Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 
 
 
 
 
 22#include <net/tcp.h>
 
 23#include <net/xfrm.h>
 24#include <net/busy_poll.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 27{
 28	if (seq == s_win)
 29		return true;
 30	if (after(end_seq, s_win) && before(seq, e_win))
 31		return true;
 32	return seq == e_win && seq == end_seq;
 33}
 34
 35static enum tcp_tw_status
 36tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 37				  const struct sk_buff *skb, int mib_idx)
 38{
 39	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 40
 41	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 42				  &tcptw->tw_last_oow_ack_time)) {
 43		/* Send ACK. Note, we do not put the bucket,
 44		 * it will be released by caller.
 45		 */
 46		return TCP_TW_ACK;
 47	}
 48
 49	/* We are rate-limiting, so just release the tw sock and drop skb. */
 50	inet_twsk_put(tw);
 51	return TCP_TW_SUCCESS;
 52}
 53
 54/*
 55 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 56 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 57 *   (and, probably, tail of data) and one or more our ACKs are lost.
 58 * * What is TIME-WAIT timeout? It is associated with maximal packet
 59 *   lifetime in the internet, which results in wrong conclusion, that
 60 *   it is set to catch "old duplicate segments" wandering out of their path.
 61 *   It is not quite correct. This timeout is calculated so that it exceeds
 62 *   maximal retransmission timeout enough to allow to lose one (or more)
 63 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 64 * * When TIME-WAIT socket receives RST, it means that another end
 65 *   finally closed and we are allowed to kill TIME-WAIT too.
 66 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 67 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 68 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 69 * * If we invented some more clever way to catch duplicates
 70 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 71 *
 72 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 73 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 74 * from the very beginning.
 75 *
 76 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 77 * is _not_ stateless. It means, that strictly speaking we must
 78 * spinlock it. I do not want! Well, probability of misbehaviour
 79 * is ridiculously low and, seems, we could use some mb() tricks
 80 * to avoid misread sequence numbers, states etc.  --ANK
 81 *
 82 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 83 */
 84enum tcp_tw_status
 85tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 86			   const struct tcphdr *th)
 87{
 88	struct tcp_options_received tmp_opt;
 89	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 90	bool paws_reject = false;
 91
 92	tmp_opt.saw_tstamp = 0;
 93	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
 94		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
 95
 96		if (tmp_opt.saw_tstamp) {
 97			if (tmp_opt.rcv_tsecr)
 98				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
 99			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
100			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
101			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
102		}
103	}
104
105	if (tw->tw_substate == TCP_FIN_WAIT2) {
106		/* Just repeat all the checks of tcp_rcv_state_process() */
107
108		/* Out of window, send ACK */
109		if (paws_reject ||
110		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
111				   tcptw->tw_rcv_nxt,
112				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
113			return tcp_timewait_check_oow_rate_limit(
114				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
115
116		if (th->rst)
117			goto kill;
118
119		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
120			return TCP_TW_RST;
121
122		/* Dup ACK? */
123		if (!th->ack ||
124		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
125		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
126			inet_twsk_put(tw);
127			return TCP_TW_SUCCESS;
128		}
129
130		/* New data or FIN. If new data arrive after half-duplex close,
131		 * reset.
132		 */
133		if (!th->fin ||
134		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
 
 
 
135			return TCP_TW_RST;
 
136
137		/* FIN arrived, enter true time-wait state. */
138		tw->tw_substate	  = TCP_TIME_WAIT;
139		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
140		if (tmp_opt.saw_tstamp) {
141			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
142			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
143		}
144
145		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
 
 
 
 
 
 
146		return TCP_TW_ACK;
147	}
148
149	/*
150	 *	Now real TIME-WAIT state.
151	 *
152	 *	RFC 1122:
153	 *	"When a connection is [...] on TIME-WAIT state [...]
154	 *	[a TCP] MAY accept a new SYN from the remote TCP to
155	 *	reopen the connection directly, if it:
156	 *
157	 *	(1)  assigns its initial sequence number for the new
158	 *	connection to be larger than the largest sequence
159	 *	number it used on the previous connection incarnation,
160	 *	and
161	 *
162	 *	(2)  returns to TIME-WAIT state if the SYN turns out
163	 *	to be an old duplicate".
164	 */
165
166	if (!paws_reject &&
167	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
168	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
169		/* In window segment, it may be only reset or bare ack. */
170
171		if (th->rst) {
172			/* This is TIME_WAIT assassination, in two flavors.
173			 * Oh well... nobody has a sufficient solution to this
174			 * protocol bug yet.
175			 */
176			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
177kill:
178				inet_twsk_deschedule_put(tw);
 
179				return TCP_TW_SUCCESS;
180			}
181		} else {
182			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
183		}
 
 
184
185		if (tmp_opt.saw_tstamp) {
186			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
187			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
188		}
189
190		inet_twsk_put(tw);
191		return TCP_TW_SUCCESS;
192	}
193
194	/* Out of window segment.
195
196	   All the segments are ACKed immediately.
197
198	   The only exception is new SYN. We accept it, if it is
199	   not old duplicate and we are not in danger to be killed
200	   by delayed old duplicates. RFC check is that it has
201	   newer sequence number works at rates <40Mbit/sec.
202	   However, if paws works, it is reliable AND even more,
203	   we even may relax silly seq space cutoff.
204
205	   RED-PEN: we violate main RFC requirement, if this SYN will appear
206	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
207	   we must return socket to time-wait state. It is not good,
208	   but not fatal yet.
209	 */
210
211	if (th->syn && !th->rst && !th->ack && !paws_reject &&
212	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
213	     (tmp_opt.saw_tstamp &&
214	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
215		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
216		if (isn == 0)
217			isn++;
218		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
219		return TCP_TW_SYN;
220	}
221
222	if (paws_reject)
223		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
224
225	if (!th->rst) {
226		/* In this case we must reset the TIMEWAIT timer.
227		 *
228		 * If it is ACKless SYN it may be both old duplicate
229		 * and new good SYN with random sequence number <rcv_nxt.
230		 * Do not reschedule in the last case.
231		 */
232		if (paws_reject || th->ack)
233			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
234
235		return tcp_timewait_check_oow_rate_limit(
236			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
 
 
237	}
238	inet_twsk_put(tw);
239	return TCP_TW_SUCCESS;
240}
241EXPORT_SYMBOL(tcp_timewait_state_process);
242
243static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
244{
245#ifdef CONFIG_TCP_MD5SIG
246	const struct tcp_sock *tp = tcp_sk(sk);
247	struct tcp_md5sig_key *key;
248
249	/*
250	 * The timewait bucket does not have the key DB from the
251	 * sock structure. We just make a quick copy of the
252	 * md5 key being used (if indeed we are using one)
253	 * so the timewait ack generating code has the key.
254	 */
255	tcptw->tw_md5_key = NULL;
256	if (!static_branch_unlikely(&tcp_md5_needed.key))
257		return;
258
259	key = tp->af_specific->md5_lookup(sk, sk);
260	if (key) {
261		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
262		if (!tcptw->tw_md5_key)
263			return;
264		if (!tcp_alloc_md5sig_pool())
265			goto out_free;
266		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
267			goto out_free;
268	}
269	return;
270out_free:
271	WARN_ON_ONCE(1);
272	kfree(tcptw->tw_md5_key);
273	tcptw->tw_md5_key = NULL;
274#endif
275}
276
277/*
278 * Move a socket to time-wait or dead fin-wait-2 state.
279 */
280void tcp_time_wait(struct sock *sk, int state, int timeo)
281{
 
282	const struct inet_connection_sock *icsk = inet_csk(sk);
283	const struct tcp_sock *tp = tcp_sk(sk);
284	struct net *net = sock_net(sk);
285	struct inet_timewait_sock *tw;
 
 
286
287	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
 
288
289	if (tw) {
290		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
291		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
292		struct inet_sock *inet = inet_sk(sk);
293
294		tw->tw_transparent	= inet->transparent;
295		tw->tw_mark		= sk->sk_mark;
296		tw->tw_priority		= sk->sk_priority;
297		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
298		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
299		tcptw->tw_snd_nxt	= tp->snd_nxt;
300		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
301		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
302		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
303		tcptw->tw_ts_offset	= tp->tsoffset;
304		tcptw->tw_last_oow_ack_time = 0;
305		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
306#if IS_ENABLED(CONFIG_IPV6)
307		if (tw->tw_family == PF_INET6) {
308			struct ipv6_pinfo *np = inet6_sk(sk);
309
310			tw->tw_v6_daddr = sk->sk_v6_daddr;
311			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
312			tw->tw_tclass = np->tclass;
313			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
314			tw->tw_txhash = sk->sk_txhash;
315			tw->tw_ipv6only = sk->sk_ipv6only;
316		}
317#endif
318
319		tcp_time_wait_init(sk, tcptw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
321		/* Get the TIME_WAIT timeout firing. */
322		if (timeo < rto)
323			timeo = rto;
324
325		if (state == TCP_TIME_WAIT)
326			timeo = TCP_TIMEWAIT_LEN;
 
 
 
 
 
327
328		/* tw_timer is pinned, so we need to make sure BH are disabled
329		 * in following section, otherwise timer handler could run before
330		 * we complete the initialization.
331		 */
332		local_bh_disable();
333		inet_twsk_schedule(tw, timeo);
334		/* Linkage updates.
335		 * Note that access to tw after this point is illegal.
336		 */
337		inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
338		local_bh_enable();
339	} else {
340		/* Sorry, if we're out of memory, just CLOSE this
341		 * socket up.  We've got bigger problems than
342		 * non-graceful socket closings.
343		 */
344		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
345	}
346
347	tcp_update_metrics(sk);
348	tcp_done(sk);
349}
350EXPORT_SYMBOL(tcp_time_wait);
351
352void tcp_twsk_destructor(struct sock *sk)
353{
354#ifdef CONFIG_TCP_MD5SIG
355	if (static_branch_unlikely(&tcp_md5_needed.key)) {
356		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357
358		if (twsk->tw_md5_key) {
359			kfree_rcu(twsk->tw_md5_key, rcu);
360			static_branch_slow_dec_deferred(&tcp_md5_needed);
361		}
362	}
363#endif
364}
365EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
366
367void tcp_twsk_purge(struct list_head *net_exit_list, int family)
368{
369	bool purged_once = false;
370	struct net *net;
371
372	list_for_each_entry(net, net_exit_list, exit_list) {
373		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
374			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
375			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
376		} else if (!purged_once) {
377			/* The last refcount is decremented in tcp_sk_exit_batch() */
378			if (refcount_read(&net->ipv4.tcp_death_row.tw_refcount) == 1)
379				continue;
380
381			inet_twsk_purge(&tcp_hashinfo, family);
382			purged_once = true;
383		}
384	}
385}
386EXPORT_SYMBOL_GPL(tcp_twsk_purge);
387
388/* Warning : This function is called without sk_listener being locked.
389 * Be sure to read socket fields once, as their value could change under us.
390 */
391void tcp_openreq_init_rwin(struct request_sock *req,
392			   const struct sock *sk_listener,
393			   const struct dst_entry *dst)
394{
395	struct inet_request_sock *ireq = inet_rsk(req);
396	const struct tcp_sock *tp = tcp_sk(sk_listener);
397	int full_space = tcp_full_space(sk_listener);
398	u32 window_clamp;
399	__u8 rcv_wscale;
400	u32 rcv_wnd;
401	int mss;
402
403	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
404	window_clamp = READ_ONCE(tp->window_clamp);
405	/* Set this up on the first call only */
406	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
407
408	/* limit the window selection if the user enforce a smaller rx buffer */
409	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
410	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
411		req->rsk_window_clamp = full_space;
412
413	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
414	if (rcv_wnd == 0)
415		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
416	else if (full_space < rcv_wnd * mss)
417		full_space = rcv_wnd * mss;
418
419	/* tcp_full_space because it is guaranteed to be the first packet */
420	tcp_select_initial_window(sk_listener, full_space,
421		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
422		&req->rsk_rcv_wnd,
423		&req->rsk_window_clamp,
424		ireq->wscale_ok,
425		&rcv_wscale,
426		rcv_wnd);
427	ireq->rcv_wscale = rcv_wscale;
428}
429EXPORT_SYMBOL(tcp_openreq_init_rwin);
430
431static void tcp_ecn_openreq_child(struct tcp_sock *tp,
432				  const struct request_sock *req)
433{
434	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
435}
436
437void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
438{
439	struct inet_connection_sock *icsk = inet_csk(sk);
440	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
441	bool ca_got_dst = false;
442
443	if (ca_key != TCP_CA_UNSPEC) {
444		const struct tcp_congestion_ops *ca;
445
446		rcu_read_lock();
447		ca = tcp_ca_find_key(ca_key);
448		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
449			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
450			icsk->icsk_ca_ops = ca;
451			ca_got_dst = true;
452		}
453		rcu_read_unlock();
454	}
455
456	/* If no valid choice made yet, assign current system default ca. */
457	if (!ca_got_dst &&
458	    (!icsk->icsk_ca_setsockopt ||
459	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
460		tcp_assign_congestion_control(sk);
461
462	tcp_set_ca_state(sk, TCP_CA_Open);
463}
464EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
465
466static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
467				    struct request_sock *req,
468				    struct tcp_sock *newtp)
469{
470#if IS_ENABLED(CONFIG_SMC)
471	struct inet_request_sock *ireq;
472
473	if (static_branch_unlikely(&tcp_have_smc)) {
474		ireq = inet_rsk(req);
475		if (oldtp->syn_smc && !ireq->smc_ok)
476			newtp->syn_smc = 0;
477	}
478#endif
479}
480
481/* This is not only more efficient than what we used to do, it eliminates
482 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
483 *
484 * Actually, we could lots of memory writes here. tp of listening
485 * socket contains all necessary default parameters.
486 */
487struct sock *tcp_create_openreq_child(const struct sock *sk,
488				      struct request_sock *req,
489				      struct sk_buff *skb)
490{
491	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
492	const struct inet_request_sock *ireq = inet_rsk(req);
493	struct tcp_request_sock *treq = tcp_rsk(req);
494	struct inet_connection_sock *newicsk;
495	struct tcp_sock *oldtp, *newtp;
496	u32 seq;
497
498	if (!newsk)
499		return NULL;
500
501	newicsk = inet_csk(newsk);
502	newtp = tcp_sk(newsk);
503	oldtp = tcp_sk(sk);
504
505	smc_check_reset_syn_req(oldtp, req, newtp);
506
507	/* Now setup tcp_sock */
508	newtp->pred_flags = 0;
509
510	seq = treq->rcv_isn + 1;
511	newtp->rcv_wup = seq;
512	WRITE_ONCE(newtp->copied_seq, seq);
513	WRITE_ONCE(newtp->rcv_nxt, seq);
514	newtp->segs_in = 1;
515
516	seq = treq->snt_isn + 1;
517	newtp->snd_sml = newtp->snd_una = seq;
518	WRITE_ONCE(newtp->snd_nxt, seq);
519	newtp->snd_up = seq;
520
521	INIT_LIST_HEAD(&newtp->tsq_node);
522	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
523
524	tcp_init_wl(newtp, treq->rcv_isn);
525
526	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
527	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
528
529	newtp->lsndtime = tcp_jiffies32;
530	newsk->sk_txhash = treq->txhash;
531	newtp->total_retrans = req->num_retrans;
532
533	tcp_init_xmit_timers(newsk);
534	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
535
536	if (sock_flag(newsk, SOCK_KEEPOPEN))
537		inet_csk_reset_keepalive_timer(newsk,
538					       keepalive_time_when(newtp));
539
540	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
541	newtp->rx_opt.sack_ok = ireq->sack_ok;
542	newtp->window_clamp = req->rsk_window_clamp;
543	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
544	newtp->rcv_wnd = req->rsk_rcv_wnd;
545	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
546	if (newtp->rx_opt.wscale_ok) {
547		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
548		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
549	} else {
550		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
551		newtp->window_clamp = min(newtp->window_clamp, 65535U);
552	}
553	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
554	newtp->max_window = newtp->snd_wnd;
555
556	if (newtp->rx_opt.tstamp_ok) {
557		newtp->rx_opt.ts_recent = req->ts_recent;
558		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
559		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
560	} else {
561		newtp->rx_opt.ts_recent_stamp = 0;
562		newtp->tcp_header_len = sizeof(struct tcphdr);
563	}
564	if (req->num_timeout) {
565		newtp->undo_marker = treq->snt_isn;
566		newtp->retrans_stamp = div_u64(treq->snt_synack,
567					       USEC_PER_SEC / TCP_TS_HZ);
568	}
569	newtp->tsoffset = treq->ts_off;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570#ifdef CONFIG_TCP_MD5SIG
571	newtp->md5sig_info = NULL;	/*XXX*/
572	if (treq->af_specific->req_md5_lookup(sk, req_to_sk(req)))
573		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
574#endif
575	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
576		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
577	newtp->rx_opt.mss_clamp = req->mss;
578	tcp_ecn_openreq_child(newtp, req);
579	newtp->fastopen_req = NULL;
580	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
581
582	newtp->bpf_chg_cc_inprogress = 0;
583	tcp_bpf_clone(sk, newsk);
584
585	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
586
 
 
587	return newsk;
588}
589EXPORT_SYMBOL(tcp_create_openreq_child);
590
591/*
592 * Process an incoming packet for SYN_RECV sockets represented as a
593 * request_sock. Normally sk is the listener socket but for TFO it
594 * points to the child socket.
595 *
596 * XXX (TFO) - The current impl contains a special check for ack
597 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
598 *
599 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
600 */
601
602struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
603			   struct request_sock *req,
604			   bool fastopen, bool *req_stolen)
 
605{
606	struct tcp_options_received tmp_opt;
607	struct sock *child;
608	const struct tcphdr *th = tcp_hdr(skb);
609	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
610	bool paws_reject = false;
611	bool own_req;
 
612
613	tmp_opt.saw_tstamp = 0;
614	if (th->doff > (sizeof(struct tcphdr)>>2)) {
615		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
616
617		if (tmp_opt.saw_tstamp) {
618			tmp_opt.ts_recent = req->ts_recent;
619			if (tmp_opt.rcv_tsecr)
620				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
621			/* We do not store true stamp, but it is not required,
622			 * it can be estimated (approximately)
623			 * from another data.
624			 */
625			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
626			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
627		}
628	}
629
630	/* Check for pure retransmitted SYN. */
631	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
632	    flg == TCP_FLAG_SYN &&
633	    !paws_reject) {
634		/*
635		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
636		 * this case on figure 6 and figure 8, but formal
637		 * protocol description says NOTHING.
638		 * To be more exact, it says that we should send ACK,
639		 * because this segment (at least, if it has no data)
640		 * is out of window.
641		 *
642		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
643		 *  describe SYN-RECV state. All the description
644		 *  is wrong, we cannot believe to it and should
645		 *  rely only on common sense and implementation
646		 *  experience.
647		 *
648		 * Enforce "SYN-ACK" according to figure 8, figure 6
649		 * of RFC793, fixed by RFC1122.
650		 *
651		 * Note that even if there is new data in the SYN packet
652		 * they will be thrown away too.
653		 *
654		 * Reset timer after retransmitting SYNACK, similar to
655		 * the idea of fast retransmit in recovery.
656		 */
657		if (!tcp_oow_rate_limited(sock_net(sk), skb,
658					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
659					  &tcp_rsk(req)->last_oow_ack_time) &&
660
661		    !inet_rtx_syn_ack(sk, req)) {
662			unsigned long expires = jiffies;
663
664			expires += reqsk_timeout(req, TCP_RTO_MAX);
665			if (!fastopen)
666				mod_timer_pending(&req->rsk_timer, expires);
667			else
668				req->rsk_timer.expires = expires;
669		}
670		return NULL;
671	}
672
673	/* Further reproduces section "SEGMENT ARRIVES"
674	   for state SYN-RECEIVED of RFC793.
675	   It is broken, however, it does not work only
676	   when SYNs are crossed.
677
678	   You would think that SYN crossing is impossible here, since
679	   we should have a SYN_SENT socket (from connect()) on our end,
680	   but this is not true if the crossed SYNs were sent to both
681	   ends by a malicious third party.  We must defend against this,
682	   and to do that we first verify the ACK (as per RFC793, page
683	   36) and reset if it is invalid.  Is this a true full defense?
684	   To convince ourselves, let us consider a way in which the ACK
685	   test can still pass in this 'malicious crossed SYNs' case.
686	   Malicious sender sends identical SYNs (and thus identical sequence
687	   numbers) to both A and B:
688
689		A: gets SYN, seq=7
690		B: gets SYN, seq=7
691
692	   By our good fortune, both A and B select the same initial
693	   send sequence number of seven :-)
694
695		A: sends SYN|ACK, seq=7, ack_seq=8
696		B: sends SYN|ACK, seq=7, ack_seq=8
697
698	   So we are now A eating this SYN|ACK, ACK test passes.  So
699	   does sequence test, SYN is truncated, and thus we consider
700	   it a bare ACK.
701
702	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
703	   bare ACK.  Otherwise, we create an established connection.  Both
704	   ends (listening sockets) accept the new incoming connection and try
705	   to talk to each other. 8-)
706
707	   Note: This case is both harmless, and rare.  Possibility is about the
708	   same as us discovering intelligent life on another plant tomorrow.
709
710	   But generally, we should (RFC lies!) to accept ACK
711	   from SYNACK both here and in tcp_rcv_state_process().
712	   tcp_rcv_state_process() does not, hence, we do not too.
713
714	   Note that the case is absolutely generic:
715	   we cannot optimize anything here without
716	   violating protocol. All the checks must be made
717	   before attempt to create socket.
718	 */
719
720	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
721	 *                  and the incoming segment acknowledges something not yet
722	 *                  sent (the segment carries an unacceptable ACK) ...
723	 *                  a reset is sent."
724	 *
725	 * Invalid ACK: reset will be sent by listening socket.
726	 * Note that the ACK validity check for a Fast Open socket is done
727	 * elsewhere and is checked directly against the child socket rather
728	 * than req because user data may have been sent out.
729	 */
730	if ((flg & TCP_FLAG_ACK) && !fastopen &&
731	    (TCP_SKB_CB(skb)->ack_seq !=
732	     tcp_rsk(req)->snt_isn + 1))
733		return sk;
734
735	/* Also, it would be not so bad idea to check rcv_tsecr, which
736	 * is essentially ACK extension and too early or too late values
737	 * should cause reset in unsynchronized states.
738	 */
739
740	/* RFC793: "first check sequence number". */
741
742	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
743					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
744		/* Out of window: send ACK and drop. */
745		if (!(flg & TCP_FLAG_RST) &&
746		    !tcp_oow_rate_limited(sock_net(sk), skb,
747					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
748					  &tcp_rsk(req)->last_oow_ack_time))
749			req->rsk_ops->send_ack(sk, skb, req);
750		if (paws_reject)
751			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
752		return NULL;
753	}
754
755	/* In sequence, PAWS is OK. */
756
757	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
758		req->ts_recent = tmp_opt.rcv_tsval;
759
760	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
761		/* Truncate SYN, it is out of window starting
762		   at tcp_rsk(req)->rcv_isn + 1. */
763		flg &= ~TCP_FLAG_SYN;
764	}
765
766	/* RFC793: "second check the RST bit" and
767	 *	   "fourth, check the SYN bit"
768	 */
769	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
770		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
771		goto embryonic_reset;
772	}
773
774	/* ACK sequence verified above, just make sure ACK is
775	 * set.  If ACK not set, just silently drop the packet.
776	 *
777	 * XXX (TFO) - if we ever allow "data after SYN", the
778	 * following check needs to be removed.
779	 */
780	if (!(flg & TCP_FLAG_ACK))
781		return NULL;
782
783	/* For Fast Open no more processing is needed (sk is the
784	 * child socket).
785	 */
786	if (fastopen)
787		return sk;
788
789	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
790	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
791	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
792		inet_rsk(req)->acked = 1;
793		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
794		return NULL;
795	}
796
797	/* OK, ACK is valid, create big socket and
798	 * feed this segment to it. It will repeat all
799	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
800	 * ESTABLISHED STATE. If it will be dropped after
801	 * socket is created, wait for troubles.
802	 */
803	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
804							 req, &own_req);
805	if (!child)
806		goto listen_overflow;
807
808	if (own_req && rsk_drop_req(req)) {
809		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
810		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
811		return child;
812	}
813
814	sock_rps_save_rxhash(child, skb);
815	tcp_synack_rtt_meas(child, req);
816	*req_stolen = !own_req;
817	return inet_csk_complete_hashdance(sk, child, req, own_req);
818
819listen_overflow:
820	if (sk != req->rsk_listener)
821		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
822
823	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
824		inet_rsk(req)->acked = 1;
825		return NULL;
826	}
827
828embryonic_reset:
829	if (!(flg & TCP_FLAG_RST)) {
830		/* Received a bad SYN pkt - for TFO We try not to reset
831		 * the local connection unless it's really necessary to
832		 * avoid becoming vulnerable to outside attack aiming at
833		 * resetting legit local connections.
834		 */
835		req->rsk_ops->send_reset(sk, skb);
836	} else if (fastopen) { /* received a valid RST pkt */
837		reqsk_fastopen_remove(sk, req, true);
838		tcp_reset(sk, skb);
839	}
840	if (!fastopen) {
841		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
842
843		if (unlinked)
844			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
845		*req_stolen = !unlinked;
846	}
847	return NULL;
848}
849EXPORT_SYMBOL(tcp_check_req);
850
851/*
852 * Queue segment on the new socket if the new socket is active,
853 * otherwise we just shortcircuit this and continue with
854 * the new socket.
855 *
856 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
857 * when entering. But other states are possible due to a race condition
858 * where after __inet_lookup_established() fails but before the listener
859 * locked is obtained, other packets cause the same connection to
860 * be created.
861 */
862
863int tcp_child_process(struct sock *parent, struct sock *child,
864		      struct sk_buff *skb)
865	__releases(&((child)->sk_lock.slock))
866{
867	int ret = 0;
868	int state = child->sk_state;
869
870	/* record sk_napi_id and sk_rx_queue_mapping of child. */
871	sk_mark_napi_id_set(child, skb);
872
873	tcp_segs_in(tcp_sk(child), skb);
874	if (!sock_owned_by_user(child)) {
875		ret = tcp_rcv_state_process(child, skb);
 
876		/* Wakeup parent, send SIGIO */
877		if (state == TCP_SYN_RECV && child->sk_state != state)
878			parent->sk_data_ready(parent);
879	} else {
880		/* Alas, it is possible again, because we do lookup
881		 * in main socket hash table and lock on listening
882		 * socket does not protect us more.
883		 */
884		__sk_add_backlog(child, skb);
885	}
886
887	bh_unlock_sock(child);
888	sock_put(child);
889	return ret;
890}
891EXPORT_SYMBOL(tcp_child_process);
v3.15
 
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <net/tcp.h>
 27#include <net/inet_common.h>
 28#include <net/xfrm.h>
 29
 30int sysctl_tcp_syncookies __read_mostly = 1;
 31EXPORT_SYMBOL(sysctl_tcp_syncookies);
 32
 33int sysctl_tcp_abort_on_overflow __read_mostly;
 34
 35struct inet_timewait_death_row tcp_death_row = {
 36	.sysctl_max_tw_buckets = NR_FILE * 2,
 37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
 38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
 39	.hashinfo	= &tcp_hashinfo,
 40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
 41					    (unsigned long)&tcp_death_row),
 42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
 43					     inet_twdr_twkill_work),
 44/* Short-time timewait calendar */
 45
 46	.twcal_hand	= -1,
 47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
 48					    (unsigned long)&tcp_death_row),
 49};
 50EXPORT_SYMBOL_GPL(tcp_death_row);
 51
 52static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 53{
 54	if (seq == s_win)
 55		return true;
 56	if (after(end_seq, s_win) && before(seq, e_win))
 57		return true;
 58	return seq == e_win && seq == end_seq;
 59}
 60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61/*
 62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 64 *   (and, probably, tail of data) and one or more our ACKs are lost.
 65 * * What is TIME-WAIT timeout? It is associated with maximal packet
 66 *   lifetime in the internet, which results in wrong conclusion, that
 67 *   it is set to catch "old duplicate segments" wandering out of their path.
 68 *   It is not quite correct. This timeout is calculated so that it exceeds
 69 *   maximal retransmission timeout enough to allow to lose one (or more)
 70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 71 * * When TIME-WAIT socket receives RST, it means that another end
 72 *   finally closed and we are allowed to kill TIME-WAIT too.
 73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 76 * * If we invented some more clever way to catch duplicates
 77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 78 *
 79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 81 * from the very beginning.
 82 *
 83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 84 * is _not_ stateless. It means, that strictly speaking we must
 85 * spinlock it. I do not want! Well, probability of misbehaviour
 86 * is ridiculously low and, seems, we could use some mb() tricks
 87 * to avoid misread sequence numbers, states etc.  --ANK
 88 *
 89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 90 */
 91enum tcp_tw_status
 92tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 93			   const struct tcphdr *th)
 94{
 95	struct tcp_options_received tmp_opt;
 96	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 97	bool paws_reject = false;
 98
 99	tmp_opt.saw_tstamp = 0;
100	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101		tcp_parse_options(skb, &tmp_opt, 0, NULL);
102
103		if (tmp_opt.saw_tstamp) {
104			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
 
105			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108		}
109	}
110
111	if (tw->tw_substate == TCP_FIN_WAIT2) {
112		/* Just repeat all the checks of tcp_rcv_state_process() */
113
114		/* Out of window, send ACK */
115		if (paws_reject ||
116		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117				   tcptw->tw_rcv_nxt,
118				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119			return TCP_TW_ACK;
 
120
121		if (th->rst)
122			goto kill;
123
124		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
125			goto kill_with_rst;
126
127		/* Dup ACK? */
128		if (!th->ack ||
129		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
130		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
131			inet_twsk_put(tw);
132			return TCP_TW_SUCCESS;
133		}
134
135		/* New data or FIN. If new data arrive after half-duplex close,
136		 * reset.
137		 */
138		if (!th->fin ||
139		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
140kill_with_rst:
141			inet_twsk_deschedule(tw, &tcp_death_row);
142			inet_twsk_put(tw);
143			return TCP_TW_RST;
144		}
145
146		/* FIN arrived, enter true time-wait state. */
147		tw->tw_substate	  = TCP_TIME_WAIT;
148		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
149		if (tmp_opt.saw_tstamp) {
150			tcptw->tw_ts_recent_stamp = get_seconds();
151			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
152		}
153
154		if (tcp_death_row.sysctl_tw_recycle &&
155		    tcptw->tw_ts_recent_stamp &&
156		    tcp_tw_remember_stamp(tw))
157			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
158					   TCP_TIMEWAIT_LEN);
159		else
160			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
161					   TCP_TIMEWAIT_LEN);
162		return TCP_TW_ACK;
163	}
164
165	/*
166	 *	Now real TIME-WAIT state.
167	 *
168	 *	RFC 1122:
169	 *	"When a connection is [...] on TIME-WAIT state [...]
170	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171	 *	reopen the connection directly, if it:
172	 *
173	 *	(1)  assigns its initial sequence number for the new
174	 *	connection to be larger than the largest sequence
175	 *	number it used on the previous connection incarnation,
176	 *	and
177	 *
178	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179	 *	to be an old duplicate".
180	 */
181
182	if (!paws_reject &&
183	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185		/* In window segment, it may be only reset or bare ack. */
186
187		if (th->rst) {
188			/* This is TIME_WAIT assassination, in two flavors.
189			 * Oh well... nobody has a sufficient solution to this
190			 * protocol bug yet.
191			 */
192			if (sysctl_tcp_rfc1337 == 0) {
193kill:
194				inet_twsk_deschedule(tw, &tcp_death_row);
195				inet_twsk_put(tw);
196				return TCP_TW_SUCCESS;
197			}
 
 
198		}
199		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
200				   TCP_TIMEWAIT_LEN);
201
202		if (tmp_opt.saw_tstamp) {
203			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
204			tcptw->tw_ts_recent_stamp = get_seconds();
205		}
206
207		inet_twsk_put(tw);
208		return TCP_TW_SUCCESS;
209	}
210
211	/* Out of window segment.
212
213	   All the segments are ACKed immediately.
214
215	   The only exception is new SYN. We accept it, if it is
216	   not old duplicate and we are not in danger to be killed
217	   by delayed old duplicates. RFC check is that it has
218	   newer sequence number works at rates <40Mbit/sec.
219	   However, if paws works, it is reliable AND even more,
220	   we even may relax silly seq space cutoff.
221
222	   RED-PEN: we violate main RFC requirement, if this SYN will appear
223	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
224	   we must return socket to time-wait state. It is not good,
225	   but not fatal yet.
226	 */
227
228	if (th->syn && !th->rst && !th->ack && !paws_reject &&
229	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
230	     (tmp_opt.saw_tstamp &&
231	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
232		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
233		if (isn == 0)
234			isn++;
235		TCP_SKB_CB(skb)->when = isn;
236		return TCP_TW_SYN;
237	}
238
239	if (paws_reject)
240		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
241
242	if (!th->rst) {
243		/* In this case we must reset the TIMEWAIT timer.
244		 *
245		 * If it is ACKless SYN it may be both old duplicate
246		 * and new good SYN with random sequence number <rcv_nxt.
247		 * Do not reschedule in the last case.
248		 */
249		if (paws_reject || th->ack)
250			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
251					   TCP_TIMEWAIT_LEN);
252
253		/* Send ACK. Note, we do not put the bucket,
254		 * it will be released by caller.
255		 */
256		return TCP_TW_ACK;
257	}
258	inet_twsk_put(tw);
259	return TCP_TW_SUCCESS;
260}
261EXPORT_SYMBOL(tcp_timewait_state_process);
262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263/*
264 * Move a socket to time-wait or dead fin-wait-2 state.
265 */
266void tcp_time_wait(struct sock *sk, int state, int timeo)
267{
268	struct inet_timewait_sock *tw = NULL;
269	const struct inet_connection_sock *icsk = inet_csk(sk);
270	const struct tcp_sock *tp = tcp_sk(sk);
271	bool recycle_ok = false;
272
273	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
274		recycle_ok = tcp_remember_stamp(sk);
275
276	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
277		tw = inet_twsk_alloc(sk, state);
278
279	if (tw != NULL) {
280		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282		struct inet_sock *inet = inet_sk(sk);
283
284		tw->tw_transparent	= inet->transparent;
 
 
285		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287		tcptw->tw_snd_nxt	= tp->snd_nxt;
288		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291		tcptw->tw_ts_offset	= tp->tsoffset;
292
 
293#if IS_ENABLED(CONFIG_IPV6)
294		if (tw->tw_family == PF_INET6) {
295			struct ipv6_pinfo *np = inet6_sk(sk);
296
297			tw->tw_v6_daddr = sk->sk_v6_daddr;
298			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
299			tw->tw_tclass = np->tclass;
300			tw->tw_flowlabel = np->flow_label >> 12;
301			tw->tw_ipv6only = np->ipv6only;
 
302		}
303#endif
304
305#ifdef CONFIG_TCP_MD5SIG
306		/*
307		 * The timewait bucket does not have the key DB from the
308		 * sock structure. We just make a quick copy of the
309		 * md5 key being used (if indeed we are using one)
310		 * so the timewait ack generating code has the key.
311		 */
312		do {
313			struct tcp_md5sig_key *key;
314			tcptw->tw_md5_key = NULL;
315			key = tp->af_specific->md5_lookup(sk, sk);
316			if (key != NULL) {
317				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
318				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
319					BUG();
320			}
321		} while (0);
322#endif
323
324		/* Linkage updates. */
325		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
326
327		/* Get the TIME_WAIT timeout firing. */
328		if (timeo < rto)
329			timeo = rto;
330
331		if (recycle_ok) {
332			tw->tw_timeout = rto;
333		} else {
334			tw->tw_timeout = TCP_TIMEWAIT_LEN;
335			if (state == TCP_TIME_WAIT)
336				timeo = TCP_TIMEWAIT_LEN;
337		}
338
339		inet_twsk_schedule(tw, &tcp_death_row, timeo,
340				   TCP_TIMEWAIT_LEN);
341		inet_twsk_put(tw);
 
 
 
 
 
 
 
 
342	} else {
343		/* Sorry, if we're out of memory, just CLOSE this
344		 * socket up.  We've got bigger problems than
345		 * non-graceful socket closings.
346		 */
347		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
348	}
349
350	tcp_update_metrics(sk);
351	tcp_done(sk);
352}
 
353
354void tcp_twsk_destructor(struct sock *sk)
355{
356#ifdef CONFIG_TCP_MD5SIG
357	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
 
358
359	if (twsk->tw_md5_key)
360		kfree_rcu(twsk->tw_md5_key, rcu);
 
 
 
361#endif
362}
363EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
364
365static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
366					 struct request_sock *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367{
368	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
369}
370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371/* This is not only more efficient than what we used to do, it eliminates
372 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
373 *
374 * Actually, we could lots of memory writes here. tp of listening
375 * socket contains all necessary default parameters.
376 */
377struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
 
 
378{
379	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
 
 
 
 
 
 
 
 
380
381	if (newsk != NULL) {
382		const struct inet_request_sock *ireq = inet_rsk(req);
383		struct tcp_request_sock *treq = tcp_rsk(req);
384		struct inet_connection_sock *newicsk = inet_csk(newsk);
385		struct tcp_sock *newtp = tcp_sk(newsk);
386
387		/* Now setup tcp_sock */
388		newtp->pred_flags = 0;
389
390		newtp->rcv_wup = newtp->copied_seq =
391		newtp->rcv_nxt = treq->rcv_isn + 1;
392
393		newtp->snd_sml = newtp->snd_una =
394		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
395
396		tcp_prequeue_init(newtp);
397		INIT_LIST_HEAD(&newtp->tsq_node);
398
399		tcp_init_wl(newtp, treq->rcv_isn);
400
401		newtp->srtt_us = 0;
402		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
403		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
404
405		newtp->packets_out = 0;
406		newtp->retrans_out = 0;
407		newtp->sacked_out = 0;
408		newtp->fackets_out = 0;
409		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
410		tcp_enable_early_retrans(newtp);
411		newtp->tlp_high_seq = 0;
412		newtp->lsndtime = treq->snt_synack;
413		newtp->total_retrans = req->num_retrans;
414
415		/* So many TCP implementations out there (incorrectly) count the
416		 * initial SYN frame in their delayed-ACK and congestion control
417		 * algorithms that we must have the following bandaid to talk
418		 * efficiently to them.  -DaveM
419		 */
420		newtp->snd_cwnd = TCP_INIT_CWND;
421		newtp->snd_cwnd_cnt = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
422
423		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
424		    !try_module_get(newicsk->icsk_ca_ops->owner))
425			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
426
427		tcp_set_ca_state(newsk, TCP_CA_Open);
428		tcp_init_xmit_timers(newsk);
429		__skb_queue_head_init(&newtp->out_of_order_queue);
430		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
431
432		newtp->rx_opt.saw_tstamp = 0;
433
434		newtp->rx_opt.dsack = 0;
435		newtp->rx_opt.num_sacks = 0;
436
437		newtp->urg_data = 0;
438
439		if (sock_flag(newsk, SOCK_KEEPOPEN))
440			inet_csk_reset_keepalive_timer(newsk,
441						       keepalive_time_when(newtp));
442
443		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
444		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
445			if (sysctl_tcp_fack)
446				tcp_enable_fack(newtp);
447		}
448		newtp->window_clamp = req->window_clamp;
449		newtp->rcv_ssthresh = req->rcv_wnd;
450		newtp->rcv_wnd = req->rcv_wnd;
451		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
452		if (newtp->rx_opt.wscale_ok) {
453			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
454			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
455		} else {
456			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
457			newtp->window_clamp = min(newtp->window_clamp, 65535U);
458		}
459		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
460				  newtp->rx_opt.snd_wscale);
461		newtp->max_window = newtp->snd_wnd;
462
463		if (newtp->rx_opt.tstamp_ok) {
464			newtp->rx_opt.ts_recent = req->ts_recent;
465			newtp->rx_opt.ts_recent_stamp = get_seconds();
466			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
467		} else {
468			newtp->rx_opt.ts_recent_stamp = 0;
469			newtp->tcp_header_len = sizeof(struct tcphdr);
470		}
471		newtp->tsoffset = 0;
472#ifdef CONFIG_TCP_MD5SIG
473		newtp->md5sig_info = NULL;	/*XXX*/
474		if (newtp->af_specific->md5_lookup(sk, newsk))
475			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
476#endif
477		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
478			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
479		newtp->rx_opt.mss_clamp = req->mss;
480		TCP_ECN_openreq_child(newtp, req);
481		newtp->fastopen_rsk = NULL;
482		newtp->syn_data_acked = 0;
 
 
 
 
 
483
484		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
485	}
486	return newsk;
487}
488EXPORT_SYMBOL(tcp_create_openreq_child);
489
490/*
491 * Process an incoming packet for SYN_RECV sockets represented as a
492 * request_sock. Normally sk is the listener socket but for TFO it
493 * points to the child socket.
494 *
495 * XXX (TFO) - The current impl contains a special check for ack
496 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
497 *
498 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
499 */
500
501struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
502			   struct request_sock *req,
503			   struct request_sock **prev,
504			   bool fastopen)
505{
506	struct tcp_options_received tmp_opt;
507	struct sock *child;
508	const struct tcphdr *th = tcp_hdr(skb);
509	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
510	bool paws_reject = false;
511
512	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
513
514	tmp_opt.saw_tstamp = 0;
515	if (th->doff > (sizeof(struct tcphdr)>>2)) {
516		tcp_parse_options(skb, &tmp_opt, 0, NULL);
517
518		if (tmp_opt.saw_tstamp) {
519			tmp_opt.ts_recent = req->ts_recent;
 
 
520			/* We do not store true stamp, but it is not required,
521			 * it can be estimated (approximately)
522			 * from another data.
523			 */
524			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
525			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
526		}
527	}
528
529	/* Check for pure retransmitted SYN. */
530	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
531	    flg == TCP_FLAG_SYN &&
532	    !paws_reject) {
533		/*
534		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
535		 * this case on figure 6 and figure 8, but formal
536		 * protocol description says NOTHING.
537		 * To be more exact, it says that we should send ACK,
538		 * because this segment (at least, if it has no data)
539		 * is out of window.
540		 *
541		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
542		 *  describe SYN-RECV state. All the description
543		 *  is wrong, we cannot believe to it and should
544		 *  rely only on common sense and implementation
545		 *  experience.
546		 *
547		 * Enforce "SYN-ACK" according to figure 8, figure 6
548		 * of RFC793, fixed by RFC1122.
549		 *
550		 * Note that even if there is new data in the SYN packet
551		 * they will be thrown away too.
552		 *
553		 * Reset timer after retransmitting SYNACK, similar to
554		 * the idea of fast retransmit in recovery.
555		 */
556		if (!inet_rtx_syn_ack(sk, req))
557			req->expires = min(TCP_TIMEOUT_INIT << req->num_timeout,
558					   TCP_RTO_MAX) + jiffies;
 
 
 
 
 
 
 
 
 
 
559		return NULL;
560	}
561
562	/* Further reproduces section "SEGMENT ARRIVES"
563	   for state SYN-RECEIVED of RFC793.
564	   It is broken, however, it does not work only
565	   when SYNs are crossed.
566
567	   You would think that SYN crossing is impossible here, since
568	   we should have a SYN_SENT socket (from connect()) on our end,
569	   but this is not true if the crossed SYNs were sent to both
570	   ends by a malicious third party.  We must defend against this,
571	   and to do that we first verify the ACK (as per RFC793, page
572	   36) and reset if it is invalid.  Is this a true full defense?
573	   To convince ourselves, let us consider a way in which the ACK
574	   test can still pass in this 'malicious crossed SYNs' case.
575	   Malicious sender sends identical SYNs (and thus identical sequence
576	   numbers) to both A and B:
577
578		A: gets SYN, seq=7
579		B: gets SYN, seq=7
580
581	   By our good fortune, both A and B select the same initial
582	   send sequence number of seven :-)
583
584		A: sends SYN|ACK, seq=7, ack_seq=8
585		B: sends SYN|ACK, seq=7, ack_seq=8
586
587	   So we are now A eating this SYN|ACK, ACK test passes.  So
588	   does sequence test, SYN is truncated, and thus we consider
589	   it a bare ACK.
590
591	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
592	   bare ACK.  Otherwise, we create an established connection.  Both
593	   ends (listening sockets) accept the new incoming connection and try
594	   to talk to each other. 8-)
595
596	   Note: This case is both harmless, and rare.  Possibility is about the
597	   same as us discovering intelligent life on another plant tomorrow.
598
599	   But generally, we should (RFC lies!) to accept ACK
600	   from SYNACK both here and in tcp_rcv_state_process().
601	   tcp_rcv_state_process() does not, hence, we do not too.
602
603	   Note that the case is absolutely generic:
604	   we cannot optimize anything here without
605	   violating protocol. All the checks must be made
606	   before attempt to create socket.
607	 */
608
609	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
610	 *                  and the incoming segment acknowledges something not yet
611	 *                  sent (the segment carries an unacceptable ACK) ...
612	 *                  a reset is sent."
613	 *
614	 * Invalid ACK: reset will be sent by listening socket.
615	 * Note that the ACK validity check for a Fast Open socket is done
616	 * elsewhere and is checked directly against the child socket rather
617	 * than req because user data may have been sent out.
618	 */
619	if ((flg & TCP_FLAG_ACK) && !fastopen &&
620	    (TCP_SKB_CB(skb)->ack_seq !=
621	     tcp_rsk(req)->snt_isn + 1))
622		return sk;
623
624	/* Also, it would be not so bad idea to check rcv_tsecr, which
625	 * is essentially ACK extension and too early or too late values
626	 * should cause reset in unsynchronized states.
627	 */
628
629	/* RFC793: "first check sequence number". */
630
631	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
632					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
633		/* Out of window: send ACK and drop. */
634		if (!(flg & TCP_FLAG_RST))
 
 
 
635			req->rsk_ops->send_ack(sk, skb, req);
636		if (paws_reject)
637			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
638		return NULL;
639	}
640
641	/* In sequence, PAWS is OK. */
642
643	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
644		req->ts_recent = tmp_opt.rcv_tsval;
645
646	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
647		/* Truncate SYN, it is out of window starting
648		   at tcp_rsk(req)->rcv_isn + 1. */
649		flg &= ~TCP_FLAG_SYN;
650	}
651
652	/* RFC793: "second check the RST bit" and
653	 *	   "fourth, check the SYN bit"
654	 */
655	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
656		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
657		goto embryonic_reset;
658	}
659
660	/* ACK sequence verified above, just make sure ACK is
661	 * set.  If ACK not set, just silently drop the packet.
662	 *
663	 * XXX (TFO) - if we ever allow "data after SYN", the
664	 * following check needs to be removed.
665	 */
666	if (!(flg & TCP_FLAG_ACK))
667		return NULL;
668
669	/* For Fast Open no more processing is needed (sk is the
670	 * child socket).
671	 */
672	if (fastopen)
673		return sk;
674
675	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
676	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
677	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
678		inet_rsk(req)->acked = 1;
679		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
680		return NULL;
681	}
682
683	/* OK, ACK is valid, create big socket and
684	 * feed this segment to it. It will repeat all
685	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
686	 * ESTABLISHED STATE. If it will be dropped after
687	 * socket is created, wait for troubles.
688	 */
689	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
690	if (child == NULL)
 
691		goto listen_overflow;
692
693	inet_csk_reqsk_queue_unlink(sk, req, prev);
694	inet_csk_reqsk_queue_removed(sk, req);
 
 
 
695
696	inet_csk_reqsk_queue_add(sk, req, child);
697	return child;
 
 
698
699listen_overflow:
700	if (!sysctl_tcp_abort_on_overflow) {
 
 
 
701		inet_rsk(req)->acked = 1;
702		return NULL;
703	}
704
705embryonic_reset:
706	if (!(flg & TCP_FLAG_RST)) {
707		/* Received a bad SYN pkt - for TFO We try not to reset
708		 * the local connection unless it's really necessary to
709		 * avoid becoming vulnerable to outside attack aiming at
710		 * resetting legit local connections.
711		 */
712		req->rsk_ops->send_reset(sk, skb);
713	} else if (fastopen) { /* received a valid RST pkt */
714		reqsk_fastopen_remove(sk, req, true);
715		tcp_reset(sk);
716	}
717	if (!fastopen) {
718		inet_csk_reqsk_queue_drop(sk, req, prev);
719		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
 
 
 
720	}
721	return NULL;
722}
723EXPORT_SYMBOL(tcp_check_req);
724
725/*
726 * Queue segment on the new socket if the new socket is active,
727 * otherwise we just shortcircuit this and continue with
728 * the new socket.
729 *
730 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
731 * when entering. But other states are possible due to a race condition
732 * where after __inet_lookup_established() fails but before the listener
733 * locked is obtained, other packets cause the same connection to
734 * be created.
735 */
736
737int tcp_child_process(struct sock *parent, struct sock *child,
738		      struct sk_buff *skb)
 
739{
740	int ret = 0;
741	int state = child->sk_state;
742
 
 
 
 
743	if (!sock_owned_by_user(child)) {
744		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
745					    skb->len);
746		/* Wakeup parent, send SIGIO */
747		if (state == TCP_SYN_RECV && child->sk_state != state)
748			parent->sk_data_ready(parent);
749	} else {
750		/* Alas, it is possible again, because we do lookup
751		 * in main socket hash table and lock on listening
752		 * socket does not protect us more.
753		 */
754		__sk_add_backlog(child, skb);
755	}
756
757	bh_unlock_sock(child);
758	sock_put(child);
759	return ret;
760}
761EXPORT_SYMBOL(tcp_child_process);