Linux Audio

Check our new training course

Loading...
v6.2
  1/****************************************************************************
  2
  3   Copyright Echo Digital Audio Corporation (c) 1998 - 2004
  4   All rights reserved
  5   www.echoaudio.com
  6
  7   This file is part of Echo Digital Audio's generic driver library.
  8
  9   Echo Digital Audio's generic driver library is free software;
 10   you can redistribute it and/or modify it under the terms of
 11   the GNU General Public License as published by the Free Software
 12   Foundation.
 13
 14   This program is distributed in the hope that it will be useful,
 15   but WITHOUT ANY WARRANTY; without even the implied warranty of
 16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17   GNU General Public License for more details.
 18
 19   You should have received a copy of the GNU General Public License
 20   along with this program; if not, write to the Free Software
 21   Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 22   MA  02111-1307, USA.
 23
 24   *************************************************************************
 25
 26 Translation from C++ and adaptation for use in ALSA-Driver
 27 were made by Giuliano Pochini <pochini@shiny.it>
 28
 29****************************************************************************/
 30
 31
 32/******************************************************************************
 33	MIDI lowlevel code
 34******************************************************************************/
 35
 36/* Start and stop Midi input */
 37static int enable_midi_input(struct echoaudio *chip, char enable)
 38{
 39	dev_dbg(chip->card->dev, "enable_midi_input(%d)\n", enable);
 40
 41	if (wait_handshake(chip))
 42		return -EIO;
 43
 44	if (enable) {
 45		chip->mtc_state = MIDI_IN_STATE_NORMAL;
 46		chip->comm_page->flags |=
 47			cpu_to_le32(DSP_FLAG_MIDI_INPUT);
 48	} else
 49		chip->comm_page->flags &=
 50			~cpu_to_le32(DSP_FLAG_MIDI_INPUT);
 51
 52	clear_handshake(chip);
 53	return send_vector(chip, DSP_VC_UPDATE_FLAGS);
 54}
 55
 56
 57
 58/* Send a buffer full of MIDI data to the DSP
 59Returns how many actually written or < 0 on error */
 60static int write_midi(struct echoaudio *chip, u8 *data, int bytes)
 61{
 62	if (snd_BUG_ON(bytes <= 0 || bytes >= MIDI_OUT_BUFFER_SIZE))
 63		return -EINVAL;
 64
 65	if (wait_handshake(chip))
 66		return -EIO;
 67
 68	/* HF4 indicates that it is safe to write MIDI output data */
 69	if (! (get_dsp_register(chip, CHI32_STATUS_REG) & CHI32_STATUS_REG_HF4))
 70		return 0;
 71
 72	chip->comm_page->midi_output[0] = bytes;
 73	memcpy(&chip->comm_page->midi_output[1], data, bytes);
 74	chip->comm_page->midi_out_free_count = 0;
 75	clear_handshake(chip);
 76	send_vector(chip, DSP_VC_MIDI_WRITE);
 77	dev_dbg(chip->card->dev, "write_midi: %d\n", bytes);
 78	return bytes;
 79}
 80
 81
 82
 83/* Run the state machine for MIDI input data
 84MIDI time code sync isn't supported by this code right now, but you still need
 85this state machine to parse the incoming MIDI data stream.  Every time the DSP
 86sees a 0xF1 byte come in, it adds the DSP sample position to the MIDI data
 87stream. The DSP sample position is represented as a 32 bit unsigned value,
 88with the high 16 bits first, followed by the low 16 bits. Since these aren't
 89real MIDI bytes, the following logic is needed to skip them. */
 90static inline int mtc_process_data(struct echoaudio *chip, short midi_byte)
 91{
 92	switch (chip->mtc_state) {
 93	case MIDI_IN_STATE_NORMAL:
 94		if (midi_byte == 0xF1)
 95			chip->mtc_state = MIDI_IN_STATE_TS_HIGH;
 96		break;
 97	case MIDI_IN_STATE_TS_HIGH:
 98		chip->mtc_state = MIDI_IN_STATE_TS_LOW;
 99		return MIDI_IN_SKIP_DATA;
100		break;
101	case MIDI_IN_STATE_TS_LOW:
102		chip->mtc_state = MIDI_IN_STATE_F1_DATA;
103		return MIDI_IN_SKIP_DATA;
104		break;
105	case MIDI_IN_STATE_F1_DATA:
106		chip->mtc_state = MIDI_IN_STATE_NORMAL;
107		break;
108	}
109	return 0;
110}
111
112
113
114/* This function is called from the IRQ handler and it reads the midi data
115from the DSP's buffer.  It returns the number of bytes received. */
116static int midi_service_irq(struct echoaudio *chip)
117{
118	short int count, midi_byte, i, received;
119
120	/* The count is at index 0, followed by actual data */
121	count = le16_to_cpu(chip->comm_page->midi_input[0]);
122
123	if (snd_BUG_ON(count >= MIDI_IN_BUFFER_SIZE))
124		return 0;
125
126	/* Get the MIDI data from the comm page */
 
127	received = 0;
128	for (i = 1; i <= count; i++) {
129		/* Get the MIDI byte */
130		midi_byte = le16_to_cpu(chip->comm_page->midi_input[i]);
131
132		/* Parse the incoming MIDI stream. The incoming MIDI data
133		consists of MIDI bytes and timestamps for the MIDI time code
134		0xF1 bytes. mtc_process_data() is a little state machine that
135		parses the stream. If you get MIDI_IN_SKIP_DATA back, then
136		this is a timestamp byte, not a MIDI byte, so don't store it
137		in the MIDI input buffer. */
138		if (mtc_process_data(chip, midi_byte) == MIDI_IN_SKIP_DATA)
139			continue;
140
141		chip->midi_buffer[received++] = (u8)midi_byte;
142	}
143
144	return received;
145}
146
147
148
149
150/******************************************************************************
151	MIDI interface
152******************************************************************************/
153
154static int snd_echo_midi_input_open(struct snd_rawmidi_substream *substream)
155{
156	struct echoaudio *chip = substream->rmidi->private_data;
157
158	chip->midi_in = substream;
 
159	return 0;
160}
161
162
163
164static void snd_echo_midi_input_trigger(struct snd_rawmidi_substream *substream,
165					int up)
166{
167	struct echoaudio *chip = substream->rmidi->private_data;
168
169	if (up != chip->midi_input_enabled) {
170		spin_lock_irq(&chip->lock);
171		enable_midi_input(chip, up);
172		spin_unlock_irq(&chip->lock);
173		chip->midi_input_enabled = up;
174	}
175}
176
177
178
179static int snd_echo_midi_input_close(struct snd_rawmidi_substream *substream)
180{
181	struct echoaudio *chip = substream->rmidi->private_data;
182
183	chip->midi_in = NULL;
 
184	return 0;
185}
186
187
188
189static int snd_echo_midi_output_open(struct snd_rawmidi_substream *substream)
190{
191	struct echoaudio *chip = substream->rmidi->private_data;
192
193	chip->tinuse = 0;
194	chip->midi_full = 0;
195	chip->midi_out = substream;
 
196	return 0;
197}
198
199
200
201static void snd_echo_midi_output_write(struct timer_list *t)
202{
203	struct echoaudio *chip = from_timer(chip, t, timer);
204	unsigned long flags;
205	int bytes, sent, time;
206	unsigned char buf[MIDI_OUT_BUFFER_SIZE - 1];
207
 
208	/* No interrupts are involved: we have to check at regular intervals
209	if the card's output buffer has room for new data. */
210	sent = 0;
211	spin_lock_irqsave(&chip->lock, flags);
212	chip->midi_full = 0;
213	if (!snd_rawmidi_transmit_empty(chip->midi_out)) {
214		bytes = snd_rawmidi_transmit_peek(chip->midi_out, buf,
215						  MIDI_OUT_BUFFER_SIZE - 1);
216		dev_dbg(chip->card->dev, "Try to send %d bytes...\n", bytes);
217		sent = write_midi(chip, buf, bytes);
218		if (sent < 0) {
219			dev_err(chip->card->dev,
220				"write_midi() error %d\n", sent);
221			/* retry later */
222			sent = 9000;
223			chip->midi_full = 1;
224		} else if (sent > 0) {
225			dev_dbg(chip->card->dev, "%d bytes sent\n", sent);
226			snd_rawmidi_transmit_ack(chip->midi_out, sent);
227		} else {
228			/* Buffer is full. DSP's internal buffer is 64 (128 ?)
229			bytes long. Let's wait until half of them are sent */
230			dev_dbg(chip->card->dev, "Full\n");
231			sent = 32;
232			chip->midi_full = 1;
233		}
234	}
235
236	/* We restart the timer only if there is some data left to send */
237	if (!snd_rawmidi_transmit_empty(chip->midi_out) && chip->tinuse) {
238		/* The timer will expire slightly after the data has been
239		   sent */
240		time = (sent << 3) / 25 + 1;	/* 8/25=0.32ms to send a byte */
241		mod_timer(&chip->timer, jiffies + (time * HZ + 999) / 1000);
242		dev_dbg(chip->card->dev,
243			"Timer armed(%d)\n", ((time * HZ + 999) / 1000));
244	}
245	spin_unlock_irqrestore(&chip->lock, flags);
246}
247
248
249
250static void snd_echo_midi_output_trigger(struct snd_rawmidi_substream *substream,
251					 int up)
252{
253	struct echoaudio *chip = substream->rmidi->private_data;
254
255	dev_dbg(chip->card->dev, "snd_echo_midi_output_trigger(%d)\n", up);
256	spin_lock_irq(&chip->lock);
257	if (up) {
258		if (!chip->tinuse) {
259			timer_setup(&chip->timer, snd_echo_midi_output_write,
260				    0);
 
261			chip->tinuse = 1;
262		}
263	} else {
264		if (chip->tinuse) {
265			chip->tinuse = 0;
266			spin_unlock_irq(&chip->lock);
267			del_timer_sync(&chip->timer);
268			dev_dbg(chip->card->dev, "Timer removed\n");
269			return;
270		}
271	}
272	spin_unlock_irq(&chip->lock);
273
274	if (up && !chip->midi_full)
275		snd_echo_midi_output_write(&chip->timer);
276}
277
278
279
280static int snd_echo_midi_output_close(struct snd_rawmidi_substream *substream)
281{
282	struct echoaudio *chip = substream->rmidi->private_data;
283
284	chip->midi_out = NULL;
 
285	return 0;
286}
287
288
289
290static const struct snd_rawmidi_ops snd_echo_midi_input = {
291	.open = snd_echo_midi_input_open,
292	.close = snd_echo_midi_input_close,
293	.trigger = snd_echo_midi_input_trigger,
294};
295
296static const struct snd_rawmidi_ops snd_echo_midi_output = {
297	.open = snd_echo_midi_output_open,
298	.close = snd_echo_midi_output_close,
299	.trigger = snd_echo_midi_output_trigger,
300};
301
302
303
304/* <--snd_echo_probe() */
305static int snd_echo_midi_create(struct snd_card *card,
306				struct echoaudio *chip)
307{
308	int err;
309
310	err = snd_rawmidi_new(card, card->shortname, 0, 1, 1, &chip->rmidi);
311	if (err < 0)
312		return err;
313
314	strcpy(chip->rmidi->name, card->shortname);
315	chip->rmidi->private_data = chip;
316
317	snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
318			    &snd_echo_midi_input);
319	snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
320			    &snd_echo_midi_output);
321
322	chip->rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT |
323		SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX;
 
324	return 0;
325}
v3.15
  1/****************************************************************************
  2
  3   Copyright Echo Digital Audio Corporation (c) 1998 - 2004
  4   All rights reserved
  5   www.echoaudio.com
  6
  7   This file is part of Echo Digital Audio's generic driver library.
  8
  9   Echo Digital Audio's generic driver library is free software;
 10   you can redistribute it and/or modify it under the terms of
 11   the GNU General Public License as published by the Free Software
 12   Foundation.
 13
 14   This program is distributed in the hope that it will be useful,
 15   but WITHOUT ANY WARRANTY; without even the implied warranty of
 16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17   GNU General Public License for more details.
 18
 19   You should have received a copy of the GNU General Public License
 20   along with this program; if not, write to the Free Software
 21   Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 22   MA  02111-1307, USA.
 23
 24   *************************************************************************
 25
 26 Translation from C++ and adaptation for use in ALSA-Driver
 27 were made by Giuliano Pochini <pochini@shiny.it>
 28
 29****************************************************************************/
 30
 31
 32/******************************************************************************
 33	MIDI lowlevel code
 34******************************************************************************/
 35
 36/* Start and stop Midi input */
 37static int enable_midi_input(struct echoaudio *chip, char enable)
 38{
 39	DE_MID(("enable_midi_input(%d)\n", enable));
 40
 41	if (wait_handshake(chip))
 42		return -EIO;
 43
 44	if (enable) {
 45		chip->mtc_state = MIDI_IN_STATE_NORMAL;
 46		chip->comm_page->flags |=
 47			cpu_to_le32(DSP_FLAG_MIDI_INPUT);
 48	} else
 49		chip->comm_page->flags &=
 50			~cpu_to_le32(DSP_FLAG_MIDI_INPUT);
 51
 52	clear_handshake(chip);
 53	return send_vector(chip, DSP_VC_UPDATE_FLAGS);
 54}
 55
 56
 57
 58/* Send a buffer full of MIDI data to the DSP
 59Returns how many actually written or < 0 on error */
 60static int write_midi(struct echoaudio *chip, u8 *data, int bytes)
 61{
 62	if (snd_BUG_ON(bytes <= 0 || bytes >= MIDI_OUT_BUFFER_SIZE))
 63		return -EINVAL;
 64
 65	if (wait_handshake(chip))
 66		return -EIO;
 67
 68	/* HF4 indicates that it is safe to write MIDI output data */
 69	if (! (get_dsp_register(chip, CHI32_STATUS_REG) & CHI32_STATUS_REG_HF4))
 70		return 0;
 71
 72	chip->comm_page->midi_output[0] = bytes;
 73	memcpy(&chip->comm_page->midi_output[1], data, bytes);
 74	chip->comm_page->midi_out_free_count = 0;
 75	clear_handshake(chip);
 76	send_vector(chip, DSP_VC_MIDI_WRITE);
 77	DE_MID(("write_midi: %d\n", bytes));
 78	return bytes;
 79}
 80
 81
 82
 83/* Run the state machine for MIDI input data
 84MIDI time code sync isn't supported by this code right now, but you still need
 85this state machine to parse the incoming MIDI data stream.  Every time the DSP
 86sees a 0xF1 byte come in, it adds the DSP sample position to the MIDI data
 87stream. The DSP sample position is represented as a 32 bit unsigned value,
 88with the high 16 bits first, followed by the low 16 bits. Since these aren't
 89real MIDI bytes, the following logic is needed to skip them. */
 90static inline int mtc_process_data(struct echoaudio *chip, short midi_byte)
 91{
 92	switch (chip->mtc_state) {
 93	case MIDI_IN_STATE_NORMAL:
 94		if (midi_byte == 0xF1)
 95			chip->mtc_state = MIDI_IN_STATE_TS_HIGH;
 96		break;
 97	case MIDI_IN_STATE_TS_HIGH:
 98		chip->mtc_state = MIDI_IN_STATE_TS_LOW;
 99		return MIDI_IN_SKIP_DATA;
100		break;
101	case MIDI_IN_STATE_TS_LOW:
102		chip->mtc_state = MIDI_IN_STATE_F1_DATA;
103		return MIDI_IN_SKIP_DATA;
104		break;
105	case MIDI_IN_STATE_F1_DATA:
106		chip->mtc_state = MIDI_IN_STATE_NORMAL;
107		break;
108	}
109	return 0;
110}
111
112
113
114/* This function is called from the IRQ handler and it reads the midi data
115from the DSP's buffer.  It returns the number of bytes received. */
116static int midi_service_irq(struct echoaudio *chip)
117{
118	short int count, midi_byte, i, received;
119
120	/* The count is at index 0, followed by actual data */
121	count = le16_to_cpu(chip->comm_page->midi_input[0]);
122
123	if (snd_BUG_ON(count >= MIDI_IN_BUFFER_SIZE))
124		return 0;
125
126	/* Get the MIDI data from the comm page */
127	i = 1;
128	received = 0;
129	for (i = 1; i <= count; i++) {
130		/* Get the MIDI byte */
131		midi_byte = le16_to_cpu(chip->comm_page->midi_input[i]);
132
133		/* Parse the incoming MIDI stream. The incoming MIDI data
134		consists of MIDI bytes and timestamps for the MIDI time code
135		0xF1 bytes. mtc_process_data() is a little state machine that
136		parses the stream. If you get MIDI_IN_SKIP_DATA back, then
137		this is a timestamp byte, not a MIDI byte, so don't store it
138		in the MIDI input buffer. */
139		if (mtc_process_data(chip, midi_byte) == MIDI_IN_SKIP_DATA)
140			continue;
141
142		chip->midi_buffer[received++] = (u8)midi_byte;
143	}
144
145	return received;
146}
147
148
149
150
151/******************************************************************************
152	MIDI interface
153******************************************************************************/
154
155static int snd_echo_midi_input_open(struct snd_rawmidi_substream *substream)
156{
157	struct echoaudio *chip = substream->rmidi->private_data;
158
159	chip->midi_in = substream;
160	DE_MID(("rawmidi_iopen\n"));
161	return 0;
162}
163
164
165
166static void snd_echo_midi_input_trigger(struct snd_rawmidi_substream *substream,
167					int up)
168{
169	struct echoaudio *chip = substream->rmidi->private_data;
170
171	if (up != chip->midi_input_enabled) {
172		spin_lock_irq(&chip->lock);
173		enable_midi_input(chip, up);
174		spin_unlock_irq(&chip->lock);
175		chip->midi_input_enabled = up;
176	}
177}
178
179
180
181static int snd_echo_midi_input_close(struct snd_rawmidi_substream *substream)
182{
183	struct echoaudio *chip = substream->rmidi->private_data;
184
185	chip->midi_in = NULL;
186	DE_MID(("rawmidi_iclose\n"));
187	return 0;
188}
189
190
191
192static int snd_echo_midi_output_open(struct snd_rawmidi_substream *substream)
193{
194	struct echoaudio *chip = substream->rmidi->private_data;
195
196	chip->tinuse = 0;
197	chip->midi_full = 0;
198	chip->midi_out = substream;
199	DE_MID(("rawmidi_oopen\n"));
200	return 0;
201}
202
203
204
205static void snd_echo_midi_output_write(unsigned long data)
206{
207	struct echoaudio *chip = (struct echoaudio *)data;
208	unsigned long flags;
209	int bytes, sent, time;
210	unsigned char buf[MIDI_OUT_BUFFER_SIZE - 1];
211
212	DE_MID(("snd_echo_midi_output_write\n"));
213	/* No interrupts are involved: we have to check at regular intervals
214	if the card's output buffer has room for new data. */
215	sent = bytes = 0;
216	spin_lock_irqsave(&chip->lock, flags);
217	chip->midi_full = 0;
218	if (!snd_rawmidi_transmit_empty(chip->midi_out)) {
219		bytes = snd_rawmidi_transmit_peek(chip->midi_out, buf,
220						  MIDI_OUT_BUFFER_SIZE - 1);
221		DE_MID(("Try to send %d bytes...\n", bytes));
222		sent = write_midi(chip, buf, bytes);
223		if (sent < 0) {
224			dev_err(chip->card->dev,
225				"write_midi() error %d\n", sent);
226			/* retry later */
227			sent = 9000;
228			chip->midi_full = 1;
229		} else if (sent > 0) {
230			DE_MID(("%d bytes sent\n", sent));
231			snd_rawmidi_transmit_ack(chip->midi_out, sent);
232		} else {
233			/* Buffer is full. DSP's internal buffer is 64 (128 ?)
234			bytes long. Let's wait until half of them are sent */
235			DE_MID(("Full\n"));
236			sent = 32;
237			chip->midi_full = 1;
238		}
239	}
240
241	/* We restart the timer only if there is some data left to send */
242	if (!snd_rawmidi_transmit_empty(chip->midi_out) && chip->tinuse) {
243		/* The timer will expire slightly after the data has been
244		   sent */
245		time = (sent << 3) / 25 + 1;	/* 8/25=0.32ms to send a byte */
246		mod_timer(&chip->timer, jiffies + (time * HZ + 999) / 1000);
247		DE_MID(("Timer armed(%d)\n", ((time * HZ + 999) / 1000)));
 
248	}
249	spin_unlock_irqrestore(&chip->lock, flags);
250}
251
252
253
254static void snd_echo_midi_output_trigger(struct snd_rawmidi_substream *substream,
255					 int up)
256{
257	struct echoaudio *chip = substream->rmidi->private_data;
258
259	DE_MID(("snd_echo_midi_output_trigger(%d)\n", up));
260	spin_lock_irq(&chip->lock);
261	if (up) {
262		if (!chip->tinuse) {
263			init_timer(&chip->timer);
264			chip->timer.function = snd_echo_midi_output_write;
265			chip->timer.data = (unsigned long)chip;
266			chip->tinuse = 1;
267		}
268	} else {
269		if (chip->tinuse) {
270			chip->tinuse = 0;
271			spin_unlock_irq(&chip->lock);
272			del_timer_sync(&chip->timer);
273			DE_MID(("Timer removed\n"));
274			return;
275		}
276	}
277	spin_unlock_irq(&chip->lock);
278
279	if (up && !chip->midi_full)
280		snd_echo_midi_output_write((unsigned long)chip);
281}
282
283
284
285static int snd_echo_midi_output_close(struct snd_rawmidi_substream *substream)
286{
287	struct echoaudio *chip = substream->rmidi->private_data;
288
289	chip->midi_out = NULL;
290	DE_MID(("rawmidi_oclose\n"));
291	return 0;
292}
293
294
295
296static struct snd_rawmidi_ops snd_echo_midi_input = {
297	.open = snd_echo_midi_input_open,
298	.close = snd_echo_midi_input_close,
299	.trigger = snd_echo_midi_input_trigger,
300};
301
302static struct snd_rawmidi_ops snd_echo_midi_output = {
303	.open = snd_echo_midi_output_open,
304	.close = snd_echo_midi_output_close,
305	.trigger = snd_echo_midi_output_trigger,
306};
307
308
309
310/* <--snd_echo_probe() */
311static int snd_echo_midi_create(struct snd_card *card,
312				struct echoaudio *chip)
313{
314	int err;
315
316	if ((err = snd_rawmidi_new(card, card->shortname, 0, 1, 1,
317				   &chip->rmidi)) < 0)
318		return err;
319
320	strcpy(chip->rmidi->name, card->shortname);
321	chip->rmidi->private_data = chip;
322
323	snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
324			    &snd_echo_midi_input);
325	snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
326			    &snd_echo_midi_output);
327
328	chip->rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT |
329		SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX;
330	DE_INIT(("MIDI ok\n"));
331	return 0;
332}