Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Linux Socket Filter - Kernel level socket filtering
   4 *
   5 * Based on the design of the Berkeley Packet Filter. The new
   6 * internal format has been designed by PLUMgrid:
   7 *
   8 *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9 *
  10 * Authors:
  11 *
  12 *	Jay Schulist <jschlst@samba.org>
  13 *	Alexei Starovoitov <ast@plumgrid.com>
  14 *	Daniel Borkmann <dborkman@redhat.com>
  15 *
  16 * Andi Kleen - Fix a few bad bugs and races.
  17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18 */
  19
  20#include <uapi/linux/btf.h>
  21#include <linux/filter.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/random.h>
  25#include <linux/moduleloader.h>
  26#include <linux/bpf.h>
  27#include <linux/btf.h>
  28#include <linux/objtool.h>
  29#include <linux/rbtree_latch.h>
  30#include <linux/kallsyms.h>
  31#include <linux/rcupdate.h>
  32#include <linux/perf_event.h>
  33#include <linux/extable.h>
  34#include <linux/log2.h>
  35#include <linux/bpf_verifier.h>
  36#include <linux/nodemask.h>
  37#include <linux/bpf_mem_alloc.h>
  38
  39#include <asm/barrier.h>
  40#include <asm/unaligned.h>
  41
  42/* Registers */
  43#define BPF_R0	regs[BPF_REG_0]
  44#define BPF_R1	regs[BPF_REG_1]
  45#define BPF_R2	regs[BPF_REG_2]
  46#define BPF_R3	regs[BPF_REG_3]
  47#define BPF_R4	regs[BPF_REG_4]
  48#define BPF_R5	regs[BPF_REG_5]
  49#define BPF_R6	regs[BPF_REG_6]
  50#define BPF_R7	regs[BPF_REG_7]
  51#define BPF_R8	regs[BPF_REG_8]
  52#define BPF_R9	regs[BPF_REG_9]
  53#define BPF_R10	regs[BPF_REG_10]
  54
  55/* Named registers */
  56#define DST	regs[insn->dst_reg]
  57#define SRC	regs[insn->src_reg]
  58#define FP	regs[BPF_REG_FP]
  59#define AX	regs[BPF_REG_AX]
  60#define ARG1	regs[BPF_REG_ARG1]
  61#define CTX	regs[BPF_REG_CTX]
  62#define IMM	insn->imm
  63
  64struct bpf_mem_alloc bpf_global_ma;
  65bool bpf_global_ma_set;
  66
  67/* No hurry in this branch
  68 *
  69 * Exported for the bpf jit load helper.
  70 */
  71void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  72{
  73	u8 *ptr = NULL;
  74
  75	if (k >= SKF_NET_OFF) {
  76		ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  77	} else if (k >= SKF_LL_OFF) {
  78		if (unlikely(!skb_mac_header_was_set(skb)))
  79			return NULL;
  80		ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  81	}
  82	if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  83		return ptr;
  84
  85	return NULL;
  86}
  87
  88struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
  89{
  90	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
  91	struct bpf_prog_aux *aux;
  92	struct bpf_prog *fp;
  93
  94	size = round_up(size, PAGE_SIZE);
  95	fp = __vmalloc(size, gfp_flags);
  96	if (fp == NULL)
  97		return NULL;
  98
  99	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
 100	if (aux == NULL) {
 101		vfree(fp);
 102		return NULL;
 103	}
 104	fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
 105	if (!fp->active) {
 106		vfree(fp);
 107		kfree(aux);
 108		return NULL;
 109	}
 110
 111	fp->pages = size / PAGE_SIZE;
 112	fp->aux = aux;
 113	fp->aux->prog = fp;
 114	fp->jit_requested = ebpf_jit_enabled();
 115	fp->blinding_requested = bpf_jit_blinding_enabled(fp);
 116#ifdef CONFIG_CGROUP_BPF
 117	aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
 118#endif
 119
 120	INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
 121	mutex_init(&fp->aux->used_maps_mutex);
 122	mutex_init(&fp->aux->dst_mutex);
 123
 124	return fp;
 125}
 126
 127struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 128{
 129	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
 130	struct bpf_prog *prog;
 131	int cpu;
 132
 133	prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
 134	if (!prog)
 135		return NULL;
 136
 137	prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
 138	if (!prog->stats) {
 139		free_percpu(prog->active);
 140		kfree(prog->aux);
 141		vfree(prog);
 142		return NULL;
 143	}
 144
 145	for_each_possible_cpu(cpu) {
 146		struct bpf_prog_stats *pstats;
 147
 148		pstats = per_cpu_ptr(prog->stats, cpu);
 149		u64_stats_init(&pstats->syncp);
 150	}
 151	return prog;
 152}
 153EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 154
 155int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
 156{
 157	if (!prog->aux->nr_linfo || !prog->jit_requested)
 158		return 0;
 159
 160	prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
 161					  sizeof(*prog->aux->jited_linfo),
 162					  GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
 163	if (!prog->aux->jited_linfo)
 164		return -ENOMEM;
 165
 166	return 0;
 167}
 168
 169void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
 170{
 171	if (prog->aux->jited_linfo &&
 172	    (!prog->jited || !prog->aux->jited_linfo[0])) {
 173		kvfree(prog->aux->jited_linfo);
 174		prog->aux->jited_linfo = NULL;
 175	}
 176
 177	kfree(prog->aux->kfunc_tab);
 178	prog->aux->kfunc_tab = NULL;
 179}
 180
 181/* The jit engine is responsible to provide an array
 182 * for insn_off to the jited_off mapping (insn_to_jit_off).
 183 *
 184 * The idx to this array is the insn_off.  Hence, the insn_off
 185 * here is relative to the prog itself instead of the main prog.
 186 * This array has one entry for each xlated bpf insn.
 187 *
 188 * jited_off is the byte off to the end of the jited insn.
 189 *
 190 * Hence, with
 191 * insn_start:
 192 *      The first bpf insn off of the prog.  The insn off
 193 *      here is relative to the main prog.
 194 *      e.g. if prog is a subprog, insn_start > 0
 195 * linfo_idx:
 196 *      The prog's idx to prog->aux->linfo and jited_linfo
 197 *
 198 * jited_linfo[linfo_idx] = prog->bpf_func
 199 *
 200 * For i > linfo_idx,
 201 *
 202 * jited_linfo[i] = prog->bpf_func +
 203 *	insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
 204 */
 205void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 206			       const u32 *insn_to_jit_off)
 207{
 208	u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
 209	const struct bpf_line_info *linfo;
 210	void **jited_linfo;
 211
 212	if (!prog->aux->jited_linfo)
 213		/* Userspace did not provide linfo */
 214		return;
 215
 216	linfo_idx = prog->aux->linfo_idx;
 217	linfo = &prog->aux->linfo[linfo_idx];
 218	insn_start = linfo[0].insn_off;
 219	insn_end = insn_start + prog->len;
 220
 221	jited_linfo = &prog->aux->jited_linfo[linfo_idx];
 222	jited_linfo[0] = prog->bpf_func;
 223
 224	nr_linfo = prog->aux->nr_linfo - linfo_idx;
 225
 226	for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
 227		/* The verifier ensures that linfo[i].insn_off is
 228		 * strictly increasing
 229		 */
 230		jited_linfo[i] = prog->bpf_func +
 231			insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
 232}
 233
 234struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 235				  gfp_t gfp_extra_flags)
 236{
 237	gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
 238	struct bpf_prog *fp;
 239	u32 pages;
 240
 241	size = round_up(size, PAGE_SIZE);
 242	pages = size / PAGE_SIZE;
 243	if (pages <= fp_old->pages)
 244		return fp_old;
 245
 246	fp = __vmalloc(size, gfp_flags);
 247	if (fp) {
 248		memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 249		fp->pages = pages;
 250		fp->aux->prog = fp;
 251
 252		/* We keep fp->aux from fp_old around in the new
 253		 * reallocated structure.
 254		 */
 255		fp_old->aux = NULL;
 256		fp_old->stats = NULL;
 257		fp_old->active = NULL;
 258		__bpf_prog_free(fp_old);
 259	}
 260
 261	return fp;
 262}
 263
 264void __bpf_prog_free(struct bpf_prog *fp)
 265{
 266	if (fp->aux) {
 267		mutex_destroy(&fp->aux->used_maps_mutex);
 268		mutex_destroy(&fp->aux->dst_mutex);
 269		kfree(fp->aux->poke_tab);
 270		kfree(fp->aux);
 271	}
 272	free_percpu(fp->stats);
 273	free_percpu(fp->active);
 274	vfree(fp);
 275}
 276
 277int bpf_prog_calc_tag(struct bpf_prog *fp)
 278{
 279	const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
 280	u32 raw_size = bpf_prog_tag_scratch_size(fp);
 281	u32 digest[SHA1_DIGEST_WORDS];
 282	u32 ws[SHA1_WORKSPACE_WORDS];
 283	u32 i, bsize, psize, blocks;
 284	struct bpf_insn *dst;
 285	bool was_ld_map;
 286	u8 *raw, *todo;
 287	__be32 *result;
 288	__be64 *bits;
 289
 290	raw = vmalloc(raw_size);
 291	if (!raw)
 292		return -ENOMEM;
 293
 294	sha1_init(digest);
 295	memset(ws, 0, sizeof(ws));
 296
 297	/* We need to take out the map fd for the digest calculation
 298	 * since they are unstable from user space side.
 299	 */
 300	dst = (void *)raw;
 301	for (i = 0, was_ld_map = false; i < fp->len; i++) {
 302		dst[i] = fp->insnsi[i];
 303		if (!was_ld_map &&
 304		    dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 305		    (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
 306		     dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
 307			was_ld_map = true;
 308			dst[i].imm = 0;
 309		} else if (was_ld_map &&
 310			   dst[i].code == 0 &&
 311			   dst[i].dst_reg == 0 &&
 312			   dst[i].src_reg == 0 &&
 313			   dst[i].off == 0) {
 314			was_ld_map = false;
 315			dst[i].imm = 0;
 316		} else {
 317			was_ld_map = false;
 318		}
 319	}
 320
 321	psize = bpf_prog_insn_size(fp);
 322	memset(&raw[psize], 0, raw_size - psize);
 323	raw[psize++] = 0x80;
 324
 325	bsize  = round_up(psize, SHA1_BLOCK_SIZE);
 326	blocks = bsize / SHA1_BLOCK_SIZE;
 327	todo   = raw;
 328	if (bsize - psize >= sizeof(__be64)) {
 329		bits = (__be64 *)(todo + bsize - sizeof(__be64));
 330	} else {
 331		bits = (__be64 *)(todo + bsize + bits_offset);
 332		blocks++;
 333	}
 334	*bits = cpu_to_be64((psize - 1) << 3);
 335
 336	while (blocks--) {
 337		sha1_transform(digest, todo, ws);
 338		todo += SHA1_BLOCK_SIZE;
 339	}
 340
 341	result = (__force __be32 *)digest;
 342	for (i = 0; i < SHA1_DIGEST_WORDS; i++)
 343		result[i] = cpu_to_be32(digest[i]);
 344	memcpy(fp->tag, result, sizeof(fp->tag));
 345
 346	vfree(raw);
 347	return 0;
 348}
 349
 350static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
 351				s32 end_new, s32 curr, const bool probe_pass)
 352{
 353	const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 354	s32 delta = end_new - end_old;
 355	s64 imm = insn->imm;
 356
 357	if (curr < pos && curr + imm + 1 >= end_old)
 358		imm += delta;
 359	else if (curr >= end_new && curr + imm + 1 < end_new)
 360		imm -= delta;
 361	if (imm < imm_min || imm > imm_max)
 362		return -ERANGE;
 363	if (!probe_pass)
 364		insn->imm = imm;
 365	return 0;
 366}
 367
 368static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
 369				s32 end_new, s32 curr, const bool probe_pass)
 370{
 371	const s32 off_min = S16_MIN, off_max = S16_MAX;
 372	s32 delta = end_new - end_old;
 373	s32 off = insn->off;
 374
 375	if (curr < pos && curr + off + 1 >= end_old)
 376		off += delta;
 377	else if (curr >= end_new && curr + off + 1 < end_new)
 378		off -= delta;
 379	if (off < off_min || off > off_max)
 380		return -ERANGE;
 381	if (!probe_pass)
 382		insn->off = off;
 383	return 0;
 384}
 385
 386static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
 387			    s32 end_new, const bool probe_pass)
 388{
 389	u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
 390	struct bpf_insn *insn = prog->insnsi;
 391	int ret = 0;
 392
 393	for (i = 0; i < insn_cnt; i++, insn++) {
 394		u8 code;
 395
 396		/* In the probing pass we still operate on the original,
 397		 * unpatched image in order to check overflows before we
 398		 * do any other adjustments. Therefore skip the patchlet.
 399		 */
 400		if (probe_pass && i == pos) {
 401			i = end_new;
 402			insn = prog->insnsi + end_old;
 403		}
 404		if (bpf_pseudo_func(insn)) {
 405			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 406						   end_new, i, probe_pass);
 407			if (ret)
 408				return ret;
 409			continue;
 410		}
 411		code = insn->code;
 412		if ((BPF_CLASS(code) != BPF_JMP &&
 413		     BPF_CLASS(code) != BPF_JMP32) ||
 414		    BPF_OP(code) == BPF_EXIT)
 415			continue;
 416		/* Adjust offset of jmps if we cross patch boundaries. */
 417		if (BPF_OP(code) == BPF_CALL) {
 418			if (insn->src_reg != BPF_PSEUDO_CALL)
 419				continue;
 420			ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 421						   end_new, i, probe_pass);
 422		} else {
 423			ret = bpf_adj_delta_to_off(insn, pos, end_old,
 424						   end_new, i, probe_pass);
 425		}
 426		if (ret)
 427			break;
 428	}
 429
 430	return ret;
 431}
 432
 433static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
 434{
 435	struct bpf_line_info *linfo;
 436	u32 i, nr_linfo;
 437
 438	nr_linfo = prog->aux->nr_linfo;
 439	if (!nr_linfo || !delta)
 440		return;
 441
 442	linfo = prog->aux->linfo;
 443
 444	for (i = 0; i < nr_linfo; i++)
 445		if (off < linfo[i].insn_off)
 446			break;
 447
 448	/* Push all off < linfo[i].insn_off by delta */
 449	for (; i < nr_linfo; i++)
 450		linfo[i].insn_off += delta;
 451}
 452
 453struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 454				       const struct bpf_insn *patch, u32 len)
 455{
 456	u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 457	const u32 cnt_max = S16_MAX;
 458	struct bpf_prog *prog_adj;
 459	int err;
 460
 461	/* Since our patchlet doesn't expand the image, we're done. */
 462	if (insn_delta == 0) {
 463		memcpy(prog->insnsi + off, patch, sizeof(*patch));
 464		return prog;
 465	}
 466
 467	insn_adj_cnt = prog->len + insn_delta;
 468
 469	/* Reject anything that would potentially let the insn->off
 470	 * target overflow when we have excessive program expansions.
 471	 * We need to probe here before we do any reallocation where
 472	 * we afterwards may not fail anymore.
 473	 */
 474	if (insn_adj_cnt > cnt_max &&
 475	    (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
 476		return ERR_PTR(err);
 477
 478	/* Several new instructions need to be inserted. Make room
 479	 * for them. Likely, there's no need for a new allocation as
 480	 * last page could have large enough tailroom.
 481	 */
 482	prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 483				    GFP_USER);
 484	if (!prog_adj)
 485		return ERR_PTR(-ENOMEM);
 486
 487	prog_adj->len = insn_adj_cnt;
 488
 489	/* Patching happens in 3 steps:
 490	 *
 491	 * 1) Move over tail of insnsi from next instruction onwards,
 492	 *    so we can patch the single target insn with one or more
 493	 *    new ones (patching is always from 1 to n insns, n > 0).
 494	 * 2) Inject new instructions at the target location.
 495	 * 3) Adjust branch offsets if necessary.
 496	 */
 497	insn_rest = insn_adj_cnt - off - len;
 498
 499	memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 500		sizeof(*patch) * insn_rest);
 501	memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 502
 503	/* We are guaranteed to not fail at this point, otherwise
 504	 * the ship has sailed to reverse to the original state. An
 505	 * overflow cannot happen at this point.
 506	 */
 507	BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
 508
 509	bpf_adj_linfo(prog_adj, off, insn_delta);
 510
 511	return prog_adj;
 512}
 513
 514int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
 515{
 516	/* Branch offsets can't overflow when program is shrinking, no need
 517	 * to call bpf_adj_branches(..., true) here
 518	 */
 519	memmove(prog->insnsi + off, prog->insnsi + off + cnt,
 520		sizeof(struct bpf_insn) * (prog->len - off - cnt));
 521	prog->len -= cnt;
 522
 523	return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
 524}
 525
 526static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
 527{
 528	int i;
 529
 530	for (i = 0; i < fp->aux->func_cnt; i++)
 531		bpf_prog_kallsyms_del(fp->aux->func[i]);
 532}
 533
 534void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
 535{
 536	bpf_prog_kallsyms_del_subprogs(fp);
 537	bpf_prog_kallsyms_del(fp);
 538}
 539
 540#ifdef CONFIG_BPF_JIT
 541/* All BPF JIT sysctl knobs here. */
 542int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 543int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
 544int bpf_jit_harden   __read_mostly;
 545long bpf_jit_limit   __read_mostly;
 546long bpf_jit_limit_max __read_mostly;
 547
 548static void
 549bpf_prog_ksym_set_addr(struct bpf_prog *prog)
 550{
 551	WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 552
 553	prog->aux->ksym.start = (unsigned long) prog->bpf_func;
 554	prog->aux->ksym.end   = prog->aux->ksym.start + prog->jited_len;
 555}
 556
 557static void
 558bpf_prog_ksym_set_name(struct bpf_prog *prog)
 559{
 560	char *sym = prog->aux->ksym.name;
 561	const char *end = sym + KSYM_NAME_LEN;
 562	const struct btf_type *type;
 563	const char *func_name;
 564
 565	BUILD_BUG_ON(sizeof("bpf_prog_") +
 566		     sizeof(prog->tag) * 2 +
 567		     /* name has been null terminated.
 568		      * We should need +1 for the '_' preceding
 569		      * the name.  However, the null character
 570		      * is double counted between the name and the
 571		      * sizeof("bpf_prog_") above, so we omit
 572		      * the +1 here.
 573		      */
 574		     sizeof(prog->aux->name) > KSYM_NAME_LEN);
 575
 576	sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 577	sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 578
 579	/* prog->aux->name will be ignored if full btf name is available */
 580	if (prog->aux->func_info_cnt) {
 581		type = btf_type_by_id(prog->aux->btf,
 582				      prog->aux->func_info[prog->aux->func_idx].type_id);
 583		func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
 584		snprintf(sym, (size_t)(end - sym), "_%s", func_name);
 585		return;
 586	}
 587
 588	if (prog->aux->name[0])
 589		snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 590	else
 591		*sym = 0;
 592}
 593
 594static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
 595{
 596	return container_of(n, struct bpf_ksym, tnode)->start;
 597}
 598
 599static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 600					  struct latch_tree_node *b)
 601{
 602	return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
 603}
 604
 605static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 606{
 607	unsigned long val = (unsigned long)key;
 608	const struct bpf_ksym *ksym;
 609
 610	ksym = container_of(n, struct bpf_ksym, tnode);
 611
 612	if (val < ksym->start)
 613		return -1;
 614	if (val >= ksym->end)
 615		return  1;
 616
 617	return 0;
 618}
 619
 620static const struct latch_tree_ops bpf_tree_ops = {
 621	.less	= bpf_tree_less,
 622	.comp	= bpf_tree_comp,
 623};
 624
 625static DEFINE_SPINLOCK(bpf_lock);
 626static LIST_HEAD(bpf_kallsyms);
 627static struct latch_tree_root bpf_tree __cacheline_aligned;
 628
 629void bpf_ksym_add(struct bpf_ksym *ksym)
 630{
 631	spin_lock_bh(&bpf_lock);
 632	WARN_ON_ONCE(!list_empty(&ksym->lnode));
 633	list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
 634	latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 635	spin_unlock_bh(&bpf_lock);
 636}
 637
 638static void __bpf_ksym_del(struct bpf_ksym *ksym)
 639{
 640	if (list_empty(&ksym->lnode))
 641		return;
 642
 643	latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
 644	list_del_rcu(&ksym->lnode);
 645}
 646
 647void bpf_ksym_del(struct bpf_ksym *ksym)
 648{
 649	spin_lock_bh(&bpf_lock);
 650	__bpf_ksym_del(ksym);
 651	spin_unlock_bh(&bpf_lock);
 652}
 653
 654static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 655{
 656	return fp->jited && !bpf_prog_was_classic(fp);
 657}
 658
 659void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 660{
 661	if (!bpf_prog_kallsyms_candidate(fp) ||
 662	    !bpf_capable())
 663		return;
 664
 665	bpf_prog_ksym_set_addr(fp);
 666	bpf_prog_ksym_set_name(fp);
 667	fp->aux->ksym.prog = true;
 668
 669	bpf_ksym_add(&fp->aux->ksym);
 670}
 671
 672void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 673{
 674	if (!bpf_prog_kallsyms_candidate(fp))
 675		return;
 676
 677	bpf_ksym_del(&fp->aux->ksym);
 678}
 679
 680static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
 681{
 682	struct latch_tree_node *n;
 683
 684	n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 685	return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
 686}
 687
 688const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 689				 unsigned long *off, char *sym)
 690{
 691	struct bpf_ksym *ksym;
 692	char *ret = NULL;
 693
 694	rcu_read_lock();
 695	ksym = bpf_ksym_find(addr);
 696	if (ksym) {
 697		unsigned long symbol_start = ksym->start;
 698		unsigned long symbol_end = ksym->end;
 699
 700		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 701
 702		ret = sym;
 703		if (size)
 704			*size = symbol_end - symbol_start;
 705		if (off)
 706			*off  = addr - symbol_start;
 707	}
 708	rcu_read_unlock();
 709
 710	return ret;
 711}
 712
 713bool is_bpf_text_address(unsigned long addr)
 714{
 715	bool ret;
 716
 717	rcu_read_lock();
 718	ret = bpf_ksym_find(addr) != NULL;
 719	rcu_read_unlock();
 720
 721	return ret;
 722}
 723
 724static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
 725{
 726	struct bpf_ksym *ksym = bpf_ksym_find(addr);
 727
 728	return ksym && ksym->prog ?
 729	       container_of(ksym, struct bpf_prog_aux, ksym)->prog :
 730	       NULL;
 731}
 732
 733const struct exception_table_entry *search_bpf_extables(unsigned long addr)
 734{
 735	const struct exception_table_entry *e = NULL;
 736	struct bpf_prog *prog;
 737
 738	rcu_read_lock();
 739	prog = bpf_prog_ksym_find(addr);
 740	if (!prog)
 741		goto out;
 742	if (!prog->aux->num_exentries)
 743		goto out;
 744
 745	e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
 746out:
 747	rcu_read_unlock();
 748	return e;
 749}
 750
 751int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 752		    char *sym)
 753{
 754	struct bpf_ksym *ksym;
 755	unsigned int it = 0;
 756	int ret = -ERANGE;
 757
 758	if (!bpf_jit_kallsyms_enabled())
 759		return ret;
 760
 761	rcu_read_lock();
 762	list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
 763		if (it++ != symnum)
 764			continue;
 765
 766		strncpy(sym, ksym->name, KSYM_NAME_LEN);
 767
 768		*value = ksym->start;
 769		*type  = BPF_SYM_ELF_TYPE;
 770
 771		ret = 0;
 772		break;
 773	}
 774	rcu_read_unlock();
 775
 776	return ret;
 777}
 778
 779int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
 780				struct bpf_jit_poke_descriptor *poke)
 781{
 782	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
 783	static const u32 poke_tab_max = 1024;
 784	u32 slot = prog->aux->size_poke_tab;
 785	u32 size = slot + 1;
 786
 787	if (size > poke_tab_max)
 788		return -ENOSPC;
 789	if (poke->tailcall_target || poke->tailcall_target_stable ||
 790	    poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
 791		return -EINVAL;
 792
 793	switch (poke->reason) {
 794	case BPF_POKE_REASON_TAIL_CALL:
 795		if (!poke->tail_call.map)
 796			return -EINVAL;
 797		break;
 798	default:
 799		return -EINVAL;
 800	}
 801
 802	tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
 803	if (!tab)
 804		return -ENOMEM;
 805
 806	memcpy(&tab[slot], poke, sizeof(*poke));
 807	prog->aux->size_poke_tab = size;
 808	prog->aux->poke_tab = tab;
 809
 810	return slot;
 811}
 812
 813/*
 814 * BPF program pack allocator.
 815 *
 816 * Most BPF programs are pretty small. Allocating a hole page for each
 817 * program is sometime a waste. Many small bpf program also adds pressure
 818 * to instruction TLB. To solve this issue, we introduce a BPF program pack
 819 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
 820 * to host BPF programs.
 821 */
 822#define BPF_PROG_CHUNK_SHIFT	6
 823#define BPF_PROG_CHUNK_SIZE	(1 << BPF_PROG_CHUNK_SHIFT)
 824#define BPF_PROG_CHUNK_MASK	(~(BPF_PROG_CHUNK_SIZE - 1))
 825
 826struct bpf_prog_pack {
 827	struct list_head list;
 828	void *ptr;
 829	unsigned long bitmap[];
 830};
 831
 832void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
 833{
 834	memset(area, 0, size);
 835}
 836
 837#define BPF_PROG_SIZE_TO_NBITS(size)	(round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
 838
 839static DEFINE_MUTEX(pack_mutex);
 840static LIST_HEAD(pack_list);
 841
 842/* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
 843 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
 844 */
 845#ifdef PMD_SIZE
 846#define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
 847#else
 848#define BPF_PROG_PACK_SIZE PAGE_SIZE
 849#endif
 850
 851#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
 852
 853static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
 854{
 855	struct bpf_prog_pack *pack;
 856
 857	pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
 858		       GFP_KERNEL);
 859	if (!pack)
 860		return NULL;
 861	pack->ptr = module_alloc(BPF_PROG_PACK_SIZE);
 862	if (!pack->ptr) {
 863		kfree(pack);
 864		return NULL;
 865	}
 866	bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
 867	bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
 868	list_add_tail(&pack->list, &pack_list);
 869
 870	set_vm_flush_reset_perms(pack->ptr);
 871	set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
 872	return pack;
 873}
 874
 875void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
 876{
 877	unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
 878	struct bpf_prog_pack *pack;
 879	unsigned long pos;
 880	void *ptr = NULL;
 881
 882	mutex_lock(&pack_mutex);
 883	if (size > BPF_PROG_PACK_SIZE) {
 884		size = round_up(size, PAGE_SIZE);
 885		ptr = module_alloc(size);
 886		if (ptr) {
 887			bpf_fill_ill_insns(ptr, size);
 888			set_vm_flush_reset_perms(ptr);
 889			set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
 890		}
 891		goto out;
 892	}
 893	list_for_each_entry(pack, &pack_list, list) {
 894		pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
 895						 nbits, 0);
 896		if (pos < BPF_PROG_CHUNK_COUNT)
 897			goto found_free_area;
 898	}
 899
 900	pack = alloc_new_pack(bpf_fill_ill_insns);
 901	if (!pack)
 902		goto out;
 903
 904	pos = 0;
 905
 906found_free_area:
 907	bitmap_set(pack->bitmap, pos, nbits);
 908	ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
 909
 910out:
 911	mutex_unlock(&pack_mutex);
 912	return ptr;
 913}
 914
 915void bpf_prog_pack_free(struct bpf_binary_header *hdr)
 916{
 917	struct bpf_prog_pack *pack = NULL, *tmp;
 918	unsigned int nbits;
 919	unsigned long pos;
 920
 921	mutex_lock(&pack_mutex);
 922	if (hdr->size > BPF_PROG_PACK_SIZE) {
 923		module_memfree(hdr);
 924		goto out;
 925	}
 926
 927	list_for_each_entry(tmp, &pack_list, list) {
 928		if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) {
 929			pack = tmp;
 930			break;
 931		}
 932	}
 933
 934	if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
 935		goto out;
 936
 937	nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
 938	pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
 939
 940	WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
 941		  "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
 942
 943	bitmap_clear(pack->bitmap, pos, nbits);
 944	if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
 945				       BPF_PROG_CHUNK_COUNT, 0) == 0) {
 946		list_del(&pack->list);
 947		module_memfree(pack->ptr);
 948		kfree(pack);
 949	}
 950out:
 951	mutex_unlock(&pack_mutex);
 952}
 953
 954static atomic_long_t bpf_jit_current;
 955
 956/* Can be overridden by an arch's JIT compiler if it has a custom,
 957 * dedicated BPF backend memory area, or if neither of the two
 958 * below apply.
 959 */
 960u64 __weak bpf_jit_alloc_exec_limit(void)
 961{
 962#if defined(MODULES_VADDR)
 963	return MODULES_END - MODULES_VADDR;
 964#else
 965	return VMALLOC_END - VMALLOC_START;
 966#endif
 967}
 968
 969static int __init bpf_jit_charge_init(void)
 970{
 971	/* Only used as heuristic here to derive limit. */
 972	bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
 973	bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
 974					    PAGE_SIZE), LONG_MAX);
 975	return 0;
 976}
 977pure_initcall(bpf_jit_charge_init);
 978
 979int bpf_jit_charge_modmem(u32 size)
 980{
 981	if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
 982		if (!bpf_capable()) {
 983			atomic_long_sub(size, &bpf_jit_current);
 984			return -EPERM;
 985		}
 986	}
 987
 988	return 0;
 989}
 990
 991void bpf_jit_uncharge_modmem(u32 size)
 992{
 993	atomic_long_sub(size, &bpf_jit_current);
 994}
 995
 996void *__weak bpf_jit_alloc_exec(unsigned long size)
 997{
 998	return module_alloc(size);
 999}
1000
1001void __weak bpf_jit_free_exec(void *addr)
1002{
1003	module_memfree(addr);
1004}
1005
1006struct bpf_binary_header *
1007bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1008		     unsigned int alignment,
1009		     bpf_jit_fill_hole_t bpf_fill_ill_insns)
1010{
1011	struct bpf_binary_header *hdr;
1012	u32 size, hole, start;
1013
1014	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1015		     alignment > BPF_IMAGE_ALIGNMENT);
1016
1017	/* Most of BPF filters are really small, but if some of them
1018	 * fill a page, allow at least 128 extra bytes to insert a
1019	 * random section of illegal instructions.
1020	 */
1021	size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1022
1023	if (bpf_jit_charge_modmem(size))
1024		return NULL;
1025	hdr = bpf_jit_alloc_exec(size);
1026	if (!hdr) {
1027		bpf_jit_uncharge_modmem(size);
1028		return NULL;
1029	}
1030
1031	/* Fill space with illegal/arch-dep instructions. */
1032	bpf_fill_ill_insns(hdr, size);
1033
1034	hdr->size = size;
1035	hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1036		     PAGE_SIZE - sizeof(*hdr));
1037	start = get_random_u32_below(hole) & ~(alignment - 1);
1038
1039	/* Leave a random number of instructions before BPF code. */
1040	*image_ptr = &hdr->image[start];
1041
1042	return hdr;
1043}
1044
1045void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1046{
1047	u32 size = hdr->size;
1048
1049	bpf_jit_free_exec(hdr);
1050	bpf_jit_uncharge_modmem(size);
1051}
1052
1053/* Allocate jit binary from bpf_prog_pack allocator.
1054 * Since the allocated memory is RO+X, the JIT engine cannot write directly
1055 * to the memory. To solve this problem, a RW buffer is also allocated at
1056 * as the same time. The JIT engine should calculate offsets based on the
1057 * RO memory address, but write JITed program to the RW buffer. Once the
1058 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1059 * the JITed program to the RO memory.
1060 */
1061struct bpf_binary_header *
1062bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1063			  unsigned int alignment,
1064			  struct bpf_binary_header **rw_header,
1065			  u8 **rw_image,
1066			  bpf_jit_fill_hole_t bpf_fill_ill_insns)
1067{
1068	struct bpf_binary_header *ro_header;
1069	u32 size, hole, start;
1070
1071	WARN_ON_ONCE(!is_power_of_2(alignment) ||
1072		     alignment > BPF_IMAGE_ALIGNMENT);
1073
1074	/* add 16 bytes for a random section of illegal instructions */
1075	size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1076
1077	if (bpf_jit_charge_modmem(size))
1078		return NULL;
1079	ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1080	if (!ro_header) {
1081		bpf_jit_uncharge_modmem(size);
1082		return NULL;
1083	}
1084
1085	*rw_header = kvmalloc(size, GFP_KERNEL);
1086	if (!*rw_header) {
1087		bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1088		bpf_prog_pack_free(ro_header);
1089		bpf_jit_uncharge_modmem(size);
1090		return NULL;
1091	}
1092
1093	/* Fill space with illegal/arch-dep instructions. */
1094	bpf_fill_ill_insns(*rw_header, size);
1095	(*rw_header)->size = size;
1096
1097	hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1098		     BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1099	start = get_random_u32_below(hole) & ~(alignment - 1);
1100
1101	*image_ptr = &ro_header->image[start];
1102	*rw_image = &(*rw_header)->image[start];
1103
1104	return ro_header;
1105}
1106
1107/* Copy JITed text from rw_header to its final location, the ro_header. */
1108int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1109				 struct bpf_binary_header *ro_header,
1110				 struct bpf_binary_header *rw_header)
1111{
1112	void *ptr;
1113
1114	ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1115
1116	kvfree(rw_header);
1117
1118	if (IS_ERR(ptr)) {
1119		bpf_prog_pack_free(ro_header);
1120		return PTR_ERR(ptr);
1121	}
1122	return 0;
1123}
1124
1125/* bpf_jit_binary_pack_free is called in two different scenarios:
1126 *   1) when the program is freed after;
1127 *   2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1128 * For case 2), we need to free both the RO memory and the RW buffer.
1129 *
1130 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1131 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1132 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1133 * bpf_arch_text_copy (when jit fails).
1134 */
1135void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1136			      struct bpf_binary_header *rw_header)
1137{
1138	u32 size = ro_header->size;
1139
1140	bpf_prog_pack_free(ro_header);
1141	kvfree(rw_header);
1142	bpf_jit_uncharge_modmem(size);
1143}
1144
1145struct bpf_binary_header *
1146bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1147{
1148	unsigned long real_start = (unsigned long)fp->bpf_func;
1149	unsigned long addr;
1150
1151	addr = real_start & BPF_PROG_CHUNK_MASK;
1152	return (void *)addr;
1153}
1154
1155static inline struct bpf_binary_header *
1156bpf_jit_binary_hdr(const struct bpf_prog *fp)
1157{
1158	unsigned long real_start = (unsigned long)fp->bpf_func;
1159	unsigned long addr;
1160
1161	addr = real_start & PAGE_MASK;
1162	return (void *)addr;
1163}
1164
1165/* This symbol is only overridden by archs that have different
1166 * requirements than the usual eBPF JITs, f.e. when they only
1167 * implement cBPF JIT, do not set images read-only, etc.
1168 */
1169void __weak bpf_jit_free(struct bpf_prog *fp)
1170{
1171	if (fp->jited) {
1172		struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1173
1174		bpf_jit_binary_free(hdr);
1175		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1176	}
1177
1178	bpf_prog_unlock_free(fp);
1179}
1180
1181int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1182			  const struct bpf_insn *insn, bool extra_pass,
1183			  u64 *func_addr, bool *func_addr_fixed)
1184{
1185	s16 off = insn->off;
1186	s32 imm = insn->imm;
1187	u8 *addr;
1188
1189	*func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1190	if (!*func_addr_fixed) {
1191		/* Place-holder address till the last pass has collected
1192		 * all addresses for JITed subprograms in which case we
1193		 * can pick them up from prog->aux.
1194		 */
1195		if (!extra_pass)
1196			addr = NULL;
1197		else if (prog->aux->func &&
1198			 off >= 0 && off < prog->aux->func_cnt)
1199			addr = (u8 *)prog->aux->func[off]->bpf_func;
1200		else
1201			return -EINVAL;
1202	} else {
1203		/* Address of a BPF helper call. Since part of the core
1204		 * kernel, it's always at a fixed location. __bpf_call_base
1205		 * and the helper with imm relative to it are both in core
1206		 * kernel.
1207		 */
1208		addr = (u8 *)__bpf_call_base + imm;
1209	}
1210
1211	*func_addr = (unsigned long)addr;
1212	return 0;
1213}
1214
1215static int bpf_jit_blind_insn(const struct bpf_insn *from,
1216			      const struct bpf_insn *aux,
1217			      struct bpf_insn *to_buff,
1218			      bool emit_zext)
1219{
1220	struct bpf_insn *to = to_buff;
1221	u32 imm_rnd = get_random_u32();
1222	s16 off;
1223
1224	BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
1225	BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1226
1227	/* Constraints on AX register:
1228	 *
1229	 * AX register is inaccessible from user space. It is mapped in
1230	 * all JITs, and used here for constant blinding rewrites. It is
1231	 * typically "stateless" meaning its contents are only valid within
1232	 * the executed instruction, but not across several instructions.
1233	 * There are a few exceptions however which are further detailed
1234	 * below.
1235	 *
1236	 * Constant blinding is only used by JITs, not in the interpreter.
1237	 * The interpreter uses AX in some occasions as a local temporary
1238	 * register e.g. in DIV or MOD instructions.
1239	 *
1240	 * In restricted circumstances, the verifier can also use the AX
1241	 * register for rewrites as long as they do not interfere with
1242	 * the above cases!
1243	 */
1244	if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1245		goto out;
1246
1247	if (from->imm == 0 &&
1248	    (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
1249	     from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1250		*to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1251		goto out;
1252	}
1253
1254	switch (from->code) {
1255	case BPF_ALU | BPF_ADD | BPF_K:
1256	case BPF_ALU | BPF_SUB | BPF_K:
1257	case BPF_ALU | BPF_AND | BPF_K:
1258	case BPF_ALU | BPF_OR  | BPF_K:
1259	case BPF_ALU | BPF_XOR | BPF_K:
1260	case BPF_ALU | BPF_MUL | BPF_K:
1261	case BPF_ALU | BPF_MOV | BPF_K:
1262	case BPF_ALU | BPF_DIV | BPF_K:
1263	case BPF_ALU | BPF_MOD | BPF_K:
1264		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1265		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1266		*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1267		break;
1268
1269	case BPF_ALU64 | BPF_ADD | BPF_K:
1270	case BPF_ALU64 | BPF_SUB | BPF_K:
1271	case BPF_ALU64 | BPF_AND | BPF_K:
1272	case BPF_ALU64 | BPF_OR  | BPF_K:
1273	case BPF_ALU64 | BPF_XOR | BPF_K:
1274	case BPF_ALU64 | BPF_MUL | BPF_K:
1275	case BPF_ALU64 | BPF_MOV | BPF_K:
1276	case BPF_ALU64 | BPF_DIV | BPF_K:
1277	case BPF_ALU64 | BPF_MOD | BPF_K:
1278		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1279		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1280		*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1281		break;
1282
1283	case BPF_JMP | BPF_JEQ  | BPF_K:
1284	case BPF_JMP | BPF_JNE  | BPF_K:
1285	case BPF_JMP | BPF_JGT  | BPF_K:
1286	case BPF_JMP | BPF_JLT  | BPF_K:
1287	case BPF_JMP | BPF_JGE  | BPF_K:
1288	case BPF_JMP | BPF_JLE  | BPF_K:
1289	case BPF_JMP | BPF_JSGT | BPF_K:
1290	case BPF_JMP | BPF_JSLT | BPF_K:
1291	case BPF_JMP | BPF_JSGE | BPF_K:
1292	case BPF_JMP | BPF_JSLE | BPF_K:
1293	case BPF_JMP | BPF_JSET | BPF_K:
1294		/* Accommodate for extra offset in case of a backjump. */
1295		off = from->off;
1296		if (off < 0)
1297			off -= 2;
1298		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1299		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1300		*to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1301		break;
1302
1303	case BPF_JMP32 | BPF_JEQ  | BPF_K:
1304	case BPF_JMP32 | BPF_JNE  | BPF_K:
1305	case BPF_JMP32 | BPF_JGT  | BPF_K:
1306	case BPF_JMP32 | BPF_JLT  | BPF_K:
1307	case BPF_JMP32 | BPF_JGE  | BPF_K:
1308	case BPF_JMP32 | BPF_JLE  | BPF_K:
1309	case BPF_JMP32 | BPF_JSGT | BPF_K:
1310	case BPF_JMP32 | BPF_JSLT | BPF_K:
1311	case BPF_JMP32 | BPF_JSGE | BPF_K:
1312	case BPF_JMP32 | BPF_JSLE | BPF_K:
1313	case BPF_JMP32 | BPF_JSET | BPF_K:
1314		/* Accommodate for extra offset in case of a backjump. */
1315		off = from->off;
1316		if (off < 0)
1317			off -= 2;
1318		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1319		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1320		*to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1321				      off);
1322		break;
1323
1324	case BPF_LD | BPF_IMM | BPF_DW:
1325		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1326		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1327		*to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1328		*to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1329		break;
1330	case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1331		*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1332		*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1333		if (emit_zext)
1334			*to++ = BPF_ZEXT_REG(BPF_REG_AX);
1335		*to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1336		break;
1337
1338	case BPF_ST | BPF_MEM | BPF_DW:
1339	case BPF_ST | BPF_MEM | BPF_W:
1340	case BPF_ST | BPF_MEM | BPF_H:
1341	case BPF_ST | BPF_MEM | BPF_B:
1342		*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1343		*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1344		*to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1345		break;
1346	}
1347out:
1348	return to - to_buff;
1349}
1350
1351static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1352					      gfp_t gfp_extra_flags)
1353{
1354	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1355	struct bpf_prog *fp;
1356
1357	fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1358	if (fp != NULL) {
1359		/* aux->prog still points to the fp_other one, so
1360		 * when promoting the clone to the real program,
1361		 * this still needs to be adapted.
1362		 */
1363		memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1364	}
1365
1366	return fp;
1367}
1368
1369static void bpf_prog_clone_free(struct bpf_prog *fp)
1370{
1371	/* aux was stolen by the other clone, so we cannot free
1372	 * it from this path! It will be freed eventually by the
1373	 * other program on release.
1374	 *
1375	 * At this point, we don't need a deferred release since
1376	 * clone is guaranteed to not be locked.
1377	 */
1378	fp->aux = NULL;
1379	fp->stats = NULL;
1380	fp->active = NULL;
1381	__bpf_prog_free(fp);
1382}
1383
1384void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1385{
1386	/* We have to repoint aux->prog to self, as we don't
1387	 * know whether fp here is the clone or the original.
1388	 */
1389	fp->aux->prog = fp;
1390	bpf_prog_clone_free(fp_other);
1391}
1392
1393struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1394{
1395	struct bpf_insn insn_buff[16], aux[2];
1396	struct bpf_prog *clone, *tmp;
1397	int insn_delta, insn_cnt;
1398	struct bpf_insn *insn;
1399	int i, rewritten;
1400
1401	if (!prog->blinding_requested || prog->blinded)
1402		return prog;
1403
1404	clone = bpf_prog_clone_create(prog, GFP_USER);
1405	if (!clone)
1406		return ERR_PTR(-ENOMEM);
1407
1408	insn_cnt = clone->len;
1409	insn = clone->insnsi;
1410
1411	for (i = 0; i < insn_cnt; i++, insn++) {
1412		if (bpf_pseudo_func(insn)) {
1413			/* ld_imm64 with an address of bpf subprog is not
1414			 * a user controlled constant. Don't randomize it,
1415			 * since it will conflict with jit_subprogs() logic.
1416			 */
1417			insn++;
1418			i++;
1419			continue;
1420		}
1421
1422		/* We temporarily need to hold the original ld64 insn
1423		 * so that we can still access the first part in the
1424		 * second blinding run.
1425		 */
1426		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1427		    insn[1].code == 0)
1428			memcpy(aux, insn, sizeof(aux));
1429
1430		rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1431						clone->aux->verifier_zext);
1432		if (!rewritten)
1433			continue;
1434
1435		tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1436		if (IS_ERR(tmp)) {
1437			/* Patching may have repointed aux->prog during
1438			 * realloc from the original one, so we need to
1439			 * fix it up here on error.
1440			 */
1441			bpf_jit_prog_release_other(prog, clone);
1442			return tmp;
1443		}
1444
1445		clone = tmp;
1446		insn_delta = rewritten - 1;
1447
1448		/* Walk new program and skip insns we just inserted. */
1449		insn = clone->insnsi + i + insn_delta;
1450		insn_cnt += insn_delta;
1451		i        += insn_delta;
1452	}
1453
1454	clone->blinded = 1;
1455	return clone;
1456}
1457#endif /* CONFIG_BPF_JIT */
1458
1459/* Base function for offset calculation. Needs to go into .text section,
1460 * therefore keeping it non-static as well; will also be used by JITs
1461 * anyway later on, so do not let the compiler omit it. This also needs
1462 * to go into kallsyms for correlation from e.g. bpftool, so naming
1463 * must not change.
1464 */
1465noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1466{
1467	return 0;
1468}
1469EXPORT_SYMBOL_GPL(__bpf_call_base);
1470
1471/* All UAPI available opcodes. */
1472#define BPF_INSN_MAP(INSN_2, INSN_3)		\
1473	/* 32 bit ALU operations. */		\
1474	/*   Register based. */			\
1475	INSN_3(ALU, ADD,  X),			\
1476	INSN_3(ALU, SUB,  X),			\
1477	INSN_3(ALU, AND,  X),			\
1478	INSN_3(ALU, OR,   X),			\
1479	INSN_3(ALU, LSH,  X),			\
1480	INSN_3(ALU, RSH,  X),			\
1481	INSN_3(ALU, XOR,  X),			\
1482	INSN_3(ALU, MUL,  X),			\
1483	INSN_3(ALU, MOV,  X),			\
1484	INSN_3(ALU, ARSH, X),			\
1485	INSN_3(ALU, DIV,  X),			\
1486	INSN_3(ALU, MOD,  X),			\
1487	INSN_2(ALU, NEG),			\
1488	INSN_3(ALU, END, TO_BE),		\
1489	INSN_3(ALU, END, TO_LE),		\
1490	/*   Immediate based. */		\
1491	INSN_3(ALU, ADD,  K),			\
1492	INSN_3(ALU, SUB,  K),			\
1493	INSN_3(ALU, AND,  K),			\
1494	INSN_3(ALU, OR,   K),			\
1495	INSN_3(ALU, LSH,  K),			\
1496	INSN_3(ALU, RSH,  K),			\
1497	INSN_3(ALU, XOR,  K),			\
1498	INSN_3(ALU, MUL,  K),			\
1499	INSN_3(ALU, MOV,  K),			\
1500	INSN_3(ALU, ARSH, K),			\
1501	INSN_3(ALU, DIV,  K),			\
1502	INSN_3(ALU, MOD,  K),			\
1503	/* 64 bit ALU operations. */		\
1504	/*   Register based. */			\
1505	INSN_3(ALU64, ADD,  X),			\
1506	INSN_3(ALU64, SUB,  X),			\
1507	INSN_3(ALU64, AND,  X),			\
1508	INSN_3(ALU64, OR,   X),			\
1509	INSN_3(ALU64, LSH,  X),			\
1510	INSN_3(ALU64, RSH,  X),			\
1511	INSN_3(ALU64, XOR,  X),			\
1512	INSN_3(ALU64, MUL,  X),			\
1513	INSN_3(ALU64, MOV,  X),			\
1514	INSN_3(ALU64, ARSH, X),			\
1515	INSN_3(ALU64, DIV,  X),			\
1516	INSN_3(ALU64, MOD,  X),			\
1517	INSN_2(ALU64, NEG),			\
1518	/*   Immediate based. */		\
1519	INSN_3(ALU64, ADD,  K),			\
1520	INSN_3(ALU64, SUB,  K),			\
1521	INSN_3(ALU64, AND,  K),			\
1522	INSN_3(ALU64, OR,   K),			\
1523	INSN_3(ALU64, LSH,  K),			\
1524	INSN_3(ALU64, RSH,  K),			\
1525	INSN_3(ALU64, XOR,  K),			\
1526	INSN_3(ALU64, MUL,  K),			\
1527	INSN_3(ALU64, MOV,  K),			\
1528	INSN_3(ALU64, ARSH, K),			\
1529	INSN_3(ALU64, DIV,  K),			\
1530	INSN_3(ALU64, MOD,  K),			\
1531	/* Call instruction. */			\
1532	INSN_2(JMP, CALL),			\
1533	/* Exit instruction. */			\
1534	INSN_2(JMP, EXIT),			\
1535	/* 32-bit Jump instructions. */		\
1536	/*   Register based. */			\
1537	INSN_3(JMP32, JEQ,  X),			\
1538	INSN_3(JMP32, JNE,  X),			\
1539	INSN_3(JMP32, JGT,  X),			\
1540	INSN_3(JMP32, JLT,  X),			\
1541	INSN_3(JMP32, JGE,  X),			\
1542	INSN_3(JMP32, JLE,  X),			\
1543	INSN_3(JMP32, JSGT, X),			\
1544	INSN_3(JMP32, JSLT, X),			\
1545	INSN_3(JMP32, JSGE, X),			\
1546	INSN_3(JMP32, JSLE, X),			\
1547	INSN_3(JMP32, JSET, X),			\
1548	/*   Immediate based. */		\
1549	INSN_3(JMP32, JEQ,  K),			\
1550	INSN_3(JMP32, JNE,  K),			\
1551	INSN_3(JMP32, JGT,  K),			\
1552	INSN_3(JMP32, JLT,  K),			\
1553	INSN_3(JMP32, JGE,  K),			\
1554	INSN_3(JMP32, JLE,  K),			\
1555	INSN_3(JMP32, JSGT, K),			\
1556	INSN_3(JMP32, JSLT, K),			\
1557	INSN_3(JMP32, JSGE, K),			\
1558	INSN_3(JMP32, JSLE, K),			\
1559	INSN_3(JMP32, JSET, K),			\
1560	/* Jump instructions. */		\
1561	/*   Register based. */			\
1562	INSN_3(JMP, JEQ,  X),			\
1563	INSN_3(JMP, JNE,  X),			\
1564	INSN_3(JMP, JGT,  X),			\
1565	INSN_3(JMP, JLT,  X),			\
1566	INSN_3(JMP, JGE,  X),			\
1567	INSN_3(JMP, JLE,  X),			\
1568	INSN_3(JMP, JSGT, X),			\
1569	INSN_3(JMP, JSLT, X),			\
1570	INSN_3(JMP, JSGE, X),			\
1571	INSN_3(JMP, JSLE, X),			\
1572	INSN_3(JMP, JSET, X),			\
1573	/*   Immediate based. */		\
1574	INSN_3(JMP, JEQ,  K),			\
1575	INSN_3(JMP, JNE,  K),			\
1576	INSN_3(JMP, JGT,  K),			\
1577	INSN_3(JMP, JLT,  K),			\
1578	INSN_3(JMP, JGE,  K),			\
1579	INSN_3(JMP, JLE,  K),			\
1580	INSN_3(JMP, JSGT, K),			\
1581	INSN_3(JMP, JSLT, K),			\
1582	INSN_3(JMP, JSGE, K),			\
1583	INSN_3(JMP, JSLE, K),			\
1584	INSN_3(JMP, JSET, K),			\
1585	INSN_2(JMP, JA),			\
1586	/* Store instructions. */		\
1587	/*   Register based. */			\
1588	INSN_3(STX, MEM,  B),			\
1589	INSN_3(STX, MEM,  H),			\
1590	INSN_3(STX, MEM,  W),			\
1591	INSN_3(STX, MEM,  DW),			\
1592	INSN_3(STX, ATOMIC, W),			\
1593	INSN_3(STX, ATOMIC, DW),		\
1594	/*   Immediate based. */		\
1595	INSN_3(ST, MEM, B),			\
1596	INSN_3(ST, MEM, H),			\
1597	INSN_3(ST, MEM, W),			\
1598	INSN_3(ST, MEM, DW),			\
1599	/* Load instructions. */		\
1600	/*   Register based. */			\
1601	INSN_3(LDX, MEM, B),			\
1602	INSN_3(LDX, MEM, H),			\
1603	INSN_3(LDX, MEM, W),			\
1604	INSN_3(LDX, MEM, DW),			\
1605	/*   Immediate based. */		\
1606	INSN_3(LD, IMM, DW)
1607
1608bool bpf_opcode_in_insntable(u8 code)
1609{
1610#define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1611#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1612	static const bool public_insntable[256] = {
1613		[0 ... 255] = false,
1614		/* Now overwrite non-defaults ... */
1615		BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1616		/* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1617		[BPF_LD | BPF_ABS | BPF_B] = true,
1618		[BPF_LD | BPF_ABS | BPF_H] = true,
1619		[BPF_LD | BPF_ABS | BPF_W] = true,
1620		[BPF_LD | BPF_IND | BPF_B] = true,
1621		[BPF_LD | BPF_IND | BPF_H] = true,
1622		[BPF_LD | BPF_IND | BPF_W] = true,
1623	};
1624#undef BPF_INSN_3_TBL
1625#undef BPF_INSN_2_TBL
1626	return public_insntable[code];
1627}
1628
1629#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1630u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1631{
1632	memset(dst, 0, size);
1633	return -EFAULT;
1634}
1635
1636/**
1637 *	___bpf_prog_run - run eBPF program on a given context
1638 *	@regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1639 *	@insn: is the array of eBPF instructions
1640 *
1641 * Decode and execute eBPF instructions.
1642 *
1643 * Return: whatever value is in %BPF_R0 at program exit
1644 */
1645static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1646{
1647#define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1648#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1649	static const void * const jumptable[256] __annotate_jump_table = {
1650		[0 ... 255] = &&default_label,
1651		/* Now overwrite non-defaults ... */
1652		BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1653		/* Non-UAPI available opcodes. */
1654		[BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1655		[BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1656		[BPF_ST  | BPF_NOSPEC] = &&ST_NOSPEC,
1657		[BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1658		[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1659		[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1660		[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1661	};
1662#undef BPF_INSN_3_LBL
1663#undef BPF_INSN_2_LBL
1664	u32 tail_call_cnt = 0;
1665
1666#define CONT	 ({ insn++; goto select_insn; })
1667#define CONT_JMP ({ insn++; goto select_insn; })
1668
1669select_insn:
1670	goto *jumptable[insn->code];
1671
1672	/* Explicitly mask the register-based shift amounts with 63 or 31
1673	 * to avoid undefined behavior. Normally this won't affect the
1674	 * generated code, for example, in case of native 64 bit archs such
1675	 * as x86-64 or arm64, the compiler is optimizing the AND away for
1676	 * the interpreter. In case of JITs, each of the JIT backends compiles
1677	 * the BPF shift operations to machine instructions which produce
1678	 * implementation-defined results in such a case; the resulting
1679	 * contents of the register may be arbitrary, but program behaviour
1680	 * as a whole remains defined. In other words, in case of JIT backends,
1681	 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1682	 */
1683	/* ALU (shifts) */
1684#define SHT(OPCODE, OP)					\
1685	ALU64_##OPCODE##_X:				\
1686		DST = DST OP (SRC & 63);		\
1687		CONT;					\
1688	ALU_##OPCODE##_X:				\
1689		DST = (u32) DST OP ((u32) SRC & 31);	\
1690		CONT;					\
1691	ALU64_##OPCODE##_K:				\
1692		DST = DST OP IMM;			\
1693		CONT;					\
1694	ALU_##OPCODE##_K:				\
1695		DST = (u32) DST OP (u32) IMM;		\
1696		CONT;
1697	/* ALU (rest) */
1698#define ALU(OPCODE, OP)					\
1699	ALU64_##OPCODE##_X:				\
1700		DST = DST OP SRC;			\
1701		CONT;					\
1702	ALU_##OPCODE##_X:				\
1703		DST = (u32) DST OP (u32) SRC;		\
1704		CONT;					\
1705	ALU64_##OPCODE##_K:				\
1706		DST = DST OP IMM;			\
1707		CONT;					\
1708	ALU_##OPCODE##_K:				\
1709		DST = (u32) DST OP (u32) IMM;		\
1710		CONT;
1711	ALU(ADD,  +)
1712	ALU(SUB,  -)
1713	ALU(AND,  &)
1714	ALU(OR,   |)
1715	ALU(XOR,  ^)
1716	ALU(MUL,  *)
1717	SHT(LSH, <<)
1718	SHT(RSH, >>)
1719#undef SHT
1720#undef ALU
1721	ALU_NEG:
1722		DST = (u32) -DST;
1723		CONT;
1724	ALU64_NEG:
1725		DST = -DST;
1726		CONT;
1727	ALU_MOV_X:
1728		DST = (u32) SRC;
1729		CONT;
1730	ALU_MOV_K:
1731		DST = (u32) IMM;
1732		CONT;
1733	ALU64_MOV_X:
1734		DST = SRC;
1735		CONT;
1736	ALU64_MOV_K:
1737		DST = IMM;
1738		CONT;
1739	LD_IMM_DW:
1740		DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1741		insn++;
1742		CONT;
1743	ALU_ARSH_X:
1744		DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1745		CONT;
1746	ALU_ARSH_K:
1747		DST = (u64) (u32) (((s32) DST) >> IMM);
1748		CONT;
1749	ALU64_ARSH_X:
1750		(*(s64 *) &DST) >>= (SRC & 63);
1751		CONT;
1752	ALU64_ARSH_K:
1753		(*(s64 *) &DST) >>= IMM;
1754		CONT;
1755	ALU64_MOD_X:
1756		div64_u64_rem(DST, SRC, &AX);
1757		DST = AX;
1758		CONT;
1759	ALU_MOD_X:
1760		AX = (u32) DST;
1761		DST = do_div(AX, (u32) SRC);
1762		CONT;
1763	ALU64_MOD_K:
1764		div64_u64_rem(DST, IMM, &AX);
1765		DST = AX;
1766		CONT;
1767	ALU_MOD_K:
1768		AX = (u32) DST;
1769		DST = do_div(AX, (u32) IMM);
1770		CONT;
1771	ALU64_DIV_X:
1772		DST = div64_u64(DST, SRC);
1773		CONT;
1774	ALU_DIV_X:
1775		AX = (u32) DST;
1776		do_div(AX, (u32) SRC);
1777		DST = (u32) AX;
1778		CONT;
1779	ALU64_DIV_K:
1780		DST = div64_u64(DST, IMM);
1781		CONT;
1782	ALU_DIV_K:
1783		AX = (u32) DST;
1784		do_div(AX, (u32) IMM);
1785		DST = (u32) AX;
1786		CONT;
1787	ALU_END_TO_BE:
1788		switch (IMM) {
1789		case 16:
1790			DST = (__force u16) cpu_to_be16(DST);
1791			break;
1792		case 32:
1793			DST = (__force u32) cpu_to_be32(DST);
1794			break;
1795		case 64:
1796			DST = (__force u64) cpu_to_be64(DST);
1797			break;
1798		}
1799		CONT;
1800	ALU_END_TO_LE:
1801		switch (IMM) {
1802		case 16:
1803			DST = (__force u16) cpu_to_le16(DST);
1804			break;
1805		case 32:
1806			DST = (__force u32) cpu_to_le32(DST);
1807			break;
1808		case 64:
1809			DST = (__force u64) cpu_to_le64(DST);
1810			break;
1811		}
1812		CONT;
1813
1814	/* CALL */
1815	JMP_CALL:
1816		/* Function call scratches BPF_R1-BPF_R5 registers,
1817		 * preserves BPF_R6-BPF_R9, and stores return value
1818		 * into BPF_R0.
1819		 */
1820		BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1821						       BPF_R4, BPF_R5);
1822		CONT;
1823
1824	JMP_CALL_ARGS:
1825		BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1826							    BPF_R3, BPF_R4,
1827							    BPF_R5,
1828							    insn + insn->off + 1);
1829		CONT;
1830
1831	JMP_TAIL_CALL: {
1832		struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1833		struct bpf_array *array = container_of(map, struct bpf_array, map);
1834		struct bpf_prog *prog;
1835		u32 index = BPF_R3;
1836
1837		if (unlikely(index >= array->map.max_entries))
1838			goto out;
1839
1840		if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1841			goto out;
1842
1843		tail_call_cnt++;
1844
1845		prog = READ_ONCE(array->ptrs[index]);
1846		if (!prog)
1847			goto out;
1848
1849		/* ARG1 at this point is guaranteed to point to CTX from
1850		 * the verifier side due to the fact that the tail call is
1851		 * handled like a helper, that is, bpf_tail_call_proto,
1852		 * where arg1_type is ARG_PTR_TO_CTX.
1853		 */
1854		insn = prog->insnsi;
1855		goto select_insn;
1856out:
1857		CONT;
1858	}
1859	JMP_JA:
1860		insn += insn->off;
1861		CONT;
1862	JMP_EXIT:
1863		return BPF_R0;
1864	/* JMP */
1865#define COND_JMP(SIGN, OPCODE, CMP_OP)				\
1866	JMP_##OPCODE##_X:					\
1867		if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {	\
1868			insn += insn->off;			\
1869			CONT_JMP;				\
1870		}						\
1871		CONT;						\
1872	JMP32_##OPCODE##_X:					\
1873		if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {	\
1874			insn += insn->off;			\
1875			CONT_JMP;				\
1876		}						\
1877		CONT;						\
1878	JMP_##OPCODE##_K:					\
1879		if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {	\
1880			insn += insn->off;			\
1881			CONT_JMP;				\
1882		}						\
1883		CONT;						\
1884	JMP32_##OPCODE##_K:					\
1885		if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {	\
1886			insn += insn->off;			\
1887			CONT_JMP;				\
1888		}						\
1889		CONT;
1890	COND_JMP(u, JEQ, ==)
1891	COND_JMP(u, JNE, !=)
1892	COND_JMP(u, JGT, >)
1893	COND_JMP(u, JLT, <)
1894	COND_JMP(u, JGE, >=)
1895	COND_JMP(u, JLE, <=)
1896	COND_JMP(u, JSET, &)
1897	COND_JMP(s, JSGT, >)
1898	COND_JMP(s, JSLT, <)
1899	COND_JMP(s, JSGE, >=)
1900	COND_JMP(s, JSLE, <=)
1901#undef COND_JMP
1902	/* ST, STX and LDX*/
1903	ST_NOSPEC:
1904		/* Speculation barrier for mitigating Speculative Store Bypass.
1905		 * In case of arm64, we rely on the firmware mitigation as
1906		 * controlled via the ssbd kernel parameter. Whenever the
1907		 * mitigation is enabled, it works for all of the kernel code
1908		 * with no need to provide any additional instructions here.
1909		 * In case of x86, we use 'lfence' insn for mitigation. We
1910		 * reuse preexisting logic from Spectre v1 mitigation that
1911		 * happens to produce the required code on x86 for v4 as well.
1912		 */
1913#ifdef CONFIG_X86
1914		barrier_nospec();
1915#endif
1916		CONT;
1917#define LDST(SIZEOP, SIZE)						\
1918	STX_MEM_##SIZEOP:						\
1919		*(SIZE *)(unsigned long) (DST + insn->off) = SRC;	\
1920		CONT;							\
1921	ST_MEM_##SIZEOP:						\
1922		*(SIZE *)(unsigned long) (DST + insn->off) = IMM;	\
1923		CONT;							\
1924	LDX_MEM_##SIZEOP:						\
1925		DST = *(SIZE *)(unsigned long) (SRC + insn->off);	\
1926		CONT;							\
1927	LDX_PROBE_MEM_##SIZEOP:						\
1928		bpf_probe_read_kernel(&DST, sizeof(SIZE),		\
1929				      (const void *)(long) (SRC + insn->off));	\
1930		DST = *((SIZE *)&DST);					\
1931		CONT;
1932
1933	LDST(B,   u8)
1934	LDST(H,  u16)
1935	LDST(W,  u32)
1936	LDST(DW, u64)
1937#undef LDST
1938
1939#define ATOMIC_ALU_OP(BOP, KOP)						\
1940		case BOP:						\
1941			if (BPF_SIZE(insn->code) == BPF_W)		\
1942				atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1943					     (DST + insn->off));	\
1944			else						\
1945				atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1946					       (DST + insn->off));	\
1947			break;						\
1948		case BOP | BPF_FETCH:					\
1949			if (BPF_SIZE(insn->code) == BPF_W)		\
1950				SRC = (u32) atomic_fetch_##KOP(		\
1951					(u32) SRC,			\
1952					(atomic_t *)(unsigned long) (DST + insn->off)); \
1953			else						\
1954				SRC = (u64) atomic64_fetch_##KOP(	\
1955					(u64) SRC,			\
1956					(atomic64_t *)(unsigned long) (DST + insn->off)); \
1957			break;
1958
1959	STX_ATOMIC_DW:
1960	STX_ATOMIC_W:
1961		switch (IMM) {
1962		ATOMIC_ALU_OP(BPF_ADD, add)
1963		ATOMIC_ALU_OP(BPF_AND, and)
1964		ATOMIC_ALU_OP(BPF_OR, or)
1965		ATOMIC_ALU_OP(BPF_XOR, xor)
1966#undef ATOMIC_ALU_OP
1967
1968		case BPF_XCHG:
1969			if (BPF_SIZE(insn->code) == BPF_W)
1970				SRC = (u32) atomic_xchg(
1971					(atomic_t *)(unsigned long) (DST + insn->off),
1972					(u32) SRC);
1973			else
1974				SRC = (u64) atomic64_xchg(
1975					(atomic64_t *)(unsigned long) (DST + insn->off),
1976					(u64) SRC);
1977			break;
1978		case BPF_CMPXCHG:
1979			if (BPF_SIZE(insn->code) == BPF_W)
1980				BPF_R0 = (u32) atomic_cmpxchg(
1981					(atomic_t *)(unsigned long) (DST + insn->off),
1982					(u32) BPF_R0, (u32) SRC);
1983			else
1984				BPF_R0 = (u64) atomic64_cmpxchg(
1985					(atomic64_t *)(unsigned long) (DST + insn->off),
1986					(u64) BPF_R0, (u64) SRC);
1987			break;
1988
1989		default:
1990			goto default_label;
1991		}
1992		CONT;
1993
1994	default_label:
1995		/* If we ever reach this, we have a bug somewhere. Die hard here
1996		 * instead of just returning 0; we could be somewhere in a subprog,
1997		 * so execution could continue otherwise which we do /not/ want.
1998		 *
1999		 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2000		 */
2001		pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2002			insn->code, insn->imm);
2003		BUG_ON(1);
2004		return 0;
2005}
2006
2007#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2008#define DEFINE_BPF_PROG_RUN(stack_size) \
2009static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2010{ \
2011	u64 stack[stack_size / sizeof(u64)]; \
2012	u64 regs[MAX_BPF_EXT_REG] = {}; \
2013\
2014	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2015	ARG1 = (u64) (unsigned long) ctx; \
2016	return ___bpf_prog_run(regs, insn); \
2017}
2018
2019#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2020#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2021static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2022				      const struct bpf_insn *insn) \
2023{ \
2024	u64 stack[stack_size / sizeof(u64)]; \
2025	u64 regs[MAX_BPF_EXT_REG]; \
2026\
2027	FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2028	BPF_R1 = r1; \
2029	BPF_R2 = r2; \
2030	BPF_R3 = r3; \
2031	BPF_R4 = r4; \
2032	BPF_R5 = r5; \
2033	return ___bpf_prog_run(regs, insn); \
2034}
2035
2036#define EVAL1(FN, X) FN(X)
2037#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2038#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2039#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2040#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2041#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2042
2043EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2044EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2045EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2046
2047EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2048EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2049EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2050
2051#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2052
2053static unsigned int (*interpreters[])(const void *ctx,
2054				      const struct bpf_insn *insn) = {
2055EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2056EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2057EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2058};
2059#undef PROG_NAME_LIST
2060#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2061static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2062				  const struct bpf_insn *insn) = {
2063EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2064EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2065EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2066};
2067#undef PROG_NAME_LIST
2068
2069void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2070{
2071	stack_depth = max_t(u32, stack_depth, 1);
2072	insn->off = (s16) insn->imm;
2073	insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2074		__bpf_call_base_args;
2075	insn->code = BPF_JMP | BPF_CALL_ARGS;
2076}
2077
2078#else
2079static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2080					 const struct bpf_insn *insn)
2081{
2082	/* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2083	 * is not working properly, so warn about it!
2084	 */
2085	WARN_ON_ONCE(1);
2086	return 0;
2087}
2088#endif
2089
2090bool bpf_prog_map_compatible(struct bpf_map *map,
2091			     const struct bpf_prog *fp)
2092{
2093	enum bpf_prog_type prog_type = resolve_prog_type(fp);
2094	bool ret;
2095
2096	if (fp->kprobe_override)
2097		return false;
2098
2099	spin_lock(&map->owner.lock);
2100	if (!map->owner.type) {
2101		/* There's no owner yet where we could check for
2102		 * compatibility.
2103		 */
2104		map->owner.type  = prog_type;
2105		map->owner.jited = fp->jited;
2106		map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2107		ret = true;
2108	} else {
2109		ret = map->owner.type  == prog_type &&
2110		      map->owner.jited == fp->jited &&
2111		      map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2112	}
2113	spin_unlock(&map->owner.lock);
2114
2115	return ret;
2116}
2117
2118static int bpf_check_tail_call(const struct bpf_prog *fp)
2119{
2120	struct bpf_prog_aux *aux = fp->aux;
2121	int i, ret = 0;
2122
2123	mutex_lock(&aux->used_maps_mutex);
2124	for (i = 0; i < aux->used_map_cnt; i++) {
2125		struct bpf_map *map = aux->used_maps[i];
2126
2127		if (!map_type_contains_progs(map))
2128			continue;
2129
2130		if (!bpf_prog_map_compatible(map, fp)) {
2131			ret = -EINVAL;
2132			goto out;
2133		}
2134	}
2135
2136out:
2137	mutex_unlock(&aux->used_maps_mutex);
2138	return ret;
2139}
2140
2141static void bpf_prog_select_func(struct bpf_prog *fp)
2142{
2143#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2144	u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2145
2146	fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2147#else
2148	fp->bpf_func = __bpf_prog_ret0_warn;
2149#endif
2150}
2151
2152/**
2153 *	bpf_prog_select_runtime - select exec runtime for BPF program
2154 *	@fp: bpf_prog populated with BPF program
2155 *	@err: pointer to error variable
2156 *
2157 * Try to JIT eBPF program, if JIT is not available, use interpreter.
2158 * The BPF program will be executed via bpf_prog_run() function.
2159 *
2160 * Return: the &fp argument along with &err set to 0 for success or
2161 * a negative errno code on failure
2162 */
2163struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2164{
2165	/* In case of BPF to BPF calls, verifier did all the prep
2166	 * work with regards to JITing, etc.
2167	 */
2168	bool jit_needed = false;
2169
2170	if (fp->bpf_func)
2171		goto finalize;
2172
2173	if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2174	    bpf_prog_has_kfunc_call(fp))
2175		jit_needed = true;
2176
2177	bpf_prog_select_func(fp);
2178
2179	/* eBPF JITs can rewrite the program in case constant
2180	 * blinding is active. However, in case of error during
2181	 * blinding, bpf_int_jit_compile() must always return a
2182	 * valid program, which in this case would simply not
2183	 * be JITed, but falls back to the interpreter.
2184	 */
2185	if (!bpf_prog_is_dev_bound(fp->aux)) {
2186		*err = bpf_prog_alloc_jited_linfo(fp);
2187		if (*err)
2188			return fp;
2189
2190		fp = bpf_int_jit_compile(fp);
2191		bpf_prog_jit_attempt_done(fp);
2192		if (!fp->jited && jit_needed) {
2193			*err = -ENOTSUPP;
2194			return fp;
2195		}
2196	} else {
2197		*err = bpf_prog_offload_compile(fp);
2198		if (*err)
2199			return fp;
2200	}
2201
2202finalize:
2203	bpf_prog_lock_ro(fp);
2204
2205	/* The tail call compatibility check can only be done at
2206	 * this late stage as we need to determine, if we deal
2207	 * with JITed or non JITed program concatenations and not
2208	 * all eBPF JITs might immediately support all features.
2209	 */
2210	*err = bpf_check_tail_call(fp);
2211
2212	return fp;
2213}
2214EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2215
2216static unsigned int __bpf_prog_ret1(const void *ctx,
2217				    const struct bpf_insn *insn)
2218{
2219	return 1;
2220}
2221
2222static struct bpf_prog_dummy {
2223	struct bpf_prog prog;
2224} dummy_bpf_prog = {
2225	.prog = {
2226		.bpf_func = __bpf_prog_ret1,
2227	},
2228};
2229
2230struct bpf_empty_prog_array bpf_empty_prog_array = {
2231	.null_prog = NULL,
2232};
2233EXPORT_SYMBOL(bpf_empty_prog_array);
2234
2235struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2236{
2237	if (prog_cnt)
2238		return kzalloc(sizeof(struct bpf_prog_array) +
2239			       sizeof(struct bpf_prog_array_item) *
2240			       (prog_cnt + 1),
2241			       flags);
2242
2243	return &bpf_empty_prog_array.hdr;
2244}
2245
2246void bpf_prog_array_free(struct bpf_prog_array *progs)
2247{
2248	if (!progs || progs == &bpf_empty_prog_array.hdr)
2249		return;
2250	kfree_rcu(progs, rcu);
2251}
2252
2253static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2254{
2255	struct bpf_prog_array *progs;
2256
2257	/* If RCU Tasks Trace grace period implies RCU grace period, there is
2258	 * no need to call kfree_rcu(), just call kfree() directly.
2259	 */
2260	progs = container_of(rcu, struct bpf_prog_array, rcu);
2261	if (rcu_trace_implies_rcu_gp())
2262		kfree(progs);
2263	else
2264		kfree_rcu(progs, rcu);
2265}
2266
2267void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2268{
2269	if (!progs || progs == &bpf_empty_prog_array.hdr)
2270		return;
2271	call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2272}
2273
2274int bpf_prog_array_length(struct bpf_prog_array *array)
2275{
2276	struct bpf_prog_array_item *item;
2277	u32 cnt = 0;
2278
2279	for (item = array->items; item->prog; item++)
2280		if (item->prog != &dummy_bpf_prog.prog)
2281			cnt++;
2282	return cnt;
2283}
2284
2285bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2286{
2287	struct bpf_prog_array_item *item;
2288
2289	for (item = array->items; item->prog; item++)
2290		if (item->prog != &dummy_bpf_prog.prog)
2291			return false;
2292	return true;
2293}
2294
2295static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2296				     u32 *prog_ids,
2297				     u32 request_cnt)
2298{
2299	struct bpf_prog_array_item *item;
2300	int i = 0;
2301
2302	for (item = array->items; item->prog; item++) {
2303		if (item->prog == &dummy_bpf_prog.prog)
2304			continue;
2305		prog_ids[i] = item->prog->aux->id;
2306		if (++i == request_cnt) {
2307			item++;
2308			break;
2309		}
2310	}
2311
2312	return !!(item->prog);
2313}
2314
2315int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2316				__u32 __user *prog_ids, u32 cnt)
2317{
2318	unsigned long err = 0;
2319	bool nospc;
2320	u32 *ids;
2321
2322	/* users of this function are doing:
2323	 * cnt = bpf_prog_array_length();
2324	 * if (cnt > 0)
2325	 *     bpf_prog_array_copy_to_user(..., cnt);
2326	 * so below kcalloc doesn't need extra cnt > 0 check.
2327	 */
2328	ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2329	if (!ids)
2330		return -ENOMEM;
2331	nospc = bpf_prog_array_copy_core(array, ids, cnt);
2332	err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2333	kfree(ids);
2334	if (err)
2335		return -EFAULT;
2336	if (nospc)
2337		return -ENOSPC;
2338	return 0;
2339}
2340
2341void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2342				struct bpf_prog *old_prog)
2343{
2344	struct bpf_prog_array_item *item;
2345
2346	for (item = array->items; item->prog; item++)
2347		if (item->prog == old_prog) {
2348			WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2349			break;
2350		}
2351}
2352
2353/**
2354 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2355 *                                   index into the program array with
2356 *                                   a dummy no-op program.
2357 * @array: a bpf_prog_array
2358 * @index: the index of the program to replace
2359 *
2360 * Skips over dummy programs, by not counting them, when calculating
2361 * the position of the program to replace.
2362 *
2363 * Return:
2364 * * 0		- Success
2365 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2366 * * -ENOENT	- Index out of range
2367 */
2368int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2369{
2370	return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2371}
2372
2373/**
2374 * bpf_prog_array_update_at() - Updates the program at the given index
2375 *                              into the program array.
2376 * @array: a bpf_prog_array
2377 * @index: the index of the program to update
2378 * @prog: the program to insert into the array
2379 *
2380 * Skips over dummy programs, by not counting them, when calculating
2381 * the position of the program to update.
2382 *
2383 * Return:
2384 * * 0		- Success
2385 * * -EINVAL	- Invalid index value. Must be a non-negative integer.
2386 * * -ENOENT	- Index out of range
2387 */
2388int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2389			     struct bpf_prog *prog)
2390{
2391	struct bpf_prog_array_item *item;
2392
2393	if (unlikely(index < 0))
2394		return -EINVAL;
2395
2396	for (item = array->items; item->prog; item++) {
2397		if (item->prog == &dummy_bpf_prog.prog)
2398			continue;
2399		if (!index) {
2400			WRITE_ONCE(item->prog, prog);
2401			return 0;
2402		}
2403		index--;
2404	}
2405	return -ENOENT;
2406}
2407
2408int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2409			struct bpf_prog *exclude_prog,
2410			struct bpf_prog *include_prog,
2411			u64 bpf_cookie,
2412			struct bpf_prog_array **new_array)
2413{
2414	int new_prog_cnt, carry_prog_cnt = 0;
2415	struct bpf_prog_array_item *existing, *new;
2416	struct bpf_prog_array *array;
2417	bool found_exclude = false;
2418
2419	/* Figure out how many existing progs we need to carry over to
2420	 * the new array.
2421	 */
2422	if (old_array) {
2423		existing = old_array->items;
2424		for (; existing->prog; existing++) {
2425			if (existing->prog == exclude_prog) {
2426				found_exclude = true;
2427				continue;
2428			}
2429			if (existing->prog != &dummy_bpf_prog.prog)
2430				carry_prog_cnt++;
2431			if (existing->prog == include_prog)
2432				return -EEXIST;
2433		}
2434	}
2435
2436	if (exclude_prog && !found_exclude)
2437		return -ENOENT;
2438
2439	/* How many progs (not NULL) will be in the new array? */
2440	new_prog_cnt = carry_prog_cnt;
2441	if (include_prog)
2442		new_prog_cnt += 1;
2443
2444	/* Do we have any prog (not NULL) in the new array? */
2445	if (!new_prog_cnt) {
2446		*new_array = NULL;
2447		return 0;
2448	}
2449
2450	/* +1 as the end of prog_array is marked with NULL */
2451	array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2452	if (!array)
2453		return -ENOMEM;
2454	new = array->items;
2455
2456	/* Fill in the new prog array */
2457	if (carry_prog_cnt) {
2458		existing = old_array->items;
2459		for (; existing->prog; existing++) {
2460			if (existing->prog == exclude_prog ||
2461			    existing->prog == &dummy_bpf_prog.prog)
2462				continue;
2463
2464			new->prog = existing->prog;
2465			new->bpf_cookie = existing->bpf_cookie;
2466			new++;
2467		}
2468	}
2469	if (include_prog) {
2470		new->prog = include_prog;
2471		new->bpf_cookie = bpf_cookie;
2472		new++;
2473	}
2474	new->prog = NULL;
2475	*new_array = array;
2476	return 0;
2477}
2478
2479int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2480			     u32 *prog_ids, u32 request_cnt,
2481			     u32 *prog_cnt)
2482{
2483	u32 cnt = 0;
2484
2485	if (array)
2486		cnt = bpf_prog_array_length(array);
2487
2488	*prog_cnt = cnt;
2489
2490	/* return early if user requested only program count or nothing to copy */
2491	if (!request_cnt || !cnt)
2492		return 0;
2493
2494	/* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2495	return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2496								     : 0;
2497}
2498
2499void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2500			  struct bpf_map **used_maps, u32 len)
2501{
2502	struct bpf_map *map;
2503	u32 i;
2504
2505	for (i = 0; i < len; i++) {
2506		map = used_maps[i];
2507		if (map->ops->map_poke_untrack)
2508			map->ops->map_poke_untrack(map, aux);
2509		bpf_map_put(map);
2510	}
2511}
2512
2513static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2514{
2515	__bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2516	kfree(aux->used_maps);
2517}
2518
2519void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2520			  struct btf_mod_pair *used_btfs, u32 len)
2521{
2522#ifdef CONFIG_BPF_SYSCALL
2523	struct btf_mod_pair *btf_mod;
2524	u32 i;
2525
2526	for (i = 0; i < len; i++) {
2527		btf_mod = &used_btfs[i];
2528		if (btf_mod->module)
2529			module_put(btf_mod->module);
2530		btf_put(btf_mod->btf);
2531	}
2532#endif
2533}
2534
2535static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2536{
2537	__bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2538	kfree(aux->used_btfs);
2539}
2540
2541static void bpf_prog_free_deferred(struct work_struct *work)
2542{
2543	struct bpf_prog_aux *aux;
2544	int i;
2545
2546	aux = container_of(work, struct bpf_prog_aux, work);
2547#ifdef CONFIG_BPF_SYSCALL
2548	bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2549#endif
2550#ifdef CONFIG_CGROUP_BPF
2551	if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2552		bpf_cgroup_atype_put(aux->cgroup_atype);
2553#endif
2554	bpf_free_used_maps(aux);
2555	bpf_free_used_btfs(aux);
2556	if (bpf_prog_is_dev_bound(aux))
2557		bpf_prog_offload_destroy(aux->prog);
2558#ifdef CONFIG_PERF_EVENTS
2559	if (aux->prog->has_callchain_buf)
2560		put_callchain_buffers();
2561#endif
2562	if (aux->dst_trampoline)
2563		bpf_trampoline_put(aux->dst_trampoline);
2564	for (i = 0; i < aux->func_cnt; i++) {
2565		/* We can just unlink the subprog poke descriptor table as
2566		 * it was originally linked to the main program and is also
2567		 * released along with it.
2568		 */
2569		aux->func[i]->aux->poke_tab = NULL;
2570		bpf_jit_free(aux->func[i]);
2571	}
2572	if (aux->func_cnt) {
2573		kfree(aux->func);
2574		bpf_prog_unlock_free(aux->prog);
2575	} else {
2576		bpf_jit_free(aux->prog);
2577	}
2578}
2579
2580void bpf_prog_free(struct bpf_prog *fp)
2581{
2582	struct bpf_prog_aux *aux = fp->aux;
2583
2584	if (aux->dst_prog)
2585		bpf_prog_put(aux->dst_prog);
2586	INIT_WORK(&aux->work, bpf_prog_free_deferred);
2587	schedule_work(&aux->work);
2588}
2589EXPORT_SYMBOL_GPL(bpf_prog_free);
2590
2591/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2592static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2593
2594void bpf_user_rnd_init_once(void)
2595{
2596	prandom_init_once(&bpf_user_rnd_state);
2597}
2598
2599BPF_CALL_0(bpf_user_rnd_u32)
2600{
2601	/* Should someone ever have the rather unwise idea to use some
2602	 * of the registers passed into this function, then note that
2603	 * this function is called from native eBPF and classic-to-eBPF
2604	 * transformations. Register assignments from both sides are
2605	 * different, f.e. classic always sets fn(ctx, A, X) here.
2606	 */
2607	struct rnd_state *state;
2608	u32 res;
2609
2610	state = &get_cpu_var(bpf_user_rnd_state);
2611	res = prandom_u32_state(state);
2612	put_cpu_var(bpf_user_rnd_state);
2613
2614	return res;
2615}
2616
2617BPF_CALL_0(bpf_get_raw_cpu_id)
2618{
2619	return raw_smp_processor_id();
2620}
2621
2622/* Weak definitions of helper functions in case we don't have bpf syscall. */
2623const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2624const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2625const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2626const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2627const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2628const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2629const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2630const struct bpf_func_proto bpf_spin_lock_proto __weak;
2631const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2632const struct bpf_func_proto bpf_jiffies64_proto __weak;
2633
2634const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2635const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2636const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2637const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2638const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2639const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2640const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
2641
2642const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2643const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2644const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2645const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2646const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2647const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2648const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2649const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2650const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2651const struct bpf_func_proto bpf_set_retval_proto __weak;
2652const struct bpf_func_proto bpf_get_retval_proto __weak;
2653
2654const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2655{
2656	return NULL;
2657}
2658
2659const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2660{
2661	return NULL;
2662}
2663
2664u64 __weak
2665bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2666		 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2667{
2668	return -ENOTSUPP;
2669}
2670EXPORT_SYMBOL_GPL(bpf_event_output);
2671
2672/* Always built-in helper functions. */
2673const struct bpf_func_proto bpf_tail_call_proto = {
2674	.func		= NULL,
2675	.gpl_only	= false,
2676	.ret_type	= RET_VOID,
2677	.arg1_type	= ARG_PTR_TO_CTX,
2678	.arg2_type	= ARG_CONST_MAP_PTR,
2679	.arg3_type	= ARG_ANYTHING,
2680};
2681
2682/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2683 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2684 * eBPF and implicitly also cBPF can get JITed!
2685 */
2686struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2687{
2688	return prog;
2689}
2690
2691/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2692 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2693 */
2694void __weak bpf_jit_compile(struct bpf_prog *prog)
2695{
2696}
2697
2698bool __weak bpf_helper_changes_pkt_data(void *func)
2699{
2700	return false;
2701}
2702
2703/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2704 * analysis code and wants explicit zero extension inserted by verifier.
2705 * Otherwise, return FALSE.
2706 *
2707 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2708 * you don't override this. JITs that don't want these extra insns can detect
2709 * them using insn_is_zext.
2710 */
2711bool __weak bpf_jit_needs_zext(void)
2712{
2713	return false;
2714}
2715
2716/* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2717bool __weak bpf_jit_supports_subprog_tailcalls(void)
2718{
2719	return false;
2720}
2721
2722bool __weak bpf_jit_supports_kfunc_call(void)
2723{
2724	return false;
2725}
2726
2727/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2728 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2729 */
2730int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2731			 int len)
2732{
2733	return -EFAULT;
2734}
2735
2736int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2737			      void *addr1, void *addr2)
2738{
2739	return -ENOTSUPP;
2740}
2741
2742void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2743{
2744	return ERR_PTR(-ENOTSUPP);
2745}
2746
2747int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2748{
2749	return -ENOTSUPP;
2750}
2751
2752#ifdef CONFIG_BPF_SYSCALL
2753static int __init bpf_global_ma_init(void)
2754{
2755	int ret;
2756
2757	ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
2758	bpf_global_ma_set = !ret;
2759	return ret;
2760}
2761late_initcall(bpf_global_ma_init);
2762#endif
2763
2764DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2765EXPORT_SYMBOL(bpf_stats_enabled_key);
2766
2767/* All definitions of tracepoints related to BPF. */
2768#define CREATE_TRACE_POINTS
2769#include <linux/bpf_trace.h>
2770
2771EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2772EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);