Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10#include <linux/cpu_pm.h>
11#include <linux/hardirq.h>
12#include <linux/init.h>
13#include <linux/highmem.h>
14#include <linux/kernel.h>
15#include <linux/linkage.h>
16#include <linux/preempt.h>
17#include <linux/sched.h>
18#include <linux/smp.h>
19#include <linux/mm.h>
20#include <linux/export.h>
21#include <linux/bitops.h>
22#include <linux/dma-map-ops.h> /* for dma_default_coherent */
23
24#include <asm/bcache.h>
25#include <asm/bootinfo.h>
26#include <asm/cache.h>
27#include <asm/cacheops.h>
28#include <asm/cpu.h>
29#include <asm/cpu-features.h>
30#include <asm/cpu-type.h>
31#include <asm/io.h>
32#include <asm/page.h>
33#include <asm/r4kcache.h>
34#include <asm/sections.h>
35#include <asm/mmu_context.h>
36#include <asm/cacheflush.h> /* for run_uncached() */
37#include <asm/traps.h>
38#include <asm/mips-cps.h>
39
40/*
41 * Bits describing what cache ops an SMP callback function may perform.
42 *
43 * R4K_HIT - Virtual user or kernel address based cache operations. The
44 * active_mm must be checked before using user addresses, falling
45 * back to kmap.
46 * R4K_INDEX - Index based cache operations.
47 */
48
49#define R4K_HIT BIT(0)
50#define R4K_INDEX BIT(1)
51
52/**
53 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
54 * @type: Type of cache operations (R4K_HIT or R4K_INDEX).
55 *
56 * Decides whether a cache op needs to be performed on every core in the system.
57 * This may change depending on the @type of cache operation, as well as the set
58 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
59 * hotplug from changing the result.
60 *
61 * Returns: 1 if the cache operation @type should be done on every core in
62 * the system.
63 * 0 if the cache operation @type is globalized and only needs to
64 * be performed on a simple CPU.
65 */
66static inline bool r4k_op_needs_ipi(unsigned int type)
67{
68 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
69 if (type == R4K_HIT && mips_cm_present())
70 return false;
71
72 /*
73 * Hardware doesn't globalize the required cache ops, so SMP calls may
74 * be needed, but only if there are foreign CPUs (non-siblings with
75 * separate caches).
76 */
77 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */
78#ifdef CONFIG_SMP
79 return !cpumask_empty(&cpu_foreign_map[0]);
80#else
81 return false;
82#endif
83}
84
85/*
86 * Special Variant of smp_call_function for use by cache functions:
87 *
88 * o No return value
89 * o collapses to normal function call on UP kernels
90 * o collapses to normal function call on systems with a single shared
91 * primary cache.
92 * o doesn't disable interrupts on the local CPU
93 */
94static inline void r4k_on_each_cpu(unsigned int type,
95 void (*func)(void *info), void *info)
96{
97 preempt_disable();
98 if (r4k_op_needs_ipi(type))
99 smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
100 func, info, 1);
101 func(info);
102 preempt_enable();
103}
104
105/*
106 * Must die.
107 */
108static unsigned long icache_size __read_mostly;
109static unsigned long dcache_size __read_mostly;
110static unsigned long vcache_size __read_mostly;
111static unsigned long scache_size __read_mostly;
112
113/*
114 * Dummy cache handling routines for machines without boardcaches
115 */
116static void cache_noop(void) {}
117
118static struct bcache_ops no_sc_ops = {
119 .bc_enable = (void *)cache_noop,
120 .bc_disable = (void *)cache_noop,
121 .bc_wback_inv = (void *)cache_noop,
122 .bc_inv = (void *)cache_noop
123};
124
125struct bcache_ops *bcops = &no_sc_ops;
126
127#define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
128#define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
129
130#define R4600_HIT_CACHEOP_WAR_IMPL \
131do { \
132 if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) && \
133 cpu_is_r4600_v2_x()) \
134 *(volatile unsigned long *)CKSEG1; \
135 if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP)) \
136 __asm__ __volatile__("nop;nop;nop;nop"); \
137} while (0)
138
139static void (*r4k_blast_dcache_page)(unsigned long addr);
140
141static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
142{
143 R4600_HIT_CACHEOP_WAR_IMPL;
144 blast_dcache32_page(addr);
145}
146
147static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
148{
149 blast_dcache64_page(addr);
150}
151
152static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
153{
154 blast_dcache128_page(addr);
155}
156
157static void r4k_blast_dcache_page_setup(void)
158{
159 unsigned long dc_lsize = cpu_dcache_line_size();
160
161 switch (dc_lsize) {
162 case 0:
163 r4k_blast_dcache_page = (void *)cache_noop;
164 break;
165 case 16:
166 r4k_blast_dcache_page = blast_dcache16_page;
167 break;
168 case 32:
169 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
170 break;
171 case 64:
172 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
173 break;
174 case 128:
175 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
176 break;
177 default:
178 break;
179 }
180}
181
182#ifndef CONFIG_EVA
183#define r4k_blast_dcache_user_page r4k_blast_dcache_page
184#else
185
186static void (*r4k_blast_dcache_user_page)(unsigned long addr);
187
188static void r4k_blast_dcache_user_page_setup(void)
189{
190 unsigned long dc_lsize = cpu_dcache_line_size();
191
192 if (dc_lsize == 0)
193 r4k_blast_dcache_user_page = (void *)cache_noop;
194 else if (dc_lsize == 16)
195 r4k_blast_dcache_user_page = blast_dcache16_user_page;
196 else if (dc_lsize == 32)
197 r4k_blast_dcache_user_page = blast_dcache32_user_page;
198 else if (dc_lsize == 64)
199 r4k_blast_dcache_user_page = blast_dcache64_user_page;
200}
201
202#endif
203
204static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
205
206static void r4k_blast_dcache_page_indexed_setup(void)
207{
208 unsigned long dc_lsize = cpu_dcache_line_size();
209
210 if (dc_lsize == 0)
211 r4k_blast_dcache_page_indexed = (void *)cache_noop;
212 else if (dc_lsize == 16)
213 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
214 else if (dc_lsize == 32)
215 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
216 else if (dc_lsize == 64)
217 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
218 else if (dc_lsize == 128)
219 r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
220}
221
222void (* r4k_blast_dcache)(void);
223EXPORT_SYMBOL(r4k_blast_dcache);
224
225static void r4k_blast_dcache_setup(void)
226{
227 unsigned long dc_lsize = cpu_dcache_line_size();
228
229 if (dc_lsize == 0)
230 r4k_blast_dcache = (void *)cache_noop;
231 else if (dc_lsize == 16)
232 r4k_blast_dcache = blast_dcache16;
233 else if (dc_lsize == 32)
234 r4k_blast_dcache = blast_dcache32;
235 else if (dc_lsize == 64)
236 r4k_blast_dcache = blast_dcache64;
237 else if (dc_lsize == 128)
238 r4k_blast_dcache = blast_dcache128;
239}
240
241/* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
242#define JUMP_TO_ALIGN(order) \
243 __asm__ __volatile__( \
244 "b\t1f\n\t" \
245 ".align\t" #order "\n\t" \
246 "1:\n\t" \
247 )
248#define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
249#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
250
251static inline void blast_r4600_v1_icache32(void)
252{
253 unsigned long flags;
254
255 local_irq_save(flags);
256 blast_icache32();
257 local_irq_restore(flags);
258}
259
260static inline void tx49_blast_icache32(void)
261{
262 unsigned long start = INDEX_BASE;
263 unsigned long end = start + current_cpu_data.icache.waysize;
264 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
265 unsigned long ws_end = current_cpu_data.icache.ways <<
266 current_cpu_data.icache.waybit;
267 unsigned long ws, addr;
268
269 CACHE32_UNROLL32_ALIGN2;
270 /* I'm in even chunk. blast odd chunks */
271 for (ws = 0; ws < ws_end; ws += ws_inc)
272 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
273 cache_unroll(32, kernel_cache, Index_Invalidate_I,
274 addr | ws, 32);
275 CACHE32_UNROLL32_ALIGN;
276 /* I'm in odd chunk. blast even chunks */
277 for (ws = 0; ws < ws_end; ws += ws_inc)
278 for (addr = start; addr < end; addr += 0x400 * 2)
279 cache_unroll(32, kernel_cache, Index_Invalidate_I,
280 addr | ws, 32);
281}
282
283static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
284{
285 unsigned long flags;
286
287 local_irq_save(flags);
288 blast_icache32_page_indexed(page);
289 local_irq_restore(flags);
290}
291
292static inline void tx49_blast_icache32_page_indexed(unsigned long page)
293{
294 unsigned long indexmask = current_cpu_data.icache.waysize - 1;
295 unsigned long start = INDEX_BASE + (page & indexmask);
296 unsigned long end = start + PAGE_SIZE;
297 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
298 unsigned long ws_end = current_cpu_data.icache.ways <<
299 current_cpu_data.icache.waybit;
300 unsigned long ws, addr;
301
302 CACHE32_UNROLL32_ALIGN2;
303 /* I'm in even chunk. blast odd chunks */
304 for (ws = 0; ws < ws_end; ws += ws_inc)
305 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
306 cache_unroll(32, kernel_cache, Index_Invalidate_I,
307 addr | ws, 32);
308 CACHE32_UNROLL32_ALIGN;
309 /* I'm in odd chunk. blast even chunks */
310 for (ws = 0; ws < ws_end; ws += ws_inc)
311 for (addr = start; addr < end; addr += 0x400 * 2)
312 cache_unroll(32, kernel_cache, Index_Invalidate_I,
313 addr | ws, 32);
314}
315
316static void (* r4k_blast_icache_page)(unsigned long addr);
317
318static void r4k_blast_icache_page_setup(void)
319{
320 unsigned long ic_lsize = cpu_icache_line_size();
321
322 if (ic_lsize == 0)
323 r4k_blast_icache_page = (void *)cache_noop;
324 else if (ic_lsize == 16)
325 r4k_blast_icache_page = blast_icache16_page;
326 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
327 r4k_blast_icache_page = loongson2_blast_icache32_page;
328 else if (ic_lsize == 32)
329 r4k_blast_icache_page = blast_icache32_page;
330 else if (ic_lsize == 64)
331 r4k_blast_icache_page = blast_icache64_page;
332 else if (ic_lsize == 128)
333 r4k_blast_icache_page = blast_icache128_page;
334}
335
336#ifndef CONFIG_EVA
337#define r4k_blast_icache_user_page r4k_blast_icache_page
338#else
339
340static void (*r4k_blast_icache_user_page)(unsigned long addr);
341
342static void r4k_blast_icache_user_page_setup(void)
343{
344 unsigned long ic_lsize = cpu_icache_line_size();
345
346 if (ic_lsize == 0)
347 r4k_blast_icache_user_page = (void *)cache_noop;
348 else if (ic_lsize == 16)
349 r4k_blast_icache_user_page = blast_icache16_user_page;
350 else if (ic_lsize == 32)
351 r4k_blast_icache_user_page = blast_icache32_user_page;
352 else if (ic_lsize == 64)
353 r4k_blast_icache_user_page = blast_icache64_user_page;
354}
355
356#endif
357
358static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
359
360static void r4k_blast_icache_page_indexed_setup(void)
361{
362 unsigned long ic_lsize = cpu_icache_line_size();
363
364 if (ic_lsize == 0)
365 r4k_blast_icache_page_indexed = (void *)cache_noop;
366 else if (ic_lsize == 16)
367 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
368 else if (ic_lsize == 32) {
369 if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
370 cpu_is_r4600_v1_x())
371 r4k_blast_icache_page_indexed =
372 blast_icache32_r4600_v1_page_indexed;
373 else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
374 r4k_blast_icache_page_indexed =
375 tx49_blast_icache32_page_indexed;
376 else if (current_cpu_type() == CPU_LOONGSON2EF)
377 r4k_blast_icache_page_indexed =
378 loongson2_blast_icache32_page_indexed;
379 else
380 r4k_blast_icache_page_indexed =
381 blast_icache32_page_indexed;
382 } else if (ic_lsize == 64)
383 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
384}
385
386void (* r4k_blast_icache)(void);
387EXPORT_SYMBOL(r4k_blast_icache);
388
389static void r4k_blast_icache_setup(void)
390{
391 unsigned long ic_lsize = cpu_icache_line_size();
392
393 if (ic_lsize == 0)
394 r4k_blast_icache = (void *)cache_noop;
395 else if (ic_lsize == 16)
396 r4k_blast_icache = blast_icache16;
397 else if (ic_lsize == 32) {
398 if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
399 cpu_is_r4600_v1_x())
400 r4k_blast_icache = blast_r4600_v1_icache32;
401 else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
402 r4k_blast_icache = tx49_blast_icache32;
403 else if (current_cpu_type() == CPU_LOONGSON2EF)
404 r4k_blast_icache = loongson2_blast_icache32;
405 else
406 r4k_blast_icache = blast_icache32;
407 } else if (ic_lsize == 64)
408 r4k_blast_icache = blast_icache64;
409 else if (ic_lsize == 128)
410 r4k_blast_icache = blast_icache128;
411}
412
413static void (* r4k_blast_scache_page)(unsigned long addr);
414
415static void r4k_blast_scache_page_setup(void)
416{
417 unsigned long sc_lsize = cpu_scache_line_size();
418
419 if (scache_size == 0)
420 r4k_blast_scache_page = (void *)cache_noop;
421 else if (sc_lsize == 16)
422 r4k_blast_scache_page = blast_scache16_page;
423 else if (sc_lsize == 32)
424 r4k_blast_scache_page = blast_scache32_page;
425 else if (sc_lsize == 64)
426 r4k_blast_scache_page = blast_scache64_page;
427 else if (sc_lsize == 128)
428 r4k_blast_scache_page = blast_scache128_page;
429}
430
431static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
432
433static void r4k_blast_scache_page_indexed_setup(void)
434{
435 unsigned long sc_lsize = cpu_scache_line_size();
436
437 if (scache_size == 0)
438 r4k_blast_scache_page_indexed = (void *)cache_noop;
439 else if (sc_lsize == 16)
440 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
441 else if (sc_lsize == 32)
442 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
443 else if (sc_lsize == 64)
444 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
445 else if (sc_lsize == 128)
446 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
447}
448
449static void (* r4k_blast_scache)(void);
450
451static void r4k_blast_scache_setup(void)
452{
453 unsigned long sc_lsize = cpu_scache_line_size();
454
455 if (scache_size == 0)
456 r4k_blast_scache = (void *)cache_noop;
457 else if (sc_lsize == 16)
458 r4k_blast_scache = blast_scache16;
459 else if (sc_lsize == 32)
460 r4k_blast_scache = blast_scache32;
461 else if (sc_lsize == 64)
462 r4k_blast_scache = blast_scache64;
463 else if (sc_lsize == 128)
464 r4k_blast_scache = blast_scache128;
465}
466
467static void (*r4k_blast_scache_node)(long node);
468
469static void r4k_blast_scache_node_setup(void)
470{
471 unsigned long sc_lsize = cpu_scache_line_size();
472
473 if (current_cpu_type() != CPU_LOONGSON64)
474 r4k_blast_scache_node = (void *)cache_noop;
475 else if (sc_lsize == 16)
476 r4k_blast_scache_node = blast_scache16_node;
477 else if (sc_lsize == 32)
478 r4k_blast_scache_node = blast_scache32_node;
479 else if (sc_lsize == 64)
480 r4k_blast_scache_node = blast_scache64_node;
481 else if (sc_lsize == 128)
482 r4k_blast_scache_node = blast_scache128_node;
483}
484
485static inline void local_r4k___flush_cache_all(void * args)
486{
487 switch (current_cpu_type()) {
488 case CPU_LOONGSON2EF:
489 case CPU_R4000SC:
490 case CPU_R4000MC:
491 case CPU_R4400SC:
492 case CPU_R4400MC:
493 case CPU_R10000:
494 case CPU_R12000:
495 case CPU_R14000:
496 case CPU_R16000:
497 /*
498 * These caches are inclusive caches, that is, if something
499 * is not cached in the S-cache, we know it also won't be
500 * in one of the primary caches.
501 */
502 r4k_blast_scache();
503 break;
504
505 case CPU_LOONGSON64:
506 /* Use get_ebase_cpunum() for both NUMA=y/n */
507 r4k_blast_scache_node(get_ebase_cpunum() >> 2);
508 break;
509
510 case CPU_BMIPS5000:
511 r4k_blast_scache();
512 __sync();
513 break;
514
515 default:
516 r4k_blast_dcache();
517 r4k_blast_icache();
518 break;
519 }
520}
521
522static void r4k___flush_cache_all(void)
523{
524 r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
525}
526
527/**
528 * has_valid_asid() - Determine if an mm already has an ASID.
529 * @mm: Memory map.
530 * @type: R4K_HIT or R4K_INDEX, type of cache op.
531 *
532 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
533 * of type @type within an r4k_on_each_cpu() call will affect. If
534 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
535 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
536 * will need to be checked.
537 *
538 * Must be called in non-preemptive context.
539 *
540 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm.
541 * 0 otherwise.
542 */
543static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
544{
545 unsigned int i;
546 const cpumask_t *mask = cpu_present_mask;
547
548 if (cpu_has_mmid)
549 return cpu_context(0, mm) != 0;
550
551 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */
552#ifdef CONFIG_SMP
553 /*
554 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
555 * each foreign core, so we only need to worry about siblings.
556 * Otherwise we need to worry about all present CPUs.
557 */
558 if (r4k_op_needs_ipi(type))
559 mask = &cpu_sibling_map[smp_processor_id()];
560#endif
561 for_each_cpu(i, mask)
562 if (cpu_context(i, mm))
563 return 1;
564 return 0;
565}
566
567static void r4k__flush_cache_vmap(void)
568{
569 r4k_blast_dcache();
570}
571
572static void r4k__flush_cache_vunmap(void)
573{
574 r4k_blast_dcache();
575}
576
577/*
578 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
579 * whole caches when vma is executable.
580 */
581static inline void local_r4k_flush_cache_range(void * args)
582{
583 struct vm_area_struct *vma = args;
584 int exec = vma->vm_flags & VM_EXEC;
585
586 if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
587 return;
588
589 /*
590 * If dcache can alias, we must blast it since mapping is changing.
591 * If executable, we must ensure any dirty lines are written back far
592 * enough to be visible to icache.
593 */
594 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
595 r4k_blast_dcache();
596 /* If executable, blast stale lines from icache */
597 if (exec)
598 r4k_blast_icache();
599}
600
601static void r4k_flush_cache_range(struct vm_area_struct *vma,
602 unsigned long start, unsigned long end)
603{
604 int exec = vma->vm_flags & VM_EXEC;
605
606 if (cpu_has_dc_aliases || exec)
607 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
608}
609
610static inline void local_r4k_flush_cache_mm(void * args)
611{
612 struct mm_struct *mm = args;
613
614 if (!has_valid_asid(mm, R4K_INDEX))
615 return;
616
617 /*
618 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
619 * only flush the primary caches but R1x000 behave sane ...
620 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
621 * caches, so we can bail out early.
622 */
623 if (current_cpu_type() == CPU_R4000SC ||
624 current_cpu_type() == CPU_R4000MC ||
625 current_cpu_type() == CPU_R4400SC ||
626 current_cpu_type() == CPU_R4400MC) {
627 r4k_blast_scache();
628 return;
629 }
630
631 r4k_blast_dcache();
632}
633
634static void r4k_flush_cache_mm(struct mm_struct *mm)
635{
636 if (!cpu_has_dc_aliases)
637 return;
638
639 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
640}
641
642struct flush_cache_page_args {
643 struct vm_area_struct *vma;
644 unsigned long addr;
645 unsigned long pfn;
646};
647
648static inline void local_r4k_flush_cache_page(void *args)
649{
650 struct flush_cache_page_args *fcp_args = args;
651 struct vm_area_struct *vma = fcp_args->vma;
652 unsigned long addr = fcp_args->addr;
653 struct page *page = pfn_to_page(fcp_args->pfn);
654 int exec = vma->vm_flags & VM_EXEC;
655 struct mm_struct *mm = vma->vm_mm;
656 int map_coherent = 0;
657 pmd_t *pmdp;
658 pte_t *ptep;
659 void *vaddr;
660
661 /*
662 * If owns no valid ASID yet, cannot possibly have gotten
663 * this page into the cache.
664 */
665 if (!has_valid_asid(mm, R4K_HIT))
666 return;
667
668 addr &= PAGE_MASK;
669 pmdp = pmd_off(mm, addr);
670 ptep = pte_offset_kernel(pmdp, addr);
671
672 /*
673 * If the page isn't marked valid, the page cannot possibly be
674 * in the cache.
675 */
676 if (!(pte_present(*ptep)))
677 return;
678
679 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
680 vaddr = NULL;
681 else {
682 /*
683 * Use kmap_coherent or kmap_atomic to do flushes for
684 * another ASID than the current one.
685 */
686 map_coherent = (cpu_has_dc_aliases &&
687 page_mapcount(page) &&
688 !Page_dcache_dirty(page));
689 if (map_coherent)
690 vaddr = kmap_coherent(page, addr);
691 else
692 vaddr = kmap_atomic(page);
693 addr = (unsigned long)vaddr;
694 }
695
696 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
697 vaddr ? r4k_blast_dcache_page(addr) :
698 r4k_blast_dcache_user_page(addr);
699 if (exec && !cpu_icache_snoops_remote_store)
700 r4k_blast_scache_page(addr);
701 }
702 if (exec) {
703 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
704 drop_mmu_context(mm);
705 } else
706 vaddr ? r4k_blast_icache_page(addr) :
707 r4k_blast_icache_user_page(addr);
708 }
709
710 if (vaddr) {
711 if (map_coherent)
712 kunmap_coherent();
713 else
714 kunmap_atomic(vaddr);
715 }
716}
717
718static void r4k_flush_cache_page(struct vm_area_struct *vma,
719 unsigned long addr, unsigned long pfn)
720{
721 struct flush_cache_page_args args;
722
723 args.vma = vma;
724 args.addr = addr;
725 args.pfn = pfn;
726
727 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
728}
729
730static inline void local_r4k_flush_data_cache_page(void * addr)
731{
732 r4k_blast_dcache_page((unsigned long) addr);
733}
734
735static void r4k_flush_data_cache_page(unsigned long addr)
736{
737 if (in_atomic())
738 local_r4k_flush_data_cache_page((void *)addr);
739 else
740 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
741 (void *) addr);
742}
743
744struct flush_icache_range_args {
745 unsigned long start;
746 unsigned long end;
747 unsigned int type;
748 bool user;
749};
750
751static inline void __local_r4k_flush_icache_range(unsigned long start,
752 unsigned long end,
753 unsigned int type,
754 bool user)
755{
756 if (!cpu_has_ic_fills_f_dc) {
757 if (type == R4K_INDEX ||
758 (type & R4K_INDEX && end - start >= dcache_size)) {
759 r4k_blast_dcache();
760 } else {
761 R4600_HIT_CACHEOP_WAR_IMPL;
762 if (user)
763 protected_blast_dcache_range(start, end);
764 else
765 blast_dcache_range(start, end);
766 }
767 }
768
769 if (type == R4K_INDEX ||
770 (type & R4K_INDEX && end - start > icache_size))
771 r4k_blast_icache();
772 else {
773 switch (boot_cpu_type()) {
774 case CPU_LOONGSON2EF:
775 protected_loongson2_blast_icache_range(start, end);
776 break;
777
778 default:
779 if (user)
780 protected_blast_icache_range(start, end);
781 else
782 blast_icache_range(start, end);
783 break;
784 }
785 }
786}
787
788static inline void local_r4k_flush_icache_range(unsigned long start,
789 unsigned long end)
790{
791 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
792}
793
794static inline void local_r4k_flush_icache_user_range(unsigned long start,
795 unsigned long end)
796{
797 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
798}
799
800static inline void local_r4k_flush_icache_range_ipi(void *args)
801{
802 struct flush_icache_range_args *fir_args = args;
803 unsigned long start = fir_args->start;
804 unsigned long end = fir_args->end;
805 unsigned int type = fir_args->type;
806 bool user = fir_args->user;
807
808 __local_r4k_flush_icache_range(start, end, type, user);
809}
810
811static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
812 bool user)
813{
814 struct flush_icache_range_args args;
815 unsigned long size, cache_size;
816
817 args.start = start;
818 args.end = end;
819 args.type = R4K_HIT | R4K_INDEX;
820 args.user = user;
821
822 /*
823 * Indexed cache ops require an SMP call.
824 * Consider if that can or should be avoided.
825 */
826 preempt_disable();
827 if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
828 /*
829 * If address-based cache ops don't require an SMP call, then
830 * use them exclusively for small flushes.
831 */
832 size = end - start;
833 cache_size = icache_size;
834 if (!cpu_has_ic_fills_f_dc) {
835 size *= 2;
836 cache_size += dcache_size;
837 }
838 if (size <= cache_size)
839 args.type &= ~R4K_INDEX;
840 }
841 r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
842 preempt_enable();
843 instruction_hazard();
844}
845
846static void r4k_flush_icache_range(unsigned long start, unsigned long end)
847{
848 return __r4k_flush_icache_range(start, end, false);
849}
850
851static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
852{
853 return __r4k_flush_icache_range(start, end, true);
854}
855
856#ifdef CONFIG_DMA_NONCOHERENT
857
858static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
859{
860 /* Catch bad driver code */
861 if (WARN_ON(size == 0))
862 return;
863
864 preempt_disable();
865 if (cpu_has_inclusive_pcaches) {
866 if (size >= scache_size) {
867 if (current_cpu_type() != CPU_LOONGSON64)
868 r4k_blast_scache();
869 else
870 r4k_blast_scache_node(pa_to_nid(addr));
871 } else {
872 blast_scache_range(addr, addr + size);
873 }
874 preempt_enable();
875 __sync();
876 return;
877 }
878
879 /*
880 * Either no secondary cache or the available caches don't have the
881 * subset property so we have to flush the primary caches
882 * explicitly.
883 * If we would need IPI to perform an INDEX-type operation, then
884 * we have to use the HIT-type alternative as IPI cannot be used
885 * here due to interrupts possibly being disabled.
886 */
887 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
888 r4k_blast_dcache();
889 } else {
890 R4600_HIT_CACHEOP_WAR_IMPL;
891 blast_dcache_range(addr, addr + size);
892 }
893 preempt_enable();
894
895 bc_wback_inv(addr, size);
896 __sync();
897}
898
899static void prefetch_cache_inv(unsigned long addr, unsigned long size)
900{
901 unsigned int linesz = cpu_scache_line_size();
902 unsigned long addr0 = addr, addr1;
903
904 addr0 &= ~(linesz - 1);
905 addr1 = (addr0 + size - 1) & ~(linesz - 1);
906
907 protected_writeback_scache_line(addr0);
908 if (likely(addr1 != addr0))
909 protected_writeback_scache_line(addr1);
910 else
911 return;
912
913 addr0 += linesz;
914 if (likely(addr1 != addr0))
915 protected_writeback_scache_line(addr0);
916 else
917 return;
918
919 addr1 -= linesz;
920 if (likely(addr1 > addr0))
921 protected_writeback_scache_line(addr0);
922}
923
924static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
925{
926 /* Catch bad driver code */
927 if (WARN_ON(size == 0))
928 return;
929
930 preempt_disable();
931
932 if (current_cpu_type() == CPU_BMIPS5000)
933 prefetch_cache_inv(addr, size);
934
935 if (cpu_has_inclusive_pcaches) {
936 if (size >= scache_size) {
937 if (current_cpu_type() != CPU_LOONGSON64)
938 r4k_blast_scache();
939 else
940 r4k_blast_scache_node(pa_to_nid(addr));
941 } else {
942 /*
943 * There is no clearly documented alignment requirement
944 * for the cache instruction on MIPS processors and
945 * some processors, among them the RM5200 and RM7000
946 * QED processors will throw an address error for cache
947 * hit ops with insufficient alignment. Solved by
948 * aligning the address to cache line size.
949 */
950 blast_inv_scache_range(addr, addr + size);
951 }
952 preempt_enable();
953 __sync();
954 return;
955 }
956
957 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
958 r4k_blast_dcache();
959 } else {
960 R4600_HIT_CACHEOP_WAR_IMPL;
961 blast_inv_dcache_range(addr, addr + size);
962 }
963 preempt_enable();
964
965 bc_inv(addr, size);
966 __sync();
967}
968#endif /* CONFIG_DMA_NONCOHERENT */
969
970static void r4k_flush_icache_all(void)
971{
972 if (cpu_has_vtag_icache)
973 r4k_blast_icache();
974}
975
976struct flush_kernel_vmap_range_args {
977 unsigned long vaddr;
978 int size;
979};
980
981static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
982{
983 /*
984 * Aliases only affect the primary caches so don't bother with
985 * S-caches or T-caches.
986 */
987 r4k_blast_dcache();
988}
989
990static inline void local_r4k_flush_kernel_vmap_range(void *args)
991{
992 struct flush_kernel_vmap_range_args *vmra = args;
993 unsigned long vaddr = vmra->vaddr;
994 int size = vmra->size;
995
996 /*
997 * Aliases only affect the primary caches so don't bother with
998 * S-caches or T-caches.
999 */
1000 R4600_HIT_CACHEOP_WAR_IMPL;
1001 blast_dcache_range(vaddr, vaddr + size);
1002}
1003
1004static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1005{
1006 struct flush_kernel_vmap_range_args args;
1007
1008 args.vaddr = (unsigned long) vaddr;
1009 args.size = size;
1010
1011 if (size >= dcache_size)
1012 r4k_on_each_cpu(R4K_INDEX,
1013 local_r4k_flush_kernel_vmap_range_index, NULL);
1014 else
1015 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1016 &args);
1017}
1018
1019static inline void rm7k_erratum31(void)
1020{
1021 const unsigned long ic_lsize = 32;
1022 unsigned long addr;
1023
1024 /* RM7000 erratum #31. The icache is screwed at startup. */
1025 write_c0_taglo(0);
1026 write_c0_taghi(0);
1027
1028 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1029 __asm__ __volatile__ (
1030 ".set push\n\t"
1031 ".set noreorder\n\t"
1032 ".set mips3\n\t"
1033 "cache\t%1, 0(%0)\n\t"
1034 "cache\t%1, 0x1000(%0)\n\t"
1035 "cache\t%1, 0x2000(%0)\n\t"
1036 "cache\t%1, 0x3000(%0)\n\t"
1037 "cache\t%2, 0(%0)\n\t"
1038 "cache\t%2, 0x1000(%0)\n\t"
1039 "cache\t%2, 0x2000(%0)\n\t"
1040 "cache\t%2, 0x3000(%0)\n\t"
1041 "cache\t%1, 0(%0)\n\t"
1042 "cache\t%1, 0x1000(%0)\n\t"
1043 "cache\t%1, 0x2000(%0)\n\t"
1044 "cache\t%1, 0x3000(%0)\n\t"
1045 ".set pop\n"
1046 :
1047 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
1048 }
1049}
1050
1051static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1052{
1053 unsigned int imp = c->processor_id & PRID_IMP_MASK;
1054 unsigned int rev = c->processor_id & PRID_REV_MASK;
1055 int present = 0;
1056
1057 /*
1058 * Early versions of the 74K do not update the cache tags on a
1059 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1060 * aliases. In this case it is better to treat the cache as always
1061 * having aliases. Also disable the synonym tag update feature
1062 * where available. In this case no opportunistic tag update will
1063 * happen where a load causes a virtual address miss but a physical
1064 * address hit during a D-cache look-up.
1065 */
1066 switch (imp) {
1067 case PRID_IMP_74K:
1068 if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1069 present = 1;
1070 if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1071 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1072 break;
1073 case PRID_IMP_1074K:
1074 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1075 present = 1;
1076 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1077 }
1078 break;
1079 default:
1080 BUG();
1081 }
1082
1083 return present;
1084}
1085
1086static void b5k_instruction_hazard(void)
1087{
1088 __sync();
1089 __sync();
1090 __asm__ __volatile__(
1091 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1092 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1093 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1094 " nop; nop; nop; nop; nop; nop; nop; nop\n"
1095 : : : "memory");
1096}
1097
1098static char *way_string[] = { NULL, "direct mapped", "2-way",
1099 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1100 "9-way", "10-way", "11-way", "12-way",
1101 "13-way", "14-way", "15-way", "16-way",
1102};
1103
1104static void probe_pcache(void)
1105{
1106 struct cpuinfo_mips *c = ¤t_cpu_data;
1107 unsigned int config = read_c0_config();
1108 unsigned int prid = read_c0_prid();
1109 int has_74k_erratum = 0;
1110 unsigned long config1;
1111 unsigned int lsize;
1112
1113 switch (current_cpu_type()) {
1114 case CPU_R4600: /* QED style two way caches? */
1115 case CPU_R4700:
1116 case CPU_R5000:
1117 case CPU_NEVADA:
1118 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1119 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1120 c->icache.ways = 2;
1121 c->icache.waybit = __ffs(icache_size/2);
1122
1123 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1124 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1125 c->dcache.ways = 2;
1126 c->dcache.waybit= __ffs(dcache_size/2);
1127
1128 c->options |= MIPS_CPU_CACHE_CDEX_P;
1129 break;
1130
1131 case CPU_R5500:
1132 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1133 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1134 c->icache.ways = 2;
1135 c->icache.waybit= 0;
1136
1137 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1138 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1139 c->dcache.ways = 2;
1140 c->dcache.waybit = 0;
1141
1142 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1143 break;
1144
1145 case CPU_TX49XX:
1146 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1147 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1148 c->icache.ways = 4;
1149 c->icache.waybit= 0;
1150
1151 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1152 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1153 c->dcache.ways = 4;
1154 c->dcache.waybit = 0;
1155
1156 c->options |= MIPS_CPU_CACHE_CDEX_P;
1157 c->options |= MIPS_CPU_PREFETCH;
1158 break;
1159
1160 case CPU_R4000PC:
1161 case CPU_R4000SC:
1162 case CPU_R4000MC:
1163 case CPU_R4400PC:
1164 case CPU_R4400SC:
1165 case CPU_R4400MC:
1166 case CPU_R4300:
1167 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1168 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1169 c->icache.ways = 1;
1170 c->icache.waybit = 0; /* doesn't matter */
1171
1172 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1173 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1174 c->dcache.ways = 1;
1175 c->dcache.waybit = 0; /* does not matter */
1176
1177 c->options |= MIPS_CPU_CACHE_CDEX_P;
1178 break;
1179
1180 case CPU_R10000:
1181 case CPU_R12000:
1182 case CPU_R14000:
1183 case CPU_R16000:
1184 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1185 c->icache.linesz = 64;
1186 c->icache.ways = 2;
1187 c->icache.waybit = 0;
1188
1189 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1190 c->dcache.linesz = 32;
1191 c->dcache.ways = 2;
1192 c->dcache.waybit = 0;
1193
1194 c->options |= MIPS_CPU_PREFETCH;
1195 break;
1196
1197 case CPU_RM7000:
1198 rm7k_erratum31();
1199
1200 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1201 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1202 c->icache.ways = 4;
1203 c->icache.waybit = __ffs(icache_size / c->icache.ways);
1204
1205 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1206 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1207 c->dcache.ways = 4;
1208 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1209
1210 c->options |= MIPS_CPU_CACHE_CDEX_P;
1211 c->options |= MIPS_CPU_PREFETCH;
1212 break;
1213
1214 case CPU_LOONGSON2EF:
1215 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1216 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1217 if (prid & 0x3)
1218 c->icache.ways = 4;
1219 else
1220 c->icache.ways = 2;
1221 c->icache.waybit = 0;
1222
1223 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1224 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1225 if (prid & 0x3)
1226 c->dcache.ways = 4;
1227 else
1228 c->dcache.ways = 2;
1229 c->dcache.waybit = 0;
1230 break;
1231
1232 case CPU_LOONGSON64:
1233 config1 = read_c0_config1();
1234 lsize = (config1 >> 19) & 7;
1235 if (lsize)
1236 c->icache.linesz = 2 << lsize;
1237 else
1238 c->icache.linesz = 0;
1239 c->icache.sets = 64 << ((config1 >> 22) & 7);
1240 c->icache.ways = 1 + ((config1 >> 16) & 7);
1241 icache_size = c->icache.sets *
1242 c->icache.ways *
1243 c->icache.linesz;
1244 c->icache.waybit = 0;
1245
1246 lsize = (config1 >> 10) & 7;
1247 if (lsize)
1248 c->dcache.linesz = 2 << lsize;
1249 else
1250 c->dcache.linesz = 0;
1251 c->dcache.sets = 64 << ((config1 >> 13) & 7);
1252 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1253 dcache_size = c->dcache.sets *
1254 c->dcache.ways *
1255 c->dcache.linesz;
1256 c->dcache.waybit = 0;
1257 if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1258 (PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1259 (c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1260 c->options |= MIPS_CPU_PREFETCH;
1261 break;
1262
1263 case CPU_CAVIUM_OCTEON3:
1264 /* For now lie about the number of ways. */
1265 c->icache.linesz = 128;
1266 c->icache.sets = 16;
1267 c->icache.ways = 8;
1268 c->icache.flags |= MIPS_CACHE_VTAG;
1269 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1270
1271 c->dcache.linesz = 128;
1272 c->dcache.ways = 8;
1273 c->dcache.sets = 8;
1274 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1275 c->options |= MIPS_CPU_PREFETCH;
1276 break;
1277
1278 default:
1279 if (!(config & MIPS_CONF_M))
1280 panic("Don't know how to probe P-caches on this cpu.");
1281
1282 /*
1283 * So we seem to be a MIPS32 or MIPS64 CPU
1284 * So let's probe the I-cache ...
1285 */
1286 config1 = read_c0_config1();
1287
1288 lsize = (config1 >> 19) & 7;
1289
1290 /* IL == 7 is reserved */
1291 if (lsize == 7)
1292 panic("Invalid icache line size");
1293
1294 c->icache.linesz = lsize ? 2 << lsize : 0;
1295
1296 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1297 c->icache.ways = 1 + ((config1 >> 16) & 7);
1298
1299 icache_size = c->icache.sets *
1300 c->icache.ways *
1301 c->icache.linesz;
1302 c->icache.waybit = __ffs(icache_size/c->icache.ways);
1303
1304 if (config & MIPS_CONF_VI)
1305 c->icache.flags |= MIPS_CACHE_VTAG;
1306
1307 /*
1308 * Now probe the MIPS32 / MIPS64 data cache.
1309 */
1310 c->dcache.flags = 0;
1311
1312 lsize = (config1 >> 10) & 7;
1313
1314 /* DL == 7 is reserved */
1315 if (lsize == 7)
1316 panic("Invalid dcache line size");
1317
1318 c->dcache.linesz = lsize ? 2 << lsize : 0;
1319
1320 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1321 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1322
1323 dcache_size = c->dcache.sets *
1324 c->dcache.ways *
1325 c->dcache.linesz;
1326 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1327
1328 c->options |= MIPS_CPU_PREFETCH;
1329 break;
1330 }
1331
1332 /*
1333 * Processor configuration sanity check for the R4000SC erratum
1334 * #5. With page sizes larger than 32kB there is no possibility
1335 * to get a VCE exception anymore so we don't care about this
1336 * misconfiguration. The case is rather theoretical anyway;
1337 * presumably no vendor is shipping his hardware in the "bad"
1338 * configuration.
1339 */
1340 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1341 (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1342 !(config & CONF_SC) && c->icache.linesz != 16 &&
1343 PAGE_SIZE <= 0x8000)
1344 panic("Improper R4000SC processor configuration detected");
1345
1346 /* compute a couple of other cache variables */
1347 c->icache.waysize = icache_size / c->icache.ways;
1348 c->dcache.waysize = dcache_size / c->dcache.ways;
1349
1350 c->icache.sets = c->icache.linesz ?
1351 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1352 c->dcache.sets = c->dcache.linesz ?
1353 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1354
1355 /*
1356 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way
1357 * virtually indexed so normally would suffer from aliases. So
1358 * normally they'd suffer from aliases but magic in the hardware deals
1359 * with that for us so we don't need to take care ourselves.
1360 */
1361 switch (current_cpu_type()) {
1362 case CPU_20KC:
1363 case CPU_25KF:
1364 case CPU_I6400:
1365 case CPU_I6500:
1366 case CPU_SB1:
1367 case CPU_SB1A:
1368 c->dcache.flags |= MIPS_CACHE_PINDEX;
1369 break;
1370
1371 case CPU_R10000:
1372 case CPU_R12000:
1373 case CPU_R14000:
1374 case CPU_R16000:
1375 break;
1376
1377 case CPU_74K:
1378 case CPU_1074K:
1379 has_74k_erratum = alias_74k_erratum(c);
1380 fallthrough;
1381 case CPU_M14KC:
1382 case CPU_M14KEC:
1383 case CPU_24K:
1384 case CPU_34K:
1385 case CPU_1004K:
1386 case CPU_INTERAPTIV:
1387 case CPU_P5600:
1388 case CPU_PROAPTIV:
1389 case CPU_M5150:
1390 case CPU_QEMU_GENERIC:
1391 case CPU_P6600:
1392 case CPU_M6250:
1393 if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1394 (c->icache.waysize > PAGE_SIZE))
1395 c->icache.flags |= MIPS_CACHE_ALIASES;
1396 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1397 /*
1398 * Effectively physically indexed dcache,
1399 * thus no virtual aliases.
1400 */
1401 c->dcache.flags |= MIPS_CACHE_PINDEX;
1402 break;
1403 }
1404 fallthrough;
1405 default:
1406 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1407 c->dcache.flags |= MIPS_CACHE_ALIASES;
1408 }
1409
1410 /* Physically indexed caches don't suffer from virtual aliasing */
1411 if (c->dcache.flags & MIPS_CACHE_PINDEX)
1412 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1413
1414 /*
1415 * In systems with CM the icache fills from L2 or closer caches, and
1416 * thus sees remote stores without needing to write them back any
1417 * further than that.
1418 */
1419 if (mips_cm_present())
1420 c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1421
1422 switch (current_cpu_type()) {
1423 case CPU_20KC:
1424 /*
1425 * Some older 20Kc chips doesn't have the 'VI' bit in
1426 * the config register.
1427 */
1428 c->icache.flags |= MIPS_CACHE_VTAG;
1429 break;
1430
1431 case CPU_ALCHEMY:
1432 case CPU_I6400:
1433 case CPU_I6500:
1434 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1435 break;
1436
1437 case CPU_BMIPS5000:
1438 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1439 /* Cache aliases are handled in hardware; allow HIGHMEM */
1440 c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1441 break;
1442
1443 case CPU_LOONGSON2EF:
1444 /*
1445 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1446 * one op will act on all 4 ways
1447 */
1448 c->icache.ways = 1;
1449 }
1450
1451 pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1452 icache_size >> 10,
1453 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1454 way_string[c->icache.ways], c->icache.linesz);
1455
1456 pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1457 dcache_size >> 10, way_string[c->dcache.ways],
1458 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1459 (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1460 "cache aliases" : "no aliases",
1461 c->dcache.linesz);
1462}
1463
1464static void probe_vcache(void)
1465{
1466 struct cpuinfo_mips *c = ¤t_cpu_data;
1467 unsigned int config2, lsize;
1468
1469 if (current_cpu_type() != CPU_LOONGSON64)
1470 return;
1471
1472 config2 = read_c0_config2();
1473 if ((lsize = ((config2 >> 20) & 15)))
1474 c->vcache.linesz = 2 << lsize;
1475 else
1476 c->vcache.linesz = lsize;
1477
1478 c->vcache.sets = 64 << ((config2 >> 24) & 15);
1479 c->vcache.ways = 1 + ((config2 >> 16) & 15);
1480
1481 vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1482
1483 c->vcache.waybit = 0;
1484 c->vcache.waysize = vcache_size / c->vcache.ways;
1485
1486 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1487 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1488}
1489
1490/*
1491 * If you even _breathe_ on this function, look at the gcc output and make sure
1492 * it does not pop things on and off the stack for the cache sizing loop that
1493 * executes in KSEG1 space or else you will crash and burn badly. You have
1494 * been warned.
1495 */
1496static int probe_scache(void)
1497{
1498 unsigned long flags, addr, begin, end, pow2;
1499 unsigned int config = read_c0_config();
1500 struct cpuinfo_mips *c = ¤t_cpu_data;
1501
1502 if (config & CONF_SC)
1503 return 0;
1504
1505 begin = (unsigned long) &_stext;
1506 begin &= ~((4 * 1024 * 1024) - 1);
1507 end = begin + (4 * 1024 * 1024);
1508
1509 /*
1510 * This is such a bitch, you'd think they would make it easy to do
1511 * this. Away you daemons of stupidity!
1512 */
1513 local_irq_save(flags);
1514
1515 /* Fill each size-multiple cache line with a valid tag. */
1516 pow2 = (64 * 1024);
1517 for (addr = begin; addr < end; addr = (begin + pow2)) {
1518 unsigned long *p = (unsigned long *) addr;
1519 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1520 pow2 <<= 1;
1521 }
1522
1523 /* Load first line with zero (therefore invalid) tag. */
1524 write_c0_taglo(0);
1525 write_c0_taghi(0);
1526 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1527 cache_op(Index_Store_Tag_I, begin);
1528 cache_op(Index_Store_Tag_D, begin);
1529 cache_op(Index_Store_Tag_SD, begin);
1530
1531 /* Now search for the wrap around point. */
1532 pow2 = (128 * 1024);
1533 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1534 cache_op(Index_Load_Tag_SD, addr);
1535 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1536 if (!read_c0_taglo())
1537 break;
1538 pow2 <<= 1;
1539 }
1540 local_irq_restore(flags);
1541 addr -= begin;
1542
1543 scache_size = addr;
1544 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1545 c->scache.ways = 1;
1546 c->scache.waybit = 0; /* does not matter */
1547
1548 return 1;
1549}
1550
1551static void loongson2_sc_init(void)
1552{
1553 struct cpuinfo_mips *c = ¤t_cpu_data;
1554
1555 scache_size = 512*1024;
1556 c->scache.linesz = 32;
1557 c->scache.ways = 4;
1558 c->scache.waybit = 0;
1559 c->scache.waysize = scache_size / (c->scache.ways);
1560 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1561 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1562 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1563
1564 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1565}
1566
1567static void loongson3_sc_init(void)
1568{
1569 struct cpuinfo_mips *c = ¤t_cpu_data;
1570 unsigned int config2, lsize;
1571
1572 config2 = read_c0_config2();
1573 lsize = (config2 >> 4) & 15;
1574 if (lsize)
1575 c->scache.linesz = 2 << lsize;
1576 else
1577 c->scache.linesz = 0;
1578 c->scache.sets = 64 << ((config2 >> 8) & 15);
1579 c->scache.ways = 1 + (config2 & 15);
1580
1581 /* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1582 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1583 c->scache.sets *= 2;
1584 else
1585 c->scache.sets *= 4;
1586
1587 scache_size = c->scache.sets * c->scache.ways * c->scache.linesz;
1588
1589 c->scache.waybit = 0;
1590 c->scache.waysize = scache_size / c->scache.ways;
1591 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1592 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1593 if (scache_size)
1594 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1595 return;
1596}
1597
1598extern int r5k_sc_init(void);
1599extern int rm7k_sc_init(void);
1600extern int mips_sc_init(void);
1601
1602static void setup_scache(void)
1603{
1604 struct cpuinfo_mips *c = ¤t_cpu_data;
1605 unsigned int config = read_c0_config();
1606 int sc_present = 0;
1607
1608 /*
1609 * Do the probing thing on R4000SC and R4400SC processors. Other
1610 * processors don't have a S-cache that would be relevant to the
1611 * Linux memory management.
1612 */
1613 switch (current_cpu_type()) {
1614 case CPU_R4000SC:
1615 case CPU_R4000MC:
1616 case CPU_R4400SC:
1617 case CPU_R4400MC:
1618 sc_present = run_uncached(probe_scache);
1619 if (sc_present)
1620 c->options |= MIPS_CPU_CACHE_CDEX_S;
1621 break;
1622
1623 case CPU_R10000:
1624 case CPU_R12000:
1625 case CPU_R14000:
1626 case CPU_R16000:
1627 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1628 c->scache.linesz = 64 << ((config >> 13) & 1);
1629 c->scache.ways = 2;
1630 c->scache.waybit= 0;
1631 sc_present = 1;
1632 break;
1633
1634 case CPU_R5000:
1635 case CPU_NEVADA:
1636#ifdef CONFIG_R5000_CPU_SCACHE
1637 r5k_sc_init();
1638#endif
1639 return;
1640
1641 case CPU_RM7000:
1642#ifdef CONFIG_RM7000_CPU_SCACHE
1643 rm7k_sc_init();
1644#endif
1645 return;
1646
1647 case CPU_LOONGSON2EF:
1648 loongson2_sc_init();
1649 return;
1650
1651 case CPU_LOONGSON64:
1652 loongson3_sc_init();
1653 return;
1654
1655 case CPU_CAVIUM_OCTEON3:
1656 /* don't need to worry about L2, fully coherent */
1657 return;
1658
1659 default:
1660 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1661 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1662 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1663 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1664#ifdef CONFIG_MIPS_CPU_SCACHE
1665 if (mips_sc_init ()) {
1666 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1667 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1668 scache_size >> 10,
1669 way_string[c->scache.ways], c->scache.linesz);
1670
1671 if (current_cpu_type() == CPU_BMIPS5000)
1672 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1673 }
1674
1675#else
1676 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1677 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1678#endif
1679 return;
1680 }
1681 sc_present = 0;
1682 }
1683
1684 if (!sc_present)
1685 return;
1686
1687 /* compute a couple of other cache variables */
1688 c->scache.waysize = scache_size / c->scache.ways;
1689
1690 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1691
1692 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1693 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1694
1695 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1696}
1697
1698void au1x00_fixup_config_od(void)
1699{
1700 /*
1701 * c0_config.od (bit 19) was write only (and read as 0)
1702 * on the early revisions of Alchemy SOCs. It disables the bus
1703 * transaction overlapping and needs to be set to fix various errata.
1704 */
1705 switch (read_c0_prid()) {
1706 case 0x00030100: /* Au1000 DA */
1707 case 0x00030201: /* Au1000 HA */
1708 case 0x00030202: /* Au1000 HB */
1709 case 0x01030200: /* Au1500 AB */
1710 /*
1711 * Au1100 errata actually keeps silence about this bit, so we set it
1712 * just in case for those revisions that require it to be set according
1713 * to the (now gone) cpu table.
1714 */
1715 case 0x02030200: /* Au1100 AB */
1716 case 0x02030201: /* Au1100 BA */
1717 case 0x02030202: /* Au1100 BC */
1718 set_c0_config(1 << 19);
1719 break;
1720 }
1721}
1722
1723/* CP0 hazard avoidance. */
1724#define NXP_BARRIER() \
1725 __asm__ __volatile__( \
1726 ".set noreorder\n\t" \
1727 "nop; nop; nop; nop; nop; nop;\n\t" \
1728 ".set reorder\n\t")
1729
1730static void nxp_pr4450_fixup_config(void)
1731{
1732 unsigned long config0;
1733
1734 config0 = read_c0_config();
1735
1736 /* clear all three cache coherency fields */
1737 config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1738 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1739 ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1740 ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1741 write_c0_config(config0);
1742 NXP_BARRIER();
1743}
1744
1745static int cca = -1;
1746
1747static int __init cca_setup(char *str)
1748{
1749 get_option(&str, &cca);
1750
1751 return 0;
1752}
1753
1754early_param("cca", cca_setup);
1755
1756static void coherency_setup(void)
1757{
1758 if (cca < 0 || cca > 7)
1759 cca = read_c0_config() & CONF_CM_CMASK;
1760 _page_cachable_default = cca << _CACHE_SHIFT;
1761
1762 pr_debug("Using cache attribute %d\n", cca);
1763 change_c0_config(CONF_CM_CMASK, cca);
1764
1765 /*
1766 * c0_status.cu=0 specifies that updates by the sc instruction use
1767 * the coherency mode specified by the TLB; 1 means cachable
1768 * coherent update on write will be used. Not all processors have
1769 * this bit and; some wire it to zero, others like Toshiba had the
1770 * silly idea of putting something else there ...
1771 */
1772 switch (current_cpu_type()) {
1773 case CPU_R4000PC:
1774 case CPU_R4000SC:
1775 case CPU_R4000MC:
1776 case CPU_R4400PC:
1777 case CPU_R4400SC:
1778 case CPU_R4400MC:
1779 clear_c0_config(CONF_CU);
1780 break;
1781 /*
1782 * We need to catch the early Alchemy SOCs with
1783 * the write-only co_config.od bit and set it back to one on:
1784 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1785 */
1786 case CPU_ALCHEMY:
1787 au1x00_fixup_config_od();
1788 break;
1789
1790 case PRID_IMP_PR4450:
1791 nxp_pr4450_fixup_config();
1792 break;
1793 }
1794}
1795
1796static void r4k_cache_error_setup(void)
1797{
1798 extern char __weak except_vec2_generic;
1799 extern char __weak except_vec2_sb1;
1800
1801 switch (current_cpu_type()) {
1802 case CPU_SB1:
1803 case CPU_SB1A:
1804 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1805 break;
1806
1807 default:
1808 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1809 break;
1810 }
1811}
1812
1813void r4k_cache_init(void)
1814{
1815 extern void build_clear_page(void);
1816 extern void build_copy_page(void);
1817 struct cpuinfo_mips *c = ¤t_cpu_data;
1818
1819 probe_pcache();
1820 probe_vcache();
1821 setup_scache();
1822
1823 r4k_blast_dcache_page_setup();
1824 r4k_blast_dcache_page_indexed_setup();
1825 r4k_blast_dcache_setup();
1826 r4k_blast_icache_page_setup();
1827 r4k_blast_icache_page_indexed_setup();
1828 r4k_blast_icache_setup();
1829 r4k_blast_scache_page_setup();
1830 r4k_blast_scache_page_indexed_setup();
1831 r4k_blast_scache_setup();
1832 r4k_blast_scache_node_setup();
1833#ifdef CONFIG_EVA
1834 r4k_blast_dcache_user_page_setup();
1835 r4k_blast_icache_user_page_setup();
1836#endif
1837
1838 /*
1839 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1840 * This code supports virtually indexed processors and will be
1841 * unnecessarily inefficient on physically indexed processors.
1842 */
1843 if (c->dcache.linesz && cpu_has_dc_aliases)
1844 shm_align_mask = max_t( unsigned long,
1845 c->dcache.sets * c->dcache.linesz - 1,
1846 PAGE_SIZE - 1);
1847 else
1848 shm_align_mask = PAGE_SIZE-1;
1849
1850 __flush_cache_vmap = r4k__flush_cache_vmap;
1851 __flush_cache_vunmap = r4k__flush_cache_vunmap;
1852
1853 flush_cache_all = cache_noop;
1854 __flush_cache_all = r4k___flush_cache_all;
1855 flush_cache_mm = r4k_flush_cache_mm;
1856 flush_cache_page = r4k_flush_cache_page;
1857 flush_cache_range = r4k_flush_cache_range;
1858
1859 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1860
1861 flush_icache_all = r4k_flush_icache_all;
1862 local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1863 flush_data_cache_page = r4k_flush_data_cache_page;
1864 flush_icache_range = r4k_flush_icache_range;
1865 local_flush_icache_range = local_r4k_flush_icache_range;
1866 __flush_icache_user_range = r4k_flush_icache_user_range;
1867 __local_flush_icache_user_range = local_r4k_flush_icache_user_range;
1868
1869#ifdef CONFIG_DMA_NONCOHERENT
1870 if (dma_default_coherent) {
1871 _dma_cache_wback_inv = (void *)cache_noop;
1872 _dma_cache_wback = (void *)cache_noop;
1873 _dma_cache_inv = (void *)cache_noop;
1874 } else {
1875 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1876 _dma_cache_wback = r4k_dma_cache_wback_inv;
1877 _dma_cache_inv = r4k_dma_cache_inv;
1878 }
1879#endif /* CONFIG_DMA_NONCOHERENT */
1880
1881 build_clear_page();
1882 build_copy_page();
1883
1884 /*
1885 * We want to run CMP kernels on core with and without coherent
1886 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1887 * or not to flush caches.
1888 */
1889 local_r4k___flush_cache_all(NULL);
1890
1891 coherency_setup();
1892 board_cache_error_setup = r4k_cache_error_setup;
1893
1894 /*
1895 * Per-CPU overrides
1896 */
1897 switch (current_cpu_type()) {
1898 case CPU_BMIPS4350:
1899 case CPU_BMIPS4380:
1900 /* No IPI is needed because all CPUs share the same D$ */
1901 flush_data_cache_page = r4k_blast_dcache_page;
1902 break;
1903 case CPU_BMIPS5000:
1904 /* We lose our superpowers if L2 is disabled */
1905 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1906 break;
1907
1908 /* I$ fills from D$ just by emptying the write buffers */
1909 flush_cache_page = (void *)b5k_instruction_hazard;
1910 flush_cache_range = (void *)b5k_instruction_hazard;
1911 local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1912 flush_data_cache_page = (void *)b5k_instruction_hazard;
1913 flush_icache_range = (void *)b5k_instruction_hazard;
1914 local_flush_icache_range = (void *)b5k_instruction_hazard;
1915
1916
1917 /* Optimization: an L2 flush implicitly flushes the L1 */
1918 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1919 break;
1920 case CPU_LOONGSON64:
1921 /* Loongson-3 maintains cache coherency by hardware */
1922 __flush_cache_all = cache_noop;
1923 __flush_cache_vmap = cache_noop;
1924 __flush_cache_vunmap = cache_noop;
1925 __flush_kernel_vmap_range = (void *)cache_noop;
1926 flush_cache_mm = (void *)cache_noop;
1927 flush_cache_page = (void *)cache_noop;
1928 flush_cache_range = (void *)cache_noop;
1929 flush_icache_all = (void *)cache_noop;
1930 flush_data_cache_page = (void *)cache_noop;
1931 local_flush_data_cache_page = (void *)cache_noop;
1932 break;
1933 }
1934}
1935
1936static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1937 void *v)
1938{
1939 switch (cmd) {
1940 case CPU_PM_ENTER_FAILED:
1941 case CPU_PM_EXIT:
1942 coherency_setup();
1943 break;
1944 }
1945
1946 return NOTIFY_OK;
1947}
1948
1949static struct notifier_block r4k_cache_pm_notifier_block = {
1950 .notifier_call = r4k_cache_pm_notifier,
1951};
1952
1953int __init r4k_cache_init_pm(void)
1954{
1955 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
1956}
1957arch_initcall(r4k_cache_init_pm);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10#include <linux/hardirq.h>
11#include <linux/init.h>
12#include <linux/highmem.h>
13#include <linux/kernel.h>
14#include <linux/linkage.h>
15#include <linux/preempt.h>
16#include <linux/sched.h>
17#include <linux/smp.h>
18#include <linux/mm.h>
19#include <linux/module.h>
20#include <linux/bitops.h>
21
22#include <asm/bcache.h>
23#include <asm/bootinfo.h>
24#include <asm/cache.h>
25#include <asm/cacheops.h>
26#include <asm/cpu.h>
27#include <asm/cpu-features.h>
28#include <asm/cpu-type.h>
29#include <asm/io.h>
30#include <asm/page.h>
31#include <asm/pgtable.h>
32#include <asm/r4kcache.h>
33#include <asm/sections.h>
34#include <asm/mmu_context.h>
35#include <asm/war.h>
36#include <asm/cacheflush.h> /* for run_uncached() */
37#include <asm/traps.h>
38#include <asm/dma-coherence.h>
39
40/*
41 * Special Variant of smp_call_function for use by cache functions:
42 *
43 * o No return value
44 * o collapses to normal function call on UP kernels
45 * o collapses to normal function call on systems with a single shared
46 * primary cache.
47 * o doesn't disable interrupts on the local CPU
48 */
49static inline void r4k_on_each_cpu(void (*func) (void *info), void *info)
50{
51 preempt_disable();
52
53#if !defined(CONFIG_MIPS_MT_SMP) && !defined(CONFIG_MIPS_MT_SMTC)
54 smp_call_function(func, info, 1);
55#endif
56 func(info);
57 preempt_enable();
58}
59
60#if defined(CONFIG_MIPS_CMP) || defined(CONFIG_MIPS_CPS)
61#define cpu_has_safe_index_cacheops 0
62#else
63#define cpu_has_safe_index_cacheops 1
64#endif
65
66/*
67 * Must die.
68 */
69static unsigned long icache_size __read_mostly;
70static unsigned long dcache_size __read_mostly;
71static unsigned long scache_size __read_mostly;
72
73/*
74 * Dummy cache handling routines for machines without boardcaches
75 */
76static void cache_noop(void) {}
77
78static struct bcache_ops no_sc_ops = {
79 .bc_enable = (void *)cache_noop,
80 .bc_disable = (void *)cache_noop,
81 .bc_wback_inv = (void *)cache_noop,
82 .bc_inv = (void *)cache_noop
83};
84
85struct bcache_ops *bcops = &no_sc_ops;
86
87#define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
88#define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
89
90#define R4600_HIT_CACHEOP_WAR_IMPL \
91do { \
92 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
93 *(volatile unsigned long *)CKSEG1; \
94 if (R4600_V1_HIT_CACHEOP_WAR) \
95 __asm__ __volatile__("nop;nop;nop;nop"); \
96} while (0)
97
98static void (*r4k_blast_dcache_page)(unsigned long addr);
99
100static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
101{
102 R4600_HIT_CACHEOP_WAR_IMPL;
103 blast_dcache32_page(addr);
104}
105
106static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
107{
108 R4600_HIT_CACHEOP_WAR_IMPL;
109 blast_dcache64_page(addr);
110}
111
112static void r4k_blast_dcache_page_setup(void)
113{
114 unsigned long dc_lsize = cpu_dcache_line_size();
115
116 if (dc_lsize == 0)
117 r4k_blast_dcache_page = (void *)cache_noop;
118 else if (dc_lsize == 16)
119 r4k_blast_dcache_page = blast_dcache16_page;
120 else if (dc_lsize == 32)
121 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
122 else if (dc_lsize == 64)
123 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
124}
125
126#ifndef CONFIG_EVA
127#define r4k_blast_dcache_user_page r4k_blast_dcache_page
128#else
129
130static void (*r4k_blast_dcache_user_page)(unsigned long addr);
131
132static void r4k_blast_dcache_user_page_setup(void)
133{
134 unsigned long dc_lsize = cpu_dcache_line_size();
135
136 if (dc_lsize == 0)
137 r4k_blast_dcache_user_page = (void *)cache_noop;
138 else if (dc_lsize == 16)
139 r4k_blast_dcache_user_page = blast_dcache16_user_page;
140 else if (dc_lsize == 32)
141 r4k_blast_dcache_user_page = blast_dcache32_user_page;
142 else if (dc_lsize == 64)
143 r4k_blast_dcache_user_page = blast_dcache64_user_page;
144}
145
146#endif
147
148static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
149
150static void r4k_blast_dcache_page_indexed_setup(void)
151{
152 unsigned long dc_lsize = cpu_dcache_line_size();
153
154 if (dc_lsize == 0)
155 r4k_blast_dcache_page_indexed = (void *)cache_noop;
156 else if (dc_lsize == 16)
157 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
158 else if (dc_lsize == 32)
159 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
160 else if (dc_lsize == 64)
161 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
162}
163
164void (* r4k_blast_dcache)(void);
165EXPORT_SYMBOL(r4k_blast_dcache);
166
167static void r4k_blast_dcache_setup(void)
168{
169 unsigned long dc_lsize = cpu_dcache_line_size();
170
171 if (dc_lsize == 0)
172 r4k_blast_dcache = (void *)cache_noop;
173 else if (dc_lsize == 16)
174 r4k_blast_dcache = blast_dcache16;
175 else if (dc_lsize == 32)
176 r4k_blast_dcache = blast_dcache32;
177 else if (dc_lsize == 64)
178 r4k_blast_dcache = blast_dcache64;
179}
180
181/* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
182#define JUMP_TO_ALIGN(order) \
183 __asm__ __volatile__( \
184 "b\t1f\n\t" \
185 ".align\t" #order "\n\t" \
186 "1:\n\t" \
187 )
188#define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
189#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
190
191static inline void blast_r4600_v1_icache32(void)
192{
193 unsigned long flags;
194
195 local_irq_save(flags);
196 blast_icache32();
197 local_irq_restore(flags);
198}
199
200static inline void tx49_blast_icache32(void)
201{
202 unsigned long start = INDEX_BASE;
203 unsigned long end = start + current_cpu_data.icache.waysize;
204 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
205 unsigned long ws_end = current_cpu_data.icache.ways <<
206 current_cpu_data.icache.waybit;
207 unsigned long ws, addr;
208
209 CACHE32_UNROLL32_ALIGN2;
210 /* I'm in even chunk. blast odd chunks */
211 for (ws = 0; ws < ws_end; ws += ws_inc)
212 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
213 cache32_unroll32(addr|ws, Index_Invalidate_I);
214 CACHE32_UNROLL32_ALIGN;
215 /* I'm in odd chunk. blast even chunks */
216 for (ws = 0; ws < ws_end; ws += ws_inc)
217 for (addr = start; addr < end; addr += 0x400 * 2)
218 cache32_unroll32(addr|ws, Index_Invalidate_I);
219}
220
221static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
222{
223 unsigned long flags;
224
225 local_irq_save(flags);
226 blast_icache32_page_indexed(page);
227 local_irq_restore(flags);
228}
229
230static inline void tx49_blast_icache32_page_indexed(unsigned long page)
231{
232 unsigned long indexmask = current_cpu_data.icache.waysize - 1;
233 unsigned long start = INDEX_BASE + (page & indexmask);
234 unsigned long end = start + PAGE_SIZE;
235 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
236 unsigned long ws_end = current_cpu_data.icache.ways <<
237 current_cpu_data.icache.waybit;
238 unsigned long ws, addr;
239
240 CACHE32_UNROLL32_ALIGN2;
241 /* I'm in even chunk. blast odd chunks */
242 for (ws = 0; ws < ws_end; ws += ws_inc)
243 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
244 cache32_unroll32(addr|ws, Index_Invalidate_I);
245 CACHE32_UNROLL32_ALIGN;
246 /* I'm in odd chunk. blast even chunks */
247 for (ws = 0; ws < ws_end; ws += ws_inc)
248 for (addr = start; addr < end; addr += 0x400 * 2)
249 cache32_unroll32(addr|ws, Index_Invalidate_I);
250}
251
252static void (* r4k_blast_icache_page)(unsigned long addr);
253
254static void r4k_blast_icache_page_setup(void)
255{
256 unsigned long ic_lsize = cpu_icache_line_size();
257
258 if (ic_lsize == 0)
259 r4k_blast_icache_page = (void *)cache_noop;
260 else if (ic_lsize == 16)
261 r4k_blast_icache_page = blast_icache16_page;
262 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2)
263 r4k_blast_icache_page = loongson2_blast_icache32_page;
264 else if (ic_lsize == 32)
265 r4k_blast_icache_page = blast_icache32_page;
266 else if (ic_lsize == 64)
267 r4k_blast_icache_page = blast_icache64_page;
268}
269
270#ifndef CONFIG_EVA
271#define r4k_blast_icache_user_page r4k_blast_icache_page
272#else
273
274static void (*r4k_blast_icache_user_page)(unsigned long addr);
275
276static void __cpuinit r4k_blast_icache_user_page_setup(void)
277{
278 unsigned long ic_lsize = cpu_icache_line_size();
279
280 if (ic_lsize == 0)
281 r4k_blast_icache_user_page = (void *)cache_noop;
282 else if (ic_lsize == 16)
283 r4k_blast_icache_user_page = blast_icache16_user_page;
284 else if (ic_lsize == 32)
285 r4k_blast_icache_user_page = blast_icache32_user_page;
286 else if (ic_lsize == 64)
287 r4k_blast_icache_user_page = blast_icache64_user_page;
288}
289
290#endif
291
292static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
293
294static void r4k_blast_icache_page_indexed_setup(void)
295{
296 unsigned long ic_lsize = cpu_icache_line_size();
297
298 if (ic_lsize == 0)
299 r4k_blast_icache_page_indexed = (void *)cache_noop;
300 else if (ic_lsize == 16)
301 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
302 else if (ic_lsize == 32) {
303 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
304 r4k_blast_icache_page_indexed =
305 blast_icache32_r4600_v1_page_indexed;
306 else if (TX49XX_ICACHE_INDEX_INV_WAR)
307 r4k_blast_icache_page_indexed =
308 tx49_blast_icache32_page_indexed;
309 else if (current_cpu_type() == CPU_LOONGSON2)
310 r4k_blast_icache_page_indexed =
311 loongson2_blast_icache32_page_indexed;
312 else
313 r4k_blast_icache_page_indexed =
314 blast_icache32_page_indexed;
315 } else if (ic_lsize == 64)
316 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
317}
318
319void (* r4k_blast_icache)(void);
320EXPORT_SYMBOL(r4k_blast_icache);
321
322static void r4k_blast_icache_setup(void)
323{
324 unsigned long ic_lsize = cpu_icache_line_size();
325
326 if (ic_lsize == 0)
327 r4k_blast_icache = (void *)cache_noop;
328 else if (ic_lsize == 16)
329 r4k_blast_icache = blast_icache16;
330 else if (ic_lsize == 32) {
331 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
332 r4k_blast_icache = blast_r4600_v1_icache32;
333 else if (TX49XX_ICACHE_INDEX_INV_WAR)
334 r4k_blast_icache = tx49_blast_icache32;
335 else if (current_cpu_type() == CPU_LOONGSON2)
336 r4k_blast_icache = loongson2_blast_icache32;
337 else
338 r4k_blast_icache = blast_icache32;
339 } else if (ic_lsize == 64)
340 r4k_blast_icache = blast_icache64;
341}
342
343static void (* r4k_blast_scache_page)(unsigned long addr);
344
345static void r4k_blast_scache_page_setup(void)
346{
347 unsigned long sc_lsize = cpu_scache_line_size();
348
349 if (scache_size == 0)
350 r4k_blast_scache_page = (void *)cache_noop;
351 else if (sc_lsize == 16)
352 r4k_blast_scache_page = blast_scache16_page;
353 else if (sc_lsize == 32)
354 r4k_blast_scache_page = blast_scache32_page;
355 else if (sc_lsize == 64)
356 r4k_blast_scache_page = blast_scache64_page;
357 else if (sc_lsize == 128)
358 r4k_blast_scache_page = blast_scache128_page;
359}
360
361static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
362
363static void r4k_blast_scache_page_indexed_setup(void)
364{
365 unsigned long sc_lsize = cpu_scache_line_size();
366
367 if (scache_size == 0)
368 r4k_blast_scache_page_indexed = (void *)cache_noop;
369 else if (sc_lsize == 16)
370 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
371 else if (sc_lsize == 32)
372 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
373 else if (sc_lsize == 64)
374 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
375 else if (sc_lsize == 128)
376 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
377}
378
379static void (* r4k_blast_scache)(void);
380
381static void r4k_blast_scache_setup(void)
382{
383 unsigned long sc_lsize = cpu_scache_line_size();
384
385 if (scache_size == 0)
386 r4k_blast_scache = (void *)cache_noop;
387 else if (sc_lsize == 16)
388 r4k_blast_scache = blast_scache16;
389 else if (sc_lsize == 32)
390 r4k_blast_scache = blast_scache32;
391 else if (sc_lsize == 64)
392 r4k_blast_scache = blast_scache64;
393 else if (sc_lsize == 128)
394 r4k_blast_scache = blast_scache128;
395}
396
397static inline void local_r4k___flush_cache_all(void * args)
398{
399 switch (current_cpu_type()) {
400 case CPU_LOONGSON2:
401 case CPU_LOONGSON3:
402 case CPU_R4000SC:
403 case CPU_R4000MC:
404 case CPU_R4400SC:
405 case CPU_R4400MC:
406 case CPU_R10000:
407 case CPU_R12000:
408 case CPU_R14000:
409 /*
410 * These caches are inclusive caches, that is, if something
411 * is not cached in the S-cache, we know it also won't be
412 * in one of the primary caches.
413 */
414 r4k_blast_scache();
415 break;
416
417 default:
418 r4k_blast_dcache();
419 r4k_blast_icache();
420 break;
421 }
422}
423
424static void r4k___flush_cache_all(void)
425{
426 r4k_on_each_cpu(local_r4k___flush_cache_all, NULL);
427}
428
429static inline int has_valid_asid(const struct mm_struct *mm)
430{
431#if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_MIPS_MT_SMTC)
432 int i;
433
434 for_each_online_cpu(i)
435 if (cpu_context(i, mm))
436 return 1;
437
438 return 0;
439#else
440 return cpu_context(smp_processor_id(), mm);
441#endif
442}
443
444static void r4k__flush_cache_vmap(void)
445{
446 r4k_blast_dcache();
447}
448
449static void r4k__flush_cache_vunmap(void)
450{
451 r4k_blast_dcache();
452}
453
454static inline void local_r4k_flush_cache_range(void * args)
455{
456 struct vm_area_struct *vma = args;
457 int exec = vma->vm_flags & VM_EXEC;
458
459 if (!(has_valid_asid(vma->vm_mm)))
460 return;
461
462 r4k_blast_dcache();
463 if (exec)
464 r4k_blast_icache();
465}
466
467static void r4k_flush_cache_range(struct vm_area_struct *vma,
468 unsigned long start, unsigned long end)
469{
470 int exec = vma->vm_flags & VM_EXEC;
471
472 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
473 r4k_on_each_cpu(local_r4k_flush_cache_range, vma);
474}
475
476static inline void local_r4k_flush_cache_mm(void * args)
477{
478 struct mm_struct *mm = args;
479
480 if (!has_valid_asid(mm))
481 return;
482
483 /*
484 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
485 * only flush the primary caches but R10000 and R12000 behave sane ...
486 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
487 * caches, so we can bail out early.
488 */
489 if (current_cpu_type() == CPU_R4000SC ||
490 current_cpu_type() == CPU_R4000MC ||
491 current_cpu_type() == CPU_R4400SC ||
492 current_cpu_type() == CPU_R4400MC) {
493 r4k_blast_scache();
494 return;
495 }
496
497 r4k_blast_dcache();
498}
499
500static void r4k_flush_cache_mm(struct mm_struct *mm)
501{
502 if (!cpu_has_dc_aliases)
503 return;
504
505 r4k_on_each_cpu(local_r4k_flush_cache_mm, mm);
506}
507
508struct flush_cache_page_args {
509 struct vm_area_struct *vma;
510 unsigned long addr;
511 unsigned long pfn;
512};
513
514static inline void local_r4k_flush_cache_page(void *args)
515{
516 struct flush_cache_page_args *fcp_args = args;
517 struct vm_area_struct *vma = fcp_args->vma;
518 unsigned long addr = fcp_args->addr;
519 struct page *page = pfn_to_page(fcp_args->pfn);
520 int exec = vma->vm_flags & VM_EXEC;
521 struct mm_struct *mm = vma->vm_mm;
522 int map_coherent = 0;
523 pgd_t *pgdp;
524 pud_t *pudp;
525 pmd_t *pmdp;
526 pte_t *ptep;
527 void *vaddr;
528
529 /*
530 * If ownes no valid ASID yet, cannot possibly have gotten
531 * this page into the cache.
532 */
533 if (!has_valid_asid(mm))
534 return;
535
536 addr &= PAGE_MASK;
537 pgdp = pgd_offset(mm, addr);
538 pudp = pud_offset(pgdp, addr);
539 pmdp = pmd_offset(pudp, addr);
540 ptep = pte_offset(pmdp, addr);
541
542 /*
543 * If the page isn't marked valid, the page cannot possibly be
544 * in the cache.
545 */
546 if (!(pte_present(*ptep)))
547 return;
548
549 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
550 vaddr = NULL;
551 else {
552 /*
553 * Use kmap_coherent or kmap_atomic to do flushes for
554 * another ASID than the current one.
555 */
556 map_coherent = (cpu_has_dc_aliases &&
557 page_mapped(page) && !Page_dcache_dirty(page));
558 if (map_coherent)
559 vaddr = kmap_coherent(page, addr);
560 else
561 vaddr = kmap_atomic(page);
562 addr = (unsigned long)vaddr;
563 }
564
565 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
566 vaddr ? r4k_blast_dcache_page(addr) :
567 r4k_blast_dcache_user_page(addr);
568 if (exec && !cpu_icache_snoops_remote_store)
569 r4k_blast_scache_page(addr);
570 }
571 if (exec) {
572 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
573 int cpu = smp_processor_id();
574
575 if (cpu_context(cpu, mm) != 0)
576 drop_mmu_context(mm, cpu);
577 } else
578 vaddr ? r4k_blast_icache_page(addr) :
579 r4k_blast_icache_user_page(addr);
580 }
581
582 if (vaddr) {
583 if (map_coherent)
584 kunmap_coherent();
585 else
586 kunmap_atomic(vaddr);
587 }
588}
589
590static void r4k_flush_cache_page(struct vm_area_struct *vma,
591 unsigned long addr, unsigned long pfn)
592{
593 struct flush_cache_page_args args;
594
595 args.vma = vma;
596 args.addr = addr;
597 args.pfn = pfn;
598
599 r4k_on_each_cpu(local_r4k_flush_cache_page, &args);
600}
601
602static inline void local_r4k_flush_data_cache_page(void * addr)
603{
604 r4k_blast_dcache_page((unsigned long) addr);
605}
606
607static void r4k_flush_data_cache_page(unsigned long addr)
608{
609 if (in_atomic())
610 local_r4k_flush_data_cache_page((void *)addr);
611 else
612 r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr);
613}
614
615struct flush_icache_range_args {
616 unsigned long start;
617 unsigned long end;
618};
619
620static inline void local_r4k_flush_icache_range(unsigned long start, unsigned long end)
621{
622 if (!cpu_has_ic_fills_f_dc) {
623 if (end - start >= dcache_size) {
624 r4k_blast_dcache();
625 } else {
626 R4600_HIT_CACHEOP_WAR_IMPL;
627 protected_blast_dcache_range(start, end);
628 }
629 }
630
631 if (end - start > icache_size)
632 r4k_blast_icache();
633 else {
634 switch (boot_cpu_type()) {
635 case CPU_LOONGSON2:
636 protected_loongson2_blast_icache_range(start, end);
637 break;
638
639 default:
640 protected_blast_icache_range(start, end);
641 break;
642 }
643 }
644#ifdef CONFIG_EVA
645 /*
646 * Due to all possible segment mappings, there might cache aliases
647 * caused by the bootloader being in non-EVA mode, and the CPU switching
648 * to EVA during early kernel init. It's best to flush the scache
649 * to avoid having secondary cores fetching stale data and lead to
650 * kernel crashes.
651 */
652 bc_wback_inv(start, (end - start));
653 __sync();
654#endif
655}
656
657static inline void local_r4k_flush_icache_range_ipi(void *args)
658{
659 struct flush_icache_range_args *fir_args = args;
660 unsigned long start = fir_args->start;
661 unsigned long end = fir_args->end;
662
663 local_r4k_flush_icache_range(start, end);
664}
665
666static void r4k_flush_icache_range(unsigned long start, unsigned long end)
667{
668 struct flush_icache_range_args args;
669
670 args.start = start;
671 args.end = end;
672
673 r4k_on_each_cpu(local_r4k_flush_icache_range_ipi, &args);
674 instruction_hazard();
675}
676
677#if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
678
679static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
680{
681 /* Catch bad driver code */
682 BUG_ON(size == 0);
683
684 preempt_disable();
685 if (cpu_has_inclusive_pcaches) {
686 if (size >= scache_size)
687 r4k_blast_scache();
688 else
689 blast_scache_range(addr, addr + size);
690 preempt_enable();
691 __sync();
692 return;
693 }
694
695 /*
696 * Either no secondary cache or the available caches don't have the
697 * subset property so we have to flush the primary caches
698 * explicitly
699 */
700 if (cpu_has_safe_index_cacheops && size >= dcache_size) {
701 r4k_blast_dcache();
702 } else {
703 R4600_HIT_CACHEOP_WAR_IMPL;
704 blast_dcache_range(addr, addr + size);
705 }
706 preempt_enable();
707
708 bc_wback_inv(addr, size);
709 __sync();
710}
711
712static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
713{
714 /* Catch bad driver code */
715 BUG_ON(size == 0);
716
717 preempt_disable();
718 if (cpu_has_inclusive_pcaches) {
719 if (size >= scache_size)
720 r4k_blast_scache();
721 else {
722 /*
723 * There is no clearly documented alignment requirement
724 * for the cache instruction on MIPS processors and
725 * some processors, among them the RM5200 and RM7000
726 * QED processors will throw an address error for cache
727 * hit ops with insufficient alignment. Solved by
728 * aligning the address to cache line size.
729 */
730 blast_inv_scache_range(addr, addr + size);
731 }
732 preempt_enable();
733 __sync();
734 return;
735 }
736
737 if (cpu_has_safe_index_cacheops && size >= dcache_size) {
738 r4k_blast_dcache();
739 } else {
740 R4600_HIT_CACHEOP_WAR_IMPL;
741 blast_inv_dcache_range(addr, addr + size);
742 }
743 preempt_enable();
744
745 bc_inv(addr, size);
746 __sync();
747}
748#endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
749
750/*
751 * While we're protected against bad userland addresses we don't care
752 * very much about what happens in that case. Usually a segmentation
753 * fault will dump the process later on anyway ...
754 */
755static void local_r4k_flush_cache_sigtramp(void * arg)
756{
757 unsigned long ic_lsize = cpu_icache_line_size();
758 unsigned long dc_lsize = cpu_dcache_line_size();
759 unsigned long sc_lsize = cpu_scache_line_size();
760 unsigned long addr = (unsigned long) arg;
761
762 R4600_HIT_CACHEOP_WAR_IMPL;
763 if (dc_lsize)
764 protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
765 if (!cpu_icache_snoops_remote_store && scache_size)
766 protected_writeback_scache_line(addr & ~(sc_lsize - 1));
767 if (ic_lsize)
768 protected_flush_icache_line(addr & ~(ic_lsize - 1));
769 if (MIPS4K_ICACHE_REFILL_WAR) {
770 __asm__ __volatile__ (
771 ".set push\n\t"
772 ".set noat\n\t"
773 ".set mips3\n\t"
774#ifdef CONFIG_32BIT
775 "la $at,1f\n\t"
776#endif
777#ifdef CONFIG_64BIT
778 "dla $at,1f\n\t"
779#endif
780 "cache %0,($at)\n\t"
781 "nop; nop; nop\n"
782 "1:\n\t"
783 ".set pop"
784 :
785 : "i" (Hit_Invalidate_I));
786 }
787 if (MIPS_CACHE_SYNC_WAR)
788 __asm__ __volatile__ ("sync");
789}
790
791static void r4k_flush_cache_sigtramp(unsigned long addr)
792{
793 r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr);
794}
795
796static void r4k_flush_icache_all(void)
797{
798 if (cpu_has_vtag_icache)
799 r4k_blast_icache();
800}
801
802struct flush_kernel_vmap_range_args {
803 unsigned long vaddr;
804 int size;
805};
806
807static inline void local_r4k_flush_kernel_vmap_range(void *args)
808{
809 struct flush_kernel_vmap_range_args *vmra = args;
810 unsigned long vaddr = vmra->vaddr;
811 int size = vmra->size;
812
813 /*
814 * Aliases only affect the primary caches so don't bother with
815 * S-caches or T-caches.
816 */
817 if (cpu_has_safe_index_cacheops && size >= dcache_size)
818 r4k_blast_dcache();
819 else {
820 R4600_HIT_CACHEOP_WAR_IMPL;
821 blast_dcache_range(vaddr, vaddr + size);
822 }
823}
824
825static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
826{
827 struct flush_kernel_vmap_range_args args;
828
829 args.vaddr = (unsigned long) vaddr;
830 args.size = size;
831
832 r4k_on_each_cpu(local_r4k_flush_kernel_vmap_range, &args);
833}
834
835static inline void rm7k_erratum31(void)
836{
837 const unsigned long ic_lsize = 32;
838 unsigned long addr;
839
840 /* RM7000 erratum #31. The icache is screwed at startup. */
841 write_c0_taglo(0);
842 write_c0_taghi(0);
843
844 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
845 __asm__ __volatile__ (
846 ".set push\n\t"
847 ".set noreorder\n\t"
848 ".set mips3\n\t"
849 "cache\t%1, 0(%0)\n\t"
850 "cache\t%1, 0x1000(%0)\n\t"
851 "cache\t%1, 0x2000(%0)\n\t"
852 "cache\t%1, 0x3000(%0)\n\t"
853 "cache\t%2, 0(%0)\n\t"
854 "cache\t%2, 0x1000(%0)\n\t"
855 "cache\t%2, 0x2000(%0)\n\t"
856 "cache\t%2, 0x3000(%0)\n\t"
857 "cache\t%1, 0(%0)\n\t"
858 "cache\t%1, 0x1000(%0)\n\t"
859 "cache\t%1, 0x2000(%0)\n\t"
860 "cache\t%1, 0x3000(%0)\n\t"
861 ".set pop\n"
862 :
863 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
864 }
865}
866
867static inline void alias_74k_erratum(struct cpuinfo_mips *c)
868{
869 unsigned int imp = c->processor_id & PRID_IMP_MASK;
870 unsigned int rev = c->processor_id & PRID_REV_MASK;
871
872 /*
873 * Early versions of the 74K do not update the cache tags on a
874 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
875 * aliases. In this case it is better to treat the cache as always
876 * having aliases.
877 */
878 switch (imp) {
879 case PRID_IMP_74K:
880 if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
881 c->dcache.flags |= MIPS_CACHE_VTAG;
882 if (rev == PRID_REV_ENCODE_332(2, 4, 0))
883 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
884 break;
885 case PRID_IMP_1074K:
886 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
887 c->dcache.flags |= MIPS_CACHE_VTAG;
888 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
889 }
890 break;
891 default:
892 BUG();
893 }
894}
895
896static char *way_string[] = { NULL, "direct mapped", "2-way",
897 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
898};
899
900static void probe_pcache(void)
901{
902 struct cpuinfo_mips *c = ¤t_cpu_data;
903 unsigned int config = read_c0_config();
904 unsigned int prid = read_c0_prid();
905 unsigned long config1;
906 unsigned int lsize;
907
908 switch (current_cpu_type()) {
909 case CPU_R4600: /* QED style two way caches? */
910 case CPU_R4700:
911 case CPU_R5000:
912 case CPU_NEVADA:
913 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
914 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
915 c->icache.ways = 2;
916 c->icache.waybit = __ffs(icache_size/2);
917
918 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
919 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
920 c->dcache.ways = 2;
921 c->dcache.waybit= __ffs(dcache_size/2);
922
923 c->options |= MIPS_CPU_CACHE_CDEX_P;
924 break;
925
926 case CPU_R5432:
927 case CPU_R5500:
928 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
929 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
930 c->icache.ways = 2;
931 c->icache.waybit= 0;
932
933 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
934 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
935 c->dcache.ways = 2;
936 c->dcache.waybit = 0;
937
938 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
939 break;
940
941 case CPU_TX49XX:
942 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
943 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
944 c->icache.ways = 4;
945 c->icache.waybit= 0;
946
947 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
948 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
949 c->dcache.ways = 4;
950 c->dcache.waybit = 0;
951
952 c->options |= MIPS_CPU_CACHE_CDEX_P;
953 c->options |= MIPS_CPU_PREFETCH;
954 break;
955
956 case CPU_R4000PC:
957 case CPU_R4000SC:
958 case CPU_R4000MC:
959 case CPU_R4400PC:
960 case CPU_R4400SC:
961 case CPU_R4400MC:
962 case CPU_R4300:
963 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
964 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
965 c->icache.ways = 1;
966 c->icache.waybit = 0; /* doesn't matter */
967
968 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
969 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
970 c->dcache.ways = 1;
971 c->dcache.waybit = 0; /* does not matter */
972
973 c->options |= MIPS_CPU_CACHE_CDEX_P;
974 break;
975
976 case CPU_R10000:
977 case CPU_R12000:
978 case CPU_R14000:
979 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
980 c->icache.linesz = 64;
981 c->icache.ways = 2;
982 c->icache.waybit = 0;
983
984 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
985 c->dcache.linesz = 32;
986 c->dcache.ways = 2;
987 c->dcache.waybit = 0;
988
989 c->options |= MIPS_CPU_PREFETCH;
990 break;
991
992 case CPU_VR4133:
993 write_c0_config(config & ~VR41_CONF_P4K);
994 case CPU_VR4131:
995 /* Workaround for cache instruction bug of VR4131 */
996 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
997 c->processor_id == 0x0c82U) {
998 config |= 0x00400000U;
999 if (c->processor_id == 0x0c80U)
1000 config |= VR41_CONF_BP;
1001 write_c0_config(config);
1002 } else
1003 c->options |= MIPS_CPU_CACHE_CDEX_P;
1004
1005 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1006 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1007 c->icache.ways = 2;
1008 c->icache.waybit = __ffs(icache_size/2);
1009
1010 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1011 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1012 c->dcache.ways = 2;
1013 c->dcache.waybit = __ffs(dcache_size/2);
1014 break;
1015
1016 case CPU_VR41XX:
1017 case CPU_VR4111:
1018 case CPU_VR4121:
1019 case CPU_VR4122:
1020 case CPU_VR4181:
1021 case CPU_VR4181A:
1022 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1023 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1024 c->icache.ways = 1;
1025 c->icache.waybit = 0; /* doesn't matter */
1026
1027 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1028 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1029 c->dcache.ways = 1;
1030 c->dcache.waybit = 0; /* does not matter */
1031
1032 c->options |= MIPS_CPU_CACHE_CDEX_P;
1033 break;
1034
1035 case CPU_RM7000:
1036 rm7k_erratum31();
1037
1038 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1039 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1040 c->icache.ways = 4;
1041 c->icache.waybit = __ffs(icache_size / c->icache.ways);
1042
1043 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1044 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1045 c->dcache.ways = 4;
1046 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1047
1048 c->options |= MIPS_CPU_CACHE_CDEX_P;
1049 c->options |= MIPS_CPU_PREFETCH;
1050 break;
1051
1052 case CPU_LOONGSON2:
1053 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1054 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1055 if (prid & 0x3)
1056 c->icache.ways = 4;
1057 else
1058 c->icache.ways = 2;
1059 c->icache.waybit = 0;
1060
1061 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1062 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1063 if (prid & 0x3)
1064 c->dcache.ways = 4;
1065 else
1066 c->dcache.ways = 2;
1067 c->dcache.waybit = 0;
1068 break;
1069
1070 case CPU_LOONGSON3:
1071 config1 = read_c0_config1();
1072 lsize = (config1 >> 19) & 7;
1073 if (lsize)
1074 c->icache.linesz = 2 << lsize;
1075 else
1076 c->icache.linesz = 0;
1077 c->icache.sets = 64 << ((config1 >> 22) & 7);
1078 c->icache.ways = 1 + ((config1 >> 16) & 7);
1079 icache_size = c->icache.sets *
1080 c->icache.ways *
1081 c->icache.linesz;
1082 c->icache.waybit = 0;
1083
1084 lsize = (config1 >> 10) & 7;
1085 if (lsize)
1086 c->dcache.linesz = 2 << lsize;
1087 else
1088 c->dcache.linesz = 0;
1089 c->dcache.sets = 64 << ((config1 >> 13) & 7);
1090 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1091 dcache_size = c->dcache.sets *
1092 c->dcache.ways *
1093 c->dcache.linesz;
1094 c->dcache.waybit = 0;
1095 break;
1096
1097 default:
1098 if (!(config & MIPS_CONF_M))
1099 panic("Don't know how to probe P-caches on this cpu.");
1100
1101 /*
1102 * So we seem to be a MIPS32 or MIPS64 CPU
1103 * So let's probe the I-cache ...
1104 */
1105 config1 = read_c0_config1();
1106
1107 lsize = (config1 >> 19) & 7;
1108
1109 /* IL == 7 is reserved */
1110 if (lsize == 7)
1111 panic("Invalid icache line size");
1112
1113 c->icache.linesz = lsize ? 2 << lsize : 0;
1114
1115 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1116 c->icache.ways = 1 + ((config1 >> 16) & 7);
1117
1118 icache_size = c->icache.sets *
1119 c->icache.ways *
1120 c->icache.linesz;
1121 c->icache.waybit = __ffs(icache_size/c->icache.ways);
1122
1123 if (config & 0x8) /* VI bit */
1124 c->icache.flags |= MIPS_CACHE_VTAG;
1125
1126 /*
1127 * Now probe the MIPS32 / MIPS64 data cache.
1128 */
1129 c->dcache.flags = 0;
1130
1131 lsize = (config1 >> 10) & 7;
1132
1133 /* DL == 7 is reserved */
1134 if (lsize == 7)
1135 panic("Invalid dcache line size");
1136
1137 c->dcache.linesz = lsize ? 2 << lsize : 0;
1138
1139 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1140 c->dcache.ways = 1 + ((config1 >> 7) & 7);
1141
1142 dcache_size = c->dcache.sets *
1143 c->dcache.ways *
1144 c->dcache.linesz;
1145 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1146
1147 c->options |= MIPS_CPU_PREFETCH;
1148 break;
1149 }
1150
1151 /*
1152 * Processor configuration sanity check for the R4000SC erratum
1153 * #5. With page sizes larger than 32kB there is no possibility
1154 * to get a VCE exception anymore so we don't care about this
1155 * misconfiguration. The case is rather theoretical anyway;
1156 * presumably no vendor is shipping his hardware in the "bad"
1157 * configuration.
1158 */
1159 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1160 (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1161 !(config & CONF_SC) && c->icache.linesz != 16 &&
1162 PAGE_SIZE <= 0x8000)
1163 panic("Improper R4000SC processor configuration detected");
1164
1165 /* compute a couple of other cache variables */
1166 c->icache.waysize = icache_size / c->icache.ways;
1167 c->dcache.waysize = dcache_size / c->dcache.ways;
1168
1169 c->icache.sets = c->icache.linesz ?
1170 icache_size / (c->icache.linesz * c->icache.ways) : 0;
1171 c->dcache.sets = c->dcache.linesz ?
1172 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1173
1174 /*
1175 * R10000 and R12000 P-caches are odd in a positive way. They're 32kB
1176 * 2-way virtually indexed so normally would suffer from aliases. So
1177 * normally they'd suffer from aliases but magic in the hardware deals
1178 * with that for us so we don't need to take care ourselves.
1179 */
1180 switch (current_cpu_type()) {
1181 case CPU_20KC:
1182 case CPU_25KF:
1183 case CPU_SB1:
1184 case CPU_SB1A:
1185 case CPU_XLR:
1186 c->dcache.flags |= MIPS_CACHE_PINDEX;
1187 break;
1188
1189 case CPU_R10000:
1190 case CPU_R12000:
1191 case CPU_R14000:
1192 break;
1193
1194 case CPU_M14KC:
1195 case CPU_M14KEC:
1196 case CPU_24K:
1197 case CPU_34K:
1198 case CPU_74K:
1199 case CPU_1004K:
1200 case CPU_1074K:
1201 case CPU_INTERAPTIV:
1202 case CPU_P5600:
1203 case CPU_PROAPTIV:
1204 case CPU_M5150:
1205 if ((c->cputype == CPU_74K) || (c->cputype == CPU_1074K))
1206 alias_74k_erratum(c);
1207 if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1208 (c->icache.waysize > PAGE_SIZE))
1209 c->icache.flags |= MIPS_CACHE_ALIASES;
1210 if (read_c0_config7() & MIPS_CONF7_AR) {
1211 /*
1212 * Effectively physically indexed dcache,
1213 * thus no virtual aliases.
1214 */
1215 c->dcache.flags |= MIPS_CACHE_PINDEX;
1216 break;
1217 }
1218 default:
1219 if (c->dcache.waysize > PAGE_SIZE)
1220 c->dcache.flags |= MIPS_CACHE_ALIASES;
1221 }
1222
1223 switch (current_cpu_type()) {
1224 case CPU_20KC:
1225 /*
1226 * Some older 20Kc chips doesn't have the 'VI' bit in
1227 * the config register.
1228 */
1229 c->icache.flags |= MIPS_CACHE_VTAG;
1230 break;
1231
1232 case CPU_ALCHEMY:
1233 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1234 break;
1235
1236 case CPU_LOONGSON2:
1237 /*
1238 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1239 * one op will act on all 4 ways
1240 */
1241 c->icache.ways = 1;
1242 }
1243
1244 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1245 icache_size >> 10,
1246 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1247 way_string[c->icache.ways], c->icache.linesz);
1248
1249 printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1250 dcache_size >> 10, way_string[c->dcache.ways],
1251 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1252 (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1253 "cache aliases" : "no aliases",
1254 c->dcache.linesz);
1255}
1256
1257/*
1258 * If you even _breathe_ on this function, look at the gcc output and make sure
1259 * it does not pop things on and off the stack for the cache sizing loop that
1260 * executes in KSEG1 space or else you will crash and burn badly. You have
1261 * been warned.
1262 */
1263static int probe_scache(void)
1264{
1265 unsigned long flags, addr, begin, end, pow2;
1266 unsigned int config = read_c0_config();
1267 struct cpuinfo_mips *c = ¤t_cpu_data;
1268
1269 if (config & CONF_SC)
1270 return 0;
1271
1272 begin = (unsigned long) &_stext;
1273 begin &= ~((4 * 1024 * 1024) - 1);
1274 end = begin + (4 * 1024 * 1024);
1275
1276 /*
1277 * This is such a bitch, you'd think they would make it easy to do
1278 * this. Away you daemons of stupidity!
1279 */
1280 local_irq_save(flags);
1281
1282 /* Fill each size-multiple cache line with a valid tag. */
1283 pow2 = (64 * 1024);
1284 for (addr = begin; addr < end; addr = (begin + pow2)) {
1285 unsigned long *p = (unsigned long *) addr;
1286 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1287 pow2 <<= 1;
1288 }
1289
1290 /* Load first line with zero (therefore invalid) tag. */
1291 write_c0_taglo(0);
1292 write_c0_taghi(0);
1293 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1294 cache_op(Index_Store_Tag_I, begin);
1295 cache_op(Index_Store_Tag_D, begin);
1296 cache_op(Index_Store_Tag_SD, begin);
1297
1298 /* Now search for the wrap around point. */
1299 pow2 = (128 * 1024);
1300 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1301 cache_op(Index_Load_Tag_SD, addr);
1302 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1303 if (!read_c0_taglo())
1304 break;
1305 pow2 <<= 1;
1306 }
1307 local_irq_restore(flags);
1308 addr -= begin;
1309
1310 scache_size = addr;
1311 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1312 c->scache.ways = 1;
1313 c->dcache.waybit = 0; /* does not matter */
1314
1315 return 1;
1316}
1317
1318static void __init loongson2_sc_init(void)
1319{
1320 struct cpuinfo_mips *c = ¤t_cpu_data;
1321
1322 scache_size = 512*1024;
1323 c->scache.linesz = 32;
1324 c->scache.ways = 4;
1325 c->scache.waybit = 0;
1326 c->scache.waysize = scache_size / (c->scache.ways);
1327 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1328 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1329 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1330
1331 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1332}
1333
1334static void __init loongson3_sc_init(void)
1335{
1336 struct cpuinfo_mips *c = ¤t_cpu_data;
1337 unsigned int config2, lsize;
1338
1339 config2 = read_c0_config2();
1340 lsize = (config2 >> 4) & 15;
1341 if (lsize)
1342 c->scache.linesz = 2 << lsize;
1343 else
1344 c->scache.linesz = 0;
1345 c->scache.sets = 64 << ((config2 >> 8) & 15);
1346 c->scache.ways = 1 + (config2 & 15);
1347
1348 scache_size = c->scache.sets *
1349 c->scache.ways *
1350 c->scache.linesz;
1351 /* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1352 scache_size *= 4;
1353 c->scache.waybit = 0;
1354 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1355 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1356 if (scache_size)
1357 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1358 return;
1359}
1360
1361extern int r5k_sc_init(void);
1362extern int rm7k_sc_init(void);
1363extern int mips_sc_init(void);
1364
1365static void setup_scache(void)
1366{
1367 struct cpuinfo_mips *c = ¤t_cpu_data;
1368 unsigned int config = read_c0_config();
1369 int sc_present = 0;
1370
1371 /*
1372 * Do the probing thing on R4000SC and R4400SC processors. Other
1373 * processors don't have a S-cache that would be relevant to the
1374 * Linux memory management.
1375 */
1376 switch (current_cpu_type()) {
1377 case CPU_R4000SC:
1378 case CPU_R4000MC:
1379 case CPU_R4400SC:
1380 case CPU_R4400MC:
1381 sc_present = run_uncached(probe_scache);
1382 if (sc_present)
1383 c->options |= MIPS_CPU_CACHE_CDEX_S;
1384 break;
1385
1386 case CPU_R10000:
1387 case CPU_R12000:
1388 case CPU_R14000:
1389 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1390 c->scache.linesz = 64 << ((config >> 13) & 1);
1391 c->scache.ways = 2;
1392 c->scache.waybit= 0;
1393 sc_present = 1;
1394 break;
1395
1396 case CPU_R5000:
1397 case CPU_NEVADA:
1398#ifdef CONFIG_R5000_CPU_SCACHE
1399 r5k_sc_init();
1400#endif
1401 return;
1402
1403 case CPU_RM7000:
1404#ifdef CONFIG_RM7000_CPU_SCACHE
1405 rm7k_sc_init();
1406#endif
1407 return;
1408
1409 case CPU_LOONGSON2:
1410 loongson2_sc_init();
1411 return;
1412
1413 case CPU_LOONGSON3:
1414 loongson3_sc_init();
1415 return;
1416
1417 case CPU_XLP:
1418 /* don't need to worry about L2, fully coherent */
1419 return;
1420
1421 default:
1422 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1423 MIPS_CPU_ISA_M64R1 | MIPS_CPU_ISA_M64R2)) {
1424#ifdef CONFIG_MIPS_CPU_SCACHE
1425 if (mips_sc_init ()) {
1426 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1427 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1428 scache_size >> 10,
1429 way_string[c->scache.ways], c->scache.linesz);
1430 }
1431#else
1432 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1433 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1434#endif
1435 return;
1436 }
1437 sc_present = 0;
1438 }
1439
1440 if (!sc_present)
1441 return;
1442
1443 /* compute a couple of other cache variables */
1444 c->scache.waysize = scache_size / c->scache.ways;
1445
1446 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1447
1448 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1449 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1450
1451 c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1452}
1453
1454void au1x00_fixup_config_od(void)
1455{
1456 /*
1457 * c0_config.od (bit 19) was write only (and read as 0)
1458 * on the early revisions of Alchemy SOCs. It disables the bus
1459 * transaction overlapping and needs to be set to fix various errata.
1460 */
1461 switch (read_c0_prid()) {
1462 case 0x00030100: /* Au1000 DA */
1463 case 0x00030201: /* Au1000 HA */
1464 case 0x00030202: /* Au1000 HB */
1465 case 0x01030200: /* Au1500 AB */
1466 /*
1467 * Au1100 errata actually keeps silence about this bit, so we set it
1468 * just in case for those revisions that require it to be set according
1469 * to the (now gone) cpu table.
1470 */
1471 case 0x02030200: /* Au1100 AB */
1472 case 0x02030201: /* Au1100 BA */
1473 case 0x02030202: /* Au1100 BC */
1474 set_c0_config(1 << 19);
1475 break;
1476 }
1477}
1478
1479/* CP0 hazard avoidance. */
1480#define NXP_BARRIER() \
1481 __asm__ __volatile__( \
1482 ".set noreorder\n\t" \
1483 "nop; nop; nop; nop; nop; nop;\n\t" \
1484 ".set reorder\n\t")
1485
1486static void nxp_pr4450_fixup_config(void)
1487{
1488 unsigned long config0;
1489
1490 config0 = read_c0_config();
1491
1492 /* clear all three cache coherency fields */
1493 config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1494 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) |
1495 ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1496 ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1497 write_c0_config(config0);
1498 NXP_BARRIER();
1499}
1500
1501static int cca = -1;
1502
1503static int __init cca_setup(char *str)
1504{
1505 get_option(&str, &cca);
1506
1507 return 0;
1508}
1509
1510early_param("cca", cca_setup);
1511
1512static void coherency_setup(void)
1513{
1514 if (cca < 0 || cca > 7)
1515 cca = read_c0_config() & CONF_CM_CMASK;
1516 _page_cachable_default = cca << _CACHE_SHIFT;
1517
1518 pr_debug("Using cache attribute %d\n", cca);
1519 change_c0_config(CONF_CM_CMASK, cca);
1520
1521 /*
1522 * c0_status.cu=0 specifies that updates by the sc instruction use
1523 * the coherency mode specified by the TLB; 1 means cachable
1524 * coherent update on write will be used. Not all processors have
1525 * this bit and; some wire it to zero, others like Toshiba had the
1526 * silly idea of putting something else there ...
1527 */
1528 switch (current_cpu_type()) {
1529 case CPU_R4000PC:
1530 case CPU_R4000SC:
1531 case CPU_R4000MC:
1532 case CPU_R4400PC:
1533 case CPU_R4400SC:
1534 case CPU_R4400MC:
1535 clear_c0_config(CONF_CU);
1536 break;
1537 /*
1538 * We need to catch the early Alchemy SOCs with
1539 * the write-only co_config.od bit and set it back to one on:
1540 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1541 */
1542 case CPU_ALCHEMY:
1543 au1x00_fixup_config_od();
1544 break;
1545
1546 case PRID_IMP_PR4450:
1547 nxp_pr4450_fixup_config();
1548 break;
1549 }
1550}
1551
1552static void r4k_cache_error_setup(void)
1553{
1554 extern char __weak except_vec2_generic;
1555 extern char __weak except_vec2_sb1;
1556
1557 switch (current_cpu_type()) {
1558 case CPU_SB1:
1559 case CPU_SB1A:
1560 set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1561 break;
1562
1563 default:
1564 set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1565 break;
1566 }
1567}
1568
1569void r4k_cache_init(void)
1570{
1571 extern void build_clear_page(void);
1572 extern void build_copy_page(void);
1573 struct cpuinfo_mips *c = ¤t_cpu_data;
1574
1575 probe_pcache();
1576 setup_scache();
1577
1578 r4k_blast_dcache_page_setup();
1579 r4k_blast_dcache_page_indexed_setup();
1580 r4k_blast_dcache_setup();
1581 r4k_blast_icache_page_setup();
1582 r4k_blast_icache_page_indexed_setup();
1583 r4k_blast_icache_setup();
1584 r4k_blast_scache_page_setup();
1585 r4k_blast_scache_page_indexed_setup();
1586 r4k_blast_scache_setup();
1587#ifdef CONFIG_EVA
1588 r4k_blast_dcache_user_page_setup();
1589 r4k_blast_icache_user_page_setup();
1590#endif
1591
1592 /*
1593 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1594 * This code supports virtually indexed processors and will be
1595 * unnecessarily inefficient on physically indexed processors.
1596 */
1597 if (c->dcache.linesz)
1598 shm_align_mask = max_t( unsigned long,
1599 c->dcache.sets * c->dcache.linesz - 1,
1600 PAGE_SIZE - 1);
1601 else
1602 shm_align_mask = PAGE_SIZE-1;
1603
1604 __flush_cache_vmap = r4k__flush_cache_vmap;
1605 __flush_cache_vunmap = r4k__flush_cache_vunmap;
1606
1607 flush_cache_all = cache_noop;
1608 __flush_cache_all = r4k___flush_cache_all;
1609 flush_cache_mm = r4k_flush_cache_mm;
1610 flush_cache_page = r4k_flush_cache_page;
1611 flush_cache_range = r4k_flush_cache_range;
1612
1613 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1614
1615 flush_cache_sigtramp = r4k_flush_cache_sigtramp;
1616 flush_icache_all = r4k_flush_icache_all;
1617 local_flush_data_cache_page = local_r4k_flush_data_cache_page;
1618 flush_data_cache_page = r4k_flush_data_cache_page;
1619 flush_icache_range = r4k_flush_icache_range;
1620 local_flush_icache_range = local_r4k_flush_icache_range;
1621
1622#if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
1623 if (coherentio) {
1624 _dma_cache_wback_inv = (void *)cache_noop;
1625 _dma_cache_wback = (void *)cache_noop;
1626 _dma_cache_inv = (void *)cache_noop;
1627 } else {
1628 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1629 _dma_cache_wback = r4k_dma_cache_wback_inv;
1630 _dma_cache_inv = r4k_dma_cache_inv;
1631 }
1632#endif
1633
1634 build_clear_page();
1635 build_copy_page();
1636
1637 /*
1638 * We want to run CMP kernels on core with and without coherent
1639 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1640 * or not to flush caches.
1641 */
1642 local_r4k___flush_cache_all(NULL);
1643
1644 coherency_setup();
1645 board_cache_error_setup = r4k_cache_error_setup;
1646}