
1168 cb->reserved4 == 0 &&
1169 cb->reserved5 == 0 &&
1170 cb->reserved6 == 0 &&
1171 cb->reserved7 == 0 &&
1172 cb->reserved8 == 0 &&
1173 cb->rla >= cb->roa &&
1174 cb->rca >= cb->roa &&
1175 cb->rca <= cb->rla+1 &&
1176 cb->m < 3;
1177}
1178
1179static int s390_runtime_instr_get(struct task_struct *target,
1180 const struct user_regset *regset,
1181 struct membuf to)
1182{
1183 struct runtime_instr_cb *data = target->thread.ri_cb;
1184
1185 if (!test_facility(64))
1186 return -ENODEV;
1187 if (!data)
1188 return -ENODATA;
1189
1190 return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1191}
1192
1193static int s390_runtime_instr_set(struct task_struct *target,
1194 const struct user_regset *regset,
1195 unsigned int pos, unsigned int count,
1196 const void *kbuf, const void __user *ubuf)
1197{
1198 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1199 int rc;
1200
1201 if (!test_facility(64))
1202 return -ENODEV;
1203
1204 if (!target->thread.ri_cb) {
1205 data = kzalloc(sizeof(*data), GFP_KERNEL);
1206 if (!data)
1207 return -ENOMEM;
1208 }
1209
1210 if (target->thread.ri_cb) {
1211 if (target == current)
1212 store_runtime_instr_cb(&ri_cb);
1213 else
1214 ri_cb = *target->thread.ri_cb;
1215 }
1216
1217 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1218 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1219 if (rc) {
1220 kfree(data);
1221 return -EFAULT;
1222 }
1223
1224 if (!is_ri_cb_valid(&ri_cb)) {
1225 kfree(data);
1226 return -EINVAL;
1227 }
1228 /*
1229 * Override access key in any case, since user space should
1230 * not be able to set it, nor should it care about it.
1231 */
1232 ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1233 preempt_disable();
1234 if (!target->thread.ri_cb)
1235 target->thread.ri_cb = data;
1236 *target->thread.ri_cb = ri_cb;
1237 if (target == current)
1238 load_runtime_instr_cb(target->thread.ri_cb);
1239 preempt_enable();
1240
1241 return 0;
1242}
1243
1244static const struct user_regset s390_regsets[] = {
1245 {
1246 .core_note_type = NT_PRSTATUS,
1247 .n = sizeof(s390_regs) / sizeof(long),
1248 .size = sizeof(long),
1249 .align = sizeof(long),
1250 .regset_get = s390_regs_get,
1251 .set = s390_regs_set,
1252 },
1253 {
1254 .core_note_type = NT_PRFPREG,
1255 .n = sizeof(s390_fp_regs) / sizeof(long),
1256 .size = sizeof(long),
1257 .align = sizeof(long),
1258 .regset_get = s390_fpregs_get,
1259 .set = s390_fpregs_set,
1260 },
1261 {
1262 .core_note_type = NT_S390_SYSTEM_CALL,
1263 .n = 1,
1264 .size = sizeof(unsigned int),
1265 .align = sizeof(unsigned int),
1266 .regset_get = s390_system_call_get,
1267 .set = s390_system_call_set,
1268 },
1269 {
1270 .core_note_type = NT_S390_LAST_BREAK,
1271 .n = 1,
1272 .size = sizeof(long),
1273 .align = sizeof(long),
1274 .regset_get = s390_last_break_get,
1275 .set = s390_last_break_set,
1276 },
1277 {
1278 .core_note_type = NT_S390_TDB,
1279 .n = 1,
1280 .size = 256,
1281 .align = 1,
1282 .regset_get = s390_tdb_get,
1283 .set = s390_tdb_set,
1284 },
1285 {
1286 .core_note_type = NT_S390_VXRS_LOW,
1287 .n = __NUM_VXRS_LOW,
1288 .size = sizeof(__u64),
1289 .align = sizeof(__u64),
1290 .regset_get = s390_vxrs_low_get,
1291 .set = s390_vxrs_low_set,
1292 },
1293 {
1294 .core_note_type = NT_S390_VXRS_HIGH,
1295 .n = __NUM_VXRS_HIGH,
1296 .size = sizeof(__vector128),
1297 .align = sizeof(__vector128),
1298 .regset_get = s390_vxrs_high_get,
1299 .set = s390_vxrs_high_set,
1300 },
1301 {
1302 .core_note_type = NT_S390_GS_CB,
1303 .n = sizeof(struct gs_cb) / sizeof(__u64),
1304 .size = sizeof(__u64),
1305 .align = sizeof(__u64),
1306 .regset_get = s390_gs_cb_get,
1307 .set = s390_gs_cb_set,
1308 },
1309 {
1310 .core_note_type = NT_S390_GS_BC,
1311 .n = sizeof(struct gs_cb) / sizeof(__u64),
1312 .size = sizeof(__u64),
1313 .align = sizeof(__u64),
1314 .regset_get = s390_gs_bc_get,
1315 .set = s390_gs_bc_set,
1316 },
1317 {
1318 .core_note_type = NT_S390_RI_CB,
1319 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1320 .size = sizeof(__u64),
1321 .align = sizeof(__u64),
1322 .regset_get = s390_runtime_instr_get,
1323 .set = s390_runtime_instr_set,
1324 },
1325};
1326
1327static const struct user_regset_view user_s390_view = {
1328 .name = "s390x",
1329 .e_machine = EM_S390,
1330 .regsets = s390_regsets,
1331 .n = ARRAY_SIZE(s390_regsets)
1332};
1333
1334#ifdef CONFIG_COMPAT
1335static int s390_compat_regs_get(struct task_struct *target,
1336 const struct user_regset *regset,
1337 struct membuf to)
1338{
1339 unsigned n;
1340
1341 if (target == current)
1342 save_access_regs(target->thread.acrs);
1343
1344 for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1345 membuf_store(&to, __peek_user_compat(target, n));
1346 return 0;
1347}
1348
1349static int s390_compat_regs_set(struct task_struct *target,
1350 const struct user_regset *regset,
1351 unsigned int pos, unsigned int count,
1352 const void *kbuf, const void __user *ubuf)
1353{
1354 int rc = 0;
1355
1356 if (target == current)
1357 save_access_regs(target->thread.acrs);
1358
1359 if (kbuf) {
1360 const compat_ulong_t *k = kbuf;
1361 while (count > 0 && !rc) {
1362 rc = __poke_user_compat(target, pos, *k++);
1363 count -= sizeof(*k);
1364 pos += sizeof(*k);
1365 }
1366 } else {
1367 const compat_ulong_t __user *u = ubuf;
1368 while (count > 0 && !rc) {
1369 compat_ulong_t word;
1370 rc = __get_user(word, u++);
1371 if (rc)
1372 break;
1373 rc = __poke_user_compat(target, pos, word);
1374 count -= sizeof(*u);
1375 pos += sizeof(*u);
1376 }
1377 }
1378
1379 if (rc == 0 && target == current)
1380 restore_access_regs(target->thread.acrs);
1381
1382 return rc;
1383}
1384
1385static int s390_compat_regs_high_get(struct task_struct *target,
1386 const struct user_regset *regset,
1387 struct membuf to)
1388{
1389 compat_ulong_t *gprs_high;
1390 int i;
1391
1392 gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1393 for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1394 membuf_store(&to, *gprs_high);
1395 return 0;
1396}
1397
1398static int s390_compat_regs_high_set(struct task_struct *target,
1399 const struct user_regset *regset,
1400 unsigned int pos, unsigned int count,
1401 const void *kbuf, const void __user *ubuf)
1402{
1403 compat_ulong_t *gprs_high;
1404 int rc = 0;
1405
1406 gprs_high = (compat_ulong_t *)
1407 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1408 if (kbuf) {
1409 const compat_ulong_t *k = kbuf;
1410 while (count > 0) {
1411 *gprs_high = *k++;
1412 *gprs_high += 2;
1413 count -= sizeof(*k);
1414 }
1415 } else {
1416 const compat_ulong_t __user *u = ubuf;
1417 while (count > 0 && !rc) {
1418 unsigned long word;
1419 rc = __get_user(word, u++);
1420 if (rc)
1421 break;
1422 *gprs_high = word;
1423 *gprs_high += 2;
1424 count -= sizeof(*u);
1425 }
1426 }
1427
1428 return rc;
1429}
1430
1431static int s390_compat_last_break_get(struct task_struct *target,
1432 const struct user_regset *regset,
1433 struct membuf to)
1434{
1435 compat_ulong_t last_break = target->thread.last_break;
1436
1437 return membuf_store(&to, (unsigned long)last_break);
1438}
1439
1440static int s390_compat_last_break_set(struct task_struct *target,
1441 const struct user_regset *regset,
1442 unsigned int pos, unsigned int count,
1443 const void *kbuf, const void __user *ubuf)
1444{
1445 return 0;
1446}
1447
1448static const struct user_regset s390_compat_regsets[] = {
1449 {
1450 .core_note_type = NT_PRSTATUS,
1451 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1452 .size = sizeof(compat_long_t),
1453 .align = sizeof(compat_long_t),
1454 .regset_get = s390_compat_regs_get,
1455 .set = s390_compat_regs_set,
1456 },
1457 {
1458 .core_note_type = NT_PRFPREG,
1459 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1460 .size = sizeof(compat_long_t),
1461 .align = sizeof(compat_long_t),
1462 .regset_get = s390_fpregs_get,
1463 .set = s390_fpregs_set,
1464 },
1465 {
1466 .core_note_type = NT_S390_SYSTEM_CALL,
1467 .n = 1,
1468 .size = sizeof(compat_uint_t),
1469 .align = sizeof(compat_uint_t),
1470 .regset_get = s390_system_call_get,
1471 .set = s390_system_call_set,
1472 },
1473 {
1474 .core_note_type = NT_S390_LAST_BREAK,
1475 .n = 1,
1476 .size = sizeof(long),
1477 .align = sizeof(long),
1478 .regset_get = s390_compat_last_break_get,
1479 .set = s390_compat_last_break_set,
1480 },
1481 {
1482 .core_note_type = NT_S390_TDB,
1483 .n = 1,
1484 .size = 256,
1485 .align = 1,
1486 .regset_get = s390_tdb_get,
1487 .set = s390_tdb_set,
1488 },
1489 {
1490 .core_note_type = NT_S390_VXRS_LOW,
1491 .n = __NUM_VXRS_LOW,
1492 .size = sizeof(__u64),
1493 .align = sizeof(__u64),
1494 .regset_get = s390_vxrs_low_get,
1495 .set = s390_vxrs_low_set,
1496 },
1497 {
1498 .core_note_type = NT_S390_VXRS_HIGH,
1499 .n = __NUM_VXRS_HIGH,
1500 .size = sizeof(__vector128),
1501 .align = sizeof(__vector128),
1502 .regset_get = s390_vxrs_high_get,
1503 .set = s390_vxrs_high_set,
1504 },
1505 {
1506 .core_note_type = NT_S390_HIGH_GPRS,
1507 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1508 .size = sizeof(compat_long_t),
1509 .align = sizeof(compat_long_t),
1510 .regset_get = s390_compat_regs_high_get,
1511 .set = s390_compat_regs_high_set,
1512 },
1513 {
1514 .core_note_type = NT_S390_GS_CB,
1515 .n = sizeof(struct gs_cb) / sizeof(__u64),
1516 .size = sizeof(__u64),
1517 .align = sizeof(__u64),
1518 .regset_get = s390_gs_cb_get,
1519 .set = s390_gs_cb_set,
1520 },
1521 {
1522 .core_note_type = NT_S390_GS_BC,
1523 .n = sizeof(struct gs_cb) / sizeof(__u64),
1524 .size = sizeof(__u64),
1525 .align = sizeof(__u64),
1526 .regset_get = s390_gs_bc_get,
1527 .set = s390_gs_bc_set,
1528 },
1529 {
1530 .core_note_type = NT_S390_RI_CB,
1531 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1532 .size = sizeof(__u64),
1533 .align = sizeof(__u64),
1534 .regset_get = s390_runtime_instr_get,
1535 .set = s390_runtime_instr_set,
1536 },
1537};
1538
1539static const struct user_regset_view user_s390_compat_view = {
1540 .name = "s390",
1541 .e_machine = EM_S390,
1542 .regsets = s390_compat_regsets,
1543 .n = ARRAY_SIZE(s390_compat_regsets)
1544};
1545#endif
1546
1547const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1548{
1549#ifdef CONFIG_COMPAT
1550 if (test_tsk_thread_flag(task, TIF_31BIT))
1551 return &user_s390_compat_view;
1552#endif
1553 return &user_s390_view;
1554}
1555
1556static const char *gpr_names[NUM_GPRS] = {
1557 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1558 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1559};
1560
1561unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1562{
1563 if (offset >= NUM_GPRS)
1564 return 0;
1565 return regs->gprs[offset];
1566}
1567
1568int regs_query_register_offset(const char *name)
1569{
1570 unsigned long offset;
1571
1572 if (!name || *name != 'r')
1573 return -EINVAL;
1574 if (kstrtoul(name + 1, 10, &offset))
1575 return -EINVAL;
1576 if (offset >= NUM_GPRS)
1577 return -EINVAL;
1578 return offset;
1579}
1580
1581const char *regs_query_register_name(unsigned int offset)
1582{
1583 if (offset >= NUM_GPRS)
1584 return NULL;
1585 return gpr_names[offset];
1586}
1587
1588static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1589{
1590 unsigned long ksp = kernel_stack_pointer(regs);
1591
1592 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1593}
1594
1595/**
1596 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1597 * @regs:pt_regs which contains kernel stack pointer.
1598 * @n:stack entry number.
1599 *
1600 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1601 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1602 * this returns 0.
1603 */
1604unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1605{
1606 unsigned long addr;
1607
1608 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1609 if (!regs_within_kernel_stack(regs, addr))
1610 return 0;
1611 return *(unsigned long *)addr;
1612}
1/*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/mm.h>
12#include <linux/smp.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/user.h>
16#include <linux/security.h>
17#include <linux/audit.h>
18#include <linux/signal.h>
19#include <linux/elf.h>
20#include <linux/regset.h>
21#include <linux/tracehook.h>
22#include <linux/seccomp.h>
23#include <linux/compat.h>
24#include <trace/syscall.h>
25#include <asm/segment.h>
26#include <asm/page.h>
27#include <asm/pgtable.h>
28#include <asm/pgalloc.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/switch_to.h>
32#include "entry.h"
33
34#ifdef CONFIG_COMPAT
35#include "compat_ptrace.h"
36#endif
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/syscalls.h>
40
41enum s390_regset {
42 REGSET_GENERAL,
43 REGSET_FP,
44 REGSET_LAST_BREAK,
45 REGSET_TDB,
46 REGSET_SYSTEM_CALL,
47 REGSET_GENERAL_EXTENDED,
48};
49
50void update_cr_regs(struct task_struct *task)
51{
52 struct pt_regs *regs = task_pt_regs(task);
53 struct thread_struct *thread = &task->thread;
54 struct per_regs old, new;
55
56#ifdef CONFIG_64BIT
57 /* Take care of the enable/disable of transactional execution. */
58 if (MACHINE_HAS_TE) {
59 unsigned long cr, cr_new;
60
61 __ctl_store(cr, 0, 0);
62 /* Set or clear transaction execution TXC bit 8. */
63 cr_new = cr | (1UL << 55);
64 if (task->thread.per_flags & PER_FLAG_NO_TE)
65 cr_new &= ~(1UL << 55);
66 if (cr_new != cr)
67 __ctl_load(cr_new, 0, 0);
68 /* Set or clear transaction execution TDC bits 62 and 63. */
69 __ctl_store(cr, 2, 2);
70 cr_new = cr & ~3UL;
71 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
72 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
73 cr_new |= 1UL;
74 else
75 cr_new |= 2UL;
76 }
77 if (cr_new != cr)
78 __ctl_load(cr_new, 2, 2);
79 }
80#endif
81 /* Copy user specified PER registers */
82 new.control = thread->per_user.control;
83 new.start = thread->per_user.start;
84 new.end = thread->per_user.end;
85
86 /* merge TIF_SINGLE_STEP into user specified PER registers. */
87 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
88 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
89 new.control |= PER_EVENT_BRANCH;
90 else
91 new.control |= PER_EVENT_IFETCH;
92#ifdef CONFIG_64BIT
93 new.control |= PER_CONTROL_SUSPENSION;
94 new.control |= PER_EVENT_TRANSACTION_END;
95#endif
96 new.start = 0;
97 new.end = PSW_ADDR_INSN;
98 }
99
100 /* Take care of the PER enablement bit in the PSW. */
101 if (!(new.control & PER_EVENT_MASK)) {
102 regs->psw.mask &= ~PSW_MASK_PER;
103 return;
104 }
105 regs->psw.mask |= PSW_MASK_PER;
106 __ctl_store(old, 9, 11);
107 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
108 __ctl_load(new, 9, 11);
109}
110
111void user_enable_single_step(struct task_struct *task)
112{
113 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
114 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
115}
116
117void user_disable_single_step(struct task_struct *task)
118{
119 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
121}
122
123void user_enable_block_step(struct task_struct *task)
124{
125 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
126 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
127}
128
129/*
130 * Called by kernel/ptrace.c when detaching..
131 *
132 * Clear all debugging related fields.
133 */
134void ptrace_disable(struct task_struct *task)
135{
136 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
137 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
138 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
139 clear_tsk_thread_flag(task, TIF_PER_TRAP);
140 task->thread.per_flags = 0;
141}
142
143#ifndef CONFIG_64BIT
144# define __ADDR_MASK 3
145#else
146# define __ADDR_MASK 7
147#endif
148
149static inline unsigned long __peek_user_per(struct task_struct *child,
150 addr_t addr)
151{
152 struct per_struct_kernel *dummy = NULL;
153
154 if (addr == (addr_t) &dummy->cr9)
155 /* Control bits of the active per set. */
156 return test_thread_flag(TIF_SINGLE_STEP) ?
157 PER_EVENT_IFETCH : child->thread.per_user.control;
158 else if (addr == (addr_t) &dummy->cr10)
159 /* Start address of the active per set. */
160 return test_thread_flag(TIF_SINGLE_STEP) ?
161 0 : child->thread.per_user.start;
162 else if (addr == (addr_t) &dummy->cr11)
163 /* End address of the active per set. */
164 return test_thread_flag(TIF_SINGLE_STEP) ?
165 PSW_ADDR_INSN : child->thread.per_user.end;
166 else if (addr == (addr_t) &dummy->bits)
167 /* Single-step bit. */
168 return test_thread_flag(TIF_SINGLE_STEP) ?
169 (1UL << (BITS_PER_LONG - 1)) : 0;
170 else if (addr == (addr_t) &dummy->starting_addr)
171 /* Start address of the user specified per set. */
172 return child->thread.per_user.start;
173 else if (addr == (addr_t) &dummy->ending_addr)
174 /* End address of the user specified per set. */
175 return child->thread.per_user.end;
176 else if (addr == (addr_t) &dummy->perc_atmid)
177 /* PER code, ATMID and AI of the last PER trap */
178 return (unsigned long)
179 child->thread.per_event.cause << (BITS_PER_LONG - 16);
180 else if (addr == (addr_t) &dummy->address)
181 /* Address of the last PER trap */
182 return child->thread.per_event.address;
183 else if (addr == (addr_t) &dummy->access_id)
184 /* Access id of the last PER trap */
185 return (unsigned long)
186 child->thread.per_event.paid << (BITS_PER_LONG - 8);
187 return 0;
188}
189
190/*
191 * Read the word at offset addr from the user area of a process. The
192 * trouble here is that the information is littered over different
193 * locations. The process registers are found on the kernel stack,
194 * the floating point stuff and the trace settings are stored in
195 * the task structure. In addition the different structures in
196 * struct user contain pad bytes that should be read as zeroes.
197 * Lovely...
198 */
199static unsigned long __peek_user(struct task_struct *child, addr_t addr)
200{
201 struct user *dummy = NULL;
202 addr_t offset, tmp;
203
204 if (addr < (addr_t) &dummy->regs.acrs) {
205 /*
206 * psw and gprs are stored on the stack
207 */
208 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
209 if (addr == (addr_t) &dummy->regs.psw.mask) {
210 /* Return a clean psw mask. */
211 tmp &= PSW_MASK_USER | PSW_MASK_RI;
212 tmp |= PSW_USER_BITS;
213 }
214
215 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
216 /*
217 * access registers are stored in the thread structure
218 */
219 offset = addr - (addr_t) &dummy->regs.acrs;
220#ifdef CONFIG_64BIT
221 /*
222 * Very special case: old & broken 64 bit gdb reading
223 * from acrs[15]. Result is a 64 bit value. Read the
224 * 32 bit acrs[15] value and shift it by 32. Sick...
225 */
226 if (addr == (addr_t) &dummy->regs.acrs[15])
227 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
228 else
229#endif
230 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
231
232 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
233 /*
234 * orig_gpr2 is stored on the kernel stack
235 */
236 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
237
238 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
239 /*
240 * prevent reads of padding hole between
241 * orig_gpr2 and fp_regs on s390.
242 */
243 tmp = 0;
244
245 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
246 /*
247 * floating point regs. are stored in the thread structure
248 */
249 offset = addr - (addr_t) &dummy->regs.fp_regs;
250 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
251 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
252 tmp <<= BITS_PER_LONG - 32;
253
254 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
255 /*
256 * Handle access to the per_info structure.
257 */
258 addr -= (addr_t) &dummy->regs.per_info;
259 tmp = __peek_user_per(child, addr);
260
261 } else
262 tmp = 0;
263
264 return tmp;
265}
266
267static int
268peek_user(struct task_struct *child, addr_t addr, addr_t data)
269{
270 addr_t tmp, mask;
271
272 /*
273 * Stupid gdb peeks/pokes the access registers in 64 bit with
274 * an alignment of 4. Programmers from hell...
275 */
276 mask = __ADDR_MASK;
277#ifdef CONFIG_64BIT
278 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
279 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
280 mask = 3;
281#endif
282 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
283 return -EIO;
284
285 tmp = __peek_user(child, addr);
286 return put_user(tmp, (addr_t __user *) data);
287}
288
289static inline void __poke_user_per(struct task_struct *child,
290 addr_t addr, addr_t data)
291{
292 struct per_struct_kernel *dummy = NULL;
293
294 /*
295 * There are only three fields in the per_info struct that the
296 * debugger user can write to.
297 * 1) cr9: the debugger wants to set a new PER event mask
298 * 2) starting_addr: the debugger wants to set a new starting
299 * address to use with the PER event mask.
300 * 3) ending_addr: the debugger wants to set a new ending
301 * address to use with the PER event mask.
302 * The user specified PER event mask and the start and end
303 * addresses are used only if single stepping is not in effect.
304 * Writes to any other field in per_info are ignored.
305 */
306 if (addr == (addr_t) &dummy->cr9)
307 /* PER event mask of the user specified per set. */
308 child->thread.per_user.control =
309 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
310 else if (addr == (addr_t) &dummy->starting_addr)
311 /* Starting address of the user specified per set. */
312 child->thread.per_user.start = data;
313 else if (addr == (addr_t) &dummy->ending_addr)
314 /* Ending address of the user specified per set. */
315 child->thread.per_user.end = data;
316}
317
318/*
319 * Write a word to the user area of a process at location addr. This
320 * operation does have an additional problem compared to peek_user.
321 * Stores to the program status word and on the floating point
322 * control register needs to get checked for validity.
323 */
324static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
325{
326 struct user *dummy = NULL;
327 addr_t offset;
328
329 if (addr < (addr_t) &dummy->regs.acrs) {
330 /*
331 * psw and gprs are stored on the stack
332 */
333 if (addr == (addr_t) &dummy->regs.psw.mask) {
334 unsigned long mask = PSW_MASK_USER;
335
336 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
337 if ((data & ~mask) != PSW_USER_BITS)
338 return -EINVAL;
339 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
340 return -EINVAL;
341 }
342 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
343
344 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
345 /*
346 * access registers are stored in the thread structure
347 */
348 offset = addr - (addr_t) &dummy->regs.acrs;
349#ifdef CONFIG_64BIT
350 /*
351 * Very special case: old & broken 64 bit gdb writing
352 * to acrs[15] with a 64 bit value. Ignore the lower
353 * half of the value and write the upper 32 bit to
354 * acrs[15]. Sick...
355 */
356 if (addr == (addr_t) &dummy->regs.acrs[15])
357 child->thread.acrs[15] = (unsigned int) (data >> 32);
358 else
359#endif
360 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
361
362 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
363 /*
364 * orig_gpr2 is stored on the kernel stack
365 */
366 task_pt_regs(child)->orig_gpr2 = data;
367
368 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
369 /*
370 * prevent writes of padding hole between
371 * orig_gpr2 and fp_regs on s390.
372 */
373 return 0;
374
375 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
376 /*
377 * floating point regs. are stored in the thread structure
378 */
379 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
380 if ((unsigned int) data != 0 ||
381 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
382 return -EINVAL;
383 offset = addr - (addr_t) &dummy->regs.fp_regs;
384 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
385
386 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
387 /*
388 * Handle access to the per_info structure.
389 */
390 addr -= (addr_t) &dummy->regs.per_info;
391 __poke_user_per(child, addr, data);
392
393 }
394
395 return 0;
396}
397
398static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
399{
400 addr_t mask;
401
402 /*
403 * Stupid gdb peeks/pokes the access registers in 64 bit with
404 * an alignment of 4. Programmers from hell indeed...
405 */
406 mask = __ADDR_MASK;
407#ifdef CONFIG_64BIT
408 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
409 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
410 mask = 3;
411#endif
412 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
413 return -EIO;
414
415 return __poke_user(child, addr, data);
416}
417
418long arch_ptrace(struct task_struct *child, long request,
419 unsigned long addr, unsigned long data)
420{
421 ptrace_area parea;
422 int copied, ret;
423
424 switch (request) {
425 case PTRACE_PEEKUSR:
426 /* read the word at location addr in the USER area. */
427 return peek_user(child, addr, data);
428
429 case PTRACE_POKEUSR:
430 /* write the word at location addr in the USER area */
431 return poke_user(child, addr, data);
432
433 case PTRACE_PEEKUSR_AREA:
434 case PTRACE_POKEUSR_AREA:
435 if (copy_from_user(&parea, (void __force __user *) addr,
436 sizeof(parea)))
437 return -EFAULT;
438 addr = parea.kernel_addr;
439 data = parea.process_addr;
440 copied = 0;
441 while (copied < parea.len) {
442 if (request == PTRACE_PEEKUSR_AREA)
443 ret = peek_user(child, addr, data);
444 else {
445 addr_t utmp;
446 if (get_user(utmp,
447 (addr_t __force __user *) data))
448 return -EFAULT;
449 ret = poke_user(child, addr, utmp);
450 }
451 if (ret)
452 return ret;
453 addr += sizeof(unsigned long);
454 data += sizeof(unsigned long);
455 copied += sizeof(unsigned long);
456 }
457 return 0;
458 case PTRACE_GET_LAST_BREAK:
459 put_user(task_thread_info(child)->last_break,
460 (unsigned long __user *) data);
461 return 0;
462 case PTRACE_ENABLE_TE:
463 if (!MACHINE_HAS_TE)
464 return -EIO;
465 child->thread.per_flags &= ~PER_FLAG_NO_TE;
466 return 0;
467 case PTRACE_DISABLE_TE:
468 if (!MACHINE_HAS_TE)
469 return -EIO;
470 child->thread.per_flags |= PER_FLAG_NO_TE;
471 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
472 return 0;
473 case PTRACE_TE_ABORT_RAND:
474 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
475 return -EIO;
476 switch (data) {
477 case 0UL:
478 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
479 break;
480 case 1UL:
481 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
482 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
483 break;
484 case 2UL:
485 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
486 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
487 break;
488 default:
489 return -EINVAL;
490 }
491 return 0;
492 default:
493 /* Removing high order bit from addr (only for 31 bit). */
494 addr &= PSW_ADDR_INSN;
495 return ptrace_request(child, request, addr, data);
496 }
497}
498
499#ifdef CONFIG_COMPAT
500/*
501 * Now the fun part starts... a 31 bit program running in the
502 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
503 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
504 * to handle, the difference to the 64 bit versions of the requests
505 * is that the access is done in multiples of 4 byte instead of
506 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
507 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
508 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
509 * is a 31 bit program too, the content of struct user can be
510 * emulated. A 31 bit program peeking into the struct user of
511 * a 64 bit program is a no-no.
512 */
513
514/*
515 * Same as peek_user_per but for a 31 bit program.
516 */
517static inline __u32 __peek_user_per_compat(struct task_struct *child,
518 addr_t addr)
519{
520 struct compat_per_struct_kernel *dummy32 = NULL;
521
522 if (addr == (addr_t) &dummy32->cr9)
523 /* Control bits of the active per set. */
524 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
525 PER_EVENT_IFETCH : child->thread.per_user.control;
526 else if (addr == (addr_t) &dummy32->cr10)
527 /* Start address of the active per set. */
528 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
529 0 : child->thread.per_user.start;
530 else if (addr == (addr_t) &dummy32->cr11)
531 /* End address of the active per set. */
532 return test_thread_flag(TIF_SINGLE_STEP) ?
533 PSW32_ADDR_INSN : child->thread.per_user.end;
534 else if (addr == (addr_t) &dummy32->bits)
535 /* Single-step bit. */
536 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
537 0x80000000 : 0;
538 else if (addr == (addr_t) &dummy32->starting_addr)
539 /* Start address of the user specified per set. */
540 return (__u32) child->thread.per_user.start;
541 else if (addr == (addr_t) &dummy32->ending_addr)
542 /* End address of the user specified per set. */
543 return (__u32) child->thread.per_user.end;
544 else if (addr == (addr_t) &dummy32->perc_atmid)
545 /* PER code, ATMID and AI of the last PER trap */
546 return (__u32) child->thread.per_event.cause << 16;
547 else if (addr == (addr_t) &dummy32->address)
548 /* Address of the last PER trap */
549 return (__u32) child->thread.per_event.address;
550 else if (addr == (addr_t) &dummy32->access_id)
551 /* Access id of the last PER trap */
552 return (__u32) child->thread.per_event.paid << 24;
553 return 0;
554}
555
556/*
557 * Same as peek_user but for a 31 bit program.
558 */
559static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
560{
561 struct compat_user *dummy32 = NULL;
562 addr_t offset;
563 __u32 tmp;
564
565 if (addr < (addr_t) &dummy32->regs.acrs) {
566 struct pt_regs *regs = task_pt_regs(child);
567 /*
568 * psw and gprs are stored on the stack
569 */
570 if (addr == (addr_t) &dummy32->regs.psw.mask) {
571 /* Fake a 31 bit psw mask. */
572 tmp = (__u32)(regs->psw.mask >> 32);
573 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
574 tmp |= PSW32_USER_BITS;
575 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
576 /* Fake a 31 bit psw address. */
577 tmp = (__u32) regs->psw.addr |
578 (__u32)(regs->psw.mask & PSW_MASK_BA);
579 } else {
580 /* gpr 0-15 */
581 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
582 }
583 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
584 /*
585 * access registers are stored in the thread structure
586 */
587 offset = addr - (addr_t) &dummy32->regs.acrs;
588 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
589
590 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
591 /*
592 * orig_gpr2 is stored on the kernel stack
593 */
594 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
595
596 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
597 /*
598 * prevent reads of padding hole between
599 * orig_gpr2 and fp_regs on s390.
600 */
601 tmp = 0;
602
603 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
604 /*
605 * floating point regs. are stored in the thread structure
606 */
607 offset = addr - (addr_t) &dummy32->regs.fp_regs;
608 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
609
610 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
611 /*
612 * Handle access to the per_info structure.
613 */
614 addr -= (addr_t) &dummy32->regs.per_info;
615 tmp = __peek_user_per_compat(child, addr);
616
617 } else
618 tmp = 0;
619
620 return tmp;
621}
622
623static int peek_user_compat(struct task_struct *child,
624 addr_t addr, addr_t data)
625{
626 __u32 tmp;
627
628 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
629 return -EIO;
630
631 tmp = __peek_user_compat(child, addr);
632 return put_user(tmp, (__u32 __user *) data);
633}
634
635/*
636 * Same as poke_user_per but for a 31 bit program.
637 */
638static inline void __poke_user_per_compat(struct task_struct *child,
639 addr_t addr, __u32 data)
640{
641 struct compat_per_struct_kernel *dummy32 = NULL;
642
643 if (addr == (addr_t) &dummy32->cr9)
644 /* PER event mask of the user specified per set. */
645 child->thread.per_user.control =
646 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
647 else if (addr == (addr_t) &dummy32->starting_addr)
648 /* Starting address of the user specified per set. */
649 child->thread.per_user.start = data;
650 else if (addr == (addr_t) &dummy32->ending_addr)
651 /* Ending address of the user specified per set. */
652 child->thread.per_user.end = data;
653}
654
655/*
656 * Same as poke_user but for a 31 bit program.
657 */
658static int __poke_user_compat(struct task_struct *child,
659 addr_t addr, addr_t data)
660{
661 struct compat_user *dummy32 = NULL;
662 __u32 tmp = (__u32) data;
663 addr_t offset;
664
665 if (addr < (addr_t) &dummy32->regs.acrs) {
666 struct pt_regs *regs = task_pt_regs(child);
667 /*
668 * psw, gprs, acrs and orig_gpr2 are stored on the stack
669 */
670 if (addr == (addr_t) &dummy32->regs.psw.mask) {
671 __u32 mask = PSW32_MASK_USER;
672
673 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
674 /* Build a 64 bit psw mask from 31 bit mask. */
675 if ((tmp & ~mask) != PSW32_USER_BITS)
676 /* Invalid psw mask. */
677 return -EINVAL;
678 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
679 (regs->psw.mask & PSW_MASK_BA) |
680 (__u64)(tmp & mask) << 32;
681 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
682 /* Build a 64 bit psw address from 31 bit address. */
683 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
684 /* Transfer 31 bit amode bit to psw mask. */
685 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
686 (__u64)(tmp & PSW32_ADDR_AMODE);
687 } else {
688 /* gpr 0-15 */
689 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
690 }
691 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
692 /*
693 * access registers are stored in the thread structure
694 */
695 offset = addr - (addr_t) &dummy32->regs.acrs;
696 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
697
698 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
699 /*
700 * orig_gpr2 is stored on the kernel stack
701 */
702 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
703
704 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
705 /*
706 * prevent writess of padding hole between
707 * orig_gpr2 and fp_regs on s390.
708 */
709 return 0;
710
711 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
712 /*
713 * floating point regs. are stored in the thread structure
714 */
715 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
716 test_fp_ctl(tmp))
717 return -EINVAL;
718 offset = addr - (addr_t) &dummy32->regs.fp_regs;
719 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
720
721 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
722 /*
723 * Handle access to the per_info structure.
724 */
725 addr -= (addr_t) &dummy32->regs.per_info;
726 __poke_user_per_compat(child, addr, data);
727 }
728
729 return 0;
730}
731
732static int poke_user_compat(struct task_struct *child,
733 addr_t addr, addr_t data)
734{
735 if (!is_compat_task() || (addr & 3) ||
736 addr > sizeof(struct compat_user) - 3)
737 return -EIO;
738
739 return __poke_user_compat(child, addr, data);
740}
741
742long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
743 compat_ulong_t caddr, compat_ulong_t cdata)
744{
745 unsigned long addr = caddr;
746 unsigned long data = cdata;
747 compat_ptrace_area parea;
748 int copied, ret;
749
750 switch (request) {
751 case PTRACE_PEEKUSR:
752 /* read the word at location addr in the USER area. */
753 return peek_user_compat(child, addr, data);
754
755 case PTRACE_POKEUSR:
756 /* write the word at location addr in the USER area */
757 return poke_user_compat(child, addr, data);
758
759 case PTRACE_PEEKUSR_AREA:
760 case PTRACE_POKEUSR_AREA:
761 if (copy_from_user(&parea, (void __force __user *) addr,
762 sizeof(parea)))
763 return -EFAULT;
764 addr = parea.kernel_addr;
765 data = parea.process_addr;
766 copied = 0;
767 while (copied < parea.len) {
768 if (request == PTRACE_PEEKUSR_AREA)
769 ret = peek_user_compat(child, addr, data);
770 else {
771 __u32 utmp;
772 if (get_user(utmp,
773 (__u32 __force __user *) data))
774 return -EFAULT;
775 ret = poke_user_compat(child, addr, utmp);
776 }
777 if (ret)
778 return ret;
779 addr += sizeof(unsigned int);
780 data += sizeof(unsigned int);
781 copied += sizeof(unsigned int);
782 }
783 return 0;
784 case PTRACE_GET_LAST_BREAK:
785 put_user(task_thread_info(child)->last_break,
786 (unsigned int __user *) data);
787 return 0;
788 }
789 return compat_ptrace_request(child, request, addr, data);
790}
791#endif
792
793asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
794{
795 long ret = 0;
796
797 /* Do the secure computing check first. */
798 if (secure_computing(regs->gprs[2])) {
799 /* seccomp failures shouldn't expose any additional code. */
800 ret = -1;
801 goto out;
802 }
803
804 /*
805 * The sysc_tracesys code in entry.S stored the system
806 * call number to gprs[2].
807 */
808 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
809 (tracehook_report_syscall_entry(regs) ||
810 regs->gprs[2] >= NR_syscalls)) {
811 /*
812 * Tracing decided this syscall should not happen or the
813 * debugger stored an invalid system call number. Skip
814 * the system call and the system call restart handling.
815 */
816 clear_thread_flag(TIF_SYSCALL);
817 ret = -1;
818 }
819
820 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
821 trace_sys_enter(regs, regs->gprs[2]);
822
823 audit_syscall_entry(is_compat_task() ?
824 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
825 regs->gprs[2], regs->orig_gpr2,
826 regs->gprs[3], regs->gprs[4],
827 regs->gprs[5]);
828out:
829 return ret ?: regs->gprs[2];
830}
831
832asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
833{
834 audit_syscall_exit(regs);
835
836 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
837 trace_sys_exit(regs, regs->gprs[2]);
838
839 if (test_thread_flag(TIF_SYSCALL_TRACE))
840 tracehook_report_syscall_exit(regs, 0);
841}
842
843/*
844 * user_regset definitions.
845 */
846
847static int s390_regs_get(struct task_struct *target,
848 const struct user_regset *regset,
849 unsigned int pos, unsigned int count,
850 void *kbuf, void __user *ubuf)
851{
852 if (target == current)
853 save_access_regs(target->thread.acrs);
854
855 if (kbuf) {
856 unsigned long *k = kbuf;
857 while (count > 0) {
858 *k++ = __peek_user(target, pos);
859 count -= sizeof(*k);
860 pos += sizeof(*k);
861 }
862 } else {
863 unsigned long __user *u = ubuf;
864 while (count > 0) {
865 if (__put_user(__peek_user(target, pos), u++))
866 return -EFAULT;
867 count -= sizeof(*u);
868 pos += sizeof(*u);
869 }
870 }
871 return 0;
872}
873
874static int s390_regs_set(struct task_struct *target,
875 const struct user_regset *regset,
876 unsigned int pos, unsigned int count,
877 const void *kbuf, const void __user *ubuf)
878{
879 int rc = 0;
880
881 if (target == current)
882 save_access_regs(target->thread.acrs);
883
884 if (kbuf) {
885 const unsigned long *k = kbuf;
886 while (count > 0 && !rc) {
887 rc = __poke_user(target, pos, *k++);
888 count -= sizeof(*k);
889 pos += sizeof(*k);
890 }
891 } else {
892 const unsigned long __user *u = ubuf;
893 while (count > 0 && !rc) {
894 unsigned long word;
895 rc = __get_user(word, u++);
896 if (rc)
897 break;
898 rc = __poke_user(target, pos, word);
899 count -= sizeof(*u);
900 pos += sizeof(*u);
901 }
902 }
903
904 if (rc == 0 && target == current)
905 restore_access_regs(target->thread.acrs);
906
907 return rc;
908}
909
910static int s390_fpregs_get(struct task_struct *target,
911 const struct user_regset *regset, unsigned int pos,
912 unsigned int count, void *kbuf, void __user *ubuf)
913{
914 if (target == current) {
915 save_fp_ctl(&target->thread.fp_regs.fpc);
916 save_fp_regs(target->thread.fp_regs.fprs);
917 }
918
919 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
920 &target->thread.fp_regs, 0, -1);
921}
922
923static int s390_fpregs_set(struct task_struct *target,
924 const struct user_regset *regset, unsigned int pos,
925 unsigned int count, const void *kbuf,
926 const void __user *ubuf)
927{
928 int rc = 0;
929
930 if (target == current) {
931 save_fp_ctl(&target->thread.fp_regs.fpc);
932 save_fp_regs(target->thread.fp_regs.fprs);
933 }
934
935 /* If setting FPC, must validate it first. */
936 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
937 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
938 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
939 0, offsetof(s390_fp_regs, fprs));
940 if (rc)
941 return rc;
942 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
943 return -EINVAL;
944 target->thread.fp_regs.fpc = ufpc[0];
945 }
946
947 if (rc == 0 && count > 0)
948 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
949 target->thread.fp_regs.fprs,
950 offsetof(s390_fp_regs, fprs), -1);
951
952 if (rc == 0 && target == current) {
953 restore_fp_ctl(&target->thread.fp_regs.fpc);
954 restore_fp_regs(target->thread.fp_regs.fprs);
955 }
956
957 return rc;
958}
959
960#ifdef CONFIG_64BIT
961
962static int s390_last_break_get(struct task_struct *target,
963 const struct user_regset *regset,
964 unsigned int pos, unsigned int count,
965 void *kbuf, void __user *ubuf)
966{
967 if (count > 0) {
968 if (kbuf) {
969 unsigned long *k = kbuf;
970 *k = task_thread_info(target)->last_break;
971 } else {
972 unsigned long __user *u = ubuf;
973 if (__put_user(task_thread_info(target)->last_break, u))
974 return -EFAULT;
975 }
976 }
977 return 0;
978}
979
980static int s390_last_break_set(struct task_struct *target,
981 const struct user_regset *regset,
982 unsigned int pos, unsigned int count,
983 const void *kbuf, const void __user *ubuf)
984{
985 return 0;
986}
987
988static int s390_tdb_get(struct task_struct *target,
989 const struct user_regset *regset,
990 unsigned int pos, unsigned int count,
991 void *kbuf, void __user *ubuf)
992{
993 struct pt_regs *regs = task_pt_regs(target);
994 unsigned char *data;
995
996 if (!(regs->int_code & 0x200))
997 return -ENODATA;
998 data = target->thread.trap_tdb;
999 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1000}
1001
1002static int s390_tdb_set(struct task_struct *target,
1003 const struct user_regset *regset,
1004 unsigned int pos, unsigned int count,
1005 const void *kbuf, const void __user *ubuf)
1006{
1007 return 0;
1008}
1009
1010#endif
1011
1012static int s390_system_call_get(struct task_struct *target,
1013 const struct user_regset *regset,
1014 unsigned int pos, unsigned int count,
1015 void *kbuf, void __user *ubuf)
1016{
1017 unsigned int *data = &task_thread_info(target)->system_call;
1018 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1019 data, 0, sizeof(unsigned int));
1020}
1021
1022static int s390_system_call_set(struct task_struct *target,
1023 const struct user_regset *regset,
1024 unsigned int pos, unsigned int count,
1025 const void *kbuf, const void __user *ubuf)
1026{
1027 unsigned int *data = &task_thread_info(target)->system_call;
1028 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1029 data, 0, sizeof(unsigned int));
1030}
1031
1032static const struct user_regset s390_regsets[] = {
1033 [REGSET_GENERAL] = {
1034 .core_note_type = NT_PRSTATUS,
1035 .n = sizeof(s390_regs) / sizeof(long),
1036 .size = sizeof(long),
1037 .align = sizeof(long),
1038 .get = s390_regs_get,
1039 .set = s390_regs_set,
1040 },
1041 [REGSET_FP] = {
1042 .core_note_type = NT_PRFPREG,
1043 .n = sizeof(s390_fp_regs) / sizeof(long),
1044 .size = sizeof(long),
1045 .align = sizeof(long),
1046 .get = s390_fpregs_get,
1047 .set = s390_fpregs_set,
1048 },
1049#ifdef CONFIG_64BIT
1050 [REGSET_LAST_BREAK] = {
1051 .core_note_type = NT_S390_LAST_BREAK,
1052 .n = 1,
1053 .size = sizeof(long),
1054 .align = sizeof(long),
1055 .get = s390_last_break_get,
1056 .set = s390_last_break_set,
1057 },
1058 [REGSET_TDB] = {
1059 .core_note_type = NT_S390_TDB,
1060 .n = 1,
1061 .size = 256,
1062 .align = 1,
1063 .get = s390_tdb_get,
1064 .set = s390_tdb_set,
1065 },
1066#endif
1067 [REGSET_SYSTEM_CALL] = {
1068 .core_note_type = NT_S390_SYSTEM_CALL,
1069 .n = 1,
1070 .size = sizeof(unsigned int),
1071 .align = sizeof(unsigned int),
1072 .get = s390_system_call_get,
1073 .set = s390_system_call_set,
1074 },
1075};
1076
1077static const struct user_regset_view user_s390_view = {
1078 .name = UTS_MACHINE,
1079 .e_machine = EM_S390,
1080 .regsets = s390_regsets,
1081 .n = ARRAY_SIZE(s390_regsets)
1082};
1083
1084#ifdef CONFIG_COMPAT
1085static int s390_compat_regs_get(struct task_struct *target,
1086 const struct user_regset *regset,
1087 unsigned int pos, unsigned int count,
1088 void *kbuf, void __user *ubuf)
1089{
1090 if (target == current)
1091 save_access_regs(target->thread.acrs);
1092
1093 if (kbuf) {
1094 compat_ulong_t *k = kbuf;
1095 while (count > 0) {
1096 *k++ = __peek_user_compat(target, pos);
1097 count -= sizeof(*k);
1098 pos += sizeof(*k);
1099 }
1100 } else {
1101 compat_ulong_t __user *u = ubuf;
1102 while (count > 0) {
1103 if (__put_user(__peek_user_compat(target, pos), u++))
1104 return -EFAULT;
1105 count -= sizeof(*u);
1106 pos += sizeof(*u);
1107 }
1108 }
1109 return 0;
1110}
1111
1112static int s390_compat_regs_set(struct task_struct *target,
1113 const struct user_regset *regset,
1114 unsigned int pos, unsigned int count,
1115 const void *kbuf, const void __user *ubuf)
1116{
1117 int rc = 0;
1118
1119 if (target == current)
1120 save_access_regs(target->thread.acrs);
1121
1122 if (kbuf) {
1123 const compat_ulong_t *k = kbuf;
1124 while (count > 0 && !rc) {
1125 rc = __poke_user_compat(target, pos, *k++);
1126 count -= sizeof(*k);
1127 pos += sizeof(*k);
1128 }
1129 } else {
1130 const compat_ulong_t __user *u = ubuf;
1131 while (count > 0 && !rc) {
1132 compat_ulong_t word;
1133 rc = __get_user(word, u++);
1134 if (rc)
1135 break;
1136 rc = __poke_user_compat(target, pos, word);
1137 count -= sizeof(*u);
1138 pos += sizeof(*u);
1139 }
1140 }
1141
1142 if (rc == 0 && target == current)
1143 restore_access_regs(target->thread.acrs);
1144
1145 return rc;
1146}
1147
1148static int s390_compat_regs_high_get(struct task_struct *target,
1149 const struct user_regset *regset,
1150 unsigned int pos, unsigned int count,
1151 void *kbuf, void __user *ubuf)
1152{
1153 compat_ulong_t *gprs_high;
1154
1155 gprs_high = (compat_ulong_t *)
1156 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1157 if (kbuf) {
1158 compat_ulong_t *k = kbuf;
1159 while (count > 0) {
1160 *k++ = *gprs_high;
1161 gprs_high += 2;
1162 count -= sizeof(*k);
1163 }
1164 } else {
1165 compat_ulong_t __user *u = ubuf;
1166 while (count > 0) {
1167 if (__put_user(*gprs_high, u++))
1168 return -EFAULT;
1169 gprs_high += 2;
1170 count -= sizeof(*u);
1171 }
1172 }
1173 return 0;
1174}
1175
1176static int s390_compat_regs_high_set(struct task_struct *target,
1177 const struct user_regset *regset,
1178 unsigned int pos, unsigned int count,
1179 const void *kbuf, const void __user *ubuf)
1180{
1181 compat_ulong_t *gprs_high;
1182 int rc = 0;
1183
1184 gprs_high = (compat_ulong_t *)
1185 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1186 if (kbuf) {
1187 const compat_ulong_t *k = kbuf;
1188 while (count > 0) {
1189 *gprs_high = *k++;
1190 *gprs_high += 2;
1191 count -= sizeof(*k);
1192 }
1193 } else {
1194 const compat_ulong_t __user *u = ubuf;
1195 while (count > 0 && !rc) {
1196 unsigned long word;
1197 rc = __get_user(word, u++);
1198 if (rc)
1199 break;
1200 *gprs_high = word;
1201 *gprs_high += 2;
1202 count -= sizeof(*u);
1203 }
1204 }
1205
1206 return rc;
1207}
1208
1209static int s390_compat_last_break_get(struct task_struct *target,
1210 const struct user_regset *regset,
1211 unsigned int pos, unsigned int count,
1212 void *kbuf, void __user *ubuf)
1213{
1214 compat_ulong_t last_break;
1215
1216 if (count > 0) {
1217 last_break = task_thread_info(target)->last_break;
1218 if (kbuf) {
1219 unsigned long *k = kbuf;
1220 *k = last_break;
1221 } else {
1222 unsigned long __user *u = ubuf;
1223 if (__put_user(last_break, u))
1224 return -EFAULT;
1225 }
1226 }
1227 return 0;
1228}
1229
1230static int s390_compat_last_break_set(struct task_struct *target,
1231 const struct user_regset *regset,
1232 unsigned int pos, unsigned int count,
1233 const void *kbuf, const void __user *ubuf)
1234{
1235 return 0;
1236}
1237
1238static const struct user_regset s390_compat_regsets[] = {
1239 [REGSET_GENERAL] = {
1240 .core_note_type = NT_PRSTATUS,
1241 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1242 .size = sizeof(compat_long_t),
1243 .align = sizeof(compat_long_t),
1244 .get = s390_compat_regs_get,
1245 .set = s390_compat_regs_set,
1246 },
1247 [REGSET_FP] = {
1248 .core_note_type = NT_PRFPREG,
1249 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1250 .size = sizeof(compat_long_t),
1251 .align = sizeof(compat_long_t),
1252 .get = s390_fpregs_get,
1253 .set = s390_fpregs_set,
1254 },
1255 [REGSET_LAST_BREAK] = {
1256 .core_note_type = NT_S390_LAST_BREAK,
1257 .n = 1,
1258 .size = sizeof(long),
1259 .align = sizeof(long),
1260 .get = s390_compat_last_break_get,
1261 .set = s390_compat_last_break_set,
1262 },
1263 [REGSET_TDB] = {
1264 .core_note_type = NT_S390_TDB,
1265 .n = 1,
1266 .size = 256,
1267 .align = 1,
1268 .get = s390_tdb_get,
1269 .set = s390_tdb_set,
1270 },
1271 [REGSET_SYSTEM_CALL] = {
1272 .core_note_type = NT_S390_SYSTEM_CALL,
1273 .n = 1,
1274 .size = sizeof(compat_uint_t),
1275 .align = sizeof(compat_uint_t),
1276 .get = s390_system_call_get,
1277 .set = s390_system_call_set,
1278 },
1279 [REGSET_GENERAL_EXTENDED] = {
1280 .core_note_type = NT_S390_HIGH_GPRS,
1281 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1282 .size = sizeof(compat_long_t),
1283 .align = sizeof(compat_long_t),
1284 .get = s390_compat_regs_high_get,
1285 .set = s390_compat_regs_high_set,
1286 },
1287};
1288
1289static const struct user_regset_view user_s390_compat_view = {
1290 .name = "s390",
1291 .e_machine = EM_S390,
1292 .regsets = s390_compat_regsets,
1293 .n = ARRAY_SIZE(s390_compat_regsets)
1294};
1295#endif
1296
1297const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1298{
1299#ifdef CONFIG_COMPAT
1300 if (test_tsk_thread_flag(task, TIF_31BIT))
1301 return &user_s390_compat_view;
1302#endif
1303 return &user_s390_view;
1304}
1305
1306static const char *gpr_names[NUM_GPRS] = {
1307 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1308 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1309};
1310
1311unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1312{
1313 if (offset >= NUM_GPRS)
1314 return 0;
1315 return regs->gprs[offset];
1316}
1317
1318int regs_query_register_offset(const char *name)
1319{
1320 unsigned long offset;
1321
1322 if (!name || *name != 'r')
1323 return -EINVAL;
1324 if (kstrtoul(name + 1, 10, &offset))
1325 return -EINVAL;
1326 if (offset >= NUM_GPRS)
1327 return -EINVAL;
1328 return offset;
1329}
1330
1331const char *regs_query_register_name(unsigned int offset)
1332{
1333 if (offset >= NUM_GPRS)
1334 return NULL;
1335 return gpr_names[offset];
1336}
1337
1338static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1339{
1340 unsigned long ksp = kernel_stack_pointer(regs);
1341
1342 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1343}
1344
1345/**
1346 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1347 * @regs:pt_regs which contains kernel stack pointer.
1348 * @n:stack entry number.
1349 *
1350 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1351 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1352 * this returns 0.
1353 */
1354unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1355{
1356 unsigned long addr;
1357
1358 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1359 if (!regs_within_kernel_stack(regs, addr))
1360 return 0;
1361 return *(unsigned long *)addr;
1362}