Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
   4 *
   5 * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/blkdev.h>
   9#include <linux/backing-dev.h>
  10#include <linux/buffer_head.h>
  11#include <linux/gfp.h>
  12#include <linux/pagemap.h>
  13#include <linux/pagevec.h>
  14#include <linux/sched/signal.h>
  15#include <linux/swap.h>
  16#include <linux/uio.h>
  17#include <linux/writeback.h>
 
  18
  19#include <asm/page.h>
  20#include <linux/uaccess.h>
  21
  22#include "attrib.h"
  23#include "bitmap.h"
  24#include "inode.h"
  25#include "debug.h"
  26#include "lcnalloc.h"
  27#include "malloc.h"
  28#include "mft.h"
  29#include "ntfs.h"
  30
  31/**
  32 * ntfs_file_open - called when an inode is about to be opened
  33 * @vi:		inode to be opened
  34 * @filp:	file structure describing the inode
  35 *
  36 * Limit file size to the page cache limit on architectures where unsigned long
  37 * is 32-bits. This is the most we can do for now without overflowing the page
  38 * cache page index. Doing it this way means we don't run into problems because
  39 * of existing too large files. It would be better to allow the user to read
  40 * the beginning of the file but I doubt very much anyone is going to hit this
  41 * check on a 32-bit architecture, so there is no point in adding the extra
  42 * complexity required to support this.
  43 *
  44 * On 64-bit architectures, the check is hopefully optimized away by the
  45 * compiler.
  46 *
  47 * After the check passes, just call generic_file_open() to do its work.
  48 */
  49static int ntfs_file_open(struct inode *vi, struct file *filp)
  50{
  51	if (sizeof(unsigned long) < 8) {
  52		if (i_size_read(vi) > MAX_LFS_FILESIZE)
  53			return -EOVERFLOW;
  54	}
  55	return generic_file_open(vi, filp);
  56}
  57
  58#ifdef NTFS_RW
  59
  60/**
  61 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
  62 * @ni:			ntfs inode of the attribute to extend
  63 * @new_init_size:	requested new initialized size in bytes
 
 
  64 *
  65 * Extend the initialized size of an attribute described by the ntfs inode @ni
  66 * to @new_init_size bytes.  This involves zeroing any non-sparse space between
  67 * the old initialized size and @new_init_size both in the page cache and on
  68 * disk (if relevant complete pages are already uptodate in the page cache then
  69 * these are simply marked dirty).
  70 *
  71 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
  72 * in the resident attribute case, it is tied to the initialized size and, in
  73 * the non-resident attribute case, it may not fall below the initialized size.
  74 *
  75 * Note that if the attribute is resident, we do not need to touch the page
  76 * cache at all.  This is because if the page cache page is not uptodate we
  77 * bring it uptodate later, when doing the write to the mft record since we
  78 * then already have the page mapped.  And if the page is uptodate, the
  79 * non-initialized region will already have been zeroed when the page was
  80 * brought uptodate and the region may in fact already have been overwritten
  81 * with new data via mmap() based writes, so we cannot just zero it.  And since
  82 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
  83 * is unspecified, we choose not to do zeroing and thus we do not need to touch
  84 * the page at all.  For a more detailed explanation see ntfs_truncate() in
  85 * fs/ntfs/inode.c.
  86 *
  87 * Return 0 on success and -errno on error.  In the case that an error is
  88 * encountered it is possible that the initialized size will already have been
  89 * incremented some way towards @new_init_size but it is guaranteed that if
  90 * this is the case, the necessary zeroing will also have happened and that all
  91 * metadata is self-consistent.
  92 *
  93 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
  94 *	    held by the caller.
  95 */
  96static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
  97{
  98	s64 old_init_size;
  99	loff_t old_i_size;
 100	pgoff_t index, end_index;
 101	unsigned long flags;
 102	struct inode *vi = VFS_I(ni);
 103	ntfs_inode *base_ni;
 104	MFT_RECORD *m = NULL;
 105	ATTR_RECORD *a;
 106	ntfs_attr_search_ctx *ctx = NULL;
 107	struct address_space *mapping;
 108	struct page *page = NULL;
 109	u8 *kattr;
 110	int err;
 111	u32 attr_len;
 112
 113	read_lock_irqsave(&ni->size_lock, flags);
 114	old_init_size = ni->initialized_size;
 115	old_i_size = i_size_read(vi);
 116	BUG_ON(new_init_size > ni->allocated_size);
 117	read_unlock_irqrestore(&ni->size_lock, flags);
 118	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
 119			"old_initialized_size 0x%llx, "
 120			"new_initialized_size 0x%llx, i_size 0x%llx.",
 121			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
 122			(unsigned long long)old_init_size,
 123			(unsigned long long)new_init_size, old_i_size);
 124	if (!NInoAttr(ni))
 125		base_ni = ni;
 126	else
 127		base_ni = ni->ext.base_ntfs_ino;
 128	/* Use goto to reduce indentation and we need the label below anyway. */
 129	if (NInoNonResident(ni))
 130		goto do_non_resident_extend;
 131	BUG_ON(old_init_size != old_i_size);
 132	m = map_mft_record(base_ni);
 133	if (IS_ERR(m)) {
 134		err = PTR_ERR(m);
 135		m = NULL;
 136		goto err_out;
 137	}
 138	ctx = ntfs_attr_get_search_ctx(base_ni, m);
 139	if (unlikely(!ctx)) {
 140		err = -ENOMEM;
 141		goto err_out;
 142	}
 143	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 144			CASE_SENSITIVE, 0, NULL, 0, ctx);
 145	if (unlikely(err)) {
 146		if (err == -ENOENT)
 147			err = -EIO;
 148		goto err_out;
 149	}
 150	m = ctx->mrec;
 151	a = ctx->attr;
 152	BUG_ON(a->non_resident);
 153	/* The total length of the attribute value. */
 154	attr_len = le32_to_cpu(a->data.resident.value_length);
 155	BUG_ON(old_i_size != (loff_t)attr_len);
 156	/*
 157	 * Do the zeroing in the mft record and update the attribute size in
 158	 * the mft record.
 159	 */
 160	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
 161	memset(kattr + attr_len, 0, new_init_size - attr_len);
 162	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
 163	/* Finally, update the sizes in the vfs and ntfs inodes. */
 164	write_lock_irqsave(&ni->size_lock, flags);
 165	i_size_write(vi, new_init_size);
 166	ni->initialized_size = new_init_size;
 167	write_unlock_irqrestore(&ni->size_lock, flags);
 168	goto done;
 169do_non_resident_extend:
 170	/*
 171	 * If the new initialized size @new_init_size exceeds the current file
 172	 * size (vfs inode->i_size), we need to extend the file size to the
 173	 * new initialized size.
 174	 */
 175	if (new_init_size > old_i_size) {
 176		m = map_mft_record(base_ni);
 177		if (IS_ERR(m)) {
 178			err = PTR_ERR(m);
 179			m = NULL;
 180			goto err_out;
 181		}
 182		ctx = ntfs_attr_get_search_ctx(base_ni, m);
 183		if (unlikely(!ctx)) {
 184			err = -ENOMEM;
 185			goto err_out;
 186		}
 187		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 188				CASE_SENSITIVE, 0, NULL, 0, ctx);
 189		if (unlikely(err)) {
 190			if (err == -ENOENT)
 191				err = -EIO;
 192			goto err_out;
 193		}
 194		m = ctx->mrec;
 195		a = ctx->attr;
 196		BUG_ON(!a->non_resident);
 197		BUG_ON(old_i_size != (loff_t)
 198				sle64_to_cpu(a->data.non_resident.data_size));
 199		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
 200		flush_dcache_mft_record_page(ctx->ntfs_ino);
 201		mark_mft_record_dirty(ctx->ntfs_ino);
 202		/* Update the file size in the vfs inode. */
 203		i_size_write(vi, new_init_size);
 204		ntfs_attr_put_search_ctx(ctx);
 205		ctx = NULL;
 206		unmap_mft_record(base_ni);
 207		m = NULL;
 208	}
 209	mapping = vi->i_mapping;
 210	index = old_init_size >> PAGE_SHIFT;
 211	end_index = (new_init_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 212	do {
 213		/*
 214		 * Read the page.  If the page is not present, this will zero
 215		 * the uninitialized regions for us.
 216		 */
 217		page = read_mapping_page(mapping, index, NULL);
 218		if (IS_ERR(page)) {
 219			err = PTR_ERR(page);
 220			goto init_err_out;
 221		}
 
 
 
 
 
 222		/*
 223		 * Update the initialized size in the ntfs inode.  This is
 224		 * enough to make ntfs_writepage() work.
 225		 */
 226		write_lock_irqsave(&ni->size_lock, flags);
 227		ni->initialized_size = (s64)(index + 1) << PAGE_SHIFT;
 228		if (ni->initialized_size > new_init_size)
 229			ni->initialized_size = new_init_size;
 230		write_unlock_irqrestore(&ni->size_lock, flags);
 231		/* Set the page dirty so it gets written out. */
 232		set_page_dirty(page);
 233		put_page(page);
 234		/*
 235		 * Play nice with the vm and the rest of the system.  This is
 236		 * very much needed as we can potentially be modifying the
 237		 * initialised size from a very small value to a really huge
 238		 * value, e.g.
 239		 *	f = open(somefile, O_TRUNC);
 240		 *	truncate(f, 10GiB);
 241		 *	seek(f, 10GiB);
 242		 *	write(f, 1);
 243		 * And this would mean we would be marking dirty hundreds of
 244		 * thousands of pages or as in the above example more than
 245		 * two and a half million pages!
 246		 *
 247		 * TODO: For sparse pages could optimize this workload by using
 248		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
 249		 * would be set in read_folio for sparse pages and here we would
 250		 * not need to mark dirty any pages which have this bit set.
 251		 * The only caveat is that we have to clear the bit everywhere
 252		 * where we allocate any clusters that lie in the page or that
 253		 * contain the page.
 254		 *
 255		 * TODO: An even greater optimization would be for us to only
 256		 * call read_folio() on pages which are not in sparse regions as
 257		 * determined from the runlist.  This would greatly reduce the
 258		 * number of pages we read and make dirty in the case of sparse
 259		 * files.
 260		 */
 261		balance_dirty_pages_ratelimited(mapping);
 262		cond_resched();
 263	} while (++index < end_index);
 264	read_lock_irqsave(&ni->size_lock, flags);
 265	BUG_ON(ni->initialized_size != new_init_size);
 266	read_unlock_irqrestore(&ni->size_lock, flags);
 267	/* Now bring in sync the initialized_size in the mft record. */
 268	m = map_mft_record(base_ni);
 269	if (IS_ERR(m)) {
 270		err = PTR_ERR(m);
 271		m = NULL;
 272		goto init_err_out;
 273	}
 274	ctx = ntfs_attr_get_search_ctx(base_ni, m);
 275	if (unlikely(!ctx)) {
 276		err = -ENOMEM;
 277		goto init_err_out;
 278	}
 279	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 280			CASE_SENSITIVE, 0, NULL, 0, ctx);
 281	if (unlikely(err)) {
 282		if (err == -ENOENT)
 283			err = -EIO;
 284		goto init_err_out;
 285	}
 286	m = ctx->mrec;
 287	a = ctx->attr;
 288	BUG_ON(!a->non_resident);
 289	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
 290done:
 291	flush_dcache_mft_record_page(ctx->ntfs_ino);
 292	mark_mft_record_dirty(ctx->ntfs_ino);
 293	if (ctx)
 294		ntfs_attr_put_search_ctx(ctx);
 295	if (m)
 296		unmap_mft_record(base_ni);
 297	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
 298			(unsigned long long)new_init_size, i_size_read(vi));
 299	return 0;
 300init_err_out:
 301	write_lock_irqsave(&ni->size_lock, flags);
 302	ni->initialized_size = old_init_size;
 303	write_unlock_irqrestore(&ni->size_lock, flags);
 304err_out:
 305	if (ctx)
 306		ntfs_attr_put_search_ctx(ctx);
 307	if (m)
 308		unmap_mft_record(base_ni);
 309	ntfs_debug("Failed.  Returning error code %i.", err);
 310	return err;
 311}
 312
 313static ssize_t ntfs_prepare_file_for_write(struct kiocb *iocb,
 314		struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 315{
 316	loff_t pos;
 317	s64 end, ll;
 318	ssize_t err;
 319	unsigned long flags;
 320	struct file *file = iocb->ki_filp;
 321	struct inode *vi = file_inode(file);
 322	ntfs_inode *ni = NTFS_I(vi);
 323	ntfs_volume *vol = ni->vol;
 324
 325	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
 326			"0x%llx, count 0x%zx.", vi->i_ino,
 327			(unsigned)le32_to_cpu(ni->type),
 328			(unsigned long long)iocb->ki_pos,
 329			iov_iter_count(from));
 330	err = generic_write_checks(iocb, from);
 331	if (unlikely(err <= 0))
 332		goto out;
 333	/*
 334	 * All checks have passed.  Before we start doing any writing we want
 335	 * to abort any totally illegal writes.
 336	 */
 337	BUG_ON(NInoMstProtected(ni));
 338	BUG_ON(ni->type != AT_DATA);
 339	/* If file is encrypted, deny access, just like NT4. */
 340	if (NInoEncrypted(ni)) {
 341		/* Only $DATA attributes can be encrypted. */
 342		/*
 343		 * Reminder for later: Encrypted files are _always_
 344		 * non-resident so that the content can always be encrypted.
 345		 */
 346		ntfs_debug("Denying write access to encrypted file.");
 347		err = -EACCES;
 348		goto out;
 349	}
 350	if (NInoCompressed(ni)) {
 351		/* Only unnamed $DATA attribute can be compressed. */
 352		BUG_ON(ni->name_len);
 353		/*
 354		 * Reminder for later: If resident, the data is not actually
 355		 * compressed.  Only on the switch to non-resident does
 356		 * compression kick in.  This is in contrast to encrypted files
 357		 * (see above).
 358		 */
 359		ntfs_error(vi->i_sb, "Writing to compressed files is not "
 360				"implemented yet.  Sorry.");
 361		err = -EOPNOTSUPP;
 362		goto out;
 363	}
 364	err = file_remove_privs(file);
 365	if (unlikely(err))
 366		goto out;
 367	/*
 368	 * Our ->update_time method always succeeds thus file_update_time()
 369	 * cannot fail either so there is no need to check the return code.
 370	 */
 371	file_update_time(file);
 372	pos = iocb->ki_pos;
 373	/* The first byte after the last cluster being written to. */
 374	end = (pos + iov_iter_count(from) + vol->cluster_size_mask) &
 375			~(u64)vol->cluster_size_mask;
 376	/*
 377	 * If the write goes beyond the allocated size, extend the allocation
 378	 * to cover the whole of the write, rounded up to the nearest cluster.
 379	 */
 380	read_lock_irqsave(&ni->size_lock, flags);
 381	ll = ni->allocated_size;
 382	read_unlock_irqrestore(&ni->size_lock, flags);
 383	if (end > ll) {
 384		/*
 385		 * Extend the allocation without changing the data size.
 386		 *
 387		 * Note we ensure the allocation is big enough to at least
 388		 * write some data but we do not require the allocation to be
 389		 * complete, i.e. it may be partial.
 390		 */
 391		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
 392		if (likely(ll >= 0)) {
 393			BUG_ON(pos >= ll);
 394			/* If the extension was partial truncate the write. */
 395			if (end > ll) {
 396				ntfs_debug("Truncating write to inode 0x%lx, "
 397						"attribute type 0x%x, because "
 398						"the allocation was only "
 399						"partially extended.",
 400						vi->i_ino, (unsigned)
 401						le32_to_cpu(ni->type));
 402				iov_iter_truncate(from, ll - pos);
 403			}
 404		} else {
 405			err = ll;
 406			read_lock_irqsave(&ni->size_lock, flags);
 407			ll = ni->allocated_size;
 408			read_unlock_irqrestore(&ni->size_lock, flags);
 409			/* Perform a partial write if possible or fail. */
 410			if (pos < ll) {
 411				ntfs_debug("Truncating write to inode 0x%lx "
 412						"attribute type 0x%x, because "
 413						"extending the allocation "
 414						"failed (error %d).",
 415						vi->i_ino, (unsigned)
 416						le32_to_cpu(ni->type),
 417						(int)-err);
 418				iov_iter_truncate(from, ll - pos);
 419			} else {
 420				if (err != -ENOSPC)
 421					ntfs_error(vi->i_sb, "Cannot perform "
 422							"write to inode "
 423							"0x%lx, attribute "
 424							"type 0x%x, because "
 425							"extending the "
 426							"allocation failed "
 427							"(error %ld).",
 428							vi->i_ino, (unsigned)
 429							le32_to_cpu(ni->type),
 430							(long)-err);
 431				else
 432					ntfs_debug("Cannot perform write to "
 433							"inode 0x%lx, "
 434							"attribute type 0x%x, "
 435							"because there is not "
 436							"space left.",
 437							vi->i_ino, (unsigned)
 438							le32_to_cpu(ni->type));
 439				goto out;
 440			}
 441		}
 442	}
 443	/*
 444	 * If the write starts beyond the initialized size, extend it up to the
 445	 * beginning of the write and initialize all non-sparse space between
 446	 * the old initialized size and the new one.  This automatically also
 447	 * increments the vfs inode->i_size to keep it above or equal to the
 448	 * initialized_size.
 449	 */
 450	read_lock_irqsave(&ni->size_lock, flags);
 451	ll = ni->initialized_size;
 452	read_unlock_irqrestore(&ni->size_lock, flags);
 453	if (pos > ll) {
 454		/*
 455		 * Wait for ongoing direct i/o to complete before proceeding.
 456		 * New direct i/o cannot start as we hold i_mutex.
 457		 */
 458		inode_dio_wait(vi);
 459		err = ntfs_attr_extend_initialized(ni, pos);
 460		if (unlikely(err < 0))
 461			ntfs_error(vi->i_sb, "Cannot perform write to inode "
 462					"0x%lx, attribute type 0x%x, because "
 463					"extending the initialized size "
 464					"failed (error %d).", vi->i_ino,
 465					(unsigned)le32_to_cpu(ni->type),
 466					(int)-err);
 467	}
 468out:
 469	return err;
 470}
 471
 472/**
 473 * __ntfs_grab_cache_pages - obtain a number of locked pages
 474 * @mapping:	address space mapping from which to obtain page cache pages
 475 * @index:	starting index in @mapping at which to begin obtaining pages
 476 * @nr_pages:	number of page cache pages to obtain
 477 * @pages:	array of pages in which to return the obtained page cache pages
 478 * @cached_page: allocated but as yet unused page
 
 479 *
 480 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
 481 * starting at index @index.
 482 *
 483 * If a page is newly created, add it to lru list
 484 *
 485 * Note, the page locks are obtained in ascending page index order.
 486 */
 487static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
 488		pgoff_t index, const unsigned nr_pages, struct page **pages,
 489		struct page **cached_page)
 490{
 491	int err, nr;
 492
 493	BUG_ON(!nr_pages);
 494	err = nr = 0;
 495	do {
 496		pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
 497				FGP_ACCESSED);
 498		if (!pages[nr]) {
 499			if (!*cached_page) {
 500				*cached_page = page_cache_alloc(mapping);
 501				if (unlikely(!*cached_page)) {
 502					err = -ENOMEM;
 503					goto err_out;
 504				}
 505			}
 506			err = add_to_page_cache_lru(*cached_page, mapping,
 507				   index,
 508				   mapping_gfp_constraint(mapping, GFP_KERNEL));
 509			if (unlikely(err)) {
 510				if (err == -EEXIST)
 511					continue;
 512				goto err_out;
 513			}
 514			pages[nr] = *cached_page;
 515			*cached_page = NULL;
 516		}
 517		index++;
 518		nr++;
 519	} while (nr < nr_pages);
 520out:
 521	return err;
 522err_out:
 523	while (nr > 0) {
 524		unlock_page(pages[--nr]);
 525		put_page(pages[nr]);
 526	}
 527	goto out;
 528}
 529
 530static inline void ntfs_submit_bh_for_read(struct buffer_head *bh)
 531{
 532	lock_buffer(bh);
 533	get_bh(bh);
 534	bh->b_end_io = end_buffer_read_sync;
 535	submit_bh(REQ_OP_READ, bh);
 536}
 537
 538/**
 539 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
 540 * @pages:	array of destination pages
 541 * @nr_pages:	number of pages in @pages
 542 * @pos:	byte position in file at which the write begins
 543 * @bytes:	number of bytes to be written
 544 *
 545 * This is called for non-resident attributes from ntfs_file_buffered_write()
 546 * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
 547 * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
 548 * data has not yet been copied into the @pages.
 549 * 
 550 * Need to fill any holes with actual clusters, allocate buffers if necessary,
 551 * ensure all the buffers are mapped, and bring uptodate any buffers that are
 552 * only partially being written to.
 553 *
 554 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
 555 * greater than PAGE_SIZE, that all pages in @pages are entirely inside
 556 * the same cluster and that they are the entirety of that cluster, and that
 557 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
 558 *
 559 * i_size is not to be modified yet.
 560 *
 561 * Return 0 on success or -errno on error.
 562 */
 563static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
 564		unsigned nr_pages, s64 pos, size_t bytes)
 565{
 566	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
 567	LCN lcn;
 568	s64 bh_pos, vcn_len, end, initialized_size;
 569	sector_t lcn_block;
 570	struct page *page;
 571	struct inode *vi;
 572	ntfs_inode *ni, *base_ni = NULL;
 573	ntfs_volume *vol;
 574	runlist_element *rl, *rl2;
 575	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
 576	ntfs_attr_search_ctx *ctx = NULL;
 577	MFT_RECORD *m = NULL;
 578	ATTR_RECORD *a = NULL;
 579	unsigned long flags;
 580	u32 attr_rec_len = 0;
 581	unsigned blocksize, u;
 582	int err, mp_size;
 583	bool rl_write_locked, was_hole, is_retry;
 584	unsigned char blocksize_bits;
 585	struct {
 586		u8 runlist_merged:1;
 587		u8 mft_attr_mapped:1;
 588		u8 mp_rebuilt:1;
 589		u8 attr_switched:1;
 590	} status = { 0, 0, 0, 0 };
 591
 592	BUG_ON(!nr_pages);
 593	BUG_ON(!pages);
 594	BUG_ON(!*pages);
 595	vi = pages[0]->mapping->host;
 596	ni = NTFS_I(vi);
 597	vol = ni->vol;
 598	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
 599			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
 600			vi->i_ino, ni->type, pages[0]->index, nr_pages,
 601			(long long)pos, bytes);
 602	blocksize = vol->sb->s_blocksize;
 603	blocksize_bits = vol->sb->s_blocksize_bits;
 604	u = 0;
 605	do {
 606		page = pages[u];
 607		BUG_ON(!page);
 608		/*
 609		 * create_empty_buffers() will create uptodate/dirty buffers if
 610		 * the page is uptodate/dirty.
 611		 */
 612		if (!page_has_buffers(page)) {
 613			create_empty_buffers(page, blocksize, 0);
 614			if (unlikely(!page_has_buffers(page)))
 615				return -ENOMEM;
 616		}
 617	} while (++u < nr_pages);
 618	rl_write_locked = false;
 619	rl = NULL;
 620	err = 0;
 621	vcn = lcn = -1;
 622	vcn_len = 0;
 623	lcn_block = -1;
 624	was_hole = false;
 625	cpos = pos >> vol->cluster_size_bits;
 626	end = pos + bytes;
 627	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
 628	/*
 629	 * Loop over each page and for each page over each buffer.  Use goto to
 630	 * reduce indentation.
 631	 */
 632	u = 0;
 633do_next_page:
 634	page = pages[u];
 635	bh_pos = (s64)page->index << PAGE_SHIFT;
 636	bh = head = page_buffers(page);
 637	do {
 638		VCN cdelta;
 639		s64 bh_end;
 640		unsigned bh_cofs;
 641
 642		/* Clear buffer_new on all buffers to reinitialise state. */
 643		if (buffer_new(bh))
 644			clear_buffer_new(bh);
 645		bh_end = bh_pos + blocksize;
 646		bh_cpos = bh_pos >> vol->cluster_size_bits;
 647		bh_cofs = bh_pos & vol->cluster_size_mask;
 648		if (buffer_mapped(bh)) {
 649			/*
 650			 * The buffer is already mapped.  If it is uptodate,
 651			 * ignore it.
 652			 */
 653			if (buffer_uptodate(bh))
 654				continue;
 655			/*
 656			 * The buffer is not uptodate.  If the page is uptodate
 657			 * set the buffer uptodate and otherwise ignore it.
 658			 */
 659			if (PageUptodate(page)) {
 660				set_buffer_uptodate(bh);
 661				continue;
 662			}
 663			/*
 664			 * Neither the page nor the buffer are uptodate.  If
 665			 * the buffer is only partially being written to, we
 666			 * need to read it in before the write, i.e. now.
 667			 */
 668			if ((bh_pos < pos && bh_end > pos) ||
 669					(bh_pos < end && bh_end > end)) {
 670				/*
 671				 * If the buffer is fully or partially within
 672				 * the initialized size, do an actual read.
 673				 * Otherwise, simply zero the buffer.
 674				 */
 675				read_lock_irqsave(&ni->size_lock, flags);
 676				initialized_size = ni->initialized_size;
 677				read_unlock_irqrestore(&ni->size_lock, flags);
 678				if (bh_pos < initialized_size) {
 679					ntfs_submit_bh_for_read(bh);
 680					*wait_bh++ = bh;
 681				} else {
 682					zero_user(page, bh_offset(bh),
 683							blocksize);
 684					set_buffer_uptodate(bh);
 685				}
 686			}
 687			continue;
 688		}
 689		/* Unmapped buffer.  Need to map it. */
 690		bh->b_bdev = vol->sb->s_bdev;
 691		/*
 692		 * If the current buffer is in the same clusters as the map
 693		 * cache, there is no need to check the runlist again.  The
 694		 * map cache is made up of @vcn, which is the first cached file
 695		 * cluster, @vcn_len which is the number of cached file
 696		 * clusters, @lcn is the device cluster corresponding to @vcn,
 697		 * and @lcn_block is the block number corresponding to @lcn.
 698		 */
 699		cdelta = bh_cpos - vcn;
 700		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
 701map_buffer_cached:
 702			BUG_ON(lcn < 0);
 703			bh->b_blocknr = lcn_block +
 704					(cdelta << (vol->cluster_size_bits -
 705					blocksize_bits)) +
 706					(bh_cofs >> blocksize_bits);
 707			set_buffer_mapped(bh);
 708			/*
 709			 * If the page is uptodate so is the buffer.  If the
 710			 * buffer is fully outside the write, we ignore it if
 711			 * it was already allocated and we mark it dirty so it
 712			 * gets written out if we allocated it.  On the other
 713			 * hand, if we allocated the buffer but we are not
 714			 * marking it dirty we set buffer_new so we can do
 715			 * error recovery.
 716			 */
 717			if (PageUptodate(page)) {
 718				if (!buffer_uptodate(bh))
 719					set_buffer_uptodate(bh);
 720				if (unlikely(was_hole)) {
 721					/* We allocated the buffer. */
 722					clean_bdev_bh_alias(bh);
 
 723					if (bh_end <= pos || bh_pos >= end)
 724						mark_buffer_dirty(bh);
 725					else
 726						set_buffer_new(bh);
 727				}
 728				continue;
 729			}
 730			/* Page is _not_ uptodate. */
 731			if (likely(!was_hole)) {
 732				/*
 733				 * Buffer was already allocated.  If it is not
 734				 * uptodate and is only partially being written
 735				 * to, we need to read it in before the write,
 736				 * i.e. now.
 737				 */
 738				if (!buffer_uptodate(bh) && bh_pos < end &&
 739						bh_end > pos &&
 740						(bh_pos < pos ||
 741						bh_end > end)) {
 742					/*
 743					 * If the buffer is fully or partially
 744					 * within the initialized size, do an
 745					 * actual read.  Otherwise, simply zero
 746					 * the buffer.
 747					 */
 748					read_lock_irqsave(&ni->size_lock,
 749							flags);
 750					initialized_size = ni->initialized_size;
 751					read_unlock_irqrestore(&ni->size_lock,
 752							flags);
 753					if (bh_pos < initialized_size) {
 754						ntfs_submit_bh_for_read(bh);
 755						*wait_bh++ = bh;
 756					} else {
 757						zero_user(page, bh_offset(bh),
 758								blocksize);
 759						set_buffer_uptodate(bh);
 760					}
 761				}
 762				continue;
 763			}
 764			/* We allocated the buffer. */
 765			clean_bdev_bh_alias(bh);
 766			/*
 767			 * If the buffer is fully outside the write, zero it,
 768			 * set it uptodate, and mark it dirty so it gets
 769			 * written out.  If it is partially being written to,
 770			 * zero region surrounding the write but leave it to
 771			 * commit write to do anything else.  Finally, if the
 772			 * buffer is fully being overwritten, do nothing.
 773			 */
 774			if (bh_end <= pos || bh_pos >= end) {
 775				if (!buffer_uptodate(bh)) {
 776					zero_user(page, bh_offset(bh),
 777							blocksize);
 778					set_buffer_uptodate(bh);
 779				}
 780				mark_buffer_dirty(bh);
 781				continue;
 782			}
 783			set_buffer_new(bh);
 784			if (!buffer_uptodate(bh) &&
 785					(bh_pos < pos || bh_end > end)) {
 786				u8 *kaddr;
 787				unsigned pofs;
 788					
 789				kaddr = kmap_atomic(page);
 790				if (bh_pos < pos) {
 791					pofs = bh_pos & ~PAGE_MASK;
 792					memset(kaddr + pofs, 0, pos - bh_pos);
 793				}
 794				if (bh_end > end) {
 795					pofs = end & ~PAGE_MASK;
 796					memset(kaddr + pofs, 0, bh_end - end);
 797				}
 798				kunmap_atomic(kaddr);
 799				flush_dcache_page(page);
 800			}
 801			continue;
 802		}
 803		/*
 804		 * Slow path: this is the first buffer in the cluster.  If it
 805		 * is outside allocated size and is not uptodate, zero it and
 806		 * set it uptodate.
 807		 */
 808		read_lock_irqsave(&ni->size_lock, flags);
 809		initialized_size = ni->allocated_size;
 810		read_unlock_irqrestore(&ni->size_lock, flags);
 811		if (bh_pos > initialized_size) {
 812			if (PageUptodate(page)) {
 813				if (!buffer_uptodate(bh))
 814					set_buffer_uptodate(bh);
 815			} else if (!buffer_uptodate(bh)) {
 816				zero_user(page, bh_offset(bh), blocksize);
 817				set_buffer_uptodate(bh);
 818			}
 819			continue;
 820		}
 821		is_retry = false;
 822		if (!rl) {
 823			down_read(&ni->runlist.lock);
 824retry_remap:
 825			rl = ni->runlist.rl;
 826		}
 827		if (likely(rl != NULL)) {
 828			/* Seek to element containing target cluster. */
 829			while (rl->length && rl[1].vcn <= bh_cpos)
 830				rl++;
 831			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
 832			if (likely(lcn >= 0)) {
 833				/*
 834				 * Successful remap, setup the map cache and
 835				 * use that to deal with the buffer.
 836				 */
 837				was_hole = false;
 838				vcn = bh_cpos;
 839				vcn_len = rl[1].vcn - vcn;
 840				lcn_block = lcn << (vol->cluster_size_bits -
 841						blocksize_bits);
 842				cdelta = 0;
 843				/*
 844				 * If the number of remaining clusters touched
 845				 * by the write is smaller or equal to the
 846				 * number of cached clusters, unlock the
 847				 * runlist as the map cache will be used from
 848				 * now on.
 849				 */
 850				if (likely(vcn + vcn_len >= cend)) {
 851					if (rl_write_locked) {
 852						up_write(&ni->runlist.lock);
 853						rl_write_locked = false;
 854					} else
 855						up_read(&ni->runlist.lock);
 856					rl = NULL;
 857				}
 858				goto map_buffer_cached;
 859			}
 860		} else
 861			lcn = LCN_RL_NOT_MAPPED;
 862		/*
 863		 * If it is not a hole and not out of bounds, the runlist is
 864		 * probably unmapped so try to map it now.
 865		 */
 866		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
 867			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
 868				/* Attempt to map runlist. */
 869				if (!rl_write_locked) {
 870					/*
 871					 * We need the runlist locked for
 872					 * writing, so if it is locked for
 873					 * reading relock it now and retry in
 874					 * case it changed whilst we dropped
 875					 * the lock.
 876					 */
 877					up_read(&ni->runlist.lock);
 878					down_write(&ni->runlist.lock);
 879					rl_write_locked = true;
 880					goto retry_remap;
 881				}
 882				err = ntfs_map_runlist_nolock(ni, bh_cpos,
 883						NULL);
 884				if (likely(!err)) {
 885					is_retry = true;
 886					goto retry_remap;
 887				}
 888				/*
 889				 * If @vcn is out of bounds, pretend @lcn is
 890				 * LCN_ENOENT.  As long as the buffer is out
 891				 * of bounds this will work fine.
 892				 */
 893				if (err == -ENOENT) {
 894					lcn = LCN_ENOENT;
 895					err = 0;
 896					goto rl_not_mapped_enoent;
 897				}
 898			} else
 899				err = -EIO;
 900			/* Failed to map the buffer, even after retrying. */
 901			bh->b_blocknr = -1;
 902			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
 903					"attribute type 0x%x, vcn 0x%llx, "
 904					"vcn offset 0x%x, because its "
 905					"location on disk could not be "
 906					"determined%s (error code %i).",
 907					ni->mft_no, ni->type,
 908					(unsigned long long)bh_cpos,
 909					(unsigned)bh_pos &
 910					vol->cluster_size_mask,
 911					is_retry ? " even after retrying" : "",
 912					err);
 913			break;
 914		}
 915rl_not_mapped_enoent:
 916		/*
 917		 * The buffer is in a hole or out of bounds.  We need to fill
 918		 * the hole, unless the buffer is in a cluster which is not
 919		 * touched by the write, in which case we just leave the buffer
 920		 * unmapped.  This can only happen when the cluster size is
 921		 * less than the page cache size.
 922		 */
 923		if (unlikely(vol->cluster_size < PAGE_SIZE)) {
 924			bh_cend = (bh_end + vol->cluster_size - 1) >>
 925					vol->cluster_size_bits;
 926			if ((bh_cend <= cpos || bh_cpos >= cend)) {
 927				bh->b_blocknr = -1;
 928				/*
 929				 * If the buffer is uptodate we skip it.  If it
 930				 * is not but the page is uptodate, we can set
 931				 * the buffer uptodate.  If the page is not
 932				 * uptodate, we can clear the buffer and set it
 933				 * uptodate.  Whether this is worthwhile is
 934				 * debatable and this could be removed.
 935				 */
 936				if (PageUptodate(page)) {
 937					if (!buffer_uptodate(bh))
 938						set_buffer_uptodate(bh);
 939				} else if (!buffer_uptodate(bh)) {
 940					zero_user(page, bh_offset(bh),
 941						blocksize);
 942					set_buffer_uptodate(bh);
 943				}
 944				continue;
 945			}
 946		}
 947		/*
 948		 * Out of bounds buffer is invalid if it was not really out of
 949		 * bounds.
 950		 */
 951		BUG_ON(lcn != LCN_HOLE);
 952		/*
 953		 * We need the runlist locked for writing, so if it is locked
 954		 * for reading relock it now and retry in case it changed
 955		 * whilst we dropped the lock.
 956		 */
 957		BUG_ON(!rl);
 958		if (!rl_write_locked) {
 959			up_read(&ni->runlist.lock);
 960			down_write(&ni->runlist.lock);
 961			rl_write_locked = true;
 962			goto retry_remap;
 963		}
 964		/* Find the previous last allocated cluster. */
 965		BUG_ON(rl->lcn != LCN_HOLE);
 966		lcn = -1;
 967		rl2 = rl;
 968		while (--rl2 >= ni->runlist.rl) {
 969			if (rl2->lcn >= 0) {
 970				lcn = rl2->lcn + rl2->length;
 971				break;
 972			}
 973		}
 974		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
 975				false);
 976		if (IS_ERR(rl2)) {
 977			err = PTR_ERR(rl2);
 978			ntfs_debug("Failed to allocate cluster, error code %i.",
 979					err);
 980			break;
 981		}
 982		lcn = rl2->lcn;
 983		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
 984		if (IS_ERR(rl)) {
 985			err = PTR_ERR(rl);
 986			if (err != -ENOMEM)
 987				err = -EIO;
 988			if (ntfs_cluster_free_from_rl(vol, rl2)) {
 989				ntfs_error(vol->sb, "Failed to release "
 990						"allocated cluster in error "
 991						"code path.  Run chkdsk to "
 992						"recover the lost cluster.");
 993				NVolSetErrors(vol);
 994			}
 995			ntfs_free(rl2);
 996			break;
 997		}
 998		ni->runlist.rl = rl;
 999		status.runlist_merged = 1;
1000		ntfs_debug("Allocated cluster, lcn 0x%llx.",
1001				(unsigned long long)lcn);
1002		/* Map and lock the mft record and get the attribute record. */
1003		if (!NInoAttr(ni))
1004			base_ni = ni;
1005		else
1006			base_ni = ni->ext.base_ntfs_ino;
1007		m = map_mft_record(base_ni);
1008		if (IS_ERR(m)) {
1009			err = PTR_ERR(m);
1010			break;
1011		}
1012		ctx = ntfs_attr_get_search_ctx(base_ni, m);
1013		if (unlikely(!ctx)) {
1014			err = -ENOMEM;
1015			unmap_mft_record(base_ni);
1016			break;
1017		}
1018		status.mft_attr_mapped = 1;
1019		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1020				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
1021		if (unlikely(err)) {
1022			if (err == -ENOENT)
1023				err = -EIO;
1024			break;
1025		}
1026		m = ctx->mrec;
1027		a = ctx->attr;
1028		/*
1029		 * Find the runlist element with which the attribute extent
1030		 * starts.  Note, we cannot use the _attr_ version because we
1031		 * have mapped the mft record.  That is ok because we know the
1032		 * runlist fragment must be mapped already to have ever gotten
1033		 * here, so we can just use the _rl_ version.
1034		 */
1035		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1036		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
1037		BUG_ON(!rl2);
1038		BUG_ON(!rl2->length);
1039		BUG_ON(rl2->lcn < LCN_HOLE);
1040		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
1041		/*
1042		 * If @highest_vcn is zero, calculate the real highest_vcn
1043		 * (which can really be zero).
1044		 */
1045		if (!highest_vcn)
1046			highest_vcn = (sle64_to_cpu(
1047					a->data.non_resident.allocated_size) >>
1048					vol->cluster_size_bits) - 1;
1049		/*
1050		 * Determine the size of the mapping pairs array for the new
1051		 * extent, i.e. the old extent with the hole filled.
1052		 */
1053		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
1054				highest_vcn);
1055		if (unlikely(mp_size <= 0)) {
1056			if (!(err = mp_size))
1057				err = -EIO;
1058			ntfs_debug("Failed to get size for mapping pairs "
1059					"array, error code %i.", err);
1060			break;
1061		}
1062		/*
1063		 * Resize the attribute record to fit the new mapping pairs
1064		 * array.
1065		 */
1066		attr_rec_len = le32_to_cpu(a->length);
1067		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1068				a->data.non_resident.mapping_pairs_offset));
1069		if (unlikely(err)) {
1070			BUG_ON(err != -ENOSPC);
1071			// TODO: Deal with this by using the current attribute
1072			// and fill it with as much of the mapping pairs
1073			// array as possible.  Then loop over each attribute
1074			// extent rewriting the mapping pairs arrays as we go
1075			// along and if when we reach the end we have not
1076			// enough space, try to resize the last attribute
1077			// extent and if even that fails, add a new attribute
1078			// extent.
1079			// We could also try to resize at each step in the hope
1080			// that we will not need to rewrite every single extent.
1081			// Note, we may need to decompress some extents to fill
1082			// the runlist as we are walking the extents...
1083			ntfs_error(vol->sb, "Not enough space in the mft "
1084					"record for the extended attribute "
1085					"record.  This case is not "
1086					"implemented yet.");
1087			err = -EOPNOTSUPP;
1088			break ;
1089		}
1090		status.mp_rebuilt = 1;
1091		/*
1092		 * Generate the mapping pairs array directly into the attribute
1093		 * record.
1094		 */
1095		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1096				a->data.non_resident.mapping_pairs_offset),
1097				mp_size, rl2, vcn, highest_vcn, NULL);
1098		if (unlikely(err)) {
1099			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1100					"attribute type 0x%x, because building "
1101					"the mapping pairs failed with error "
1102					"code %i.", vi->i_ino,
1103					(unsigned)le32_to_cpu(ni->type), err);
1104			err = -EIO;
1105			break;
1106		}
1107		/* Update the highest_vcn but only if it was not set. */
1108		if (unlikely(!a->data.non_resident.highest_vcn))
1109			a->data.non_resident.highest_vcn =
1110					cpu_to_sle64(highest_vcn);
1111		/*
1112		 * If the attribute is sparse/compressed, update the compressed
1113		 * size in the ntfs_inode structure and the attribute record.
1114		 */
1115		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1116			/*
1117			 * If we are not in the first attribute extent, switch
1118			 * to it, but first ensure the changes will make it to
1119			 * disk later.
1120			 */
1121			if (a->data.non_resident.lowest_vcn) {
1122				flush_dcache_mft_record_page(ctx->ntfs_ino);
1123				mark_mft_record_dirty(ctx->ntfs_ino);
1124				ntfs_attr_reinit_search_ctx(ctx);
1125				err = ntfs_attr_lookup(ni->type, ni->name,
1126						ni->name_len, CASE_SENSITIVE,
1127						0, NULL, 0, ctx);
1128				if (unlikely(err)) {
1129					status.attr_switched = 1;
1130					break;
1131				}
1132				/* @m is not used any more so do not set it. */
1133				a = ctx->attr;
1134			}
1135			write_lock_irqsave(&ni->size_lock, flags);
1136			ni->itype.compressed.size += vol->cluster_size;
1137			a->data.non_resident.compressed_size =
1138					cpu_to_sle64(ni->itype.compressed.size);
1139			write_unlock_irqrestore(&ni->size_lock, flags);
1140		}
1141		/* Ensure the changes make it to disk. */
1142		flush_dcache_mft_record_page(ctx->ntfs_ino);
1143		mark_mft_record_dirty(ctx->ntfs_ino);
1144		ntfs_attr_put_search_ctx(ctx);
1145		unmap_mft_record(base_ni);
1146		/* Successfully filled the hole. */
1147		status.runlist_merged = 0;
1148		status.mft_attr_mapped = 0;
1149		status.mp_rebuilt = 0;
1150		/* Setup the map cache and use that to deal with the buffer. */
1151		was_hole = true;
1152		vcn = bh_cpos;
1153		vcn_len = 1;
1154		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1155		cdelta = 0;
1156		/*
1157		 * If the number of remaining clusters in the @pages is smaller
1158		 * or equal to the number of cached clusters, unlock the
1159		 * runlist as the map cache will be used from now on.
1160		 */
1161		if (likely(vcn + vcn_len >= cend)) {
1162			up_write(&ni->runlist.lock);
1163			rl_write_locked = false;
1164			rl = NULL;
1165		}
1166		goto map_buffer_cached;
1167	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1168	/* If there are no errors, do the next page. */
1169	if (likely(!err && ++u < nr_pages))
1170		goto do_next_page;
1171	/* If there are no errors, release the runlist lock if we took it. */
1172	if (likely(!err)) {
1173		if (unlikely(rl_write_locked)) {
1174			up_write(&ni->runlist.lock);
1175			rl_write_locked = false;
1176		} else if (unlikely(rl))
1177			up_read(&ni->runlist.lock);
1178		rl = NULL;
1179	}
1180	/* If we issued read requests, let them complete. */
1181	read_lock_irqsave(&ni->size_lock, flags);
1182	initialized_size = ni->initialized_size;
1183	read_unlock_irqrestore(&ni->size_lock, flags);
1184	while (wait_bh > wait) {
1185		bh = *--wait_bh;
1186		wait_on_buffer(bh);
1187		if (likely(buffer_uptodate(bh))) {
1188			page = bh->b_page;
1189			bh_pos = ((s64)page->index << PAGE_SHIFT) +
1190					bh_offset(bh);
1191			/*
1192			 * If the buffer overflows the initialized size, need
1193			 * to zero the overflowing region.
1194			 */
1195			if (unlikely(bh_pos + blocksize > initialized_size)) {
1196				int ofs = 0;
1197
1198				if (likely(bh_pos < initialized_size))
1199					ofs = initialized_size - bh_pos;
1200				zero_user_segment(page, bh_offset(bh) + ofs,
1201						blocksize);
1202			}
1203		} else /* if (unlikely(!buffer_uptodate(bh))) */
1204			err = -EIO;
1205	}
1206	if (likely(!err)) {
1207		/* Clear buffer_new on all buffers. */
1208		u = 0;
1209		do {
1210			bh = head = page_buffers(pages[u]);
1211			do {
1212				if (buffer_new(bh))
1213					clear_buffer_new(bh);
1214			} while ((bh = bh->b_this_page) != head);
1215		} while (++u < nr_pages);
1216		ntfs_debug("Done.");
1217		return err;
1218	}
1219	if (status.attr_switched) {
1220		/* Get back to the attribute extent we modified. */
1221		ntfs_attr_reinit_search_ctx(ctx);
1222		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1223				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1224			ntfs_error(vol->sb, "Failed to find required "
1225					"attribute extent of attribute in "
1226					"error code path.  Run chkdsk to "
1227					"recover.");
1228			write_lock_irqsave(&ni->size_lock, flags);
1229			ni->itype.compressed.size += vol->cluster_size;
1230			write_unlock_irqrestore(&ni->size_lock, flags);
1231			flush_dcache_mft_record_page(ctx->ntfs_ino);
1232			mark_mft_record_dirty(ctx->ntfs_ino);
1233			/*
1234			 * The only thing that is now wrong is the compressed
1235			 * size of the base attribute extent which chkdsk
1236			 * should be able to fix.
1237			 */
1238			NVolSetErrors(vol);
1239		} else {
1240			m = ctx->mrec;
1241			a = ctx->attr;
1242			status.attr_switched = 0;
1243		}
1244	}
1245	/*
1246	 * If the runlist has been modified, need to restore it by punching a
1247	 * hole into it and we then need to deallocate the on-disk cluster as
1248	 * well.  Note, we only modify the runlist if we are able to generate a
1249	 * new mapping pairs array, i.e. only when the mapped attribute extent
1250	 * is not switched.
1251	 */
1252	if (status.runlist_merged && !status.attr_switched) {
1253		BUG_ON(!rl_write_locked);
1254		/* Make the file cluster we allocated sparse in the runlist. */
1255		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1256			ntfs_error(vol->sb, "Failed to punch hole into "
1257					"attribute runlist in error code "
1258					"path.  Run chkdsk to recover the "
1259					"lost cluster.");
1260			NVolSetErrors(vol);
1261		} else /* if (success) */ {
1262			status.runlist_merged = 0;
1263			/*
1264			 * Deallocate the on-disk cluster we allocated but only
1265			 * if we succeeded in punching its vcn out of the
1266			 * runlist.
1267			 */
1268			down_write(&vol->lcnbmp_lock);
1269			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1270				ntfs_error(vol->sb, "Failed to release "
1271						"allocated cluster in error "
1272						"code path.  Run chkdsk to "
1273						"recover the lost cluster.");
1274				NVolSetErrors(vol);
1275			}
1276			up_write(&vol->lcnbmp_lock);
1277		}
1278	}
1279	/*
1280	 * Resize the attribute record to its old size and rebuild the mapping
1281	 * pairs array.  Note, we only can do this if the runlist has been
1282	 * restored to its old state which also implies that the mapped
1283	 * attribute extent is not switched.
1284	 */
1285	if (status.mp_rebuilt && !status.runlist_merged) {
1286		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1287			ntfs_error(vol->sb, "Failed to restore attribute "
1288					"record in error code path.  Run "
1289					"chkdsk to recover.");
1290			NVolSetErrors(vol);
1291		} else /* if (success) */ {
1292			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1293					le16_to_cpu(a->data.non_resident.
1294					mapping_pairs_offset), attr_rec_len -
1295					le16_to_cpu(a->data.non_resident.
1296					mapping_pairs_offset), ni->runlist.rl,
1297					vcn, highest_vcn, NULL)) {
1298				ntfs_error(vol->sb, "Failed to restore "
1299						"mapping pairs array in error "
1300						"code path.  Run chkdsk to "
1301						"recover.");
1302				NVolSetErrors(vol);
1303			}
1304			flush_dcache_mft_record_page(ctx->ntfs_ino);
1305			mark_mft_record_dirty(ctx->ntfs_ino);
1306		}
1307	}
1308	/* Release the mft record and the attribute. */
1309	if (status.mft_attr_mapped) {
1310		ntfs_attr_put_search_ctx(ctx);
1311		unmap_mft_record(base_ni);
1312	}
1313	/* Release the runlist lock. */
1314	if (rl_write_locked)
1315		up_write(&ni->runlist.lock);
1316	else if (rl)
1317		up_read(&ni->runlist.lock);
1318	/*
1319	 * Zero out any newly allocated blocks to avoid exposing stale data.
1320	 * If BH_New is set, we know that the block was newly allocated above
1321	 * and that it has not been fully zeroed and marked dirty yet.
1322	 */
1323	nr_pages = u;
1324	u = 0;
1325	end = bh_cpos << vol->cluster_size_bits;
1326	do {
1327		page = pages[u];
1328		bh = head = page_buffers(page);
1329		do {
1330			if (u == nr_pages &&
1331					((s64)page->index << PAGE_SHIFT) +
1332					bh_offset(bh) >= end)
1333				break;
1334			if (!buffer_new(bh))
1335				continue;
1336			clear_buffer_new(bh);
1337			if (!buffer_uptodate(bh)) {
1338				if (PageUptodate(page))
1339					set_buffer_uptodate(bh);
1340				else {
1341					zero_user(page, bh_offset(bh),
1342							blocksize);
1343					set_buffer_uptodate(bh);
1344				}
1345			}
1346			mark_buffer_dirty(bh);
1347		} while ((bh = bh->b_this_page) != head);
1348	} while (++u <= nr_pages);
1349	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1350	return err;
1351}
1352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353static inline void ntfs_flush_dcache_pages(struct page **pages,
1354		unsigned nr_pages)
1355{
1356	BUG_ON(!nr_pages);
1357	/*
1358	 * Warning: Do not do the decrement at the same time as the call to
1359	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1360	 * decrement never happens so the loop never terminates.
1361	 */
1362	do {
1363		--nr_pages;
1364		flush_dcache_page(pages[nr_pages]);
1365	} while (nr_pages > 0);
1366}
1367
1368/**
1369 * ntfs_commit_pages_after_non_resident_write - commit the received data
1370 * @pages:	array of destination pages
1371 * @nr_pages:	number of pages in @pages
1372 * @pos:	byte position in file at which the write begins
1373 * @bytes:	number of bytes to be written
1374 *
1375 * See description of ntfs_commit_pages_after_write(), below.
1376 */
1377static inline int ntfs_commit_pages_after_non_resident_write(
1378		struct page **pages, const unsigned nr_pages,
1379		s64 pos, size_t bytes)
1380{
1381	s64 end, initialized_size;
1382	struct inode *vi;
1383	ntfs_inode *ni, *base_ni;
1384	struct buffer_head *bh, *head;
1385	ntfs_attr_search_ctx *ctx;
1386	MFT_RECORD *m;
1387	ATTR_RECORD *a;
1388	unsigned long flags;
1389	unsigned blocksize, u;
1390	int err;
1391
1392	vi = pages[0]->mapping->host;
1393	ni = NTFS_I(vi);
1394	blocksize = vi->i_sb->s_blocksize;
1395	end = pos + bytes;
1396	u = 0;
1397	do {
1398		s64 bh_pos;
1399		struct page *page;
1400		bool partial;
1401
1402		page = pages[u];
1403		bh_pos = (s64)page->index << PAGE_SHIFT;
1404		bh = head = page_buffers(page);
1405		partial = false;
1406		do {
1407			s64 bh_end;
1408
1409			bh_end = bh_pos + blocksize;
1410			if (bh_end <= pos || bh_pos >= end) {
1411				if (!buffer_uptodate(bh))
1412					partial = true;
1413			} else {
1414				set_buffer_uptodate(bh);
1415				mark_buffer_dirty(bh);
1416			}
1417		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1418		/*
1419		 * If all buffers are now uptodate but the page is not, set the
1420		 * page uptodate.
1421		 */
1422		if (!partial && !PageUptodate(page))
1423			SetPageUptodate(page);
1424	} while (++u < nr_pages);
1425	/*
1426	 * Finally, if we do not need to update initialized_size or i_size we
1427	 * are finished.
1428	 */
1429	read_lock_irqsave(&ni->size_lock, flags);
1430	initialized_size = ni->initialized_size;
1431	read_unlock_irqrestore(&ni->size_lock, flags);
1432	if (end <= initialized_size) {
1433		ntfs_debug("Done.");
1434		return 0;
1435	}
1436	/*
1437	 * Update initialized_size/i_size as appropriate, both in the inode and
1438	 * the mft record.
1439	 */
1440	if (!NInoAttr(ni))
1441		base_ni = ni;
1442	else
1443		base_ni = ni->ext.base_ntfs_ino;
1444	/* Map, pin, and lock the mft record. */
1445	m = map_mft_record(base_ni);
1446	if (IS_ERR(m)) {
1447		err = PTR_ERR(m);
1448		m = NULL;
1449		ctx = NULL;
1450		goto err_out;
1451	}
1452	BUG_ON(!NInoNonResident(ni));
1453	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1454	if (unlikely(!ctx)) {
1455		err = -ENOMEM;
1456		goto err_out;
1457	}
1458	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1459			CASE_SENSITIVE, 0, NULL, 0, ctx);
1460	if (unlikely(err)) {
1461		if (err == -ENOENT)
1462			err = -EIO;
1463		goto err_out;
1464	}
1465	a = ctx->attr;
1466	BUG_ON(!a->non_resident);
1467	write_lock_irqsave(&ni->size_lock, flags);
1468	BUG_ON(end > ni->allocated_size);
1469	ni->initialized_size = end;
1470	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1471	if (end > i_size_read(vi)) {
1472		i_size_write(vi, end);
1473		a->data.non_resident.data_size =
1474				a->data.non_resident.initialized_size;
1475	}
1476	write_unlock_irqrestore(&ni->size_lock, flags);
1477	/* Mark the mft record dirty, so it gets written back. */
1478	flush_dcache_mft_record_page(ctx->ntfs_ino);
1479	mark_mft_record_dirty(ctx->ntfs_ino);
1480	ntfs_attr_put_search_ctx(ctx);
1481	unmap_mft_record(base_ni);
1482	ntfs_debug("Done.");
1483	return 0;
1484err_out:
1485	if (ctx)
1486		ntfs_attr_put_search_ctx(ctx);
1487	if (m)
1488		unmap_mft_record(base_ni);
1489	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1490			"code %i).", err);
1491	if (err != -ENOMEM)
1492		NVolSetErrors(ni->vol);
1493	return err;
1494}
1495
1496/**
1497 * ntfs_commit_pages_after_write - commit the received data
1498 * @pages:	array of destination pages
1499 * @nr_pages:	number of pages in @pages
1500 * @pos:	byte position in file at which the write begins
1501 * @bytes:	number of bytes to be written
1502 *
1503 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1504 * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1505 * locked but not kmap()ped.  The source data has already been copied into the
1506 * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1507 * the data was copied (for non-resident attributes only) and it returned
1508 * success.
1509 *
1510 * Need to set uptodate and mark dirty all buffers within the boundary of the
1511 * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1512 *
1513 * Setting the buffers dirty ensures that they get written out later when
1514 * ntfs_writepage() is invoked by the VM.
1515 *
1516 * Finally, we need to update i_size and initialized_size as appropriate both
1517 * in the inode and the mft record.
1518 *
1519 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1520 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1521 * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1522 * that case, it also marks the inode dirty.
1523 *
1524 * If things have gone as outlined in
1525 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1526 * content modifications here for non-resident attributes.  For resident
1527 * attributes we need to do the uptodate bringing here which we combine with
1528 * the copying into the mft record which means we save one atomic kmap.
1529 *
1530 * Return 0 on success or -errno on error.
1531 */
1532static int ntfs_commit_pages_after_write(struct page **pages,
1533		const unsigned nr_pages, s64 pos, size_t bytes)
1534{
1535	s64 end, initialized_size;
1536	loff_t i_size;
1537	struct inode *vi;
1538	ntfs_inode *ni, *base_ni;
1539	struct page *page;
1540	ntfs_attr_search_ctx *ctx;
1541	MFT_RECORD *m;
1542	ATTR_RECORD *a;
1543	char *kattr, *kaddr;
1544	unsigned long flags;
1545	u32 attr_len;
1546	int err;
1547
1548	BUG_ON(!nr_pages);
1549	BUG_ON(!pages);
1550	page = pages[0];
1551	BUG_ON(!page);
1552	vi = page->mapping->host;
1553	ni = NTFS_I(vi);
1554	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1555			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1556			vi->i_ino, ni->type, page->index, nr_pages,
1557			(long long)pos, bytes);
1558	if (NInoNonResident(ni))
1559		return ntfs_commit_pages_after_non_resident_write(pages,
1560				nr_pages, pos, bytes);
1561	BUG_ON(nr_pages > 1);
1562	/*
1563	 * Attribute is resident, implying it is not compressed, encrypted, or
1564	 * sparse.
1565	 */
1566	if (!NInoAttr(ni))
1567		base_ni = ni;
1568	else
1569		base_ni = ni->ext.base_ntfs_ino;
1570	BUG_ON(NInoNonResident(ni));
1571	/* Map, pin, and lock the mft record. */
1572	m = map_mft_record(base_ni);
1573	if (IS_ERR(m)) {
1574		err = PTR_ERR(m);
1575		m = NULL;
1576		ctx = NULL;
1577		goto err_out;
1578	}
1579	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1580	if (unlikely(!ctx)) {
1581		err = -ENOMEM;
1582		goto err_out;
1583	}
1584	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1585			CASE_SENSITIVE, 0, NULL, 0, ctx);
1586	if (unlikely(err)) {
1587		if (err == -ENOENT)
1588			err = -EIO;
1589		goto err_out;
1590	}
1591	a = ctx->attr;
1592	BUG_ON(a->non_resident);
1593	/* The total length of the attribute value. */
1594	attr_len = le32_to_cpu(a->data.resident.value_length);
1595	i_size = i_size_read(vi);
1596	BUG_ON(attr_len != i_size);
1597	BUG_ON(pos > attr_len);
1598	end = pos + bytes;
1599	BUG_ON(end > le32_to_cpu(a->length) -
1600			le16_to_cpu(a->data.resident.value_offset));
1601	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1602	kaddr = kmap_atomic(page);
1603	/* Copy the received data from the page to the mft record. */
1604	memcpy(kattr + pos, kaddr + pos, bytes);
1605	/* Update the attribute length if necessary. */
1606	if (end > attr_len) {
1607		attr_len = end;
1608		a->data.resident.value_length = cpu_to_le32(attr_len);
1609	}
1610	/*
1611	 * If the page is not uptodate, bring the out of bounds area(s)
1612	 * uptodate by copying data from the mft record to the page.
1613	 */
1614	if (!PageUptodate(page)) {
1615		if (pos > 0)
1616			memcpy(kaddr, kattr, pos);
1617		if (end < attr_len)
1618			memcpy(kaddr + end, kattr + end, attr_len - end);
1619		/* Zero the region outside the end of the attribute value. */
1620		memset(kaddr + attr_len, 0, PAGE_SIZE - attr_len);
1621		flush_dcache_page(page);
1622		SetPageUptodate(page);
1623	}
1624	kunmap_atomic(kaddr);
1625	/* Update initialized_size/i_size if necessary. */
1626	read_lock_irqsave(&ni->size_lock, flags);
1627	initialized_size = ni->initialized_size;
1628	BUG_ON(end > ni->allocated_size);
1629	read_unlock_irqrestore(&ni->size_lock, flags);
1630	BUG_ON(initialized_size != i_size);
1631	if (end > initialized_size) {
1632		write_lock_irqsave(&ni->size_lock, flags);
1633		ni->initialized_size = end;
1634		i_size_write(vi, end);
1635		write_unlock_irqrestore(&ni->size_lock, flags);
1636	}
1637	/* Mark the mft record dirty, so it gets written back. */
1638	flush_dcache_mft_record_page(ctx->ntfs_ino);
1639	mark_mft_record_dirty(ctx->ntfs_ino);
1640	ntfs_attr_put_search_ctx(ctx);
1641	unmap_mft_record(base_ni);
1642	ntfs_debug("Done.");
1643	return 0;
1644err_out:
1645	if (err == -ENOMEM) {
1646		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1647				"commit the write.");
1648		if (PageUptodate(page)) {
1649			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1650					"dirty so the write will be retried "
1651					"later on by the VM.");
1652			/*
1653			 * Put the page on mapping->dirty_pages, but leave its
1654			 * buffers' dirty state as-is.
1655			 */
1656			__set_page_dirty_nobuffers(page);
1657			err = 0;
1658		} else
1659			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1660					"data has been lost.");
1661	} else {
1662		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1663				"with error %i.", err);
1664		NVolSetErrors(ni->vol);
1665	}
1666	if (ctx)
1667		ntfs_attr_put_search_ctx(ctx);
1668	if (m)
1669		unmap_mft_record(base_ni);
1670	return err;
1671}
1672
1673/*
1674 * Copy as much as we can into the pages and return the number of bytes which
1675 * were successfully copied.  If a fault is encountered then clear the pages
1676 * out to (ofs + bytes) and return the number of bytes which were copied.
1677 */
1678static size_t ntfs_copy_from_user_iter(struct page **pages, unsigned nr_pages,
1679		unsigned ofs, struct iov_iter *i, size_t bytes)
1680{
1681	struct page **last_page = pages + nr_pages;
1682	size_t total = 0;
1683	unsigned len, copied;
1684
1685	do {
1686		len = PAGE_SIZE - ofs;
1687		if (len > bytes)
1688			len = bytes;
1689		copied = copy_page_from_iter_atomic(*pages, ofs, len, i);
1690		total += copied;
1691		bytes -= copied;
1692		if (!bytes)
1693			break;
1694		if (copied < len)
1695			goto err;
1696		ofs = 0;
1697	} while (++pages < last_page);
1698out:
1699	return total;
1700err:
1701	/* Zero the rest of the target like __copy_from_user(). */
1702	len = PAGE_SIZE - copied;
1703	do {
1704		if (len > bytes)
1705			len = bytes;
1706		zero_user(*pages, copied, len);
1707		bytes -= len;
1708		copied = 0;
1709		len = PAGE_SIZE;
1710	} while (++pages < last_page);
1711	goto out;
1712}
1713
1714/**
1715 * ntfs_perform_write - perform buffered write to a file
1716 * @file:	file to write to
1717 * @i:		iov_iter with data to write
1718 * @pos:	byte offset in file at which to begin writing to
1719 */
1720static ssize_t ntfs_perform_write(struct file *file, struct iov_iter *i,
1721		loff_t pos)
 
1722{
 
1723	struct address_space *mapping = file->f_mapping;
1724	struct inode *vi = mapping->host;
1725	ntfs_inode *ni = NTFS_I(vi);
1726	ntfs_volume *vol = ni->vol;
1727	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1728	struct page *cached_page = NULL;
 
 
1729	VCN last_vcn;
1730	LCN lcn;
1731	size_t bytes;
1732	ssize_t status, written = 0;
 
1733	unsigned nr_pages;
 
1734
1735	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
1736			"0x%llx, count 0x%lx.", vi->i_ino,
1737			(unsigned)le32_to_cpu(ni->type),
1738			(unsigned long long)pos,
1739			(unsigned long)iov_iter_count(i));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1740	/*
1741	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1742	 * fails again.
1743	 */
1744	if (unlikely(NInoTruncateFailed(ni))) {
1745		int err;
1746
1747		inode_dio_wait(vi);
1748		err = ntfs_truncate(vi);
1749		if (err || NInoTruncateFailed(ni)) {
1750			if (!err)
1751				err = -EIO;
1752			ntfs_error(vol->sb, "Cannot perform write to inode "
1753					"0x%lx, attribute type 0x%x, because "
1754					"ntfs_truncate() failed (error code "
1755					"%i).", vi->i_ino,
1756					(unsigned)le32_to_cpu(ni->type), err);
1757			return err;
1758		}
1759	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760	/*
1761	 * Determine the number of pages per cluster for non-resident
1762	 * attributes.
1763	 */
1764	nr_pages = 1;
1765	if (vol->cluster_size > PAGE_SIZE && NInoNonResident(ni))
1766		nr_pages = vol->cluster_size >> PAGE_SHIFT;
 
1767	last_vcn = -1;
 
 
1768	do {
1769		VCN vcn;
1770		pgoff_t start_idx;
1771		unsigned ofs, do_pages, u;
1772		size_t copied;
1773
1774		start_idx = pos >> PAGE_SHIFT;
1775		ofs = pos & ~PAGE_MASK;
1776		bytes = PAGE_SIZE - ofs;
1777		do_pages = 1;
1778		if (nr_pages > 1) {
1779			vcn = pos >> vol->cluster_size_bits;
1780			if (vcn != last_vcn) {
1781				last_vcn = vcn;
1782				/*
1783				 * Get the lcn of the vcn the write is in.  If
1784				 * it is a hole, need to lock down all pages in
1785				 * the cluster.
1786				 */
1787				down_read(&ni->runlist.lock);
1788				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1789						vol->cluster_size_bits, false);
1790				up_read(&ni->runlist.lock);
1791				if (unlikely(lcn < LCN_HOLE)) {
 
1792					if (lcn == LCN_ENOMEM)
1793						status = -ENOMEM;
1794					else {
1795						status = -EIO;
1796						ntfs_error(vol->sb, "Cannot "
1797							"perform write to "
1798							"inode 0x%lx, "
1799							"attribute type 0x%x, "
1800							"because the attribute "
1801							"is corrupt.",
1802							vi->i_ino, (unsigned)
1803							le32_to_cpu(ni->type));
1804					}
1805					break;
1806				}
1807				if (lcn == LCN_HOLE) {
1808					start_idx = (pos & ~(s64)
1809							vol->cluster_size_mask)
1810							>> PAGE_SHIFT;
1811					bytes = vol->cluster_size - (pos &
1812							vol->cluster_size_mask);
1813					do_pages = nr_pages;
1814				}
1815			}
1816		}
1817		if (bytes > iov_iter_count(i))
1818			bytes = iov_iter_count(i);
1819again:
1820		/*
1821		 * Bring in the user page(s) that we will copy from _first_.
1822		 * Otherwise there is a nasty deadlock on copying from the same
1823		 * page(s) as we are writing to, without it/them being marked
1824		 * up-to-date.  Note, at present there is nothing to stop the
1825		 * pages being swapped out between us bringing them into memory
1826		 * and doing the actual copying.
1827		 */
1828		if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
1829			status = -EFAULT;
1830			break;
1831		}
1832		/* Get and lock @do_pages starting at index @start_idx. */
1833		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
1834				pages, &cached_page);
1835		if (unlikely(status))
1836			break;
1837		/*
1838		 * For non-resident attributes, we need to fill any holes with
1839		 * actual clusters and ensure all bufferes are mapped.  We also
1840		 * need to bring uptodate any buffers that are only partially
1841		 * being written to.
1842		 */
1843		if (NInoNonResident(ni)) {
1844			status = ntfs_prepare_pages_for_non_resident_write(
1845					pages, do_pages, pos, bytes);
1846			if (unlikely(status)) {
 
 
1847				do {
1848					unlock_page(pages[--do_pages]);
1849					put_page(pages[do_pages]);
1850				} while (do_pages);
 
 
 
 
 
 
 
 
 
 
 
1851				break;
1852			}
1853		}
1854		u = (pos >> PAGE_SHIFT) - pages[0]->index;
1855		copied = ntfs_copy_from_user_iter(pages + u, do_pages - u, ofs,
1856					i, bytes);
 
 
 
 
 
 
1857		ntfs_flush_dcache_pages(pages + u, do_pages - u);
1858		status = 0;
1859		if (likely(copied == bytes)) {
1860			status = ntfs_commit_pages_after_write(pages, do_pages,
1861					pos, bytes);
 
 
 
 
1862		}
1863		do {
1864			unlock_page(pages[--do_pages]);
1865			put_page(pages[do_pages]);
 
1866		} while (do_pages);
1867		if (unlikely(status < 0)) {
1868			iov_iter_revert(i, copied);
1869			break;
1870		}
1871		cond_resched();
1872		if (unlikely(copied < bytes)) {
1873			iov_iter_revert(i, copied);
1874			if (copied)
1875				bytes = copied;
1876			else if (bytes > PAGE_SIZE - ofs)
1877				bytes = PAGE_SIZE - ofs;
1878			goto again;
1879		}
1880		pos += copied;
1881		written += copied;
1882		balance_dirty_pages_ratelimited(mapping);
1883		if (fatal_signal_pending(current)) {
1884			status = -EINTR;
1885			break;
1886		}
1887	} while (iov_iter_count(i));
1888	if (cached_page)
1889		put_page(cached_page);
1890	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
1891			written ? "written" : "status", (unsigned long)written,
1892			(long)status);
1893	return written ? written : status;
1894}
1895
1896/**
1897 * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
1898 * @iocb:	IO state structure
1899 * @from:	iov_iter with data to write
1900 *
1901 * Basically the same as generic_file_write_iter() except that it ends up
1902 * up calling ntfs_perform_write() instead of generic_perform_write() and that
1903 * O_DIRECT is not implemented.
1904 */
1905static ssize_t ntfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
1906{
1907	struct file *file = iocb->ki_filp;
1908	struct inode *vi = file_inode(file);
1909	ssize_t written = 0;
1910	ssize_t err;
 
 
1911
1912	inode_lock(vi);
 
 
 
 
1913	/* We can write back this queue in page reclaim. */
1914	current->backing_dev_info = inode_to_bdi(vi);
1915	err = ntfs_prepare_file_for_write(iocb, from);
1916	if (iov_iter_count(from) && !err)
1917		written = ntfs_perform_write(file, from, iocb->ki_pos);
 
 
 
 
 
 
 
 
 
 
 
 
1918	current->backing_dev_info = NULL;
1919	inode_unlock(vi);
1920	iocb->ki_pos += written;
1921	if (likely(written > 0))
1922		written = generic_write_sync(iocb, written);
1923	return written ? written : err;
1924}
1925
1926/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1927 * ntfs_file_fsync - sync a file to disk
1928 * @filp:	file to be synced
1929 * @datasync:	if non-zero only flush user data and not metadata
1930 *
1931 * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
1932 * system calls.  This function is inspired by fs/buffer.c::file_fsync().
1933 *
1934 * If @datasync is false, write the mft record and all associated extent mft
1935 * records as well as the $DATA attribute and then sync the block device.
1936 *
1937 * If @datasync is true and the attribute is non-resident, we skip the writing
1938 * of the mft record and all associated extent mft records (this might still
1939 * happen due to the write_inode_now() call).
1940 *
1941 * Also, if @datasync is true, we do not wait on the inode to be written out
1942 * but we always wait on the page cache pages to be written out.
1943 *
1944 * Locking: Caller must hold i_mutex on the inode.
1945 *
1946 * TODO: We should probably also write all attribute/index inodes associated
1947 * with this inode but since we have no simple way of getting to them we ignore
1948 * this problem for now.
1949 */
1950static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
1951			   int datasync)
1952{
1953	struct inode *vi = filp->f_mapping->host;
1954	int err, ret = 0;
1955
1956	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
1957
1958	err = file_write_and_wait_range(filp, start, end);
1959	if (err)
1960		return err;
1961	inode_lock(vi);
1962
1963	BUG_ON(S_ISDIR(vi->i_mode));
1964	if (!datasync || !NInoNonResident(NTFS_I(vi)))
1965		ret = __ntfs_write_inode(vi, 1);
1966	write_inode_now(vi, !datasync);
1967	/*
1968	 * NOTE: If we were to use mapping->private_list (see ext2 and
1969	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
1970	 * sync_mapping_buffers(vi->i_mapping).
1971	 */
1972	err = sync_blockdev(vi->i_sb->s_bdev);
1973	if (unlikely(err && !ret))
1974		ret = err;
1975	if (likely(!ret))
1976		ntfs_debug("Done.");
1977	else
1978		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
1979				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
1980	inode_unlock(vi);
1981	return ret;
1982}
1983
1984#endif /* NTFS_RW */
1985
1986const struct file_operations ntfs_file_ops = {
1987	.llseek		= generic_file_llseek,
1988	.read_iter	= generic_file_read_iter,
 
1989#ifdef NTFS_RW
1990	.write_iter	= ntfs_file_write_iter,
1991	.fsync		= ntfs_file_fsync,
 
 
 
 
 
 
 
 
 
 
1992#endif /* NTFS_RW */
1993	.mmap		= generic_file_mmap,
1994	.open		= ntfs_file_open,
1995	.splice_read	= generic_file_splice_read,
 
 
 
 
 
 
 
 
 
 
 
1996};
1997
1998const struct inode_operations ntfs_file_inode_ops = {
1999#ifdef NTFS_RW
2000	.setattr	= ntfs_setattr,
2001#endif /* NTFS_RW */
2002};
2003
2004const struct file_operations ntfs_empty_file_ops = {};
2005
2006const struct inode_operations ntfs_empty_inode_ops = {};
v3.15
 
   1/*
   2 * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project.
   3 *
   4 * Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.
   5 *
   6 * This program/include file is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as published
   8 * by the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program/include file is distributed in the hope that it will be
  12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program (in the main directory of the Linux-NTFS
  18 * distribution in the file COPYING); if not, write to the Free Software
  19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  20 */
  21
 
 
  22#include <linux/buffer_head.h>
  23#include <linux/gfp.h>
  24#include <linux/pagemap.h>
  25#include <linux/pagevec.h>
  26#include <linux/sched.h>
  27#include <linux/swap.h>
  28#include <linux/uio.h>
  29#include <linux/writeback.h>
  30#include <linux/aio.h>
  31
  32#include <asm/page.h>
  33#include <asm/uaccess.h>
  34
  35#include "attrib.h"
  36#include "bitmap.h"
  37#include "inode.h"
  38#include "debug.h"
  39#include "lcnalloc.h"
  40#include "malloc.h"
  41#include "mft.h"
  42#include "ntfs.h"
  43
  44/**
  45 * ntfs_file_open - called when an inode is about to be opened
  46 * @vi:		inode to be opened
  47 * @filp:	file structure describing the inode
  48 *
  49 * Limit file size to the page cache limit on architectures where unsigned long
  50 * is 32-bits. This is the most we can do for now without overflowing the page
  51 * cache page index. Doing it this way means we don't run into problems because
  52 * of existing too large files. It would be better to allow the user to read
  53 * the beginning of the file but I doubt very much anyone is going to hit this
  54 * check on a 32-bit architecture, so there is no point in adding the extra
  55 * complexity required to support this.
  56 *
  57 * On 64-bit architectures, the check is hopefully optimized away by the
  58 * compiler.
  59 *
  60 * After the check passes, just call generic_file_open() to do its work.
  61 */
  62static int ntfs_file_open(struct inode *vi, struct file *filp)
  63{
  64	if (sizeof(unsigned long) < 8) {
  65		if (i_size_read(vi) > MAX_LFS_FILESIZE)
  66			return -EOVERFLOW;
  67	}
  68	return generic_file_open(vi, filp);
  69}
  70
  71#ifdef NTFS_RW
  72
  73/**
  74 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
  75 * @ni:			ntfs inode of the attribute to extend
  76 * @new_init_size:	requested new initialized size in bytes
  77 * @cached_page:	store any allocated but unused page here
  78 * @lru_pvec:		lru-buffering pagevec of the caller
  79 *
  80 * Extend the initialized size of an attribute described by the ntfs inode @ni
  81 * to @new_init_size bytes.  This involves zeroing any non-sparse space between
  82 * the old initialized size and @new_init_size both in the page cache and on
  83 * disk (if relevant complete pages are already uptodate in the page cache then
  84 * these are simply marked dirty).
  85 *
  86 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
  87 * in the resident attribute case, it is tied to the initialized size and, in
  88 * the non-resident attribute case, it may not fall below the initialized size.
  89 *
  90 * Note that if the attribute is resident, we do not need to touch the page
  91 * cache at all.  This is because if the page cache page is not uptodate we
  92 * bring it uptodate later, when doing the write to the mft record since we
  93 * then already have the page mapped.  And if the page is uptodate, the
  94 * non-initialized region will already have been zeroed when the page was
  95 * brought uptodate and the region may in fact already have been overwritten
  96 * with new data via mmap() based writes, so we cannot just zero it.  And since
  97 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
  98 * is unspecified, we choose not to do zeroing and thus we do not need to touch
  99 * the page at all.  For a more detailed explanation see ntfs_truncate() in
 100 * fs/ntfs/inode.c.
 101 *
 102 * Return 0 on success and -errno on error.  In the case that an error is
 103 * encountered it is possible that the initialized size will already have been
 104 * incremented some way towards @new_init_size but it is guaranteed that if
 105 * this is the case, the necessary zeroing will also have happened and that all
 106 * metadata is self-consistent.
 107 *
 108 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
 109 *	    held by the caller.
 110 */
 111static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
 112{
 113	s64 old_init_size;
 114	loff_t old_i_size;
 115	pgoff_t index, end_index;
 116	unsigned long flags;
 117	struct inode *vi = VFS_I(ni);
 118	ntfs_inode *base_ni;
 119	MFT_RECORD *m = NULL;
 120	ATTR_RECORD *a;
 121	ntfs_attr_search_ctx *ctx = NULL;
 122	struct address_space *mapping;
 123	struct page *page = NULL;
 124	u8 *kattr;
 125	int err;
 126	u32 attr_len;
 127
 128	read_lock_irqsave(&ni->size_lock, flags);
 129	old_init_size = ni->initialized_size;
 130	old_i_size = i_size_read(vi);
 131	BUG_ON(new_init_size > ni->allocated_size);
 132	read_unlock_irqrestore(&ni->size_lock, flags);
 133	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
 134			"old_initialized_size 0x%llx, "
 135			"new_initialized_size 0x%llx, i_size 0x%llx.",
 136			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
 137			(unsigned long long)old_init_size,
 138			(unsigned long long)new_init_size, old_i_size);
 139	if (!NInoAttr(ni))
 140		base_ni = ni;
 141	else
 142		base_ni = ni->ext.base_ntfs_ino;
 143	/* Use goto to reduce indentation and we need the label below anyway. */
 144	if (NInoNonResident(ni))
 145		goto do_non_resident_extend;
 146	BUG_ON(old_init_size != old_i_size);
 147	m = map_mft_record(base_ni);
 148	if (IS_ERR(m)) {
 149		err = PTR_ERR(m);
 150		m = NULL;
 151		goto err_out;
 152	}
 153	ctx = ntfs_attr_get_search_ctx(base_ni, m);
 154	if (unlikely(!ctx)) {
 155		err = -ENOMEM;
 156		goto err_out;
 157	}
 158	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 159			CASE_SENSITIVE, 0, NULL, 0, ctx);
 160	if (unlikely(err)) {
 161		if (err == -ENOENT)
 162			err = -EIO;
 163		goto err_out;
 164	}
 165	m = ctx->mrec;
 166	a = ctx->attr;
 167	BUG_ON(a->non_resident);
 168	/* The total length of the attribute value. */
 169	attr_len = le32_to_cpu(a->data.resident.value_length);
 170	BUG_ON(old_i_size != (loff_t)attr_len);
 171	/*
 172	 * Do the zeroing in the mft record and update the attribute size in
 173	 * the mft record.
 174	 */
 175	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
 176	memset(kattr + attr_len, 0, new_init_size - attr_len);
 177	a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
 178	/* Finally, update the sizes in the vfs and ntfs inodes. */
 179	write_lock_irqsave(&ni->size_lock, flags);
 180	i_size_write(vi, new_init_size);
 181	ni->initialized_size = new_init_size;
 182	write_unlock_irqrestore(&ni->size_lock, flags);
 183	goto done;
 184do_non_resident_extend:
 185	/*
 186	 * If the new initialized size @new_init_size exceeds the current file
 187	 * size (vfs inode->i_size), we need to extend the file size to the
 188	 * new initialized size.
 189	 */
 190	if (new_init_size > old_i_size) {
 191		m = map_mft_record(base_ni);
 192		if (IS_ERR(m)) {
 193			err = PTR_ERR(m);
 194			m = NULL;
 195			goto err_out;
 196		}
 197		ctx = ntfs_attr_get_search_ctx(base_ni, m);
 198		if (unlikely(!ctx)) {
 199			err = -ENOMEM;
 200			goto err_out;
 201		}
 202		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 203				CASE_SENSITIVE, 0, NULL, 0, ctx);
 204		if (unlikely(err)) {
 205			if (err == -ENOENT)
 206				err = -EIO;
 207			goto err_out;
 208		}
 209		m = ctx->mrec;
 210		a = ctx->attr;
 211		BUG_ON(!a->non_resident);
 212		BUG_ON(old_i_size != (loff_t)
 213				sle64_to_cpu(a->data.non_resident.data_size));
 214		a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
 215		flush_dcache_mft_record_page(ctx->ntfs_ino);
 216		mark_mft_record_dirty(ctx->ntfs_ino);
 217		/* Update the file size in the vfs inode. */
 218		i_size_write(vi, new_init_size);
 219		ntfs_attr_put_search_ctx(ctx);
 220		ctx = NULL;
 221		unmap_mft_record(base_ni);
 222		m = NULL;
 223	}
 224	mapping = vi->i_mapping;
 225	index = old_init_size >> PAGE_CACHE_SHIFT;
 226	end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 227	do {
 228		/*
 229		 * Read the page.  If the page is not present, this will zero
 230		 * the uninitialized regions for us.
 231		 */
 232		page = read_mapping_page(mapping, index, NULL);
 233		if (IS_ERR(page)) {
 234			err = PTR_ERR(page);
 235			goto init_err_out;
 236		}
 237		if (unlikely(PageError(page))) {
 238			page_cache_release(page);
 239			err = -EIO;
 240			goto init_err_out;
 241		}
 242		/*
 243		 * Update the initialized size in the ntfs inode.  This is
 244		 * enough to make ntfs_writepage() work.
 245		 */
 246		write_lock_irqsave(&ni->size_lock, flags);
 247		ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
 248		if (ni->initialized_size > new_init_size)
 249			ni->initialized_size = new_init_size;
 250		write_unlock_irqrestore(&ni->size_lock, flags);
 251		/* Set the page dirty so it gets written out. */
 252		set_page_dirty(page);
 253		page_cache_release(page);
 254		/*
 255		 * Play nice with the vm and the rest of the system.  This is
 256		 * very much needed as we can potentially be modifying the
 257		 * initialised size from a very small value to a really huge
 258		 * value, e.g.
 259		 *	f = open(somefile, O_TRUNC);
 260		 *	truncate(f, 10GiB);
 261		 *	seek(f, 10GiB);
 262		 *	write(f, 1);
 263		 * And this would mean we would be marking dirty hundreds of
 264		 * thousands of pages or as in the above example more than
 265		 * two and a half million pages!
 266		 *
 267		 * TODO: For sparse pages could optimize this workload by using
 268		 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This
 269		 * would be set in readpage for sparse pages and here we would
 270		 * not need to mark dirty any pages which have this bit set.
 271		 * The only caveat is that we have to clear the bit everywhere
 272		 * where we allocate any clusters that lie in the page or that
 273		 * contain the page.
 274		 *
 275		 * TODO: An even greater optimization would be for us to only
 276		 * call readpage() on pages which are not in sparse regions as
 277		 * determined from the runlist.  This would greatly reduce the
 278		 * number of pages we read and make dirty in the case of sparse
 279		 * files.
 280		 */
 281		balance_dirty_pages_ratelimited(mapping);
 282		cond_resched();
 283	} while (++index < end_index);
 284	read_lock_irqsave(&ni->size_lock, flags);
 285	BUG_ON(ni->initialized_size != new_init_size);
 286	read_unlock_irqrestore(&ni->size_lock, flags);
 287	/* Now bring in sync the initialized_size in the mft record. */
 288	m = map_mft_record(base_ni);
 289	if (IS_ERR(m)) {
 290		err = PTR_ERR(m);
 291		m = NULL;
 292		goto init_err_out;
 293	}
 294	ctx = ntfs_attr_get_search_ctx(base_ni, m);
 295	if (unlikely(!ctx)) {
 296		err = -ENOMEM;
 297		goto init_err_out;
 298	}
 299	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 300			CASE_SENSITIVE, 0, NULL, 0, ctx);
 301	if (unlikely(err)) {
 302		if (err == -ENOENT)
 303			err = -EIO;
 304		goto init_err_out;
 305	}
 306	m = ctx->mrec;
 307	a = ctx->attr;
 308	BUG_ON(!a->non_resident);
 309	a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
 310done:
 311	flush_dcache_mft_record_page(ctx->ntfs_ino);
 312	mark_mft_record_dirty(ctx->ntfs_ino);
 313	if (ctx)
 314		ntfs_attr_put_search_ctx(ctx);
 315	if (m)
 316		unmap_mft_record(base_ni);
 317	ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
 318			(unsigned long long)new_init_size, i_size_read(vi));
 319	return 0;
 320init_err_out:
 321	write_lock_irqsave(&ni->size_lock, flags);
 322	ni->initialized_size = old_init_size;
 323	write_unlock_irqrestore(&ni->size_lock, flags);
 324err_out:
 325	if (ctx)
 326		ntfs_attr_put_search_ctx(ctx);
 327	if (m)
 328		unmap_mft_record(base_ni);
 329	ntfs_debug("Failed.  Returning error code %i.", err);
 330	return err;
 331}
 332
 333/**
 334 * ntfs_fault_in_pages_readable -
 335 *
 336 * Fault a number of userspace pages into pagetables.
 337 *
 338 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
 339 * with more than two userspace pages as well as handling the single page case
 340 * elegantly.
 341 *
 342 * If you find this difficult to understand, then think of the while loop being
 343 * the following code, except that we do without the integer variable ret:
 344 *
 345 *	do {
 346 *		ret = __get_user(c, uaddr);
 347 *		uaddr += PAGE_SIZE;
 348 *	} while (!ret && uaddr < end);
 349 *
 350 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
 351 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
 352 * this is only a read and not a write, and since it is still in the same page,
 353 * it should not matter and this makes the code much simpler.
 354 */
 355static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
 356		int bytes)
 357{
 358	const char __user *end;
 359	volatile char c;
 
 
 
 
 
 
 360
 361	/* Set @end to the first byte outside the last page we care about. */
 362	end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes);
 363
 364	while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
 365		;
 366}
 367
 368/**
 369 * ntfs_fault_in_pages_readable_iovec -
 370 *
 371 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
 372 */
 373static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
 374		size_t iov_ofs, int bytes)
 375{
 376	do {
 377		const char __user *buf;
 378		unsigned len;
 379
 380		buf = iov->iov_base + iov_ofs;
 381		len = iov->iov_len - iov_ofs;
 382		if (len > bytes)
 383			len = bytes;
 384		ntfs_fault_in_pages_readable(buf, len);
 385		bytes -= len;
 386		iov++;
 387		iov_ofs = 0;
 388	} while (bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389}
 390
 391/**
 392 * __ntfs_grab_cache_pages - obtain a number of locked pages
 393 * @mapping:	address space mapping from which to obtain page cache pages
 394 * @index:	starting index in @mapping at which to begin obtaining pages
 395 * @nr_pages:	number of page cache pages to obtain
 396 * @pages:	array of pages in which to return the obtained page cache pages
 397 * @cached_page: allocated but as yet unused page
 398 * @lru_pvec:	lru-buffering pagevec of caller
 399 *
 400 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
 401 * starting at index @index.
 402 *
 403 * If a page is newly created, add it to lru list
 404 *
 405 * Note, the page locks are obtained in ascending page index order.
 406 */
 407static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
 408		pgoff_t index, const unsigned nr_pages, struct page **pages,
 409		struct page **cached_page)
 410{
 411	int err, nr;
 412
 413	BUG_ON(!nr_pages);
 414	err = nr = 0;
 415	do {
 416		pages[nr] = find_lock_page(mapping, index);
 
 417		if (!pages[nr]) {
 418			if (!*cached_page) {
 419				*cached_page = page_cache_alloc(mapping);
 420				if (unlikely(!*cached_page)) {
 421					err = -ENOMEM;
 422					goto err_out;
 423				}
 424			}
 425			err = add_to_page_cache_lru(*cached_page, mapping, index,
 426					GFP_KERNEL);
 
 427			if (unlikely(err)) {
 428				if (err == -EEXIST)
 429					continue;
 430				goto err_out;
 431			}
 432			pages[nr] = *cached_page;
 433			*cached_page = NULL;
 434		}
 435		index++;
 436		nr++;
 437	} while (nr < nr_pages);
 438out:
 439	return err;
 440err_out:
 441	while (nr > 0) {
 442		unlock_page(pages[--nr]);
 443		page_cache_release(pages[nr]);
 444	}
 445	goto out;
 446}
 447
 448static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
 449{
 450	lock_buffer(bh);
 451	get_bh(bh);
 452	bh->b_end_io = end_buffer_read_sync;
 453	return submit_bh(READ, bh);
 454}
 455
 456/**
 457 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
 458 * @pages:	array of destination pages
 459 * @nr_pages:	number of pages in @pages
 460 * @pos:	byte position in file at which the write begins
 461 * @bytes:	number of bytes to be written
 462 *
 463 * This is called for non-resident attributes from ntfs_file_buffered_write()
 464 * with i_mutex held on the inode (@pages[0]->mapping->host).  There are
 465 * @nr_pages pages in @pages which are locked but not kmap()ped.  The source
 466 * data has not yet been copied into the @pages.
 467 * 
 468 * Need to fill any holes with actual clusters, allocate buffers if necessary,
 469 * ensure all the buffers are mapped, and bring uptodate any buffers that are
 470 * only partially being written to.
 471 *
 472 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
 473 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
 474 * the same cluster and that they are the entirety of that cluster, and that
 475 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
 476 *
 477 * i_size is not to be modified yet.
 478 *
 479 * Return 0 on success or -errno on error.
 480 */
 481static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
 482		unsigned nr_pages, s64 pos, size_t bytes)
 483{
 484	VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
 485	LCN lcn;
 486	s64 bh_pos, vcn_len, end, initialized_size;
 487	sector_t lcn_block;
 488	struct page *page;
 489	struct inode *vi;
 490	ntfs_inode *ni, *base_ni = NULL;
 491	ntfs_volume *vol;
 492	runlist_element *rl, *rl2;
 493	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
 494	ntfs_attr_search_ctx *ctx = NULL;
 495	MFT_RECORD *m = NULL;
 496	ATTR_RECORD *a = NULL;
 497	unsigned long flags;
 498	u32 attr_rec_len = 0;
 499	unsigned blocksize, u;
 500	int err, mp_size;
 501	bool rl_write_locked, was_hole, is_retry;
 502	unsigned char blocksize_bits;
 503	struct {
 504		u8 runlist_merged:1;
 505		u8 mft_attr_mapped:1;
 506		u8 mp_rebuilt:1;
 507		u8 attr_switched:1;
 508	} status = { 0, 0, 0, 0 };
 509
 510	BUG_ON(!nr_pages);
 511	BUG_ON(!pages);
 512	BUG_ON(!*pages);
 513	vi = pages[0]->mapping->host;
 514	ni = NTFS_I(vi);
 515	vol = ni->vol;
 516	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
 517			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
 518			vi->i_ino, ni->type, pages[0]->index, nr_pages,
 519			(long long)pos, bytes);
 520	blocksize = vol->sb->s_blocksize;
 521	blocksize_bits = vol->sb->s_blocksize_bits;
 522	u = 0;
 523	do {
 524		page = pages[u];
 525		BUG_ON(!page);
 526		/*
 527		 * create_empty_buffers() will create uptodate/dirty buffers if
 528		 * the page is uptodate/dirty.
 529		 */
 530		if (!page_has_buffers(page)) {
 531			create_empty_buffers(page, blocksize, 0);
 532			if (unlikely(!page_has_buffers(page)))
 533				return -ENOMEM;
 534		}
 535	} while (++u < nr_pages);
 536	rl_write_locked = false;
 537	rl = NULL;
 538	err = 0;
 539	vcn = lcn = -1;
 540	vcn_len = 0;
 541	lcn_block = -1;
 542	was_hole = false;
 543	cpos = pos >> vol->cluster_size_bits;
 544	end = pos + bytes;
 545	cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
 546	/*
 547	 * Loop over each page and for each page over each buffer.  Use goto to
 548	 * reduce indentation.
 549	 */
 550	u = 0;
 551do_next_page:
 552	page = pages[u];
 553	bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
 554	bh = head = page_buffers(page);
 555	do {
 556		VCN cdelta;
 557		s64 bh_end;
 558		unsigned bh_cofs;
 559
 560		/* Clear buffer_new on all buffers to reinitialise state. */
 561		if (buffer_new(bh))
 562			clear_buffer_new(bh);
 563		bh_end = bh_pos + blocksize;
 564		bh_cpos = bh_pos >> vol->cluster_size_bits;
 565		bh_cofs = bh_pos & vol->cluster_size_mask;
 566		if (buffer_mapped(bh)) {
 567			/*
 568			 * The buffer is already mapped.  If it is uptodate,
 569			 * ignore it.
 570			 */
 571			if (buffer_uptodate(bh))
 572				continue;
 573			/*
 574			 * The buffer is not uptodate.  If the page is uptodate
 575			 * set the buffer uptodate and otherwise ignore it.
 576			 */
 577			if (PageUptodate(page)) {
 578				set_buffer_uptodate(bh);
 579				continue;
 580			}
 581			/*
 582			 * Neither the page nor the buffer are uptodate.  If
 583			 * the buffer is only partially being written to, we
 584			 * need to read it in before the write, i.e. now.
 585			 */
 586			if ((bh_pos < pos && bh_end > pos) ||
 587					(bh_pos < end && bh_end > end)) {
 588				/*
 589				 * If the buffer is fully or partially within
 590				 * the initialized size, do an actual read.
 591				 * Otherwise, simply zero the buffer.
 592				 */
 593				read_lock_irqsave(&ni->size_lock, flags);
 594				initialized_size = ni->initialized_size;
 595				read_unlock_irqrestore(&ni->size_lock, flags);
 596				if (bh_pos < initialized_size) {
 597					ntfs_submit_bh_for_read(bh);
 598					*wait_bh++ = bh;
 599				} else {
 600					zero_user(page, bh_offset(bh),
 601							blocksize);
 602					set_buffer_uptodate(bh);
 603				}
 604			}
 605			continue;
 606		}
 607		/* Unmapped buffer.  Need to map it. */
 608		bh->b_bdev = vol->sb->s_bdev;
 609		/*
 610		 * If the current buffer is in the same clusters as the map
 611		 * cache, there is no need to check the runlist again.  The
 612		 * map cache is made up of @vcn, which is the first cached file
 613		 * cluster, @vcn_len which is the number of cached file
 614		 * clusters, @lcn is the device cluster corresponding to @vcn,
 615		 * and @lcn_block is the block number corresponding to @lcn.
 616		 */
 617		cdelta = bh_cpos - vcn;
 618		if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
 619map_buffer_cached:
 620			BUG_ON(lcn < 0);
 621			bh->b_blocknr = lcn_block +
 622					(cdelta << (vol->cluster_size_bits -
 623					blocksize_bits)) +
 624					(bh_cofs >> blocksize_bits);
 625			set_buffer_mapped(bh);
 626			/*
 627			 * If the page is uptodate so is the buffer.  If the
 628			 * buffer is fully outside the write, we ignore it if
 629			 * it was already allocated and we mark it dirty so it
 630			 * gets written out if we allocated it.  On the other
 631			 * hand, if we allocated the buffer but we are not
 632			 * marking it dirty we set buffer_new so we can do
 633			 * error recovery.
 634			 */
 635			if (PageUptodate(page)) {
 636				if (!buffer_uptodate(bh))
 637					set_buffer_uptodate(bh);
 638				if (unlikely(was_hole)) {
 639					/* We allocated the buffer. */
 640					unmap_underlying_metadata(bh->b_bdev,
 641							bh->b_blocknr);
 642					if (bh_end <= pos || bh_pos >= end)
 643						mark_buffer_dirty(bh);
 644					else
 645						set_buffer_new(bh);
 646				}
 647				continue;
 648			}
 649			/* Page is _not_ uptodate. */
 650			if (likely(!was_hole)) {
 651				/*
 652				 * Buffer was already allocated.  If it is not
 653				 * uptodate and is only partially being written
 654				 * to, we need to read it in before the write,
 655				 * i.e. now.
 656				 */
 657				if (!buffer_uptodate(bh) && bh_pos < end &&
 658						bh_end > pos &&
 659						(bh_pos < pos ||
 660						bh_end > end)) {
 661					/*
 662					 * If the buffer is fully or partially
 663					 * within the initialized size, do an
 664					 * actual read.  Otherwise, simply zero
 665					 * the buffer.
 666					 */
 667					read_lock_irqsave(&ni->size_lock,
 668							flags);
 669					initialized_size = ni->initialized_size;
 670					read_unlock_irqrestore(&ni->size_lock,
 671							flags);
 672					if (bh_pos < initialized_size) {
 673						ntfs_submit_bh_for_read(bh);
 674						*wait_bh++ = bh;
 675					} else {
 676						zero_user(page, bh_offset(bh),
 677								blocksize);
 678						set_buffer_uptodate(bh);
 679					}
 680				}
 681				continue;
 682			}
 683			/* We allocated the buffer. */
 684			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 685			/*
 686			 * If the buffer is fully outside the write, zero it,
 687			 * set it uptodate, and mark it dirty so it gets
 688			 * written out.  If it is partially being written to,
 689			 * zero region surrounding the write but leave it to
 690			 * commit write to do anything else.  Finally, if the
 691			 * buffer is fully being overwritten, do nothing.
 692			 */
 693			if (bh_end <= pos || bh_pos >= end) {
 694				if (!buffer_uptodate(bh)) {
 695					zero_user(page, bh_offset(bh),
 696							blocksize);
 697					set_buffer_uptodate(bh);
 698				}
 699				mark_buffer_dirty(bh);
 700				continue;
 701			}
 702			set_buffer_new(bh);
 703			if (!buffer_uptodate(bh) &&
 704					(bh_pos < pos || bh_end > end)) {
 705				u8 *kaddr;
 706				unsigned pofs;
 707					
 708				kaddr = kmap_atomic(page);
 709				if (bh_pos < pos) {
 710					pofs = bh_pos & ~PAGE_CACHE_MASK;
 711					memset(kaddr + pofs, 0, pos - bh_pos);
 712				}
 713				if (bh_end > end) {
 714					pofs = end & ~PAGE_CACHE_MASK;
 715					memset(kaddr + pofs, 0, bh_end - end);
 716				}
 717				kunmap_atomic(kaddr);
 718				flush_dcache_page(page);
 719			}
 720			continue;
 721		}
 722		/*
 723		 * Slow path: this is the first buffer in the cluster.  If it
 724		 * is outside allocated size and is not uptodate, zero it and
 725		 * set it uptodate.
 726		 */
 727		read_lock_irqsave(&ni->size_lock, flags);
 728		initialized_size = ni->allocated_size;
 729		read_unlock_irqrestore(&ni->size_lock, flags);
 730		if (bh_pos > initialized_size) {
 731			if (PageUptodate(page)) {
 732				if (!buffer_uptodate(bh))
 733					set_buffer_uptodate(bh);
 734			} else if (!buffer_uptodate(bh)) {
 735				zero_user(page, bh_offset(bh), blocksize);
 736				set_buffer_uptodate(bh);
 737			}
 738			continue;
 739		}
 740		is_retry = false;
 741		if (!rl) {
 742			down_read(&ni->runlist.lock);
 743retry_remap:
 744			rl = ni->runlist.rl;
 745		}
 746		if (likely(rl != NULL)) {
 747			/* Seek to element containing target cluster. */
 748			while (rl->length && rl[1].vcn <= bh_cpos)
 749				rl++;
 750			lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
 751			if (likely(lcn >= 0)) {
 752				/*
 753				 * Successful remap, setup the map cache and
 754				 * use that to deal with the buffer.
 755				 */
 756				was_hole = false;
 757				vcn = bh_cpos;
 758				vcn_len = rl[1].vcn - vcn;
 759				lcn_block = lcn << (vol->cluster_size_bits -
 760						blocksize_bits);
 761				cdelta = 0;
 762				/*
 763				 * If the number of remaining clusters touched
 764				 * by the write is smaller or equal to the
 765				 * number of cached clusters, unlock the
 766				 * runlist as the map cache will be used from
 767				 * now on.
 768				 */
 769				if (likely(vcn + vcn_len >= cend)) {
 770					if (rl_write_locked) {
 771						up_write(&ni->runlist.lock);
 772						rl_write_locked = false;
 773					} else
 774						up_read(&ni->runlist.lock);
 775					rl = NULL;
 776				}
 777				goto map_buffer_cached;
 778			}
 779		} else
 780			lcn = LCN_RL_NOT_MAPPED;
 781		/*
 782		 * If it is not a hole and not out of bounds, the runlist is
 783		 * probably unmapped so try to map it now.
 784		 */
 785		if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
 786			if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
 787				/* Attempt to map runlist. */
 788				if (!rl_write_locked) {
 789					/*
 790					 * We need the runlist locked for
 791					 * writing, so if it is locked for
 792					 * reading relock it now and retry in
 793					 * case it changed whilst we dropped
 794					 * the lock.
 795					 */
 796					up_read(&ni->runlist.lock);
 797					down_write(&ni->runlist.lock);
 798					rl_write_locked = true;
 799					goto retry_remap;
 800				}
 801				err = ntfs_map_runlist_nolock(ni, bh_cpos,
 802						NULL);
 803				if (likely(!err)) {
 804					is_retry = true;
 805					goto retry_remap;
 806				}
 807				/*
 808				 * If @vcn is out of bounds, pretend @lcn is
 809				 * LCN_ENOENT.  As long as the buffer is out
 810				 * of bounds this will work fine.
 811				 */
 812				if (err == -ENOENT) {
 813					lcn = LCN_ENOENT;
 814					err = 0;
 815					goto rl_not_mapped_enoent;
 816				}
 817			} else
 818				err = -EIO;
 819			/* Failed to map the buffer, even after retrying. */
 820			bh->b_blocknr = -1;
 821			ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
 822					"attribute type 0x%x, vcn 0x%llx, "
 823					"vcn offset 0x%x, because its "
 824					"location on disk could not be "
 825					"determined%s (error code %i).",
 826					ni->mft_no, ni->type,
 827					(unsigned long long)bh_cpos,
 828					(unsigned)bh_pos &
 829					vol->cluster_size_mask,
 830					is_retry ? " even after retrying" : "",
 831					err);
 832			break;
 833		}
 834rl_not_mapped_enoent:
 835		/*
 836		 * The buffer is in a hole or out of bounds.  We need to fill
 837		 * the hole, unless the buffer is in a cluster which is not
 838		 * touched by the write, in which case we just leave the buffer
 839		 * unmapped.  This can only happen when the cluster size is
 840		 * less than the page cache size.
 841		 */
 842		if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
 843			bh_cend = (bh_end + vol->cluster_size - 1) >>
 844					vol->cluster_size_bits;
 845			if ((bh_cend <= cpos || bh_cpos >= cend)) {
 846				bh->b_blocknr = -1;
 847				/*
 848				 * If the buffer is uptodate we skip it.  If it
 849				 * is not but the page is uptodate, we can set
 850				 * the buffer uptodate.  If the page is not
 851				 * uptodate, we can clear the buffer and set it
 852				 * uptodate.  Whether this is worthwhile is
 853				 * debatable and this could be removed.
 854				 */
 855				if (PageUptodate(page)) {
 856					if (!buffer_uptodate(bh))
 857						set_buffer_uptodate(bh);
 858				} else if (!buffer_uptodate(bh)) {
 859					zero_user(page, bh_offset(bh),
 860						blocksize);
 861					set_buffer_uptodate(bh);
 862				}
 863				continue;
 864			}
 865		}
 866		/*
 867		 * Out of bounds buffer is invalid if it was not really out of
 868		 * bounds.
 869		 */
 870		BUG_ON(lcn != LCN_HOLE);
 871		/*
 872		 * We need the runlist locked for writing, so if it is locked
 873		 * for reading relock it now and retry in case it changed
 874		 * whilst we dropped the lock.
 875		 */
 876		BUG_ON(!rl);
 877		if (!rl_write_locked) {
 878			up_read(&ni->runlist.lock);
 879			down_write(&ni->runlist.lock);
 880			rl_write_locked = true;
 881			goto retry_remap;
 882		}
 883		/* Find the previous last allocated cluster. */
 884		BUG_ON(rl->lcn != LCN_HOLE);
 885		lcn = -1;
 886		rl2 = rl;
 887		while (--rl2 >= ni->runlist.rl) {
 888			if (rl2->lcn >= 0) {
 889				lcn = rl2->lcn + rl2->length;
 890				break;
 891			}
 892		}
 893		rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
 894				false);
 895		if (IS_ERR(rl2)) {
 896			err = PTR_ERR(rl2);
 897			ntfs_debug("Failed to allocate cluster, error code %i.",
 898					err);
 899			break;
 900		}
 901		lcn = rl2->lcn;
 902		rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
 903		if (IS_ERR(rl)) {
 904			err = PTR_ERR(rl);
 905			if (err != -ENOMEM)
 906				err = -EIO;
 907			if (ntfs_cluster_free_from_rl(vol, rl2)) {
 908				ntfs_error(vol->sb, "Failed to release "
 909						"allocated cluster in error "
 910						"code path.  Run chkdsk to "
 911						"recover the lost cluster.");
 912				NVolSetErrors(vol);
 913			}
 914			ntfs_free(rl2);
 915			break;
 916		}
 917		ni->runlist.rl = rl;
 918		status.runlist_merged = 1;
 919		ntfs_debug("Allocated cluster, lcn 0x%llx.",
 920				(unsigned long long)lcn);
 921		/* Map and lock the mft record and get the attribute record. */
 922		if (!NInoAttr(ni))
 923			base_ni = ni;
 924		else
 925			base_ni = ni->ext.base_ntfs_ino;
 926		m = map_mft_record(base_ni);
 927		if (IS_ERR(m)) {
 928			err = PTR_ERR(m);
 929			break;
 930		}
 931		ctx = ntfs_attr_get_search_ctx(base_ni, m);
 932		if (unlikely(!ctx)) {
 933			err = -ENOMEM;
 934			unmap_mft_record(base_ni);
 935			break;
 936		}
 937		status.mft_attr_mapped = 1;
 938		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
 939				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
 940		if (unlikely(err)) {
 941			if (err == -ENOENT)
 942				err = -EIO;
 943			break;
 944		}
 945		m = ctx->mrec;
 946		a = ctx->attr;
 947		/*
 948		 * Find the runlist element with which the attribute extent
 949		 * starts.  Note, we cannot use the _attr_ version because we
 950		 * have mapped the mft record.  That is ok because we know the
 951		 * runlist fragment must be mapped already to have ever gotten
 952		 * here, so we can just use the _rl_ version.
 953		 */
 954		vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
 955		rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
 956		BUG_ON(!rl2);
 957		BUG_ON(!rl2->length);
 958		BUG_ON(rl2->lcn < LCN_HOLE);
 959		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
 960		/*
 961		 * If @highest_vcn is zero, calculate the real highest_vcn
 962		 * (which can really be zero).
 963		 */
 964		if (!highest_vcn)
 965			highest_vcn = (sle64_to_cpu(
 966					a->data.non_resident.allocated_size) >>
 967					vol->cluster_size_bits) - 1;
 968		/*
 969		 * Determine the size of the mapping pairs array for the new
 970		 * extent, i.e. the old extent with the hole filled.
 971		 */
 972		mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
 973				highest_vcn);
 974		if (unlikely(mp_size <= 0)) {
 975			if (!(err = mp_size))
 976				err = -EIO;
 977			ntfs_debug("Failed to get size for mapping pairs "
 978					"array, error code %i.", err);
 979			break;
 980		}
 981		/*
 982		 * Resize the attribute record to fit the new mapping pairs
 983		 * array.
 984		 */
 985		attr_rec_len = le32_to_cpu(a->length);
 986		err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
 987				a->data.non_resident.mapping_pairs_offset));
 988		if (unlikely(err)) {
 989			BUG_ON(err != -ENOSPC);
 990			// TODO: Deal with this by using the current attribute
 991			// and fill it with as much of the mapping pairs
 992			// array as possible.  Then loop over each attribute
 993			// extent rewriting the mapping pairs arrays as we go
 994			// along and if when we reach the end we have not
 995			// enough space, try to resize the last attribute
 996			// extent and if even that fails, add a new attribute
 997			// extent.
 998			// We could also try to resize at each step in the hope
 999			// that we will not need to rewrite every single extent.
1000			// Note, we may need to decompress some extents to fill
1001			// the runlist as we are walking the extents...
1002			ntfs_error(vol->sb, "Not enough space in the mft "
1003					"record for the extended attribute "
1004					"record.  This case is not "
1005					"implemented yet.");
1006			err = -EOPNOTSUPP;
1007			break ;
1008		}
1009		status.mp_rebuilt = 1;
1010		/*
1011		 * Generate the mapping pairs array directly into the attribute
1012		 * record.
1013		 */
1014		err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1015				a->data.non_resident.mapping_pairs_offset),
1016				mp_size, rl2, vcn, highest_vcn, NULL);
1017		if (unlikely(err)) {
1018			ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1019					"attribute type 0x%x, because building "
1020					"the mapping pairs failed with error "
1021					"code %i.", vi->i_ino,
1022					(unsigned)le32_to_cpu(ni->type), err);
1023			err = -EIO;
1024			break;
1025		}
1026		/* Update the highest_vcn but only if it was not set. */
1027		if (unlikely(!a->data.non_resident.highest_vcn))
1028			a->data.non_resident.highest_vcn =
1029					cpu_to_sle64(highest_vcn);
1030		/*
1031		 * If the attribute is sparse/compressed, update the compressed
1032		 * size in the ntfs_inode structure and the attribute record.
1033		 */
1034		if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1035			/*
1036			 * If we are not in the first attribute extent, switch
1037			 * to it, but first ensure the changes will make it to
1038			 * disk later.
1039			 */
1040			if (a->data.non_resident.lowest_vcn) {
1041				flush_dcache_mft_record_page(ctx->ntfs_ino);
1042				mark_mft_record_dirty(ctx->ntfs_ino);
1043				ntfs_attr_reinit_search_ctx(ctx);
1044				err = ntfs_attr_lookup(ni->type, ni->name,
1045						ni->name_len, CASE_SENSITIVE,
1046						0, NULL, 0, ctx);
1047				if (unlikely(err)) {
1048					status.attr_switched = 1;
1049					break;
1050				}
1051				/* @m is not used any more so do not set it. */
1052				a = ctx->attr;
1053			}
1054			write_lock_irqsave(&ni->size_lock, flags);
1055			ni->itype.compressed.size += vol->cluster_size;
1056			a->data.non_resident.compressed_size =
1057					cpu_to_sle64(ni->itype.compressed.size);
1058			write_unlock_irqrestore(&ni->size_lock, flags);
1059		}
1060		/* Ensure the changes make it to disk. */
1061		flush_dcache_mft_record_page(ctx->ntfs_ino);
1062		mark_mft_record_dirty(ctx->ntfs_ino);
1063		ntfs_attr_put_search_ctx(ctx);
1064		unmap_mft_record(base_ni);
1065		/* Successfully filled the hole. */
1066		status.runlist_merged = 0;
1067		status.mft_attr_mapped = 0;
1068		status.mp_rebuilt = 0;
1069		/* Setup the map cache and use that to deal with the buffer. */
1070		was_hole = true;
1071		vcn = bh_cpos;
1072		vcn_len = 1;
1073		lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1074		cdelta = 0;
1075		/*
1076		 * If the number of remaining clusters in the @pages is smaller
1077		 * or equal to the number of cached clusters, unlock the
1078		 * runlist as the map cache will be used from now on.
1079		 */
1080		if (likely(vcn + vcn_len >= cend)) {
1081			up_write(&ni->runlist.lock);
1082			rl_write_locked = false;
1083			rl = NULL;
1084		}
1085		goto map_buffer_cached;
1086	} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1087	/* If there are no errors, do the next page. */
1088	if (likely(!err && ++u < nr_pages))
1089		goto do_next_page;
1090	/* If there are no errors, release the runlist lock if we took it. */
1091	if (likely(!err)) {
1092		if (unlikely(rl_write_locked)) {
1093			up_write(&ni->runlist.lock);
1094			rl_write_locked = false;
1095		} else if (unlikely(rl))
1096			up_read(&ni->runlist.lock);
1097		rl = NULL;
1098	}
1099	/* If we issued read requests, let them complete. */
1100	read_lock_irqsave(&ni->size_lock, flags);
1101	initialized_size = ni->initialized_size;
1102	read_unlock_irqrestore(&ni->size_lock, flags);
1103	while (wait_bh > wait) {
1104		bh = *--wait_bh;
1105		wait_on_buffer(bh);
1106		if (likely(buffer_uptodate(bh))) {
1107			page = bh->b_page;
1108			bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1109					bh_offset(bh);
1110			/*
1111			 * If the buffer overflows the initialized size, need
1112			 * to zero the overflowing region.
1113			 */
1114			if (unlikely(bh_pos + blocksize > initialized_size)) {
1115				int ofs = 0;
1116
1117				if (likely(bh_pos < initialized_size))
1118					ofs = initialized_size - bh_pos;
1119				zero_user_segment(page, bh_offset(bh) + ofs,
1120						blocksize);
1121			}
1122		} else /* if (unlikely(!buffer_uptodate(bh))) */
1123			err = -EIO;
1124	}
1125	if (likely(!err)) {
1126		/* Clear buffer_new on all buffers. */
1127		u = 0;
1128		do {
1129			bh = head = page_buffers(pages[u]);
1130			do {
1131				if (buffer_new(bh))
1132					clear_buffer_new(bh);
1133			} while ((bh = bh->b_this_page) != head);
1134		} while (++u < nr_pages);
1135		ntfs_debug("Done.");
1136		return err;
1137	}
1138	if (status.attr_switched) {
1139		/* Get back to the attribute extent we modified. */
1140		ntfs_attr_reinit_search_ctx(ctx);
1141		if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1142				CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1143			ntfs_error(vol->sb, "Failed to find required "
1144					"attribute extent of attribute in "
1145					"error code path.  Run chkdsk to "
1146					"recover.");
1147			write_lock_irqsave(&ni->size_lock, flags);
1148			ni->itype.compressed.size += vol->cluster_size;
1149			write_unlock_irqrestore(&ni->size_lock, flags);
1150			flush_dcache_mft_record_page(ctx->ntfs_ino);
1151			mark_mft_record_dirty(ctx->ntfs_ino);
1152			/*
1153			 * The only thing that is now wrong is the compressed
1154			 * size of the base attribute extent which chkdsk
1155			 * should be able to fix.
1156			 */
1157			NVolSetErrors(vol);
1158		} else {
1159			m = ctx->mrec;
1160			a = ctx->attr;
1161			status.attr_switched = 0;
1162		}
1163	}
1164	/*
1165	 * If the runlist has been modified, need to restore it by punching a
1166	 * hole into it and we then need to deallocate the on-disk cluster as
1167	 * well.  Note, we only modify the runlist if we are able to generate a
1168	 * new mapping pairs array, i.e. only when the mapped attribute extent
1169	 * is not switched.
1170	 */
1171	if (status.runlist_merged && !status.attr_switched) {
1172		BUG_ON(!rl_write_locked);
1173		/* Make the file cluster we allocated sparse in the runlist. */
1174		if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1175			ntfs_error(vol->sb, "Failed to punch hole into "
1176					"attribute runlist in error code "
1177					"path.  Run chkdsk to recover the "
1178					"lost cluster.");
1179			NVolSetErrors(vol);
1180		} else /* if (success) */ {
1181			status.runlist_merged = 0;
1182			/*
1183			 * Deallocate the on-disk cluster we allocated but only
1184			 * if we succeeded in punching its vcn out of the
1185			 * runlist.
1186			 */
1187			down_write(&vol->lcnbmp_lock);
1188			if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1189				ntfs_error(vol->sb, "Failed to release "
1190						"allocated cluster in error "
1191						"code path.  Run chkdsk to "
1192						"recover the lost cluster.");
1193				NVolSetErrors(vol);
1194			}
1195			up_write(&vol->lcnbmp_lock);
1196		}
1197	}
1198	/*
1199	 * Resize the attribute record to its old size and rebuild the mapping
1200	 * pairs array.  Note, we only can do this if the runlist has been
1201	 * restored to its old state which also implies that the mapped
1202	 * attribute extent is not switched.
1203	 */
1204	if (status.mp_rebuilt && !status.runlist_merged) {
1205		if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1206			ntfs_error(vol->sb, "Failed to restore attribute "
1207					"record in error code path.  Run "
1208					"chkdsk to recover.");
1209			NVolSetErrors(vol);
1210		} else /* if (success) */ {
1211			if (ntfs_mapping_pairs_build(vol, (u8*)a +
1212					le16_to_cpu(a->data.non_resident.
1213					mapping_pairs_offset), attr_rec_len -
1214					le16_to_cpu(a->data.non_resident.
1215					mapping_pairs_offset), ni->runlist.rl,
1216					vcn, highest_vcn, NULL)) {
1217				ntfs_error(vol->sb, "Failed to restore "
1218						"mapping pairs array in error "
1219						"code path.  Run chkdsk to "
1220						"recover.");
1221				NVolSetErrors(vol);
1222			}
1223			flush_dcache_mft_record_page(ctx->ntfs_ino);
1224			mark_mft_record_dirty(ctx->ntfs_ino);
1225		}
1226	}
1227	/* Release the mft record and the attribute. */
1228	if (status.mft_attr_mapped) {
1229		ntfs_attr_put_search_ctx(ctx);
1230		unmap_mft_record(base_ni);
1231	}
1232	/* Release the runlist lock. */
1233	if (rl_write_locked)
1234		up_write(&ni->runlist.lock);
1235	else if (rl)
1236		up_read(&ni->runlist.lock);
1237	/*
1238	 * Zero out any newly allocated blocks to avoid exposing stale data.
1239	 * If BH_New is set, we know that the block was newly allocated above
1240	 * and that it has not been fully zeroed and marked dirty yet.
1241	 */
1242	nr_pages = u;
1243	u = 0;
1244	end = bh_cpos << vol->cluster_size_bits;
1245	do {
1246		page = pages[u];
1247		bh = head = page_buffers(page);
1248		do {
1249			if (u == nr_pages &&
1250					((s64)page->index << PAGE_CACHE_SHIFT) +
1251					bh_offset(bh) >= end)
1252				break;
1253			if (!buffer_new(bh))
1254				continue;
1255			clear_buffer_new(bh);
1256			if (!buffer_uptodate(bh)) {
1257				if (PageUptodate(page))
1258					set_buffer_uptodate(bh);
1259				else {
1260					zero_user(page, bh_offset(bh),
1261							blocksize);
1262					set_buffer_uptodate(bh);
1263				}
1264			}
1265			mark_buffer_dirty(bh);
1266		} while ((bh = bh->b_this_page) != head);
1267	} while (++u <= nr_pages);
1268	ntfs_error(vol->sb, "Failed.  Returning error code %i.", err);
1269	return err;
1270}
1271
1272/*
1273 * Copy as much as we can into the pages and return the number of bytes which
1274 * were successfully copied.  If a fault is encountered then clear the pages
1275 * out to (ofs + bytes) and return the number of bytes which were copied.
1276 */
1277static inline size_t ntfs_copy_from_user(struct page **pages,
1278		unsigned nr_pages, unsigned ofs, const char __user *buf,
1279		size_t bytes)
1280{
1281	struct page **last_page = pages + nr_pages;
1282	char *addr;
1283	size_t total = 0;
1284	unsigned len;
1285	int left;
1286
1287	do {
1288		len = PAGE_CACHE_SIZE - ofs;
1289		if (len > bytes)
1290			len = bytes;
1291		addr = kmap_atomic(*pages);
1292		left = __copy_from_user_inatomic(addr + ofs, buf, len);
1293		kunmap_atomic(addr);
1294		if (unlikely(left)) {
1295			/* Do it the slow way. */
1296			addr = kmap(*pages);
1297			left = __copy_from_user(addr + ofs, buf, len);
1298			kunmap(*pages);
1299			if (unlikely(left))
1300				goto err_out;
1301		}
1302		total += len;
1303		bytes -= len;
1304		if (!bytes)
1305			break;
1306		buf += len;
1307		ofs = 0;
1308	} while (++pages < last_page);
1309out:
1310	return total;
1311err_out:
1312	total += len - left;
1313	/* Zero the rest of the target like __copy_from_user(). */
1314	while (++pages < last_page) {
1315		bytes -= len;
1316		if (!bytes)
1317			break;
1318		len = PAGE_CACHE_SIZE;
1319		if (len > bytes)
1320			len = bytes;
1321		zero_user(*pages, 0, len);
1322	}
1323	goto out;
1324}
1325
1326static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1327		const struct iovec *iov, size_t iov_ofs, size_t bytes)
1328{
1329	size_t total = 0;
1330
1331	while (1) {
1332		const char __user *buf = iov->iov_base + iov_ofs;
1333		unsigned len;
1334		size_t left;
1335
1336		len = iov->iov_len - iov_ofs;
1337		if (len > bytes)
1338			len = bytes;
1339		left = __copy_from_user_inatomic(vaddr, buf, len);
1340		total += len;
1341		bytes -= len;
1342		vaddr += len;
1343		if (unlikely(left)) {
1344			total -= left;
1345			break;
1346		}
1347		if (!bytes)
1348			break;
1349		iov++;
1350		iov_ofs = 0;
1351	}
1352	return total;
1353}
1354
1355static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1356		size_t *iov_ofsp, size_t bytes)
1357{
1358	const struct iovec *iov = *iovp;
1359	size_t iov_ofs = *iov_ofsp;
1360
1361	while (bytes) {
1362		unsigned len;
1363
1364		len = iov->iov_len - iov_ofs;
1365		if (len > bytes)
1366			len = bytes;
1367		bytes -= len;
1368		iov_ofs += len;
1369		if (iov->iov_len == iov_ofs) {
1370			iov++;
1371			iov_ofs = 0;
1372		}
1373	}
1374	*iovp = iov;
1375	*iov_ofsp = iov_ofs;
1376}
1377
1378/*
1379 * This has the same side-effects and return value as ntfs_copy_from_user().
1380 * The difference is that on a fault we need to memset the remainder of the
1381 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1382 * single-segment behaviour.
1383 *
1384 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when
1385 * atomic and when not atomic.  This is ok because it calls
1386 * __copy_from_user_inatomic() and it is ok to call this when non-atomic.  In
1387 * fact, the only difference between __copy_from_user_inatomic() and
1388 * __copy_from_user() is that the latter calls might_sleep() and the former
1389 * should not zero the tail of the buffer on error.  And on many architectures
1390 * __copy_from_user_inatomic() is just defined to __copy_from_user() so it
1391 * makes no difference at all on those architectures.
1392 */
1393static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1394		unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1395		size_t *iov_ofs, size_t bytes)
1396{
1397	struct page **last_page = pages + nr_pages;
1398	char *addr;
1399	size_t copied, len, total = 0;
1400
1401	do {
1402		len = PAGE_CACHE_SIZE - ofs;
1403		if (len > bytes)
1404			len = bytes;
1405		addr = kmap_atomic(*pages);
1406		copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1407				*iov, *iov_ofs, len);
1408		kunmap_atomic(addr);
1409		if (unlikely(copied != len)) {
1410			/* Do it the slow way. */
1411			addr = kmap(*pages);
1412			copied = __ntfs_copy_from_user_iovec_inatomic(addr +
1413					ofs, *iov, *iov_ofs, len);
1414			if (unlikely(copied != len))
1415				goto err_out;
1416			kunmap(*pages);
1417		}
1418		total += len;
1419		ntfs_set_next_iovec(iov, iov_ofs, len);
1420		bytes -= len;
1421		if (!bytes)
1422			break;
1423		ofs = 0;
1424	} while (++pages < last_page);
1425out:
1426	return total;
1427err_out:
1428	BUG_ON(copied > len);
1429	/* Zero the rest of the target like __copy_from_user(). */
1430	memset(addr + ofs + copied, 0, len - copied);
1431	kunmap(*pages);
1432	total += copied;
1433	ntfs_set_next_iovec(iov, iov_ofs, copied);
1434	while (++pages < last_page) {
1435		bytes -= len;
1436		if (!bytes)
1437			break;
1438		len = PAGE_CACHE_SIZE;
1439		if (len > bytes)
1440			len = bytes;
1441		zero_user(*pages, 0, len);
1442	}
1443	goto out;
1444}
1445
1446static inline void ntfs_flush_dcache_pages(struct page **pages,
1447		unsigned nr_pages)
1448{
1449	BUG_ON(!nr_pages);
1450	/*
1451	 * Warning: Do not do the decrement at the same time as the call to
1452	 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1453	 * decrement never happens so the loop never terminates.
1454	 */
1455	do {
1456		--nr_pages;
1457		flush_dcache_page(pages[nr_pages]);
1458	} while (nr_pages > 0);
1459}
1460
1461/**
1462 * ntfs_commit_pages_after_non_resident_write - commit the received data
1463 * @pages:	array of destination pages
1464 * @nr_pages:	number of pages in @pages
1465 * @pos:	byte position in file at which the write begins
1466 * @bytes:	number of bytes to be written
1467 *
1468 * See description of ntfs_commit_pages_after_write(), below.
1469 */
1470static inline int ntfs_commit_pages_after_non_resident_write(
1471		struct page **pages, const unsigned nr_pages,
1472		s64 pos, size_t bytes)
1473{
1474	s64 end, initialized_size;
1475	struct inode *vi;
1476	ntfs_inode *ni, *base_ni;
1477	struct buffer_head *bh, *head;
1478	ntfs_attr_search_ctx *ctx;
1479	MFT_RECORD *m;
1480	ATTR_RECORD *a;
1481	unsigned long flags;
1482	unsigned blocksize, u;
1483	int err;
1484
1485	vi = pages[0]->mapping->host;
1486	ni = NTFS_I(vi);
1487	blocksize = vi->i_sb->s_blocksize;
1488	end = pos + bytes;
1489	u = 0;
1490	do {
1491		s64 bh_pos;
1492		struct page *page;
1493		bool partial;
1494
1495		page = pages[u];
1496		bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1497		bh = head = page_buffers(page);
1498		partial = false;
1499		do {
1500			s64 bh_end;
1501
1502			bh_end = bh_pos + blocksize;
1503			if (bh_end <= pos || bh_pos >= end) {
1504				if (!buffer_uptodate(bh))
1505					partial = true;
1506			} else {
1507				set_buffer_uptodate(bh);
1508				mark_buffer_dirty(bh);
1509			}
1510		} while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1511		/*
1512		 * If all buffers are now uptodate but the page is not, set the
1513		 * page uptodate.
1514		 */
1515		if (!partial && !PageUptodate(page))
1516			SetPageUptodate(page);
1517	} while (++u < nr_pages);
1518	/*
1519	 * Finally, if we do not need to update initialized_size or i_size we
1520	 * are finished.
1521	 */
1522	read_lock_irqsave(&ni->size_lock, flags);
1523	initialized_size = ni->initialized_size;
1524	read_unlock_irqrestore(&ni->size_lock, flags);
1525	if (end <= initialized_size) {
1526		ntfs_debug("Done.");
1527		return 0;
1528	}
1529	/*
1530	 * Update initialized_size/i_size as appropriate, both in the inode and
1531	 * the mft record.
1532	 */
1533	if (!NInoAttr(ni))
1534		base_ni = ni;
1535	else
1536		base_ni = ni->ext.base_ntfs_ino;
1537	/* Map, pin, and lock the mft record. */
1538	m = map_mft_record(base_ni);
1539	if (IS_ERR(m)) {
1540		err = PTR_ERR(m);
1541		m = NULL;
1542		ctx = NULL;
1543		goto err_out;
1544	}
1545	BUG_ON(!NInoNonResident(ni));
1546	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1547	if (unlikely(!ctx)) {
1548		err = -ENOMEM;
1549		goto err_out;
1550	}
1551	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1552			CASE_SENSITIVE, 0, NULL, 0, ctx);
1553	if (unlikely(err)) {
1554		if (err == -ENOENT)
1555			err = -EIO;
1556		goto err_out;
1557	}
1558	a = ctx->attr;
1559	BUG_ON(!a->non_resident);
1560	write_lock_irqsave(&ni->size_lock, flags);
1561	BUG_ON(end > ni->allocated_size);
1562	ni->initialized_size = end;
1563	a->data.non_resident.initialized_size = cpu_to_sle64(end);
1564	if (end > i_size_read(vi)) {
1565		i_size_write(vi, end);
1566		a->data.non_resident.data_size =
1567				a->data.non_resident.initialized_size;
1568	}
1569	write_unlock_irqrestore(&ni->size_lock, flags);
1570	/* Mark the mft record dirty, so it gets written back. */
1571	flush_dcache_mft_record_page(ctx->ntfs_ino);
1572	mark_mft_record_dirty(ctx->ntfs_ino);
1573	ntfs_attr_put_search_ctx(ctx);
1574	unmap_mft_record(base_ni);
1575	ntfs_debug("Done.");
1576	return 0;
1577err_out:
1578	if (ctx)
1579		ntfs_attr_put_search_ctx(ctx);
1580	if (m)
1581		unmap_mft_record(base_ni);
1582	ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1583			"code %i).", err);
1584	if (err != -ENOMEM)
1585		NVolSetErrors(ni->vol);
1586	return err;
1587}
1588
1589/**
1590 * ntfs_commit_pages_after_write - commit the received data
1591 * @pages:	array of destination pages
1592 * @nr_pages:	number of pages in @pages
1593 * @pos:	byte position in file at which the write begins
1594 * @bytes:	number of bytes to be written
1595 *
1596 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1597 * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are
1598 * locked but not kmap()ped.  The source data has already been copied into the
1599 * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before
1600 * the data was copied (for non-resident attributes only) and it returned
1601 * success.
1602 *
1603 * Need to set uptodate and mark dirty all buffers within the boundary of the
1604 * write.  If all buffers in a page are uptodate we set the page uptodate, too.
1605 *
1606 * Setting the buffers dirty ensures that they get written out later when
1607 * ntfs_writepage() is invoked by the VM.
1608 *
1609 * Finally, we need to update i_size and initialized_size as appropriate both
1610 * in the inode and the mft record.
1611 *
1612 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1613 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1614 * page are uptodate, and updates i_size if the end of io is beyond i_size.  In
1615 * that case, it also marks the inode dirty.
1616 *
1617 * If things have gone as outlined in
1618 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1619 * content modifications here for non-resident attributes.  For resident
1620 * attributes we need to do the uptodate bringing here which we combine with
1621 * the copying into the mft record which means we save one atomic kmap.
1622 *
1623 * Return 0 on success or -errno on error.
1624 */
1625static int ntfs_commit_pages_after_write(struct page **pages,
1626		const unsigned nr_pages, s64 pos, size_t bytes)
1627{
1628	s64 end, initialized_size;
1629	loff_t i_size;
1630	struct inode *vi;
1631	ntfs_inode *ni, *base_ni;
1632	struct page *page;
1633	ntfs_attr_search_ctx *ctx;
1634	MFT_RECORD *m;
1635	ATTR_RECORD *a;
1636	char *kattr, *kaddr;
1637	unsigned long flags;
1638	u32 attr_len;
1639	int err;
1640
1641	BUG_ON(!nr_pages);
1642	BUG_ON(!pages);
1643	page = pages[0];
1644	BUG_ON(!page);
1645	vi = page->mapping->host;
1646	ni = NTFS_I(vi);
1647	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1648			"index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1649			vi->i_ino, ni->type, page->index, nr_pages,
1650			(long long)pos, bytes);
1651	if (NInoNonResident(ni))
1652		return ntfs_commit_pages_after_non_resident_write(pages,
1653				nr_pages, pos, bytes);
1654	BUG_ON(nr_pages > 1);
1655	/*
1656	 * Attribute is resident, implying it is not compressed, encrypted, or
1657	 * sparse.
1658	 */
1659	if (!NInoAttr(ni))
1660		base_ni = ni;
1661	else
1662		base_ni = ni->ext.base_ntfs_ino;
1663	BUG_ON(NInoNonResident(ni));
1664	/* Map, pin, and lock the mft record. */
1665	m = map_mft_record(base_ni);
1666	if (IS_ERR(m)) {
1667		err = PTR_ERR(m);
1668		m = NULL;
1669		ctx = NULL;
1670		goto err_out;
1671	}
1672	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1673	if (unlikely(!ctx)) {
1674		err = -ENOMEM;
1675		goto err_out;
1676	}
1677	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1678			CASE_SENSITIVE, 0, NULL, 0, ctx);
1679	if (unlikely(err)) {
1680		if (err == -ENOENT)
1681			err = -EIO;
1682		goto err_out;
1683	}
1684	a = ctx->attr;
1685	BUG_ON(a->non_resident);
1686	/* The total length of the attribute value. */
1687	attr_len = le32_to_cpu(a->data.resident.value_length);
1688	i_size = i_size_read(vi);
1689	BUG_ON(attr_len != i_size);
1690	BUG_ON(pos > attr_len);
1691	end = pos + bytes;
1692	BUG_ON(end > le32_to_cpu(a->length) -
1693			le16_to_cpu(a->data.resident.value_offset));
1694	kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1695	kaddr = kmap_atomic(page);
1696	/* Copy the received data from the page to the mft record. */
1697	memcpy(kattr + pos, kaddr + pos, bytes);
1698	/* Update the attribute length if necessary. */
1699	if (end > attr_len) {
1700		attr_len = end;
1701		a->data.resident.value_length = cpu_to_le32(attr_len);
1702	}
1703	/*
1704	 * If the page is not uptodate, bring the out of bounds area(s)
1705	 * uptodate by copying data from the mft record to the page.
1706	 */
1707	if (!PageUptodate(page)) {
1708		if (pos > 0)
1709			memcpy(kaddr, kattr, pos);
1710		if (end < attr_len)
1711			memcpy(kaddr + end, kattr + end, attr_len - end);
1712		/* Zero the region outside the end of the attribute value. */
1713		memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1714		flush_dcache_page(page);
1715		SetPageUptodate(page);
1716	}
1717	kunmap_atomic(kaddr);
1718	/* Update initialized_size/i_size if necessary. */
1719	read_lock_irqsave(&ni->size_lock, flags);
1720	initialized_size = ni->initialized_size;
1721	BUG_ON(end > ni->allocated_size);
1722	read_unlock_irqrestore(&ni->size_lock, flags);
1723	BUG_ON(initialized_size != i_size);
1724	if (end > initialized_size) {
1725		write_lock_irqsave(&ni->size_lock, flags);
1726		ni->initialized_size = end;
1727		i_size_write(vi, end);
1728		write_unlock_irqrestore(&ni->size_lock, flags);
1729	}
1730	/* Mark the mft record dirty, so it gets written back. */
1731	flush_dcache_mft_record_page(ctx->ntfs_ino);
1732	mark_mft_record_dirty(ctx->ntfs_ino);
1733	ntfs_attr_put_search_ctx(ctx);
1734	unmap_mft_record(base_ni);
1735	ntfs_debug("Done.");
1736	return 0;
1737err_out:
1738	if (err == -ENOMEM) {
1739		ntfs_warning(vi->i_sb, "Error allocating memory required to "
1740				"commit the write.");
1741		if (PageUptodate(page)) {
1742			ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1743					"dirty so the write will be retried "
1744					"later on by the VM.");
1745			/*
1746			 * Put the page on mapping->dirty_pages, but leave its
1747			 * buffers' dirty state as-is.
1748			 */
1749			__set_page_dirty_nobuffers(page);
1750			err = 0;
1751		} else
1752			ntfs_error(vi->i_sb, "Page is not uptodate.  Written "
1753					"data has been lost.");
1754	} else {
1755		ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1756				"with error %i.", err);
1757		NVolSetErrors(ni->vol);
1758	}
1759	if (ctx)
1760		ntfs_attr_put_search_ctx(ctx);
1761	if (m)
1762		unmap_mft_record(base_ni);
1763	return err;
1764}
1765
1766static void ntfs_write_failed(struct address_space *mapping, loff_t to)
 
 
 
 
 
 
1767{
1768	struct inode *inode = mapping->host;
 
 
1769
1770	if (to > inode->i_size) {
1771		truncate_pagecache(inode, inode->i_size);
1772		ntfs_truncate_vfs(inode);
1773	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774}
1775
1776/**
1777 * ntfs_file_buffered_write -
1778 *
1779 * Locking: The vfs is holding ->i_mutex on the inode.
 
1780 */
1781static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1782		const struct iovec *iov, unsigned long nr_segs,
1783		loff_t pos, loff_t *ppos, size_t count)
1784{
1785	struct file *file = iocb->ki_filp;
1786	struct address_space *mapping = file->f_mapping;
1787	struct inode *vi = mapping->host;
1788	ntfs_inode *ni = NTFS_I(vi);
1789	ntfs_volume *vol = ni->vol;
1790	struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1791	struct page *cached_page = NULL;
1792	char __user *buf = NULL;
1793	s64 end, ll;
1794	VCN last_vcn;
1795	LCN lcn;
1796	unsigned long flags;
1797	size_t bytes, iov_ofs = 0;	/* Offset in the current iovec. */
1798	ssize_t status, written;
1799	unsigned nr_pages;
1800	int err;
1801
1802	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1803			"pos 0x%llx, count 0x%lx.",
1804			vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1805			(unsigned long long)pos, (unsigned long)count);
1806	if (unlikely(!count))
1807		return 0;
1808	BUG_ON(NInoMstProtected(ni));
1809	/*
1810	 * If the attribute is not an index root and it is encrypted or
1811	 * compressed, we cannot write to it yet.  Note we need to check for
1812	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1813	 * index inodes.
1814	 */
1815	if (ni->type != AT_INDEX_ALLOCATION) {
1816		/* If file is encrypted, deny access, just like NT4. */
1817		if (NInoEncrypted(ni)) {
1818			/*
1819			 * Reminder for later: Encrypted files are _always_
1820			 * non-resident so that the content can always be
1821			 * encrypted.
1822			 */
1823			ntfs_debug("Denying write access to encrypted file.");
1824			return -EACCES;
1825		}
1826		if (NInoCompressed(ni)) {
1827			/* Only unnamed $DATA attribute can be compressed. */
1828			BUG_ON(ni->type != AT_DATA);
1829			BUG_ON(ni->name_len);
1830			/*
1831			 * Reminder for later: If resident, the data is not
1832			 * actually compressed.  Only on the switch to non-
1833			 * resident does compression kick in.  This is in
1834			 * contrast to encrypted files (see above).
1835			 */
1836			ntfs_error(vi->i_sb, "Writing to compressed files is "
1837					"not implemented yet.  Sorry.");
1838			return -EOPNOTSUPP;
1839		}
1840	}
1841	/*
1842	 * If a previous ntfs_truncate() failed, repeat it and abort if it
1843	 * fails again.
1844	 */
1845	if (unlikely(NInoTruncateFailed(ni))) {
 
 
1846		inode_dio_wait(vi);
1847		err = ntfs_truncate(vi);
1848		if (err || NInoTruncateFailed(ni)) {
1849			if (!err)
1850				err = -EIO;
1851			ntfs_error(vol->sb, "Cannot perform write to inode "
1852					"0x%lx, attribute type 0x%x, because "
1853					"ntfs_truncate() failed (error code "
1854					"%i).", vi->i_ino,
1855					(unsigned)le32_to_cpu(ni->type), err);
1856			return err;
1857		}
1858	}
1859	/* The first byte after the write. */
1860	end = pos + count;
1861	/*
1862	 * If the write goes beyond the allocated size, extend the allocation
1863	 * to cover the whole of the write, rounded up to the nearest cluster.
1864	 */
1865	read_lock_irqsave(&ni->size_lock, flags);
1866	ll = ni->allocated_size;
1867	read_unlock_irqrestore(&ni->size_lock, flags);
1868	if (end > ll) {
1869		/* Extend the allocation without changing the data size. */
1870		ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1871		if (likely(ll >= 0)) {
1872			BUG_ON(pos >= ll);
1873			/* If the extension was partial truncate the write. */
1874			if (end > ll) {
1875				ntfs_debug("Truncating write to inode 0x%lx, "
1876						"attribute type 0x%x, because "
1877						"the allocation was only "
1878						"partially extended.",
1879						vi->i_ino, (unsigned)
1880						le32_to_cpu(ni->type));
1881				end = ll;
1882				count = ll - pos;
1883			}
1884		} else {
1885			err = ll;
1886			read_lock_irqsave(&ni->size_lock, flags);
1887			ll = ni->allocated_size;
1888			read_unlock_irqrestore(&ni->size_lock, flags);
1889			/* Perform a partial write if possible or fail. */
1890			if (pos < ll) {
1891				ntfs_debug("Truncating write to inode 0x%lx, "
1892						"attribute type 0x%x, because "
1893						"extending the allocation "
1894						"failed (error code %i).",
1895						vi->i_ino, (unsigned)
1896						le32_to_cpu(ni->type), err);
1897				end = ll;
1898				count = ll - pos;
1899			} else {
1900				ntfs_error(vol->sb, "Cannot perform write to "
1901						"inode 0x%lx, attribute type "
1902						"0x%x, because extending the "
1903						"allocation failed (error "
1904						"code %i).", vi->i_ino,
1905						(unsigned)
1906						le32_to_cpu(ni->type), err);
1907				return err;
1908			}
1909		}
1910	}
1911	written = 0;
1912	/*
1913	 * If the write starts beyond the initialized size, extend it up to the
1914	 * beginning of the write and initialize all non-sparse space between
1915	 * the old initialized size and the new one.  This automatically also
1916	 * increments the vfs inode->i_size to keep it above or equal to the
1917	 * initialized_size.
1918	 */
1919	read_lock_irqsave(&ni->size_lock, flags);
1920	ll = ni->initialized_size;
1921	read_unlock_irqrestore(&ni->size_lock, flags);
1922	if (pos > ll) {
1923		err = ntfs_attr_extend_initialized(ni, pos);
1924		if (err < 0) {
1925			ntfs_error(vol->sb, "Cannot perform write to inode "
1926					"0x%lx, attribute type 0x%x, because "
1927					"extending the initialized size "
1928					"failed (error code %i).", vi->i_ino,
1929					(unsigned)le32_to_cpu(ni->type), err);
1930			status = err;
1931			goto err_out;
1932		}
1933	}
1934	/*
1935	 * Determine the number of pages per cluster for non-resident
1936	 * attributes.
1937	 */
1938	nr_pages = 1;
1939	if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1940		nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1941	/* Finally, perform the actual write. */
1942	last_vcn = -1;
1943	if (likely(nr_segs == 1))
1944		buf = iov->iov_base;
1945	do {
1946		VCN vcn;
1947		pgoff_t idx, start_idx;
1948		unsigned ofs, do_pages, u;
1949		size_t copied;
1950
1951		start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1952		ofs = pos & ~PAGE_CACHE_MASK;
1953		bytes = PAGE_CACHE_SIZE - ofs;
1954		do_pages = 1;
1955		if (nr_pages > 1) {
1956			vcn = pos >> vol->cluster_size_bits;
1957			if (vcn != last_vcn) {
1958				last_vcn = vcn;
1959				/*
1960				 * Get the lcn of the vcn the write is in.  If
1961				 * it is a hole, need to lock down all pages in
1962				 * the cluster.
1963				 */
1964				down_read(&ni->runlist.lock);
1965				lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1966						vol->cluster_size_bits, false);
1967				up_read(&ni->runlist.lock);
1968				if (unlikely(lcn < LCN_HOLE)) {
1969					status = -EIO;
1970					if (lcn == LCN_ENOMEM)
1971						status = -ENOMEM;
1972					else
 
1973						ntfs_error(vol->sb, "Cannot "
1974							"perform write to "
1975							"inode 0x%lx, "
1976							"attribute type 0x%x, "
1977							"because the attribute "
1978							"is corrupt.",
1979							vi->i_ino, (unsigned)
1980							le32_to_cpu(ni->type));
 
1981					break;
1982				}
1983				if (lcn == LCN_HOLE) {
1984					start_idx = (pos & ~(s64)
1985							vol->cluster_size_mask)
1986							>> PAGE_CACHE_SHIFT;
1987					bytes = vol->cluster_size - (pos &
1988							vol->cluster_size_mask);
1989					do_pages = nr_pages;
1990				}
1991			}
1992		}
1993		if (bytes > count)
1994			bytes = count;
 
1995		/*
1996		 * Bring in the user page(s) that we will copy from _first_.
1997		 * Otherwise there is a nasty deadlock on copying from the same
1998		 * page(s) as we are writing to, without it/them being marked
1999		 * up-to-date.  Note, at present there is nothing to stop the
2000		 * pages being swapped out between us bringing them into memory
2001		 * and doing the actual copying.
2002		 */
2003		if (likely(nr_segs == 1))
2004			ntfs_fault_in_pages_readable(buf, bytes);
2005		else
2006			ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2007		/* Get and lock @do_pages starting at index @start_idx. */
2008		status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2009				pages, &cached_page);
2010		if (unlikely(status))
2011			break;
2012		/*
2013		 * For non-resident attributes, we need to fill any holes with
2014		 * actual clusters and ensure all bufferes are mapped.  We also
2015		 * need to bring uptodate any buffers that are only partially
2016		 * being written to.
2017		 */
2018		if (NInoNonResident(ni)) {
2019			status = ntfs_prepare_pages_for_non_resident_write(
2020					pages, do_pages, pos, bytes);
2021			if (unlikely(status)) {
2022				loff_t i_size;
2023
2024				do {
2025					unlock_page(pages[--do_pages]);
2026					page_cache_release(pages[do_pages]);
2027				} while (do_pages);
2028				/*
2029				 * The write preparation may have instantiated
2030				 * allocated space outside i_size.  Trim this
2031				 * off again.  We can ignore any errors in this
2032				 * case as we will just be waisting a bit of
2033				 * allocated space, which is not a disaster.
2034				 */
2035				i_size = i_size_read(vi);
2036				if (pos + bytes > i_size) {
2037					ntfs_write_failed(mapping, pos + bytes);
2038				}
2039				break;
2040			}
2041		}
2042		u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2043		if (likely(nr_segs == 1)) {
2044			copied = ntfs_copy_from_user(pages + u, do_pages - u,
2045					ofs, buf, bytes);
2046			buf += copied;
2047		} else
2048			copied = ntfs_copy_from_user_iovec(pages + u,
2049					do_pages - u, ofs, &iov, &iov_ofs,
2050					bytes);
2051		ntfs_flush_dcache_pages(pages + u, do_pages - u);
2052		status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2053				bytes);
2054		if (likely(!status)) {
2055			written += copied;
2056			count -= copied;
2057			pos += copied;
2058			if (unlikely(copied != bytes))
2059				status = -EFAULT;
2060		}
2061		do {
2062			unlock_page(pages[--do_pages]);
2063			mark_page_accessed(pages[do_pages]);
2064			page_cache_release(pages[do_pages]);
2065		} while (do_pages);
2066		if (unlikely(status))
 
2067			break;
 
 
 
 
 
 
 
 
 
 
 
 
2068		balance_dirty_pages_ratelimited(mapping);
2069		cond_resched();
2070	} while (count);
2071err_out:
2072	*ppos = pos;
 
2073	if (cached_page)
2074		page_cache_release(cached_page);
2075	ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).",
2076			written ? "written" : "status", (unsigned long)written,
2077			(long)status);
2078	return written ? written : status;
2079}
2080
2081/**
2082 * ntfs_file_aio_write_nolock -
 
 
 
 
 
 
2083 */
2084static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2085		const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2086{
2087	struct file *file = iocb->ki_filp;
2088	struct address_space *mapping = file->f_mapping;
2089	struct inode *inode = mapping->host;
2090	loff_t pos;
2091	size_t count;		/* after file limit checks */
2092	ssize_t written, err;
2093
2094	count = 0;
2095	err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
2096	if (err)
2097		return err;
2098	pos = *ppos;
2099	/* We can write back this queue in page reclaim. */
2100	current->backing_dev_info = mapping->backing_dev_info;
2101	written = 0;
2102	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2103	if (err)
2104		goto out;
2105	if (!count)
2106		goto out;
2107	err = file_remove_suid(file);
2108	if (err)
2109		goto out;
2110	err = file_update_time(file);
2111	if (err)
2112		goto out;
2113	written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2114			count);
2115out:
2116	current->backing_dev_info = NULL;
 
 
 
 
2117	return written ? written : err;
2118}
2119
2120/**
2121 * ntfs_file_aio_write -
2122 */
2123static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2124		unsigned long nr_segs, loff_t pos)
2125{
2126	struct file *file = iocb->ki_filp;
2127	struct address_space *mapping = file->f_mapping;
2128	struct inode *inode = mapping->host;
2129	ssize_t ret;
2130
2131	BUG_ON(iocb->ki_pos != pos);
2132
2133	mutex_lock(&inode->i_mutex);
2134	ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2135	mutex_unlock(&inode->i_mutex);
2136	if (ret > 0) {
2137		int err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2138		if (err < 0)
2139			ret = err;
2140	}
2141	return ret;
2142}
2143
2144/**
2145 * ntfs_file_fsync - sync a file to disk
2146 * @filp:	file to be synced
2147 * @datasync:	if non-zero only flush user data and not metadata
2148 *
2149 * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync
2150 * system calls.  This function is inspired by fs/buffer.c::file_fsync().
2151 *
2152 * If @datasync is false, write the mft record and all associated extent mft
2153 * records as well as the $DATA attribute and then sync the block device.
2154 *
2155 * If @datasync is true and the attribute is non-resident, we skip the writing
2156 * of the mft record and all associated extent mft records (this might still
2157 * happen due to the write_inode_now() call).
2158 *
2159 * Also, if @datasync is true, we do not wait on the inode to be written out
2160 * but we always wait on the page cache pages to be written out.
2161 *
2162 * Locking: Caller must hold i_mutex on the inode.
2163 *
2164 * TODO: We should probably also write all attribute/index inodes associated
2165 * with this inode but since we have no simple way of getting to them we ignore
2166 * this problem for now.
2167 */
2168static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
2169			   int datasync)
2170{
2171	struct inode *vi = filp->f_mapping->host;
2172	int err, ret = 0;
2173
2174	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2175
2176	err = filemap_write_and_wait_range(vi->i_mapping, start, end);
2177	if (err)
2178		return err;
2179	mutex_lock(&vi->i_mutex);
2180
2181	BUG_ON(S_ISDIR(vi->i_mode));
2182	if (!datasync || !NInoNonResident(NTFS_I(vi)))
2183		ret = __ntfs_write_inode(vi, 1);
2184	write_inode_now(vi, !datasync);
2185	/*
2186	 * NOTE: If we were to use mapping->private_list (see ext2 and
2187	 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2188	 * sync_mapping_buffers(vi->i_mapping).
2189	 */
2190	err = sync_blockdev(vi->i_sb->s_bdev);
2191	if (unlikely(err && !ret))
2192		ret = err;
2193	if (likely(!ret))
2194		ntfs_debug("Done.");
2195	else
2196		ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error "
2197				"%u.", datasync ? "data" : "", vi->i_ino, -ret);
2198	mutex_unlock(&vi->i_mutex);
2199	return ret;
2200}
2201
2202#endif /* NTFS_RW */
2203
2204const struct file_operations ntfs_file_ops = {
2205	.llseek		= generic_file_llseek,	 /* Seek inside file. */
2206	.read		= do_sync_read,		 /* Read from file. */
2207	.aio_read	= generic_file_aio_read, /* Async read from file. */
2208#ifdef NTFS_RW
2209	.write		= do_sync_write,	 /* Write to file. */
2210	.aio_write	= ntfs_file_aio_write,	 /* Async write to file. */
2211	/*.release	= ,*/			 /* Last file is closed.  See
2212						    fs/ext2/file.c::
2213						    ext2_release_file() for
2214						    how to use this to discard
2215						    preallocated space for
2216						    write opened files. */
2217	.fsync		= ntfs_file_fsync,	 /* Sync a file to disk. */
2218	/*.aio_fsync	= ,*/			 /* Sync all outstanding async
2219						    i/o operations on a
2220						    kiocb. */
2221#endif /* NTFS_RW */
2222	/*.ioctl	= ,*/			 /* Perform function on the
2223						    mounted filesystem. */
2224	.mmap		= generic_file_mmap,	 /* Mmap file. */
2225	.open		= ntfs_file_open,	 /* Open file. */
2226	.splice_read	= generic_file_splice_read /* Zero-copy data send with
2227						    the data source being on
2228						    the ntfs partition.  We do
2229						    not need to care about the
2230						    data destination. */
2231	/*.sendpage	= ,*/			 /* Zero-copy data send with
2232						    the data destination being
2233						    on the ntfs partition.  We
2234						    do not need to care about
2235						    the data source. */
2236};
2237
2238const struct inode_operations ntfs_file_inode_ops = {
2239#ifdef NTFS_RW
2240	.setattr	= ntfs_setattr,
2241#endif /* NTFS_RW */
2242};
2243
2244const struct file_operations ntfs_empty_file_ops = {};
2245
2246const struct inode_operations ntfs_empty_inode_ops = {};