Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/fs/fat/misc.c
  4 *
  5 *  Written 1992,1993 by Werner Almesberger
  6 *  22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980
  7 *		 and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru)
  8 */
  9
 
 
 
 
 10#include "fat.h"
 11#include <linux/iversion.h>
 12
 13/*
 14 * fat_fs_error reports a file system problem that might indicate fa data
 15 * corruption/inconsistency. Depending on 'errors' mount option the
 16 * panic() is called, or error message is printed FAT and nothing is done,
 17 * or filesystem is remounted read-only (default behavior).
 18 * In case the file system is remounted read-only, it can be made writable
 19 * again by remounting it.
 20 */
 21void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...)
 22{
 23	struct fat_mount_options *opts = &MSDOS_SB(sb)->options;
 24	va_list args;
 25	struct va_format vaf;
 26
 27	if (report) {
 28		va_start(args, fmt);
 29		vaf.fmt = fmt;
 30		vaf.va = &args;
 31		fat_msg(sb, KERN_ERR, "error, %pV", &vaf);
 32		va_end(args);
 33	}
 34
 35	if (opts->errors == FAT_ERRORS_PANIC)
 36		panic("FAT-fs (%s): fs panic from previous error\n", sb->s_id);
 37	else if (opts->errors == FAT_ERRORS_RO && !sb_rdonly(sb)) {
 38		sb->s_flags |= SB_RDONLY;
 39		fat_msg(sb, KERN_ERR, "Filesystem has been set read-only");
 40	}
 41}
 42EXPORT_SYMBOL_GPL(__fat_fs_error);
 43
 44/**
 45 * _fat_msg() - Print a preformatted FAT message based on a superblock.
 46 * @sb: A pointer to a &struct super_block
 47 * @level: A Kernel printk level constant
 48 * @fmt: The printf-style format string to print.
 49 *
 50 * Everything that is not fat_fs_error() should be fat_msg().
 51 *
 52 * fat_msg() wraps _fat_msg() for printk indexing.
 53 */
 54void _fat_msg(struct super_block *sb, const char *level, const char *fmt, ...)
 55{
 56	struct va_format vaf;
 57	va_list args;
 58
 59	va_start(args, fmt);
 60	vaf.fmt = fmt;
 61	vaf.va = &args;
 62	_printk(FAT_PRINTK_PREFIX "%pV\n", level, sb->s_id, &vaf);
 63	va_end(args);
 64}
 65
 66/* Flushes the number of free clusters on FAT32 */
 67/* XXX: Need to write one per FSINFO block.  Currently only writes 1 */
 68int fat_clusters_flush(struct super_block *sb)
 69{
 70	struct msdos_sb_info *sbi = MSDOS_SB(sb);
 71	struct buffer_head *bh;
 72	struct fat_boot_fsinfo *fsinfo;
 73
 74	if (!is_fat32(sbi))
 75		return 0;
 76
 77	bh = sb_bread(sb, sbi->fsinfo_sector);
 78	if (bh == NULL) {
 79		fat_msg(sb, KERN_ERR, "bread failed in fat_clusters_flush");
 80		return -EIO;
 81	}
 82
 83	fsinfo = (struct fat_boot_fsinfo *)bh->b_data;
 84	/* Sanity check */
 85	if (!IS_FSINFO(fsinfo)) {
 86		fat_msg(sb, KERN_ERR, "Invalid FSINFO signature: "
 87		       "0x%08x, 0x%08x (sector = %lu)",
 88		       le32_to_cpu(fsinfo->signature1),
 89		       le32_to_cpu(fsinfo->signature2),
 90		       sbi->fsinfo_sector);
 91	} else {
 92		if (sbi->free_clusters != -1)
 93			fsinfo->free_clusters = cpu_to_le32(sbi->free_clusters);
 94		if (sbi->prev_free != -1)
 95			fsinfo->next_cluster = cpu_to_le32(sbi->prev_free);
 96		mark_buffer_dirty(bh);
 97	}
 98	brelse(bh);
 99
100	return 0;
101}
102
103/*
104 * fat_chain_add() adds a new cluster to the chain of clusters represented
105 * by inode.
106 */
107int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster)
108{
109	struct super_block *sb = inode->i_sb;
110	struct msdos_sb_info *sbi = MSDOS_SB(sb);
111	int ret, new_fclus, last;
112
113	/*
114	 * We must locate the last cluster of the file to add this new
115	 * one (new_dclus) to the end of the link list (the FAT).
116	 */
117	last = new_fclus = 0;
118	if (MSDOS_I(inode)->i_start) {
119		int fclus, dclus;
120
121		ret = fat_get_cluster(inode, FAT_ENT_EOF, &fclus, &dclus);
122		if (ret < 0)
123			return ret;
124		new_fclus = fclus + 1;
125		last = dclus;
126	}
127
128	/* add new one to the last of the cluster chain */
129	if (last) {
130		struct fat_entry fatent;
131
132		fatent_init(&fatent);
133		ret = fat_ent_read(inode, &fatent, last);
134		if (ret >= 0) {
135			int wait = inode_needs_sync(inode);
136			ret = fat_ent_write(inode, &fatent, new_dclus, wait);
137			fatent_brelse(&fatent);
138		}
139		if (ret < 0)
140			return ret;
141		/*
142		 * FIXME:Although we can add this cache, fat_cache_add() is
143		 * assuming to be called after linear search with fat_cache_id.
144		 */
145//		fat_cache_add(inode, new_fclus, new_dclus);
146	} else {
147		MSDOS_I(inode)->i_start = new_dclus;
148		MSDOS_I(inode)->i_logstart = new_dclus;
149		/*
150		 * Since generic_write_sync() synchronizes regular files later,
151		 * we sync here only directories.
152		 */
153		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) {
154			ret = fat_sync_inode(inode);
155			if (ret)
156				return ret;
157		} else
158			mark_inode_dirty(inode);
159	}
160	if (new_fclus != (inode->i_blocks >> (sbi->cluster_bits - 9))) {
161		fat_fs_error(sb, "clusters badly computed (%d != %llu)",
162			     new_fclus,
163			     (llu)(inode->i_blocks >> (sbi->cluster_bits - 9)));
164		fat_cache_inval_inode(inode);
165	}
166	inode->i_blocks += nr_cluster << (sbi->cluster_bits - 9);
167
168	return 0;
169}
170
 
 
171/*
172 * The epoch of FAT timestamp is 1980.
173 *     :  bits :     value
174 * date:  0 -  4: day	(1 -  31)
175 * date:  5 -  8: month	(1 -  12)
176 * date:  9 - 15: year	(0 - 127) from 1980
177 * time:  0 -  4: sec	(0 -  29) 2sec counts
178 * time:  5 - 10: min	(0 -  59)
179 * time: 11 - 15: hour	(0 -  23)
180 */
181#define SECS_PER_MIN	60
182#define SECS_PER_HOUR	(60 * 60)
183#define SECS_PER_DAY	(SECS_PER_HOUR * 24)
184/* days between 1.1.70 and 1.1.80 (2 leap days) */
185#define DAYS_DELTA	(365 * 10 + 2)
186/* 120 (2100 - 1980) isn't leap year */
187#define YEAR_2100	120
188#define IS_LEAP_YEAR(y)	(!((y) & 3) && (y) != YEAR_2100)
189
190/* Linear day numbers of the respective 1sts in non-leap years. */
191static long days_in_year[] = {
192	/* Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec */
193	0,   0,  31,  59,  90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0,
194};
195
196static inline int fat_tz_offset(const struct msdos_sb_info *sbi)
197{
198	return (sbi->options.tz_set ?
199	       -sbi->options.time_offset :
200	       sys_tz.tz_minuteswest) * SECS_PER_MIN;
201}
202
203/* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */
204void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts,
205		       __le16 __time, __le16 __date, u8 time_cs)
206{
207	u16 time = le16_to_cpu(__time), date = le16_to_cpu(__date);
208	time64_t second;
209	long day, leap_day, month, year;
210
211	year  = date >> 9;
212	month = max(1, (date >> 5) & 0xf);
213	day   = max(1, date & 0x1f) - 1;
214
215	leap_day = (year + 3) / 4;
216	if (year > YEAR_2100)		/* 2100 isn't leap year */
217		leap_day--;
218	if (IS_LEAP_YEAR(year) && month > 2)
219		leap_day++;
220
221	second =  (time & 0x1f) << 1;
222	second += ((time >> 5) & 0x3f) * SECS_PER_MIN;
223	second += (time >> 11) * SECS_PER_HOUR;
224	second += (time64_t)(year * 365 + leap_day
225		   + days_in_year[month] + day
226		   + DAYS_DELTA) * SECS_PER_DAY;
227
228	second += fat_tz_offset(sbi);
 
 
 
229
230	if (time_cs) {
231		ts->tv_sec = second + (time_cs / 100);
232		ts->tv_nsec = (time_cs % 100) * 10000000;
233	} else {
234		ts->tv_sec = second;
235		ts->tv_nsec = 0;
236	}
237}
238
239/* Export fat_time_fat2unix() for the fat_test KUnit tests. */
240EXPORT_SYMBOL_GPL(fat_time_fat2unix);
241
242/* Convert linear UNIX date to a FAT time/date pair. */
243void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts,
244		       __le16 *time, __le16 *date, u8 *time_cs)
245{
246	struct tm tm;
247	time64_to_tm(ts->tv_sec, -fat_tz_offset(sbi), &tm);
 
 
248
249	/*  FAT can only support year between 1980 to 2107 */
250	if (tm.tm_year < 1980 - 1900) {
251		*time = 0;
252		*date = cpu_to_le16((0 << 9) | (1 << 5) | 1);
253		if (time_cs)
254			*time_cs = 0;
255		return;
256	}
257	if (tm.tm_year > 2107 - 1900) {
258		*time = cpu_to_le16((23 << 11) | (59 << 5) | 29);
259		*date = cpu_to_le16((127 << 9) | (12 << 5) | 31);
260		if (time_cs)
261			*time_cs = 199;
262		return;
263	}
264
265	/* from 1900 -> from 1980 */
266	tm.tm_year -= 80;
267	/* 0~11 -> 1~12 */
268	tm.tm_mon++;
269	/* 0~59 -> 0~29(2sec counts) */
270	tm.tm_sec >>= 1;
271
272	*time = cpu_to_le16(tm.tm_hour << 11 | tm.tm_min << 5 | tm.tm_sec);
273	*date = cpu_to_le16(tm.tm_year << 9 | tm.tm_mon << 5 | tm.tm_mday);
274	if (time_cs)
275		*time_cs = (ts->tv_sec & 1) * 100 + ts->tv_nsec / 10000000;
276}
277EXPORT_SYMBOL_GPL(fat_time_unix2fat);
278
279static inline struct timespec64 fat_timespec64_trunc_2secs(struct timespec64 ts)
280{
281	return (struct timespec64){ ts.tv_sec & ~1ULL, 0 };
282}
283
284/*
285 * truncate atime to 24 hour granularity (00:00:00 in local timezone)
286 */
287struct timespec64 fat_truncate_atime(const struct msdos_sb_info *sbi,
288				     const struct timespec64 *ts)
289{
290	/* to localtime */
291	time64_t seconds = ts->tv_sec - fat_tz_offset(sbi);
292	s32 remainder;
293
294	div_s64_rem(seconds, SECS_PER_DAY, &remainder);
295	/* to day boundary, and back to unix time */
296	seconds = seconds + fat_tz_offset(sbi) - remainder;
297
298	return (struct timespec64){ seconds, 0 };
299}
300
301/*
302 * truncate mtime to 2 second granularity
303 */
304struct timespec64 fat_truncate_mtime(const struct msdos_sb_info *sbi,
305				     const struct timespec64 *ts)
306{
307	return fat_timespec64_trunc_2secs(*ts);
308}
309
310/*
311 * truncate the various times with appropriate granularity:
312 *   all times in root node are always 0
313 */
314int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags)
315{
316	struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb);
317	struct timespec64 ts;
318
319	if (inode->i_ino == MSDOS_ROOT_INO)
320		return 0;
321
322	if (now == NULL) {
323		now = &ts;
324		ts = current_time(inode);
325	}
326
327	if (flags & S_ATIME)
328		inode->i_atime = fat_truncate_atime(sbi, now);
329	/*
330	 * ctime and mtime share the same on-disk field, and should be
331	 * identical in memory. all mtime updates will be applied to ctime,
332	 * but ctime updates are ignored.
333	 */
334	if (flags & S_MTIME)
335		inode->i_mtime = inode->i_ctime = fat_truncate_mtime(sbi, now);
336
337	return 0;
338}
339EXPORT_SYMBOL_GPL(fat_truncate_time);
340
341int fat_update_time(struct inode *inode, struct timespec64 *now, int flags)
342{
343	int dirty_flags = 0;
344
345	if (inode->i_ino == MSDOS_ROOT_INO)
346		return 0;
347
348	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
349		fat_truncate_time(inode, now, flags);
350		if (inode->i_sb->s_flags & SB_LAZYTIME)
351			dirty_flags |= I_DIRTY_TIME;
352		else
353			dirty_flags |= I_DIRTY_SYNC;
354	}
355
356	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
357		dirty_flags |= I_DIRTY_SYNC;
358
359	__mark_inode_dirty(inode, dirty_flags);
360	return 0;
361}
362EXPORT_SYMBOL_GPL(fat_update_time);
363
364int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs)
365{
366	int i, err = 0;
367
368	for (i = 0; i < nr_bhs; i++)
369		write_dirty_buffer(bhs[i], 0);
370
371	for (i = 0; i < nr_bhs; i++) {
372		wait_on_buffer(bhs[i]);
373		if (!err && !buffer_uptodate(bhs[i]))
374			err = -EIO;
375	}
376	return err;
377}
v3.15
 
  1/*
  2 *  linux/fs/fat/misc.c
  3 *
  4 *  Written 1992,1993 by Werner Almesberger
  5 *  22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980
  6 *		 and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru)
  7 */
  8
  9#include <linux/module.h>
 10#include <linux/fs.h>
 11#include <linux/buffer_head.h>
 12#include <linux/time.h>
 13#include "fat.h"
 
 14
 15/*
 16 * fat_fs_error reports a file system problem that might indicate fa data
 17 * corruption/inconsistency. Depending on 'errors' mount option the
 18 * panic() is called, or error message is printed FAT and nothing is done,
 19 * or filesystem is remounted read-only (default behavior).
 20 * In case the file system is remounted read-only, it can be made writable
 21 * again by remounting it.
 22 */
 23void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...)
 24{
 25	struct fat_mount_options *opts = &MSDOS_SB(sb)->options;
 26	va_list args;
 27	struct va_format vaf;
 28
 29	if (report) {
 30		va_start(args, fmt);
 31		vaf.fmt = fmt;
 32		vaf.va = &args;
 33		fat_msg(sb, KERN_ERR, "error, %pV", &vaf);
 34		va_end(args);
 35	}
 36
 37	if (opts->errors == FAT_ERRORS_PANIC)
 38		panic("FAT-fs (%s): fs panic from previous error\n", sb->s_id);
 39	else if (opts->errors == FAT_ERRORS_RO && !(sb->s_flags & MS_RDONLY)) {
 40		sb->s_flags |= MS_RDONLY;
 41		fat_msg(sb, KERN_ERR, "Filesystem has been set read-only");
 42	}
 43}
 44EXPORT_SYMBOL_GPL(__fat_fs_error);
 45
 46/**
 47 * fat_msg() - print preformated FAT specific messages. Every thing what is
 48 * not fat_fs_error() should be fat_msg().
 
 
 
 
 
 
 49 */
 50void fat_msg(struct super_block *sb, const char *level, const char *fmt, ...)
 51{
 52	struct va_format vaf;
 53	va_list args;
 54
 55	va_start(args, fmt);
 56	vaf.fmt = fmt;
 57	vaf.va = &args;
 58	printk("%sFAT-fs (%s): %pV\n", level, sb->s_id, &vaf);
 59	va_end(args);
 60}
 61
 62/* Flushes the number of free clusters on FAT32 */
 63/* XXX: Need to write one per FSINFO block.  Currently only writes 1 */
 64int fat_clusters_flush(struct super_block *sb)
 65{
 66	struct msdos_sb_info *sbi = MSDOS_SB(sb);
 67	struct buffer_head *bh;
 68	struct fat_boot_fsinfo *fsinfo;
 69
 70	if (sbi->fat_bits != 32)
 71		return 0;
 72
 73	bh = sb_bread(sb, sbi->fsinfo_sector);
 74	if (bh == NULL) {
 75		fat_msg(sb, KERN_ERR, "bread failed in fat_clusters_flush");
 76		return -EIO;
 77	}
 78
 79	fsinfo = (struct fat_boot_fsinfo *)bh->b_data;
 80	/* Sanity check */
 81	if (!IS_FSINFO(fsinfo)) {
 82		fat_msg(sb, KERN_ERR, "Invalid FSINFO signature: "
 83		       "0x%08x, 0x%08x (sector = %lu)",
 84		       le32_to_cpu(fsinfo->signature1),
 85		       le32_to_cpu(fsinfo->signature2),
 86		       sbi->fsinfo_sector);
 87	} else {
 88		if (sbi->free_clusters != -1)
 89			fsinfo->free_clusters = cpu_to_le32(sbi->free_clusters);
 90		if (sbi->prev_free != -1)
 91			fsinfo->next_cluster = cpu_to_le32(sbi->prev_free);
 92		mark_buffer_dirty(bh);
 93	}
 94	brelse(bh);
 95
 96	return 0;
 97}
 98
 99/*
100 * fat_chain_add() adds a new cluster to the chain of clusters represented
101 * by inode.
102 */
103int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster)
104{
105	struct super_block *sb = inode->i_sb;
106	struct msdos_sb_info *sbi = MSDOS_SB(sb);
107	int ret, new_fclus, last;
108
109	/*
110	 * We must locate the last cluster of the file to add this new
111	 * one (new_dclus) to the end of the link list (the FAT).
112	 */
113	last = new_fclus = 0;
114	if (MSDOS_I(inode)->i_start) {
115		int fclus, dclus;
116
117		ret = fat_get_cluster(inode, FAT_ENT_EOF, &fclus, &dclus);
118		if (ret < 0)
119			return ret;
120		new_fclus = fclus + 1;
121		last = dclus;
122	}
123
124	/* add new one to the last of the cluster chain */
125	if (last) {
126		struct fat_entry fatent;
127
128		fatent_init(&fatent);
129		ret = fat_ent_read(inode, &fatent, last);
130		if (ret >= 0) {
131			int wait = inode_needs_sync(inode);
132			ret = fat_ent_write(inode, &fatent, new_dclus, wait);
133			fatent_brelse(&fatent);
134		}
135		if (ret < 0)
136			return ret;
137		/*
138		 * FIXME:Although we can add this cache, fat_cache_add() is
139		 * assuming to be called after linear search with fat_cache_id.
140		 */
141//		fat_cache_add(inode, new_fclus, new_dclus);
142	} else {
143		MSDOS_I(inode)->i_start = new_dclus;
144		MSDOS_I(inode)->i_logstart = new_dclus;
145		/*
146		 * Since generic_write_sync() synchronizes regular files later,
147		 * we sync here only directories.
148		 */
149		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) {
150			ret = fat_sync_inode(inode);
151			if (ret)
152				return ret;
153		} else
154			mark_inode_dirty(inode);
155	}
156	if (new_fclus != (inode->i_blocks >> (sbi->cluster_bits - 9))) {
157		fat_fs_error(sb, "clusters badly computed (%d != %llu)",
158			     new_fclus,
159			     (llu)(inode->i_blocks >> (sbi->cluster_bits - 9)));
160		fat_cache_inval_inode(inode);
161	}
162	inode->i_blocks += nr_cluster << (sbi->cluster_bits - 9);
163
164	return 0;
165}
166
167extern struct timezone sys_tz;
168
169/*
170 * The epoch of FAT timestamp is 1980.
171 *     :  bits :     value
172 * date:  0 -  4: day	(1 -  31)
173 * date:  5 -  8: month	(1 -  12)
174 * date:  9 - 15: year	(0 - 127) from 1980
175 * time:  0 -  4: sec	(0 -  29) 2sec counts
176 * time:  5 - 10: min	(0 -  59)
177 * time: 11 - 15: hour	(0 -  23)
178 */
179#define SECS_PER_MIN	60
180#define SECS_PER_HOUR	(60 * 60)
181#define SECS_PER_DAY	(SECS_PER_HOUR * 24)
182/* days between 1.1.70 and 1.1.80 (2 leap days) */
183#define DAYS_DELTA	(365 * 10 + 2)
184/* 120 (2100 - 1980) isn't leap year */
185#define YEAR_2100	120
186#define IS_LEAP_YEAR(y)	(!((y) & 3) && (y) != YEAR_2100)
187
188/* Linear day numbers of the respective 1sts in non-leap years. */
189static time_t days_in_year[] = {
190	/* Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec */
191	0,   0,  31,  59,  90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0,
192};
193
 
 
 
 
 
 
 
194/* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */
195void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec *ts,
196		       __le16 __time, __le16 __date, u8 time_cs)
197{
198	u16 time = le16_to_cpu(__time), date = le16_to_cpu(__date);
199	time_t second, day, leap_day, month, year;
 
200
201	year  = date >> 9;
202	month = max(1, (date >> 5) & 0xf);
203	day   = max(1, date & 0x1f) - 1;
204
205	leap_day = (year + 3) / 4;
206	if (year > YEAR_2100)		/* 2100 isn't leap year */
207		leap_day--;
208	if (IS_LEAP_YEAR(year) && month > 2)
209		leap_day++;
210
211	second =  (time & 0x1f) << 1;
212	second += ((time >> 5) & 0x3f) * SECS_PER_MIN;
213	second += (time >> 11) * SECS_PER_HOUR;
214	second += (year * 365 + leap_day
215		   + days_in_year[month] + day
216		   + DAYS_DELTA) * SECS_PER_DAY;
217
218	if (!sbi->options.tz_set)
219		second += sys_tz.tz_minuteswest * SECS_PER_MIN;
220	else
221		second -= sbi->options.time_offset * SECS_PER_MIN;
222
223	if (time_cs) {
224		ts->tv_sec = second + (time_cs / 100);
225		ts->tv_nsec = (time_cs % 100) * 10000000;
226	} else {
227		ts->tv_sec = second;
228		ts->tv_nsec = 0;
229	}
230}
231
 
 
 
232/* Convert linear UNIX date to a FAT time/date pair. */
233void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec *ts,
234		       __le16 *time, __le16 *date, u8 *time_cs)
235{
236	struct tm tm;
237	time_to_tm(ts->tv_sec,
238		   (sbi->options.tz_set ? sbi->options.time_offset :
239		   -sys_tz.tz_minuteswest) * SECS_PER_MIN, &tm);
240
241	/*  FAT can only support year between 1980 to 2107 */
242	if (tm.tm_year < 1980 - 1900) {
243		*time = 0;
244		*date = cpu_to_le16((0 << 9) | (1 << 5) | 1);
245		if (time_cs)
246			*time_cs = 0;
247		return;
248	}
249	if (tm.tm_year > 2107 - 1900) {
250		*time = cpu_to_le16((23 << 11) | (59 << 5) | 29);
251		*date = cpu_to_le16((127 << 9) | (12 << 5) | 31);
252		if (time_cs)
253			*time_cs = 199;
254		return;
255	}
256
257	/* from 1900 -> from 1980 */
258	tm.tm_year -= 80;
259	/* 0~11 -> 1~12 */
260	tm.tm_mon++;
261	/* 0~59 -> 0~29(2sec counts) */
262	tm.tm_sec >>= 1;
263
264	*time = cpu_to_le16(tm.tm_hour << 11 | tm.tm_min << 5 | tm.tm_sec);
265	*date = cpu_to_le16(tm.tm_year << 9 | tm.tm_mon << 5 | tm.tm_mday);
266	if (time_cs)
267		*time_cs = (ts->tv_sec & 1) * 100 + ts->tv_nsec / 10000000;
268}
269EXPORT_SYMBOL_GPL(fat_time_unix2fat);
270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs)
272{
273	int i, err = 0;
274
275	for (i = 0; i < nr_bhs; i++)
276		write_dirty_buffer(bhs[i], WRITE);
277
278	for (i = 0; i < nr_bhs; i++) {
279		wait_on_buffer(bhs[i]);
280		if (!err && !buffer_uptodate(bhs[i]))
281			err = -EIO;
282	}
283	return err;
284}