Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * #!-checking implemented by tytso.
10 */
11/*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26#include <linux/kernel_read_file.h>
27#include <linux/slab.h>
28#include <linux/file.h>
29#include <linux/fdtable.h>
30#include <linux/mm.h>
31#include <linux/stat.h>
32#include <linux/fcntl.h>
33#include <linux/swap.h>
34#include <linux/string.h>
35#include <linux/init.h>
36#include <linux/sched/mm.h>
37#include <linux/sched/coredump.h>
38#include <linux/sched/signal.h>
39#include <linux/sched/numa_balancing.h>
40#include <linux/sched/task.h>
41#include <linux/pagemap.h>
42#include <linux/perf_event.h>
43#include <linux/highmem.h>
44#include <linux/spinlock.h>
45#include <linux/key.h>
46#include <linux/personality.h>
47#include <linux/binfmts.h>
48#include <linux/utsname.h>
49#include <linux/pid_namespace.h>
50#include <linux/module.h>
51#include <linux/namei.h>
52#include <linux/mount.h>
53#include <linux/security.h>
54#include <linux/syscalls.h>
55#include <linux/tsacct_kern.h>
56#include <linux/cn_proc.h>
57#include <linux/audit.h>
58#include <linux/kmod.h>
59#include <linux/fsnotify.h>
60#include <linux/fs_struct.h>
61#include <linux/oom.h>
62#include <linux/compat.h>
63#include <linux/vmalloc.h>
64#include <linux/io_uring.h>
65#include <linux/syscall_user_dispatch.h>
66#include <linux/coredump.h>
67#include <linux/time_namespace.h>
68
69#include <linux/uaccess.h>
70#include <asm/mmu_context.h>
71#include <asm/tlb.h>
72
73#include <trace/events/task.h>
74#include "internal.h"
75
76#include <trace/events/sched.h>
77
78static int bprm_creds_from_file(struct linux_binprm *bprm);
79
80int suid_dumpable = 0;
81
82static LIST_HEAD(formats);
83static DEFINE_RWLOCK(binfmt_lock);
84
85void __register_binfmt(struct linux_binfmt * fmt, int insert)
86{
87 write_lock(&binfmt_lock);
88 insert ? list_add(&fmt->lh, &formats) :
89 list_add_tail(&fmt->lh, &formats);
90 write_unlock(&binfmt_lock);
91}
92
93EXPORT_SYMBOL(__register_binfmt);
94
95void unregister_binfmt(struct linux_binfmt * fmt)
96{
97 write_lock(&binfmt_lock);
98 list_del(&fmt->lh);
99 write_unlock(&binfmt_lock);
100}
101
102EXPORT_SYMBOL(unregister_binfmt);
103
104static inline void put_binfmt(struct linux_binfmt * fmt)
105{
106 module_put(fmt->module);
107}
108
109bool path_noexec(const struct path *path)
110{
111 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113}
114
115#ifdef CONFIG_USELIB
116/*
117 * Note that a shared library must be both readable and executable due to
118 * security reasons.
119 *
120 * Also note that we take the address to load from the file itself.
121 */
122SYSCALL_DEFINE1(uselib, const char __user *, library)
123{
124 struct linux_binfmt *fmt;
125 struct file *file;
126 struct filename *tmp = getname(library);
127 int error = PTR_ERR(tmp);
128 static const struct open_flags uselib_flags = {
129 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 .acc_mode = MAY_READ | MAY_EXEC,
131 .intent = LOOKUP_OPEN,
132 .lookup_flags = LOOKUP_FOLLOW,
133 };
134
135 if (IS_ERR(tmp))
136 goto out;
137
138 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 putname(tmp);
140 error = PTR_ERR(file);
141 if (IS_ERR(file))
142 goto out;
143
144 /*
145 * may_open() has already checked for this, so it should be
146 * impossible to trip now. But we need to be extra cautious
147 * and check again at the very end too.
148 */
149 error = -EACCES;
150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 path_noexec(&file->f_path)))
152 goto exit;
153
154 fsnotify_open(file);
155
156 error = -ENOEXEC;
157
158 read_lock(&binfmt_lock);
159 list_for_each_entry(fmt, &formats, lh) {
160 if (!fmt->load_shlib)
161 continue;
162 if (!try_module_get(fmt->module))
163 continue;
164 read_unlock(&binfmt_lock);
165 error = fmt->load_shlib(file);
166 read_lock(&binfmt_lock);
167 put_binfmt(fmt);
168 if (error != -ENOEXEC)
169 break;
170 }
171 read_unlock(&binfmt_lock);
172exit:
173 fput(file);
174out:
175 return error;
176}
177#endif /* #ifdef CONFIG_USELIB */
178
179#ifdef CONFIG_MMU
180/*
181 * The nascent bprm->mm is not visible until exec_mmap() but it can
182 * use a lot of memory, account these pages in current->mm temporary
183 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184 * change the counter back via acct_arg_size(0).
185 */
186static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187{
188 struct mm_struct *mm = current->mm;
189 long diff = (long)(pages - bprm->vma_pages);
190
191 if (!mm || !diff)
192 return;
193
194 bprm->vma_pages = pages;
195 add_mm_counter(mm, MM_ANONPAGES, diff);
196}
197
198static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 int write)
200{
201 struct page *page;
202 int ret;
203 unsigned int gup_flags = 0;
204
205#ifdef CONFIG_STACK_GROWSUP
206 if (write) {
207 ret = expand_downwards(bprm->vma, pos);
208 if (ret < 0)
209 return NULL;
210 }
211#endif
212
213 if (write)
214 gup_flags |= FOLL_WRITE;
215
216 /*
217 * We are doing an exec(). 'current' is the process
218 * doing the exec and bprm->mm is the new process's mm.
219 */
220 mmap_read_lock(bprm->mm);
221 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222 &page, NULL, NULL);
223 mmap_read_unlock(bprm->mm);
224 if (ret <= 0)
225 return NULL;
226
227 if (write)
228 acct_arg_size(bprm, vma_pages(bprm->vma));
229
230 return page;
231}
232
233static void put_arg_page(struct page *page)
234{
235 put_page(page);
236}
237
238static void free_arg_pages(struct linux_binprm *bprm)
239{
240}
241
242static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243 struct page *page)
244{
245 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246}
247
248static int __bprm_mm_init(struct linux_binprm *bprm)
249{
250 int err;
251 struct vm_area_struct *vma = NULL;
252 struct mm_struct *mm = bprm->mm;
253
254 bprm->vma = vma = vm_area_alloc(mm);
255 if (!vma)
256 return -ENOMEM;
257 vma_set_anonymous(vma);
258
259 if (mmap_write_lock_killable(mm)) {
260 err = -EINTR;
261 goto err_free;
262 }
263
264 /*
265 * Place the stack at the largest stack address the architecture
266 * supports. Later, we'll move this to an appropriate place. We don't
267 * use STACK_TOP because that can depend on attributes which aren't
268 * configured yet.
269 */
270 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271 vma->vm_end = STACK_TOP_MAX;
272 vma->vm_start = vma->vm_end - PAGE_SIZE;
273 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275
276 err = insert_vm_struct(mm, vma);
277 if (err)
278 goto err;
279
280 mm->stack_vm = mm->total_vm = 1;
281 mmap_write_unlock(mm);
282 bprm->p = vma->vm_end - sizeof(void *);
283 return 0;
284err:
285 mmap_write_unlock(mm);
286err_free:
287 bprm->vma = NULL;
288 vm_area_free(vma);
289 return err;
290}
291
292static bool valid_arg_len(struct linux_binprm *bprm, long len)
293{
294 return len <= MAX_ARG_STRLEN;
295}
296
297#else
298
299static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300{
301}
302
303static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 int write)
305{
306 struct page *page;
307
308 page = bprm->page[pos / PAGE_SIZE];
309 if (!page && write) {
310 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311 if (!page)
312 return NULL;
313 bprm->page[pos / PAGE_SIZE] = page;
314 }
315
316 return page;
317}
318
319static void put_arg_page(struct page *page)
320{
321}
322
323static void free_arg_page(struct linux_binprm *bprm, int i)
324{
325 if (bprm->page[i]) {
326 __free_page(bprm->page[i]);
327 bprm->page[i] = NULL;
328 }
329}
330
331static void free_arg_pages(struct linux_binprm *bprm)
332{
333 int i;
334
335 for (i = 0; i < MAX_ARG_PAGES; i++)
336 free_arg_page(bprm, i);
337}
338
339static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340 struct page *page)
341{
342}
343
344static int __bprm_mm_init(struct linux_binprm *bprm)
345{
346 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347 return 0;
348}
349
350static bool valid_arg_len(struct linux_binprm *bprm, long len)
351{
352 return len <= bprm->p;
353}
354
355#endif /* CONFIG_MMU */
356
357/*
358 * Create a new mm_struct and populate it with a temporary stack
359 * vm_area_struct. We don't have enough context at this point to set the stack
360 * flags, permissions, and offset, so we use temporary values. We'll update
361 * them later in setup_arg_pages().
362 */
363static int bprm_mm_init(struct linux_binprm *bprm)
364{
365 int err;
366 struct mm_struct *mm = NULL;
367
368 bprm->mm = mm = mm_alloc();
369 err = -ENOMEM;
370 if (!mm)
371 goto err;
372
373 /* Save current stack limit for all calculations made during exec. */
374 task_lock(current->group_leader);
375 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376 task_unlock(current->group_leader);
377
378 err = __bprm_mm_init(bprm);
379 if (err)
380 goto err;
381
382 return 0;
383
384err:
385 if (mm) {
386 bprm->mm = NULL;
387 mmdrop(mm);
388 }
389
390 return err;
391}
392
393struct user_arg_ptr {
394#ifdef CONFIG_COMPAT
395 bool is_compat;
396#endif
397 union {
398 const char __user *const __user *native;
399#ifdef CONFIG_COMPAT
400 const compat_uptr_t __user *compat;
401#endif
402 } ptr;
403};
404
405static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406{
407 const char __user *native;
408
409#ifdef CONFIG_COMPAT
410 if (unlikely(argv.is_compat)) {
411 compat_uptr_t compat;
412
413 if (get_user(compat, argv.ptr.compat + nr))
414 return ERR_PTR(-EFAULT);
415
416 return compat_ptr(compat);
417 }
418#endif
419
420 if (get_user(native, argv.ptr.native + nr))
421 return ERR_PTR(-EFAULT);
422
423 return native;
424}
425
426/*
427 * count() counts the number of strings in array ARGV.
428 */
429static int count(struct user_arg_ptr argv, int max)
430{
431 int i = 0;
432
433 if (argv.ptr.native != NULL) {
434 for (;;) {
435 const char __user *p = get_user_arg_ptr(argv, i);
436
437 if (!p)
438 break;
439
440 if (IS_ERR(p))
441 return -EFAULT;
442
443 if (i >= max)
444 return -E2BIG;
445 ++i;
446
447 if (fatal_signal_pending(current))
448 return -ERESTARTNOHAND;
449 cond_resched();
450 }
451 }
452 return i;
453}
454
455static int count_strings_kernel(const char *const *argv)
456{
457 int i;
458
459 if (!argv)
460 return 0;
461
462 for (i = 0; argv[i]; ++i) {
463 if (i >= MAX_ARG_STRINGS)
464 return -E2BIG;
465 if (fatal_signal_pending(current))
466 return -ERESTARTNOHAND;
467 cond_resched();
468 }
469 return i;
470}
471
472static int bprm_stack_limits(struct linux_binprm *bprm)
473{
474 unsigned long limit, ptr_size;
475
476 /*
477 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478 * (whichever is smaller) for the argv+env strings.
479 * This ensures that:
480 * - the remaining binfmt code will not run out of stack space,
481 * - the program will have a reasonable amount of stack left
482 * to work from.
483 */
484 limit = _STK_LIM / 4 * 3;
485 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486 /*
487 * We've historically supported up to 32 pages (ARG_MAX)
488 * of argument strings even with small stacks
489 */
490 limit = max_t(unsigned long, limit, ARG_MAX);
491 /*
492 * We must account for the size of all the argv and envp pointers to
493 * the argv and envp strings, since they will also take up space in
494 * the stack. They aren't stored until much later when we can't
495 * signal to the parent that the child has run out of stack space.
496 * Instead, calculate it here so it's possible to fail gracefully.
497 *
498 * In the case of argc = 0, make sure there is space for adding a
499 * empty string (which will bump argc to 1), to ensure confused
500 * userspace programs don't start processing from argv[1], thinking
501 * argc can never be 0, to keep them from walking envp by accident.
502 * See do_execveat_common().
503 */
504 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
505 if (limit <= ptr_size)
506 return -E2BIG;
507 limit -= ptr_size;
508
509 bprm->argmin = bprm->p - limit;
510 return 0;
511}
512
513/*
514 * 'copy_strings()' copies argument/environment strings from the old
515 * processes's memory to the new process's stack. The call to get_user_pages()
516 * ensures the destination page is created and not swapped out.
517 */
518static int copy_strings(int argc, struct user_arg_ptr argv,
519 struct linux_binprm *bprm)
520{
521 struct page *kmapped_page = NULL;
522 char *kaddr = NULL;
523 unsigned long kpos = 0;
524 int ret;
525
526 while (argc-- > 0) {
527 const char __user *str;
528 int len;
529 unsigned long pos;
530
531 ret = -EFAULT;
532 str = get_user_arg_ptr(argv, argc);
533 if (IS_ERR(str))
534 goto out;
535
536 len = strnlen_user(str, MAX_ARG_STRLEN);
537 if (!len)
538 goto out;
539
540 ret = -E2BIG;
541 if (!valid_arg_len(bprm, len))
542 goto out;
543
544 /* We're going to work our way backwards. */
545 pos = bprm->p;
546 str += len;
547 bprm->p -= len;
548#ifdef CONFIG_MMU
549 if (bprm->p < bprm->argmin)
550 goto out;
551#endif
552
553 while (len > 0) {
554 int offset, bytes_to_copy;
555
556 if (fatal_signal_pending(current)) {
557 ret = -ERESTARTNOHAND;
558 goto out;
559 }
560 cond_resched();
561
562 offset = pos % PAGE_SIZE;
563 if (offset == 0)
564 offset = PAGE_SIZE;
565
566 bytes_to_copy = offset;
567 if (bytes_to_copy > len)
568 bytes_to_copy = len;
569
570 offset -= bytes_to_copy;
571 pos -= bytes_to_copy;
572 str -= bytes_to_copy;
573 len -= bytes_to_copy;
574
575 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
576 struct page *page;
577
578 page = get_arg_page(bprm, pos, 1);
579 if (!page) {
580 ret = -E2BIG;
581 goto out;
582 }
583
584 if (kmapped_page) {
585 flush_dcache_page(kmapped_page);
586 kunmap_local(kaddr);
587 put_arg_page(kmapped_page);
588 }
589 kmapped_page = page;
590 kaddr = kmap_local_page(kmapped_page);
591 kpos = pos & PAGE_MASK;
592 flush_arg_page(bprm, kpos, kmapped_page);
593 }
594 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
595 ret = -EFAULT;
596 goto out;
597 }
598 }
599 }
600 ret = 0;
601out:
602 if (kmapped_page) {
603 flush_dcache_page(kmapped_page);
604 kunmap_local(kaddr);
605 put_arg_page(kmapped_page);
606 }
607 return ret;
608}
609
610/*
611 * Copy and argument/environment string from the kernel to the processes stack.
612 */
613int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
614{
615 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
616 unsigned long pos = bprm->p;
617
618 if (len == 0)
619 return -EFAULT;
620 if (!valid_arg_len(bprm, len))
621 return -E2BIG;
622
623 /* We're going to work our way backwards. */
624 arg += len;
625 bprm->p -= len;
626 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
627 return -E2BIG;
628
629 while (len > 0) {
630 unsigned int bytes_to_copy = min_t(unsigned int, len,
631 min_not_zero(offset_in_page(pos), PAGE_SIZE));
632 struct page *page;
633
634 pos -= bytes_to_copy;
635 arg -= bytes_to_copy;
636 len -= bytes_to_copy;
637
638 page = get_arg_page(bprm, pos, 1);
639 if (!page)
640 return -E2BIG;
641 flush_arg_page(bprm, pos & PAGE_MASK, page);
642 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
643 put_arg_page(page);
644 }
645
646 return 0;
647}
648EXPORT_SYMBOL(copy_string_kernel);
649
650static int copy_strings_kernel(int argc, const char *const *argv,
651 struct linux_binprm *bprm)
652{
653 while (argc-- > 0) {
654 int ret = copy_string_kernel(argv[argc], bprm);
655 if (ret < 0)
656 return ret;
657 if (fatal_signal_pending(current))
658 return -ERESTARTNOHAND;
659 cond_resched();
660 }
661 return 0;
662}
663
664#ifdef CONFIG_MMU
665
666/*
667 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
668 * the binfmt code determines where the new stack should reside, we shift it to
669 * its final location. The process proceeds as follows:
670 *
671 * 1) Use shift to calculate the new vma endpoints.
672 * 2) Extend vma to cover both the old and new ranges. This ensures the
673 * arguments passed to subsequent functions are consistent.
674 * 3) Move vma's page tables to the new range.
675 * 4) Free up any cleared pgd range.
676 * 5) Shrink the vma to cover only the new range.
677 */
678static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
679{
680 struct mm_struct *mm = vma->vm_mm;
681 unsigned long old_start = vma->vm_start;
682 unsigned long old_end = vma->vm_end;
683 unsigned long length = old_end - old_start;
684 unsigned long new_start = old_start - shift;
685 unsigned long new_end = old_end - shift;
686 VMA_ITERATOR(vmi, mm, new_start);
687 struct vm_area_struct *next;
688 struct mmu_gather tlb;
689
690 BUG_ON(new_start > new_end);
691
692 /*
693 * ensure there are no vmas between where we want to go
694 * and where we are
695 */
696 if (vma != vma_next(&vmi))
697 return -EFAULT;
698
699 /*
700 * cover the whole range: [new_start, old_end)
701 */
702 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
703 return -ENOMEM;
704
705 /*
706 * move the page tables downwards, on failure we rely on
707 * process cleanup to remove whatever mess we made.
708 */
709 if (length != move_page_tables(vma, old_start,
710 vma, new_start, length, false))
711 return -ENOMEM;
712
713 lru_add_drain();
714 tlb_gather_mmu(&tlb, mm);
715 next = vma_next(&vmi);
716 if (new_end > old_start) {
717 /*
718 * when the old and new regions overlap clear from new_end.
719 */
720 free_pgd_range(&tlb, new_end, old_end, new_end,
721 next ? next->vm_start : USER_PGTABLES_CEILING);
722 } else {
723 /*
724 * otherwise, clean from old_start; this is done to not touch
725 * the address space in [new_end, old_start) some architectures
726 * have constraints on va-space that make this illegal (IA64) -
727 * for the others its just a little faster.
728 */
729 free_pgd_range(&tlb, old_start, old_end, new_end,
730 next ? next->vm_start : USER_PGTABLES_CEILING);
731 }
732 tlb_finish_mmu(&tlb);
733
734 /*
735 * Shrink the vma to just the new range. Always succeeds.
736 */
737 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
738
739 return 0;
740}
741
742/*
743 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
744 * the stack is optionally relocated, and some extra space is added.
745 */
746int setup_arg_pages(struct linux_binprm *bprm,
747 unsigned long stack_top,
748 int executable_stack)
749{
750 unsigned long ret;
751 unsigned long stack_shift;
752 struct mm_struct *mm = current->mm;
753 struct vm_area_struct *vma = bprm->vma;
754 struct vm_area_struct *prev = NULL;
755 unsigned long vm_flags;
756 unsigned long stack_base;
757 unsigned long stack_size;
758 unsigned long stack_expand;
759 unsigned long rlim_stack;
760 struct mmu_gather tlb;
761
762#ifdef CONFIG_STACK_GROWSUP
763 /* Limit stack size */
764 stack_base = bprm->rlim_stack.rlim_max;
765
766 stack_base = calc_max_stack_size(stack_base);
767
768 /* Add space for stack randomization. */
769 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
770
771 /* Make sure we didn't let the argument array grow too large. */
772 if (vma->vm_end - vma->vm_start > stack_base)
773 return -ENOMEM;
774
775 stack_base = PAGE_ALIGN(stack_top - stack_base);
776
777 stack_shift = vma->vm_start - stack_base;
778 mm->arg_start = bprm->p - stack_shift;
779 bprm->p = vma->vm_end - stack_shift;
780#else
781 stack_top = arch_align_stack(stack_top);
782 stack_top = PAGE_ALIGN(stack_top);
783
784 if (unlikely(stack_top < mmap_min_addr) ||
785 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
786 return -ENOMEM;
787
788 stack_shift = vma->vm_end - stack_top;
789
790 bprm->p -= stack_shift;
791 mm->arg_start = bprm->p;
792#endif
793
794 if (bprm->loader)
795 bprm->loader -= stack_shift;
796 bprm->exec -= stack_shift;
797
798 if (mmap_write_lock_killable(mm))
799 return -EINTR;
800
801 vm_flags = VM_STACK_FLAGS;
802
803 /*
804 * Adjust stack execute permissions; explicitly enable for
805 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
806 * (arch default) otherwise.
807 */
808 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
809 vm_flags |= VM_EXEC;
810 else if (executable_stack == EXSTACK_DISABLE_X)
811 vm_flags &= ~VM_EXEC;
812 vm_flags |= mm->def_flags;
813 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
814
815 tlb_gather_mmu(&tlb, mm);
816 ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
817 vm_flags);
818 tlb_finish_mmu(&tlb);
819
820 if (ret)
821 goto out_unlock;
822 BUG_ON(prev != vma);
823
824 if (unlikely(vm_flags & VM_EXEC)) {
825 pr_warn_once("process '%pD4' started with executable stack\n",
826 bprm->file);
827 }
828
829 /* Move stack pages down in memory. */
830 if (stack_shift) {
831 ret = shift_arg_pages(vma, stack_shift);
832 if (ret)
833 goto out_unlock;
834 }
835
836 /* mprotect_fixup is overkill to remove the temporary stack flags */
837 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
838
839 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
840 stack_size = vma->vm_end - vma->vm_start;
841 /*
842 * Align this down to a page boundary as expand_stack
843 * will align it up.
844 */
845 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
846
847 stack_expand = min(rlim_stack, stack_size + stack_expand);
848
849#ifdef CONFIG_STACK_GROWSUP
850 stack_base = vma->vm_start + stack_expand;
851#else
852 stack_base = vma->vm_end - stack_expand;
853#endif
854 current->mm->start_stack = bprm->p;
855 ret = expand_stack(vma, stack_base);
856 if (ret)
857 ret = -EFAULT;
858
859out_unlock:
860 mmap_write_unlock(mm);
861 return ret;
862}
863EXPORT_SYMBOL(setup_arg_pages);
864
865#else
866
867/*
868 * Transfer the program arguments and environment from the holding pages
869 * onto the stack. The provided stack pointer is adjusted accordingly.
870 */
871int transfer_args_to_stack(struct linux_binprm *bprm,
872 unsigned long *sp_location)
873{
874 unsigned long index, stop, sp;
875 int ret = 0;
876
877 stop = bprm->p >> PAGE_SHIFT;
878 sp = *sp_location;
879
880 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
881 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
882 char *src = kmap_local_page(bprm->page[index]) + offset;
883 sp -= PAGE_SIZE - offset;
884 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
885 ret = -EFAULT;
886 kunmap_local(src);
887 if (ret)
888 goto out;
889 }
890
891 *sp_location = sp;
892
893out:
894 return ret;
895}
896EXPORT_SYMBOL(transfer_args_to_stack);
897
898#endif /* CONFIG_MMU */
899
900static struct file *do_open_execat(int fd, struct filename *name, int flags)
901{
902 struct file *file;
903 int err;
904 struct open_flags open_exec_flags = {
905 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
906 .acc_mode = MAY_EXEC,
907 .intent = LOOKUP_OPEN,
908 .lookup_flags = LOOKUP_FOLLOW,
909 };
910
911 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
912 return ERR_PTR(-EINVAL);
913 if (flags & AT_SYMLINK_NOFOLLOW)
914 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
915 if (flags & AT_EMPTY_PATH)
916 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
917
918 file = do_filp_open(fd, name, &open_exec_flags);
919 if (IS_ERR(file))
920 goto out;
921
922 /*
923 * may_open() has already checked for this, so it should be
924 * impossible to trip now. But we need to be extra cautious
925 * and check again at the very end too.
926 */
927 err = -EACCES;
928 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
929 path_noexec(&file->f_path)))
930 goto exit;
931
932 err = deny_write_access(file);
933 if (err)
934 goto exit;
935
936 if (name->name[0] != '\0')
937 fsnotify_open(file);
938
939out:
940 return file;
941
942exit:
943 fput(file);
944 return ERR_PTR(err);
945}
946
947struct file *open_exec(const char *name)
948{
949 struct filename *filename = getname_kernel(name);
950 struct file *f = ERR_CAST(filename);
951
952 if (!IS_ERR(filename)) {
953 f = do_open_execat(AT_FDCWD, filename, 0);
954 putname(filename);
955 }
956 return f;
957}
958EXPORT_SYMBOL(open_exec);
959
960#if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
961ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
962{
963 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
964 if (res > 0)
965 flush_icache_user_range(addr, addr + len);
966 return res;
967}
968EXPORT_SYMBOL(read_code);
969#endif
970
971/*
972 * Maps the mm_struct mm into the current task struct.
973 * On success, this function returns with exec_update_lock
974 * held for writing.
975 */
976static int exec_mmap(struct mm_struct *mm)
977{
978 struct task_struct *tsk;
979 struct mm_struct *old_mm, *active_mm;
980 int ret;
981
982 /* Notify parent that we're no longer interested in the old VM */
983 tsk = current;
984 old_mm = current->mm;
985 exec_mm_release(tsk, old_mm);
986 if (old_mm)
987 sync_mm_rss(old_mm);
988
989 ret = down_write_killable(&tsk->signal->exec_update_lock);
990 if (ret)
991 return ret;
992
993 if (old_mm) {
994 /*
995 * If there is a pending fatal signal perhaps a signal
996 * whose default action is to create a coredump get
997 * out and die instead of going through with the exec.
998 */
999 ret = mmap_read_lock_killable(old_mm);
1000 if (ret) {
1001 up_write(&tsk->signal->exec_update_lock);
1002 return ret;
1003 }
1004 }
1005
1006 task_lock(tsk);
1007 membarrier_exec_mmap(mm);
1008
1009 local_irq_disable();
1010 active_mm = tsk->active_mm;
1011 tsk->active_mm = mm;
1012 tsk->mm = mm;
1013 /*
1014 * This prevents preemption while active_mm is being loaded and
1015 * it and mm are being updated, which could cause problems for
1016 * lazy tlb mm refcounting when these are updated by context
1017 * switches. Not all architectures can handle irqs off over
1018 * activate_mm yet.
1019 */
1020 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1021 local_irq_enable();
1022 activate_mm(active_mm, mm);
1023 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1024 local_irq_enable();
1025 lru_gen_add_mm(mm);
1026 task_unlock(tsk);
1027 lru_gen_use_mm(mm);
1028 if (old_mm) {
1029 mmap_read_unlock(old_mm);
1030 BUG_ON(active_mm != old_mm);
1031 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1032 mm_update_next_owner(old_mm);
1033 mmput(old_mm);
1034 return 0;
1035 }
1036 mmdrop(active_mm);
1037 return 0;
1038}
1039
1040static int de_thread(struct task_struct *tsk)
1041{
1042 struct signal_struct *sig = tsk->signal;
1043 struct sighand_struct *oldsighand = tsk->sighand;
1044 spinlock_t *lock = &oldsighand->siglock;
1045
1046 if (thread_group_empty(tsk))
1047 goto no_thread_group;
1048
1049 /*
1050 * Kill all other threads in the thread group.
1051 */
1052 spin_lock_irq(lock);
1053 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1054 /*
1055 * Another group action in progress, just
1056 * return so that the signal is processed.
1057 */
1058 spin_unlock_irq(lock);
1059 return -EAGAIN;
1060 }
1061
1062 sig->group_exec_task = tsk;
1063 sig->notify_count = zap_other_threads(tsk);
1064 if (!thread_group_leader(tsk))
1065 sig->notify_count--;
1066
1067 while (sig->notify_count) {
1068 __set_current_state(TASK_KILLABLE);
1069 spin_unlock_irq(lock);
1070 schedule();
1071 if (__fatal_signal_pending(tsk))
1072 goto killed;
1073 spin_lock_irq(lock);
1074 }
1075 spin_unlock_irq(lock);
1076
1077 /*
1078 * At this point all other threads have exited, all we have to
1079 * do is to wait for the thread group leader to become inactive,
1080 * and to assume its PID:
1081 */
1082 if (!thread_group_leader(tsk)) {
1083 struct task_struct *leader = tsk->group_leader;
1084
1085 for (;;) {
1086 cgroup_threadgroup_change_begin(tsk);
1087 write_lock_irq(&tasklist_lock);
1088 /*
1089 * Do this under tasklist_lock to ensure that
1090 * exit_notify() can't miss ->group_exec_task
1091 */
1092 sig->notify_count = -1;
1093 if (likely(leader->exit_state))
1094 break;
1095 __set_current_state(TASK_KILLABLE);
1096 write_unlock_irq(&tasklist_lock);
1097 cgroup_threadgroup_change_end(tsk);
1098 schedule();
1099 if (__fatal_signal_pending(tsk))
1100 goto killed;
1101 }
1102
1103 /*
1104 * The only record we have of the real-time age of a
1105 * process, regardless of execs it's done, is start_time.
1106 * All the past CPU time is accumulated in signal_struct
1107 * from sister threads now dead. But in this non-leader
1108 * exec, nothing survives from the original leader thread,
1109 * whose birth marks the true age of this process now.
1110 * When we take on its identity by switching to its PID, we
1111 * also take its birthdate (always earlier than our own).
1112 */
1113 tsk->start_time = leader->start_time;
1114 tsk->start_boottime = leader->start_boottime;
1115
1116 BUG_ON(!same_thread_group(leader, tsk));
1117 /*
1118 * An exec() starts a new thread group with the
1119 * TGID of the previous thread group. Rehash the
1120 * two threads with a switched PID, and release
1121 * the former thread group leader:
1122 */
1123
1124 /* Become a process group leader with the old leader's pid.
1125 * The old leader becomes a thread of the this thread group.
1126 */
1127 exchange_tids(tsk, leader);
1128 transfer_pid(leader, tsk, PIDTYPE_TGID);
1129 transfer_pid(leader, tsk, PIDTYPE_PGID);
1130 transfer_pid(leader, tsk, PIDTYPE_SID);
1131
1132 list_replace_rcu(&leader->tasks, &tsk->tasks);
1133 list_replace_init(&leader->sibling, &tsk->sibling);
1134
1135 tsk->group_leader = tsk;
1136 leader->group_leader = tsk;
1137
1138 tsk->exit_signal = SIGCHLD;
1139 leader->exit_signal = -1;
1140
1141 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1142 leader->exit_state = EXIT_DEAD;
1143
1144 /*
1145 * We are going to release_task()->ptrace_unlink() silently,
1146 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1147 * the tracer won't block again waiting for this thread.
1148 */
1149 if (unlikely(leader->ptrace))
1150 __wake_up_parent(leader, leader->parent);
1151 write_unlock_irq(&tasklist_lock);
1152 cgroup_threadgroup_change_end(tsk);
1153
1154 release_task(leader);
1155 }
1156
1157 sig->group_exec_task = NULL;
1158 sig->notify_count = 0;
1159
1160no_thread_group:
1161 /* we have changed execution domain */
1162 tsk->exit_signal = SIGCHLD;
1163
1164 BUG_ON(!thread_group_leader(tsk));
1165 return 0;
1166
1167killed:
1168 /* protects against exit_notify() and __exit_signal() */
1169 read_lock(&tasklist_lock);
1170 sig->group_exec_task = NULL;
1171 sig->notify_count = 0;
1172 read_unlock(&tasklist_lock);
1173 return -EAGAIN;
1174}
1175
1176
1177/*
1178 * This function makes sure the current process has its own signal table,
1179 * so that flush_signal_handlers can later reset the handlers without
1180 * disturbing other processes. (Other processes might share the signal
1181 * table via the CLONE_SIGHAND option to clone().)
1182 */
1183static int unshare_sighand(struct task_struct *me)
1184{
1185 struct sighand_struct *oldsighand = me->sighand;
1186
1187 if (refcount_read(&oldsighand->count) != 1) {
1188 struct sighand_struct *newsighand;
1189 /*
1190 * This ->sighand is shared with the CLONE_SIGHAND
1191 * but not CLONE_THREAD task, switch to the new one.
1192 */
1193 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1194 if (!newsighand)
1195 return -ENOMEM;
1196
1197 refcount_set(&newsighand->count, 1);
1198
1199 write_lock_irq(&tasklist_lock);
1200 spin_lock(&oldsighand->siglock);
1201 memcpy(newsighand->action, oldsighand->action,
1202 sizeof(newsighand->action));
1203 rcu_assign_pointer(me->sighand, newsighand);
1204 spin_unlock(&oldsighand->siglock);
1205 write_unlock_irq(&tasklist_lock);
1206
1207 __cleanup_sighand(oldsighand);
1208 }
1209 return 0;
1210}
1211
1212char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1213{
1214 task_lock(tsk);
1215 /* Always NUL terminated and zero-padded */
1216 strscpy_pad(buf, tsk->comm, buf_size);
1217 task_unlock(tsk);
1218 return buf;
1219}
1220EXPORT_SYMBOL_GPL(__get_task_comm);
1221
1222/*
1223 * These functions flushes out all traces of the currently running executable
1224 * so that a new one can be started
1225 */
1226
1227void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1228{
1229 task_lock(tsk);
1230 trace_task_rename(tsk, buf);
1231 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1232 task_unlock(tsk);
1233 perf_event_comm(tsk, exec);
1234}
1235
1236/*
1237 * Calling this is the point of no return. None of the failures will be
1238 * seen by userspace since either the process is already taking a fatal
1239 * signal (via de_thread() or coredump), or will have SEGV raised
1240 * (after exec_mmap()) by search_binary_handler (see below).
1241 */
1242int begin_new_exec(struct linux_binprm * bprm)
1243{
1244 struct task_struct *me = current;
1245 int retval;
1246
1247 /* Once we are committed compute the creds */
1248 retval = bprm_creds_from_file(bprm);
1249 if (retval)
1250 return retval;
1251
1252 /*
1253 * Ensure all future errors are fatal.
1254 */
1255 bprm->point_of_no_return = true;
1256
1257 /*
1258 * Make this the only thread in the thread group.
1259 */
1260 retval = de_thread(me);
1261 if (retval)
1262 goto out;
1263
1264 /*
1265 * Cancel any io_uring activity across execve
1266 */
1267 io_uring_task_cancel();
1268
1269 /* Ensure the files table is not shared. */
1270 retval = unshare_files();
1271 if (retval)
1272 goto out;
1273
1274 /*
1275 * Must be called _before_ exec_mmap() as bprm->mm is
1276 * not visible until then. This also enables the update
1277 * to be lockless.
1278 */
1279 retval = set_mm_exe_file(bprm->mm, bprm->file);
1280 if (retval)
1281 goto out;
1282
1283 /* If the binary is not readable then enforce mm->dumpable=0 */
1284 would_dump(bprm, bprm->file);
1285 if (bprm->have_execfd)
1286 would_dump(bprm, bprm->executable);
1287
1288 /*
1289 * Release all of the old mmap stuff
1290 */
1291 acct_arg_size(bprm, 0);
1292 retval = exec_mmap(bprm->mm);
1293 if (retval)
1294 goto out;
1295
1296 bprm->mm = NULL;
1297
1298 retval = exec_task_namespaces();
1299 if (retval)
1300 goto out_unlock;
1301
1302#ifdef CONFIG_POSIX_TIMERS
1303 spin_lock_irq(&me->sighand->siglock);
1304 posix_cpu_timers_exit(me);
1305 spin_unlock_irq(&me->sighand->siglock);
1306 exit_itimers(me);
1307 flush_itimer_signals();
1308#endif
1309
1310 /*
1311 * Make the signal table private.
1312 */
1313 retval = unshare_sighand(me);
1314 if (retval)
1315 goto out_unlock;
1316
1317 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1318 PF_NOFREEZE | PF_NO_SETAFFINITY);
1319 flush_thread();
1320 me->personality &= ~bprm->per_clear;
1321
1322 clear_syscall_work_syscall_user_dispatch(me);
1323
1324 /*
1325 * We have to apply CLOEXEC before we change whether the process is
1326 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1327 * trying to access the should-be-closed file descriptors of a process
1328 * undergoing exec(2).
1329 */
1330 do_close_on_exec(me->files);
1331
1332 if (bprm->secureexec) {
1333 /* Make sure parent cannot signal privileged process. */
1334 me->pdeath_signal = 0;
1335
1336 /*
1337 * For secureexec, reset the stack limit to sane default to
1338 * avoid bad behavior from the prior rlimits. This has to
1339 * happen before arch_pick_mmap_layout(), which examines
1340 * RLIMIT_STACK, but after the point of no return to avoid
1341 * needing to clean up the change on failure.
1342 */
1343 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1344 bprm->rlim_stack.rlim_cur = _STK_LIM;
1345 }
1346
1347 me->sas_ss_sp = me->sas_ss_size = 0;
1348
1349 /*
1350 * Figure out dumpability. Note that this checking only of current
1351 * is wrong, but userspace depends on it. This should be testing
1352 * bprm->secureexec instead.
1353 */
1354 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1355 !(uid_eq(current_euid(), current_uid()) &&
1356 gid_eq(current_egid(), current_gid())))
1357 set_dumpable(current->mm, suid_dumpable);
1358 else
1359 set_dumpable(current->mm, SUID_DUMP_USER);
1360
1361 perf_event_exec();
1362 __set_task_comm(me, kbasename(bprm->filename), true);
1363
1364 /* An exec changes our domain. We are no longer part of the thread
1365 group */
1366 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1367 flush_signal_handlers(me, 0);
1368
1369 retval = set_cred_ucounts(bprm->cred);
1370 if (retval < 0)
1371 goto out_unlock;
1372
1373 /*
1374 * install the new credentials for this executable
1375 */
1376 security_bprm_committing_creds(bprm);
1377
1378 commit_creds(bprm->cred);
1379 bprm->cred = NULL;
1380
1381 /*
1382 * Disable monitoring for regular users
1383 * when executing setuid binaries. Must
1384 * wait until new credentials are committed
1385 * by commit_creds() above
1386 */
1387 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1388 perf_event_exit_task(me);
1389 /*
1390 * cred_guard_mutex must be held at least to this point to prevent
1391 * ptrace_attach() from altering our determination of the task's
1392 * credentials; any time after this it may be unlocked.
1393 */
1394 security_bprm_committed_creds(bprm);
1395
1396 /* Pass the opened binary to the interpreter. */
1397 if (bprm->have_execfd) {
1398 retval = get_unused_fd_flags(0);
1399 if (retval < 0)
1400 goto out_unlock;
1401 fd_install(retval, bprm->executable);
1402 bprm->executable = NULL;
1403 bprm->execfd = retval;
1404 }
1405 return 0;
1406
1407out_unlock:
1408 up_write(&me->signal->exec_update_lock);
1409out:
1410 return retval;
1411}
1412EXPORT_SYMBOL(begin_new_exec);
1413
1414void would_dump(struct linux_binprm *bprm, struct file *file)
1415{
1416 struct inode *inode = file_inode(file);
1417 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1418 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1419 struct user_namespace *old, *user_ns;
1420 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1421
1422 /* Ensure mm->user_ns contains the executable */
1423 user_ns = old = bprm->mm->user_ns;
1424 while ((user_ns != &init_user_ns) &&
1425 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1426 user_ns = user_ns->parent;
1427
1428 if (old != user_ns) {
1429 bprm->mm->user_ns = get_user_ns(user_ns);
1430 put_user_ns(old);
1431 }
1432 }
1433}
1434EXPORT_SYMBOL(would_dump);
1435
1436void setup_new_exec(struct linux_binprm * bprm)
1437{
1438 /* Setup things that can depend upon the personality */
1439 struct task_struct *me = current;
1440
1441 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1442
1443 arch_setup_new_exec();
1444
1445 /* Set the new mm task size. We have to do that late because it may
1446 * depend on TIF_32BIT which is only updated in flush_thread() on
1447 * some architectures like powerpc
1448 */
1449 me->mm->task_size = TASK_SIZE;
1450 up_write(&me->signal->exec_update_lock);
1451 mutex_unlock(&me->signal->cred_guard_mutex);
1452}
1453EXPORT_SYMBOL(setup_new_exec);
1454
1455/* Runs immediately before start_thread() takes over. */
1456void finalize_exec(struct linux_binprm *bprm)
1457{
1458 /* Store any stack rlimit changes before starting thread. */
1459 task_lock(current->group_leader);
1460 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1461 task_unlock(current->group_leader);
1462}
1463EXPORT_SYMBOL(finalize_exec);
1464
1465/*
1466 * Prepare credentials and lock ->cred_guard_mutex.
1467 * setup_new_exec() commits the new creds and drops the lock.
1468 * Or, if exec fails before, free_bprm() should release ->cred
1469 * and unlock.
1470 */
1471static int prepare_bprm_creds(struct linux_binprm *bprm)
1472{
1473 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1474 return -ERESTARTNOINTR;
1475
1476 bprm->cred = prepare_exec_creds();
1477 if (likely(bprm->cred))
1478 return 0;
1479
1480 mutex_unlock(¤t->signal->cred_guard_mutex);
1481 return -ENOMEM;
1482}
1483
1484static void free_bprm(struct linux_binprm *bprm)
1485{
1486 if (bprm->mm) {
1487 acct_arg_size(bprm, 0);
1488 mmput(bprm->mm);
1489 }
1490 free_arg_pages(bprm);
1491 if (bprm->cred) {
1492 mutex_unlock(¤t->signal->cred_guard_mutex);
1493 abort_creds(bprm->cred);
1494 }
1495 if (bprm->file) {
1496 allow_write_access(bprm->file);
1497 fput(bprm->file);
1498 }
1499 if (bprm->executable)
1500 fput(bprm->executable);
1501 /* If a binfmt changed the interp, free it. */
1502 if (bprm->interp != bprm->filename)
1503 kfree(bprm->interp);
1504 kfree(bprm->fdpath);
1505 kfree(bprm);
1506}
1507
1508static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1509{
1510 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1511 int retval = -ENOMEM;
1512 if (!bprm)
1513 goto out;
1514
1515 if (fd == AT_FDCWD || filename->name[0] == '/') {
1516 bprm->filename = filename->name;
1517 } else {
1518 if (filename->name[0] == '\0')
1519 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1520 else
1521 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1522 fd, filename->name);
1523 if (!bprm->fdpath)
1524 goto out_free;
1525
1526 bprm->filename = bprm->fdpath;
1527 }
1528 bprm->interp = bprm->filename;
1529
1530 retval = bprm_mm_init(bprm);
1531 if (retval)
1532 goto out_free;
1533 return bprm;
1534
1535out_free:
1536 free_bprm(bprm);
1537out:
1538 return ERR_PTR(retval);
1539}
1540
1541int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1542{
1543 /* If a binfmt changed the interp, free it first. */
1544 if (bprm->interp != bprm->filename)
1545 kfree(bprm->interp);
1546 bprm->interp = kstrdup(interp, GFP_KERNEL);
1547 if (!bprm->interp)
1548 return -ENOMEM;
1549 return 0;
1550}
1551EXPORT_SYMBOL(bprm_change_interp);
1552
1553/*
1554 * determine how safe it is to execute the proposed program
1555 * - the caller must hold ->cred_guard_mutex to protect against
1556 * PTRACE_ATTACH or seccomp thread-sync
1557 */
1558static void check_unsafe_exec(struct linux_binprm *bprm)
1559{
1560 struct task_struct *p = current, *t;
1561 unsigned n_fs;
1562
1563 if (p->ptrace)
1564 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1565
1566 /*
1567 * This isn't strictly necessary, but it makes it harder for LSMs to
1568 * mess up.
1569 */
1570 if (task_no_new_privs(current))
1571 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1572
1573 /*
1574 * If another task is sharing our fs, we cannot safely
1575 * suid exec because the differently privileged task
1576 * will be able to manipulate the current directory, etc.
1577 * It would be nice to force an unshare instead...
1578 */
1579 t = p;
1580 n_fs = 1;
1581 spin_lock(&p->fs->lock);
1582 rcu_read_lock();
1583 while_each_thread(p, t) {
1584 if (t->fs == p->fs)
1585 n_fs++;
1586 }
1587 rcu_read_unlock();
1588
1589 if (p->fs->users > n_fs)
1590 bprm->unsafe |= LSM_UNSAFE_SHARE;
1591 else
1592 p->fs->in_exec = 1;
1593 spin_unlock(&p->fs->lock);
1594}
1595
1596static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1597{
1598 /* Handle suid and sgid on files */
1599 struct user_namespace *mnt_userns;
1600 struct inode *inode = file_inode(file);
1601 unsigned int mode;
1602 vfsuid_t vfsuid;
1603 vfsgid_t vfsgid;
1604
1605 if (!mnt_may_suid(file->f_path.mnt))
1606 return;
1607
1608 if (task_no_new_privs(current))
1609 return;
1610
1611 mode = READ_ONCE(inode->i_mode);
1612 if (!(mode & (S_ISUID|S_ISGID)))
1613 return;
1614
1615 mnt_userns = file_mnt_user_ns(file);
1616
1617 /* Be careful if suid/sgid is set */
1618 inode_lock(inode);
1619
1620 /* reload atomically mode/uid/gid now that lock held */
1621 mode = inode->i_mode;
1622 vfsuid = i_uid_into_vfsuid(mnt_userns, inode);
1623 vfsgid = i_gid_into_vfsgid(mnt_userns, inode);
1624 inode_unlock(inode);
1625
1626 /* We ignore suid/sgid if there are no mappings for them in the ns */
1627 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1628 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1629 return;
1630
1631 if (mode & S_ISUID) {
1632 bprm->per_clear |= PER_CLEAR_ON_SETID;
1633 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1634 }
1635
1636 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1637 bprm->per_clear |= PER_CLEAR_ON_SETID;
1638 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1639 }
1640}
1641
1642/*
1643 * Compute brpm->cred based upon the final binary.
1644 */
1645static int bprm_creds_from_file(struct linux_binprm *bprm)
1646{
1647 /* Compute creds based on which file? */
1648 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1649
1650 bprm_fill_uid(bprm, file);
1651 return security_bprm_creds_from_file(bprm, file);
1652}
1653
1654/*
1655 * Fill the binprm structure from the inode.
1656 * Read the first BINPRM_BUF_SIZE bytes
1657 *
1658 * This may be called multiple times for binary chains (scripts for example).
1659 */
1660static int prepare_binprm(struct linux_binprm *bprm)
1661{
1662 loff_t pos = 0;
1663
1664 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1665 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1666}
1667
1668/*
1669 * Arguments are '\0' separated strings found at the location bprm->p
1670 * points to; chop off the first by relocating brpm->p to right after
1671 * the first '\0' encountered.
1672 */
1673int remove_arg_zero(struct linux_binprm *bprm)
1674{
1675 int ret = 0;
1676 unsigned long offset;
1677 char *kaddr;
1678 struct page *page;
1679
1680 if (!bprm->argc)
1681 return 0;
1682
1683 do {
1684 offset = bprm->p & ~PAGE_MASK;
1685 page = get_arg_page(bprm, bprm->p, 0);
1686 if (!page) {
1687 ret = -EFAULT;
1688 goto out;
1689 }
1690 kaddr = kmap_local_page(page);
1691
1692 for (; offset < PAGE_SIZE && kaddr[offset];
1693 offset++, bprm->p++)
1694 ;
1695
1696 kunmap_local(kaddr);
1697 put_arg_page(page);
1698 } while (offset == PAGE_SIZE);
1699
1700 bprm->p++;
1701 bprm->argc--;
1702 ret = 0;
1703
1704out:
1705 return ret;
1706}
1707EXPORT_SYMBOL(remove_arg_zero);
1708
1709#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1710/*
1711 * cycle the list of binary formats handler, until one recognizes the image
1712 */
1713static int search_binary_handler(struct linux_binprm *bprm)
1714{
1715 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1716 struct linux_binfmt *fmt;
1717 int retval;
1718
1719 retval = prepare_binprm(bprm);
1720 if (retval < 0)
1721 return retval;
1722
1723 retval = security_bprm_check(bprm);
1724 if (retval)
1725 return retval;
1726
1727 retval = -ENOENT;
1728 retry:
1729 read_lock(&binfmt_lock);
1730 list_for_each_entry(fmt, &formats, lh) {
1731 if (!try_module_get(fmt->module))
1732 continue;
1733 read_unlock(&binfmt_lock);
1734
1735 retval = fmt->load_binary(bprm);
1736
1737 read_lock(&binfmt_lock);
1738 put_binfmt(fmt);
1739 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1740 read_unlock(&binfmt_lock);
1741 return retval;
1742 }
1743 }
1744 read_unlock(&binfmt_lock);
1745
1746 if (need_retry) {
1747 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1748 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1749 return retval;
1750 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1751 return retval;
1752 need_retry = false;
1753 goto retry;
1754 }
1755
1756 return retval;
1757}
1758
1759/* binfmt handlers will call back into begin_new_exec() on success. */
1760static int exec_binprm(struct linux_binprm *bprm)
1761{
1762 pid_t old_pid, old_vpid;
1763 int ret, depth;
1764
1765 /* Need to fetch pid before load_binary changes it */
1766 old_pid = current->pid;
1767 rcu_read_lock();
1768 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1769 rcu_read_unlock();
1770
1771 /* This allows 4 levels of binfmt rewrites before failing hard. */
1772 for (depth = 0;; depth++) {
1773 struct file *exec;
1774 if (depth > 5)
1775 return -ELOOP;
1776
1777 ret = search_binary_handler(bprm);
1778 if (ret < 0)
1779 return ret;
1780 if (!bprm->interpreter)
1781 break;
1782
1783 exec = bprm->file;
1784 bprm->file = bprm->interpreter;
1785 bprm->interpreter = NULL;
1786
1787 allow_write_access(exec);
1788 if (unlikely(bprm->have_execfd)) {
1789 if (bprm->executable) {
1790 fput(exec);
1791 return -ENOEXEC;
1792 }
1793 bprm->executable = exec;
1794 } else
1795 fput(exec);
1796 }
1797
1798 audit_bprm(bprm);
1799 trace_sched_process_exec(current, old_pid, bprm);
1800 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1801 proc_exec_connector(current);
1802 return 0;
1803}
1804
1805/*
1806 * sys_execve() executes a new program.
1807 */
1808static int bprm_execve(struct linux_binprm *bprm,
1809 int fd, struct filename *filename, int flags)
1810{
1811 struct file *file;
1812 int retval;
1813
1814 retval = prepare_bprm_creds(bprm);
1815 if (retval)
1816 return retval;
1817
1818 /*
1819 * Check for unsafe execution states before exec_binprm(), which
1820 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1821 * where setuid-ness is evaluated.
1822 */
1823 check_unsafe_exec(bprm);
1824 current->in_execve = 1;
1825
1826 file = do_open_execat(fd, filename, flags);
1827 retval = PTR_ERR(file);
1828 if (IS_ERR(file))
1829 goto out_unmark;
1830
1831 sched_exec();
1832
1833 bprm->file = file;
1834 /*
1835 * Record that a name derived from an O_CLOEXEC fd will be
1836 * inaccessible after exec. This allows the code in exec to
1837 * choose to fail when the executable is not mmaped into the
1838 * interpreter and an open file descriptor is not passed to
1839 * the interpreter. This makes for a better user experience
1840 * than having the interpreter start and then immediately fail
1841 * when it finds the executable is inaccessible.
1842 */
1843 if (bprm->fdpath && get_close_on_exec(fd))
1844 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1845
1846 /* Set the unchanging part of bprm->cred */
1847 retval = security_bprm_creds_for_exec(bprm);
1848 if (retval)
1849 goto out;
1850
1851 retval = exec_binprm(bprm);
1852 if (retval < 0)
1853 goto out;
1854
1855 /* execve succeeded */
1856 current->fs->in_exec = 0;
1857 current->in_execve = 0;
1858 rseq_execve(current);
1859 acct_update_integrals(current);
1860 task_numa_free(current, false);
1861 return retval;
1862
1863out:
1864 /*
1865 * If past the point of no return ensure the code never
1866 * returns to the userspace process. Use an existing fatal
1867 * signal if present otherwise terminate the process with
1868 * SIGSEGV.
1869 */
1870 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1871 force_fatal_sig(SIGSEGV);
1872
1873out_unmark:
1874 current->fs->in_exec = 0;
1875 current->in_execve = 0;
1876
1877 return retval;
1878}
1879
1880static int do_execveat_common(int fd, struct filename *filename,
1881 struct user_arg_ptr argv,
1882 struct user_arg_ptr envp,
1883 int flags)
1884{
1885 struct linux_binprm *bprm;
1886 int retval;
1887
1888 if (IS_ERR(filename))
1889 return PTR_ERR(filename);
1890
1891 /*
1892 * We move the actual failure in case of RLIMIT_NPROC excess from
1893 * set*uid() to execve() because too many poorly written programs
1894 * don't check setuid() return code. Here we additionally recheck
1895 * whether NPROC limit is still exceeded.
1896 */
1897 if ((current->flags & PF_NPROC_EXCEEDED) &&
1898 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1899 retval = -EAGAIN;
1900 goto out_ret;
1901 }
1902
1903 /* We're below the limit (still or again), so we don't want to make
1904 * further execve() calls fail. */
1905 current->flags &= ~PF_NPROC_EXCEEDED;
1906
1907 bprm = alloc_bprm(fd, filename);
1908 if (IS_ERR(bprm)) {
1909 retval = PTR_ERR(bprm);
1910 goto out_ret;
1911 }
1912
1913 retval = count(argv, MAX_ARG_STRINGS);
1914 if (retval == 0)
1915 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1916 current->comm, bprm->filename);
1917 if (retval < 0)
1918 goto out_free;
1919 bprm->argc = retval;
1920
1921 retval = count(envp, MAX_ARG_STRINGS);
1922 if (retval < 0)
1923 goto out_free;
1924 bprm->envc = retval;
1925
1926 retval = bprm_stack_limits(bprm);
1927 if (retval < 0)
1928 goto out_free;
1929
1930 retval = copy_string_kernel(bprm->filename, bprm);
1931 if (retval < 0)
1932 goto out_free;
1933 bprm->exec = bprm->p;
1934
1935 retval = copy_strings(bprm->envc, envp, bprm);
1936 if (retval < 0)
1937 goto out_free;
1938
1939 retval = copy_strings(bprm->argc, argv, bprm);
1940 if (retval < 0)
1941 goto out_free;
1942
1943 /*
1944 * When argv is empty, add an empty string ("") as argv[0] to
1945 * ensure confused userspace programs that start processing
1946 * from argv[1] won't end up walking envp. See also
1947 * bprm_stack_limits().
1948 */
1949 if (bprm->argc == 0) {
1950 retval = copy_string_kernel("", bprm);
1951 if (retval < 0)
1952 goto out_free;
1953 bprm->argc = 1;
1954 }
1955
1956 retval = bprm_execve(bprm, fd, filename, flags);
1957out_free:
1958 free_bprm(bprm);
1959
1960out_ret:
1961 putname(filename);
1962 return retval;
1963}
1964
1965int kernel_execve(const char *kernel_filename,
1966 const char *const *argv, const char *const *envp)
1967{
1968 struct filename *filename;
1969 struct linux_binprm *bprm;
1970 int fd = AT_FDCWD;
1971 int retval;
1972
1973 /* It is non-sense for kernel threads to call execve */
1974 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1975 return -EINVAL;
1976
1977 filename = getname_kernel(kernel_filename);
1978 if (IS_ERR(filename))
1979 return PTR_ERR(filename);
1980
1981 bprm = alloc_bprm(fd, filename);
1982 if (IS_ERR(bprm)) {
1983 retval = PTR_ERR(bprm);
1984 goto out_ret;
1985 }
1986
1987 retval = count_strings_kernel(argv);
1988 if (WARN_ON_ONCE(retval == 0))
1989 retval = -EINVAL;
1990 if (retval < 0)
1991 goto out_free;
1992 bprm->argc = retval;
1993
1994 retval = count_strings_kernel(envp);
1995 if (retval < 0)
1996 goto out_free;
1997 bprm->envc = retval;
1998
1999 retval = bprm_stack_limits(bprm);
2000 if (retval < 0)
2001 goto out_free;
2002
2003 retval = copy_string_kernel(bprm->filename, bprm);
2004 if (retval < 0)
2005 goto out_free;
2006 bprm->exec = bprm->p;
2007
2008 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2009 if (retval < 0)
2010 goto out_free;
2011
2012 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2013 if (retval < 0)
2014 goto out_free;
2015
2016 retval = bprm_execve(bprm, fd, filename, 0);
2017out_free:
2018 free_bprm(bprm);
2019out_ret:
2020 putname(filename);
2021 return retval;
2022}
2023
2024static int do_execve(struct filename *filename,
2025 const char __user *const __user *__argv,
2026 const char __user *const __user *__envp)
2027{
2028 struct user_arg_ptr argv = { .ptr.native = __argv };
2029 struct user_arg_ptr envp = { .ptr.native = __envp };
2030 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2031}
2032
2033static int do_execveat(int fd, struct filename *filename,
2034 const char __user *const __user *__argv,
2035 const char __user *const __user *__envp,
2036 int flags)
2037{
2038 struct user_arg_ptr argv = { .ptr.native = __argv };
2039 struct user_arg_ptr envp = { .ptr.native = __envp };
2040
2041 return do_execveat_common(fd, filename, argv, envp, flags);
2042}
2043
2044#ifdef CONFIG_COMPAT
2045static int compat_do_execve(struct filename *filename,
2046 const compat_uptr_t __user *__argv,
2047 const compat_uptr_t __user *__envp)
2048{
2049 struct user_arg_ptr argv = {
2050 .is_compat = true,
2051 .ptr.compat = __argv,
2052 };
2053 struct user_arg_ptr envp = {
2054 .is_compat = true,
2055 .ptr.compat = __envp,
2056 };
2057 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2058}
2059
2060static int compat_do_execveat(int fd, struct filename *filename,
2061 const compat_uptr_t __user *__argv,
2062 const compat_uptr_t __user *__envp,
2063 int flags)
2064{
2065 struct user_arg_ptr argv = {
2066 .is_compat = true,
2067 .ptr.compat = __argv,
2068 };
2069 struct user_arg_ptr envp = {
2070 .is_compat = true,
2071 .ptr.compat = __envp,
2072 };
2073 return do_execveat_common(fd, filename, argv, envp, flags);
2074}
2075#endif
2076
2077void set_binfmt(struct linux_binfmt *new)
2078{
2079 struct mm_struct *mm = current->mm;
2080
2081 if (mm->binfmt)
2082 module_put(mm->binfmt->module);
2083
2084 mm->binfmt = new;
2085 if (new)
2086 __module_get(new->module);
2087}
2088EXPORT_SYMBOL(set_binfmt);
2089
2090/*
2091 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2092 */
2093void set_dumpable(struct mm_struct *mm, int value)
2094{
2095 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2096 return;
2097
2098 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2099}
2100
2101SYSCALL_DEFINE3(execve,
2102 const char __user *, filename,
2103 const char __user *const __user *, argv,
2104 const char __user *const __user *, envp)
2105{
2106 return do_execve(getname(filename), argv, envp);
2107}
2108
2109SYSCALL_DEFINE5(execveat,
2110 int, fd, const char __user *, filename,
2111 const char __user *const __user *, argv,
2112 const char __user *const __user *, envp,
2113 int, flags)
2114{
2115 return do_execveat(fd,
2116 getname_uflags(filename, flags),
2117 argv, envp, flags);
2118}
2119
2120#ifdef CONFIG_COMPAT
2121COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2122 const compat_uptr_t __user *, argv,
2123 const compat_uptr_t __user *, envp)
2124{
2125 return compat_do_execve(getname(filename), argv, envp);
2126}
2127
2128COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2129 const char __user *, filename,
2130 const compat_uptr_t __user *, argv,
2131 const compat_uptr_t __user *, envp,
2132 int, flags)
2133{
2134 return compat_do_execveat(fd,
2135 getname_uflags(filename, flags),
2136 argv, envp, flags);
2137}
2138#endif
2139
2140#ifdef CONFIG_SYSCTL
2141
2142static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2143 void *buffer, size_t *lenp, loff_t *ppos)
2144{
2145 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2146
2147 if (!error)
2148 validate_coredump_safety();
2149 return error;
2150}
2151
2152static struct ctl_table fs_exec_sysctls[] = {
2153 {
2154 .procname = "suid_dumpable",
2155 .data = &suid_dumpable,
2156 .maxlen = sizeof(int),
2157 .mode = 0644,
2158 .proc_handler = proc_dointvec_minmax_coredump,
2159 .extra1 = SYSCTL_ZERO,
2160 .extra2 = SYSCTL_TWO,
2161 },
2162 { }
2163};
2164
2165static int __init init_fs_exec_sysctls(void)
2166{
2167 register_sysctl_init("fs", fs_exec_sysctls);
2168 return 0;
2169}
2170
2171fs_initcall(init_fs_exec_sysctls);
2172#endif /* CONFIG_SYSCTL */
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25#include <linux/slab.h>
26#include <linux/file.h>
27#include <linux/fdtable.h>
28#include <linux/mm.h>
29#include <linux/vmacache.h>
30#include <linux/stat.h>
31#include <linux/fcntl.h>
32#include <linux/swap.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/pagemap.h>
36#include <linux/perf_event.h>
37#include <linux/highmem.h>
38#include <linux/spinlock.h>
39#include <linux/key.h>
40#include <linux/personality.h>
41#include <linux/binfmts.h>
42#include <linux/utsname.h>
43#include <linux/pid_namespace.h>
44#include <linux/module.h>
45#include <linux/namei.h>
46#include <linux/mount.h>
47#include <linux/security.h>
48#include <linux/syscalls.h>
49#include <linux/tsacct_kern.h>
50#include <linux/cn_proc.h>
51#include <linux/audit.h>
52#include <linux/tracehook.h>
53#include <linux/kmod.h>
54#include <linux/fsnotify.h>
55#include <linux/fs_struct.h>
56#include <linux/pipe_fs_i.h>
57#include <linux/oom.h>
58#include <linux/compat.h>
59
60#include <asm/uaccess.h>
61#include <asm/mmu_context.h>
62#include <asm/tlb.h>
63
64#include <trace/events/task.h>
65#include "internal.h"
66
67#include <trace/events/sched.h>
68
69int suid_dumpable = 0;
70
71static LIST_HEAD(formats);
72static DEFINE_RWLOCK(binfmt_lock);
73
74void __register_binfmt(struct linux_binfmt * fmt, int insert)
75{
76 BUG_ON(!fmt);
77 if (WARN_ON(!fmt->load_binary))
78 return;
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
83}
84
85EXPORT_SYMBOL(__register_binfmt);
86
87void unregister_binfmt(struct linux_binfmt * fmt)
88{
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
92}
93
94EXPORT_SYMBOL(unregister_binfmt);
95
96static inline void put_binfmt(struct linux_binfmt * fmt)
97{
98 module_put(fmt->module);
99}
100
101#ifdef CONFIG_USELIB
102/*
103 * Note that a shared library must be both readable and executable due to
104 * security reasons.
105 *
106 * Also note that we take the address to load from from the file itself.
107 */
108SYSCALL_DEFINE1(uselib, const char __user *, library)
109{
110 struct linux_binfmt *fmt;
111 struct file *file;
112 struct filename *tmp = getname(library);
113 int error = PTR_ERR(tmp);
114 static const struct open_flags uselib_flags = {
115 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117 .intent = LOOKUP_OPEN,
118 .lookup_flags = LOOKUP_FOLLOW,
119 };
120
121 if (IS_ERR(tmp))
122 goto out;
123
124 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125 putname(tmp);
126 error = PTR_ERR(file);
127 if (IS_ERR(file))
128 goto out;
129
130 error = -EINVAL;
131 if (!S_ISREG(file_inode(file)->i_mode))
132 goto exit;
133
134 error = -EACCES;
135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 goto exit;
137
138 fsnotify_open(file);
139
140 error = -ENOEXEC;
141
142 read_lock(&binfmt_lock);
143 list_for_each_entry(fmt, &formats, lh) {
144 if (!fmt->load_shlib)
145 continue;
146 if (!try_module_get(fmt->module))
147 continue;
148 read_unlock(&binfmt_lock);
149 error = fmt->load_shlib(file);
150 read_lock(&binfmt_lock);
151 put_binfmt(fmt);
152 if (error != -ENOEXEC)
153 break;
154 }
155 read_unlock(&binfmt_lock);
156exit:
157 fput(file);
158out:
159 return error;
160}
161#endif /* #ifdef CONFIG_USELIB */
162
163#ifdef CONFIG_MMU
164/*
165 * The nascent bprm->mm is not visible until exec_mmap() but it can
166 * use a lot of memory, account these pages in current->mm temporary
167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168 * change the counter back via acct_arg_size(0).
169 */
170static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171{
172 struct mm_struct *mm = current->mm;
173 long diff = (long)(pages - bprm->vma_pages);
174
175 if (!mm || !diff)
176 return;
177
178 bprm->vma_pages = pages;
179 add_mm_counter(mm, MM_ANONPAGES, diff);
180}
181
182static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 int write)
184{
185 struct page *page;
186 int ret;
187
188#ifdef CONFIG_STACK_GROWSUP
189 if (write) {
190 ret = expand_downwards(bprm->vma, pos);
191 if (ret < 0)
192 return NULL;
193 }
194#endif
195 ret = get_user_pages(current, bprm->mm, pos,
196 1, write, 1, &page, NULL);
197 if (ret <= 0)
198 return NULL;
199
200 if (write) {
201 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 struct rlimit *rlim;
203
204 acct_arg_size(bprm, size / PAGE_SIZE);
205
206 /*
207 * We've historically supported up to 32 pages (ARG_MAX)
208 * of argument strings even with small stacks
209 */
210 if (size <= ARG_MAX)
211 return page;
212
213 /*
214 * Limit to 1/4-th the stack size for the argv+env strings.
215 * This ensures that:
216 * - the remaining binfmt code will not run out of stack space,
217 * - the program will have a reasonable amount of stack left
218 * to work from.
219 */
220 rlim = current->signal->rlim;
221 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222 put_page(page);
223 return NULL;
224 }
225 }
226
227 return page;
228}
229
230static void put_arg_page(struct page *page)
231{
232 put_page(page);
233}
234
235static void free_arg_page(struct linux_binprm *bprm, int i)
236{
237}
238
239static void free_arg_pages(struct linux_binprm *bprm)
240{
241}
242
243static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 struct page *page)
245{
246 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247}
248
249static int __bprm_mm_init(struct linux_binprm *bprm)
250{
251 int err;
252 struct vm_area_struct *vma = NULL;
253 struct mm_struct *mm = bprm->mm;
254
255 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256 if (!vma)
257 return -ENOMEM;
258
259 down_write(&mm->mmap_sem);
260 vma->vm_mm = mm;
261
262 /*
263 * Place the stack at the largest stack address the architecture
264 * supports. Later, we'll move this to an appropriate place. We don't
265 * use STACK_TOP because that can depend on attributes which aren't
266 * configured yet.
267 */
268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 vma->vm_end = STACK_TOP_MAX;
270 vma->vm_start = vma->vm_end - PAGE_SIZE;
271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 INIT_LIST_HEAD(&vma->anon_vma_chain);
274
275 err = insert_vm_struct(mm, vma);
276 if (err)
277 goto err;
278
279 mm->stack_vm = mm->total_vm = 1;
280 up_write(&mm->mmap_sem);
281 bprm->p = vma->vm_end - sizeof(void *);
282 return 0;
283err:
284 up_write(&mm->mmap_sem);
285 bprm->vma = NULL;
286 kmem_cache_free(vm_area_cachep, vma);
287 return err;
288}
289
290static bool valid_arg_len(struct linux_binprm *bprm, long len)
291{
292 return len <= MAX_ARG_STRLEN;
293}
294
295#else
296
297static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298{
299}
300
301static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 int write)
303{
304 struct page *page;
305
306 page = bprm->page[pos / PAGE_SIZE];
307 if (!page && write) {
308 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 if (!page)
310 return NULL;
311 bprm->page[pos / PAGE_SIZE] = page;
312 }
313
314 return page;
315}
316
317static void put_arg_page(struct page *page)
318{
319}
320
321static void free_arg_page(struct linux_binprm *bprm, int i)
322{
323 if (bprm->page[i]) {
324 __free_page(bprm->page[i]);
325 bprm->page[i] = NULL;
326 }
327}
328
329static void free_arg_pages(struct linux_binprm *bprm)
330{
331 int i;
332
333 for (i = 0; i < MAX_ARG_PAGES; i++)
334 free_arg_page(bprm, i);
335}
336
337static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 struct page *page)
339{
340}
341
342static int __bprm_mm_init(struct linux_binprm *bprm)
343{
344 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 return 0;
346}
347
348static bool valid_arg_len(struct linux_binprm *bprm, long len)
349{
350 return len <= bprm->p;
351}
352
353#endif /* CONFIG_MMU */
354
355/*
356 * Create a new mm_struct and populate it with a temporary stack
357 * vm_area_struct. We don't have enough context at this point to set the stack
358 * flags, permissions, and offset, so we use temporary values. We'll update
359 * them later in setup_arg_pages().
360 */
361static int bprm_mm_init(struct linux_binprm *bprm)
362{
363 int err;
364 struct mm_struct *mm = NULL;
365
366 bprm->mm = mm = mm_alloc();
367 err = -ENOMEM;
368 if (!mm)
369 goto err;
370
371 err = init_new_context(current, mm);
372 if (err)
373 goto err;
374
375 err = __bprm_mm_init(bprm);
376 if (err)
377 goto err;
378
379 return 0;
380
381err:
382 if (mm) {
383 bprm->mm = NULL;
384 mmdrop(mm);
385 }
386
387 return err;
388}
389
390struct user_arg_ptr {
391#ifdef CONFIG_COMPAT
392 bool is_compat;
393#endif
394 union {
395 const char __user *const __user *native;
396#ifdef CONFIG_COMPAT
397 const compat_uptr_t __user *compat;
398#endif
399 } ptr;
400};
401
402static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
403{
404 const char __user *native;
405
406#ifdef CONFIG_COMPAT
407 if (unlikely(argv.is_compat)) {
408 compat_uptr_t compat;
409
410 if (get_user(compat, argv.ptr.compat + nr))
411 return ERR_PTR(-EFAULT);
412
413 return compat_ptr(compat);
414 }
415#endif
416
417 if (get_user(native, argv.ptr.native + nr))
418 return ERR_PTR(-EFAULT);
419
420 return native;
421}
422
423/*
424 * count() counts the number of strings in array ARGV.
425 */
426static int count(struct user_arg_ptr argv, int max)
427{
428 int i = 0;
429
430 if (argv.ptr.native != NULL) {
431 for (;;) {
432 const char __user *p = get_user_arg_ptr(argv, i);
433
434 if (!p)
435 break;
436
437 if (IS_ERR(p))
438 return -EFAULT;
439
440 if (i >= max)
441 return -E2BIG;
442 ++i;
443
444 if (fatal_signal_pending(current))
445 return -ERESTARTNOHAND;
446 cond_resched();
447 }
448 }
449 return i;
450}
451
452/*
453 * 'copy_strings()' copies argument/environment strings from the old
454 * processes's memory to the new process's stack. The call to get_user_pages()
455 * ensures the destination page is created and not swapped out.
456 */
457static int copy_strings(int argc, struct user_arg_ptr argv,
458 struct linux_binprm *bprm)
459{
460 struct page *kmapped_page = NULL;
461 char *kaddr = NULL;
462 unsigned long kpos = 0;
463 int ret;
464
465 while (argc-- > 0) {
466 const char __user *str;
467 int len;
468 unsigned long pos;
469
470 ret = -EFAULT;
471 str = get_user_arg_ptr(argv, argc);
472 if (IS_ERR(str))
473 goto out;
474
475 len = strnlen_user(str, MAX_ARG_STRLEN);
476 if (!len)
477 goto out;
478
479 ret = -E2BIG;
480 if (!valid_arg_len(bprm, len))
481 goto out;
482
483 /* We're going to work our way backwords. */
484 pos = bprm->p;
485 str += len;
486 bprm->p -= len;
487
488 while (len > 0) {
489 int offset, bytes_to_copy;
490
491 if (fatal_signal_pending(current)) {
492 ret = -ERESTARTNOHAND;
493 goto out;
494 }
495 cond_resched();
496
497 offset = pos % PAGE_SIZE;
498 if (offset == 0)
499 offset = PAGE_SIZE;
500
501 bytes_to_copy = offset;
502 if (bytes_to_copy > len)
503 bytes_to_copy = len;
504
505 offset -= bytes_to_copy;
506 pos -= bytes_to_copy;
507 str -= bytes_to_copy;
508 len -= bytes_to_copy;
509
510 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
511 struct page *page;
512
513 page = get_arg_page(bprm, pos, 1);
514 if (!page) {
515 ret = -E2BIG;
516 goto out;
517 }
518
519 if (kmapped_page) {
520 flush_kernel_dcache_page(kmapped_page);
521 kunmap(kmapped_page);
522 put_arg_page(kmapped_page);
523 }
524 kmapped_page = page;
525 kaddr = kmap(kmapped_page);
526 kpos = pos & PAGE_MASK;
527 flush_arg_page(bprm, kpos, kmapped_page);
528 }
529 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
530 ret = -EFAULT;
531 goto out;
532 }
533 }
534 }
535 ret = 0;
536out:
537 if (kmapped_page) {
538 flush_kernel_dcache_page(kmapped_page);
539 kunmap(kmapped_page);
540 put_arg_page(kmapped_page);
541 }
542 return ret;
543}
544
545/*
546 * Like copy_strings, but get argv and its values from kernel memory.
547 */
548int copy_strings_kernel(int argc, const char *const *__argv,
549 struct linux_binprm *bprm)
550{
551 int r;
552 mm_segment_t oldfs = get_fs();
553 struct user_arg_ptr argv = {
554 .ptr.native = (const char __user *const __user *)__argv,
555 };
556
557 set_fs(KERNEL_DS);
558 r = copy_strings(argc, argv, bprm);
559 set_fs(oldfs);
560
561 return r;
562}
563EXPORT_SYMBOL(copy_strings_kernel);
564
565#ifdef CONFIG_MMU
566
567/*
568 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
569 * the binfmt code determines where the new stack should reside, we shift it to
570 * its final location. The process proceeds as follows:
571 *
572 * 1) Use shift to calculate the new vma endpoints.
573 * 2) Extend vma to cover both the old and new ranges. This ensures the
574 * arguments passed to subsequent functions are consistent.
575 * 3) Move vma's page tables to the new range.
576 * 4) Free up any cleared pgd range.
577 * 5) Shrink the vma to cover only the new range.
578 */
579static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
580{
581 struct mm_struct *mm = vma->vm_mm;
582 unsigned long old_start = vma->vm_start;
583 unsigned long old_end = vma->vm_end;
584 unsigned long length = old_end - old_start;
585 unsigned long new_start = old_start - shift;
586 unsigned long new_end = old_end - shift;
587 struct mmu_gather tlb;
588
589 BUG_ON(new_start > new_end);
590
591 /*
592 * ensure there are no vmas between where we want to go
593 * and where we are
594 */
595 if (vma != find_vma(mm, new_start))
596 return -EFAULT;
597
598 /*
599 * cover the whole range: [new_start, old_end)
600 */
601 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
602 return -ENOMEM;
603
604 /*
605 * move the page tables downwards, on failure we rely on
606 * process cleanup to remove whatever mess we made.
607 */
608 if (length != move_page_tables(vma, old_start,
609 vma, new_start, length, false))
610 return -ENOMEM;
611
612 lru_add_drain();
613 tlb_gather_mmu(&tlb, mm, old_start, old_end);
614 if (new_end > old_start) {
615 /*
616 * when the old and new regions overlap clear from new_end.
617 */
618 free_pgd_range(&tlb, new_end, old_end, new_end,
619 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
620 } else {
621 /*
622 * otherwise, clean from old_start; this is done to not touch
623 * the address space in [new_end, old_start) some architectures
624 * have constraints on va-space that make this illegal (IA64) -
625 * for the others its just a little faster.
626 */
627 free_pgd_range(&tlb, old_start, old_end, new_end,
628 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
629 }
630 tlb_finish_mmu(&tlb, old_start, old_end);
631
632 /*
633 * Shrink the vma to just the new range. Always succeeds.
634 */
635 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
636
637 return 0;
638}
639
640/*
641 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
642 * the stack is optionally relocated, and some extra space is added.
643 */
644int setup_arg_pages(struct linux_binprm *bprm,
645 unsigned long stack_top,
646 int executable_stack)
647{
648 unsigned long ret;
649 unsigned long stack_shift;
650 struct mm_struct *mm = current->mm;
651 struct vm_area_struct *vma = bprm->vma;
652 struct vm_area_struct *prev = NULL;
653 unsigned long vm_flags;
654 unsigned long stack_base;
655 unsigned long stack_size;
656 unsigned long stack_expand;
657 unsigned long rlim_stack;
658
659#ifdef CONFIG_STACK_GROWSUP
660 /* Limit stack size */
661 stack_base = rlimit_max(RLIMIT_STACK);
662 if (stack_base > STACK_SIZE_MAX)
663 stack_base = STACK_SIZE_MAX;
664
665 /* Make sure we didn't let the argument array grow too large. */
666 if (vma->vm_end - vma->vm_start > stack_base)
667 return -ENOMEM;
668
669 stack_base = PAGE_ALIGN(stack_top - stack_base);
670
671 stack_shift = vma->vm_start - stack_base;
672 mm->arg_start = bprm->p - stack_shift;
673 bprm->p = vma->vm_end - stack_shift;
674#else
675 stack_top = arch_align_stack(stack_top);
676 stack_top = PAGE_ALIGN(stack_top);
677
678 if (unlikely(stack_top < mmap_min_addr) ||
679 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
680 return -ENOMEM;
681
682 stack_shift = vma->vm_end - stack_top;
683
684 bprm->p -= stack_shift;
685 mm->arg_start = bprm->p;
686#endif
687
688 if (bprm->loader)
689 bprm->loader -= stack_shift;
690 bprm->exec -= stack_shift;
691
692 down_write(&mm->mmap_sem);
693 vm_flags = VM_STACK_FLAGS;
694
695 /*
696 * Adjust stack execute permissions; explicitly enable for
697 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
698 * (arch default) otherwise.
699 */
700 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
701 vm_flags |= VM_EXEC;
702 else if (executable_stack == EXSTACK_DISABLE_X)
703 vm_flags &= ~VM_EXEC;
704 vm_flags |= mm->def_flags;
705 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
706
707 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
708 vm_flags);
709 if (ret)
710 goto out_unlock;
711 BUG_ON(prev != vma);
712
713 /* Move stack pages down in memory. */
714 if (stack_shift) {
715 ret = shift_arg_pages(vma, stack_shift);
716 if (ret)
717 goto out_unlock;
718 }
719
720 /* mprotect_fixup is overkill to remove the temporary stack flags */
721 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
722
723 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
724 stack_size = vma->vm_end - vma->vm_start;
725 /*
726 * Align this down to a page boundary as expand_stack
727 * will align it up.
728 */
729 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
730#ifdef CONFIG_STACK_GROWSUP
731 if (stack_size + stack_expand > rlim_stack)
732 stack_base = vma->vm_start + rlim_stack;
733 else
734 stack_base = vma->vm_end + stack_expand;
735#else
736 if (stack_size + stack_expand > rlim_stack)
737 stack_base = vma->vm_end - rlim_stack;
738 else
739 stack_base = vma->vm_start - stack_expand;
740#endif
741 current->mm->start_stack = bprm->p;
742 ret = expand_stack(vma, stack_base);
743 if (ret)
744 ret = -EFAULT;
745
746out_unlock:
747 up_write(&mm->mmap_sem);
748 return ret;
749}
750EXPORT_SYMBOL(setup_arg_pages);
751
752#endif /* CONFIG_MMU */
753
754static struct file *do_open_exec(struct filename *name)
755{
756 struct file *file;
757 int err;
758 static const struct open_flags open_exec_flags = {
759 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
760 .acc_mode = MAY_EXEC | MAY_OPEN,
761 .intent = LOOKUP_OPEN,
762 .lookup_flags = LOOKUP_FOLLOW,
763 };
764
765 file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
766 if (IS_ERR(file))
767 goto out;
768
769 err = -EACCES;
770 if (!S_ISREG(file_inode(file)->i_mode))
771 goto exit;
772
773 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
774 goto exit;
775
776 fsnotify_open(file);
777
778 err = deny_write_access(file);
779 if (err)
780 goto exit;
781
782out:
783 return file;
784
785exit:
786 fput(file);
787 return ERR_PTR(err);
788}
789
790struct file *open_exec(const char *name)
791{
792 struct filename tmp = { .name = name };
793 return do_open_exec(&tmp);
794}
795EXPORT_SYMBOL(open_exec);
796
797int kernel_read(struct file *file, loff_t offset,
798 char *addr, unsigned long count)
799{
800 mm_segment_t old_fs;
801 loff_t pos = offset;
802 int result;
803
804 old_fs = get_fs();
805 set_fs(get_ds());
806 /* The cast to a user pointer is valid due to the set_fs() */
807 result = vfs_read(file, (void __user *)addr, count, &pos);
808 set_fs(old_fs);
809 return result;
810}
811
812EXPORT_SYMBOL(kernel_read);
813
814ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
815{
816 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
817 if (res > 0)
818 flush_icache_range(addr, addr + len);
819 return res;
820}
821EXPORT_SYMBOL(read_code);
822
823static int exec_mmap(struct mm_struct *mm)
824{
825 struct task_struct *tsk;
826 struct mm_struct *old_mm, *active_mm;
827
828 /* Notify parent that we're no longer interested in the old VM */
829 tsk = current;
830 old_mm = current->mm;
831 mm_release(tsk, old_mm);
832
833 if (old_mm) {
834 sync_mm_rss(old_mm);
835 /*
836 * Make sure that if there is a core dump in progress
837 * for the old mm, we get out and die instead of going
838 * through with the exec. We must hold mmap_sem around
839 * checking core_state and changing tsk->mm.
840 */
841 down_read(&old_mm->mmap_sem);
842 if (unlikely(old_mm->core_state)) {
843 up_read(&old_mm->mmap_sem);
844 return -EINTR;
845 }
846 }
847 task_lock(tsk);
848 active_mm = tsk->active_mm;
849 tsk->mm = mm;
850 tsk->active_mm = mm;
851 activate_mm(active_mm, mm);
852 tsk->mm->vmacache_seqnum = 0;
853 vmacache_flush(tsk);
854 task_unlock(tsk);
855 if (old_mm) {
856 up_read(&old_mm->mmap_sem);
857 BUG_ON(active_mm != old_mm);
858 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
859 mm_update_next_owner(old_mm);
860 mmput(old_mm);
861 return 0;
862 }
863 mmdrop(active_mm);
864 return 0;
865}
866
867/*
868 * This function makes sure the current process has its own signal table,
869 * so that flush_signal_handlers can later reset the handlers without
870 * disturbing other processes. (Other processes might share the signal
871 * table via the CLONE_SIGHAND option to clone().)
872 */
873static int de_thread(struct task_struct *tsk)
874{
875 struct signal_struct *sig = tsk->signal;
876 struct sighand_struct *oldsighand = tsk->sighand;
877 spinlock_t *lock = &oldsighand->siglock;
878
879 if (thread_group_empty(tsk))
880 goto no_thread_group;
881
882 /*
883 * Kill all other threads in the thread group.
884 */
885 spin_lock_irq(lock);
886 if (signal_group_exit(sig)) {
887 /*
888 * Another group action in progress, just
889 * return so that the signal is processed.
890 */
891 spin_unlock_irq(lock);
892 return -EAGAIN;
893 }
894
895 sig->group_exit_task = tsk;
896 sig->notify_count = zap_other_threads(tsk);
897 if (!thread_group_leader(tsk))
898 sig->notify_count--;
899
900 while (sig->notify_count) {
901 __set_current_state(TASK_KILLABLE);
902 spin_unlock_irq(lock);
903 schedule();
904 if (unlikely(__fatal_signal_pending(tsk)))
905 goto killed;
906 spin_lock_irq(lock);
907 }
908 spin_unlock_irq(lock);
909
910 /*
911 * At this point all other threads have exited, all we have to
912 * do is to wait for the thread group leader to become inactive,
913 * and to assume its PID:
914 */
915 if (!thread_group_leader(tsk)) {
916 struct task_struct *leader = tsk->group_leader;
917
918 sig->notify_count = -1; /* for exit_notify() */
919 for (;;) {
920 threadgroup_change_begin(tsk);
921 write_lock_irq(&tasklist_lock);
922 if (likely(leader->exit_state))
923 break;
924 __set_current_state(TASK_KILLABLE);
925 write_unlock_irq(&tasklist_lock);
926 threadgroup_change_end(tsk);
927 schedule();
928 if (unlikely(__fatal_signal_pending(tsk)))
929 goto killed;
930 }
931
932 /*
933 * The only record we have of the real-time age of a
934 * process, regardless of execs it's done, is start_time.
935 * All the past CPU time is accumulated in signal_struct
936 * from sister threads now dead. But in this non-leader
937 * exec, nothing survives from the original leader thread,
938 * whose birth marks the true age of this process now.
939 * When we take on its identity by switching to its PID, we
940 * also take its birthdate (always earlier than our own).
941 */
942 tsk->start_time = leader->start_time;
943 tsk->real_start_time = leader->real_start_time;
944
945 BUG_ON(!same_thread_group(leader, tsk));
946 BUG_ON(has_group_leader_pid(tsk));
947 /*
948 * An exec() starts a new thread group with the
949 * TGID of the previous thread group. Rehash the
950 * two threads with a switched PID, and release
951 * the former thread group leader:
952 */
953
954 /* Become a process group leader with the old leader's pid.
955 * The old leader becomes a thread of the this thread group.
956 * Note: The old leader also uses this pid until release_task
957 * is called. Odd but simple and correct.
958 */
959 tsk->pid = leader->pid;
960 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
961 transfer_pid(leader, tsk, PIDTYPE_PGID);
962 transfer_pid(leader, tsk, PIDTYPE_SID);
963
964 list_replace_rcu(&leader->tasks, &tsk->tasks);
965 list_replace_init(&leader->sibling, &tsk->sibling);
966
967 tsk->group_leader = tsk;
968 leader->group_leader = tsk;
969
970 tsk->exit_signal = SIGCHLD;
971 leader->exit_signal = -1;
972
973 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
974 leader->exit_state = EXIT_DEAD;
975
976 /*
977 * We are going to release_task()->ptrace_unlink() silently,
978 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
979 * the tracer wont't block again waiting for this thread.
980 */
981 if (unlikely(leader->ptrace))
982 __wake_up_parent(leader, leader->parent);
983 write_unlock_irq(&tasklist_lock);
984 threadgroup_change_end(tsk);
985
986 release_task(leader);
987 }
988
989 sig->group_exit_task = NULL;
990 sig->notify_count = 0;
991
992no_thread_group:
993 /* we have changed execution domain */
994 tsk->exit_signal = SIGCHLD;
995
996 exit_itimers(sig);
997 flush_itimer_signals();
998
999 if (atomic_read(&oldsighand->count) != 1) {
1000 struct sighand_struct *newsighand;
1001 /*
1002 * This ->sighand is shared with the CLONE_SIGHAND
1003 * but not CLONE_THREAD task, switch to the new one.
1004 */
1005 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1006 if (!newsighand)
1007 return -ENOMEM;
1008
1009 atomic_set(&newsighand->count, 1);
1010 memcpy(newsighand->action, oldsighand->action,
1011 sizeof(newsighand->action));
1012
1013 write_lock_irq(&tasklist_lock);
1014 spin_lock(&oldsighand->siglock);
1015 rcu_assign_pointer(tsk->sighand, newsighand);
1016 spin_unlock(&oldsighand->siglock);
1017 write_unlock_irq(&tasklist_lock);
1018
1019 __cleanup_sighand(oldsighand);
1020 }
1021
1022 BUG_ON(!thread_group_leader(tsk));
1023 return 0;
1024
1025killed:
1026 /* protects against exit_notify() and __exit_signal() */
1027 read_lock(&tasklist_lock);
1028 sig->group_exit_task = NULL;
1029 sig->notify_count = 0;
1030 read_unlock(&tasklist_lock);
1031 return -EAGAIN;
1032}
1033
1034char *get_task_comm(char *buf, struct task_struct *tsk)
1035{
1036 /* buf must be at least sizeof(tsk->comm) in size */
1037 task_lock(tsk);
1038 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1039 task_unlock(tsk);
1040 return buf;
1041}
1042EXPORT_SYMBOL_GPL(get_task_comm);
1043
1044/*
1045 * These functions flushes out all traces of the currently running executable
1046 * so that a new one can be started
1047 */
1048
1049void set_task_comm(struct task_struct *tsk, const char *buf)
1050{
1051 task_lock(tsk);
1052 trace_task_rename(tsk, buf);
1053 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1054 task_unlock(tsk);
1055 perf_event_comm(tsk);
1056}
1057
1058int flush_old_exec(struct linux_binprm * bprm)
1059{
1060 int retval;
1061
1062 /*
1063 * Make sure we have a private signal table and that
1064 * we are unassociated from the previous thread group.
1065 */
1066 retval = de_thread(current);
1067 if (retval)
1068 goto out;
1069
1070 set_mm_exe_file(bprm->mm, bprm->file);
1071 /*
1072 * Release all of the old mmap stuff
1073 */
1074 acct_arg_size(bprm, 0);
1075 retval = exec_mmap(bprm->mm);
1076 if (retval)
1077 goto out;
1078
1079 bprm->mm = NULL; /* We're using it now */
1080
1081 set_fs(USER_DS);
1082 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1083 PF_NOFREEZE | PF_NO_SETAFFINITY);
1084 flush_thread();
1085 current->personality &= ~bprm->per_clear;
1086
1087 return 0;
1088
1089out:
1090 return retval;
1091}
1092EXPORT_SYMBOL(flush_old_exec);
1093
1094void would_dump(struct linux_binprm *bprm, struct file *file)
1095{
1096 if (inode_permission(file_inode(file), MAY_READ) < 0)
1097 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1098}
1099EXPORT_SYMBOL(would_dump);
1100
1101void setup_new_exec(struct linux_binprm * bprm)
1102{
1103 arch_pick_mmap_layout(current->mm);
1104
1105 /* This is the point of no return */
1106 current->sas_ss_sp = current->sas_ss_size = 0;
1107
1108 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1109 set_dumpable(current->mm, SUID_DUMP_USER);
1110 else
1111 set_dumpable(current->mm, suid_dumpable);
1112
1113 set_task_comm(current, kbasename(bprm->filename));
1114
1115 /* Set the new mm task size. We have to do that late because it may
1116 * depend on TIF_32BIT which is only updated in flush_thread() on
1117 * some architectures like powerpc
1118 */
1119 current->mm->task_size = TASK_SIZE;
1120
1121 /* install the new credentials */
1122 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1123 !gid_eq(bprm->cred->gid, current_egid())) {
1124 current->pdeath_signal = 0;
1125 } else {
1126 would_dump(bprm, bprm->file);
1127 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1128 set_dumpable(current->mm, suid_dumpable);
1129 }
1130
1131 /* An exec changes our domain. We are no longer part of the thread
1132 group */
1133 current->self_exec_id++;
1134 flush_signal_handlers(current, 0);
1135 do_close_on_exec(current->files);
1136}
1137EXPORT_SYMBOL(setup_new_exec);
1138
1139/*
1140 * Prepare credentials and lock ->cred_guard_mutex.
1141 * install_exec_creds() commits the new creds and drops the lock.
1142 * Or, if exec fails before, free_bprm() should release ->cred and
1143 * and unlock.
1144 */
1145int prepare_bprm_creds(struct linux_binprm *bprm)
1146{
1147 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1148 return -ERESTARTNOINTR;
1149
1150 bprm->cred = prepare_exec_creds();
1151 if (likely(bprm->cred))
1152 return 0;
1153
1154 mutex_unlock(¤t->signal->cred_guard_mutex);
1155 return -ENOMEM;
1156}
1157
1158static void free_bprm(struct linux_binprm *bprm)
1159{
1160 free_arg_pages(bprm);
1161 if (bprm->cred) {
1162 mutex_unlock(¤t->signal->cred_guard_mutex);
1163 abort_creds(bprm->cred);
1164 }
1165 if (bprm->file) {
1166 allow_write_access(bprm->file);
1167 fput(bprm->file);
1168 }
1169 /* If a binfmt changed the interp, free it. */
1170 if (bprm->interp != bprm->filename)
1171 kfree(bprm->interp);
1172 kfree(bprm);
1173}
1174
1175int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1176{
1177 /* If a binfmt changed the interp, free it first. */
1178 if (bprm->interp != bprm->filename)
1179 kfree(bprm->interp);
1180 bprm->interp = kstrdup(interp, GFP_KERNEL);
1181 if (!bprm->interp)
1182 return -ENOMEM;
1183 return 0;
1184}
1185EXPORT_SYMBOL(bprm_change_interp);
1186
1187/*
1188 * install the new credentials for this executable
1189 */
1190void install_exec_creds(struct linux_binprm *bprm)
1191{
1192 security_bprm_committing_creds(bprm);
1193
1194 commit_creds(bprm->cred);
1195 bprm->cred = NULL;
1196
1197 /*
1198 * Disable monitoring for regular users
1199 * when executing setuid binaries. Must
1200 * wait until new credentials are committed
1201 * by commit_creds() above
1202 */
1203 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1204 perf_event_exit_task(current);
1205 /*
1206 * cred_guard_mutex must be held at least to this point to prevent
1207 * ptrace_attach() from altering our determination of the task's
1208 * credentials; any time after this it may be unlocked.
1209 */
1210 security_bprm_committed_creds(bprm);
1211 mutex_unlock(¤t->signal->cred_guard_mutex);
1212}
1213EXPORT_SYMBOL(install_exec_creds);
1214
1215/*
1216 * determine how safe it is to execute the proposed program
1217 * - the caller must hold ->cred_guard_mutex to protect against
1218 * PTRACE_ATTACH
1219 */
1220static void check_unsafe_exec(struct linux_binprm *bprm)
1221{
1222 struct task_struct *p = current, *t;
1223 unsigned n_fs;
1224
1225 if (p->ptrace) {
1226 if (p->ptrace & PT_PTRACE_CAP)
1227 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1228 else
1229 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1230 }
1231
1232 /*
1233 * This isn't strictly necessary, but it makes it harder for LSMs to
1234 * mess up.
1235 */
1236 if (current->no_new_privs)
1237 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1238
1239 t = p;
1240 n_fs = 1;
1241 spin_lock(&p->fs->lock);
1242 rcu_read_lock();
1243 while_each_thread(p, t) {
1244 if (t->fs == p->fs)
1245 n_fs++;
1246 }
1247 rcu_read_unlock();
1248
1249 if (p->fs->users > n_fs)
1250 bprm->unsafe |= LSM_UNSAFE_SHARE;
1251 else
1252 p->fs->in_exec = 1;
1253 spin_unlock(&p->fs->lock);
1254}
1255
1256/*
1257 * Fill the binprm structure from the inode.
1258 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1259 *
1260 * This may be called multiple times for binary chains (scripts for example).
1261 */
1262int prepare_binprm(struct linux_binprm *bprm)
1263{
1264 struct inode *inode = file_inode(bprm->file);
1265 umode_t mode = inode->i_mode;
1266 int retval;
1267
1268
1269 /* clear any previous set[ug]id data from a previous binary */
1270 bprm->cred->euid = current_euid();
1271 bprm->cred->egid = current_egid();
1272
1273 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1274 !current->no_new_privs &&
1275 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1276 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1277 /* Set-uid? */
1278 if (mode & S_ISUID) {
1279 bprm->per_clear |= PER_CLEAR_ON_SETID;
1280 bprm->cred->euid = inode->i_uid;
1281 }
1282
1283 /* Set-gid? */
1284 /*
1285 * If setgid is set but no group execute bit then this
1286 * is a candidate for mandatory locking, not a setgid
1287 * executable.
1288 */
1289 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1290 bprm->per_clear |= PER_CLEAR_ON_SETID;
1291 bprm->cred->egid = inode->i_gid;
1292 }
1293 }
1294
1295 /* fill in binprm security blob */
1296 retval = security_bprm_set_creds(bprm);
1297 if (retval)
1298 return retval;
1299 bprm->cred_prepared = 1;
1300
1301 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1302 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1303}
1304
1305EXPORT_SYMBOL(prepare_binprm);
1306
1307/*
1308 * Arguments are '\0' separated strings found at the location bprm->p
1309 * points to; chop off the first by relocating brpm->p to right after
1310 * the first '\0' encountered.
1311 */
1312int remove_arg_zero(struct linux_binprm *bprm)
1313{
1314 int ret = 0;
1315 unsigned long offset;
1316 char *kaddr;
1317 struct page *page;
1318
1319 if (!bprm->argc)
1320 return 0;
1321
1322 do {
1323 offset = bprm->p & ~PAGE_MASK;
1324 page = get_arg_page(bprm, bprm->p, 0);
1325 if (!page) {
1326 ret = -EFAULT;
1327 goto out;
1328 }
1329 kaddr = kmap_atomic(page);
1330
1331 for (; offset < PAGE_SIZE && kaddr[offset];
1332 offset++, bprm->p++)
1333 ;
1334
1335 kunmap_atomic(kaddr);
1336 put_arg_page(page);
1337
1338 if (offset == PAGE_SIZE)
1339 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1340 } while (offset == PAGE_SIZE);
1341
1342 bprm->p++;
1343 bprm->argc--;
1344 ret = 0;
1345
1346out:
1347 return ret;
1348}
1349EXPORT_SYMBOL(remove_arg_zero);
1350
1351#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1352/*
1353 * cycle the list of binary formats handler, until one recognizes the image
1354 */
1355int search_binary_handler(struct linux_binprm *bprm)
1356{
1357 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1358 struct linux_binfmt *fmt;
1359 int retval;
1360
1361 /* This allows 4 levels of binfmt rewrites before failing hard. */
1362 if (bprm->recursion_depth > 5)
1363 return -ELOOP;
1364
1365 retval = security_bprm_check(bprm);
1366 if (retval)
1367 return retval;
1368
1369 retval = -ENOENT;
1370 retry:
1371 read_lock(&binfmt_lock);
1372 list_for_each_entry(fmt, &formats, lh) {
1373 if (!try_module_get(fmt->module))
1374 continue;
1375 read_unlock(&binfmt_lock);
1376 bprm->recursion_depth++;
1377 retval = fmt->load_binary(bprm);
1378 bprm->recursion_depth--;
1379 if (retval >= 0 || retval != -ENOEXEC ||
1380 bprm->mm == NULL || bprm->file == NULL) {
1381 put_binfmt(fmt);
1382 return retval;
1383 }
1384 read_lock(&binfmt_lock);
1385 put_binfmt(fmt);
1386 }
1387 read_unlock(&binfmt_lock);
1388
1389 if (need_retry && retval == -ENOEXEC) {
1390 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1391 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1392 return retval;
1393 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1394 return retval;
1395 need_retry = false;
1396 goto retry;
1397 }
1398
1399 return retval;
1400}
1401EXPORT_SYMBOL(search_binary_handler);
1402
1403static int exec_binprm(struct linux_binprm *bprm)
1404{
1405 pid_t old_pid, old_vpid;
1406 int ret;
1407
1408 /* Need to fetch pid before load_binary changes it */
1409 old_pid = current->pid;
1410 rcu_read_lock();
1411 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1412 rcu_read_unlock();
1413
1414 ret = search_binary_handler(bprm);
1415 if (ret >= 0) {
1416 audit_bprm(bprm);
1417 trace_sched_process_exec(current, old_pid, bprm);
1418 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1419 proc_exec_connector(current);
1420 }
1421
1422 return ret;
1423}
1424
1425/*
1426 * sys_execve() executes a new program.
1427 */
1428static int do_execve_common(struct filename *filename,
1429 struct user_arg_ptr argv,
1430 struct user_arg_ptr envp)
1431{
1432 struct linux_binprm *bprm;
1433 struct file *file;
1434 struct files_struct *displaced;
1435 int retval;
1436
1437 if (IS_ERR(filename))
1438 return PTR_ERR(filename);
1439
1440 /*
1441 * We move the actual failure in case of RLIMIT_NPROC excess from
1442 * set*uid() to execve() because too many poorly written programs
1443 * don't check setuid() return code. Here we additionally recheck
1444 * whether NPROC limit is still exceeded.
1445 */
1446 if ((current->flags & PF_NPROC_EXCEEDED) &&
1447 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1448 retval = -EAGAIN;
1449 goto out_ret;
1450 }
1451
1452 /* We're below the limit (still or again), so we don't want to make
1453 * further execve() calls fail. */
1454 current->flags &= ~PF_NPROC_EXCEEDED;
1455
1456 retval = unshare_files(&displaced);
1457 if (retval)
1458 goto out_ret;
1459
1460 retval = -ENOMEM;
1461 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1462 if (!bprm)
1463 goto out_files;
1464
1465 retval = prepare_bprm_creds(bprm);
1466 if (retval)
1467 goto out_free;
1468
1469 check_unsafe_exec(bprm);
1470 current->in_execve = 1;
1471
1472 file = do_open_exec(filename);
1473 retval = PTR_ERR(file);
1474 if (IS_ERR(file))
1475 goto out_unmark;
1476
1477 sched_exec();
1478
1479 bprm->file = file;
1480 bprm->filename = bprm->interp = filename->name;
1481
1482 retval = bprm_mm_init(bprm);
1483 if (retval)
1484 goto out_unmark;
1485
1486 bprm->argc = count(argv, MAX_ARG_STRINGS);
1487 if ((retval = bprm->argc) < 0)
1488 goto out;
1489
1490 bprm->envc = count(envp, MAX_ARG_STRINGS);
1491 if ((retval = bprm->envc) < 0)
1492 goto out;
1493
1494 retval = prepare_binprm(bprm);
1495 if (retval < 0)
1496 goto out;
1497
1498 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1499 if (retval < 0)
1500 goto out;
1501
1502 bprm->exec = bprm->p;
1503 retval = copy_strings(bprm->envc, envp, bprm);
1504 if (retval < 0)
1505 goto out;
1506
1507 retval = copy_strings(bprm->argc, argv, bprm);
1508 if (retval < 0)
1509 goto out;
1510
1511 retval = exec_binprm(bprm);
1512 if (retval < 0)
1513 goto out;
1514
1515 /* execve succeeded */
1516 current->fs->in_exec = 0;
1517 current->in_execve = 0;
1518 acct_update_integrals(current);
1519 task_numa_free(current);
1520 free_bprm(bprm);
1521 putname(filename);
1522 if (displaced)
1523 put_files_struct(displaced);
1524 return retval;
1525
1526out:
1527 if (bprm->mm) {
1528 acct_arg_size(bprm, 0);
1529 mmput(bprm->mm);
1530 }
1531
1532out_unmark:
1533 current->fs->in_exec = 0;
1534 current->in_execve = 0;
1535
1536out_free:
1537 free_bprm(bprm);
1538
1539out_files:
1540 if (displaced)
1541 reset_files_struct(displaced);
1542out_ret:
1543 putname(filename);
1544 return retval;
1545}
1546
1547int do_execve(struct filename *filename,
1548 const char __user *const __user *__argv,
1549 const char __user *const __user *__envp)
1550{
1551 struct user_arg_ptr argv = { .ptr.native = __argv };
1552 struct user_arg_ptr envp = { .ptr.native = __envp };
1553 return do_execve_common(filename, argv, envp);
1554}
1555
1556#ifdef CONFIG_COMPAT
1557static int compat_do_execve(struct filename *filename,
1558 const compat_uptr_t __user *__argv,
1559 const compat_uptr_t __user *__envp)
1560{
1561 struct user_arg_ptr argv = {
1562 .is_compat = true,
1563 .ptr.compat = __argv,
1564 };
1565 struct user_arg_ptr envp = {
1566 .is_compat = true,
1567 .ptr.compat = __envp,
1568 };
1569 return do_execve_common(filename, argv, envp);
1570}
1571#endif
1572
1573void set_binfmt(struct linux_binfmt *new)
1574{
1575 struct mm_struct *mm = current->mm;
1576
1577 if (mm->binfmt)
1578 module_put(mm->binfmt->module);
1579
1580 mm->binfmt = new;
1581 if (new)
1582 __module_get(new->module);
1583}
1584EXPORT_SYMBOL(set_binfmt);
1585
1586/*
1587 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1588 */
1589void set_dumpable(struct mm_struct *mm, int value)
1590{
1591 unsigned long old, new;
1592
1593 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1594 return;
1595
1596 do {
1597 old = ACCESS_ONCE(mm->flags);
1598 new = (old & ~MMF_DUMPABLE_MASK) | value;
1599 } while (cmpxchg(&mm->flags, old, new) != old);
1600}
1601
1602SYSCALL_DEFINE3(execve,
1603 const char __user *, filename,
1604 const char __user *const __user *, argv,
1605 const char __user *const __user *, envp)
1606{
1607 return do_execve(getname(filename), argv, envp);
1608}
1609#ifdef CONFIG_COMPAT
1610COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1611 const compat_uptr_t __user *, argv,
1612 const compat_uptr_t __user *, envp)
1613{
1614 return compat_do_execve(getname(filename), argv, envp);
1615}
1616#endif