Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4 * Copyright (c) 2008 Dave Chinner
  5 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7#include "xfs.h"
  8#include "xfs_fs.h"
  9#include "xfs_shared.h"
 10#include "xfs_format.h"
 11#include "xfs_log_format.h"
 12#include "xfs_trans_resv.h"
 
 
 13#include "xfs_mount.h"
 14#include "xfs_trans.h"
 15#include "xfs_trans_priv.h"
 16#include "xfs_trace.h"
 17#include "xfs_errortag.h"
 18#include "xfs_error.h"
 19#include "xfs_log.h"
 20#include "xfs_log_priv.h"
 21
 22#ifdef DEBUG
 23/*
 24 * Check that the list is sorted as it should be.
 25 *
 26 * Called with the ail lock held, but we don't want to assert fail with it
 27 * held otherwise we'll lock everything up and won't be able to debug the
 28 * cause. Hence we sample and check the state under the AIL lock and return if
 29 * everything is fine, otherwise we drop the lock and run the ASSERT checks.
 30 * Asserts may not be fatal, so pick the lock back up and continue onwards.
 31 */
 32STATIC void
 33xfs_ail_check(
 34	struct xfs_ail		*ailp,
 35	struct xfs_log_item	*lip)
 36	__must_hold(&ailp->ail_lock)
 37{
 38	struct xfs_log_item	*prev_lip;
 39	struct xfs_log_item	*next_lip;
 40	xfs_lsn_t		prev_lsn = NULLCOMMITLSN;
 41	xfs_lsn_t		next_lsn = NULLCOMMITLSN;
 42	xfs_lsn_t		lsn;
 43	bool			in_ail;
 44
 45
 46	if (list_empty(&ailp->ail_head))
 47		return;
 48
 49	/*
 50	 * Sample then check the next and previous entries are valid.
 51	 */
 52	in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags);
 53	prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail);
 54	if (&prev_lip->li_ail != &ailp->ail_head)
 55		prev_lsn = prev_lip->li_lsn;
 56	next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail);
 57	if (&next_lip->li_ail != &ailp->ail_head)
 58		next_lsn = next_lip->li_lsn;
 59	lsn = lip->li_lsn;
 60
 61	if (in_ail &&
 62	    (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) &&
 63	    (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0))
 64		return;
 65
 66	spin_unlock(&ailp->ail_lock);
 67	ASSERT(in_ail);
 68	ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0);
 69	ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0);
 70	spin_lock(&ailp->ail_lock);
 71}
 72#else /* !DEBUG */
 73#define	xfs_ail_check(a,l)
 74#endif /* DEBUG */
 75
 76/*
 77 * Return a pointer to the last item in the AIL.  If the AIL is empty, then
 78 * return NULL.
 79 */
 80static struct xfs_log_item *
 81xfs_ail_max(
 82	struct xfs_ail  *ailp)
 83{
 84	if (list_empty(&ailp->ail_head))
 85		return NULL;
 86
 87	return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail);
 88}
 89
 90/*
 91 * Return a pointer to the item which follows the given item in the AIL.  If
 92 * the given item is the last item in the list, then return NULL.
 93 */
 94static struct xfs_log_item *
 95xfs_ail_next(
 96	struct xfs_ail		*ailp,
 97	struct xfs_log_item	*lip)
 98{
 99	if (lip->li_ail.next == &ailp->ail_head)
100		return NULL;
101
102	return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail);
103}
104
105/*
106 * This is called by the log manager code to determine the LSN of the tail of
107 * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
108 * is empty, then this function returns 0.
109 *
110 * We need the AIL lock in order to get a coherent read of the lsn of the last
111 * item in the AIL.
112 */
113static xfs_lsn_t
114__xfs_ail_min_lsn(
115	struct xfs_ail		*ailp)
116{
117	struct xfs_log_item	*lip = xfs_ail_min(ailp);
118
119	if (lip)
120		return lip->li_lsn;
121	return 0;
122}
123
124xfs_lsn_t
125xfs_ail_min_lsn(
126	struct xfs_ail		*ailp)
127{
128	xfs_lsn_t		lsn;
 
129
130	spin_lock(&ailp->ail_lock);
131	lsn = __xfs_ail_min_lsn(ailp);
132	spin_unlock(&ailp->ail_lock);
 
 
133
134	return lsn;
135}
136
137/*
138 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
139 */
140static xfs_lsn_t
141xfs_ail_max_lsn(
142	struct xfs_ail		*ailp)
143{
144	xfs_lsn_t       	lsn = 0;
145	struct xfs_log_item	*lip;
146
147	spin_lock(&ailp->ail_lock);
148	lip = xfs_ail_max(ailp);
149	if (lip)
150		lsn = lip->li_lsn;
151	spin_unlock(&ailp->ail_lock);
152
153	return lsn;
154}
155
156/*
157 * The cursor keeps track of where our current traversal is up to by tracking
158 * the next item in the list for us. However, for this to be safe, removing an
159 * object from the AIL needs to invalidate any cursor that points to it. hence
160 * the traversal cursor needs to be linked to the struct xfs_ail so that
161 * deletion can search all the active cursors for invalidation.
162 */
163STATIC void
164xfs_trans_ail_cursor_init(
165	struct xfs_ail		*ailp,
166	struct xfs_ail_cursor	*cur)
167{
168	cur->item = NULL;
169	list_add_tail(&cur->list, &ailp->ail_cursors);
170}
171
172/*
173 * Get the next item in the traversal and advance the cursor.  If the cursor
174 * was invalidated (indicated by a lip of 1), restart the traversal.
175 */
176struct xfs_log_item *
177xfs_trans_ail_cursor_next(
178	struct xfs_ail		*ailp,
179	struct xfs_ail_cursor	*cur)
180{
181	struct xfs_log_item	*lip = cur->item;
182
183	if ((uintptr_t)lip & 1)
184		lip = xfs_ail_min(ailp);
185	if (lip)
186		cur->item = xfs_ail_next(ailp, lip);
187	return lip;
188}
189
190/*
191 * When the traversal is complete, we need to remove the cursor from the list
192 * of traversing cursors.
193 */
194void
195xfs_trans_ail_cursor_done(
 
196	struct xfs_ail_cursor	*cur)
197{
198	cur->item = NULL;
199	list_del_init(&cur->list);
200}
201
202/*
203 * Invalidate any cursor that is pointing to this item. This is called when an
204 * item is removed from the AIL. Any cursor pointing to this object is now
205 * invalid and the traversal needs to be terminated so it doesn't reference a
206 * freed object. We set the low bit of the cursor item pointer so we can
207 * distinguish between an invalidation and the end of the list when getting the
208 * next item from the cursor.
209 */
210STATIC void
211xfs_trans_ail_cursor_clear(
212	struct xfs_ail		*ailp,
213	struct xfs_log_item	*lip)
214{
215	struct xfs_ail_cursor	*cur;
216
217	list_for_each_entry(cur, &ailp->ail_cursors, list) {
218		if (cur->item == lip)
219			cur->item = (struct xfs_log_item *)
220					((uintptr_t)cur->item | 1);
221	}
222}
223
224/*
225 * Find the first item in the AIL with the given @lsn by searching in ascending
226 * LSN order and initialise the cursor to point to the next item for a
227 * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
228 * first item in the AIL. Returns NULL if the list is empty.
229 */
230struct xfs_log_item *
231xfs_trans_ail_cursor_first(
232	struct xfs_ail		*ailp,
233	struct xfs_ail_cursor	*cur,
234	xfs_lsn_t		lsn)
235{
236	struct xfs_log_item	*lip;
237
238	xfs_trans_ail_cursor_init(ailp, cur);
239
240	if (lsn == 0) {
241		lip = xfs_ail_min(ailp);
242		goto out;
243	}
244
245	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
246		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
247			goto out;
248	}
249	return NULL;
250
251out:
252	if (lip)
253		cur->item = xfs_ail_next(ailp, lip);
254	return lip;
255}
256
257static struct xfs_log_item *
258__xfs_trans_ail_cursor_last(
259	struct xfs_ail		*ailp,
260	xfs_lsn_t		lsn)
261{
262	struct xfs_log_item	*lip;
263
264	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
265		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
266			return lip;
267	}
268	return NULL;
269}
270
271/*
272 * Find the last item in the AIL with the given @lsn by searching in descending
273 * LSN order and initialise the cursor to point to that item.  If there is no
274 * item with the value of @lsn, then it sets the cursor to the last item with an
275 * LSN lower than @lsn.  Returns NULL if the list is empty.
276 */
277struct xfs_log_item *
278xfs_trans_ail_cursor_last(
279	struct xfs_ail		*ailp,
280	struct xfs_ail_cursor	*cur,
281	xfs_lsn_t		lsn)
282{
283	xfs_trans_ail_cursor_init(ailp, cur);
284	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
285	return cur->item;
286}
287
288/*
289 * Splice the log item list into the AIL at the given LSN. We splice to the
290 * tail of the given LSN to maintain insert order for push traversals. The
291 * cursor is optional, allowing repeated updates to the same LSN to avoid
292 * repeated traversals.  This should not be called with an empty list.
293 */
294static void
295xfs_ail_splice(
296	struct xfs_ail		*ailp,
297	struct xfs_ail_cursor	*cur,
298	struct list_head	*list,
299	xfs_lsn_t		lsn)
300{
301	struct xfs_log_item	*lip;
302
303	ASSERT(!list_empty(list));
304
305	/*
306	 * Use the cursor to determine the insertion point if one is
307	 * provided.  If not, or if the one we got is not valid,
308	 * find the place in the AIL where the items belong.
309	 */
310	lip = cur ? cur->item : NULL;
311	if (!lip || (uintptr_t)lip & 1)
312		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
313
314	/*
315	 * If a cursor is provided, we know we're processing the AIL
316	 * in lsn order, and future items to be spliced in will
317	 * follow the last one being inserted now.  Update the
318	 * cursor to point to that last item, now while we have a
319	 * reliable pointer to it.
320	 */
321	if (cur)
322		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
323
324	/*
325	 * Finally perform the splice.  Unless the AIL was empty,
326	 * lip points to the item in the AIL _after_ which the new
327	 * items should go.  If lip is null the AIL was empty, so
328	 * the new items go at the head of the AIL.
329	 */
330	if (lip)
331		list_splice(list, &lip->li_ail);
332	else
333		list_splice(list, &ailp->ail_head);
334}
335
336/*
337 * Delete the given item from the AIL.  Return a pointer to the item.
338 */
339static void
340xfs_ail_delete(
341	struct xfs_ail		*ailp,
342	struct xfs_log_item	*lip)
343{
344	xfs_ail_check(ailp, lip);
345	list_del(&lip->li_ail);
346	xfs_trans_ail_cursor_clear(ailp, lip);
347}
348
349/*
350 * Requeue a failed buffer for writeback.
351 *
352 * We clear the log item failed state here as well, but we have to be careful
353 * about reference counts because the only active reference counts on the buffer
354 * may be the failed log items. Hence if we clear the log item failed state
355 * before queuing the buffer for IO we can release all active references to
356 * the buffer and free it, leading to use after free problems in
357 * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
358 * order we process them in - the buffer is locked, and we own the buffer list
359 * so nothing on them is going to change while we are performing this action.
360 *
361 * Hence we can safely queue the buffer for IO before we clear the failed log
362 * item state, therefore  always having an active reference to the buffer and
363 * avoiding the transient zero-reference state that leads to use-after-free.
364 */
365static inline int
366xfsaild_resubmit_item(
367	struct xfs_log_item	*lip,
368	struct list_head	*buffer_list)
369{
370	struct xfs_buf		*bp = lip->li_buf;
371
372	if (!xfs_buf_trylock(bp))
373		return XFS_ITEM_LOCKED;
374
375	if (!xfs_buf_delwri_queue(bp, buffer_list)) {
376		xfs_buf_unlock(bp);
377		return XFS_ITEM_FLUSHING;
378	}
379
380	/* protected by ail_lock */
381	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
382		if (bp->b_flags & _XBF_INODES)
383			clear_bit(XFS_LI_FAILED, &lip->li_flags);
384		else
385			xfs_clear_li_failed(lip);
386	}
387
388	xfs_buf_unlock(bp);
389	return XFS_ITEM_SUCCESS;
390}
391
392static inline uint
393xfsaild_push_item(
394	struct xfs_ail		*ailp,
395	struct xfs_log_item	*lip)
396{
397	/*
398	 * If log item pinning is enabled, skip the push and track the item as
399	 * pinned. This can help induce head-behind-tail conditions.
400	 */
401	if (XFS_TEST_ERROR(false, ailp->ail_log->l_mp, XFS_ERRTAG_LOG_ITEM_PIN))
402		return XFS_ITEM_PINNED;
403
404	/*
405	 * Consider the item pinned if a push callback is not defined so the
406	 * caller will force the log. This should only happen for intent items
407	 * as they are unpinned once the associated done item is committed to
408	 * the on-disk log.
409	 */
410	if (!lip->li_ops->iop_push)
411		return XFS_ITEM_PINNED;
412	if (test_bit(XFS_LI_FAILED, &lip->li_flags))
413		return xfsaild_resubmit_item(lip, &ailp->ail_buf_list);
414	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
415}
416
417static long
418xfsaild_push(
419	struct xfs_ail		*ailp)
420{
421	struct xfs_mount	*mp = ailp->ail_log->l_mp;
422	struct xfs_ail_cursor	cur;
423	struct xfs_log_item	*lip;
424	xfs_lsn_t		lsn;
425	xfs_lsn_t		target = NULLCOMMITLSN;
426	long			tout;
427	int			stuck = 0;
428	int			flushing = 0;
429	int			count = 0;
430
431	/*
432	 * If we encountered pinned items or did not finish writing out all
433	 * buffers the last time we ran, force a background CIL push to get the
434	 * items unpinned in the near future. We do not wait on the CIL push as
435	 * that could stall us for seconds if there is enough background IO
436	 * load. Stalling for that long when the tail of the log is pinned and
437	 * needs flushing will hard stop the transaction subsystem when log
438	 * space runs out.
439	 */
440	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
441	    (!list_empty_careful(&ailp->ail_buf_list) ||
442	     xfs_ail_min_lsn(ailp))) {
443		ailp->ail_log_flush = 0;
444
445		XFS_STATS_INC(mp, xs_push_ail_flush);
446		xlog_cil_flush(ailp->ail_log);
447	}
448
449	spin_lock(&ailp->ail_lock);
450
451	/*
452	 * If we have a sync push waiter, we always have to push till the AIL is
453	 * empty. Update the target to point to the end of the AIL so that
454	 * capture updates that occur after the sync push waiter has gone to
455	 * sleep.
456	 */
457	if (waitqueue_active(&ailp->ail_empty)) {
458		lip = xfs_ail_max(ailp);
459		if (lip)
460			target = lip->li_lsn;
461	} else {
462		/* barrier matches the ail_target update in xfs_ail_push() */
463		smp_rmb();
464		target = ailp->ail_target;
465		ailp->ail_target_prev = target;
466	}
467
468	/* we're done if the AIL is empty or our push has reached the end */
469	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
470	if (!lip)
 
 
 
 
 
471		goto out_done;
 
472
473	XFS_STATS_INC(mp, xs_push_ail);
474
475	ASSERT(target != NULLCOMMITLSN);
476
477	lsn = lip->li_lsn;
478	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
479		int	lock_result;
480
481		/*
482		 * Note that iop_push may unlock and reacquire the AIL lock.  We
483		 * rely on the AIL cursor implementation to be able to deal with
484		 * the dropped lock.
485		 */
486		lock_result = xfsaild_push_item(ailp, lip);
487		switch (lock_result) {
488		case XFS_ITEM_SUCCESS:
489			XFS_STATS_INC(mp, xs_push_ail_success);
490			trace_xfs_ail_push(lip);
491
492			ailp->ail_last_pushed_lsn = lsn;
493			break;
494
495		case XFS_ITEM_FLUSHING:
496			/*
497			 * The item or its backing buffer is already being
498			 * flushed.  The typical reason for that is that an
499			 * inode buffer is locked because we already pushed the
500			 * updates to it as part of inode clustering.
501			 *
502			 * We do not want to stop flushing just because lots
503			 * of items are already being flushed, but we need to
504			 * re-try the flushing relatively soon if most of the
505			 * AIL is being flushed.
506			 */
507			XFS_STATS_INC(mp, xs_push_ail_flushing);
508			trace_xfs_ail_flushing(lip);
509
510			flushing++;
511			ailp->ail_last_pushed_lsn = lsn;
512			break;
513
514		case XFS_ITEM_PINNED:
515			XFS_STATS_INC(mp, xs_push_ail_pinned);
516			trace_xfs_ail_pinned(lip);
517
518			stuck++;
519			ailp->ail_log_flush++;
520			break;
521		case XFS_ITEM_LOCKED:
522			XFS_STATS_INC(mp, xs_push_ail_locked);
523			trace_xfs_ail_locked(lip);
524
525			stuck++;
526			break;
527		default:
528			ASSERT(0);
529			break;
530		}
531
532		count++;
533
534		/*
535		 * Are there too many items we can't do anything with?
536		 *
537		 * If we are skipping too many items because we can't flush
538		 * them or they are already being flushed, we back off and
539		 * given them time to complete whatever operation is being
540		 * done. i.e. remove pressure from the AIL while we can't make
541		 * progress so traversals don't slow down further inserts and
542		 * removals to/from the AIL.
543		 *
544		 * The value of 100 is an arbitrary magic number based on
545		 * observation.
546		 */
547		if (stuck > 100)
548			break;
549
550		lip = xfs_trans_ail_cursor_next(ailp, &cur);
551		if (lip == NULL)
552			break;
553		lsn = lip->li_lsn;
554	}
 
 
555
556out_done:
557	xfs_trans_ail_cursor_done(&cur);
558	spin_unlock(&ailp->ail_lock);
559
560	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
561		ailp->ail_log_flush++;
562
563	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
 
564		/*
565		 * We reached the target or the AIL is empty, so wait a bit
566		 * longer for I/O to complete and remove pushed items from the
567		 * AIL before we start the next scan from the start of the AIL.
568		 */
569		tout = 50;
570		ailp->ail_last_pushed_lsn = 0;
571	} else if (((stuck + flushing) * 100) / count > 90) {
572		/*
573		 * Either there is a lot of contention on the AIL or we are
574		 * stuck due to operations in progress. "Stuck" in this case
575		 * is defined as >90% of the items we tried to push were stuck.
576		 *
577		 * Backoff a bit more to allow some I/O to complete before
578		 * restarting from the start of the AIL. This prevents us from
579		 * spinning on the same items, and if they are pinned will all
580		 * the restart to issue a log force to unpin the stuck items.
581		 */
582		tout = 20;
583		ailp->ail_last_pushed_lsn = 0;
584	} else {
585		/*
586		 * Assume we have more work to do in a short while.
587		 */
588		tout = 10;
589	}
590
591	return tout;
592}
593
594static int
595xfsaild(
596	void		*data)
597{
598	struct xfs_ail	*ailp = data;
599	long		tout = 0;	/* milliseconds */
600	unsigned int	noreclaim_flag;
601
602	noreclaim_flag = memalloc_noreclaim_save();
603	set_freezable();
604
605	while (1) {
606		if (tout && tout <= 20)
607			set_current_state(TASK_KILLABLE|TASK_FREEZABLE);
608		else
609			set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
610
611		/*
612		 * Check kthread_should_stop() after we set the task state to
613		 * guarantee that we either see the stop bit and exit or the
614		 * task state is reset to runnable such that it's not scheduled
615		 * out indefinitely and detects the stop bit at next iteration.
616		 * A memory barrier is included in above task state set to
617		 * serialize again kthread_stop().
618		 */
619		if (kthread_should_stop()) {
620			__set_current_state(TASK_RUNNING);
621
622			/*
623			 * The caller forces out the AIL before stopping the
624			 * thread in the common case, which means the delwri
625			 * queue is drained. In the shutdown case, the queue may
626			 * still hold relogged buffers that haven't been
627			 * submitted because they were pinned since added to the
628			 * queue.
629			 *
630			 * Log I/O error processing stales the underlying buffer
631			 * and clears the delwri state, expecting the buf to be
632			 * removed on the next submission attempt. That won't
633			 * happen if we're shutting down, so this is the last
634			 * opportunity to release such buffers from the queue.
635			 */
636			ASSERT(list_empty(&ailp->ail_buf_list) ||
637			       xlog_is_shutdown(ailp->ail_log));
638			xfs_buf_delwri_cancel(&ailp->ail_buf_list);
639			break;
640		}
641
642		spin_lock(&ailp->ail_lock);
643
644		/*
645		 * Idle if the AIL is empty and we are not racing with a target
646		 * update. We check the AIL after we set the task to a sleep
647		 * state to guarantee that we either catch an ail_target update
648		 * or that a wake_up resets the state to TASK_RUNNING.
649		 * Otherwise, we run the risk of sleeping indefinitely.
650		 *
651		 * The barrier matches the ail_target update in xfs_ail_push().
652		 */
653		smp_rmb();
654		if (!xfs_ail_min(ailp) &&
655		    ailp->ail_target == ailp->ail_target_prev &&
656		    list_empty(&ailp->ail_buf_list)) {
657			spin_unlock(&ailp->ail_lock);
658			schedule();
659			tout = 0;
660			continue;
661		}
662		spin_unlock(&ailp->ail_lock);
663
664		if (tout)
665			schedule_timeout(msecs_to_jiffies(tout));
666
667		__set_current_state(TASK_RUNNING);
668
669		try_to_freeze();
670
671		tout = xfsaild_push(ailp);
672	}
673
674	memalloc_noreclaim_restore(noreclaim_flag);
675	return 0;
676}
677
678/*
679 * This routine is called to move the tail of the AIL forward.  It does this by
680 * trying to flush items in the AIL whose lsns are below the given
681 * threshold_lsn.
682 *
683 * The push is run asynchronously in a workqueue, which means the caller needs
684 * to handle waiting on the async flush for space to become available.
685 * We don't want to interrupt any push that is in progress, hence we only queue
686 * work if we set the pushing bit appropriately.
687 *
688 * We do this unlocked - we only need to know whether there is anything in the
689 * AIL at the time we are called. We don't need to access the contents of
690 * any of the objects, so the lock is not needed.
691 */
692void
693xfs_ail_push(
694	struct xfs_ail		*ailp,
695	xfs_lsn_t		threshold_lsn)
696{
697	struct xfs_log_item	*lip;
698
699	lip = xfs_ail_min(ailp);
700	if (!lip || xlog_is_shutdown(ailp->ail_log) ||
701	    XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
702		return;
703
704	/*
705	 * Ensure that the new target is noticed in push code before it clears
706	 * the XFS_AIL_PUSHING_BIT.
707	 */
708	smp_wmb();
709	xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
710	smp_wmb();
711
712	wake_up_process(ailp->ail_task);
713}
714
715/*
716 * Push out all items in the AIL immediately
717 */
718void
719xfs_ail_push_all(
720	struct xfs_ail  *ailp)
721{
722	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
723
724	if (threshold_lsn)
725		xfs_ail_push(ailp, threshold_lsn);
726}
727
728/*
729 * Push out all items in the AIL immediately and wait until the AIL is empty.
730 */
731void
732xfs_ail_push_all_sync(
733	struct xfs_ail  *ailp)
734{
 
735	DEFINE_WAIT(wait);
736
737	spin_lock(&ailp->ail_lock);
738	while (xfs_ail_max(ailp) != NULL) {
739		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
740		wake_up_process(ailp->ail_task);
741		spin_unlock(&ailp->ail_lock);
 
742		schedule();
743		spin_lock(&ailp->ail_lock);
744	}
745	spin_unlock(&ailp->ail_lock);
746
747	finish_wait(&ailp->ail_empty, &wait);
748}
749
750void
751xfs_ail_update_finish(
752	struct xfs_ail		*ailp,
753	xfs_lsn_t		old_lsn) __releases(ailp->ail_lock)
754{
755	struct xlog		*log = ailp->ail_log;
756
757	/* if the tail lsn hasn't changed, don't do updates or wakeups. */
758	if (!old_lsn || old_lsn == __xfs_ail_min_lsn(ailp)) {
759		spin_unlock(&ailp->ail_lock);
760		return;
761	}
 
762
763	if (!xlog_is_shutdown(log))
764		xlog_assign_tail_lsn_locked(log->l_mp);
765
766	if (list_empty(&ailp->ail_head))
767		wake_up_all(&ailp->ail_empty);
768	spin_unlock(&ailp->ail_lock);
769	xfs_log_space_wake(log->l_mp);
770}
771
772/*
773 * xfs_trans_ail_update - bulk AIL insertion operation.
774 *
775 * @xfs_trans_ail_update takes an array of log items that all need to be
776 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
777 * be added.  Otherwise, it will be repositioned  by removing it and re-adding
778 * it to the AIL. If we move the first item in the AIL, update the log tail to
779 * match the new minimum LSN in the AIL.
780 *
781 * This function takes the AIL lock once to execute the update operations on
782 * all the items in the array, and as such should not be called with the AIL
783 * lock held. As a result, once we have the AIL lock, we need to check each log
784 * item LSN to confirm it needs to be moved forward in the AIL.
785 *
786 * To optimise the insert operation, we delete all the items from the AIL in
787 * the first pass, moving them into a temporary list, then splice the temporary
788 * list into the correct position in the AIL. This avoids needing to do an
789 * insert operation on every item.
790 *
791 * This function must be called with the AIL lock held.  The lock is dropped
792 * before returning.
793 */
794void
795xfs_trans_ail_update_bulk(
796	struct xfs_ail		*ailp,
797	struct xfs_ail_cursor	*cur,
798	struct xfs_log_item	**log_items,
799	int			nr_items,
800	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
801{
802	struct xfs_log_item	*mlip;
803	xfs_lsn_t		tail_lsn = 0;
804	int			i;
805	LIST_HEAD(tmp);
806
807	ASSERT(nr_items > 0);		/* Not required, but true. */
808	mlip = xfs_ail_min(ailp);
809
810	for (i = 0; i < nr_items; i++) {
811		struct xfs_log_item *lip = log_items[i];
812		if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
813			/* check if we really need to move the item */
814			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
815				continue;
816
817			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
818			if (mlip == lip && !tail_lsn)
819				tail_lsn = lip->li_lsn;
820
821			xfs_ail_delete(ailp, lip);
 
 
822		} else {
 
823			trace_xfs_ail_insert(lip, 0, lsn);
824		}
825		lip->li_lsn = lsn;
826		list_add(&lip->li_ail, &tmp);
827	}
828
829	if (!list_empty(&tmp))
830		xfs_ail_splice(ailp, cur, &tmp, lsn);
831
832	xfs_ail_update_finish(ailp, tail_lsn);
833}
 
 
834
835/* Insert a log item into the AIL. */
836void
837xfs_trans_ail_insert(
838	struct xfs_ail		*ailp,
839	struct xfs_log_item	*lip,
840	xfs_lsn_t		lsn)
841{
842	spin_lock(&ailp->ail_lock);
843	xfs_trans_ail_update_bulk(ailp, NULL, &lip, 1, lsn);
844}
845
846/*
847 * Delete one log item from the AIL.
 
 
 
 
 
848 *
849 * If this item was at the tail of the AIL, return the LSN of the log item so
850 * that we can use it to check if the LSN of the tail of the log has moved
851 * when finishing up the AIL delete process in xfs_ail_update_finish().
 
 
 
 
 
 
 
 
 
852 */
853xfs_lsn_t
854xfs_ail_delete_one(
855	struct xfs_ail		*ailp,
856	struct xfs_log_item	*lip)
 
 
857{
858	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
859	xfs_lsn_t		lsn = lip->li_lsn;
 
860
861	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
862	xfs_ail_delete(ailp, lip);
863	clear_bit(XFS_LI_IN_AIL, &lip->li_flags);
864	lip->li_lsn = 0;
865
866	if (mlip == lip)
867		return lsn;
868	return 0;
869}
870
871void
872xfs_trans_ail_delete(
873	struct xfs_log_item	*lip,
874	int			shutdown_type)
875{
876	struct xfs_ail		*ailp = lip->li_ailp;
877	struct xlog		*log = ailp->ail_log;
878	xfs_lsn_t		tail_lsn;
879
880	spin_lock(&ailp->ail_lock);
881	if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
882		spin_unlock(&ailp->ail_lock);
883		if (shutdown_type && !xlog_is_shutdown(log)) {
884			xfs_alert_tag(log->l_mp, XFS_PTAG_AILDELETE,
885	"%s: attempting to delete a log item that is not in the AIL",
886					__func__);
887			xlog_force_shutdown(log, shutdown_type);
888		}
889		return;
890	}
891
892	/* xfs_ail_update_finish() drops the AIL lock */
893	xfs_clear_li_failed(lip);
894	tail_lsn = xfs_ail_delete_one(ailp, lip);
895	xfs_ail_update_finish(ailp, tail_lsn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896}
897
898int
899xfs_trans_ail_init(
900	xfs_mount_t	*mp)
901{
902	struct xfs_ail	*ailp;
903
904	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
905	if (!ailp)
906		return -ENOMEM;
907
908	ailp->ail_log = mp->m_log;
909	INIT_LIST_HEAD(&ailp->ail_head);
910	INIT_LIST_HEAD(&ailp->ail_cursors);
911	spin_lock_init(&ailp->ail_lock);
912	INIT_LIST_HEAD(&ailp->ail_buf_list);
913	init_waitqueue_head(&ailp->ail_empty);
914
915	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
916				mp->m_super->s_id);
917	if (IS_ERR(ailp->ail_task))
918		goto out_free_ailp;
919
920	mp->m_ail = ailp;
921	return 0;
922
923out_free_ailp:
924	kmem_free(ailp);
925	return -ENOMEM;
926}
927
928void
929xfs_trans_ail_destroy(
930	xfs_mount_t	*mp)
931{
932	struct xfs_ail	*ailp = mp->m_ail;
933
934	kthread_stop(ailp->ail_task);
935	kmem_free(ailp);
936}
v3.15
 
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * Copyright (c) 2008 Dave Chinner
  4 * All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License as
  8 * published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it would be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write the Free Software Foundation,
 17 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 18 */
 19#include "xfs.h"
 20#include "xfs_fs.h"
 
 
 21#include "xfs_log_format.h"
 22#include "xfs_trans_resv.h"
 23#include "xfs_sb.h"
 24#include "xfs_ag.h"
 25#include "xfs_mount.h"
 26#include "xfs_trans.h"
 27#include "xfs_trans_priv.h"
 28#include "xfs_trace.h"
 
 29#include "xfs_error.h"
 30#include "xfs_log.h"
 
 31
 32#ifdef DEBUG
 33/*
 34 * Check that the list is sorted as it should be.
 
 
 
 
 
 
 35 */
 36STATIC void
 37xfs_ail_check(
 38	struct xfs_ail	*ailp,
 39	xfs_log_item_t	*lip)
 
 40{
 41	xfs_log_item_t	*prev_lip;
 
 
 
 
 
 
 42
 43	if (list_empty(&ailp->xa_ail))
 44		return;
 45
 46	/*
 47	 * Check the next and previous entries are valid.
 48	 */
 49	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
 50	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
 51	if (&prev_lip->li_ail != &ailp->xa_ail)
 52		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
 53
 54	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
 55	if (&prev_lip->li_ail != &ailp->xa_ail)
 56		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
 57
 
 
 
 
 58
 
 
 
 
 
 59}
 60#else /* !DEBUG */
 61#define	xfs_ail_check(a,l)
 62#endif /* DEBUG */
 63
 64/*
 65 * Return a pointer to the last item in the AIL.  If the AIL is empty, then
 66 * return NULL.
 67 */
 68static xfs_log_item_t *
 69xfs_ail_max(
 70	struct xfs_ail  *ailp)
 71{
 72	if (list_empty(&ailp->xa_ail))
 73		return NULL;
 74
 75	return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
 76}
 77
 78/*
 79 * Return a pointer to the item which follows the given item in the AIL.  If
 80 * the given item is the last item in the list, then return NULL.
 81 */
 82static xfs_log_item_t *
 83xfs_ail_next(
 84	struct xfs_ail  *ailp,
 85	xfs_log_item_t  *lip)
 86{
 87	if (lip->li_ail.next == &ailp->xa_ail)
 88		return NULL;
 89
 90	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
 91}
 92
 93/*
 94 * This is called by the log manager code to determine the LSN of the tail of
 95 * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
 96 * is empty, then this function returns 0.
 97 *
 98 * We need the AIL lock in order to get a coherent read of the lsn of the last
 99 * item in the AIL.
100 */
 
 
 
 
 
 
 
 
 
 
 
101xfs_lsn_t
102xfs_ail_min_lsn(
103	struct xfs_ail	*ailp)
104{
105	xfs_lsn_t	lsn = 0;
106	xfs_log_item_t	*lip;
107
108	spin_lock(&ailp->xa_lock);
109	lip = xfs_ail_min(ailp);
110	if (lip)
111		lsn = lip->li_lsn;
112	spin_unlock(&ailp->xa_lock);
113
114	return lsn;
115}
116
117/*
118 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
119 */
120static xfs_lsn_t
121xfs_ail_max_lsn(
122	struct xfs_ail  *ailp)
123{
124	xfs_lsn_t       lsn = 0;
125	xfs_log_item_t  *lip;
126
127	spin_lock(&ailp->xa_lock);
128	lip = xfs_ail_max(ailp);
129	if (lip)
130		lsn = lip->li_lsn;
131	spin_unlock(&ailp->xa_lock);
132
133	return lsn;
134}
135
136/*
137 * The cursor keeps track of where our current traversal is up to by tracking
138 * the next item in the list for us. However, for this to be safe, removing an
139 * object from the AIL needs to invalidate any cursor that points to it. hence
140 * the traversal cursor needs to be linked to the struct xfs_ail so that
141 * deletion can search all the active cursors for invalidation.
142 */
143STATIC void
144xfs_trans_ail_cursor_init(
145	struct xfs_ail		*ailp,
146	struct xfs_ail_cursor	*cur)
147{
148	cur->item = NULL;
149	list_add_tail(&cur->list, &ailp->xa_cursors);
150}
151
152/*
153 * Get the next item in the traversal and advance the cursor.  If the cursor
154 * was invalidated (indicated by a lip of 1), restart the traversal.
155 */
156struct xfs_log_item *
157xfs_trans_ail_cursor_next(
158	struct xfs_ail		*ailp,
159	struct xfs_ail_cursor	*cur)
160{
161	struct xfs_log_item	*lip = cur->item;
162
163	if ((__psint_t)lip & 1)
164		lip = xfs_ail_min(ailp);
165	if (lip)
166		cur->item = xfs_ail_next(ailp, lip);
167	return lip;
168}
169
170/*
171 * When the traversal is complete, we need to remove the cursor from the list
172 * of traversing cursors.
173 */
174void
175xfs_trans_ail_cursor_done(
176	struct xfs_ail		*ailp,
177	struct xfs_ail_cursor	*cur)
178{
179	cur->item = NULL;
180	list_del_init(&cur->list);
181}
182
183/*
184 * Invalidate any cursor that is pointing to this item. This is called when an
185 * item is removed from the AIL. Any cursor pointing to this object is now
186 * invalid and the traversal needs to be terminated so it doesn't reference a
187 * freed object. We set the low bit of the cursor item pointer so we can
188 * distinguish between an invalidation and the end of the list when getting the
189 * next item from the cursor.
190 */
191STATIC void
192xfs_trans_ail_cursor_clear(
193	struct xfs_ail		*ailp,
194	struct xfs_log_item	*lip)
195{
196	struct xfs_ail_cursor	*cur;
197
198	list_for_each_entry(cur, &ailp->xa_cursors, list) {
199		if (cur->item == lip)
200			cur->item = (struct xfs_log_item *)
201					((__psint_t)cur->item | 1);
202	}
203}
204
205/*
206 * Find the first item in the AIL with the given @lsn by searching in ascending
207 * LSN order and initialise the cursor to point to the next item for a
208 * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
209 * first item in the AIL. Returns NULL if the list is empty.
210 */
211xfs_log_item_t *
212xfs_trans_ail_cursor_first(
213	struct xfs_ail		*ailp,
214	struct xfs_ail_cursor	*cur,
215	xfs_lsn_t		lsn)
216{
217	xfs_log_item_t		*lip;
218
219	xfs_trans_ail_cursor_init(ailp, cur);
220
221	if (lsn == 0) {
222		lip = xfs_ail_min(ailp);
223		goto out;
224	}
225
226	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
227		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
228			goto out;
229	}
230	return NULL;
231
232out:
233	if (lip)
234		cur->item = xfs_ail_next(ailp, lip);
235	return lip;
236}
237
238static struct xfs_log_item *
239__xfs_trans_ail_cursor_last(
240	struct xfs_ail		*ailp,
241	xfs_lsn_t		lsn)
242{
243	xfs_log_item_t		*lip;
244
245	list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
246		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
247			return lip;
248	}
249	return NULL;
250}
251
252/*
253 * Find the last item in the AIL with the given @lsn by searching in descending
254 * LSN order and initialise the cursor to point to that item.  If there is no
255 * item with the value of @lsn, then it sets the cursor to the last item with an
256 * LSN lower than @lsn.  Returns NULL if the list is empty.
257 */
258struct xfs_log_item *
259xfs_trans_ail_cursor_last(
260	struct xfs_ail		*ailp,
261	struct xfs_ail_cursor	*cur,
262	xfs_lsn_t		lsn)
263{
264	xfs_trans_ail_cursor_init(ailp, cur);
265	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
266	return cur->item;
267}
268
269/*
270 * Splice the log item list into the AIL at the given LSN. We splice to the
271 * tail of the given LSN to maintain insert order for push traversals. The
272 * cursor is optional, allowing repeated updates to the same LSN to avoid
273 * repeated traversals.  This should not be called with an empty list.
274 */
275static void
276xfs_ail_splice(
277	struct xfs_ail		*ailp,
278	struct xfs_ail_cursor	*cur,
279	struct list_head	*list,
280	xfs_lsn_t		lsn)
281{
282	struct xfs_log_item	*lip;
283
284	ASSERT(!list_empty(list));
285
286	/*
287	 * Use the cursor to determine the insertion point if one is
288	 * provided.  If not, or if the one we got is not valid,
289	 * find the place in the AIL where the items belong.
290	 */
291	lip = cur ? cur->item : NULL;
292	if (!lip || (__psint_t) lip & 1)
293		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
294
295	/*
296	 * If a cursor is provided, we know we're processing the AIL
297	 * in lsn order, and future items to be spliced in will
298	 * follow the last one being inserted now.  Update the
299	 * cursor to point to that last item, now while we have a
300	 * reliable pointer to it.
301	 */
302	if (cur)
303		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
304
305	/*
306	 * Finally perform the splice.  Unless the AIL was empty,
307	 * lip points to the item in the AIL _after_ which the new
308	 * items should go.  If lip is null the AIL was empty, so
309	 * the new items go at the head of the AIL.
310	 */
311	if (lip)
312		list_splice(list, &lip->li_ail);
313	else
314		list_splice(list, &ailp->xa_ail);
315}
316
317/*
318 * Delete the given item from the AIL.  Return a pointer to the item.
319 */
320static void
321xfs_ail_delete(
322	struct xfs_ail  *ailp,
323	xfs_log_item_t  *lip)
324{
325	xfs_ail_check(ailp, lip);
326	list_del(&lip->li_ail);
327	xfs_trans_ail_cursor_clear(ailp, lip);
328}
329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330static long
331xfsaild_push(
332	struct xfs_ail		*ailp)
333{
334	xfs_mount_t		*mp = ailp->xa_mount;
335	struct xfs_ail_cursor	cur;
336	xfs_log_item_t		*lip;
337	xfs_lsn_t		lsn;
338	xfs_lsn_t		target;
339	long			tout;
340	int			stuck = 0;
341	int			flushing = 0;
342	int			count = 0;
343
344	/*
345	 * If we encountered pinned items or did not finish writing out all
346	 * buffers the last time we ran, force the log first and wait for it
347	 * before pushing again.
 
 
 
 
348	 */
349	if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 &&
350	    (!list_empty_careful(&ailp->xa_buf_list) ||
351	     xfs_ail_min_lsn(ailp))) {
352		ailp->xa_log_flush = 0;
353
354		XFS_STATS_INC(xs_push_ail_flush);
355		xfs_log_force(mp, XFS_LOG_SYNC);
356	}
357
358	spin_lock(&ailp->xa_lock);
359
360	/* barrier matches the xa_target update in xfs_ail_push() */
361	smp_rmb();
362	target = ailp->xa_target;
363	ailp->xa_target_prev = target;
 
 
 
 
 
 
 
 
 
 
 
 
364
365	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
366	if (!lip) {
367		/*
368		 * If the AIL is empty or our push has reached the end we are
369		 * done now.
370		 */
371		xfs_trans_ail_cursor_done(ailp, &cur);
372		spin_unlock(&ailp->xa_lock);
373		goto out_done;
374	}
375
376	XFS_STATS_INC(xs_push_ail);
 
 
377
378	lsn = lip->li_lsn;
379	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
380		int	lock_result;
381
382		/*
383		 * Note that iop_push may unlock and reacquire the AIL lock.  We
384		 * rely on the AIL cursor implementation to be able to deal with
385		 * the dropped lock.
386		 */
387		lock_result = lip->li_ops->iop_push(lip, &ailp->xa_buf_list);
388		switch (lock_result) {
389		case XFS_ITEM_SUCCESS:
390			XFS_STATS_INC(xs_push_ail_success);
391			trace_xfs_ail_push(lip);
392
393			ailp->xa_last_pushed_lsn = lsn;
394			break;
395
396		case XFS_ITEM_FLUSHING:
397			/*
398			 * The item or its backing buffer is already beeing
399			 * flushed.  The typical reason for that is that an
400			 * inode buffer is locked because we already pushed the
401			 * updates to it as part of inode clustering.
402			 *
403			 * We do not want to to stop flushing just because lots
404			 * of items are already beeing flushed, but we need to
405			 * re-try the flushing relatively soon if most of the
406			 * AIL is beeing flushed.
407			 */
408			XFS_STATS_INC(xs_push_ail_flushing);
409			trace_xfs_ail_flushing(lip);
410
411			flushing++;
412			ailp->xa_last_pushed_lsn = lsn;
413			break;
414
415		case XFS_ITEM_PINNED:
416			XFS_STATS_INC(xs_push_ail_pinned);
417			trace_xfs_ail_pinned(lip);
418
419			stuck++;
420			ailp->xa_log_flush++;
421			break;
422		case XFS_ITEM_LOCKED:
423			XFS_STATS_INC(xs_push_ail_locked);
424			trace_xfs_ail_locked(lip);
425
426			stuck++;
427			break;
428		default:
429			ASSERT(0);
430			break;
431		}
432
433		count++;
434
435		/*
436		 * Are there too many items we can't do anything with?
437		 *
438		 * If we we are skipping too many items because we can't flush
439		 * them or they are already being flushed, we back off and
440		 * given them time to complete whatever operation is being
441		 * done. i.e. remove pressure from the AIL while we can't make
442		 * progress so traversals don't slow down further inserts and
443		 * removals to/from the AIL.
444		 *
445		 * The value of 100 is an arbitrary magic number based on
446		 * observation.
447		 */
448		if (stuck > 100)
449			break;
450
451		lip = xfs_trans_ail_cursor_next(ailp, &cur);
452		if (lip == NULL)
453			break;
454		lsn = lip->li_lsn;
455	}
456	xfs_trans_ail_cursor_done(ailp, &cur);
457	spin_unlock(&ailp->xa_lock);
458
459	if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list))
460		ailp->xa_log_flush++;
 
 
 
 
461
462	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
463out_done:
464		/*
465		 * We reached the target or the AIL is empty, so wait a bit
466		 * longer for I/O to complete and remove pushed items from the
467		 * AIL before we start the next scan from the start of the AIL.
468		 */
469		tout = 50;
470		ailp->xa_last_pushed_lsn = 0;
471	} else if (((stuck + flushing) * 100) / count > 90) {
472		/*
473		 * Either there is a lot of contention on the AIL or we are
474		 * stuck due to operations in progress. "Stuck" in this case
475		 * is defined as >90% of the items we tried to push were stuck.
476		 *
477		 * Backoff a bit more to allow some I/O to complete before
478		 * restarting from the start of the AIL. This prevents us from
479		 * spinning on the same items, and if they are pinned will all
480		 * the restart to issue a log force to unpin the stuck items.
481		 */
482		tout = 20;
483		ailp->xa_last_pushed_lsn = 0;
484	} else {
485		/*
486		 * Assume we have more work to do in a short while.
487		 */
488		tout = 10;
489	}
490
491	return tout;
492}
493
494static int
495xfsaild(
496	void		*data)
497{
498	struct xfs_ail	*ailp = data;
499	long		tout = 0;	/* milliseconds */
 
500
501	current->flags |= PF_MEMALLOC;
 
502
503	while (!kthread_should_stop()) {
504		if (tout && tout <= 20)
505			__set_current_state(TASK_KILLABLE);
506		else
507			__set_current_state(TASK_INTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508
509		spin_lock(&ailp->xa_lock);
510
511		/*
512		 * Idle if the AIL is empty and we are not racing with a target
513		 * update. We check the AIL after we set the task to a sleep
514		 * state to guarantee that we either catch an xa_target update
515		 * or that a wake_up resets the state to TASK_RUNNING.
516		 * Otherwise, we run the risk of sleeping indefinitely.
517		 *
518		 * The barrier matches the xa_target update in xfs_ail_push().
519		 */
520		smp_rmb();
521		if (!xfs_ail_min(ailp) &&
522		    ailp->xa_target == ailp->xa_target_prev) {
523			spin_unlock(&ailp->xa_lock);
 
524			schedule();
525			tout = 0;
526			continue;
527		}
528		spin_unlock(&ailp->xa_lock);
529
530		if (tout)
531			schedule_timeout(msecs_to_jiffies(tout));
532
533		__set_current_state(TASK_RUNNING);
534
535		try_to_freeze();
536
537		tout = xfsaild_push(ailp);
538	}
539
 
540	return 0;
541}
542
543/*
544 * This routine is called to move the tail of the AIL forward.  It does this by
545 * trying to flush items in the AIL whose lsns are below the given
546 * threshold_lsn.
547 *
548 * The push is run asynchronously in a workqueue, which means the caller needs
549 * to handle waiting on the async flush for space to become available.
550 * We don't want to interrupt any push that is in progress, hence we only queue
551 * work if we set the pushing bit approriately.
552 *
553 * We do this unlocked - we only need to know whether there is anything in the
554 * AIL at the time we are called. We don't need to access the contents of
555 * any of the objects, so the lock is not needed.
556 */
557void
558xfs_ail_push(
559	struct xfs_ail	*ailp,
560	xfs_lsn_t	threshold_lsn)
561{
562	xfs_log_item_t	*lip;
563
564	lip = xfs_ail_min(ailp);
565	if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
566	    XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
567		return;
568
569	/*
570	 * Ensure that the new target is noticed in push code before it clears
571	 * the XFS_AIL_PUSHING_BIT.
572	 */
573	smp_wmb();
574	xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
575	smp_wmb();
576
577	wake_up_process(ailp->xa_task);
578}
579
580/*
581 * Push out all items in the AIL immediately
582 */
583void
584xfs_ail_push_all(
585	struct xfs_ail  *ailp)
586{
587	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
588
589	if (threshold_lsn)
590		xfs_ail_push(ailp, threshold_lsn);
591}
592
593/*
594 * Push out all items in the AIL immediately and wait until the AIL is empty.
595 */
596void
597xfs_ail_push_all_sync(
598	struct xfs_ail  *ailp)
599{
600	struct xfs_log_item	*lip;
601	DEFINE_WAIT(wait);
602
603	spin_lock(&ailp->xa_lock);
604	while ((lip = xfs_ail_max(ailp)) != NULL) {
605		prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE);
606		ailp->xa_target = lip->li_lsn;
607		wake_up_process(ailp->xa_task);
608		spin_unlock(&ailp->xa_lock);
609		schedule();
610		spin_lock(&ailp->xa_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611	}
612	spin_unlock(&ailp->xa_lock);
613
614	finish_wait(&ailp->xa_empty, &wait);
 
 
 
 
 
 
615}
616
617/*
618 * xfs_trans_ail_update - bulk AIL insertion operation.
619 *
620 * @xfs_trans_ail_update takes an array of log items that all need to be
621 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
622 * be added.  Otherwise, it will be repositioned  by removing it and re-adding
623 * it to the AIL. If we move the first item in the AIL, update the log tail to
624 * match the new minimum LSN in the AIL.
625 *
626 * This function takes the AIL lock once to execute the update operations on
627 * all the items in the array, and as such should not be called with the AIL
628 * lock held. As a result, once we have the AIL lock, we need to check each log
629 * item LSN to confirm it needs to be moved forward in the AIL.
630 *
631 * To optimise the insert operation, we delete all the items from the AIL in
632 * the first pass, moving them into a temporary list, then splice the temporary
633 * list into the correct position in the AIL. This avoids needing to do an
634 * insert operation on every item.
635 *
636 * This function must be called with the AIL lock held.  The lock is dropped
637 * before returning.
638 */
639void
640xfs_trans_ail_update_bulk(
641	struct xfs_ail		*ailp,
642	struct xfs_ail_cursor	*cur,
643	struct xfs_log_item	**log_items,
644	int			nr_items,
645	xfs_lsn_t		lsn) __releases(ailp->xa_lock)
646{
647	xfs_log_item_t		*mlip;
648	int			mlip_changed = 0;
649	int			i;
650	LIST_HEAD(tmp);
651
652	ASSERT(nr_items > 0);		/* Not required, but true. */
653	mlip = xfs_ail_min(ailp);
654
655	for (i = 0; i < nr_items; i++) {
656		struct xfs_log_item *lip = log_items[i];
657		if (lip->li_flags & XFS_LI_IN_AIL) {
658			/* check if we really need to move the item */
659			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
660				continue;
661
662			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
 
 
 
663			xfs_ail_delete(ailp, lip);
664			if (mlip == lip)
665				mlip_changed = 1;
666		} else {
667			lip->li_flags |= XFS_LI_IN_AIL;
668			trace_xfs_ail_insert(lip, 0, lsn);
669		}
670		lip->li_lsn = lsn;
671		list_add(&lip->li_ail, &tmp);
672	}
673
674	if (!list_empty(&tmp))
675		xfs_ail_splice(ailp, cur, &tmp, lsn);
676
677	if (mlip_changed) {
678		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
679			xlog_assign_tail_lsn_locked(ailp->xa_mount);
680		spin_unlock(&ailp->xa_lock);
681
682		xfs_log_space_wake(ailp->xa_mount);
683	} else {
684		spin_unlock(&ailp->xa_lock);
685	}
 
 
 
 
 
686}
687
688/*
689 * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
690 *
691 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
692 * removed from the AIL. The caller is already holding the AIL lock, and done
693 * all the checks necessary to ensure the items passed in via @log_items are
694 * ready for deletion. This includes checking that the items are in the AIL.
695 *
696 * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
697 * flag from the item and reset the item's lsn to 0. If we remove the first
698 * item in the AIL, update the log tail to match the new minimum LSN in the
699 * AIL.
700 *
701 * This function will not drop the AIL lock until all items are removed from
702 * the AIL to minimise the amount of lock traffic on the AIL. This does not
703 * greatly increase the AIL hold time, but does significantly reduce the amount
704 * of traffic on the lock, especially during IO completion.
705 *
706 * This function must be called with the AIL lock held.  The lock is dropped
707 * before returning.
708 */
709void
710xfs_trans_ail_delete_bulk(
711	struct xfs_ail		*ailp,
712	struct xfs_log_item	**log_items,
713	int			nr_items,
714	int			shutdown_type) __releases(ailp->xa_lock)
715{
716	xfs_log_item_t		*mlip;
717	int			mlip_changed = 0;
718	int			i;
719
720	mlip = xfs_ail_min(ailp);
 
 
 
721
722	for (i = 0; i < nr_items; i++) {
723		struct xfs_log_item *lip = log_items[i];
724		if (!(lip->li_flags & XFS_LI_IN_AIL)) {
725			struct xfs_mount	*mp = ailp->xa_mount;
726
727			spin_unlock(&ailp->xa_lock);
728			if (!XFS_FORCED_SHUTDOWN(mp)) {
729				xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
730		"%s: attempting to delete a log item that is not in the AIL",
731						__func__);
732				xfs_force_shutdown(mp, shutdown_type);
733			}
734			return;
 
 
 
 
 
 
 
 
 
735		}
 
 
736
737		trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
738		xfs_ail_delete(ailp, lip);
739		lip->li_flags &= ~XFS_LI_IN_AIL;
740		lip->li_lsn = 0;
741		if (mlip == lip)
742			mlip_changed = 1;
743	}
744
745	if (mlip_changed) {
746		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
747			xlog_assign_tail_lsn_locked(ailp->xa_mount);
748		if (list_empty(&ailp->xa_ail))
749			wake_up_all(&ailp->xa_empty);
750		spin_unlock(&ailp->xa_lock);
751
752		xfs_log_space_wake(ailp->xa_mount);
753	} else {
754		spin_unlock(&ailp->xa_lock);
755	}
756}
757
758int
759xfs_trans_ail_init(
760	xfs_mount_t	*mp)
761{
762	struct xfs_ail	*ailp;
763
764	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
765	if (!ailp)
766		return ENOMEM;
767
768	ailp->xa_mount = mp;
769	INIT_LIST_HEAD(&ailp->xa_ail);
770	INIT_LIST_HEAD(&ailp->xa_cursors);
771	spin_lock_init(&ailp->xa_lock);
772	INIT_LIST_HEAD(&ailp->xa_buf_list);
773	init_waitqueue_head(&ailp->xa_empty);
774
775	ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
776			ailp->xa_mount->m_fsname);
777	if (IS_ERR(ailp->xa_task))
778		goto out_free_ailp;
779
780	mp->m_ail = ailp;
781	return 0;
782
783out_free_ailp:
784	kmem_free(ailp);
785	return ENOMEM;
786}
787
788void
789xfs_trans_ail_destroy(
790	xfs_mount_t	*mp)
791{
792	struct xfs_ail	*ailp = mp->m_ail;
793
794	kthread_stop(ailp->xa_task);
795	kmem_free(ailp);
796}