Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
  19#include "check-integrity.h"
 
  20#include "raid56.h"
  21#include "block-group.h"
  22#include "zoned.h"
  23#include "fs.h"
  24#include "accessors.h"
  25#include "file-item.h"
  26#include "scrub.h"
  27
  28/*
  29 * This is only the first step towards a full-features scrub. It reads all
  30 * extent and super block and verifies the checksums. In case a bad checksum
  31 * is found or the extent cannot be read, good data will be written back if
  32 * any can be found.
  33 *
  34 * Future enhancements:
  35 *  - In case an unrepairable extent is encountered, track which files are
  36 *    affected and report them
  37 *  - track and record media errors, throw out bad devices
  38 *  - add a mode to also read unallocated space
  39 */
  40
  41struct scrub_block;
  42struct scrub_ctx;
  43
  44/*
  45 * The following three values only influence the performance.
  46 *
  47 * The last one configures the number of parallel and outstanding I/O
  48 * operations. The first one configures an upper limit for the number
  49 * of (dynamically allocated) pages that are added to a bio.
  50 */
  51#define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
  52#define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
 
  53
  54/*
  55 * The following value times PAGE_SIZE needs to be large enough to match the
  56 * largest node/leaf/sector size that shall be supported.
 
  57 */
  58#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
  59
  60#define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))
  61
  62/*
  63 * Maximum number of mirrors that can be available for all profiles counting
  64 * the target device of dev-replace as one. During an active device replace
  65 * procedure, the target device of the copy operation is a mirror for the
  66 * filesystem data as well that can be used to read data in order to repair
  67 * read errors on other disks.
  68 *
  69 * Current value is derived from RAID1C4 with 4 copies.
  70 */
  71#define BTRFS_MAX_MIRRORS (4 + 1)
  72
  73struct scrub_recover {
  74	refcount_t		refs;
  75	struct btrfs_io_context	*bioc;
  76	u64			map_length;
  77};
  78
  79struct scrub_sector {
  80	struct scrub_block	*sblock;
  81	struct list_head	list;
 
  82	u64			flags;  /* extent flags */
  83	u64			generation;
  84	/* Offset in bytes to @sblock. */
  85	u32			offset;
  86	atomic_t		refs;
  87	unsigned int		have_csum:1;
  88	unsigned int		io_error:1;
 
 
 
 
  89	u8			csum[BTRFS_CSUM_SIZE];
  90
  91	struct scrub_recover	*recover;
  92};
  93
  94struct scrub_bio {
  95	int			index;
  96	struct scrub_ctx	*sctx;
  97	struct btrfs_device	*dev;
  98	struct bio		*bio;
  99	blk_status_t		status;
 100	u64			logical;
 101	u64			physical;
 102	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
 103	int			sector_count;
 
 
 
 
 104	int			next_free;
 105	struct work_struct	work;
 106};
 107
 108struct scrub_block {
 109	/*
 110	 * Each page will have its page::private used to record the logical
 111	 * bytenr.
 112	 */
 113	struct page		*pages[SCRUB_MAX_PAGES];
 114	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
 115	struct btrfs_device	*dev;
 116	/* Logical bytenr of the sblock */
 117	u64			logical;
 118	u64			physical;
 119	u64			physical_for_dev_replace;
 120	/* Length of sblock in bytes */
 121	u32			len;
 122	int			sector_count;
 123	int			mirror_num;
 124
 125	atomic_t		outstanding_sectors;
 126	refcount_t		refs; /* free mem on transition to zero */
 127	struct scrub_ctx	*sctx;
 128	struct scrub_parity	*sparity;
 129	struct {
 130		unsigned int	header_error:1;
 131		unsigned int	checksum_error:1;
 132		unsigned int	no_io_error_seen:1;
 133		unsigned int	generation_error:1; /* also sets header_error */
 134
 135		/* The following is for the data used to check parity */
 136		/* It is for the data with checksum */
 137		unsigned int	data_corrected:1;
 138	};
 139	struct work_struct	work;
 140};
 141
 142/* Used for the chunks with parity stripe such RAID5/6 */
 143struct scrub_parity {
 144	struct scrub_ctx	*sctx;
 145
 146	struct btrfs_device	*scrub_dev;
 147
 148	u64			logic_start;
 149
 150	u64			logic_end;
 151
 152	int			nsectors;
 153
 154	u32			stripe_len;
 155
 156	refcount_t		refs;
 157
 158	struct list_head	sectors_list;
 159
 160	/* Work of parity check and repair */
 161	struct work_struct	work;
 162
 163	/* Mark the parity blocks which have data */
 164	unsigned long		dbitmap;
 165
 166	/*
 167	 * Mark the parity blocks which have data, but errors happen when
 168	 * read data or check data
 169	 */
 170	unsigned long		ebitmap;
 171};
 172
 173struct scrub_ctx {
 174	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 175	struct btrfs_fs_info	*fs_info;
 176	int			first_free;
 177	int			curr;
 178	atomic_t		bios_in_flight;
 179	atomic_t		workers_pending;
 180	spinlock_t		list_lock;
 181	wait_queue_head_t	list_wait;
 
 182	struct list_head	csum_list;
 183	atomic_t		cancel_req;
 184	int			readonly;
 185	int			sectors_per_bio;
 186
 187	/* State of IO submission throttling affecting the associated device */
 188	ktime_t			throttle_deadline;
 189	u64			throttle_sent;
 190
 191	int			is_dev_replace;
 192	u64			write_pointer;
 193
 194	struct scrub_bio        *wr_curr_bio;
 195	struct mutex            wr_lock;
 196	struct btrfs_device     *wr_tgtdev;
 197	bool                    flush_all_writes;
 198
 199	/*
 200	 * statistics
 201	 */
 202	struct btrfs_scrub_progress stat;
 203	spinlock_t		stat_lock;
 
 204
 205	/*
 206	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 207	 * decrement bios_in_flight and workers_pending and then do a wakeup
 208	 * on the list_wait wait queue. We must ensure the main scrub task
 209	 * doesn't free the scrub context before or while the workers are
 210	 * doing the wakeup() call.
 211	 */
 212	refcount_t              refs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213};
 214
 215struct scrub_warning {
 216	struct btrfs_path	*path;
 217	u64			extent_item_size;
 
 
 218	const char		*errstr;
 219	u64			physical;
 220	u64			logical;
 221	struct btrfs_device	*dev;
 
 
 222};
 223
 224struct full_stripe_lock {
 225	struct rb_node node;
 226	u64 logical;
 227	u64 refs;
 228	struct mutex mutex;
 229};
 230
 231#ifndef CONFIG_64BIT
 232/* This structure is for archtectures whose (void *) is smaller than u64 */
 233struct scrub_page_private {
 234	u64 logical;
 235};
 236#endif
 237
 238static int attach_scrub_page_private(struct page *page, u64 logical)
 239{
 240#ifdef CONFIG_64BIT
 241	attach_page_private(page, (void *)logical);
 242	return 0;
 243#else
 244	struct scrub_page_private *spp;
 245
 246	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
 247	if (!spp)
 248		return -ENOMEM;
 249	spp->logical = logical;
 250	attach_page_private(page, (void *)spp);
 251	return 0;
 252#endif
 253}
 254
 255static void detach_scrub_page_private(struct page *page)
 256{
 257#ifdef CONFIG_64BIT
 258	detach_page_private(page);
 259	return;
 260#else
 261	struct scrub_page_private *spp;
 262
 263	spp = detach_page_private(page);
 264	kfree(spp);
 265	return;
 266#endif
 267}
 268
 269static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
 270					     struct btrfs_device *dev,
 271					     u64 logical, u64 physical,
 272					     u64 physical_for_dev_replace,
 273					     int mirror_num)
 274{
 275	struct scrub_block *sblock;
 276
 277	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
 278	if (!sblock)
 279		return NULL;
 280	refcount_set(&sblock->refs, 1);
 281	sblock->sctx = sctx;
 282	sblock->logical = logical;
 283	sblock->physical = physical;
 284	sblock->physical_for_dev_replace = physical_for_dev_replace;
 285	sblock->dev = dev;
 286	sblock->mirror_num = mirror_num;
 287	sblock->no_io_error_seen = 1;
 288	/*
 289	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
 290	 * the corresponding page is not allocated.
 291	 */
 292	return sblock;
 293}
 294
 295/*
 296 * Allocate a new scrub sector and attach it to @sblock.
 297 *
 298 * Will also allocate new pages for @sblock if needed.
 299 */
 300static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
 301					       u64 logical)
 302{
 303	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
 304	struct scrub_sector *ssector;
 305
 306	/* We must never have scrub_block exceed U32_MAX in size. */
 307	ASSERT(logical - sblock->logical < U32_MAX);
 308
 309	ssector = kzalloc(sizeof(*ssector), GFP_KERNEL);
 310	if (!ssector)
 311		return NULL;
 312
 313	/* Allocate a new page if the slot is not allocated */
 314	if (!sblock->pages[page_index]) {
 315		int ret;
 316
 317		sblock->pages[page_index] = alloc_page(GFP_KERNEL);
 318		if (!sblock->pages[page_index]) {
 319			kfree(ssector);
 320			return NULL;
 321		}
 322		ret = attach_scrub_page_private(sblock->pages[page_index],
 323				sblock->logical + (page_index << PAGE_SHIFT));
 324		if (ret < 0) {
 325			kfree(ssector);
 326			__free_page(sblock->pages[page_index]);
 327			sblock->pages[page_index] = NULL;
 328			return NULL;
 329		}
 330	}
 331
 332	atomic_set(&ssector->refs, 1);
 333	ssector->sblock = sblock;
 334	/* The sector to be added should not be used */
 335	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
 336	ssector->offset = logical - sblock->logical;
 337
 338	/* The sector count must be smaller than the limit */
 339	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);
 340
 341	sblock->sectors[sblock->sector_count] = ssector;
 342	sblock->sector_count++;
 343	sblock->len += sblock->sctx->fs_info->sectorsize;
 344
 345	return ssector;
 346}
 347
 348static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
 349{
 350	struct scrub_block *sblock = ssector->sblock;
 351	pgoff_t index;
 352	/*
 353	 * When calling this function, ssector must be alreaday attached to the
 354	 * parent sblock.
 355	 */
 356	ASSERT(sblock);
 357
 358	/* The range should be inside the sblock range */
 359	ASSERT(ssector->offset < sblock->len);
 360
 361	index = ssector->offset >> PAGE_SHIFT;
 362	ASSERT(index < SCRUB_MAX_PAGES);
 363	ASSERT(sblock->pages[index]);
 364	ASSERT(PagePrivate(sblock->pages[index]));
 365	return sblock->pages[index];
 366}
 367
 368static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
 369{
 370	struct scrub_block *sblock = ssector->sblock;
 371
 372	/*
 373	 * When calling this function, ssector must be already attached to the
 374	 * parent sblock.
 375	 */
 376	ASSERT(sblock);
 377
 378	/* The range should be inside the sblock range */
 379	ASSERT(ssector->offset < sblock->len);
 380
 381	return offset_in_page(ssector->offset);
 382}
 383
 384static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
 385{
 386	return page_address(scrub_sector_get_page(ssector)) +
 387	       scrub_sector_get_page_offset(ssector);
 388}
 389
 390static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
 391				unsigned int len)
 392{
 393	return bio_add_page(bio, scrub_sector_get_page(ssector), len,
 394			    scrub_sector_get_page_offset(ssector));
 395}
 396
 397static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 398				     struct scrub_block *sblocks_for_recheck[]);
 399static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 400				struct scrub_block *sblock,
 401				int retry_failed_mirror);
 402static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 
 
 
 
 
 403static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 404					     struct scrub_block *sblock_good);
 405static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
 
 406					    struct scrub_block *sblock_good,
 407					    int sector_num, int force_write);
 408static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 409static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
 410					     int sector_num);
 411static int scrub_checksum_data(struct scrub_block *sblock);
 412static int scrub_checksum_tree_block(struct scrub_block *sblock);
 413static int scrub_checksum_super(struct scrub_block *sblock);
 
 414static void scrub_block_put(struct scrub_block *sblock);
 415static void scrub_sector_get(struct scrub_sector *sector);
 416static void scrub_sector_put(struct scrub_sector *sector);
 417static void scrub_parity_get(struct scrub_parity *sparity);
 418static void scrub_parity_put(struct scrub_parity *sparity);
 419static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
 420			 u64 physical, struct btrfs_device *dev, u64 flags,
 421			 u64 gen, int mirror_num, u8 *csum,
 422			 u64 physical_for_dev_replace);
 423static void scrub_bio_end_io(struct bio *bio);
 424static void scrub_bio_end_io_worker(struct work_struct *work);
 425static void scrub_block_complete(struct scrub_block *sblock);
 426static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
 427				 u64 extent_logical, u32 extent_len,
 428				 u64 *extent_physical,
 429				 struct btrfs_device **extent_dev,
 430				 int *extent_mirror_num);
 431static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
 432				      struct scrub_sector *sector);
 
 
 
 
 
 
 433static void scrub_wr_submit(struct scrub_ctx *sctx);
 434static void scrub_wr_bio_end_io(struct bio *bio);
 435static void scrub_wr_bio_end_io_worker(struct work_struct *work);
 436static void scrub_put_ctx(struct scrub_ctx *sctx);
 
 
 
 
 
 
 
 
 437
 438static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
 439{
 440	return sector->recover &&
 441	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 442}
 443
 444static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 445{
 446	refcount_inc(&sctx->refs);
 447	atomic_inc(&sctx->bios_in_flight);
 448}
 449
 450static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 451{
 452	atomic_dec(&sctx->bios_in_flight);
 453	wake_up(&sctx->list_wait);
 454	scrub_put_ctx(sctx);
 455}
 456
 457static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 458{
 459	while (atomic_read(&fs_info->scrub_pause_req)) {
 460		mutex_unlock(&fs_info->scrub_lock);
 461		wait_event(fs_info->scrub_pause_wait,
 462		   atomic_read(&fs_info->scrub_pause_req) == 0);
 463		mutex_lock(&fs_info->scrub_lock);
 464	}
 465}
 466
 467static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 468{
 469	atomic_inc(&fs_info->scrubs_paused);
 470	wake_up(&fs_info->scrub_pause_wait);
 471}
 472
 473static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 474{
 475	mutex_lock(&fs_info->scrub_lock);
 476	__scrub_blocked_if_needed(fs_info);
 477	atomic_dec(&fs_info->scrubs_paused);
 478	mutex_unlock(&fs_info->scrub_lock);
 479
 480	wake_up(&fs_info->scrub_pause_wait);
 481}
 482
 483static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 484{
 485	scrub_pause_on(fs_info);
 486	scrub_pause_off(fs_info);
 487}
 488
 489/*
 490 * Insert new full stripe lock into full stripe locks tree
 491 *
 492 * Return pointer to existing or newly inserted full_stripe_lock structure if
 493 * everything works well.
 494 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 495 *
 496 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 497 * function
 498 */
 499static struct full_stripe_lock *insert_full_stripe_lock(
 500		struct btrfs_full_stripe_locks_tree *locks_root,
 501		u64 fstripe_logical)
 502{
 503	struct rb_node **p;
 504	struct rb_node *parent = NULL;
 505	struct full_stripe_lock *entry;
 506	struct full_stripe_lock *ret;
 507
 508	lockdep_assert_held(&locks_root->lock);
 509
 510	p = &locks_root->root.rb_node;
 511	while (*p) {
 512		parent = *p;
 513		entry = rb_entry(parent, struct full_stripe_lock, node);
 514		if (fstripe_logical < entry->logical) {
 515			p = &(*p)->rb_left;
 516		} else if (fstripe_logical > entry->logical) {
 517			p = &(*p)->rb_right;
 518		} else {
 519			entry->refs++;
 520			return entry;
 521		}
 522	}
 523
 524	/*
 525	 * Insert new lock.
 526	 */
 527	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
 528	if (!ret)
 529		return ERR_PTR(-ENOMEM);
 530	ret->logical = fstripe_logical;
 531	ret->refs = 1;
 532	mutex_init(&ret->mutex);
 533
 534	rb_link_node(&ret->node, parent, p);
 535	rb_insert_color(&ret->node, &locks_root->root);
 536	return ret;
 537}
 538
 539/*
 540 * Search for a full stripe lock of a block group
 541 *
 542 * Return pointer to existing full stripe lock if found
 543 * Return NULL if not found
 544 */
 545static struct full_stripe_lock *search_full_stripe_lock(
 546		struct btrfs_full_stripe_locks_tree *locks_root,
 547		u64 fstripe_logical)
 548{
 549	struct rb_node *node;
 550	struct full_stripe_lock *entry;
 551
 552	lockdep_assert_held(&locks_root->lock);
 553
 554	node = locks_root->root.rb_node;
 555	while (node) {
 556		entry = rb_entry(node, struct full_stripe_lock, node);
 557		if (fstripe_logical < entry->logical)
 558			node = node->rb_left;
 559		else if (fstripe_logical > entry->logical)
 560			node = node->rb_right;
 561		else
 562			return entry;
 563	}
 564	return NULL;
 565}
 566
 567/*
 568 * Helper to get full stripe logical from a normal bytenr.
 569 *
 570 * Caller must ensure @cache is a RAID56 block group.
 571 */
 572static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
 573{
 574	u64 ret;
 575
 576	/*
 577	 * Due to chunk item size limit, full stripe length should not be
 578	 * larger than U32_MAX. Just a sanity check here.
 
 
 
 
 
 579	 */
 580	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
 
 
 
 581
 582	/*
 583	 * round_down() can only handle power of 2, while RAID56 full
 584	 * stripe length can be 64KiB * n, so we need to manually round down.
 
 
 
 585	 */
 586	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
 587			cache->full_stripe_len + cache->start;
 588	return ret;
 589}
 590
 591/*
 592 * Lock a full stripe to avoid concurrency of recovery and read
 593 *
 594 * It's only used for profiles with parities (RAID5/6), for other profiles it
 595 * does nothing.
 596 *
 597 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 598 * So caller must call unlock_full_stripe() at the same context.
 599 *
 600 * Return <0 if encounters error.
 601 */
 602static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 603			    bool *locked_ret)
 604{
 605	struct btrfs_block_group *bg_cache;
 606	struct btrfs_full_stripe_locks_tree *locks_root;
 607	struct full_stripe_lock *existing;
 608	u64 fstripe_start;
 609	int ret = 0;
 610
 611	*locked_ret = false;
 612	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 613	if (!bg_cache) {
 614		ASSERT(0);
 615		return -ENOENT;
 616	}
 617
 618	/* Profiles not based on parity don't need full stripe lock */
 619	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 620		goto out;
 621	locks_root = &bg_cache->full_stripe_locks_root;
 622
 623	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 624
 625	/* Now insert the full stripe lock */
 626	mutex_lock(&locks_root->lock);
 627	existing = insert_full_stripe_lock(locks_root, fstripe_start);
 628	mutex_unlock(&locks_root->lock);
 629	if (IS_ERR(existing)) {
 630		ret = PTR_ERR(existing);
 631		goto out;
 632	}
 633	mutex_lock(&existing->mutex);
 634	*locked_ret = true;
 635out:
 636	btrfs_put_block_group(bg_cache);
 637	return ret;
 638}
 639
 640/*
 641 * Unlock a full stripe.
 642 *
 643 * NOTE: Caller must ensure it's the same context calling corresponding
 644 * lock_full_stripe().
 645 *
 646 * Return 0 if we unlock full stripe without problem.
 647 * Return <0 for error
 648 */
 649static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
 650			      bool locked)
 651{
 652	struct btrfs_block_group *bg_cache;
 653	struct btrfs_full_stripe_locks_tree *locks_root;
 654	struct full_stripe_lock *fstripe_lock;
 655	u64 fstripe_start;
 656	bool freeit = false;
 657	int ret = 0;
 658
 659	/* If we didn't acquire full stripe lock, no need to continue */
 660	if (!locked)
 661		return 0;
 662
 663	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
 664	if (!bg_cache) {
 665		ASSERT(0);
 666		return -ENOENT;
 667	}
 668	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
 669		goto out;
 670
 671	locks_root = &bg_cache->full_stripe_locks_root;
 672	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
 673
 674	mutex_lock(&locks_root->lock);
 675	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
 676	/* Unpaired unlock_full_stripe() detected */
 677	if (!fstripe_lock) {
 678		WARN_ON(1);
 679		ret = -ENOENT;
 680		mutex_unlock(&locks_root->lock);
 681		goto out;
 682	}
 683
 684	if (fstripe_lock->refs == 0) {
 685		WARN_ON(1);
 686		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
 687			fstripe_lock->logical);
 688	} else {
 689		fstripe_lock->refs--;
 690	}
 691
 692	if (fstripe_lock->refs == 0) {
 693		rb_erase(&fstripe_lock->node, &locks_root->root);
 694		freeit = true;
 695	}
 696	mutex_unlock(&locks_root->lock);
 697
 698	mutex_unlock(&fstripe_lock->mutex);
 699	if (freeit)
 700		kfree(fstripe_lock);
 701out:
 702	btrfs_put_block_group(bg_cache);
 703	return ret;
 704}
 705
 706static void scrub_free_csums(struct scrub_ctx *sctx)
 707{
 708	while (!list_empty(&sctx->csum_list)) {
 709		struct btrfs_ordered_sum *sum;
 710		sum = list_first_entry(&sctx->csum_list,
 711				       struct btrfs_ordered_sum, list);
 712		list_del(&sum->list);
 713		kfree(sum);
 714	}
 715}
 716
 717static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 718{
 719	int i;
 720
 721	if (!sctx)
 722		return;
 723
 
 
 724	/* this can happen when scrub is cancelled */
 725	if (sctx->curr != -1) {
 726		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 727
 728		for (i = 0; i < sbio->sector_count; i++)
 729			scrub_block_put(sbio->sectors[i]->sblock);
 
 
 730		bio_put(sbio->bio);
 731	}
 732
 733	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 734		struct scrub_bio *sbio = sctx->bios[i];
 735
 736		if (!sbio)
 737			break;
 738		kfree(sbio);
 739	}
 740
 741	kfree(sctx->wr_curr_bio);
 742	scrub_free_csums(sctx);
 743	kfree(sctx);
 744}
 745
 746static void scrub_put_ctx(struct scrub_ctx *sctx)
 747{
 748	if (refcount_dec_and_test(&sctx->refs))
 749		scrub_free_ctx(sctx);
 750}
 751
 752static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 753		struct btrfs_fs_info *fs_info, int is_dev_replace)
 754{
 755	struct scrub_ctx *sctx;
 756	int		i;
 
 
 
 757
 758	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 759	if (!sctx)
 760		goto nomem;
 761	refcount_set(&sctx->refs, 1);
 762	sctx->is_dev_replace = is_dev_replace;
 763	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
 764	sctx->curr = -1;
 765	sctx->fs_info = fs_info;
 766	INIT_LIST_HEAD(&sctx->csum_list);
 767	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 768		struct scrub_bio *sbio;
 769
 770		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 771		if (!sbio)
 772			goto nomem;
 773		sctx->bios[i] = sbio;
 774
 775		sbio->index = i;
 776		sbio->sctx = sctx;
 777		sbio->sector_count = 0;
 778		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
 
 779
 780		if (i != SCRUB_BIOS_PER_SCTX - 1)
 781			sctx->bios[i]->next_free = i + 1;
 782		else
 783			sctx->bios[i]->next_free = -1;
 784	}
 785	sctx->first_free = 0;
 
 
 
 786	atomic_set(&sctx->bios_in_flight, 0);
 787	atomic_set(&sctx->workers_pending, 0);
 788	atomic_set(&sctx->cancel_req, 0);
 
 
 789
 790	spin_lock_init(&sctx->list_lock);
 791	spin_lock_init(&sctx->stat_lock);
 792	init_waitqueue_head(&sctx->list_wait);
 793	sctx->throttle_deadline = 0;
 794
 795	WARN_ON(sctx->wr_curr_bio != NULL);
 796	mutex_init(&sctx->wr_lock);
 797	sctx->wr_curr_bio = NULL;
 798	if (is_dev_replace) {
 799		WARN_ON(!fs_info->dev_replace.tgtdev);
 800		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 801		sctx->flush_all_writes = false;
 802	}
 803
 804	return sctx;
 805
 806nomem:
 807	scrub_free_ctx(sctx);
 808	return ERR_PTR(-ENOMEM);
 809}
 810
 811static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
 812				     u64 root, void *warn_ctx)
 813{
 
 814	u32 nlink;
 815	int ret;
 816	int i;
 817	unsigned nofs_flag;
 818	struct extent_buffer *eb;
 819	struct btrfs_inode_item *inode_item;
 820	struct scrub_warning *swarn = warn_ctx;
 821	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 822	struct inode_fs_paths *ipath = NULL;
 823	struct btrfs_root *local_root;
 824	struct btrfs_key key;
 825
 826	local_root = btrfs_get_fs_root(fs_info, root, true);
 
 
 
 827	if (IS_ERR(local_root)) {
 828		ret = PTR_ERR(local_root);
 829		goto err;
 830	}
 831
 832	/*
 833	 * this makes the path point to (inum INODE_ITEM ioff)
 834	 */
 835	key.objectid = inum;
 836	key.type = BTRFS_INODE_ITEM_KEY;
 837	key.offset = 0;
 838
 839	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 840	if (ret) {
 841		btrfs_put_root(local_root);
 842		btrfs_release_path(swarn->path);
 843		goto err;
 844	}
 845
 846	eb = swarn->path->nodes[0];
 847	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 848					struct btrfs_inode_item);
 
 849	nlink = btrfs_inode_nlink(eb, inode_item);
 850	btrfs_release_path(swarn->path);
 851
 852	/*
 853	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 854	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 855	 * not seem to be strictly necessary.
 856	 */
 857	nofs_flag = memalloc_nofs_save();
 858	ipath = init_ipath(4096, local_root, swarn->path);
 859	memalloc_nofs_restore(nofs_flag);
 860	if (IS_ERR(ipath)) {
 861		btrfs_put_root(local_root);
 862		ret = PTR_ERR(ipath);
 863		ipath = NULL;
 864		goto err;
 865	}
 866	ret = paths_from_inode(inum, ipath);
 867
 868	if (ret < 0)
 869		goto err;
 870
 871	/*
 872	 * we deliberately ignore the bit ipath might have been too small to
 873	 * hold all of the paths here
 874	 */
 875	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 876		btrfs_warn_in_rcu(fs_info,
 877"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 878				  swarn->errstr, swarn->logical,
 879				  btrfs_dev_name(swarn->dev),
 880				  swarn->physical,
 881				  root, inum, offset,
 882				  fs_info->sectorsize, nlink,
 883				  (char *)(unsigned long)ipath->fspath->val[i]);
 884
 885	btrfs_put_root(local_root);
 886	free_ipath(ipath);
 887	return 0;
 888
 889err:
 890	btrfs_warn_in_rcu(fs_info,
 891			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 892			  swarn->errstr, swarn->logical,
 893			  btrfs_dev_name(swarn->dev),
 894			  swarn->physical,
 895			  root, inum, offset, ret);
 896
 897	free_ipath(ipath);
 898	return 0;
 899}
 900
 901static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 902{
 903	struct btrfs_device *dev;
 904	struct btrfs_fs_info *fs_info;
 905	struct btrfs_path *path;
 906	struct btrfs_key found_key;
 907	struct extent_buffer *eb;
 908	struct btrfs_extent_item *ei;
 909	struct scrub_warning swarn;
 910	unsigned long ptr = 0;
 
 911	u64 flags = 0;
 912	u64 ref_root;
 913	u32 item_size;
 914	u8 ref_level = 0;
 
 915	int ret;
 916
 917	WARN_ON(sblock->sector_count < 1);
 918	dev = sblock->dev;
 919	fs_info = sblock->sctx->fs_info;
 920
 921	/* Super block error, no need to search extent tree. */
 922	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 923		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
 924			errstr, btrfs_dev_name(dev), sblock->physical);
 925		return;
 926	}
 927	path = btrfs_alloc_path();
 928	if (!path)
 929		return;
 930
 931	swarn.physical = sblock->physical;
 932	swarn.logical = sblock->logical;
 
 
 933	swarn.errstr = errstr;
 934	swarn.dev = NULL;
 
 
 
 
 
 935
 936	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 937				  &flags);
 938	if (ret < 0)
 939		goto out;
 940
 
 941	swarn.extent_item_size = found_key.offset;
 942
 943	eb = path->nodes[0];
 944	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 945	item_size = btrfs_item_size(eb, path->slots[0]);
 946
 947	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 948		do {
 949			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 950						      item_size, &ref_root,
 951						      &ref_level);
 952			btrfs_warn_in_rcu(fs_info,
 953"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 954				errstr, swarn.logical,
 955				btrfs_dev_name(dev),
 956				swarn.physical,
 957				ref_level ? "node" : "leaf",
 958				ret < 0 ? -1 : ref_level,
 959				ret < 0 ? -1 : ref_root);
 960		} while (ret != 1);
 961		btrfs_release_path(path);
 962	} else {
 963		struct btrfs_backref_walk_ctx ctx = { 0 };
 964
 965		btrfs_release_path(path);
 966
 967		ctx.bytenr = found_key.objectid;
 968		ctx.extent_item_pos = swarn.logical - found_key.objectid;
 969		ctx.fs_info = fs_info;
 970
 971		swarn.path = path;
 972		swarn.dev = dev;
 973
 974		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
 
 975	}
 976
 977out:
 978	btrfs_free_path(path);
 
 
 979}
 980
 981static inline void scrub_get_recover(struct scrub_recover *recover)
 982{
 983	refcount_inc(&recover->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984}
 985
 986static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
 987				     struct scrub_recover *recover)
 988{
 989	if (refcount_dec_and_test(&recover->refs)) {
 990		btrfs_bio_counter_dec(fs_info);
 991		btrfs_put_bioc(recover->bioc);
 992		kfree(recover);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994}
 995
 996/*
 997 * scrub_handle_errored_block gets called when either verification of the
 998 * sectors failed or the bio failed to read, e.g. with EIO. In the latter
 999 * case, this function handles all sectors in the bio, even though only one
1000 * may be bad.
1001 * The goal of this function is to repair the errored block by using the
1002 * contents of one of the mirrors.
1003 */
1004static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1005{
1006	struct scrub_ctx *sctx = sblock_to_check->sctx;
1007	struct btrfs_device *dev = sblock_to_check->dev;
1008	struct btrfs_fs_info *fs_info;
 
1009	u64 logical;
 
1010	unsigned int failed_mirror_index;
1011	unsigned int is_metadata;
1012	unsigned int have_csum;
1013	/* One scrub_block for each mirror */
1014	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
1015	struct scrub_block *sblock_bad;
1016	int ret;
1017	int mirror_index;
1018	int sector_num;
1019	int success;
1020	bool full_stripe_locked;
1021	unsigned int nofs_flag;
1022	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1023				      DEFAULT_RATELIMIT_BURST);
1024
1025	BUG_ON(sblock_to_check->sector_count < 1);
1026	fs_info = sctx->fs_info;
1027	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1028		/*
1029		 * If we find an error in a super block, we just report it.
1030		 * They will get written with the next transaction commit
1031		 * anyway
1032		 */
1033		scrub_print_warning("super block error", sblock_to_check);
1034		spin_lock(&sctx->stat_lock);
1035		++sctx->stat.super_errors;
1036		spin_unlock(&sctx->stat_lock);
1037		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1038		return 0;
1039	}
1040	logical = sblock_to_check->logical;
1041	ASSERT(sblock_to_check->mirror_num);
1042	failed_mirror_index = sblock_to_check->mirror_num - 1;
1043	is_metadata = !(sblock_to_check->sectors[0]->flags &
 
 
1044			BTRFS_EXTENT_FLAG_DATA);
1045	have_csum = sblock_to_check->sectors[0]->have_csum;
1046
1047	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
1048		return 0;
1049
1050	/*
1051	 * We must use GFP_NOFS because the scrub task might be waiting for a
1052	 * worker task executing this function and in turn a transaction commit
1053	 * might be waiting the scrub task to pause (which needs to wait for all
1054	 * the worker tasks to complete before pausing).
1055	 * We do allocations in the workers through insert_full_stripe_lock()
1056	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1057	 * this function.
1058	 */
1059	nofs_flag = memalloc_nofs_save();
1060	/*
1061	 * For RAID5/6, race can happen for a different device scrub thread.
1062	 * For data corruption, Parity and Data threads will both try
1063	 * to recovery the data.
1064	 * Race can lead to doubly added csum error, or even unrecoverable
1065	 * error.
1066	 */
1067	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1068	if (ret < 0) {
1069		memalloc_nofs_restore(nofs_flag);
1070		spin_lock(&sctx->stat_lock);
1071		if (ret == -ENOMEM)
1072			sctx->stat.malloc_errors++;
1073		sctx->stat.read_errors++;
1074		sctx->stat.uncorrectable_errors++;
1075		spin_unlock(&sctx->stat_lock);
1076		return ret;
1077	}
1078
1079	/*
1080	 * read all mirrors one after the other. This includes to
1081	 * re-read the extent or metadata block that failed (that was
1082	 * the cause that this fixup code is called) another time,
1083	 * sector by sector this time in order to know which sectors
1084	 * caused I/O errors and which ones are good (for all mirrors).
1085	 * It is the goal to handle the situation when more than one
1086	 * mirror contains I/O errors, but the errors do not
1087	 * overlap, i.e. the data can be repaired by selecting the
1088	 * sectors from those mirrors without I/O error on the
1089	 * particular sectors. One example (with blocks >= 2 * sectorsize)
1090	 * would be that mirror #1 has an I/O error on the first sector,
1091	 * the second sector is good, and mirror #2 has an I/O error on
1092	 * the second sector, but the first sector is good.
1093	 * Then the first sector of the first mirror can be repaired by
1094	 * taking the first sector of the second mirror, and the
1095	 * second sector of the second mirror can be repaired by
1096	 * copying the contents of the 2nd sector of the 1st mirror.
1097	 * One more note: if the sectors of one mirror contain I/O
1098	 * errors, the checksum cannot be verified. In order to get
1099	 * the best data for repairing, the first attempt is to find
1100	 * a mirror without I/O errors and with a validated checksum.
1101	 * Only if this is not possible, the sectors are picked from
1102	 * mirrors with I/O errors without considering the checksum.
1103	 * If the latter is the case, at the end, the checksum of the
1104	 * repaired area is verified in order to correctly maintain
1105	 * the statistics.
1106	 */
1107	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1108		/*
1109		 * Note: the two members refs and outstanding_sectors are not
1110		 * used in the blocks that are used for the recheck procedure.
1111		 *
1112		 * But alloc_scrub_block() will initialize sblock::ref anyway,
1113		 * so we can use scrub_block_put() to clean them up.
1114		 *
1115		 * And here we don't setup the physical/dev for the sblock yet,
1116		 * they will be correctly initialized in scrub_setup_recheck_block().
1117		 */
1118		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
1119							logical, 0, 0, mirror_index);
1120		if (!sblocks_for_recheck[mirror_index]) {
1121			spin_lock(&sctx->stat_lock);
1122			sctx->stat.malloc_errors++;
1123			sctx->stat.read_errors++;
1124			sctx->stat.uncorrectable_errors++;
1125			spin_unlock(&sctx->stat_lock);
1126			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1127			goto out;
1128		}
1129	}
1130
1131	/* Setup the context, map the logical blocks and alloc the sectors */
1132	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 
1133	if (ret) {
1134		spin_lock(&sctx->stat_lock);
1135		sctx->stat.read_errors++;
1136		sctx->stat.uncorrectable_errors++;
1137		spin_unlock(&sctx->stat_lock);
1138		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1139		goto out;
1140	}
1141	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1142	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1143
1144	/* build and submit the bios for the failed mirror, check checksums */
1145	scrub_recheck_block(fs_info, sblock_bad, 1);
 
1146
1147	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1148	    sblock_bad->no_io_error_seen) {
1149		/*
1150		 * The error disappeared after reading sector by sector, or
1151		 * the area was part of a huge bio and other parts of the
1152		 * bio caused I/O errors, or the block layer merged several
1153		 * read requests into one and the error is caused by a
1154		 * different bio (usually one of the two latter cases is
1155		 * the cause)
1156		 */
1157		spin_lock(&sctx->stat_lock);
1158		sctx->stat.unverified_errors++;
1159		sblock_to_check->data_corrected = 1;
1160		spin_unlock(&sctx->stat_lock);
1161
1162		if (sctx->is_dev_replace)
1163			scrub_write_block_to_dev_replace(sblock_bad);
1164		goto out;
1165	}
1166
1167	if (!sblock_bad->no_io_error_seen) {
1168		spin_lock(&sctx->stat_lock);
1169		sctx->stat.read_errors++;
1170		spin_unlock(&sctx->stat_lock);
1171		if (__ratelimit(&rs))
1172			scrub_print_warning("i/o error", sblock_to_check);
1173		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1174	} else if (sblock_bad->checksum_error) {
1175		spin_lock(&sctx->stat_lock);
1176		sctx->stat.csum_errors++;
1177		spin_unlock(&sctx->stat_lock);
1178		if (__ratelimit(&rs))
1179			scrub_print_warning("checksum error", sblock_to_check);
1180		btrfs_dev_stat_inc_and_print(dev,
1181					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1182	} else if (sblock_bad->header_error) {
1183		spin_lock(&sctx->stat_lock);
1184		sctx->stat.verify_errors++;
1185		spin_unlock(&sctx->stat_lock);
1186		if (__ratelimit(&rs))
1187			scrub_print_warning("checksum/header error",
1188					    sblock_to_check);
1189		if (sblock_bad->generation_error)
1190			btrfs_dev_stat_inc_and_print(dev,
1191				BTRFS_DEV_STAT_GENERATION_ERRS);
1192		else
1193			btrfs_dev_stat_inc_and_print(dev,
1194				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1195	}
1196
1197	if (sctx->readonly) {
1198		ASSERT(!sctx->is_dev_replace);
1199		goto out;
1200	}
1201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202	/*
1203	 * now build and submit the bios for the other mirrors, check
1204	 * checksums.
1205	 * First try to pick the mirror which is completely without I/O
1206	 * errors and also does not have a checksum error.
1207	 * If one is found, and if a checksum is present, the full block
1208	 * that is known to contain an error is rewritten. Afterwards
1209	 * the block is known to be corrected.
1210	 * If a mirror is found which is completely correct, and no
1211	 * checksum is present, only those sectors are rewritten that had
1212	 * an I/O error in the block to be repaired, since it cannot be
1213	 * determined, which copy of the other sectors is better (and it
1214	 * could happen otherwise that a correct sector would be
1215	 * overwritten by a bad one).
1216	 */
1217	for (mirror_index = 0; ;mirror_index++) {
 
 
 
1218		struct scrub_block *sblock_other;
1219
1220		if (mirror_index == failed_mirror_index)
1221			continue;
1222
1223		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1224		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1225			if (mirror_index >= BTRFS_MAX_MIRRORS)
1226				break;
1227			if (!sblocks_for_recheck[mirror_index]->sector_count)
1228				break;
1229
1230			sblock_other = sblocks_for_recheck[mirror_index];
1231		} else {
1232			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1233			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1234
1235			if (mirror_index >= max_allowed)
1236				break;
1237			if (!sblocks_for_recheck[1]->sector_count)
1238				break;
1239
1240			ASSERT(failed_mirror_index == 0);
1241			sblock_other = sblocks_for_recheck[1];
1242			sblock_other->mirror_num = 1 + mirror_index;
1243		}
1244
1245		/* build and submit the bios, check checksums */
1246		scrub_recheck_block(fs_info, sblock_other, 0);
 
 
1247
1248		if (!sblock_other->header_error &&
1249		    !sblock_other->checksum_error &&
1250		    sblock_other->no_io_error_seen) {
1251			if (sctx->is_dev_replace) {
1252				scrub_write_block_to_dev_replace(sblock_other);
1253				goto corrected_error;
1254			} else {
 
 
1255				ret = scrub_repair_block_from_good_copy(
1256						sblock_bad, sblock_other);
1257				if (!ret)
1258					goto corrected_error;
1259			}
 
 
1260		}
1261	}
1262
1263	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1264		goto did_not_correct_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265
1266	/*
 
1267	 * In case of I/O errors in the area that is supposed to be
1268	 * repaired, continue by picking good copies of those sectors.
1269	 * Select the good sectors from mirrors to rewrite bad sectors from
1270	 * the area to fix. Afterwards verify the checksum of the block
1271	 * that is supposed to be repaired. This verification step is
1272	 * only done for the purpose of statistic counting and for the
1273	 * final scrub report, whether errors remain.
1274	 * A perfect algorithm could make use of the checksum and try
1275	 * all possible combinations of sectors from the different mirrors
1276	 * until the checksum verification succeeds. For example, when
1277	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1278	 * of mirror #2 is readable but the final checksum test fails,
1279	 * then the 2nd sector of mirror #3 could be tried, whether now
1280	 * the final checksum succeeds. But this would be a rare
1281	 * exception and is therefore not implemented. At least it is
1282	 * avoided that the good copy is overwritten.
1283	 * A more useful improvement would be to pick the sectors
1284	 * without I/O error based on sector sizes (512 bytes on legacy
1285	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1286	 * mirror could be repaired by taking 512 byte of a different
1287	 * mirror, even if other 512 byte sectors in the same sectorsize
1288	 * area are unreadable.
1289	 */
 
 
 
 
 
1290	success = 1;
1291	for (sector_num = 0; sector_num < sblock_bad->sector_count;
1292	     sector_num++) {
1293		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1294		struct scrub_block *sblock_other = NULL;
1295
1296		/* Skip no-io-error sectors in scrub */
1297		if (!sector_bad->io_error && !sctx->is_dev_replace)
1298			continue;
1299
1300		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1301			/*
1302			 * In case of dev replace, if raid56 rebuild process
1303			 * didn't work out correct data, then copy the content
1304			 * in sblock_bad to make sure target device is identical
1305			 * to source device, instead of writing garbage data in
1306			 * sblock_for_recheck array to target device.
1307			 */
1308			sblock_other = NULL;
1309		} else if (sector_bad->io_error) {
1310			/* Try to find no-io-error sector in mirrors */
1311			for (mirror_index = 0;
1312			     mirror_index < BTRFS_MAX_MIRRORS &&
1313			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1314			     mirror_index++) {
1315				if (!sblocks_for_recheck[mirror_index]->
1316				    sectors[sector_num]->io_error) {
1317					sblock_other = sblocks_for_recheck[mirror_index];
1318					break;
1319				}
1320			}
1321			if (!sblock_other)
1322				success = 0;
1323		}
1324
1325		if (sctx->is_dev_replace) {
1326			/*
1327			 * Did not find a mirror to fetch the sector from.
1328			 * scrub_write_sector_to_dev_replace() handles this
1329			 * case (sector->io_error), by filling the block with
1330			 * zeros before submitting the write request
1331			 */
1332			if (!sblock_other)
1333				sblock_other = sblock_bad;
1334
1335			if (scrub_write_sector_to_dev_replace(sblock_other,
1336							      sector_num) != 0) {
1337				atomic64_inc(
1338					&fs_info->dev_replace.num_write_errors);
1339				success = 0;
1340			}
1341		} else if (sblock_other) {
1342			ret = scrub_repair_sector_from_good_copy(sblock_bad,
1343								 sblock_other,
1344								 sector_num, 0);
1345			if (0 == ret)
1346				sector_bad->io_error = 0;
1347			else
1348				success = 0;
1349		}
1350	}
1351
1352	if (success && !sctx->is_dev_replace) {
1353		if (is_metadata || have_csum) {
1354			/*
1355			 * need to verify the checksum now that all
1356			 * sectors on disk are repaired (the write
1357			 * request for data to be repaired is on its way).
1358			 * Just be lazy and use scrub_recheck_block()
1359			 * which re-reads the data before the checksum
1360			 * is verified, but most likely the data comes out
1361			 * of the page cache.
1362			 */
1363			scrub_recheck_block(fs_info, sblock_bad, 1);
 
 
1364			if (!sblock_bad->header_error &&
1365			    !sblock_bad->checksum_error &&
1366			    sblock_bad->no_io_error_seen)
1367				goto corrected_error;
1368			else
1369				goto did_not_correct_error;
1370		} else {
1371corrected_error:
1372			spin_lock(&sctx->stat_lock);
1373			sctx->stat.corrected_errors++;
1374			sblock_to_check->data_corrected = 1;
1375			spin_unlock(&sctx->stat_lock);
1376			btrfs_err_rl_in_rcu(fs_info,
1377				"fixed up error at logical %llu on dev %s",
1378				logical, btrfs_dev_name(dev));
1379		}
1380	} else {
1381did_not_correct_error:
1382		spin_lock(&sctx->stat_lock);
1383		sctx->stat.uncorrectable_errors++;
1384		spin_unlock(&sctx->stat_lock);
1385		btrfs_err_rl_in_rcu(fs_info,
1386			"unable to fixup (regular) error at logical %llu on dev %s",
1387			logical, btrfs_dev_name(dev));
1388	}
1389
1390out:
1391	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1392		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
1393		struct scrub_recover *recover;
1394		int sector_index;
1395
1396		/* Not allocated, continue checking the next mirror */
1397		if (!sblock)
1398			continue;
1399
1400		for (sector_index = 0; sector_index < sblock->sector_count;
1401		     sector_index++) {
1402			/*
1403			 * Here we just cleanup the recover, each sector will be
1404			 * properly cleaned up by later scrub_block_put()
1405			 */
1406			recover = sblock->sectors[sector_index]->recover;
1407			if (recover) {
1408				scrub_put_recover(fs_info, recover);
1409				sblock->sectors[sector_index]->recover = NULL;
1410			}
1411		}
1412		scrub_block_put(sblock);
1413	}
1414
1415	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1416	memalloc_nofs_restore(nofs_flag);
1417	if (ret < 0)
1418		return ret;
1419	return 0;
1420}
1421
1422static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1423{
1424	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1425		return 2;
1426	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1427		return 3;
1428	else
1429		return (int)bioc->num_stripes;
1430}
1431
1432static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1433						 u64 *raid_map,
1434						 int nstripes, int mirror,
1435						 int *stripe_index,
1436						 u64 *stripe_offset)
1437{
1438	int i;
1439
1440	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1441		/* RAID5/6 */
1442		for (i = 0; i < nstripes; i++) {
1443			if (raid_map[i] == RAID6_Q_STRIPE ||
1444			    raid_map[i] == RAID5_P_STRIPE)
1445				continue;
1446
1447			if (logical >= raid_map[i] &&
1448			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1449				break;
1450		}
1451
1452		*stripe_index = i;
1453		*stripe_offset = logical - raid_map[i];
1454	} else {
1455		/* The other RAID type */
1456		*stripe_index = mirror;
1457		*stripe_offset = 0;
1458	}
1459}
1460
1461static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1462				     struct scrub_block *sblocks_for_recheck[])
1463{
1464	struct scrub_ctx *sctx = original_sblock->sctx;
1465	struct btrfs_fs_info *fs_info = sctx->fs_info;
1466	u64 logical = original_sblock->logical;
1467	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
1468	u64 generation = original_sblock->sectors[0]->generation;
1469	u64 flags = original_sblock->sectors[0]->flags;
1470	u64 have_csum = original_sblock->sectors[0]->have_csum;
1471	struct scrub_recover *recover;
1472	struct btrfs_io_context *bioc;
1473	u64 sublen;
1474	u64 mapped_length;
1475	u64 stripe_offset;
1476	int stripe_index;
1477	int sector_index = 0;
1478	int mirror_index;
1479	int nmirrors;
1480	int ret;
1481
 
 
 
 
 
 
 
1482	while (length > 0) {
1483		sublen = min_t(u64, length, fs_info->sectorsize);
1484		mapped_length = sublen;
1485		bioc = NULL;
1486
1487		/*
1488		 * With a length of sectorsize, each returned stripe represents
1489		 * one mirror
1490		 */
1491		btrfs_bio_counter_inc_blocked(fs_info);
1492		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1493				       logical, &mapped_length, &bioc);
1494		if (ret || !bioc || mapped_length < sublen) {
1495			btrfs_put_bioc(bioc);
1496			btrfs_bio_counter_dec(fs_info);
1497			return -EIO;
1498		}
1499
1500		recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL);
1501		if (!recover) {
1502			btrfs_put_bioc(bioc);
1503			btrfs_bio_counter_dec(fs_info);
1504			return -ENOMEM;
1505		}
1506
1507		refcount_set(&recover->refs, 1);
1508		recover->bioc = bioc;
1509		recover->map_length = mapped_length;
1510
1511		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1512
1513		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1514
1515		for (mirror_index = 0; mirror_index < nmirrors;
1516		     mirror_index++) {
1517			struct scrub_block *sblock;
1518			struct scrub_sector *sector;
1519
1520			sblock = sblocks_for_recheck[mirror_index];
1521			sblock->sctx = sctx;
1522
1523			sector = alloc_scrub_sector(sblock, logical);
1524			if (!sector) {
 
 
 
1525				spin_lock(&sctx->stat_lock);
1526				sctx->stat.malloc_errors++;
1527				spin_unlock(&sctx->stat_lock);
1528				scrub_put_recover(fs_info, recover);
1529				return -ENOMEM;
1530			}
1531			sector->flags = flags;
1532			sector->generation = generation;
1533			sector->have_csum = have_csum;
1534			if (have_csum)
1535				memcpy(sector->csum,
1536				       original_sblock->sectors[0]->csum,
1537				       sctx->fs_info->csum_size);
1538
1539			scrub_stripe_index_and_offset(logical,
1540						      bioc->map_type,
1541						      bioc->raid_map,
1542						      bioc->num_stripes -
1543						      bioc->num_tgtdevs,
1544						      mirror_index,
1545						      &stripe_index,
1546						      &stripe_offset);
1547			/*
1548			 * We're at the first sector, also populate @sblock
1549			 * physical and dev.
1550			 */
1551			if (sector_index == 0) {
1552				sblock->physical =
1553					bioc->stripes[stripe_index].physical +
1554					stripe_offset;
1555				sblock->dev = bioc->stripes[stripe_index].dev;
1556				sblock->physical_for_dev_replace =
1557					original_sblock->physical_for_dev_replace;
1558			}
1559
1560			BUG_ON(sector_index >= original_sblock->sector_count);
1561			scrub_get_recover(recover);
1562			sector->recover = recover;
1563		}
1564		scrub_put_recover(fs_info, recover);
1565		length -= sublen;
1566		logical += sublen;
1567		sector_index++;
1568	}
1569
1570	return 0;
1571}
1572
1573static void scrub_bio_wait_endio(struct bio *bio)
1574{
1575	complete(bio->bi_private);
1576}
1577
1578static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1579					struct bio *bio,
1580					struct scrub_sector *sector)
1581{
1582	DECLARE_COMPLETION_ONSTACK(done);
1583
1584	bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
1585				 SECTOR_SHIFT;
1586	bio->bi_private = &done;
1587	bio->bi_end_io = scrub_bio_wait_endio;
1588	raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1589
1590	wait_for_completion_io(&done);
1591	return blk_status_to_errno(bio->bi_status);
1592}
1593
1594static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1595					  struct scrub_block *sblock)
1596{
1597	struct scrub_sector *first_sector = sblock->sectors[0];
1598	struct bio *bio;
1599	int i;
1600
1601	/* All sectors in sblock belong to the same stripe on the same device. */
1602	ASSERT(sblock->dev);
1603	if (!sblock->dev->bdev)
1604		goto out;
1605
1606	bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
1607
1608	for (i = 0; i < sblock->sector_count; i++) {
1609		struct scrub_sector *sector = sblock->sectors[i];
1610
1611		bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
1612	}
1613
1614	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
1615		bio_put(bio);
1616		goto out;
1617	}
1618
1619	bio_put(bio);
1620
1621	scrub_recheck_block_checksum(sblock);
1622
1623	return;
1624out:
1625	for (i = 0; i < sblock->sector_count; i++)
1626		sblock->sectors[i]->io_error = 1;
1627
1628	sblock->no_io_error_seen = 0;
1629}
1630
1631/*
1632 * This function will check the on disk data for checksum errors, header errors
1633 * and read I/O errors. If any I/O errors happen, the exact sectors which are
1634 * errored are marked as being bad. The goal is to enable scrub to take those
1635 * sectors that are not errored from all the mirrors so that the sectors that
1636 * are errored in the just handled mirror can be repaired.
1637 */
1638static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1639				struct scrub_block *sblock,
1640				int retry_failed_mirror)
 
1641{
1642	int i;
1643
1644	sblock->no_io_error_seen = 1;
 
 
1645
1646	/* short cut for raid56 */
1647	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
1648		return scrub_recheck_block_on_raid56(fs_info, sblock);
1649
1650	for (i = 0; i < sblock->sector_count; i++) {
1651		struct scrub_sector *sector = sblock->sectors[i];
1652		struct bio bio;
1653		struct bio_vec bvec;
1654
1655		if (sblock->dev->bdev == NULL) {
1656			sector->io_error = 1;
1657			sblock->no_io_error_seen = 0;
1658			continue;
1659		}
1660
1661		bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1662		bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1663		bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
1664					SECTOR_SHIFT;
1665
1666		btrfsic_check_bio(&bio);
1667		if (submit_bio_wait(&bio)) {
1668			sector->io_error = 1;
1669			sblock->no_io_error_seen = 0;
 
1670		}
 
 
1671
1672		bio_uninit(&bio);
 
 
 
 
1673	}
1674
1675	if (sblock->no_io_error_seen)
1676		scrub_recheck_block_checksum(sblock);
 
 
 
 
1677}
1678
1679static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
 
 
 
 
1680{
1681	struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
1682	int ret;
 
 
1683
1684	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1685	return !ret;
1686}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687
1688static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1689{
1690	sblock->header_error = 0;
1691	sblock->checksum_error = 0;
1692	sblock->generation_error = 0;
1693
1694	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1695		scrub_checksum_data(sblock);
1696	else
1697		scrub_checksum_tree_block(sblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1698}
1699
1700static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1701					     struct scrub_block *sblock_good)
 
1702{
1703	int i;
1704	int ret = 0;
1705
1706	for (i = 0; i < sblock_bad->sector_count; i++) {
1707		int ret_sub;
1708
1709		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
1710							     sblock_good, i, 1);
 
 
1711		if (ret_sub)
1712			ret = ret_sub;
1713	}
1714
1715	return ret;
1716}
1717
1718static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
1719					      struct scrub_block *sblock_good,
1720					      int sector_num, int force_write)
1721{
1722	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1723	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1724	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1725	const u32 sectorsize = fs_info->sectorsize;
1726
 
 
1727	if (force_write || sblock_bad->header_error ||
1728	    sblock_bad->checksum_error || sector_bad->io_error) {
1729		struct bio bio;
1730		struct bio_vec bvec;
1731		int ret;
1732
1733		if (!sblock_bad->dev->bdev) {
1734			btrfs_warn_rl(fs_info,
1735				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
 
1736			return -EIO;
1737		}
1738
1739		bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
1740		bio.bi_iter.bi_sector = (sblock_bad->physical +
1741					 sector_bad->offset) >> SECTOR_SHIFT;
1742		ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1743
1744		btrfsic_check_bio(&bio);
1745		ret = submit_bio_wait(&bio);
1746		bio_uninit(&bio);
1747
1748		if (ret) {
1749			btrfs_dev_stat_inc_and_print(sblock_bad->dev,
 
 
 
 
 
 
1750				BTRFS_DEV_STAT_WRITE_ERRS);
1751			atomic64_inc(&fs_info->dev_replace.num_write_errors);
 
 
 
1752			return -EIO;
1753		}
 
1754	}
1755
1756	return 0;
1757}
1758
1759static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1760{
1761	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1762	int i;
1763
1764	/*
1765	 * This block is used for the check of the parity on the source device,
1766	 * so the data needn't be written into the destination device.
1767	 */
1768	if (sblock->sparity)
1769		return;
1770
1771	for (i = 0; i < sblock->sector_count; i++) {
1772		int ret;
1773
1774		ret = scrub_write_sector_to_dev_replace(sblock, i);
1775		if (ret)
1776			atomic64_inc(&fs_info->dev_replace.num_write_errors);
 
 
1777	}
1778}
1779
1780static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
 
1781{
1782	const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1783	struct scrub_sector *sector = sblock->sectors[sector_num];
1784
1785	if (sector->io_error)
1786		memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1787
1788	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1789}
1790
1791static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1792{
1793	int ret = 0;
1794	u64 length;
1795
1796	if (!btrfs_is_zoned(sctx->fs_info))
1797		return 0;
1798
1799	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1800		return 0;
1801
1802	if (sctx->write_pointer < physical) {
1803		length = physical - sctx->write_pointer;
1804
1805		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1806						sctx->write_pointer, length);
1807		if (!ret)
1808			sctx->write_pointer = physical;
1809	}
1810	return ret;
1811}
1812
1813static void scrub_block_get(struct scrub_block *sblock)
1814{
1815	refcount_inc(&sblock->refs);
1816}
1817
1818static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
1819				      struct scrub_sector *sector)
1820{
1821	struct scrub_block *sblock = sector->sblock;
1822	struct scrub_bio *sbio;
1823	int ret;
1824	const u32 sectorsize = sctx->fs_info->sectorsize;
1825
1826	mutex_lock(&sctx->wr_lock);
1827again:
1828	if (!sctx->wr_curr_bio) {
1829		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1830					      GFP_KERNEL);
1831		if (!sctx->wr_curr_bio) {
1832			mutex_unlock(&sctx->wr_lock);
1833			return -ENOMEM;
1834		}
1835		sctx->wr_curr_bio->sctx = sctx;
1836		sctx->wr_curr_bio->sector_count = 0;
1837	}
1838	sbio = sctx->wr_curr_bio;
1839	if (sbio->sector_count == 0) {
1840		ret = fill_writer_pointer_gap(sctx, sector->offset +
1841					      sblock->physical_for_dev_replace);
1842		if (ret) {
1843			mutex_unlock(&sctx->wr_lock);
1844			return ret;
 
 
 
 
 
 
 
 
1845		}
1846
1847		sbio->physical = sblock->physical_for_dev_replace + sector->offset;
1848		sbio->logical = sblock->logical + sector->offset;
1849		sbio->dev = sctx->wr_tgtdev;
1850		if (!sbio->bio) {
1851			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
1852					      REQ_OP_WRITE, GFP_NOFS);
1853		}
1854		sbio->bio->bi_private = sbio;
1855		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
1856		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1857		sbio->status = 0;
1858	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1859		   sblock->physical_for_dev_replace + sector->offset ||
1860		   sbio->logical + sbio->sector_count * sectorsize !=
1861		   sblock->logical + sector->offset) {
1862		scrub_wr_submit(sctx);
1863		goto again;
1864	}
1865
1866	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
1867	if (ret != sectorsize) {
1868		if (sbio->sector_count < 1) {
1869			bio_put(sbio->bio);
1870			sbio->bio = NULL;
1871			mutex_unlock(&sctx->wr_lock);
1872			return -EIO;
1873		}
1874		scrub_wr_submit(sctx);
1875		goto again;
1876	}
1877
1878	sbio->sectors[sbio->sector_count] = sector;
1879	scrub_sector_get(sector);
1880	/*
1881	 * Since ssector no longer holds a page, but uses sblock::pages, we
1882	 * have to ensure the sblock had not been freed before our write bio
1883	 * finished.
1884	 */
1885	scrub_block_get(sector->sblock);
1886
1887	sbio->sector_count++;
1888	if (sbio->sector_count == sctx->sectors_per_bio)
1889		scrub_wr_submit(sctx);
1890	mutex_unlock(&sctx->wr_lock);
1891
1892	return 0;
1893}
1894
1895static void scrub_wr_submit(struct scrub_ctx *sctx)
1896{
 
1897	struct scrub_bio *sbio;
1898
1899	if (!sctx->wr_curr_bio)
1900		return;
1901
1902	sbio = sctx->wr_curr_bio;
1903	sctx->wr_curr_bio = NULL;
 
1904	scrub_pending_bio_inc(sctx);
1905	/* process all writes in a single worker thread. Then the block layer
1906	 * orders the requests before sending them to the driver which
1907	 * doubled the write performance on spinning disks when measured
1908	 * with Linux 3.5 */
1909	btrfsic_check_bio(sbio->bio);
1910	submit_bio(sbio->bio);
1911
1912	if (btrfs_is_zoned(sctx->fs_info))
1913		sctx->write_pointer = sbio->physical + sbio->sector_count *
1914			sctx->fs_info->sectorsize;
1915}
1916
1917static void scrub_wr_bio_end_io(struct bio *bio)
1918{
1919	struct scrub_bio *sbio = bio->bi_private;
1920	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1921
1922	sbio->status = bio->bi_status;
1923	sbio->bio = bio;
1924
1925	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
1926	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1927}
1928
1929static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1930{
1931	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1932	struct scrub_ctx *sctx = sbio->sctx;
1933	int i;
1934
1935	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1936	if (sbio->status) {
1937		struct btrfs_dev_replace *dev_replace =
1938			&sbio->sctx->fs_info->dev_replace;
1939
1940		for (i = 0; i < sbio->sector_count; i++) {
1941			struct scrub_sector *sector = sbio->sectors[i];
1942
1943			sector->io_error = 1;
1944			atomic64_inc(&dev_replace->num_write_errors);
 
1945		}
1946	}
1947
1948	/*
1949	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
1950	 * endio we should put the sblock.
1951	 */
1952	for (i = 0; i < sbio->sector_count; i++) {
1953		scrub_block_put(sbio->sectors[i]->sblock);
1954		scrub_sector_put(sbio->sectors[i]);
1955	}
1956
1957	bio_put(sbio->bio);
1958	kfree(sbio);
1959	scrub_pending_bio_dec(sctx);
1960}
1961
1962static int scrub_checksum(struct scrub_block *sblock)
1963{
1964	u64 flags;
1965	int ret;
1966
1967	/*
1968	 * No need to initialize these stats currently,
1969	 * because this function only use return value
1970	 * instead of these stats value.
1971	 *
1972	 * Todo:
1973	 * always use stats
1974	 */
1975	sblock->header_error = 0;
1976	sblock->generation_error = 0;
1977	sblock->checksum_error = 0;
1978
1979	WARN_ON(sblock->sector_count < 1);
1980	flags = sblock->sectors[0]->flags;
1981	ret = 0;
1982	if (flags & BTRFS_EXTENT_FLAG_DATA)
1983		ret = scrub_checksum_data(sblock);
1984	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1985		ret = scrub_checksum_tree_block(sblock);
1986	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1987		ret = scrub_checksum_super(sblock);
1988	else
1989		WARN_ON(1);
1990	if (ret)
1991		scrub_handle_errored_block(sblock);
1992
1993	return ret;
1994}
1995
1996static int scrub_checksum_data(struct scrub_block *sblock)
1997{
1998	struct scrub_ctx *sctx = sblock->sctx;
1999	struct btrfs_fs_info *fs_info = sctx->fs_info;
2000	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2001	u8 csum[BTRFS_CSUM_SIZE];
2002	struct scrub_sector *sector;
2003	char *kaddr;
 
 
 
 
 
2004
2005	BUG_ON(sblock->sector_count < 1);
2006	sector = sblock->sectors[0];
2007	if (!sector->have_csum)
2008		return 0;
2009
2010	kaddr = scrub_sector_get_kaddr(sector);
 
 
 
 
 
 
 
2011
2012	shash->tfm = fs_info->csum_shash;
2013	crypto_shash_init(shash);
 
 
 
 
 
 
 
 
 
2014
2015	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
 
 
2016
2017	if (memcmp(csum, sector->csum, fs_info->csum_size))
2018		sblock->checksum_error = 1;
2019	return sblock->checksum_error;
2020}
2021
2022static int scrub_checksum_tree_block(struct scrub_block *sblock)
2023{
2024	struct scrub_ctx *sctx = sblock->sctx;
2025	struct btrfs_header *h;
2026	struct btrfs_fs_info *fs_info = sctx->fs_info;
2027	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2028	u8 calculated_csum[BTRFS_CSUM_SIZE];
2029	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2030	/*
2031	 * This is done in sectorsize steps even for metadata as there's a
2032	 * constraint for nodesize to be aligned to sectorsize. This will need
2033	 * to change so we don't misuse data and metadata units like that.
2034	 */
2035	const u32 sectorsize = sctx->fs_info->sectorsize;
2036	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2037	int i;
2038	struct scrub_sector *sector;
2039	char *kaddr;
2040
2041	BUG_ON(sblock->sector_count < 1);
2042
2043	/* Each member in sectors is just one sector */
2044	ASSERT(sblock->sector_count == num_sectors);
2045
2046	sector = sblock->sectors[0];
2047	kaddr = scrub_sector_get_kaddr(sector);
2048	h = (struct btrfs_header *)kaddr;
2049	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
 
2050
2051	/*
2052	 * we don't use the getter functions here, as we
2053	 * a) don't have an extent buffer and
2054	 * b) the page is already kmapped
2055	 */
2056	if (sblock->logical != btrfs_stack_header_bytenr(h))
2057		sblock->header_error = 1;
2058
2059	if (sector->generation != btrfs_stack_header_generation(h)) {
2060		sblock->header_error = 1;
2061		sblock->generation_error = 1;
2062	}
 
2063
2064	if (!scrub_check_fsid(h->fsid, sector))
2065		sblock->header_error = 1;
2066
2067	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2068		   BTRFS_UUID_SIZE))
2069		sblock->header_error = 1;
2070
2071	shash->tfm = fs_info->csum_shash;
2072	crypto_shash_init(shash);
2073	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2074			    sectorsize - BTRFS_CSUM_SIZE);
 
 
 
2075
2076	for (i = 1; i < num_sectors; i++) {
2077		kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2078		crypto_shash_update(shash, kaddr, sectorsize);
2079	}
2080
2081	crypto_shash_final(shash, calculated_csum);
2082	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
2083		sblock->checksum_error = 1;
 
 
 
 
 
 
 
 
 
2084
2085	return sblock->header_error || sblock->checksum_error;
2086}
2087
2088static int scrub_checksum_super(struct scrub_block *sblock)
2089{
2090	struct btrfs_super_block *s;
2091	struct scrub_ctx *sctx = sblock->sctx;
2092	struct btrfs_fs_info *fs_info = sctx->fs_info;
2093	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2094	u8 calculated_csum[BTRFS_CSUM_SIZE];
2095	struct scrub_sector *sector;
2096	char *kaddr;
 
 
 
 
2097	int fail_gen = 0;
2098	int fail_cor = 0;
 
 
2099
2100	BUG_ON(sblock->sector_count < 1);
2101	sector = sblock->sectors[0];
2102	kaddr = scrub_sector_get_kaddr(sector);
2103	s = (struct btrfs_super_block *)kaddr;
 
2104
2105	if (sblock->logical != btrfs_super_bytenr(s))
2106		++fail_cor;
2107
2108	if (sector->generation != btrfs_super_generation(s))
2109		++fail_gen;
2110
2111	if (!scrub_check_fsid(s->fsid, sector))
2112		++fail_cor;
2113
2114	shash->tfm = fs_info->csum_shash;
2115	crypto_shash_init(shash);
2116	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
2117			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118
2119	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
 
2120		++fail_cor;
2121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2122	return fail_cor + fail_gen;
2123}
2124
 
 
 
 
 
2125static void scrub_block_put(struct scrub_block *sblock)
2126{
2127	if (refcount_dec_and_test(&sblock->refs)) {
2128		int i;
2129
2130		if (sblock->sparity)
2131			scrub_parity_put(sblock->sparity);
2132
2133		for (i = 0; i < sblock->sector_count; i++)
2134			scrub_sector_put(sblock->sectors[i]);
2135		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
2136			if (sblock->pages[i]) {
2137				detach_scrub_page_private(sblock->pages[i]);
2138				__free_page(sblock->pages[i]);
2139			}
2140		}
2141		kfree(sblock);
2142	}
2143}
2144
2145static void scrub_sector_get(struct scrub_sector *sector)
2146{
2147	atomic_inc(&sector->refs);
2148}
2149
2150static void scrub_sector_put(struct scrub_sector *sector)
2151{
2152	if (atomic_dec_and_test(&sector->refs))
2153		kfree(sector);
2154}
2155
2156/*
2157 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
2158 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
2159 */
2160static void scrub_throttle(struct scrub_ctx *sctx)
2161{
2162	const int time_slice = 1000;
2163	struct scrub_bio *sbio;
2164	struct btrfs_device *device;
2165	s64 delta;
2166	ktime_t now;
2167	u32 div;
2168	u64 bwlimit;
2169
2170	sbio = sctx->bios[sctx->curr];
2171	device = sbio->dev;
2172	bwlimit = READ_ONCE(device->scrub_speed_max);
2173	if (bwlimit == 0)
2174		return;
2175
2176	/*
2177	 * Slice is divided into intervals when the IO is submitted, adjust by
2178	 * bwlimit and maximum of 64 intervals.
2179	 */
2180	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2181	div = min_t(u32, 64, div);
2182
2183	/* Start new epoch, set deadline */
2184	now = ktime_get();
2185	if (sctx->throttle_deadline == 0) {
2186		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2187		sctx->throttle_sent = 0;
2188	}
2189
2190	/* Still in the time to send? */
2191	if (ktime_before(now, sctx->throttle_deadline)) {
2192		/* If current bio is within the limit, send it */
2193		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2194		if (sctx->throttle_sent <= div_u64(bwlimit, div))
2195			return;
2196
2197		/* We're over the limit, sleep until the rest of the slice */
2198		delta = ktime_ms_delta(sctx->throttle_deadline, now);
2199	} else {
2200		/* New request after deadline, start new epoch */
2201		delta = 0;
2202	}
2203
2204	if (delta) {
2205		long timeout;
2206
2207		timeout = div_u64(delta * HZ, 1000);
2208		schedule_timeout_interruptible(timeout);
2209	}
2210
2211	/* Next call will start the deadline period */
2212	sctx->throttle_deadline = 0;
2213}
2214
2215static void scrub_submit(struct scrub_ctx *sctx)
2216{
2217	struct scrub_bio *sbio;
2218
2219	if (sctx->curr == -1)
2220		return;
2221
2222	scrub_throttle(sctx);
2223
2224	sbio = sctx->bios[sctx->curr];
2225	sctx->curr = -1;
2226	scrub_pending_bio_inc(sctx);
2227	btrfsic_check_bio(sbio->bio);
2228	submit_bio(sbio->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
2229}
2230
2231static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
2232				      struct scrub_sector *sector)
2233{
2234	struct scrub_block *sblock = sector->sblock;
2235	struct scrub_bio *sbio;
2236	const u32 sectorsize = sctx->fs_info->sectorsize;
2237	int ret;
2238
2239again:
2240	/*
2241	 * grab a fresh bio or wait for one to become available
2242	 */
2243	while (sctx->curr == -1) {
2244		spin_lock(&sctx->list_lock);
2245		sctx->curr = sctx->first_free;
2246		if (sctx->curr != -1) {
2247			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2248			sctx->bios[sctx->curr]->next_free = -1;
2249			sctx->bios[sctx->curr]->sector_count = 0;
2250			spin_unlock(&sctx->list_lock);
2251		} else {
2252			spin_unlock(&sctx->list_lock);
2253			wait_event(sctx->list_wait, sctx->first_free != -1);
2254		}
2255	}
2256	sbio = sctx->bios[sctx->curr];
2257	if (sbio->sector_count == 0) {
2258		sbio->physical = sblock->physical + sector->offset;
2259		sbio->logical = sblock->logical + sector->offset;
2260		sbio->dev = sblock->dev;
2261		if (!sbio->bio) {
2262			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
2263					      REQ_OP_READ, GFP_NOFS);
2264		}
2265		sbio->bio->bi_private = sbio;
2266		sbio->bio->bi_end_io = scrub_bio_end_io;
2267		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2268		sbio->status = 0;
2269	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2270		   sblock->physical + sector->offset ||
2271		   sbio->logical + sbio->sector_count * sectorsize !=
2272		   sblock->logical + sector->offset ||
2273		   sbio->dev != sblock->dev) {
 
 
 
 
 
 
 
2274		scrub_submit(sctx);
2275		goto again;
2276	}
2277
2278	sbio->sectors[sbio->sector_count] = sector;
2279	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2280	if (ret != sectorsize) {
2281		if (sbio->sector_count < 1) {
2282			bio_put(sbio->bio);
2283			sbio->bio = NULL;
2284			return -EIO;
2285		}
2286		scrub_submit(sctx);
2287		goto again;
2288	}
2289
2290	scrub_block_get(sblock); /* one for the page added to the bio */
2291	atomic_inc(&sblock->outstanding_sectors);
2292	sbio->sector_count++;
2293	if (sbio->sector_count == sctx->sectors_per_bio)
2294		scrub_submit(sctx);
2295
2296	return 0;
2297}
2298
2299static void scrub_missing_raid56_end_io(struct bio *bio)
2300{
2301	struct scrub_block *sblock = bio->bi_private;
2302	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2303
2304	btrfs_bio_counter_dec(fs_info);
2305	if (bio->bi_status)
2306		sblock->no_io_error_seen = 0;
2307
2308	bio_put(bio);
2309
2310	queue_work(fs_info->scrub_workers, &sblock->work);
2311}
2312
2313static void scrub_missing_raid56_worker(struct work_struct *work)
2314{
2315	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2316	struct scrub_ctx *sctx = sblock->sctx;
2317	struct btrfs_fs_info *fs_info = sctx->fs_info;
2318	u64 logical;
2319	struct btrfs_device *dev;
2320
2321	logical = sblock->logical;
2322	dev = sblock->dev;
2323
2324	if (sblock->no_io_error_seen)
2325		scrub_recheck_block_checksum(sblock);
2326
2327	if (!sblock->no_io_error_seen) {
2328		spin_lock(&sctx->stat_lock);
2329		sctx->stat.read_errors++;
2330		spin_unlock(&sctx->stat_lock);
2331		btrfs_err_rl_in_rcu(fs_info,
2332			"IO error rebuilding logical %llu for dev %s",
2333			logical, btrfs_dev_name(dev));
2334	} else if (sblock->header_error || sblock->checksum_error) {
2335		spin_lock(&sctx->stat_lock);
2336		sctx->stat.uncorrectable_errors++;
2337		spin_unlock(&sctx->stat_lock);
2338		btrfs_err_rl_in_rcu(fs_info,
2339			"failed to rebuild valid logical %llu for dev %s",
2340			logical, btrfs_dev_name(dev));
2341	} else {
2342		scrub_write_block_to_dev_replace(sblock);
2343	}
2344
2345	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2346		mutex_lock(&sctx->wr_lock);
2347		scrub_wr_submit(sctx);
2348		mutex_unlock(&sctx->wr_lock);
2349	}
2350
2351	scrub_block_put(sblock);
2352	scrub_pending_bio_dec(sctx);
2353}
2354
2355static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2356{
2357	struct scrub_ctx *sctx = sblock->sctx;
2358	struct btrfs_fs_info *fs_info = sctx->fs_info;
2359	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2360	u64 logical = sblock->logical;
2361	struct btrfs_io_context *bioc = NULL;
2362	struct bio *bio;
2363	struct btrfs_raid_bio *rbio;
2364	int ret;
2365	int i;
2366
2367	btrfs_bio_counter_inc_blocked(fs_info);
2368	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2369			       &length, &bioc);
2370	if (ret || !bioc || !bioc->raid_map)
2371		goto bioc_out;
2372
2373	if (WARN_ON(!sctx->is_dev_replace ||
2374		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2375		/*
2376		 * We shouldn't be scrubbing a missing device. Even for dev
2377		 * replace, we should only get here for RAID 5/6. We either
2378		 * managed to mount something with no mirrors remaining or
2379		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2380		 */
2381		goto bioc_out;
2382	}
2383
2384	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2385	bio->bi_iter.bi_sector = logical >> 9;
2386	bio->bi_private = sblock;
2387	bio->bi_end_io = scrub_missing_raid56_end_io;
2388
2389	rbio = raid56_alloc_missing_rbio(bio, bioc);
2390	if (!rbio)
2391		goto rbio_out;
2392
2393	for (i = 0; i < sblock->sector_count; i++) {
2394		struct scrub_sector *sector = sblock->sectors[i];
2395
2396		raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
2397				       scrub_sector_get_page_offset(sector),
2398				       sector->offset + sector->sblock->logical);
2399	}
2400
2401	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2402	scrub_block_get(sblock);
2403	scrub_pending_bio_inc(sctx);
2404	raid56_submit_missing_rbio(rbio);
2405	btrfs_put_bioc(bioc);
2406	return;
2407
2408rbio_out:
2409	bio_put(bio);
2410bioc_out:
2411	btrfs_bio_counter_dec(fs_info);
2412	btrfs_put_bioc(bioc);
2413	spin_lock(&sctx->stat_lock);
2414	sctx->stat.malloc_errors++;
2415	spin_unlock(&sctx->stat_lock);
2416}
2417
2418static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2419		       u64 physical, struct btrfs_device *dev, u64 flags,
2420		       u64 gen, int mirror_num, u8 *csum,
2421		       u64 physical_for_dev_replace)
2422{
2423	struct scrub_block *sblock;
2424	const u32 sectorsize = sctx->fs_info->sectorsize;
2425	int index;
2426
2427	sblock = alloc_scrub_block(sctx, dev, logical, physical,
2428				   physical_for_dev_replace, mirror_num);
2429	if (!sblock) {
2430		spin_lock(&sctx->stat_lock);
2431		sctx->stat.malloc_errors++;
2432		spin_unlock(&sctx->stat_lock);
2433		return -ENOMEM;
2434	}
2435
 
 
 
 
 
 
2436	for (index = 0; len > 0; index++) {
2437		struct scrub_sector *sector;
2438		/*
2439		 * Here we will allocate one page for one sector to scrub.
2440		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2441		 * more memory for PAGE_SIZE > sectorsize case.
2442		 */
2443		u32 l = min(sectorsize, len);
2444
2445		sector = alloc_scrub_sector(sblock, logical);
2446		if (!sector) {
 
2447			spin_lock(&sctx->stat_lock);
2448			sctx->stat.malloc_errors++;
2449			spin_unlock(&sctx->stat_lock);
2450			scrub_block_put(sblock);
2451			return -ENOMEM;
2452		}
2453		sector->flags = flags;
2454		sector->generation = gen;
 
 
 
 
 
 
 
 
 
2455		if (csum) {
2456			sector->have_csum = 1;
2457			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2458		} else {
2459			sector->have_csum = 0;
2460		}
 
 
 
 
2461		len -= l;
2462		logical += l;
2463		physical += l;
2464		physical_for_dev_replace += l;
2465	}
2466
2467	WARN_ON(sblock->sector_count == 0);
2468	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2469		/*
2470		 * This case should only be hit for RAID 5/6 device replace. See
2471		 * the comment in scrub_missing_raid56_pages() for details.
2472		 */
2473		scrub_missing_raid56_pages(sblock);
2474	} else {
2475		for (index = 0; index < sblock->sector_count; index++) {
2476			struct scrub_sector *sector = sblock->sectors[index];
2477			int ret;
2478
2479			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2480			if (ret) {
2481				scrub_block_put(sblock);
2482				return ret;
2483			}
2484		}
2485
2486		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2487			scrub_submit(sctx);
 
 
 
2488	}
2489
 
 
 
2490	/* last one frees, either here or in bio completion for last page */
2491	scrub_block_put(sblock);
2492	return 0;
2493}
2494
2495static void scrub_bio_end_io(struct bio *bio)
2496{
2497	struct scrub_bio *sbio = bio->bi_private;
2498	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2499
2500	sbio->status = bio->bi_status;
2501	sbio->bio = bio;
2502
2503	queue_work(fs_info->scrub_workers, &sbio->work);
2504}
2505
2506static void scrub_bio_end_io_worker(struct work_struct *work)
2507{
2508	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2509	struct scrub_ctx *sctx = sbio->sctx;
2510	int i;
2511
2512	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2513	if (sbio->status) {
2514		for (i = 0; i < sbio->sector_count; i++) {
2515			struct scrub_sector *sector = sbio->sectors[i];
2516
2517			sector->io_error = 1;
2518			sector->sblock->no_io_error_seen = 0;
2519		}
2520	}
2521
2522	/* Now complete the scrub_block items that have all pages completed */
2523	for (i = 0; i < sbio->sector_count; i++) {
2524		struct scrub_sector *sector = sbio->sectors[i];
2525		struct scrub_block *sblock = sector->sblock;
2526
2527		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2528			scrub_block_complete(sblock);
2529		scrub_block_put(sblock);
2530	}
2531
2532	bio_put(sbio->bio);
2533	sbio->bio = NULL;
2534	spin_lock(&sctx->list_lock);
2535	sbio->next_free = sctx->first_free;
2536	sctx->first_free = sbio->index;
2537	spin_unlock(&sctx->list_lock);
2538
2539	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2540		mutex_lock(&sctx->wr_lock);
 
2541		scrub_wr_submit(sctx);
2542		mutex_unlock(&sctx->wr_lock);
2543	}
2544
2545	scrub_pending_bio_dec(sctx);
2546}
2547
2548static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2549				       unsigned long *bitmap,
2550				       u64 start, u32 len)
2551{
2552	u64 offset;
2553	u32 nsectors;
2554	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2555
2556	if (len >= sparity->stripe_len) {
2557		bitmap_set(bitmap, 0, sparity->nsectors);
2558		return;
2559	}
2560
2561	start -= sparity->logic_start;
2562	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2563	offset = offset >> sectorsize_bits;
2564	nsectors = len >> sectorsize_bits;
2565
2566	if (offset + nsectors <= sparity->nsectors) {
2567		bitmap_set(bitmap, offset, nsectors);
2568		return;
2569	}
2570
2571	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2572	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2573}
2574
2575static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2576						   u64 start, u32 len)
2577{
2578	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2579}
2580
2581static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2582						  u64 start, u32 len)
2583{
2584	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2585}
2586
2587static void scrub_block_complete(struct scrub_block *sblock)
2588{
2589	int corrupted = 0;
2590
2591	if (!sblock->no_io_error_seen) {
2592		corrupted = 1;
2593		scrub_handle_errored_block(sblock);
2594	} else {
2595		/*
2596		 * if has checksum error, write via repair mechanism in
2597		 * dev replace case, otherwise write here in dev replace
2598		 * case.
2599		 */
2600		corrupted = scrub_checksum(sblock);
2601		if (!corrupted && sblock->sctx->is_dev_replace)
2602			scrub_write_block_to_dev_replace(sblock);
2603	}
2604
2605	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2606		u64 start = sblock->logical;
2607		u64 end = sblock->logical +
2608			  sblock->sectors[sblock->sector_count - 1]->offset +
2609			  sblock->sctx->fs_info->sectorsize;
2610
2611		ASSERT(end - start <= U32_MAX);
2612		scrub_parity_mark_sectors_error(sblock->sparity,
2613						start, end - start);
2614	}
2615}
2616
2617static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
 
2618{
2619	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2620	list_del(&sum->list);
2621	kfree(sum);
2622}
2623
2624/*
2625 * Find the desired csum for range [logical, logical + sectorsize), and store
2626 * the csum into @csum.
2627 *
2628 * The search source is sctx->csum_list, which is a pre-populated list
2629 * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2630 * that is before @logical.
2631 *
2632 * Return 0 if there is no csum for the range.
2633 * Return 1 if there is csum for the range and copied to @csum.
2634 */
2635static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2636{
2637	bool found = false;
2638
2639	while (!list_empty(&sctx->csum_list)) {
2640		struct btrfs_ordered_sum *sum = NULL;
2641		unsigned long index;
2642		unsigned long num_sectors;
2643
2644		sum = list_first_entry(&sctx->csum_list,
2645				       struct btrfs_ordered_sum, list);
2646		/* The current csum range is beyond our range, no csum found */
2647		if (sum->bytenr > logical)
 
 
2648			break;
2649
2650		/*
2651		 * The current sum is before our bytenr, since scrub is always
2652		 * done in bytenr order, the csum will never be used anymore,
2653		 * clean it up so that later calls won't bother with the range,
2654		 * and continue search the next range.
2655		 */
2656		if (sum->bytenr + sum->len <= logical) {
2657			drop_csum_range(sctx, sum);
2658			continue;
2659		}
2660
2661		/* Now the csum range covers our bytenr, copy the csum */
2662		found = true;
2663		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2664		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2665
2666		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2667		       sctx->fs_info->csum_size);
2668
2669		/* Cleanup the range if we're at the end of the csum range */
2670		if (index == num_sectors - 1)
2671			drop_csum_range(sctx, sum);
2672		break;
2673	}
2674	if (!found)
2675		return 0;
 
 
 
 
 
 
 
 
2676	return 1;
2677}
2678
2679/* scrub extent tries to collect up to 64 kB for each bio */
2680static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2681			u64 logical, u32 len,
2682			u64 physical, struct btrfs_device *dev, u64 flags,
2683			u64 gen, int mirror_num)
2684{
2685	struct btrfs_device *src_dev = dev;
2686	u64 src_physical = physical;
2687	int src_mirror = mirror_num;
2688	int ret;
2689	u8 csum[BTRFS_CSUM_SIZE];
2690	u32 blocksize;
2691
2692	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2693		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2694			blocksize = map->stripe_len;
2695		else
2696			blocksize = sctx->fs_info->sectorsize;
2697		spin_lock(&sctx->stat_lock);
2698		sctx->stat.data_extents_scrubbed++;
2699		sctx->stat.data_bytes_scrubbed += len;
2700		spin_unlock(&sctx->stat_lock);
2701	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2702		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2703			blocksize = map->stripe_len;
2704		else
2705			blocksize = sctx->fs_info->nodesize;
2706		spin_lock(&sctx->stat_lock);
2707		sctx->stat.tree_extents_scrubbed++;
2708		sctx->stat.tree_bytes_scrubbed += len;
2709		spin_unlock(&sctx->stat_lock);
2710	} else {
2711		blocksize = sctx->fs_info->sectorsize;
2712		WARN_ON(1);
2713	}
2714
2715	/*
2716	 * For dev-replace case, we can have @dev being a missing device.
2717	 * Regular scrub will avoid its execution on missing device at all,
2718	 * as that would trigger tons of read error.
2719	 *
2720	 * Reading from missing device will cause read error counts to
2721	 * increase unnecessarily.
2722	 * So here we change the read source to a good mirror.
2723	 */
2724	if (sctx->is_dev_replace && !dev->bdev)
2725		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
2726				     &src_dev, &src_mirror);
2727	while (len) {
2728		u32 l = min(len, blocksize);
2729		int have_csum = 0;
2730
2731		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2732			/* push csums to sbio */
2733			have_csum = scrub_find_csum(sctx, logical, csum);
2734			if (have_csum == 0)
2735				++sctx->stat.no_csum;
 
 
 
 
 
 
2736		}
2737		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
2738				    flags, gen, src_mirror,
2739				    have_csum ? csum : NULL, physical);
2740		if (ret)
2741			return ret;
2742		len -= l;
2743		logical += l;
2744		physical += l;
2745		src_physical += l;
2746	}
2747	return 0;
2748}
2749
2750static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2751				  u64 logical, u32 len,
2752				  u64 physical, struct btrfs_device *dev,
2753				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2754{
2755	struct scrub_ctx *sctx = sparity->sctx;
2756	struct scrub_block *sblock;
2757	const u32 sectorsize = sctx->fs_info->sectorsize;
2758	int index;
2759
2760	ASSERT(IS_ALIGNED(len, sectorsize));
2761
2762	sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
2763	if (!sblock) {
2764		spin_lock(&sctx->stat_lock);
2765		sctx->stat.malloc_errors++;
2766		spin_unlock(&sctx->stat_lock);
2767		return -ENOMEM;
2768	}
2769
2770	sblock->sparity = sparity;
2771	scrub_parity_get(sparity);
2772
2773	for (index = 0; len > 0; index++) {
2774		struct scrub_sector *sector;
2775
2776		sector = alloc_scrub_sector(sblock, logical);
2777		if (!sector) {
2778			spin_lock(&sctx->stat_lock);
2779			sctx->stat.malloc_errors++;
2780			spin_unlock(&sctx->stat_lock);
2781			scrub_block_put(sblock);
2782			return -ENOMEM;
2783		}
2784		sblock->sectors[index] = sector;
2785		/* For scrub parity */
2786		scrub_sector_get(sector);
2787		list_add_tail(&sector->list, &sparity->sectors_list);
2788		sector->flags = flags;
2789		sector->generation = gen;
2790		if (csum) {
2791			sector->have_csum = 1;
2792			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2793		} else {
2794			sector->have_csum = 0;
2795		}
2796
2797		/* Iterate over the stripe range in sectorsize steps */
2798		len -= sectorsize;
2799		logical += sectorsize;
2800		physical += sectorsize;
2801	}
2802
2803	WARN_ON(sblock->sector_count == 0);
2804	for (index = 0; index < sblock->sector_count; index++) {
2805		struct scrub_sector *sector = sblock->sectors[index];
2806		int ret;
2807
2808		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2809		if (ret) {
2810			scrub_block_put(sblock);
2811			return ret;
2812		}
2813	}
2814
2815	/* Last one frees, either here or in bio completion for last sector */
2816	scrub_block_put(sblock);
2817	return 0;
2818}
2819
2820static int scrub_extent_for_parity(struct scrub_parity *sparity,
2821				   u64 logical, u32 len,
2822				   u64 physical, struct btrfs_device *dev,
2823				   u64 flags, u64 gen, int mirror_num)
2824{
2825	struct scrub_ctx *sctx = sparity->sctx;
2826	int ret;
2827	u8 csum[BTRFS_CSUM_SIZE];
2828	u32 blocksize;
2829
2830	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2831		scrub_parity_mark_sectors_error(sparity, logical, len);
2832		return 0;
2833	}
2834
2835	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2836		blocksize = sparity->stripe_len;
2837	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2838		blocksize = sparity->stripe_len;
2839	} else {
2840		blocksize = sctx->fs_info->sectorsize;
2841		WARN_ON(1);
2842	}
2843
2844	while (len) {
2845		u32 l = min(len, blocksize);
2846		int have_csum = 0;
2847
2848		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2849			/* push csums to sbio */
2850			have_csum = scrub_find_csum(sctx, logical, csum);
2851			if (have_csum == 0)
2852				goto skip;
2853		}
2854		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2855					     flags, gen, mirror_num,
2856					     have_csum ? csum : NULL);
2857		if (ret)
2858			return ret;
2859skip:
2860		len -= l;
2861		logical += l;
2862		physical += l;
 
2863	}
2864	return 0;
2865}
2866
2867/*
2868 * Given a physical address, this will calculate it's
2869 * logical offset. if this is a parity stripe, it will return
2870 * the most left data stripe's logical offset.
2871 *
2872 * return 0 if it is a data stripe, 1 means parity stripe.
2873 */
2874static int get_raid56_logic_offset(u64 physical, int num,
2875				   struct map_lookup *map, u64 *offset,
2876				   u64 *stripe_start)
2877{
2878	int i;
2879	int j = 0;
2880	u64 stripe_nr;
2881	u64 last_offset;
2882	u32 stripe_index;
2883	u32 rot;
2884	const int data_stripes = nr_data_stripes(map);
2885
2886	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2887	if (stripe_start)
2888		*stripe_start = last_offset;
2889
 
 
2890	*offset = last_offset;
2891	for (i = 0; i < data_stripes; i++) {
2892		*offset = last_offset + i * map->stripe_len;
2893
2894		stripe_nr = div64_u64(*offset, map->stripe_len);
2895		stripe_nr = div_u64(stripe_nr, data_stripes);
 
2896
2897		/* Work out the disk rotation on this stripe-set */
2898		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2899		/* calculate which stripe this data locates */
2900		rot += i;
2901		stripe_index = rot % map->num_stripes;
2902		if (stripe_index == num)
2903			return 0;
2904		if (stripe_index < num)
2905			j++;
2906	}
2907	*offset = last_offset + j * map->stripe_len;
2908	return 1;
2909}
2910
2911static void scrub_free_parity(struct scrub_parity *sparity)
2912{
2913	struct scrub_ctx *sctx = sparity->sctx;
2914	struct scrub_sector *curr, *next;
2915	int nbits;
2916
2917	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2918	if (nbits) {
2919		spin_lock(&sctx->stat_lock);
2920		sctx->stat.read_errors += nbits;
2921		sctx->stat.uncorrectable_errors += nbits;
2922		spin_unlock(&sctx->stat_lock);
2923	}
2924
2925	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2926		list_del_init(&curr->list);
2927		scrub_sector_put(curr);
2928	}
2929
2930	kfree(sparity);
2931}
2932
2933static void scrub_parity_bio_endio_worker(struct work_struct *work)
2934{
2935	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2936						    work);
2937	struct scrub_ctx *sctx = sparity->sctx;
2938
2939	btrfs_bio_counter_dec(sctx->fs_info);
2940	scrub_free_parity(sparity);
2941	scrub_pending_bio_dec(sctx);
2942}
2943
2944static void scrub_parity_bio_endio(struct bio *bio)
2945{
2946	struct scrub_parity *sparity = bio->bi_private;
2947	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2948
2949	if (bio->bi_status)
2950		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
2951			  &sparity->dbitmap, sparity->nsectors);
2952
2953	bio_put(bio);
2954
2955	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
2956	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2957}
2958
2959static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2960{
2961	struct scrub_ctx *sctx = sparity->sctx;
2962	struct btrfs_fs_info *fs_info = sctx->fs_info;
2963	struct bio *bio;
2964	struct btrfs_raid_bio *rbio;
2965	struct btrfs_io_context *bioc = NULL;
2966	u64 length;
2967	int ret;
2968
2969	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
2970			   &sparity->ebitmap, sparity->nsectors))
2971		goto out;
2972
2973	length = sparity->logic_end - sparity->logic_start;
2974
2975	btrfs_bio_counter_inc_blocked(fs_info);
2976	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2977			       &length, &bioc);
2978	if (ret || !bioc || !bioc->raid_map)
2979		goto bioc_out;
2980
2981	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2982	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2983	bio->bi_private = sparity;
2984	bio->bi_end_io = scrub_parity_bio_endio;
2985
2986	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2987					      sparity->scrub_dev,
2988					      &sparity->dbitmap,
2989					      sparity->nsectors);
2990	btrfs_put_bioc(bioc);
2991	if (!rbio)
2992		goto rbio_out;
2993
2994	scrub_pending_bio_inc(sctx);
2995	raid56_parity_submit_scrub_rbio(rbio);
2996	return;
2997
2998rbio_out:
2999	bio_put(bio);
3000bioc_out:
3001	btrfs_bio_counter_dec(fs_info);
3002	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
3003		  sparity->nsectors);
3004	spin_lock(&sctx->stat_lock);
3005	sctx->stat.malloc_errors++;
3006	spin_unlock(&sctx->stat_lock);
3007out:
3008	scrub_free_parity(sparity);
3009}
3010
3011static void scrub_parity_get(struct scrub_parity *sparity)
3012{
3013	refcount_inc(&sparity->refs);
3014}
3015
3016static void scrub_parity_put(struct scrub_parity *sparity)
3017{
3018	if (!refcount_dec_and_test(&sparity->refs))
3019		return;
3020
3021	scrub_parity_check_and_repair(sparity);
3022}
3023
3024/*
3025 * Return 0 if the extent item range covers any byte of the range.
3026 * Return <0 if the extent item is before @search_start.
3027 * Return >0 if the extent item is after @start_start + @search_len.
3028 */
3029static int compare_extent_item_range(struct btrfs_path *path,
3030				     u64 search_start, u64 search_len)
3031{
3032	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
3033	u64 len;
3034	struct btrfs_key key;
3035
3036	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3037	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
3038	       key.type == BTRFS_METADATA_ITEM_KEY);
3039	if (key.type == BTRFS_METADATA_ITEM_KEY)
3040		len = fs_info->nodesize;
3041	else
3042		len = key.offset;
3043
3044	if (key.objectid + len <= search_start)
3045		return -1;
3046	if (key.objectid >= search_start + search_len)
3047		return 1;
3048	return 0;
3049}
3050
3051/*
3052 * Locate one extent item which covers any byte in range
3053 * [@search_start, @search_start + @search_length)
3054 *
3055 * If the path is not initialized, we will initialize the search by doing
3056 * a btrfs_search_slot().
3057 * If the path is already initialized, we will use the path as the initial
3058 * slot, to avoid duplicated btrfs_search_slot() calls.
3059 *
3060 * NOTE: If an extent item starts before @search_start, we will still
3061 * return the extent item. This is for data extent crossing stripe boundary.
3062 *
3063 * Return 0 if we found such extent item, and @path will point to the extent item.
3064 * Return >0 if no such extent item can be found, and @path will be released.
3065 * Return <0 if hit fatal error, and @path will be released.
3066 */
3067static int find_first_extent_item(struct btrfs_root *extent_root,
3068				  struct btrfs_path *path,
3069				  u64 search_start, u64 search_len)
3070{
3071	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3072	struct btrfs_key key;
3073	int ret;
3074
3075	/* Continue using the existing path */
3076	if (path->nodes[0])
3077		goto search_forward;
3078
3079	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3080		key.type = BTRFS_METADATA_ITEM_KEY;
3081	else
3082		key.type = BTRFS_EXTENT_ITEM_KEY;
3083	key.objectid = search_start;
3084	key.offset = (u64)-1;
3085
3086	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3087	if (ret < 0)
3088		return ret;
3089
3090	ASSERT(ret > 0);
3091	/*
3092	 * Here we intentionally pass 0 as @min_objectid, as there could be
3093	 * an extent item starting before @search_start.
3094	 */
3095	ret = btrfs_previous_extent_item(extent_root, path, 0);
3096	if (ret < 0)
3097		return ret;
3098	/*
3099	 * No matter whether we have found an extent item, the next loop will
3100	 * properly do every check on the key.
3101	 */
3102search_forward:
3103	while (true) {
3104		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3105		if (key.objectid >= search_start + search_len)
3106			break;
3107		if (key.type != BTRFS_METADATA_ITEM_KEY &&
3108		    key.type != BTRFS_EXTENT_ITEM_KEY)
3109			goto next;
3110
3111		ret = compare_extent_item_range(path, search_start, search_len);
3112		if (ret == 0)
3113			return ret;
3114		if (ret > 0)
3115			break;
3116next:
3117		path->slots[0]++;
3118		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3119			ret = btrfs_next_leaf(extent_root, path);
3120			if (ret) {
3121				/* Either no more item or fatal error */
3122				btrfs_release_path(path);
3123				return ret;
3124			}
3125		}
3126	}
3127	btrfs_release_path(path);
3128	return 1;
3129}
3130
3131static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
3132			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
3133{
3134	struct btrfs_key key;
3135	struct btrfs_extent_item *ei;
3136
3137	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3138	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
3139	       key.type == BTRFS_EXTENT_ITEM_KEY);
3140	*extent_start_ret = key.objectid;
3141	if (key.type == BTRFS_METADATA_ITEM_KEY)
3142		*size_ret = path->nodes[0]->fs_info->nodesize;
3143	else
3144		*size_ret = key.offset;
3145	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
3146	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
3147	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
3148}
3149
3150static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
3151				      u64 boundary_start, u64 boudary_len)
3152{
3153	return (extent_start < boundary_start &&
3154		extent_start + extent_len > boundary_start) ||
3155	       (extent_start < boundary_start + boudary_len &&
3156		extent_start + extent_len > boundary_start + boudary_len);
3157}
3158
3159static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
3160					       struct scrub_parity *sparity,
3161					       struct map_lookup *map,
3162					       struct btrfs_device *sdev,
3163					       struct btrfs_path *path,
3164					       u64 logical)
3165{
3166	struct btrfs_fs_info *fs_info = sctx->fs_info;
3167	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
3168	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3169	u64 cur_logical = logical;
3170	int ret;
3171
3172	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3173
3174	/* Path must not be populated */
3175	ASSERT(!path->nodes[0]);
3176
3177	while (cur_logical < logical + map->stripe_len) {
3178		struct btrfs_io_context *bioc = NULL;
3179		struct btrfs_device *extent_dev;
3180		u64 extent_start;
3181		u64 extent_size;
3182		u64 mapped_length;
3183		u64 extent_flags;
3184		u64 extent_gen;
3185		u64 extent_physical;
3186		u64 extent_mirror_num;
3187
3188		ret = find_first_extent_item(extent_root, path, cur_logical,
3189					     logical + map->stripe_len - cur_logical);
3190		/* No more extent item in this data stripe */
3191		if (ret > 0) {
3192			ret = 0;
3193			break;
3194		}
3195		if (ret < 0)
3196			break;
3197		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
3198				&extent_gen);
3199
3200		/* Metadata should not cross stripe boundaries */
3201		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3202		    does_range_cross_boundary(extent_start, extent_size,
3203					      logical, map->stripe_len)) {
3204			btrfs_err(fs_info,
3205	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3206				  extent_start, logical);
3207			spin_lock(&sctx->stat_lock);
3208			sctx->stat.uncorrectable_errors++;
3209			spin_unlock(&sctx->stat_lock);
3210			cur_logical += extent_size;
3211			continue;
3212		}
3213
3214		/* Skip hole range which doesn't have any extent */
3215		cur_logical = max(extent_start, cur_logical);
3216
3217		/* Truncate the range inside this data stripe */
3218		extent_size = min(extent_start + extent_size,
3219				  logical + map->stripe_len) - cur_logical;
3220		extent_start = cur_logical;
3221		ASSERT(extent_size <= U32_MAX);
3222
3223		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);
3224
3225		mapped_length = extent_size;
3226		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
3227				      &mapped_length, &bioc, 0);
3228		if (!ret && (!bioc || mapped_length < extent_size))
3229			ret = -EIO;
3230		if (ret) {
3231			btrfs_put_bioc(bioc);
3232			scrub_parity_mark_sectors_error(sparity, extent_start,
3233							extent_size);
3234			break;
3235		}
3236		extent_physical = bioc->stripes[0].physical;
3237		extent_mirror_num = bioc->mirror_num;
3238		extent_dev = bioc->stripes[0].dev;
3239		btrfs_put_bioc(bioc);
3240
3241		ret = btrfs_lookup_csums_list(csum_root, extent_start,
3242					      extent_start + extent_size - 1,
3243					      &sctx->csum_list, 1, false);
3244		if (ret) {
3245			scrub_parity_mark_sectors_error(sparity, extent_start,
3246							extent_size);
3247			break;
3248		}
3249
3250		ret = scrub_extent_for_parity(sparity, extent_start,
3251					      extent_size, extent_physical,
3252					      extent_dev, extent_flags,
3253					      extent_gen, extent_mirror_num);
3254		scrub_free_csums(sctx);
3255
3256		if (ret) {
3257			scrub_parity_mark_sectors_error(sparity, extent_start,
3258							extent_size);
3259			break;
3260		}
3261
3262		cond_resched();
3263		cur_logical += extent_size;
3264	}
3265	btrfs_release_path(path);
3266	return ret;
3267}
3268
3269static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3270						  struct map_lookup *map,
3271						  struct btrfs_device *sdev,
3272						  u64 logic_start,
3273						  u64 logic_end)
3274{
3275	struct btrfs_fs_info *fs_info = sctx->fs_info;
3276	struct btrfs_path *path;
3277	u64 cur_logical;
3278	int ret;
3279	struct scrub_parity *sparity;
3280	int nsectors;
3281
3282	path = btrfs_alloc_path();
3283	if (!path) {
3284		spin_lock(&sctx->stat_lock);
3285		sctx->stat.malloc_errors++;
3286		spin_unlock(&sctx->stat_lock);
3287		return -ENOMEM;
3288	}
3289	path->search_commit_root = 1;
3290	path->skip_locking = 1;
3291
3292	ASSERT(map->stripe_len <= U32_MAX);
3293	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3294	ASSERT(nsectors <= BITS_PER_LONG);
3295	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3296	if (!sparity) {
3297		spin_lock(&sctx->stat_lock);
3298		sctx->stat.malloc_errors++;
3299		spin_unlock(&sctx->stat_lock);
3300		btrfs_free_path(path);
3301		return -ENOMEM;
3302	}
3303
3304	ASSERT(map->stripe_len <= U32_MAX);
3305	sparity->stripe_len = map->stripe_len;
3306	sparity->nsectors = nsectors;
3307	sparity->sctx = sctx;
3308	sparity->scrub_dev = sdev;
3309	sparity->logic_start = logic_start;
3310	sparity->logic_end = logic_end;
3311	refcount_set(&sparity->refs, 1);
3312	INIT_LIST_HEAD(&sparity->sectors_list);
3313
3314	ret = 0;
3315	for (cur_logical = logic_start; cur_logical < logic_end;
3316	     cur_logical += map->stripe_len) {
3317		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
3318							  sdev, path, cur_logical);
3319		if (ret < 0)
3320			break;
3321	}
3322
3323	scrub_parity_put(sparity);
3324	scrub_submit(sctx);
3325	mutex_lock(&sctx->wr_lock);
3326	scrub_wr_submit(sctx);
3327	mutex_unlock(&sctx->wr_lock);
3328
3329	btrfs_free_path(path);
3330	return ret < 0 ? ret : 0;
3331}
3332
3333static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3334{
3335	if (!btrfs_is_zoned(sctx->fs_info))
3336		return;
3337
3338	sctx->flush_all_writes = true;
3339	scrub_submit(sctx);
3340	mutex_lock(&sctx->wr_lock);
3341	scrub_wr_submit(sctx);
3342	mutex_unlock(&sctx->wr_lock);
3343
3344	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3345}
3346
3347static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3348					u64 physical, u64 physical_end)
3349{
3350	struct btrfs_fs_info *fs_info = sctx->fs_info;
3351	int ret = 0;
3352
3353	if (!btrfs_is_zoned(fs_info))
3354		return 0;
3355
3356	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3357
3358	mutex_lock(&sctx->wr_lock);
3359	if (sctx->write_pointer < physical_end) {
3360		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3361						    physical,
3362						    sctx->write_pointer);
3363		if (ret)
3364			btrfs_err(fs_info,
3365				  "zoned: failed to recover write pointer");
3366	}
3367	mutex_unlock(&sctx->wr_lock);
3368	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3369
3370	return ret;
3371}
3372
3373/*
3374 * Scrub one range which can only has simple mirror based profile.
3375 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
3376 *  RAID0/RAID10).
3377 *
3378 * Since we may need to handle a subset of block group, we need @logical_start
3379 * and @logical_length parameter.
3380 */
3381static int scrub_simple_mirror(struct scrub_ctx *sctx,
3382			       struct btrfs_root *extent_root,
3383			       struct btrfs_root *csum_root,
3384			       struct btrfs_block_group *bg,
3385			       struct map_lookup *map,
3386			       u64 logical_start, u64 logical_length,
3387			       struct btrfs_device *device,
3388			       u64 physical, int mirror_num)
3389{
3390	struct btrfs_fs_info *fs_info = sctx->fs_info;
3391	const u64 logical_end = logical_start + logical_length;
3392	/* An artificial limit, inherit from old scrub behavior */
3393	const u32 max_length = SZ_64K;
3394	struct btrfs_path path = { 0 };
3395	u64 cur_logical = logical_start;
3396	int ret;
3397
3398	/* The range must be inside the bg */
3399	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
3400
3401	path.search_commit_root = 1;
3402	path.skip_locking = 1;
3403	/* Go through each extent items inside the logical range */
3404	while (cur_logical < logical_end) {
3405		u64 extent_start;
3406		u64 extent_len;
3407		u64 extent_flags;
3408		u64 extent_gen;
3409		u64 scrub_len;
3410
3411		/* Canceled? */
3412		if (atomic_read(&fs_info->scrub_cancel_req) ||
3413		    atomic_read(&sctx->cancel_req)) {
3414			ret = -ECANCELED;
3415			break;
3416		}
3417		/* Paused? */
3418		if (atomic_read(&fs_info->scrub_pause_req)) {
3419			/* Push queued extents */
3420			sctx->flush_all_writes = true;
3421			scrub_submit(sctx);
3422			mutex_lock(&sctx->wr_lock);
3423			scrub_wr_submit(sctx);
3424			mutex_unlock(&sctx->wr_lock);
3425			wait_event(sctx->list_wait,
3426				   atomic_read(&sctx->bios_in_flight) == 0);
3427			sctx->flush_all_writes = false;
3428			scrub_blocked_if_needed(fs_info);
3429		}
3430		/* Block group removed? */
3431		spin_lock(&bg->lock);
3432		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3433			spin_unlock(&bg->lock);
3434			ret = 0;
3435			break;
3436		}
3437		spin_unlock(&bg->lock);
3438
3439		ret = find_first_extent_item(extent_root, &path, cur_logical,
3440					     logical_end - cur_logical);
3441		if (ret > 0) {
3442			/* No more extent, just update the accounting */
3443			sctx->stat.last_physical = physical + logical_length;
3444			ret = 0;
3445			break;
3446		}
3447		if (ret < 0)
3448			break;
3449		get_extent_info(&path, &extent_start, &extent_len,
3450				&extent_flags, &extent_gen);
3451		/* Skip hole range which doesn't have any extent */
3452		cur_logical = max(extent_start, cur_logical);
3453
3454		/*
3455		 * Scrub len has three limits:
3456		 * - Extent size limit
3457		 * - Scrub range limit
3458		 *   This is especially imporatant for RAID0/RAID10 to reuse
3459		 *   this function
3460		 * - Max scrub size limit
3461		 */
3462		scrub_len = min(min(extent_start + extent_len,
3463				    logical_end), cur_logical + max_length) -
3464			    cur_logical;
3465
3466		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3467			ret = btrfs_lookup_csums_list(csum_root, cur_logical,
3468					cur_logical + scrub_len - 1,
3469					&sctx->csum_list, 1, false);
3470			if (ret)
3471				break;
3472		}
3473		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3474		    does_range_cross_boundary(extent_start, extent_len,
3475					      logical_start, logical_length)) {
3476			btrfs_err(fs_info,
3477"scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
3478				  extent_start, logical_start, logical_end);
3479			spin_lock(&sctx->stat_lock);
3480			sctx->stat.uncorrectable_errors++;
3481			spin_unlock(&sctx->stat_lock);
3482			cur_logical += scrub_len;
3483			continue;
3484		}
3485		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
3486				   cur_logical - logical_start + physical,
3487				   device, extent_flags, extent_gen,
3488				   mirror_num);
3489		scrub_free_csums(sctx);
3490		if (ret)
3491			break;
3492		if (sctx->is_dev_replace)
3493			sync_replace_for_zoned(sctx);
3494		cur_logical += scrub_len;
3495		/* Don't hold CPU for too long time */
3496		cond_resched();
3497	}
3498	btrfs_release_path(&path);
3499	return ret;
3500}
3501
3502/* Calculate the full stripe length for simple stripe based profiles */
3503static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
3504{
3505	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3506			    BTRFS_BLOCK_GROUP_RAID10));
3507
3508	return map->num_stripes / map->sub_stripes * map->stripe_len;
3509}
3510
3511/* Get the logical bytenr for the stripe */
3512static u64 simple_stripe_get_logical(struct map_lookup *map,
3513				     struct btrfs_block_group *bg,
3514				     int stripe_index)
3515{
3516	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3517			    BTRFS_BLOCK_GROUP_RAID10));
3518	ASSERT(stripe_index < map->num_stripes);
3519
3520	/*
3521	 * (stripe_index / sub_stripes) gives how many data stripes we need to
3522	 * skip.
3523	 */
3524	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
3525}
3526
3527/* Get the mirror number for the stripe */
3528static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
3529{
3530	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3531			    BTRFS_BLOCK_GROUP_RAID10));
3532	ASSERT(stripe_index < map->num_stripes);
3533
3534	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
3535	return stripe_index % map->sub_stripes + 1;
3536}
3537
3538static int scrub_simple_stripe(struct scrub_ctx *sctx,
3539			       struct btrfs_root *extent_root,
3540			       struct btrfs_root *csum_root,
3541			       struct btrfs_block_group *bg,
3542			       struct map_lookup *map,
3543			       struct btrfs_device *device,
3544			       int stripe_index)
3545{
3546	const u64 logical_increment = simple_stripe_full_stripe_len(map);
3547	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
3548	const u64 orig_physical = map->stripes[stripe_index].physical;
3549	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
3550	u64 cur_logical = orig_logical;
3551	u64 cur_physical = orig_physical;
3552	int ret = 0;
3553
3554	while (cur_logical < bg->start + bg->length) {
3555		/*
3556		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
3557		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
3558		 * this stripe.
3559		 */
3560		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
3561					  cur_logical, map->stripe_len, device,
3562					  cur_physical, mirror_num);
3563		if (ret)
3564			return ret;
3565		/* Skip to next stripe which belongs to the target device */
3566		cur_logical += logical_increment;
3567		/* For physical offset, we just go to next stripe */
3568		cur_physical += map->stripe_len;
3569	}
3570	return ret;
3571}
3572
3573static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3574					   struct btrfs_block_group *bg,
3575					   struct extent_map *em,
3576					   struct btrfs_device *scrub_dev,
3577					   int stripe_index)
 
3578{
3579	struct btrfs_path *path;
3580	struct btrfs_fs_info *fs_info = sctx->fs_info;
3581	struct btrfs_root *root;
3582	struct btrfs_root *csum_root;
 
3583	struct blk_plug plug;
3584	struct map_lookup *map = em->map_lookup;
3585	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3586	const u64 chunk_logical = bg->start;
3587	int ret;
3588	u64 physical = map->stripes[stripe_index].physical;
3589	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
3590	const u64 physical_end = physical + dev_stripe_len;
 
 
3591	u64 logical;
3592	u64 logic_end;
3593	/* The logical increment after finishing one stripe */
3594	u64 increment;
3595	/* Offset inside the chunk */
 
 
 
 
 
3596	u64 offset;
3597	u64 stripe_logical;
3598	u64 stripe_end;
 
 
 
3599	int stop_loop = 0;
3600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3601	path = btrfs_alloc_path();
3602	if (!path)
3603		return -ENOMEM;
3604
3605	/*
3606	 * work on commit root. The related disk blocks are static as
3607	 * long as COW is applied. This means, it is save to rewrite
3608	 * them to repair disk errors without any race conditions
3609	 */
3610	path->search_commit_root = 1;
3611	path->skip_locking = 1;
3612	path->reada = READA_FORWARD;
3613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3614	wait_event(sctx->list_wait,
3615		   atomic_read(&sctx->bios_in_flight) == 0);
3616	scrub_blocked_if_needed(fs_info);
3617
3618	root = btrfs_extent_root(fs_info, bg->start);
3619	csum_root = btrfs_csum_root(fs_info, bg->start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3620
3621	/*
3622	 * collect all data csums for the stripe to avoid seeking during
3623	 * the scrub. This might currently (crc32) end up to be about 1MB
3624	 */
3625	blk_start_plug(&plug);
3626
3627	if (sctx->is_dev_replace &&
3628	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3629		mutex_lock(&sctx->wr_lock);
3630		sctx->write_pointer = physical;
3631		mutex_unlock(&sctx->wr_lock);
3632		sctx->flush_all_writes = true;
3633	}
3634
3635	/*
3636	 * There used to be a big double loop to handle all profiles using the
3637	 * same routine, which grows larger and more gross over time.
3638	 *
3639	 * So here we handle each profile differently, so simpler profiles
3640	 * have simpler scrubbing function.
3641	 */
3642	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
3643			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
3644		/*
3645		 * Above check rules out all complex profile, the remaining
3646		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
3647		 * mirrored duplication without stripe.
3648		 *
3649		 * Only @physical and @mirror_num needs to calculated using
3650		 * @stripe_index.
3651		 */
3652		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3653				bg->start, bg->length, scrub_dev,
3654				map->stripes[stripe_index].physical,
3655				stripe_index + 1);
3656		offset = 0;
3657		goto out;
3658	}
3659	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3660		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
3661					  scrub_dev, stripe_index);
3662		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3663		goto out;
3664	}
3665
3666	/* Only RAID56 goes through the old code */
3667	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3668	ret = 0;
3669
3670	/* Calculate the logical end of the stripe */
3671	get_raid56_logic_offset(physical_end, stripe_index,
3672				map, &logic_end, NULL);
3673	logic_end += chunk_logical;
3674
3675	/* Initialize @offset in case we need to go to out: label */
3676	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
3677	increment = map->stripe_len * nr_data_stripes(map);
3678
3679	/*
3680	 * Due to the rotation, for RAID56 it's better to iterate each stripe
3681	 * using their physical offset.
3682	 */
3683	while (physical < physical_end) {
3684		ret = get_raid56_logic_offset(physical, stripe_index, map,
3685					      &logical, &stripe_logical);
3686		logical += chunk_logical;
3687		if (ret) {
3688			/* it is parity strip */
3689			stripe_logical += chunk_logical;
3690			stripe_end = stripe_logical + increment;
3691			ret = scrub_raid56_parity(sctx, map, scrub_dev,
3692						  stripe_logical,
3693						  stripe_end);
3694			if (ret)
3695				goto out;
3696			goto next;
 
 
 
 
 
 
 
3697		}
3698
3699		/*
3700		 * Now we're at a data stripe, scrub each extents in the range.
3701		 *
3702		 * At this stage, if we ignore the repair part, inside each data
3703		 * stripe it is no different than SINGLE profile.
3704		 * We can reuse scrub_simple_mirror() here, as the repair part
3705		 * is still based on @mirror_num.
3706		 */
3707		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3708					  logical, map->stripe_len,
3709					  scrub_dev, physical, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3710		if (ret < 0)
3711			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3712next:
 
 
 
 
3713		logical += increment;
3714		physical += map->stripe_len;
3715		spin_lock(&sctx->stat_lock);
3716		if (stop_loop)
3717			sctx->stat.last_physical =
3718				map->stripes[stripe_index].physical + dev_stripe_len;
3719		else
3720			sctx->stat.last_physical = physical;
3721		spin_unlock(&sctx->stat_lock);
3722		if (stop_loop)
3723			break;
3724	}
3725out:
3726	/* push queued extents */
3727	scrub_submit(sctx);
3728	mutex_lock(&sctx->wr_lock);
3729	scrub_wr_submit(sctx);
3730	mutex_unlock(&sctx->wr_lock);
3731
3732	blk_finish_plug(&plug);
3733	btrfs_free_path(path);
3734
3735	if (sctx->is_dev_replace && ret >= 0) {
3736		int ret2;
3737
3738		ret2 = sync_write_pointer_for_zoned(sctx,
3739				chunk_logical + offset,
3740				map->stripes[stripe_index].physical,
3741				physical_end);
3742		if (ret2)
3743			ret = ret2;
3744	}
3745
3746	return ret < 0 ? ret : 0;
3747}
3748
3749static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3750					  struct btrfs_block_group *bg,
3751					  struct btrfs_device *scrub_dev,
3752					  u64 dev_offset,
3753					  u64 dev_extent_len)
 
3754{
3755	struct btrfs_fs_info *fs_info = sctx->fs_info;
3756	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3757	struct map_lookup *map;
3758	struct extent_map *em;
3759	int i;
3760	int ret = 0;
3761
3762	read_lock(&map_tree->lock);
3763	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3764	read_unlock(&map_tree->lock);
3765
3766	if (!em) {
3767		/*
3768		 * Might have been an unused block group deleted by the cleaner
3769		 * kthread or relocation.
3770		 */
3771		spin_lock(&bg->lock);
3772		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3773			ret = -EINVAL;
3774		spin_unlock(&bg->lock);
3775
3776		return ret;
3777	}
3778	if (em->start != bg->start)
3779		goto out;
3780	if (em->len < dev_extent_len)
 
3781		goto out;
3782
3783	map = em->map_lookup;
3784	for (i = 0; i < map->num_stripes; ++i) {
3785		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3786		    map->stripes[i].physical == dev_offset) {
3787			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
 
 
3788			if (ret)
3789				goto out;
3790		}
3791	}
3792out:
3793	free_extent_map(em);
3794
3795	return ret;
3796}
3797
3798static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3799					  struct btrfs_block_group *cache)
3800{
3801	struct btrfs_fs_info *fs_info = cache->fs_info;
3802	struct btrfs_trans_handle *trans;
3803
3804	if (!btrfs_is_zoned(fs_info))
3805		return 0;
3806
3807	btrfs_wait_block_group_reservations(cache);
3808	btrfs_wait_nocow_writers(cache);
3809	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3810
3811	trans = btrfs_join_transaction(root);
3812	if (IS_ERR(trans))
3813		return PTR_ERR(trans);
3814	return btrfs_commit_transaction(trans);
3815}
3816
3817static noinline_for_stack
3818int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3819			   struct btrfs_device *scrub_dev, u64 start, u64 end)
 
3820{
3821	struct btrfs_dev_extent *dev_extent = NULL;
3822	struct btrfs_path *path;
3823	struct btrfs_fs_info *fs_info = sctx->fs_info;
3824	struct btrfs_root *root = fs_info->dev_root;
 
 
 
3825	u64 chunk_offset;
3826	int ret = 0;
3827	int ro_set;
3828	int slot;
3829	struct extent_buffer *l;
3830	struct btrfs_key key;
3831	struct btrfs_key found_key;
3832	struct btrfs_block_group *cache;
3833	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3834
3835	path = btrfs_alloc_path();
3836	if (!path)
3837		return -ENOMEM;
3838
3839	path->reada = READA_FORWARD;
3840	path->search_commit_root = 1;
3841	path->skip_locking = 1;
3842
3843	key.objectid = scrub_dev->devid;
3844	key.offset = 0ull;
3845	key.type = BTRFS_DEV_EXTENT_KEY;
3846
3847	while (1) {
3848		u64 dev_extent_len;
3849
3850		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3851		if (ret < 0)
3852			break;
3853		if (ret > 0) {
3854			if (path->slots[0] >=
3855			    btrfs_header_nritems(path->nodes[0])) {
3856				ret = btrfs_next_leaf(root, path);
3857				if (ret < 0)
3858					break;
3859				if (ret > 0) {
3860					ret = 0;
3861					break;
3862				}
3863			} else {
3864				ret = 0;
3865			}
3866		}
3867
3868		l = path->nodes[0];
3869		slot = path->slots[0];
3870
3871		btrfs_item_key_to_cpu(l, &found_key, slot);
3872
3873		if (found_key.objectid != scrub_dev->devid)
3874			break;
3875
3876		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3877			break;
3878
3879		if (found_key.offset >= end)
3880			break;
3881
3882		if (found_key.offset < key.offset)
3883			break;
3884
3885		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3886		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
3887
3888		if (found_key.offset + dev_extent_len <= start)
3889			goto skip;
 
 
 
3890
 
 
3891		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3892
3893		/*
3894		 * get a reference on the corresponding block group to prevent
3895		 * the chunk from going away while we scrub it
3896		 */
3897		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3898
3899		/* some chunks are removed but not committed to disk yet,
3900		 * continue scrubbing */
3901		if (!cache)
3902			goto skip;
3903
3904		ASSERT(cache->start <= chunk_offset);
3905		/*
3906		 * We are using the commit root to search for device extents, so
3907		 * that means we could have found a device extent item from a
3908		 * block group that was deleted in the current transaction. The
3909		 * logical start offset of the deleted block group, stored at
3910		 * @chunk_offset, might be part of the logical address range of
3911		 * a new block group (which uses different physical extents).
3912		 * In this case btrfs_lookup_block_group() has returned the new
3913		 * block group, and its start address is less than @chunk_offset.
3914		 *
3915		 * We skip such new block groups, because it's pointless to
3916		 * process them, as we won't find their extents because we search
3917		 * for them using the commit root of the extent tree. For a device
3918		 * replace it's also fine to skip it, we won't miss copying them
3919		 * to the target device because we have the write duplication
3920		 * setup through the regular write path (by btrfs_map_block()),
3921		 * and we have committed a transaction when we started the device
3922		 * replace, right after setting up the device replace state.
3923		 */
3924		if (cache->start < chunk_offset) {
3925			btrfs_put_block_group(cache);
3926			goto skip;
3927		}
3928
3929		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3930			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
3931				btrfs_put_block_group(cache);
3932				goto skip;
3933			}
3934		}
3935
3936		/*
3937		 * Make sure that while we are scrubbing the corresponding block
3938		 * group doesn't get its logical address and its device extents
3939		 * reused for another block group, which can possibly be of a
3940		 * different type and different profile. We do this to prevent
3941		 * false error detections and crashes due to bogus attempts to
3942		 * repair extents.
3943		 */
3944		spin_lock(&cache->lock);
3945		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
3946			spin_unlock(&cache->lock);
3947			btrfs_put_block_group(cache);
3948			goto skip;
3949		}
3950		btrfs_freeze_block_group(cache);
3951		spin_unlock(&cache->lock);
3952
3953		/*
3954		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3955		 * to avoid deadlock caused by:
3956		 * btrfs_inc_block_group_ro()
3957		 * -> btrfs_wait_for_commit()
3958		 * -> btrfs_commit_transaction()
3959		 * -> btrfs_scrub_pause()
3960		 */
3961		scrub_pause_on(fs_info);
3962
3963		/*
3964		 * Don't do chunk preallocation for scrub.
3965		 *
3966		 * This is especially important for SYSTEM bgs, or we can hit
3967		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3968		 * 1. The only SYSTEM bg is marked RO.
3969		 *    Since SYSTEM bg is small, that's pretty common.
3970		 * 2. New SYSTEM bg will be allocated
3971		 *    Due to regular version will allocate new chunk.
3972		 * 3. New SYSTEM bg is empty and will get cleaned up
3973		 *    Before cleanup really happens, it's marked RO again.
3974		 * 4. Empty SYSTEM bg get scrubbed
3975		 *    We go back to 2.
3976		 *
3977		 * This can easily boost the amount of SYSTEM chunks if cleaner
3978		 * thread can't be triggered fast enough, and use up all space
3979		 * of btrfs_super_block::sys_chunk_array
3980		 *
3981		 * While for dev replace, we need to try our best to mark block
3982		 * group RO, to prevent race between:
3983		 * - Write duplication
3984		 *   Contains latest data
3985		 * - Scrub copy
3986		 *   Contains data from commit tree
3987		 *
3988		 * If target block group is not marked RO, nocow writes can
3989		 * be overwritten by scrub copy, causing data corruption.
3990		 * So for dev-replace, it's not allowed to continue if a block
3991		 * group is not RO.
3992		 */
3993		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3994		if (!ret && sctx->is_dev_replace) {
3995			ret = finish_extent_writes_for_zoned(root, cache);
3996			if (ret) {
3997				btrfs_dec_block_group_ro(cache);
3998				scrub_pause_off(fs_info);
3999				btrfs_put_block_group(cache);
4000				break;
4001			}
4002		}
4003
4004		if (ret == 0) {
4005			ro_set = 1;
4006		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
4007			/*
4008			 * btrfs_inc_block_group_ro return -ENOSPC when it
4009			 * failed in creating new chunk for metadata.
4010			 * It is not a problem for scrub, because
4011			 * metadata are always cowed, and our scrub paused
4012			 * commit_transactions.
4013			 */
4014			ro_set = 0;
4015		} else if (ret == -ETXTBSY) {
4016			btrfs_warn(fs_info,
4017		   "skipping scrub of block group %llu due to active swapfile",
4018				   cache->start);
4019			scrub_pause_off(fs_info);
4020			ret = 0;
4021			goto skip_unfreeze;
4022		} else {
4023			btrfs_warn(fs_info,
4024				   "failed setting block group ro: %d", ret);
4025			btrfs_unfreeze_block_group(cache);
4026			btrfs_put_block_group(cache);
4027			scrub_pause_off(fs_info);
4028			break;
4029		}
4030
4031		/*
4032		 * Now the target block is marked RO, wait for nocow writes to
4033		 * finish before dev-replace.
4034		 * COW is fine, as COW never overwrites extents in commit tree.
4035		 */
4036		if (sctx->is_dev_replace) {
4037			btrfs_wait_nocow_writers(cache);
4038			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
4039					cache->length);
4040		}
4041
4042		scrub_pause_off(fs_info);
4043		down_write(&dev_replace->rwsem);
4044		dev_replace->cursor_right = found_key.offset + dev_extent_len;
4045		dev_replace->cursor_left = found_key.offset;
4046		dev_replace->item_needs_writeback = 1;
4047		up_write(&dev_replace->rwsem);
4048
4049		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
4050				  dev_extent_len);
4051
4052		/*
4053		 * flush, submit all pending read and write bios, afterwards
4054		 * wait for them.
4055		 * Note that in the dev replace case, a read request causes
4056		 * write requests that are submitted in the read completion
4057		 * worker. Therefore in the current situation, it is required
4058		 * that all write requests are flushed, so that all read and
4059		 * write requests are really completed when bios_in_flight
4060		 * changes to 0.
4061		 */
4062		sctx->flush_all_writes = true;
4063		scrub_submit(sctx);
4064		mutex_lock(&sctx->wr_lock);
4065		scrub_wr_submit(sctx);
4066		mutex_unlock(&sctx->wr_lock);
4067
4068		wait_event(sctx->list_wait,
4069			   atomic_read(&sctx->bios_in_flight) == 0);
4070
4071		scrub_pause_on(fs_info);
4072
4073		/*
4074		 * must be called before we decrease @scrub_paused.
4075		 * make sure we don't block transaction commit while
4076		 * we are waiting pending workers finished.
4077		 */
4078		wait_event(sctx->list_wait,
4079			   atomic_read(&sctx->workers_pending) == 0);
4080		sctx->flush_all_writes = false;
4081
4082		scrub_pause_off(fs_info);
4083
4084		if (sctx->is_dev_replace &&
4085		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
4086						      cache, found_key.offset))
4087			ro_set = 0;
4088
4089		down_write(&dev_replace->rwsem);
4090		dev_replace->cursor_left = dev_replace->cursor_right;
4091		dev_replace->item_needs_writeback = 1;
4092		up_write(&dev_replace->rwsem);
4093
4094		if (ro_set)
4095			btrfs_dec_block_group_ro(cache);
4096
4097		/*
4098		 * We might have prevented the cleaner kthread from deleting
4099		 * this block group if it was already unused because we raced
4100		 * and set it to RO mode first. So add it back to the unused
4101		 * list, otherwise it might not ever be deleted unless a manual
4102		 * balance is triggered or it becomes used and unused again.
4103		 */
4104		spin_lock(&cache->lock);
4105		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
4106		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
4107			spin_unlock(&cache->lock);
4108			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
4109				btrfs_discard_queue_work(&fs_info->discard_ctl,
4110							 cache);
4111			else
4112				btrfs_mark_bg_unused(cache);
4113		} else {
4114			spin_unlock(&cache->lock);
4115		}
4116skip_unfreeze:
4117		btrfs_unfreeze_block_group(cache);
4118		btrfs_put_block_group(cache);
4119		if (ret)
4120			break;
4121		if (sctx->is_dev_replace &&
4122		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4123			ret = -EIO;
4124			break;
4125		}
4126		if (sctx->stat.malloc_errors > 0) {
4127			ret = -ENOMEM;
4128			break;
4129		}
4130skip:
4131		key.offset = found_key.offset + dev_extent_len;
 
 
 
4132		btrfs_release_path(path);
4133	}
4134
4135	btrfs_free_path(path);
4136
4137	return ret;
 
 
 
 
4138}
4139
4140static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4141					   struct btrfs_device *scrub_dev)
4142{
4143	int	i;
4144	u64	bytenr;
4145	u64	gen;
4146	int	ret;
4147	struct btrfs_fs_info *fs_info = sctx->fs_info;
4148
4149	if (BTRFS_FS_ERROR(fs_info))
4150		return -EROFS;
4151
4152	/* Seed devices of a new filesystem has their own generation. */
4153	if (scrub_dev->fs_devices != fs_info->fs_devices)
4154		gen = scrub_dev->generation;
4155	else
4156		gen = fs_info->last_trans_committed;
4157
4158	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4159		bytenr = btrfs_sb_offset(i);
4160		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4161		    scrub_dev->commit_total_bytes)
4162			break;
4163		if (!btrfs_check_super_location(scrub_dev, bytenr))
4164			continue;
4165
4166		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4167				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4168				    NULL, bytenr);
4169		if (ret)
4170			return ret;
4171	}
4172	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4173
4174	return 0;
4175}
4176
4177static void scrub_workers_put(struct btrfs_fs_info *fs_info)
4178{
4179	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
4180					&fs_info->scrub_lock)) {
4181		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
4182		struct workqueue_struct *scrub_wr_comp =
4183						fs_info->scrub_wr_completion_workers;
4184		struct workqueue_struct *scrub_parity =
4185						fs_info->scrub_parity_workers;
4186
4187		fs_info->scrub_workers = NULL;
4188		fs_info->scrub_wr_completion_workers = NULL;
4189		fs_info->scrub_parity_workers = NULL;
4190		mutex_unlock(&fs_info->scrub_lock);
4191
4192		if (scrub_workers)
4193			destroy_workqueue(scrub_workers);
4194		if (scrub_wr_comp)
4195			destroy_workqueue(scrub_wr_comp);
4196		if (scrub_parity)
4197			destroy_workqueue(scrub_parity);
4198	}
4199}
4200
4201/*
4202 * get a reference count on fs_info->scrub_workers. start worker if necessary
4203 */
4204static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4205						int is_dev_replace)
4206{
4207	struct workqueue_struct *scrub_workers = NULL;
4208	struct workqueue_struct *scrub_wr_comp = NULL;
4209	struct workqueue_struct *scrub_parity = NULL;
4210	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4211	int max_active = fs_info->thread_pool_size;
4212	int ret = -ENOMEM;
4213
4214	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4215		return 0;
4216
4217	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
4218					is_dev_replace ? 1 : max_active);
4219	if (!scrub_workers)
4220		goto fail_scrub_workers;
4221
4222	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4223	if (!scrub_wr_comp)
4224		goto fail_scrub_wr_completion_workers;
4225
4226	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4227	if (!scrub_parity)
4228		goto fail_scrub_parity_workers;
4229
4230	mutex_lock(&fs_info->scrub_lock);
4231	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4232		ASSERT(fs_info->scrub_workers == NULL &&
4233		       fs_info->scrub_wr_completion_workers == NULL &&
4234		       fs_info->scrub_parity_workers == NULL);
4235		fs_info->scrub_workers = scrub_workers;
4236		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4237		fs_info->scrub_parity_workers = scrub_parity;
4238		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4239		mutex_unlock(&fs_info->scrub_lock);
4240		return 0;
4241	}
4242	/* Other thread raced in and created the workers for us */
4243	refcount_inc(&fs_info->scrub_workers_refcnt);
4244	mutex_unlock(&fs_info->scrub_lock);
4245
4246	ret = 0;
4247	destroy_workqueue(scrub_parity);
4248fail_scrub_parity_workers:
4249	destroy_workqueue(scrub_wr_comp);
4250fail_scrub_wr_completion_workers:
4251	destroy_workqueue(scrub_workers);
4252fail_scrub_workers:
4253	return ret;
4254}
4255
 
 
 
 
 
 
 
 
 
 
4256int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4257		    u64 end, struct btrfs_scrub_progress *progress,
4258		    int readonly, int is_dev_replace)
4259{
4260	struct btrfs_dev_lookup_args args = { .devid = devid };
4261	struct scrub_ctx *sctx;
4262	int ret;
4263	struct btrfs_device *dev;
4264	unsigned int nofs_flag;
4265	bool need_commit = false;
4266
4267	if (btrfs_fs_closing(fs_info))
4268		return -EAGAIN;
4269
4270	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
4271	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4272
4273	/*
4274	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
4275	 * value (max nodesize / min sectorsize), thus nodesize should always
4276	 * be fine.
4277	 */
4278	ASSERT(fs_info->nodesize <=
4279	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
 
 
 
 
 
4280
4281	/* Allocate outside of device_list_mutex */
4282	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4283	if (IS_ERR(sctx))
4284		return PTR_ERR(sctx);
 
 
 
 
 
 
 
4285
4286	ret = scrub_workers_get(fs_info, is_dev_replace);
4287	if (ret)
4288		goto out_free_ctx;
 
 
 
 
 
4289
4290	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4291	dev = btrfs_find_device(fs_info->fs_devices, &args);
4292	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4293		     !is_dev_replace)) {
4294		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4295		ret = -ENODEV;
4296		goto out;
 
 
 
 
 
 
 
 
4297	}
4298
4299	if (!is_dev_replace && !readonly &&
4300	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
 
 
4301		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4302		btrfs_err_in_rcu(fs_info,
4303			"scrub on devid %llu: filesystem on %s is not writable",
4304				 devid, btrfs_dev_name(dev));
4305		ret = -EROFS;
4306		goto out;
4307	}
4308
4309	mutex_lock(&fs_info->scrub_lock);
4310	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4311	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4312		mutex_unlock(&fs_info->scrub_lock);
4313		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4314		ret = -EIO;
4315		goto out;
4316	}
4317
4318	down_read(&fs_info->dev_replace.rwsem);
4319	if (dev->scrub_ctx ||
4320	    (!is_dev_replace &&
4321	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4322		up_read(&fs_info->dev_replace.rwsem);
4323		mutex_unlock(&fs_info->scrub_lock);
4324		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4325		ret = -EINPROGRESS;
4326		goto out;
 
 
 
 
 
 
 
4327	}
4328	up_read(&fs_info->dev_replace.rwsem);
4329
 
 
 
 
 
 
 
4330	sctx->readonly = readonly;
4331	dev->scrub_ctx = sctx;
4332	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4333
4334	/*
4335	 * checking @scrub_pause_req here, we can avoid
4336	 * race between committing transaction and scrubbing.
4337	 */
4338	__scrub_blocked_if_needed(fs_info);
4339	atomic_inc(&fs_info->scrubs_running);
4340	mutex_unlock(&fs_info->scrub_lock);
4341
4342	/*
4343	 * In order to avoid deadlock with reclaim when there is a transaction
4344	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4345	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4346	 * invoked by our callees. The pausing request is done when the
4347	 * transaction commit starts, and it blocks the transaction until scrub
4348	 * is paused (done at specific points at scrub_stripe() or right above
4349	 * before incrementing fs_info->scrubs_running).
4350	 */
4351	nofs_flag = memalloc_nofs_save();
4352	if (!is_dev_replace) {
4353		u64 old_super_errors;
4354
4355		spin_lock(&sctx->stat_lock);
4356		old_super_errors = sctx->stat.super_errors;
4357		spin_unlock(&sctx->stat_lock);
4358
4359		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4360		/*
4361		 * by holding device list mutex, we can
4362		 * kick off writing super in log tree sync.
4363		 */
4364		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4365		ret = scrub_supers(sctx, dev);
4366		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4367
4368		spin_lock(&sctx->stat_lock);
4369		/*
4370		 * Super block errors found, but we can not commit transaction
4371		 * at current context, since btrfs_commit_transaction() needs
4372		 * to pause the current running scrub (hold by ourselves).
4373		 */
4374		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
4375			need_commit = true;
4376		spin_unlock(&sctx->stat_lock);
4377	}
4378
4379	if (!ret)
4380		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4381	memalloc_nofs_restore(nofs_flag);
4382
4383	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4384	atomic_dec(&fs_info->scrubs_running);
4385	wake_up(&fs_info->scrub_pause_wait);
4386
4387	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4388
4389	if (progress)
4390		memcpy(progress, &sctx->stat, sizeof(*progress));
4391
4392	if (!is_dev_replace)
4393		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4394			ret ? "not finished" : "finished", devid, ret);
4395
4396	mutex_lock(&fs_info->scrub_lock);
4397	dev->scrub_ctx = NULL;
4398	mutex_unlock(&fs_info->scrub_lock);
4399
4400	scrub_workers_put(fs_info);
4401	scrub_put_ctx(sctx);
4402
4403	/*
4404	 * We found some super block errors before, now try to force a
4405	 * transaction commit, as scrub has finished.
4406	 */
4407	if (need_commit) {
4408		struct btrfs_trans_handle *trans;
4409
4410		trans = btrfs_start_transaction(fs_info->tree_root, 0);
4411		if (IS_ERR(trans)) {
4412			ret = PTR_ERR(trans);
4413			btrfs_err(fs_info,
4414	"scrub: failed to start transaction to fix super block errors: %d", ret);
4415			return ret;
4416		}
4417		ret = btrfs_commit_transaction(trans);
4418		if (ret < 0)
4419			btrfs_err(fs_info,
4420	"scrub: failed to commit transaction to fix super block errors: %d", ret);
4421	}
4422	return ret;
4423out:
4424	scrub_workers_put(fs_info);
4425out_free_ctx:
4426	scrub_free_ctx(sctx);
4427
4428	return ret;
4429}
4430
4431void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4432{
 
 
4433	mutex_lock(&fs_info->scrub_lock);
4434	atomic_inc(&fs_info->scrub_pause_req);
4435	while (atomic_read(&fs_info->scrubs_paused) !=
4436	       atomic_read(&fs_info->scrubs_running)) {
4437		mutex_unlock(&fs_info->scrub_lock);
4438		wait_event(fs_info->scrub_pause_wait,
4439			   atomic_read(&fs_info->scrubs_paused) ==
4440			   atomic_read(&fs_info->scrubs_running));
4441		mutex_lock(&fs_info->scrub_lock);
4442	}
4443	mutex_unlock(&fs_info->scrub_lock);
4444}
4445
4446void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4447{
 
 
4448	atomic_dec(&fs_info->scrub_pause_req);
4449	wake_up(&fs_info->scrub_pause_wait);
4450}
4451
4452int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4453{
4454	mutex_lock(&fs_info->scrub_lock);
4455	if (!atomic_read(&fs_info->scrubs_running)) {
4456		mutex_unlock(&fs_info->scrub_lock);
4457		return -ENOTCONN;
4458	}
4459
4460	atomic_inc(&fs_info->scrub_cancel_req);
4461	while (atomic_read(&fs_info->scrubs_running)) {
4462		mutex_unlock(&fs_info->scrub_lock);
4463		wait_event(fs_info->scrub_pause_wait,
4464			   atomic_read(&fs_info->scrubs_running) == 0);
4465		mutex_lock(&fs_info->scrub_lock);
4466	}
4467	atomic_dec(&fs_info->scrub_cancel_req);
4468	mutex_unlock(&fs_info->scrub_lock);
4469
4470	return 0;
4471}
4472
4473int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
 
4474{
4475	struct btrfs_fs_info *fs_info = dev->fs_info;
4476	struct scrub_ctx *sctx;
4477
4478	mutex_lock(&fs_info->scrub_lock);
4479	sctx = dev->scrub_ctx;
4480	if (!sctx) {
4481		mutex_unlock(&fs_info->scrub_lock);
4482		return -ENOTCONN;
4483	}
4484	atomic_inc(&sctx->cancel_req);
4485	while (dev->scrub_ctx) {
4486		mutex_unlock(&fs_info->scrub_lock);
4487		wait_event(fs_info->scrub_pause_wait,
4488			   dev->scrub_ctx == NULL);
4489		mutex_lock(&fs_info->scrub_lock);
4490	}
4491	mutex_unlock(&fs_info->scrub_lock);
4492
4493	return 0;
4494}
4495
4496int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4497			 struct btrfs_scrub_progress *progress)
4498{
4499	struct btrfs_dev_lookup_args args = { .devid = devid };
4500	struct btrfs_device *dev;
4501	struct scrub_ctx *sctx = NULL;
4502
4503	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4504	dev = btrfs_find_device(fs_info->fs_devices, &args);
4505	if (dev)
4506		sctx = dev->scrub_ctx;
4507	if (sctx)
4508		memcpy(progress, &sctx->stat, sizeof(*progress));
4509	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4510
4511	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4512}
4513
4514static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
4515				 u64 extent_logical, u32 extent_len,
4516				 u64 *extent_physical,
4517				 struct btrfs_device **extent_dev,
4518				 int *extent_mirror_num)
4519{
4520	u64 mapped_length;
4521	struct btrfs_io_context *bioc = NULL;
4522	int ret;
4523
4524	mapped_length = extent_len;
4525	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4526			      &mapped_length, &bioc, 0);
4527	if (ret || !bioc || mapped_length < extent_len ||
4528	    !bioc->stripes[0].dev->bdev) {
4529		btrfs_put_bioc(bioc);
4530		return;
4531	}
4532
4533	*extent_physical = bioc->stripes[0].physical;
4534	*extent_mirror_num = bioc->mirror_num;
4535	*extent_dev = bioc->stripes[0].dev;
4536	btrfs_put_bioc(bioc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4537}
v3.15
 
   1/*
   2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
 
 
  21#include "ctree.h"
 
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "dev-replace.h"
  29#include "check-integrity.h"
  30#include "rcu-string.h"
  31#include "raid56.h"
 
 
 
 
 
 
  32
  33/*
  34 * This is only the first step towards a full-features scrub. It reads all
  35 * extent and super block and verifies the checksums. In case a bad checksum
  36 * is found or the extent cannot be read, good data will be written back if
  37 * any can be found.
  38 *
  39 * Future enhancements:
  40 *  - In case an unrepairable extent is encountered, track which files are
  41 *    affected and report them
  42 *  - track and record media errors, throw out bad devices
  43 *  - add a mode to also read unallocated space
  44 */
  45
  46struct scrub_block;
  47struct scrub_ctx;
  48
  49/*
  50 * the following three values only influence the performance.
 
  51 * The last one configures the number of parallel and outstanding I/O
  52 * operations. The first two values configure an upper limit for the number
  53 * of (dynamically allocated) pages that are added to a bio.
  54 */
  55#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  56#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  57#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  58
  59/*
  60 * the following value times PAGE_SIZE needs to be large enough to match the
  61 * largest node/leaf/sector size that shall be supported.
  62 * Values larger than BTRFS_STRIPE_LEN are not supported.
  63 */
  64#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
 
 
 
 
 
 
 
 
 
 
 
 
 
  65
  66struct scrub_page {
 
 
 
 
 
 
  67	struct scrub_block	*sblock;
  68	struct page		*page;
  69	struct btrfs_device	*dev;
  70	u64			flags;  /* extent flags */
  71	u64			generation;
  72	u64			logical;
  73	u64			physical;
  74	u64			physical_for_dev_replace;
  75	atomic_t		ref_count;
  76	struct {
  77		unsigned int	mirror_num:8;
  78		unsigned int	have_csum:1;
  79		unsigned int	io_error:1;
  80	};
  81	u8			csum[BTRFS_CSUM_SIZE];
 
 
  82};
  83
  84struct scrub_bio {
  85	int			index;
  86	struct scrub_ctx	*sctx;
  87	struct btrfs_device	*dev;
  88	struct bio		*bio;
  89	int			err;
  90	u64			logical;
  91	u64			physical;
  92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  93	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
  94#else
  95	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
  96#endif
  97	int			page_count;
  98	int			next_free;
  99	struct btrfs_work	work;
 100};
 101
 102struct scrub_block {
 103	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 104	int			page_count;
 105	atomic_t		outstanding_pages;
 106	atomic_t		ref_count; /* free mem on transition to zero */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107	struct scrub_ctx	*sctx;
 
 108	struct {
 109		unsigned int	header_error:1;
 110		unsigned int	checksum_error:1;
 111		unsigned int	no_io_error_seen:1;
 112		unsigned int	generation_error:1; /* also sets header_error */
 
 
 
 
 113	};
 
 114};
 115
 116struct scrub_wr_ctx {
 117	struct scrub_bio *wr_curr_bio;
 118	struct btrfs_device *tgtdev;
 119	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 120	atomic_t flush_all_writes;
 121	struct mutex wr_lock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122};
 123
 124struct scrub_ctx {
 125	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 126	struct btrfs_root	*dev_root;
 127	int			first_free;
 128	int			curr;
 129	atomic_t		bios_in_flight;
 130	atomic_t		workers_pending;
 131	spinlock_t		list_lock;
 132	wait_queue_head_t	list_wait;
 133	u16			csum_size;
 134	struct list_head	csum_list;
 135	atomic_t		cancel_req;
 136	int			readonly;
 137	int			pages_per_rd_bio;
 138	u32			sectorsize;
 139	u32			nodesize;
 140	u32			leafsize;
 
 141
 142	int			is_dev_replace;
 143	struct scrub_wr_ctx	wr_ctx;
 
 
 
 
 
 144
 145	/*
 146	 * statistics
 147	 */
 148	struct btrfs_scrub_progress stat;
 149	spinlock_t		stat_lock;
 150};
 151
 152struct scrub_fixup_nodatasum {
 153	struct scrub_ctx	*sctx;
 154	struct btrfs_device	*dev;
 155	u64			logical;
 156	struct btrfs_root	*root;
 157	struct btrfs_work	work;
 158	int			mirror_num;
 159};
 160
 161struct scrub_nocow_inode {
 162	u64			inum;
 163	u64			offset;
 164	u64			root;
 165	struct list_head	list;
 166};
 167
 168struct scrub_copy_nocow_ctx {
 169	struct scrub_ctx	*sctx;
 170	u64			logical;
 171	u64			len;
 172	int			mirror_num;
 173	u64			physical_for_dev_replace;
 174	struct list_head	inodes;
 175	struct btrfs_work	work;
 176};
 177
 178struct scrub_warning {
 179	struct btrfs_path	*path;
 180	u64			extent_item_size;
 181	char			*scratch_buf;
 182	char			*msg_buf;
 183	const char		*errstr;
 184	sector_t		sector;
 185	u64			logical;
 186	struct btrfs_device	*dev;
 187	int			msg_bufsize;
 188	int			scratch_bufsize;
 189};
 190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191
 192static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 193static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 194static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 195static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 196static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 197static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
 198				     struct btrfs_fs_info *fs_info,
 199				     struct scrub_block *original_sblock,
 200				     u64 length, u64 logical,
 201				     struct scrub_block *sblocks_for_recheck);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 203				struct scrub_block *sblock, int is_metadata,
 204				int have_csum, u8 *csum, u64 generation,
 205				u16 csum_size);
 206static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
 207					 struct scrub_block *sblock,
 208					 int is_metadata, int have_csum,
 209					 const u8 *csum, u64 generation,
 210					 u16 csum_size);
 211static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 212					     struct scrub_block *sblock_good,
 213					     int force_write);
 214static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 215					    struct scrub_block *sblock_good,
 216					    int page_num, int force_write);
 217static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 218static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 219					   int page_num);
 220static int scrub_checksum_data(struct scrub_block *sblock);
 221static int scrub_checksum_tree_block(struct scrub_block *sblock);
 222static int scrub_checksum_super(struct scrub_block *sblock);
 223static void scrub_block_get(struct scrub_block *sblock);
 224static void scrub_block_put(struct scrub_block *sblock);
 225static void scrub_page_get(struct scrub_page *spage);
 226static void scrub_page_put(struct scrub_page *spage);
 227static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 228				    struct scrub_page *spage);
 229static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 230		       u64 physical, struct btrfs_device *dev, u64 flags,
 231		       u64 gen, int mirror_num, u8 *csum, int force,
 232		       u64 physical_for_dev_replace);
 233static void scrub_bio_end_io(struct bio *bio, int err);
 234static void scrub_bio_end_io_worker(struct btrfs_work *work);
 235static void scrub_block_complete(struct scrub_block *sblock);
 236static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 237			       u64 extent_logical, u64 extent_len,
 238			       u64 *extent_physical,
 239			       struct btrfs_device **extent_dev,
 240			       int *extent_mirror_num);
 241static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
 242			      struct scrub_wr_ctx *wr_ctx,
 243			      struct btrfs_fs_info *fs_info,
 244			      struct btrfs_device *dev,
 245			      int is_dev_replace);
 246static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
 247static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 248				    struct scrub_page *spage);
 249static void scrub_wr_submit(struct scrub_ctx *sctx);
 250static void scrub_wr_bio_end_io(struct bio *bio, int err);
 251static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 252static int write_page_nocow(struct scrub_ctx *sctx,
 253			    u64 physical_for_dev_replace, struct page *page);
 254static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 255				      struct scrub_copy_nocow_ctx *ctx);
 256static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 257			    int mirror_num, u64 physical_for_dev_replace);
 258static void copy_nocow_pages_worker(struct btrfs_work *work);
 259static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 260static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 261
 
 
 
 
 
 262
 263static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 264{
 
 265	atomic_inc(&sctx->bios_in_flight);
 266}
 267
 268static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 269{
 270	atomic_dec(&sctx->bios_in_flight);
 271	wake_up(&sctx->list_wait);
 
 272}
 273
 274static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 275{
 276	while (atomic_read(&fs_info->scrub_pause_req)) {
 277		mutex_unlock(&fs_info->scrub_lock);
 278		wait_event(fs_info->scrub_pause_wait,
 279		   atomic_read(&fs_info->scrub_pause_req) == 0);
 280		mutex_lock(&fs_info->scrub_lock);
 281	}
 282}
 283
 284static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 285{
 286	atomic_inc(&fs_info->scrubs_paused);
 287	wake_up(&fs_info->scrub_pause_wait);
 
 288
 
 
 289	mutex_lock(&fs_info->scrub_lock);
 290	__scrub_blocked_if_needed(fs_info);
 291	atomic_dec(&fs_info->scrubs_paused);
 292	mutex_unlock(&fs_info->scrub_lock);
 293
 294	wake_up(&fs_info->scrub_pause_wait);
 295}
 296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297/*
 298 * used for workers that require transaction commits (i.e., for the
 299 * NOCOW case)
 
 300 */
 301static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 302{
 303	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 304
 305	/*
 306	 * increment scrubs_running to prevent cancel requests from
 307	 * completing as long as a worker is running. we must also
 308	 * increment scrubs_paused to prevent deadlocking on pause
 309	 * requests used for transactions commits (as the worker uses a
 310	 * transaction context). it is safe to regard the worker
 311	 * as paused for all matters practical. effectively, we only
 312	 * avoid cancellation requests from completing.
 313	 */
 314	mutex_lock(&fs_info->scrub_lock);
 315	atomic_inc(&fs_info->scrubs_running);
 316	atomic_inc(&fs_info->scrubs_paused);
 317	mutex_unlock(&fs_info->scrub_lock);
 318
 319	/*
 320	 * check if @scrubs_running=@scrubs_paused condition
 321	 * inside wait_event() is not an atomic operation.
 322	 * which means we may inc/dec @scrub_running/paused
 323	 * at any time. Let's wake up @scrub_pause_wait as
 324	 * much as we can to let commit transaction blocked less.
 325	 */
 326	wake_up(&fs_info->scrub_pause_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327
 328	atomic_inc(&sctx->workers_pending);
 
 
 
 
 
 
 
 
 
 
 
 
 329}
 330
 331/* used for workers that require transaction commits */
 332static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 
 
 
 
 
 
 
 
 
 333{
 334	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335
 336	/*
 337	 * see scrub_pending_trans_workers_inc() why we're pretending
 338	 * to be paused in the scrub counters
 339	 */
 340	mutex_lock(&fs_info->scrub_lock);
 341	atomic_dec(&fs_info->scrubs_running);
 342	atomic_dec(&fs_info->scrubs_paused);
 343	mutex_unlock(&fs_info->scrub_lock);
 344	atomic_dec(&sctx->workers_pending);
 345	wake_up(&fs_info->scrub_pause_wait);
 346	wake_up(&sctx->list_wait);
 
 347}
 348
 349static void scrub_free_csums(struct scrub_ctx *sctx)
 350{
 351	while (!list_empty(&sctx->csum_list)) {
 352		struct btrfs_ordered_sum *sum;
 353		sum = list_first_entry(&sctx->csum_list,
 354				       struct btrfs_ordered_sum, list);
 355		list_del(&sum->list);
 356		kfree(sum);
 357	}
 358}
 359
 360static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 361{
 362	int i;
 363
 364	if (!sctx)
 365		return;
 366
 367	scrub_free_wr_ctx(&sctx->wr_ctx);
 368
 369	/* this can happen when scrub is cancelled */
 370	if (sctx->curr != -1) {
 371		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 372
 373		for (i = 0; i < sbio->page_count; i++) {
 374			WARN_ON(!sbio->pagev[i]->page);
 375			scrub_block_put(sbio->pagev[i]->sblock);
 376		}
 377		bio_put(sbio->bio);
 378	}
 379
 380	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 381		struct scrub_bio *sbio = sctx->bios[i];
 382
 383		if (!sbio)
 384			break;
 385		kfree(sbio);
 386	}
 387
 
 388	scrub_free_csums(sctx);
 389	kfree(sctx);
 390}
 391
 392static noinline_for_stack
 393struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 
 
 
 
 
 
 394{
 395	struct scrub_ctx *sctx;
 396	int		i;
 397	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 398	int pages_per_rd_bio;
 399	int ret;
 400
 401	/*
 402	 * the setting of pages_per_rd_bio is correct for scrub but might
 403	 * be wrong for the dev_replace code where we might read from
 404	 * different devices in the initial huge bios. However, that
 405	 * code is able to correctly handle the case when adding a page
 406	 * to a bio fails.
 407	 */
 408	if (dev->bdev)
 409		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
 410					 bio_get_nr_vecs(dev->bdev));
 411	else
 412		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 413	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
 414	if (!sctx)
 415		goto nomem;
 
 416	sctx->is_dev_replace = is_dev_replace;
 417	sctx->pages_per_rd_bio = pages_per_rd_bio;
 418	sctx->curr = -1;
 419	sctx->dev_root = dev->dev_root;
 
 420	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 421		struct scrub_bio *sbio;
 422
 423		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 424		if (!sbio)
 425			goto nomem;
 426		sctx->bios[i] = sbio;
 427
 428		sbio->index = i;
 429		sbio->sctx = sctx;
 430		sbio->page_count = 0;
 431		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
 432				NULL, NULL);
 433
 434		if (i != SCRUB_BIOS_PER_SCTX - 1)
 435			sctx->bios[i]->next_free = i + 1;
 436		else
 437			sctx->bios[i]->next_free = -1;
 438	}
 439	sctx->first_free = 0;
 440	sctx->nodesize = dev->dev_root->nodesize;
 441	sctx->leafsize = dev->dev_root->leafsize;
 442	sctx->sectorsize = dev->dev_root->sectorsize;
 443	atomic_set(&sctx->bios_in_flight, 0);
 444	atomic_set(&sctx->workers_pending, 0);
 445	atomic_set(&sctx->cancel_req, 0);
 446	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 447	INIT_LIST_HEAD(&sctx->csum_list);
 448
 449	spin_lock_init(&sctx->list_lock);
 450	spin_lock_init(&sctx->stat_lock);
 451	init_waitqueue_head(&sctx->list_wait);
 
 452
 453	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
 454				 fs_info->dev_replace.tgtdev, is_dev_replace);
 455	if (ret) {
 456		scrub_free_ctx(sctx);
 457		return ERR_PTR(ret);
 
 
 458	}
 
 459	return sctx;
 460
 461nomem:
 462	scrub_free_ctx(sctx);
 463	return ERR_PTR(-ENOMEM);
 464}
 465
 466static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 467				     void *warn_ctx)
 468{
 469	u64 isize;
 470	u32 nlink;
 471	int ret;
 472	int i;
 
 473	struct extent_buffer *eb;
 474	struct btrfs_inode_item *inode_item;
 475	struct scrub_warning *swarn = warn_ctx;
 476	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
 477	struct inode_fs_paths *ipath = NULL;
 478	struct btrfs_root *local_root;
 479	struct btrfs_key root_key;
 480
 481	root_key.objectid = root;
 482	root_key.type = BTRFS_ROOT_ITEM_KEY;
 483	root_key.offset = (u64)-1;
 484	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 485	if (IS_ERR(local_root)) {
 486		ret = PTR_ERR(local_root);
 487		goto err;
 488	}
 489
 490	ret = inode_item_info(inum, 0, local_root, swarn->path);
 
 
 
 
 
 
 
 491	if (ret) {
 
 492		btrfs_release_path(swarn->path);
 493		goto err;
 494	}
 495
 496	eb = swarn->path->nodes[0];
 497	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 498					struct btrfs_inode_item);
 499	isize = btrfs_inode_size(eb, inode_item);
 500	nlink = btrfs_inode_nlink(eb, inode_item);
 501	btrfs_release_path(swarn->path);
 502
 
 
 
 
 
 
 503	ipath = init_ipath(4096, local_root, swarn->path);
 
 504	if (IS_ERR(ipath)) {
 
 505		ret = PTR_ERR(ipath);
 506		ipath = NULL;
 507		goto err;
 508	}
 509	ret = paths_from_inode(inum, ipath);
 510
 511	if (ret < 0)
 512		goto err;
 513
 514	/*
 515	 * we deliberately ignore the bit ipath might have been too small to
 516	 * hold all of the paths here
 517	 */
 518	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 519		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
 520			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
 521			"length %llu, links %u (path: %s)\n", swarn->errstr,
 522			swarn->logical, rcu_str_deref(swarn->dev->name),
 523			(unsigned long long)swarn->sector, root, inum, offset,
 524			min(isize - offset, (u64)PAGE_SIZE), nlink,
 525			(char *)(unsigned long)ipath->fspath->val[i]);
 
 526
 
 527	free_ipath(ipath);
 528	return 0;
 529
 530err:
 531	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
 532		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
 533		"resolving failed with ret=%d\n", swarn->errstr,
 534		swarn->logical, rcu_str_deref(swarn->dev->name),
 535		(unsigned long long)swarn->sector, root, inum, offset, ret);
 
 536
 537	free_ipath(ipath);
 538	return 0;
 539}
 540
 541static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 542{
 543	struct btrfs_device *dev;
 544	struct btrfs_fs_info *fs_info;
 545	struct btrfs_path *path;
 546	struct btrfs_key found_key;
 547	struct extent_buffer *eb;
 548	struct btrfs_extent_item *ei;
 549	struct scrub_warning swarn;
 550	unsigned long ptr = 0;
 551	u64 extent_item_pos;
 552	u64 flags = 0;
 553	u64 ref_root;
 554	u32 item_size;
 555	u8 ref_level;
 556	const int bufsize = 4096;
 557	int ret;
 558
 559	WARN_ON(sblock->page_count < 1);
 560	dev = sblock->pagev[0]->dev;
 561	fs_info = sblock->sctx->dev_root->fs_info;
 562
 
 
 
 
 
 
 563	path = btrfs_alloc_path();
 
 
 564
 565	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
 566	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
 567	swarn.sector = (sblock->pagev[0]->physical) >> 9;
 568	swarn.logical = sblock->pagev[0]->logical;
 569	swarn.errstr = errstr;
 570	swarn.dev = NULL;
 571	swarn.msg_bufsize = bufsize;
 572	swarn.scratch_bufsize = bufsize;
 573
 574	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
 575		goto out;
 576
 577	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 578				  &flags);
 579	if (ret < 0)
 580		goto out;
 581
 582	extent_item_pos = swarn.logical - found_key.objectid;
 583	swarn.extent_item_size = found_key.offset;
 584
 585	eb = path->nodes[0];
 586	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 587	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 588
 589	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 590		do {
 591			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
 592							&ref_root, &ref_level);
 593			printk_in_rcu(KERN_WARNING
 594				"BTRFS: %s at logical %llu on dev %s, "
 595				"sector %llu: metadata %s (level %d) in tree "
 596				"%llu\n", errstr, swarn.logical,
 597				rcu_str_deref(dev->name),
 598				(unsigned long long)swarn.sector,
 599				ref_level ? "node" : "leaf",
 600				ret < 0 ? -1 : ref_level,
 601				ret < 0 ? -1 : ref_root);
 602		} while (ret != 1);
 603		btrfs_release_path(path);
 604	} else {
 
 
 605		btrfs_release_path(path);
 
 
 
 
 
 606		swarn.path = path;
 607		swarn.dev = dev;
 608		iterate_extent_inodes(fs_info, found_key.objectid,
 609					extent_item_pos, 1,
 610					scrub_print_warning_inode, &swarn);
 611	}
 612
 613out:
 614	btrfs_free_path(path);
 615	kfree(swarn.scratch_buf);
 616	kfree(swarn.msg_buf);
 617}
 618
 619static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 620{
 621	struct page *page = NULL;
 622	unsigned long index;
 623	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 624	int ret;
 625	int corrected = 0;
 626	struct btrfs_key key;
 627	struct inode *inode = NULL;
 628	struct btrfs_fs_info *fs_info;
 629	u64 end = offset + PAGE_SIZE - 1;
 630	struct btrfs_root *local_root;
 631	int srcu_index;
 632
 633	key.objectid = root;
 634	key.type = BTRFS_ROOT_ITEM_KEY;
 635	key.offset = (u64)-1;
 636
 637	fs_info = fixup->root->fs_info;
 638	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 639
 640	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 641	if (IS_ERR(local_root)) {
 642		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 643		return PTR_ERR(local_root);
 644	}
 645
 646	key.type = BTRFS_INODE_ITEM_KEY;
 647	key.objectid = inum;
 648	key.offset = 0;
 649	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 650	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 651	if (IS_ERR(inode))
 652		return PTR_ERR(inode);
 653
 654	index = offset >> PAGE_CACHE_SHIFT;
 655
 656	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 657	if (!page) {
 658		ret = -ENOMEM;
 659		goto out;
 660	}
 661
 662	if (PageUptodate(page)) {
 663		if (PageDirty(page)) {
 664			/*
 665			 * we need to write the data to the defect sector. the
 666			 * data that was in that sector is not in memory,
 667			 * because the page was modified. we must not write the
 668			 * modified page to that sector.
 669			 *
 670			 * TODO: what could be done here: wait for the delalloc
 671			 *       runner to write out that page (might involve
 672			 *       COW) and see whether the sector is still
 673			 *       referenced afterwards.
 674			 *
 675			 * For the meantime, we'll treat this error
 676			 * incorrectable, although there is a chance that a
 677			 * later scrub will find the bad sector again and that
 678			 * there's no dirty page in memory, then.
 679			 */
 680			ret = -EIO;
 681			goto out;
 682		}
 683		fs_info = BTRFS_I(inode)->root->fs_info;
 684		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
 685					fixup->logical, page,
 686					fixup->mirror_num);
 687		unlock_page(page);
 688		corrected = !ret;
 689	} else {
 690		/*
 691		 * we need to get good data first. the general readpage path
 692		 * will call repair_io_failure for us, we just have to make
 693		 * sure we read the bad mirror.
 694		 */
 695		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 696					EXTENT_DAMAGED, GFP_NOFS);
 697		if (ret) {
 698			/* set_extent_bits should give proper error */
 699			WARN_ON(ret > 0);
 700			if (ret > 0)
 701				ret = -EFAULT;
 702			goto out;
 703		}
 704
 705		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 706						btrfs_get_extent,
 707						fixup->mirror_num);
 708		wait_on_page_locked(page);
 709
 710		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 711						end, EXTENT_DAMAGED, 0, NULL);
 712		if (!corrected)
 713			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 714						EXTENT_DAMAGED, GFP_NOFS);
 715	}
 716
 717out:
 718	if (page)
 719		put_page(page);
 720	if (inode)
 721		iput(inode);
 722
 723	if (ret < 0)
 724		return ret;
 725
 726	if (ret == 0 && corrected) {
 727		/*
 728		 * we only need to call readpage for one of the inodes belonging
 729		 * to this extent. so make iterate_extent_inodes stop
 730		 */
 731		return 1;
 732	}
 733
 734	return -EIO;
 735}
 736
 737static void scrub_fixup_nodatasum(struct btrfs_work *work)
 
 738{
 739	int ret;
 740	struct scrub_fixup_nodatasum *fixup;
 741	struct scrub_ctx *sctx;
 742	struct btrfs_trans_handle *trans = NULL;
 743	struct btrfs_path *path;
 744	int uncorrectable = 0;
 745
 746	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 747	sctx = fixup->sctx;
 748
 749	path = btrfs_alloc_path();
 750	if (!path) {
 751		spin_lock(&sctx->stat_lock);
 752		++sctx->stat.malloc_errors;
 753		spin_unlock(&sctx->stat_lock);
 754		uncorrectable = 1;
 755		goto out;
 756	}
 757
 758	trans = btrfs_join_transaction(fixup->root);
 759	if (IS_ERR(trans)) {
 760		uncorrectable = 1;
 761		goto out;
 762	}
 763
 764	/*
 765	 * the idea is to trigger a regular read through the standard path. we
 766	 * read a page from the (failed) logical address by specifying the
 767	 * corresponding copynum of the failed sector. thus, that readpage is
 768	 * expected to fail.
 769	 * that is the point where on-the-fly error correction will kick in
 770	 * (once it's finished) and rewrite the failed sector if a good copy
 771	 * can be found.
 772	 */
 773	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
 774						path, scrub_fixup_readpage,
 775						fixup);
 776	if (ret < 0) {
 777		uncorrectable = 1;
 778		goto out;
 779	}
 780	WARN_ON(ret != 1);
 781
 782	spin_lock(&sctx->stat_lock);
 783	++sctx->stat.corrected_errors;
 784	spin_unlock(&sctx->stat_lock);
 785
 786out:
 787	if (trans && !IS_ERR(trans))
 788		btrfs_end_transaction(trans, fixup->root);
 789	if (uncorrectable) {
 790		spin_lock(&sctx->stat_lock);
 791		++sctx->stat.uncorrectable_errors;
 792		spin_unlock(&sctx->stat_lock);
 793		btrfs_dev_replace_stats_inc(
 794			&sctx->dev_root->fs_info->dev_replace.
 795			num_uncorrectable_read_errors);
 796		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
 797		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
 798			fixup->logical, rcu_str_deref(fixup->dev->name));
 799	}
 800
 801	btrfs_free_path(path);
 802	kfree(fixup);
 803
 804	scrub_pending_trans_workers_dec(sctx);
 805}
 806
 807/*
 808 * scrub_handle_errored_block gets called when either verification of the
 809 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 810 * case, this function handles all pages in the bio, even though only one
 811 * may be bad.
 812 * The goal of this function is to repair the errored block by using the
 813 * contents of one of the mirrors.
 814 */
 815static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 816{
 817	struct scrub_ctx *sctx = sblock_to_check->sctx;
 818	struct btrfs_device *dev;
 819	struct btrfs_fs_info *fs_info;
 820	u64 length;
 821	u64 logical;
 822	u64 generation;
 823	unsigned int failed_mirror_index;
 824	unsigned int is_metadata;
 825	unsigned int have_csum;
 826	u8 *csum;
 827	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 828	struct scrub_block *sblock_bad;
 829	int ret;
 830	int mirror_index;
 831	int page_num;
 832	int success;
 833	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 
 
 834				      DEFAULT_RATELIMIT_BURST);
 835
 836	BUG_ON(sblock_to_check->page_count < 1);
 837	fs_info = sctx->dev_root->fs_info;
 838	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 839		/*
 840		 * if we find an error in a super block, we just report it.
 841		 * They will get written with the next transaction commit
 842		 * anyway
 843		 */
 
 844		spin_lock(&sctx->stat_lock);
 845		++sctx->stat.super_errors;
 846		spin_unlock(&sctx->stat_lock);
 
 847		return 0;
 848	}
 849	length = sblock_to_check->page_count * PAGE_SIZE;
 850	logical = sblock_to_check->pagev[0]->logical;
 851	generation = sblock_to_check->pagev[0]->generation;
 852	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 853	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 854	is_metadata = !(sblock_to_check->pagev[0]->flags &
 855			BTRFS_EXTENT_FLAG_DATA);
 856	have_csum = sblock_to_check->pagev[0]->have_csum;
 857	csum = sblock_to_check->pagev[0]->csum;
 858	dev = sblock_to_check->pagev[0]->dev;
 859
 860	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
 861		sblocks_for_recheck = NULL;
 862		goto nodatasum_case;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863	}
 864
 865	/*
 866	 * read all mirrors one after the other. This includes to
 867	 * re-read the extent or metadata block that failed (that was
 868	 * the cause that this fixup code is called) another time,
 869	 * page by page this time in order to know which pages
 870	 * caused I/O errors and which ones are good (for all mirrors).
 871	 * It is the goal to handle the situation when more than one
 872	 * mirror contains I/O errors, but the errors do not
 873	 * overlap, i.e. the data can be repaired by selecting the
 874	 * pages from those mirrors without I/O error on the
 875	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 876	 * would be that mirror #1 has an I/O error on the first page,
 877	 * the second page is good, and mirror #2 has an I/O error on
 878	 * the second page, but the first page is good.
 879	 * Then the first page of the first mirror can be repaired by
 880	 * taking the first page of the second mirror, and the
 881	 * second page of the second mirror can be repaired by
 882	 * copying the contents of the 2nd page of the 1st mirror.
 883	 * One more note: if the pages of one mirror contain I/O
 884	 * errors, the checksum cannot be verified. In order to get
 885	 * the best data for repairing, the first attempt is to find
 886	 * a mirror without I/O errors and with a validated checksum.
 887	 * Only if this is not possible, the pages are picked from
 888	 * mirrors with I/O errors without considering the checksum.
 889	 * If the latter is the case, at the end, the checksum of the
 890	 * repaired area is verified in order to correctly maintain
 891	 * the statistics.
 892	 */
 893
 894	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
 895				     sizeof(*sblocks_for_recheck),
 896				     GFP_NOFS);
 897	if (!sblocks_for_recheck) {
 898		spin_lock(&sctx->stat_lock);
 899		sctx->stat.malloc_errors++;
 900		sctx->stat.read_errors++;
 901		sctx->stat.uncorrectable_errors++;
 902		spin_unlock(&sctx->stat_lock);
 903		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 904		goto out;
 
 
 
 
 
 
 
 
 
 
 905	}
 906
 907	/* setup the context, map the logical blocks and alloc the pages */
 908	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
 909					logical, sblocks_for_recheck);
 910	if (ret) {
 911		spin_lock(&sctx->stat_lock);
 912		sctx->stat.read_errors++;
 913		sctx->stat.uncorrectable_errors++;
 914		spin_unlock(&sctx->stat_lock);
 915		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 916		goto out;
 917	}
 918	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 919	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 920
 921	/* build and submit the bios for the failed mirror, check checksums */
 922	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
 923			    csum, generation, sctx->csum_size);
 924
 925	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 926	    sblock_bad->no_io_error_seen) {
 927		/*
 928		 * the error disappeared after reading page by page, or
 929		 * the area was part of a huge bio and other parts of the
 930		 * bio caused I/O errors, or the block layer merged several
 931		 * read requests into one and the error is caused by a
 932		 * different bio (usually one of the two latter cases is
 933		 * the cause)
 934		 */
 935		spin_lock(&sctx->stat_lock);
 936		sctx->stat.unverified_errors++;
 
 937		spin_unlock(&sctx->stat_lock);
 938
 939		if (sctx->is_dev_replace)
 940			scrub_write_block_to_dev_replace(sblock_bad);
 941		goto out;
 942	}
 943
 944	if (!sblock_bad->no_io_error_seen) {
 945		spin_lock(&sctx->stat_lock);
 946		sctx->stat.read_errors++;
 947		spin_unlock(&sctx->stat_lock);
 948		if (__ratelimit(&_rs))
 949			scrub_print_warning("i/o error", sblock_to_check);
 950		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 951	} else if (sblock_bad->checksum_error) {
 952		spin_lock(&sctx->stat_lock);
 953		sctx->stat.csum_errors++;
 954		spin_unlock(&sctx->stat_lock);
 955		if (__ratelimit(&_rs))
 956			scrub_print_warning("checksum error", sblock_to_check);
 957		btrfs_dev_stat_inc_and_print(dev,
 958					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
 959	} else if (sblock_bad->header_error) {
 960		spin_lock(&sctx->stat_lock);
 961		sctx->stat.verify_errors++;
 962		spin_unlock(&sctx->stat_lock);
 963		if (__ratelimit(&_rs))
 964			scrub_print_warning("checksum/header error",
 965					    sblock_to_check);
 966		if (sblock_bad->generation_error)
 967			btrfs_dev_stat_inc_and_print(dev,
 968				BTRFS_DEV_STAT_GENERATION_ERRS);
 969		else
 970			btrfs_dev_stat_inc_and_print(dev,
 971				BTRFS_DEV_STAT_CORRUPTION_ERRS);
 972	}
 973
 974	if (sctx->readonly) {
 975		ASSERT(!sctx->is_dev_replace);
 976		goto out;
 977	}
 978
 979	if (!is_metadata && !have_csum) {
 980		struct scrub_fixup_nodatasum *fixup_nodatasum;
 981
 982nodatasum_case:
 983		WARN_ON(sctx->is_dev_replace);
 984
 985		/*
 986		 * !is_metadata and !have_csum, this means that the data
 987		 * might not be COW'ed, that it might be modified
 988		 * concurrently. The general strategy to work on the
 989		 * commit root does not help in the case when COW is not
 990		 * used.
 991		 */
 992		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
 993		if (!fixup_nodatasum)
 994			goto did_not_correct_error;
 995		fixup_nodatasum->sctx = sctx;
 996		fixup_nodatasum->dev = dev;
 997		fixup_nodatasum->logical = logical;
 998		fixup_nodatasum->root = fs_info->extent_root;
 999		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1000		scrub_pending_trans_workers_inc(sctx);
1001		btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
1002				NULL, NULL);
1003		btrfs_queue_work(fs_info->scrub_workers,
1004				 &fixup_nodatasum->work);
1005		goto out;
1006	}
1007
1008	/*
1009	 * now build and submit the bios for the other mirrors, check
1010	 * checksums.
1011	 * First try to pick the mirror which is completely without I/O
1012	 * errors and also does not have a checksum error.
1013	 * If one is found, and if a checksum is present, the full block
1014	 * that is known to contain an error is rewritten. Afterwards
1015	 * the block is known to be corrected.
1016	 * If a mirror is found which is completely correct, and no
1017	 * checksum is present, only those pages are rewritten that had
1018	 * an I/O error in the block to be repaired, since it cannot be
1019	 * determined, which copy of the other pages is better (and it
1020	 * could happen otherwise that a correct page would be
1021	 * overwritten by a bad one).
1022	 */
1023	for (mirror_index = 0;
1024	     mirror_index < BTRFS_MAX_MIRRORS &&
1025	     sblocks_for_recheck[mirror_index].page_count > 0;
1026	     mirror_index++) {
1027		struct scrub_block *sblock_other;
1028
1029		if (mirror_index == failed_mirror_index)
1030			continue;
1031		sblock_other = sblocks_for_recheck + mirror_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032
1033		/* build and submit the bios, check checksums */
1034		scrub_recheck_block(fs_info, sblock_other, is_metadata,
1035				    have_csum, csum, generation,
1036				    sctx->csum_size);
1037
1038		if (!sblock_other->header_error &&
1039		    !sblock_other->checksum_error &&
1040		    sblock_other->no_io_error_seen) {
1041			if (sctx->is_dev_replace) {
1042				scrub_write_block_to_dev_replace(sblock_other);
 
1043			} else {
1044				int force_write = is_metadata || have_csum;
1045
1046				ret = scrub_repair_block_from_good_copy(
1047						sblock_bad, sblock_other,
1048						force_write);
 
1049			}
1050			if (0 == ret)
1051				goto corrected_error;
1052		}
1053	}
1054
1055	/*
1056	 * for dev_replace, pick good pages and write to the target device.
1057	 */
1058	if (sctx->is_dev_replace) {
1059		success = 1;
1060		for (page_num = 0; page_num < sblock_bad->page_count;
1061		     page_num++) {
1062			int sub_success;
1063
1064			sub_success = 0;
1065			for (mirror_index = 0;
1066			     mirror_index < BTRFS_MAX_MIRRORS &&
1067			     sblocks_for_recheck[mirror_index].page_count > 0;
1068			     mirror_index++) {
1069				struct scrub_block *sblock_other =
1070					sblocks_for_recheck + mirror_index;
1071				struct scrub_page *page_other =
1072					sblock_other->pagev[page_num];
1073
1074				if (!page_other->io_error) {
1075					ret = scrub_write_page_to_dev_replace(
1076							sblock_other, page_num);
1077					if (ret == 0) {
1078						/* succeeded for this page */
1079						sub_success = 1;
1080						break;
1081					} else {
1082						btrfs_dev_replace_stats_inc(
1083							&sctx->dev_root->
1084							fs_info->dev_replace.
1085							num_write_errors);
1086					}
1087				}
1088			}
1089
1090			if (!sub_success) {
1091				/*
1092				 * did not find a mirror to fetch the page
1093				 * from. scrub_write_page_to_dev_replace()
1094				 * handles this case (page->io_error), by
1095				 * filling the block with zeros before
1096				 * submitting the write request
1097				 */
1098				success = 0;
1099				ret = scrub_write_page_to_dev_replace(
1100						sblock_bad, page_num);
1101				if (ret)
1102					btrfs_dev_replace_stats_inc(
1103						&sctx->dev_root->fs_info->
1104						dev_replace.num_write_errors);
1105			}
1106		}
1107
1108		goto out;
1109	}
1110
1111	/*
1112	 * for regular scrub, repair those pages that are errored.
1113	 * In case of I/O errors in the area that is supposed to be
1114	 * repaired, continue by picking good copies of those pages.
1115	 * Select the good pages from mirrors to rewrite bad pages from
1116	 * the area to fix. Afterwards verify the checksum of the block
1117	 * that is supposed to be repaired. This verification step is
1118	 * only done for the purpose of statistic counting and for the
1119	 * final scrub report, whether errors remain.
1120	 * A perfect algorithm could make use of the checksum and try
1121	 * all possible combinations of pages from the different mirrors
1122	 * until the checksum verification succeeds. For example, when
1123	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1124	 * of mirror #2 is readable but the final checksum test fails,
1125	 * then the 2nd page of mirror #3 could be tried, whether now
1126	 * the final checksum succeedes. But this would be a rare
1127	 * exception and is therefore not implemented. At least it is
1128	 * avoided that the good copy is overwritten.
1129	 * A more useful improvement would be to pick the sectors
1130	 * without I/O error based on sector sizes (512 bytes on legacy
1131	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1132	 * mirror could be repaired by taking 512 byte of a different
1133	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1134	 * area are unreadable.
1135	 */
1136
1137	/* can only fix I/O errors from here on */
1138	if (sblock_bad->no_io_error_seen)
1139		goto did_not_correct_error;
1140
1141	success = 1;
1142	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1143		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
 
 
1144
1145		if (!page_bad->io_error)
 
1146			continue;
1147
1148		for (mirror_index = 0;
1149		     mirror_index < BTRFS_MAX_MIRRORS &&
1150		     sblocks_for_recheck[mirror_index].page_count > 0;
1151		     mirror_index++) {
1152			struct scrub_block *sblock_other = sblocks_for_recheck +
1153							   mirror_index;
1154			struct scrub_page *page_other = sblock_other->pagev[
1155							page_num];
1156
1157			if (!page_other->io_error) {
1158				ret = scrub_repair_page_from_good_copy(
1159					sblock_bad, sblock_other, page_num, 0);
1160				if (0 == ret) {
1161					page_bad->io_error = 0;
1162					break; /* succeeded for this page */
 
 
 
 
1163				}
1164			}
 
 
1165		}
1166
1167		if (page_bad->io_error) {
1168			/* did not find a mirror to copy the page from */
1169			success = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170		}
1171	}
1172
1173	if (success) {
1174		if (is_metadata || have_csum) {
1175			/*
1176			 * need to verify the checksum now that all
1177			 * sectors on disk are repaired (the write
1178			 * request for data to be repaired is on its way).
1179			 * Just be lazy and use scrub_recheck_block()
1180			 * which re-reads the data before the checksum
1181			 * is verified, but most likely the data comes out
1182			 * of the page cache.
1183			 */
1184			scrub_recheck_block(fs_info, sblock_bad,
1185					    is_metadata, have_csum, csum,
1186					    generation, sctx->csum_size);
1187			if (!sblock_bad->header_error &&
1188			    !sblock_bad->checksum_error &&
1189			    sblock_bad->no_io_error_seen)
1190				goto corrected_error;
1191			else
1192				goto did_not_correct_error;
1193		} else {
1194corrected_error:
1195			spin_lock(&sctx->stat_lock);
1196			sctx->stat.corrected_errors++;
 
1197			spin_unlock(&sctx->stat_lock);
1198			printk_ratelimited_in_rcu(KERN_ERR
1199				"BTRFS: fixed up error at logical %llu on dev %s\n",
1200				logical, rcu_str_deref(dev->name));
1201		}
1202	} else {
1203did_not_correct_error:
1204		spin_lock(&sctx->stat_lock);
1205		sctx->stat.uncorrectable_errors++;
1206		spin_unlock(&sctx->stat_lock);
1207		printk_ratelimited_in_rcu(KERN_ERR
1208			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1209			logical, rcu_str_deref(dev->name));
1210	}
1211
1212out:
1213	if (sblocks_for_recheck) {
1214		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1215		     mirror_index++) {
1216			struct scrub_block *sblock = sblocks_for_recheck +
1217						     mirror_index;
1218			int page_index;
1219
1220			for (page_index = 0; page_index < sblock->page_count;
1221			     page_index++) {
1222				sblock->pagev[page_index]->sblock = NULL;
1223				scrub_page_put(sblock->pagev[page_index]);
 
 
 
 
 
 
 
 
1224			}
1225		}
1226		kfree(sblocks_for_recheck);
1227	}
1228
 
 
 
 
1229	return 0;
1230}
1231
1232static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1233				     struct btrfs_fs_info *fs_info,
1234				     struct scrub_block *original_sblock,
1235				     u64 length, u64 logical,
1236				     struct scrub_block *sblocks_for_recheck)
 
 
 
 
 
 
 
 
 
 
1237{
1238	int page_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239	int mirror_index;
 
1240	int ret;
1241
1242	/*
1243	 * note: the two members ref_count and outstanding_pages
1244	 * are not used (and not set) in the blocks that are used for
1245	 * the recheck procedure
1246	 */
1247
1248	page_index = 0;
1249	while (length > 0) {
1250		u64 sublen = min_t(u64, length, PAGE_SIZE);
1251		u64 mapped_length = sublen;
1252		struct btrfs_bio *bbio = NULL;
1253
1254		/*
1255		 * with a length of PAGE_SIZE, each returned stripe
1256		 * represents one mirror
1257		 */
1258		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1259				      &mapped_length, &bbio, 0);
1260		if (ret || !bbio || mapped_length < sublen) {
1261			kfree(bbio);
 
 
1262			return -EIO;
1263		}
1264
1265		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1266		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267		     mirror_index++) {
1268			struct scrub_block *sblock;
1269			struct scrub_page *page;
1270
1271			if (mirror_index >= BTRFS_MAX_MIRRORS)
1272				continue;
1273
1274			sblock = sblocks_for_recheck + mirror_index;
1275			sblock->sctx = sctx;
1276			page = kzalloc(sizeof(*page), GFP_NOFS);
1277			if (!page) {
1278leave_nomem:
1279				spin_lock(&sctx->stat_lock);
1280				sctx->stat.malloc_errors++;
1281				spin_unlock(&sctx->stat_lock);
1282				kfree(bbio);
1283				return -ENOMEM;
1284			}
1285			scrub_page_get(page);
1286			sblock->pagev[page_index] = page;
1287			page->logical = logical;
1288			page->physical = bbio->stripes[mirror_index].physical;
1289			BUG_ON(page_index >= original_sblock->page_count);
1290			page->physical_for_dev_replace =
1291				original_sblock->pagev[page_index]->
1292				physical_for_dev_replace;
1293			/* for missing devices, dev->bdev is NULL */
1294			page->dev = bbio->stripes[mirror_index].dev;
1295			page->mirror_num = mirror_index + 1;
1296			sblock->page_count++;
1297			page->page = alloc_page(GFP_NOFS);
1298			if (!page->page)
1299				goto leave_nomem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300		}
1301		kfree(bbio);
1302		length -= sublen;
1303		logical += sublen;
1304		page_index++;
1305	}
1306
1307	return 0;
1308}
1309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310/*
1311 * this function will check the on disk data for checksum errors, header
1312 * errors and read I/O errors. If any I/O errors happen, the exact pages
1313 * which are errored are marked as being bad. The goal is to enable scrub
1314 * to take those pages that are not errored from all the mirrors so that
1315 * the pages that are errored in the just handled mirror can be repaired.
1316 */
1317static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1318				struct scrub_block *sblock, int is_metadata,
1319				int have_csum, u8 *csum, u64 generation,
1320				u16 csum_size)
1321{
1322	int page_num;
1323
1324	sblock->no_io_error_seen = 1;
1325	sblock->header_error = 0;
1326	sblock->checksum_error = 0;
1327
1328	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1329		struct bio *bio;
1330		struct scrub_page *page = sblock->pagev[page_num];
 
 
 
 
 
1331
1332		if (page->dev->bdev == NULL) {
1333			page->io_error = 1;
1334			sblock->no_io_error_seen = 0;
1335			continue;
1336		}
1337
1338		WARN_ON(!page->page);
1339		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1340		if (!bio) {
1341			page->io_error = 1;
 
 
 
 
1342			sblock->no_io_error_seen = 0;
1343			continue;
1344		}
1345		bio->bi_bdev = page->dev->bdev;
1346		bio->bi_iter.bi_sector = page->physical >> 9;
1347
1348		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1349		if (btrfsic_submit_bio_wait(READ, bio))
1350			sblock->no_io_error_seen = 0;
1351
1352		bio_put(bio);
1353	}
1354
1355	if (sblock->no_io_error_seen)
1356		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1357					     have_csum, csum, generation,
1358					     csum_size);
1359
1360	return;
1361}
1362
1363static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1364					 struct scrub_block *sblock,
1365					 int is_metadata, int have_csum,
1366					 const u8 *csum, u64 generation,
1367					 u16 csum_size)
1368{
1369	int page_num;
1370	u8 calculated_csum[BTRFS_CSUM_SIZE];
1371	u32 crc = ~(u32)0;
1372	void *mapped_buffer;
1373
1374	WARN_ON(!sblock->pagev[0]->page);
1375	if (is_metadata) {
1376		struct btrfs_header *h;
1377
1378		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1379		h = (struct btrfs_header *)mapped_buffer;
1380
1381		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1382		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1383		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1384			   BTRFS_UUID_SIZE)) {
1385			sblock->header_error = 1;
1386		} else if (generation != btrfs_stack_header_generation(h)) {
1387			sblock->header_error = 1;
1388			sblock->generation_error = 1;
1389		}
1390		csum = h->csum;
1391	} else {
1392		if (!have_csum)
1393			return;
1394
1395		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1396	}
 
 
 
1397
1398	for (page_num = 0;;) {
1399		if (page_num == 0 && is_metadata)
1400			crc = btrfs_csum_data(
1401				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1402				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1403		else
1404			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1405
1406		kunmap_atomic(mapped_buffer);
1407		page_num++;
1408		if (page_num >= sblock->page_count)
1409			break;
1410		WARN_ON(!sblock->pagev[page_num]->page);
1411
1412		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1413	}
1414
1415	btrfs_csum_final(crc, calculated_csum);
1416	if (memcmp(calculated_csum, csum, csum_size))
1417		sblock->checksum_error = 1;
1418}
1419
1420static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1421					     struct scrub_block *sblock_good,
1422					     int force_write)
1423{
1424	int page_num;
1425	int ret = 0;
1426
1427	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1428		int ret_sub;
1429
1430		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1431							   sblock_good,
1432							   page_num,
1433							   force_write);
1434		if (ret_sub)
1435			ret = ret_sub;
1436	}
1437
1438	return ret;
1439}
1440
1441static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1442					    struct scrub_block *sblock_good,
1443					    int page_num, int force_write)
1444{
1445	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1446	struct scrub_page *page_good = sblock_good->pagev[page_num];
 
 
1447
1448	BUG_ON(page_bad->page == NULL);
1449	BUG_ON(page_good->page == NULL);
1450	if (force_write || sblock_bad->header_error ||
1451	    sblock_bad->checksum_error || page_bad->io_error) {
1452		struct bio *bio;
 
1453		int ret;
1454
1455		if (!page_bad->dev->bdev) {
1456			printk_ratelimited(KERN_WARNING "BTRFS: "
1457				"scrub_repair_page_from_good_copy(bdev == NULL) "
1458				"is unexpected!\n");
1459			return -EIO;
1460		}
1461
1462		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1463		if (!bio)
1464			return -EIO;
1465		bio->bi_bdev = page_bad->dev->bdev;
1466		bio->bi_iter.bi_sector = page_bad->physical >> 9;
 
 
 
1467
1468		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1469		if (PAGE_SIZE != ret) {
1470			bio_put(bio);
1471			return -EIO;
1472		}
1473
1474		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1475			btrfs_dev_stat_inc_and_print(page_bad->dev,
1476				BTRFS_DEV_STAT_WRITE_ERRS);
1477			btrfs_dev_replace_stats_inc(
1478				&sblock_bad->sctx->dev_root->fs_info->
1479				dev_replace.num_write_errors);
1480			bio_put(bio);
1481			return -EIO;
1482		}
1483		bio_put(bio);
1484	}
1485
1486	return 0;
1487}
1488
1489static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1490{
1491	int page_num;
 
 
 
 
 
 
 
 
1492
1493	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1494		int ret;
1495
1496		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1497		if (ret)
1498			btrfs_dev_replace_stats_inc(
1499				&sblock->sctx->dev_root->fs_info->dev_replace.
1500				num_write_errors);
1501	}
1502}
1503
1504static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1505					   int page_num)
1506{
1507	struct scrub_page *spage = sblock->pagev[page_num];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508
1509	BUG_ON(spage->page == NULL);
1510	if (spage->io_error) {
1511		void *mapped_buffer = kmap_atomic(spage->page);
 
 
1512
1513		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1514		flush_dcache_page(spage->page);
1515		kunmap_atomic(mapped_buffer);
 
1516	}
1517	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1518}
1519
1520static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1521				    struct scrub_page *spage)
 
 
 
 
 
1522{
1523	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1524	struct scrub_bio *sbio;
1525	int ret;
 
1526
1527	mutex_lock(&wr_ctx->wr_lock);
1528again:
1529	if (!wr_ctx->wr_curr_bio) {
1530		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1531					      GFP_NOFS);
1532		if (!wr_ctx->wr_curr_bio) {
1533			mutex_unlock(&wr_ctx->wr_lock);
1534			return -ENOMEM;
1535		}
1536		wr_ctx->wr_curr_bio->sctx = sctx;
1537		wr_ctx->wr_curr_bio->page_count = 0;
1538	}
1539	sbio = wr_ctx->wr_curr_bio;
1540	if (sbio->page_count == 0) {
1541		struct bio *bio;
1542
1543		sbio->physical = spage->physical_for_dev_replace;
1544		sbio->logical = spage->logical;
1545		sbio->dev = wr_ctx->tgtdev;
1546		bio = sbio->bio;
1547		if (!bio) {
1548			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1549			if (!bio) {
1550				mutex_unlock(&wr_ctx->wr_lock);
1551				return -ENOMEM;
1552			}
1553			sbio->bio = bio;
1554		}
1555
1556		bio->bi_private = sbio;
1557		bio->bi_end_io = scrub_wr_bio_end_io;
1558		bio->bi_bdev = sbio->dev->bdev;
1559		bio->bi_iter.bi_sector = sbio->physical >> 9;
1560		sbio->err = 0;
1561	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1562		   spage->physical_for_dev_replace ||
1563		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1564		   spage->logical) {
 
 
 
 
 
 
1565		scrub_wr_submit(sctx);
1566		goto again;
1567	}
1568
1569	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1570	if (ret != PAGE_SIZE) {
1571		if (sbio->page_count < 1) {
1572			bio_put(sbio->bio);
1573			sbio->bio = NULL;
1574			mutex_unlock(&wr_ctx->wr_lock);
1575			return -EIO;
1576		}
1577		scrub_wr_submit(sctx);
1578		goto again;
1579	}
1580
1581	sbio->pagev[sbio->page_count] = spage;
1582	scrub_page_get(spage);
1583	sbio->page_count++;
1584	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
 
 
 
 
 
 
 
1585		scrub_wr_submit(sctx);
1586	mutex_unlock(&wr_ctx->wr_lock);
1587
1588	return 0;
1589}
1590
1591static void scrub_wr_submit(struct scrub_ctx *sctx)
1592{
1593	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1594	struct scrub_bio *sbio;
1595
1596	if (!wr_ctx->wr_curr_bio)
1597		return;
1598
1599	sbio = wr_ctx->wr_curr_bio;
1600	wr_ctx->wr_curr_bio = NULL;
1601	WARN_ON(!sbio->bio->bi_bdev);
1602	scrub_pending_bio_inc(sctx);
1603	/* process all writes in a single worker thread. Then the block layer
1604	 * orders the requests before sending them to the driver which
1605	 * doubled the write performance on spinning disks when measured
1606	 * with Linux 3.5 */
1607	btrfsic_submit_bio(WRITE, sbio->bio);
 
 
 
 
 
1608}
1609
1610static void scrub_wr_bio_end_io(struct bio *bio, int err)
1611{
1612	struct scrub_bio *sbio = bio->bi_private;
1613	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1614
1615	sbio->err = err;
1616	sbio->bio = bio;
1617
1618	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1619	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1620}
1621
1622static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1623{
1624	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1625	struct scrub_ctx *sctx = sbio->sctx;
1626	int i;
1627
1628	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1629	if (sbio->err) {
1630		struct btrfs_dev_replace *dev_replace =
1631			&sbio->sctx->dev_root->fs_info->dev_replace;
1632
1633		for (i = 0; i < sbio->page_count; i++) {
1634			struct scrub_page *spage = sbio->pagev[i];
1635
1636			spage->io_error = 1;
1637			btrfs_dev_replace_stats_inc(&dev_replace->
1638						    num_write_errors);
1639		}
1640	}
1641
1642	for (i = 0; i < sbio->page_count; i++)
1643		scrub_page_put(sbio->pagev[i]);
 
 
 
 
 
 
1644
1645	bio_put(sbio->bio);
1646	kfree(sbio);
1647	scrub_pending_bio_dec(sctx);
1648}
1649
1650static int scrub_checksum(struct scrub_block *sblock)
1651{
1652	u64 flags;
1653	int ret;
1654
1655	WARN_ON(sblock->page_count < 1);
1656	flags = sblock->pagev[0]->flags;
 
 
 
 
 
 
 
 
 
 
 
 
1657	ret = 0;
1658	if (flags & BTRFS_EXTENT_FLAG_DATA)
1659		ret = scrub_checksum_data(sblock);
1660	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1661		ret = scrub_checksum_tree_block(sblock);
1662	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1663		(void)scrub_checksum_super(sblock);
1664	else
1665		WARN_ON(1);
1666	if (ret)
1667		scrub_handle_errored_block(sblock);
1668
1669	return ret;
1670}
1671
1672static int scrub_checksum_data(struct scrub_block *sblock)
1673{
1674	struct scrub_ctx *sctx = sblock->sctx;
 
 
1675	u8 csum[BTRFS_CSUM_SIZE];
1676	u8 *on_disk_csum;
1677	struct page *page;
1678	void *buffer;
1679	u32 crc = ~(u32)0;
1680	int fail = 0;
1681	u64 len;
1682	int index;
1683
1684	BUG_ON(sblock->page_count < 1);
1685	if (!sblock->pagev[0]->have_csum)
 
1686		return 0;
1687
1688	on_disk_csum = sblock->pagev[0]->csum;
1689	page = sblock->pagev[0]->page;
1690	buffer = kmap_atomic(page);
1691
1692	len = sctx->sectorsize;
1693	index = 0;
1694	for (;;) {
1695		u64 l = min_t(u64, len, PAGE_SIZE);
1696
1697		crc = btrfs_csum_data(buffer, crc, l);
1698		kunmap_atomic(buffer);
1699		len -= l;
1700		if (len == 0)
1701			break;
1702		index++;
1703		BUG_ON(index >= sblock->page_count);
1704		BUG_ON(!sblock->pagev[index]->page);
1705		page = sblock->pagev[index]->page;
1706		buffer = kmap_atomic(page);
1707	}
1708
1709	btrfs_csum_final(crc, csum);
1710	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1711		fail = 1;
1712
1713	return fail;
 
 
1714}
1715
1716static int scrub_checksum_tree_block(struct scrub_block *sblock)
1717{
1718	struct scrub_ctx *sctx = sblock->sctx;
1719	struct btrfs_header *h;
1720	struct btrfs_root *root = sctx->dev_root;
1721	struct btrfs_fs_info *fs_info = root->fs_info;
1722	u8 calculated_csum[BTRFS_CSUM_SIZE];
1723	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1724	struct page *page;
1725	void *mapped_buffer;
1726	u64 mapped_size;
1727	void *p;
1728	u32 crc = ~(u32)0;
1729	int fail = 0;
1730	int crc_fail = 0;
1731	u64 len;
1732	int index;
 
 
 
 
 
 
1733
1734	BUG_ON(sblock->page_count < 1);
1735	page = sblock->pagev[0]->page;
1736	mapped_buffer = kmap_atomic(page);
1737	h = (struct btrfs_header *)mapped_buffer;
1738	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1739
1740	/*
1741	 * we don't use the getter functions here, as we
1742	 * a) don't have an extent buffer and
1743	 * b) the page is already kmapped
1744	 */
 
 
1745
1746	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1747		++fail;
1748
1749	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1750		++fail;
1751
1752	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1753		++fail;
1754
1755	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1756		   BTRFS_UUID_SIZE))
1757		++fail;
1758
1759	WARN_ON(sctx->nodesize != sctx->leafsize);
1760	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1761	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1762	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1763	index = 0;
1764	for (;;) {
1765		u64 l = min_t(u64, len, mapped_size);
1766
1767		crc = btrfs_csum_data(p, crc, l);
1768		kunmap_atomic(mapped_buffer);
1769		len -= l;
1770		if (len == 0)
1771			break;
1772		index++;
1773		BUG_ON(index >= sblock->page_count);
1774		BUG_ON(!sblock->pagev[index]->page);
1775		page = sblock->pagev[index]->page;
1776		mapped_buffer = kmap_atomic(page);
1777		mapped_size = PAGE_SIZE;
1778		p = mapped_buffer;
1779	}
1780
1781	btrfs_csum_final(crc, calculated_csum);
1782	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1783		++crc_fail;
1784
1785	return fail || crc_fail;
1786}
1787
1788static int scrub_checksum_super(struct scrub_block *sblock)
1789{
1790	struct btrfs_super_block *s;
1791	struct scrub_ctx *sctx = sblock->sctx;
1792	struct btrfs_root *root = sctx->dev_root;
1793	struct btrfs_fs_info *fs_info = root->fs_info;
1794	u8 calculated_csum[BTRFS_CSUM_SIZE];
1795	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1796	struct page *page;
1797	void *mapped_buffer;
1798	u64 mapped_size;
1799	void *p;
1800	u32 crc = ~(u32)0;
1801	int fail_gen = 0;
1802	int fail_cor = 0;
1803	u64 len;
1804	int index;
1805
1806	BUG_ON(sblock->page_count < 1);
1807	page = sblock->pagev[0]->page;
1808	mapped_buffer = kmap_atomic(page);
1809	s = (struct btrfs_super_block *)mapped_buffer;
1810	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1811
1812	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1813		++fail_cor;
1814
1815	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1816		++fail_gen;
1817
1818	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1819		++fail_cor;
1820
1821	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1822	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1823	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1824	index = 0;
1825	for (;;) {
1826		u64 l = min_t(u64, len, mapped_size);
1827
1828		crc = btrfs_csum_data(p, crc, l);
1829		kunmap_atomic(mapped_buffer);
1830		len -= l;
1831		if (len == 0)
1832			break;
1833		index++;
1834		BUG_ON(index >= sblock->page_count);
1835		BUG_ON(!sblock->pagev[index]->page);
1836		page = sblock->pagev[index]->page;
1837		mapped_buffer = kmap_atomic(page);
1838		mapped_size = PAGE_SIZE;
1839		p = mapped_buffer;
1840	}
1841
1842	btrfs_csum_final(crc, calculated_csum);
1843	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1844		++fail_cor;
1845
1846	if (fail_cor + fail_gen) {
1847		/*
1848		 * if we find an error in a super block, we just report it.
1849		 * They will get written with the next transaction commit
1850		 * anyway
1851		 */
1852		spin_lock(&sctx->stat_lock);
1853		++sctx->stat.super_errors;
1854		spin_unlock(&sctx->stat_lock);
1855		if (fail_cor)
1856			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1857				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1858		else
1859			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1860				BTRFS_DEV_STAT_GENERATION_ERRS);
1861	}
1862
1863	return fail_cor + fail_gen;
1864}
1865
1866static void scrub_block_get(struct scrub_block *sblock)
1867{
1868	atomic_inc(&sblock->ref_count);
1869}
1870
1871static void scrub_block_put(struct scrub_block *sblock)
1872{
1873	if (atomic_dec_and_test(&sblock->ref_count)) {
1874		int i;
1875
1876		for (i = 0; i < sblock->page_count; i++)
1877			scrub_page_put(sblock->pagev[i]);
 
 
 
 
 
 
 
 
 
1878		kfree(sblock);
1879	}
1880}
1881
1882static void scrub_page_get(struct scrub_page *spage)
 
 
 
 
 
1883{
1884	atomic_inc(&spage->ref_count);
 
1885}
1886
1887static void scrub_page_put(struct scrub_page *spage)
 
 
 
 
1888{
1889	if (atomic_dec_and_test(&spage->ref_count)) {
1890		if (spage->page)
1891			__free_page(spage->page);
1892		kfree(spage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893	}
 
 
 
1894}
1895
1896static void scrub_submit(struct scrub_ctx *sctx)
1897{
1898	struct scrub_bio *sbio;
1899
1900	if (sctx->curr == -1)
1901		return;
1902
 
 
1903	sbio = sctx->bios[sctx->curr];
1904	sctx->curr = -1;
1905	scrub_pending_bio_inc(sctx);
1906
1907	if (!sbio->bio->bi_bdev) {
1908		/*
1909		 * this case should not happen. If btrfs_map_block() is
1910		 * wrong, it could happen for dev-replace operations on
1911		 * missing devices when no mirrors are available, but in
1912		 * this case it should already fail the mount.
1913		 * This case is handled correctly (but _very_ slowly).
1914		 */
1915		printk_ratelimited(KERN_WARNING
1916			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1917		bio_endio(sbio->bio, -EIO);
1918	} else {
1919		btrfsic_submit_bio(READ, sbio->bio);
1920	}
1921}
1922
1923static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1924				    struct scrub_page *spage)
1925{
1926	struct scrub_block *sblock = spage->sblock;
1927	struct scrub_bio *sbio;
 
1928	int ret;
1929
1930again:
1931	/*
1932	 * grab a fresh bio or wait for one to become available
1933	 */
1934	while (sctx->curr == -1) {
1935		spin_lock(&sctx->list_lock);
1936		sctx->curr = sctx->first_free;
1937		if (sctx->curr != -1) {
1938			sctx->first_free = sctx->bios[sctx->curr]->next_free;
1939			sctx->bios[sctx->curr]->next_free = -1;
1940			sctx->bios[sctx->curr]->page_count = 0;
1941			spin_unlock(&sctx->list_lock);
1942		} else {
1943			spin_unlock(&sctx->list_lock);
1944			wait_event(sctx->list_wait, sctx->first_free != -1);
1945		}
1946	}
1947	sbio = sctx->bios[sctx->curr];
1948	if (sbio->page_count == 0) {
1949		struct bio *bio;
1950
1951		sbio->physical = spage->physical;
1952		sbio->logical = spage->logical;
1953		sbio->dev = spage->dev;
1954		bio = sbio->bio;
1955		if (!bio) {
1956			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1957			if (!bio)
1958				return -ENOMEM;
1959			sbio->bio = bio;
1960		}
1961
1962		bio->bi_private = sbio;
1963		bio->bi_end_io = scrub_bio_end_io;
1964		bio->bi_bdev = sbio->dev->bdev;
1965		bio->bi_iter.bi_sector = sbio->physical >> 9;
1966		sbio->err = 0;
1967	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1968		   spage->physical ||
1969		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1970		   spage->logical ||
1971		   sbio->dev != spage->dev) {
1972		scrub_submit(sctx);
1973		goto again;
1974	}
1975
1976	sbio->pagev[sbio->page_count] = spage;
1977	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1978	if (ret != PAGE_SIZE) {
1979		if (sbio->page_count < 1) {
1980			bio_put(sbio->bio);
1981			sbio->bio = NULL;
1982			return -EIO;
1983		}
1984		scrub_submit(sctx);
1985		goto again;
1986	}
1987
1988	scrub_block_get(sblock); /* one for the page added to the bio */
1989	atomic_inc(&sblock->outstanding_pages);
1990	sbio->page_count++;
1991	if (sbio->page_count == sctx->pages_per_rd_bio)
1992		scrub_submit(sctx);
1993
1994	return 0;
1995}
1996
1997static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1998		       u64 physical, struct btrfs_device *dev, u64 flags,
1999		       u64 gen, int mirror_num, u8 *csum, int force,
2000		       u64 physical_for_dev_replace)
2001{
2002	struct scrub_block *sblock;
 
2003	int index;
2004
2005	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
 
2006	if (!sblock) {
2007		spin_lock(&sctx->stat_lock);
2008		sctx->stat.malloc_errors++;
2009		spin_unlock(&sctx->stat_lock);
2010		return -ENOMEM;
2011	}
2012
2013	/* one ref inside this function, plus one for each page added to
2014	 * a bio later on */
2015	atomic_set(&sblock->ref_count, 1);
2016	sblock->sctx = sctx;
2017	sblock->no_io_error_seen = 1;
2018
2019	for (index = 0; len > 0; index++) {
2020		struct scrub_page *spage;
2021		u64 l = min_t(u64, len, PAGE_SIZE);
 
 
 
 
 
2022
2023		spage = kzalloc(sizeof(*spage), GFP_NOFS);
2024		if (!spage) {
2025leave_nomem:
2026			spin_lock(&sctx->stat_lock);
2027			sctx->stat.malloc_errors++;
2028			spin_unlock(&sctx->stat_lock);
2029			scrub_block_put(sblock);
2030			return -ENOMEM;
2031		}
2032		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2033		scrub_page_get(spage);
2034		sblock->pagev[index] = spage;
2035		spage->sblock = sblock;
2036		spage->dev = dev;
2037		spage->flags = flags;
2038		spage->generation = gen;
2039		spage->logical = logical;
2040		spage->physical = physical;
2041		spage->physical_for_dev_replace = physical_for_dev_replace;
2042		spage->mirror_num = mirror_num;
2043		if (csum) {
2044			spage->have_csum = 1;
2045			memcpy(spage->csum, csum, sctx->csum_size);
2046		} else {
2047			spage->have_csum = 0;
2048		}
2049		sblock->page_count++;
2050		spage->page = alloc_page(GFP_NOFS);
2051		if (!spage->page)
2052			goto leave_nomem;
2053		len -= l;
2054		logical += l;
2055		physical += l;
2056		physical_for_dev_replace += l;
2057	}
2058
2059	WARN_ON(sblock->page_count == 0);
2060	for (index = 0; index < sblock->page_count; index++) {
2061		struct scrub_page *spage = sblock->pagev[index];
2062		int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2063
2064		ret = scrub_add_page_to_rd_bio(sctx, spage);
2065		if (ret) {
2066			scrub_block_put(sblock);
2067			return ret;
2068		}
2069	}
2070
2071	if (force)
2072		scrub_submit(sctx);
2073
2074	/* last one frees, either here or in bio completion for last page */
2075	scrub_block_put(sblock);
2076	return 0;
2077}
2078
2079static void scrub_bio_end_io(struct bio *bio, int err)
2080{
2081	struct scrub_bio *sbio = bio->bi_private;
2082	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2083
2084	sbio->err = err;
2085	sbio->bio = bio;
2086
2087	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2088}
2089
2090static void scrub_bio_end_io_worker(struct btrfs_work *work)
2091{
2092	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2093	struct scrub_ctx *sctx = sbio->sctx;
2094	int i;
2095
2096	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2097	if (sbio->err) {
2098		for (i = 0; i < sbio->page_count; i++) {
2099			struct scrub_page *spage = sbio->pagev[i];
2100
2101			spage->io_error = 1;
2102			spage->sblock->no_io_error_seen = 0;
2103		}
2104	}
2105
2106	/* now complete the scrub_block items that have all pages completed */
2107	for (i = 0; i < sbio->page_count; i++) {
2108		struct scrub_page *spage = sbio->pagev[i];
2109		struct scrub_block *sblock = spage->sblock;
2110
2111		if (atomic_dec_and_test(&sblock->outstanding_pages))
2112			scrub_block_complete(sblock);
2113		scrub_block_put(sblock);
2114	}
2115
2116	bio_put(sbio->bio);
2117	sbio->bio = NULL;
2118	spin_lock(&sctx->list_lock);
2119	sbio->next_free = sctx->first_free;
2120	sctx->first_free = sbio->index;
2121	spin_unlock(&sctx->list_lock);
2122
2123	if (sctx->is_dev_replace &&
2124	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2125		mutex_lock(&sctx->wr_ctx.wr_lock);
2126		scrub_wr_submit(sctx);
2127		mutex_unlock(&sctx->wr_ctx.wr_lock);
2128	}
2129
2130	scrub_pending_bio_dec(sctx);
2131}
2132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133static void scrub_block_complete(struct scrub_block *sblock)
2134{
 
 
2135	if (!sblock->no_io_error_seen) {
 
2136		scrub_handle_errored_block(sblock);
2137	} else {
2138		/*
2139		 * if has checksum error, write via repair mechanism in
2140		 * dev replace case, otherwise write here in dev replace
2141		 * case.
2142		 */
2143		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
 
2144			scrub_write_block_to_dev_replace(sblock);
2145	}
 
 
 
 
 
 
 
 
 
 
 
2146}
2147
2148static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2149			   u8 *csum)
2150{
2151	struct btrfs_ordered_sum *sum = NULL;
2152	unsigned long index;
2153	unsigned long num_sectors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154
2155	while (!list_empty(&sctx->csum_list)) {
 
 
 
 
2156		sum = list_first_entry(&sctx->csum_list,
2157				       struct btrfs_ordered_sum, list);
 
2158		if (sum->bytenr > logical)
2159			return 0;
2160		if (sum->bytenr + sum->len > logical)
2161			break;
2162
2163		++sctx->stat.csum_discards;
2164		list_del(&sum->list);
2165		kfree(sum);
2166		sum = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167	}
2168	if (!sum)
2169		return 0;
2170
2171	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2172	num_sectors = sum->len / sctx->sectorsize;
2173	memcpy(csum, sum->sums + index, sctx->csum_size);
2174	if (index == num_sectors - 1) {
2175		list_del(&sum->list);
2176		kfree(sum);
2177	}
2178	return 1;
2179}
2180
2181/* scrub extent tries to collect up to 64 kB for each bio */
2182static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
 
2183			u64 physical, struct btrfs_device *dev, u64 flags,
2184			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2185{
 
 
 
2186	int ret;
2187	u8 csum[BTRFS_CSUM_SIZE];
2188	u32 blocksize;
2189
2190	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2191		blocksize = sctx->sectorsize;
 
 
 
2192		spin_lock(&sctx->stat_lock);
2193		sctx->stat.data_extents_scrubbed++;
2194		sctx->stat.data_bytes_scrubbed += len;
2195		spin_unlock(&sctx->stat_lock);
2196	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2197		WARN_ON(sctx->nodesize != sctx->leafsize);
2198		blocksize = sctx->nodesize;
 
 
2199		spin_lock(&sctx->stat_lock);
2200		sctx->stat.tree_extents_scrubbed++;
2201		sctx->stat.tree_bytes_scrubbed += len;
2202		spin_unlock(&sctx->stat_lock);
2203	} else {
2204		blocksize = sctx->sectorsize;
2205		WARN_ON(1);
2206	}
2207
 
 
 
 
 
 
 
 
 
 
 
 
2208	while (len) {
2209		u64 l = min_t(u64, len, blocksize);
2210		int have_csum = 0;
2211
2212		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2213			/* push csums to sbio */
2214			have_csum = scrub_find_csum(sctx, logical, l, csum);
2215			if (have_csum == 0)
2216				++sctx->stat.no_csum;
2217			if (sctx->is_dev_replace && !have_csum) {
2218				ret = copy_nocow_pages(sctx, logical, l,
2219						       mirror_num,
2220						      physical_for_dev_replace);
2221				goto behind_scrub_pages;
2222			}
2223		}
2224		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2225				  mirror_num, have_csum ? csum : NULL, 0,
2226				  physical_for_dev_replace);
2227behind_scrub_pages:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2228		if (ret)
2229			return ret;
 
2230		len -= l;
2231		logical += l;
2232		physical += l;
2233		physical_for_dev_replace += l;
2234	}
2235	return 0;
2236}
2237
2238/*
2239 * Given a physical address, this will calculate it's
2240 * logical offset. if this is a parity stripe, it will return
2241 * the most left data stripe's logical offset.
2242 *
2243 * return 0 if it is a data stripe, 1 means parity stripe.
2244 */
2245static int get_raid56_logic_offset(u64 physical, int num,
2246				   struct map_lookup *map, u64 *offset)
 
2247{
2248	int i;
2249	int j = 0;
2250	u64 stripe_nr;
2251	u64 last_offset;
2252	int stripe_index;
2253	int rot;
 
 
 
 
 
2254
2255	last_offset = (physical - map->stripes[num].physical) *
2256		      nr_data_stripes(map);
2257	*offset = last_offset;
2258	for (i = 0; i < nr_data_stripes(map); i++) {
2259		*offset = last_offset + i * map->stripe_len;
2260
2261		stripe_nr = *offset;
2262		do_div(stripe_nr, map->stripe_len);
2263		do_div(stripe_nr, nr_data_stripes(map));
2264
2265		/* Work out the disk rotation on this stripe-set */
2266		rot = do_div(stripe_nr, map->num_stripes);
2267		/* calculate which stripe this data locates */
2268		rot += i;
2269		stripe_index = rot % map->num_stripes;
2270		if (stripe_index == num)
2271			return 0;
2272		if (stripe_index < num)
2273			j++;
2274	}
2275	*offset = last_offset + j * map->stripe_len;
2276	return 1;
2277}
2278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2279static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2280					   struct map_lookup *map,
 
2281					   struct btrfs_device *scrub_dev,
2282					   int num, u64 base, u64 length,
2283					   int is_dev_replace)
2284{
2285	struct btrfs_path *path;
2286	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2287	struct btrfs_root *root = fs_info->extent_root;
2288	struct btrfs_root *csum_root = fs_info->csum_root;
2289	struct btrfs_extent_item *extent;
2290	struct blk_plug plug;
2291	u64 flags;
 
 
2292	int ret;
2293	int slot;
2294	u64 nstripes;
2295	struct extent_buffer *l;
2296	struct btrfs_key key;
2297	u64 physical;
2298	u64 logical;
2299	u64 logic_end;
2300	u64 physical_end;
2301	u64 generation;
2302	int mirror_num;
2303	struct reada_control *reada1;
2304	struct reada_control *reada2;
2305	struct btrfs_key key_start;
2306	struct btrfs_key key_end;
2307	u64 increment = map->stripe_len;
2308	u64 offset;
2309	u64 extent_logical;
2310	u64 extent_physical;
2311	u64 extent_len;
2312	struct btrfs_device *extent_dev;
2313	int extent_mirror_num;
2314	int stop_loop = 0;
2315
2316	nstripes = length;
2317	physical = map->stripes[num].physical;
2318	offset = 0;
2319	do_div(nstripes, map->stripe_len);
2320	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2321		offset = map->stripe_len * num;
2322		increment = map->stripe_len * map->num_stripes;
2323		mirror_num = 1;
2324	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2325		int factor = map->num_stripes / map->sub_stripes;
2326		offset = map->stripe_len * (num / map->sub_stripes);
2327		increment = map->stripe_len * factor;
2328		mirror_num = num % map->sub_stripes + 1;
2329	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2330		increment = map->stripe_len;
2331		mirror_num = num % map->num_stripes + 1;
2332	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2333		increment = map->stripe_len;
2334		mirror_num = num % map->num_stripes + 1;
2335	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2336				BTRFS_BLOCK_GROUP_RAID6)) {
2337		get_raid56_logic_offset(physical, num, map, &offset);
2338		increment = map->stripe_len * nr_data_stripes(map);
2339		mirror_num = 1;
2340	} else {
2341		increment = map->stripe_len;
2342		mirror_num = 1;
2343	}
2344
2345	path = btrfs_alloc_path();
2346	if (!path)
2347		return -ENOMEM;
2348
2349	/*
2350	 * work on commit root. The related disk blocks are static as
2351	 * long as COW is applied. This means, it is save to rewrite
2352	 * them to repair disk errors without any race conditions
2353	 */
2354	path->search_commit_root = 1;
2355	path->skip_locking = 1;
 
2356
2357	/*
2358	 * trigger the readahead for extent tree csum tree and wait for
2359	 * completion. During readahead, the scrub is officially paused
2360	 * to not hold off transaction commits
2361	 */
2362	logical = base + offset;
2363	physical_end = physical + nstripes * map->stripe_len;
2364	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2365			 BTRFS_BLOCK_GROUP_RAID6)) {
2366		get_raid56_logic_offset(physical_end, num,
2367					map, &logic_end);
2368		logic_end += base;
2369	} else {
2370		logic_end = logical + increment * nstripes;
2371	}
2372	wait_event(sctx->list_wait,
2373		   atomic_read(&sctx->bios_in_flight) == 0);
2374	scrub_blocked_if_needed(fs_info);
2375
2376	/* FIXME it might be better to start readahead at commit root */
2377	key_start.objectid = logical;
2378	key_start.type = BTRFS_EXTENT_ITEM_KEY;
2379	key_start.offset = (u64)0;
2380	key_end.objectid = logic_end;
2381	key_end.type = BTRFS_METADATA_ITEM_KEY;
2382	key_end.offset = (u64)-1;
2383	reada1 = btrfs_reada_add(root, &key_start, &key_end);
2384
2385	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2386	key_start.type = BTRFS_EXTENT_CSUM_KEY;
2387	key_start.offset = logical;
2388	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2389	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2390	key_end.offset = logic_end;
2391	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2392
2393	if (!IS_ERR(reada1))
2394		btrfs_reada_wait(reada1);
2395	if (!IS_ERR(reada2))
2396		btrfs_reada_wait(reada2);
2397
2398
2399	/*
2400	 * collect all data csums for the stripe to avoid seeking during
2401	 * the scrub. This might currently (crc32) end up to be about 1MB
2402	 */
2403	blk_start_plug(&plug);
2404
 
 
 
 
 
 
 
 
2405	/*
2406	 * now find all extents for each stripe and scrub them
 
 
 
 
2407	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2408	ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2409	while (physical < physical_end) {
2410		/* for raid56, we skip parity stripe */
2411		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2412				BTRFS_BLOCK_GROUP_RAID6)) {
2413			ret = get_raid56_logic_offset(physical, num,
2414					map, &logical);
2415			logical += base;
 
 
 
 
2416			if (ret)
2417				goto skip;
2418		}
2419		/*
2420		 * canceled?
2421		 */
2422		if (atomic_read(&fs_info->scrub_cancel_req) ||
2423		    atomic_read(&sctx->cancel_req)) {
2424			ret = -ECANCELED;
2425			goto out;
2426		}
 
2427		/*
2428		 * check to see if we have to pause
 
 
 
 
 
2429		 */
2430		if (atomic_read(&fs_info->scrub_pause_req)) {
2431			/* push queued extents */
2432			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2433			scrub_submit(sctx);
2434			mutex_lock(&sctx->wr_ctx.wr_lock);
2435			scrub_wr_submit(sctx);
2436			mutex_unlock(&sctx->wr_ctx.wr_lock);
2437			wait_event(sctx->list_wait,
2438				   atomic_read(&sctx->bios_in_flight) == 0);
2439			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2440			scrub_blocked_if_needed(fs_info);
2441		}
2442
2443		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2444			key.type = BTRFS_METADATA_ITEM_KEY;
2445		else
2446			key.type = BTRFS_EXTENT_ITEM_KEY;
2447		key.objectid = logical;
2448		key.offset = (u64)-1;
2449
2450		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2451		if (ret < 0)
2452			goto out;
2453
2454		if (ret > 0) {
2455			ret = btrfs_previous_extent_item(root, path, 0);
2456			if (ret < 0)
2457				goto out;
2458			if (ret > 0) {
2459				/* there's no smaller item, so stick with the
2460				 * larger one */
2461				btrfs_release_path(path);
2462				ret = btrfs_search_slot(NULL, root, &key,
2463							path, 0, 0);
2464				if (ret < 0)
2465					goto out;
2466			}
2467		}
2468
2469		stop_loop = 0;
2470		while (1) {
2471			u64 bytes;
2472
2473			l = path->nodes[0];
2474			slot = path->slots[0];
2475			if (slot >= btrfs_header_nritems(l)) {
2476				ret = btrfs_next_leaf(root, path);
2477				if (ret == 0)
2478					continue;
2479				if (ret < 0)
2480					goto out;
2481
2482				stop_loop = 1;
2483				break;
2484			}
2485			btrfs_item_key_to_cpu(l, &key, slot);
2486
2487			if (key.type == BTRFS_METADATA_ITEM_KEY)
2488				bytes = root->leafsize;
2489			else
2490				bytes = key.offset;
2491
2492			if (key.objectid + bytes <= logical)
2493				goto next;
2494
2495			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2496			    key.type != BTRFS_METADATA_ITEM_KEY)
2497				goto next;
2498
2499			if (key.objectid >= logical + map->stripe_len) {
2500				/* out of this device extent */
2501				if (key.objectid >= logic_end)
2502					stop_loop = 1;
2503				break;
2504			}
2505
2506			extent = btrfs_item_ptr(l, slot,
2507						struct btrfs_extent_item);
2508			flags = btrfs_extent_flags(l, extent);
2509			generation = btrfs_extent_generation(l, extent);
2510
2511			if (key.objectid < logical &&
2512			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2513				btrfs_err(fs_info,
2514					   "scrub: tree block %llu spanning "
2515					   "stripes, ignored. logical=%llu",
2516				       key.objectid, logical);
2517				goto next;
2518			}
2519
2520again:
2521			extent_logical = key.objectid;
2522			extent_len = bytes;
2523
2524			/*
2525			 * trim extent to this stripe
2526			 */
2527			if (extent_logical < logical) {
2528				extent_len -= logical - extent_logical;
2529				extent_logical = logical;
2530			}
2531			if (extent_logical + extent_len >
2532			    logical + map->stripe_len) {
2533				extent_len = logical + map->stripe_len -
2534					     extent_logical;
2535			}
2536
2537			extent_physical = extent_logical - logical + physical;
2538			extent_dev = scrub_dev;
2539			extent_mirror_num = mirror_num;
2540			if (is_dev_replace)
2541				scrub_remap_extent(fs_info, extent_logical,
2542						   extent_len, &extent_physical,
2543						   &extent_dev,
2544						   &extent_mirror_num);
2545
2546			ret = btrfs_lookup_csums_range(csum_root, logical,
2547						logical + map->stripe_len - 1,
2548						&sctx->csum_list, 1);
2549			if (ret)
2550				goto out;
2551
2552			ret = scrub_extent(sctx, extent_logical, extent_len,
2553					   extent_physical, extent_dev, flags,
2554					   generation, extent_mirror_num,
2555					   extent_logical - logical + physical);
2556			if (ret)
2557				goto out;
2558
2559			scrub_free_csums(sctx);
2560			if (extent_logical + extent_len <
2561			    key.objectid + bytes) {
2562				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2563					BTRFS_BLOCK_GROUP_RAID6)) {
2564					/*
2565					 * loop until we find next data stripe
2566					 * or we have finished all stripes.
2567					 */
2568					do {
2569						physical += map->stripe_len;
2570						ret = get_raid56_logic_offset(
2571								physical, num,
2572								map, &logical);
2573						logical += base;
2574					} while (physical < physical_end && ret);
2575				} else {
2576					physical += map->stripe_len;
2577					logical += increment;
2578				}
2579				if (logical < key.objectid + bytes) {
2580					cond_resched();
2581					goto again;
2582				}
2583
2584				if (physical >= physical_end) {
2585					stop_loop = 1;
2586					break;
2587				}
2588			}
2589next:
2590			path->slots[0]++;
2591		}
2592		btrfs_release_path(path);
2593skip:
2594		logical += increment;
2595		physical += map->stripe_len;
2596		spin_lock(&sctx->stat_lock);
2597		if (stop_loop)
2598			sctx->stat.last_physical = map->stripes[num].physical +
2599						   length;
2600		else
2601			sctx->stat.last_physical = physical;
2602		spin_unlock(&sctx->stat_lock);
2603		if (stop_loop)
2604			break;
2605	}
2606out:
2607	/* push queued extents */
2608	scrub_submit(sctx);
2609	mutex_lock(&sctx->wr_ctx.wr_lock);
2610	scrub_wr_submit(sctx);
2611	mutex_unlock(&sctx->wr_ctx.wr_lock);
2612
2613	blk_finish_plug(&plug);
2614	btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
2615	return ret < 0 ? ret : 0;
2616}
2617
2618static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
 
2619					  struct btrfs_device *scrub_dev,
2620					  u64 chunk_tree, u64 chunk_objectid,
2621					  u64 chunk_offset, u64 length,
2622					  u64 dev_offset, int is_dev_replace)
2623{
2624	struct btrfs_mapping_tree *map_tree =
2625		&sctx->dev_root->fs_info->mapping_tree;
2626	struct map_lookup *map;
2627	struct extent_map *em;
2628	int i;
2629	int ret = 0;
2630
2631	read_lock(&map_tree->map_tree.lock);
2632	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2633	read_unlock(&map_tree->map_tree.lock);
2634
2635	if (!em)
2636		return -EINVAL;
 
 
 
 
 
 
 
2637
2638	map = (struct map_lookup *)em->bdev;
2639	if (em->start != chunk_offset)
 
2640		goto out;
2641
2642	if (em->len < length)
2643		goto out;
2644
 
2645	for (i = 0; i < map->num_stripes; ++i) {
2646		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2647		    map->stripes[i].physical == dev_offset) {
2648			ret = scrub_stripe(sctx, map, scrub_dev, i,
2649					   chunk_offset, length,
2650					   is_dev_replace);
2651			if (ret)
2652				goto out;
2653		}
2654	}
2655out:
2656	free_extent_map(em);
2657
2658	return ret;
2659}
2660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661static noinline_for_stack
2662int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2663			   struct btrfs_device *scrub_dev, u64 start, u64 end,
2664			   int is_dev_replace)
2665{
2666	struct btrfs_dev_extent *dev_extent = NULL;
2667	struct btrfs_path *path;
2668	struct btrfs_root *root = sctx->dev_root;
2669	struct btrfs_fs_info *fs_info = root->fs_info;
2670	u64 length;
2671	u64 chunk_tree;
2672	u64 chunk_objectid;
2673	u64 chunk_offset;
2674	int ret;
 
2675	int slot;
2676	struct extent_buffer *l;
2677	struct btrfs_key key;
2678	struct btrfs_key found_key;
2679	struct btrfs_block_group_cache *cache;
2680	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2681
2682	path = btrfs_alloc_path();
2683	if (!path)
2684		return -ENOMEM;
2685
2686	path->reada = 2;
2687	path->search_commit_root = 1;
2688	path->skip_locking = 1;
2689
2690	key.objectid = scrub_dev->devid;
2691	key.offset = 0ull;
2692	key.type = BTRFS_DEV_EXTENT_KEY;
2693
2694	while (1) {
 
 
2695		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2696		if (ret < 0)
2697			break;
2698		if (ret > 0) {
2699			if (path->slots[0] >=
2700			    btrfs_header_nritems(path->nodes[0])) {
2701				ret = btrfs_next_leaf(root, path);
2702				if (ret)
2703					break;
 
 
 
 
 
 
2704			}
2705		}
2706
2707		l = path->nodes[0];
2708		slot = path->slots[0];
2709
2710		btrfs_item_key_to_cpu(l, &found_key, slot);
2711
2712		if (found_key.objectid != scrub_dev->devid)
2713			break;
2714
2715		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2716			break;
2717
2718		if (found_key.offset >= end)
2719			break;
2720
2721		if (found_key.offset < key.offset)
2722			break;
2723
2724		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2725		length = btrfs_dev_extent_length(l, dev_extent);
2726
2727		if (found_key.offset + length <= start) {
2728			key.offset = found_key.offset + length;
2729			btrfs_release_path(path);
2730			continue;
2731		}
2732
2733		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2734		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2735		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2736
2737		/*
2738		 * get a reference on the corresponding block group to prevent
2739		 * the chunk from going away while we scrub it
2740		 */
2741		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2742		if (!cache) {
2743			ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2744			break;
2745		}
2746		dev_replace->cursor_right = found_key.offset + length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2747		dev_replace->cursor_left = found_key.offset;
2748		dev_replace->item_needs_writeback = 1;
2749		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2750				  chunk_offset, length, found_key.offset,
2751				  is_dev_replace);
 
2752
2753		/*
2754		 * flush, submit all pending read and write bios, afterwards
2755		 * wait for them.
2756		 * Note that in the dev replace case, a read request causes
2757		 * write requests that are submitted in the read completion
2758		 * worker. Therefore in the current situation, it is required
2759		 * that all write requests are flushed, so that all read and
2760		 * write requests are really completed when bios_in_flight
2761		 * changes to 0.
2762		 */
2763		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2764		scrub_submit(sctx);
2765		mutex_lock(&sctx->wr_ctx.wr_lock);
2766		scrub_wr_submit(sctx);
2767		mutex_unlock(&sctx->wr_ctx.wr_lock);
2768
2769		wait_event(sctx->list_wait,
2770			   atomic_read(&sctx->bios_in_flight) == 0);
2771		atomic_inc(&fs_info->scrubs_paused);
2772		wake_up(&fs_info->scrub_pause_wait);
2773
2774		/*
2775		 * must be called before we decrease @scrub_paused.
2776		 * make sure we don't block transaction commit while
2777		 * we are waiting pending workers finished.
2778		 */
2779		wait_event(sctx->list_wait,
2780			   atomic_read(&sctx->workers_pending) == 0);
2781		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
 
 
2782
2783		mutex_lock(&fs_info->scrub_lock);
2784		__scrub_blocked_if_needed(fs_info);
2785		atomic_dec(&fs_info->scrubs_paused);
2786		mutex_unlock(&fs_info->scrub_lock);
2787		wake_up(&fs_info->scrub_pause_wait);
 
 
 
 
 
 
 
2788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2789		btrfs_put_block_group(cache);
2790		if (ret)
2791			break;
2792		if (is_dev_replace &&
2793		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2794			ret = -EIO;
2795			break;
2796		}
2797		if (sctx->stat.malloc_errors > 0) {
2798			ret = -ENOMEM;
2799			break;
2800		}
2801
2802		dev_replace->cursor_left = dev_replace->cursor_right;
2803		dev_replace->item_needs_writeback = 1;
2804
2805		key.offset = found_key.offset + length;
2806		btrfs_release_path(path);
2807	}
2808
2809	btrfs_free_path(path);
2810
2811	/*
2812	 * ret can still be 1 from search_slot or next_leaf,
2813	 * that's not an error
2814	 */
2815	return ret < 0 ? ret : 0;
2816}
2817
2818static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2819					   struct btrfs_device *scrub_dev)
2820{
2821	int	i;
2822	u64	bytenr;
2823	u64	gen;
2824	int	ret;
2825	struct btrfs_root *root = sctx->dev_root;
2826
2827	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2828		return -EIO;
2829
2830	gen = root->fs_info->last_trans_committed;
 
 
 
 
2831
2832	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2833		bytenr = btrfs_sb_offset(i);
2834		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
 
2835			break;
 
 
2836
2837		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2838				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2839				  NULL, 1, bytenr);
2840		if (ret)
2841			return ret;
2842	}
2843	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2844
2845	return 0;
2846}
2847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2848/*
2849 * get a reference count on fs_info->scrub_workers. start worker if necessary
2850 */
2851static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2852						int is_dev_replace)
2853{
2854	int ret = 0;
2855	int flags = WQ_FREEZABLE | WQ_UNBOUND;
 
 
2856	int max_active = fs_info->thread_pool_size;
 
2857
2858	if (fs_info->scrub_workers_refcnt == 0) {
2859		if (is_dev_replace)
2860			fs_info->scrub_workers =
2861				btrfs_alloc_workqueue("btrfs-scrub", flags,
2862						      1, 4);
2863		else
2864			fs_info->scrub_workers =
2865				btrfs_alloc_workqueue("btrfs-scrub", flags,
2866						      max_active, 4);
2867		if (!fs_info->scrub_workers) {
2868			ret = -ENOMEM;
2869			goto out;
2870		}
2871		fs_info->scrub_wr_completion_workers =
2872			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2873					      max_active, 2);
2874		if (!fs_info->scrub_wr_completion_workers) {
2875			ret = -ENOMEM;
2876			goto out;
2877		}
2878		fs_info->scrub_nocow_workers =
2879			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2880		if (!fs_info->scrub_nocow_workers) {
2881			ret = -ENOMEM;
2882			goto out;
2883		}
 
2884	}
2885	++fs_info->scrub_workers_refcnt;
2886out:
 
 
 
 
 
 
 
 
 
2887	return ret;
2888}
2889
2890static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2891{
2892	if (--fs_info->scrub_workers_refcnt == 0) {
2893		btrfs_destroy_workqueue(fs_info->scrub_workers);
2894		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2895		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2896	}
2897	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2898}
2899
2900int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2901		    u64 end, struct btrfs_scrub_progress *progress,
2902		    int readonly, int is_dev_replace)
2903{
 
2904	struct scrub_ctx *sctx;
2905	int ret;
2906	struct btrfs_device *dev;
 
 
2907
2908	if (btrfs_fs_closing(fs_info))
2909		return -EINVAL;
 
 
 
2910
2911	/*
2912	 * check some assumptions
 
 
2913	 */
2914	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2915		btrfs_err(fs_info,
2916			   "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2917		       fs_info->chunk_root->nodesize,
2918		       fs_info->chunk_root->leafsize);
2919		return -EINVAL;
2920	}
2921
2922	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2923		/*
2924		 * in this case scrub is unable to calculate the checksum
2925		 * the way scrub is implemented. Do not handle this
2926		 * situation at all because it won't ever happen.
2927		 */
2928		btrfs_err(fs_info,
2929			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2930		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2931		return -EINVAL;
2932	}
2933
2934	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2935		/* not supported for data w/o checksums */
2936		btrfs_err(fs_info,
2937			   "scrub: size assumption sectorsize != PAGE_SIZE "
2938			   "(%d != %lu) fails",
2939		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
2940		return -EINVAL;
2941	}
2942
2943	if (fs_info->chunk_root->nodesize >
2944	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2945	    fs_info->chunk_root->sectorsize >
2946	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2947		/*
2948		 * would exhaust the array bounds of pagev member in
2949		 * struct scrub_block
2950		 */
2951		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2952			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2953		       fs_info->chunk_root->nodesize,
2954		       SCRUB_MAX_PAGES_PER_BLOCK,
2955		       fs_info->chunk_root->sectorsize,
2956		       SCRUB_MAX_PAGES_PER_BLOCK);
2957		return -EINVAL;
2958	}
2959
2960
2961	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2963	if (!dev || (dev->missing && !is_dev_replace)) {
2964		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2965		return -ENODEV;
 
 
 
 
2966	}
2967
2968	mutex_lock(&fs_info->scrub_lock);
2969	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
 
2970		mutex_unlock(&fs_info->scrub_lock);
2971		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2972		return -EIO;
 
2973	}
2974
2975	btrfs_dev_replace_lock(&fs_info->dev_replace);
2976	if (dev->scrub_device ||
2977	    (!is_dev_replace &&
2978	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2979		btrfs_dev_replace_unlock(&fs_info->dev_replace);
2980		mutex_unlock(&fs_info->scrub_lock);
2981		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2982		return -EINPROGRESS;
2983	}
2984	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2985
2986	ret = scrub_workers_get(fs_info, is_dev_replace);
2987	if (ret) {
2988		mutex_unlock(&fs_info->scrub_lock);
2989		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990		return ret;
2991	}
 
2992
2993	sctx = scrub_setup_ctx(dev, is_dev_replace);
2994	if (IS_ERR(sctx)) {
2995		mutex_unlock(&fs_info->scrub_lock);
2996		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2997		scrub_workers_put(fs_info);
2998		return PTR_ERR(sctx);
2999	}
3000	sctx->readonly = readonly;
3001	dev->scrub_device = sctx;
3002	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3003
3004	/*
3005	 * checking @scrub_pause_req here, we can avoid
3006	 * race between committing transaction and scrubbing.
3007	 */
3008	__scrub_blocked_if_needed(fs_info);
3009	atomic_inc(&fs_info->scrubs_running);
3010	mutex_unlock(&fs_info->scrub_lock);
3011
 
 
 
 
 
 
 
 
 
 
3012	if (!is_dev_replace) {
 
 
 
 
 
 
 
3013		/*
3014		 * by holding device list mutex, we can
3015		 * kick off writing super in log tree sync.
3016		 */
3017		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3018		ret = scrub_supers(sctx, dev);
3019		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
3020	}
3021
3022	if (!ret)
3023		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3024					     is_dev_replace);
3025
3026	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3027	atomic_dec(&fs_info->scrubs_running);
3028	wake_up(&fs_info->scrub_pause_wait);
3029
3030	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3031
3032	if (progress)
3033		memcpy(progress, &sctx->stat, sizeof(*progress));
3034
 
 
 
 
3035	mutex_lock(&fs_info->scrub_lock);
3036	dev->scrub_device = NULL;
 
 
3037	scrub_workers_put(fs_info);
3038	mutex_unlock(&fs_info->scrub_lock);
 
 
 
 
 
 
 
3039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3040	scrub_free_ctx(sctx);
3041
3042	return ret;
3043}
3044
3045void btrfs_scrub_pause(struct btrfs_root *root)
3046{
3047	struct btrfs_fs_info *fs_info = root->fs_info;
3048
3049	mutex_lock(&fs_info->scrub_lock);
3050	atomic_inc(&fs_info->scrub_pause_req);
3051	while (atomic_read(&fs_info->scrubs_paused) !=
3052	       atomic_read(&fs_info->scrubs_running)) {
3053		mutex_unlock(&fs_info->scrub_lock);
3054		wait_event(fs_info->scrub_pause_wait,
3055			   atomic_read(&fs_info->scrubs_paused) ==
3056			   atomic_read(&fs_info->scrubs_running));
3057		mutex_lock(&fs_info->scrub_lock);
3058	}
3059	mutex_unlock(&fs_info->scrub_lock);
3060}
3061
3062void btrfs_scrub_continue(struct btrfs_root *root)
3063{
3064	struct btrfs_fs_info *fs_info = root->fs_info;
3065
3066	atomic_dec(&fs_info->scrub_pause_req);
3067	wake_up(&fs_info->scrub_pause_wait);
3068}
3069
3070int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3071{
3072	mutex_lock(&fs_info->scrub_lock);
3073	if (!atomic_read(&fs_info->scrubs_running)) {
3074		mutex_unlock(&fs_info->scrub_lock);
3075		return -ENOTCONN;
3076	}
3077
3078	atomic_inc(&fs_info->scrub_cancel_req);
3079	while (atomic_read(&fs_info->scrubs_running)) {
3080		mutex_unlock(&fs_info->scrub_lock);
3081		wait_event(fs_info->scrub_pause_wait,
3082			   atomic_read(&fs_info->scrubs_running) == 0);
3083		mutex_lock(&fs_info->scrub_lock);
3084	}
3085	atomic_dec(&fs_info->scrub_cancel_req);
3086	mutex_unlock(&fs_info->scrub_lock);
3087
3088	return 0;
3089}
3090
3091int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3092			   struct btrfs_device *dev)
3093{
 
3094	struct scrub_ctx *sctx;
3095
3096	mutex_lock(&fs_info->scrub_lock);
3097	sctx = dev->scrub_device;
3098	if (!sctx) {
3099		mutex_unlock(&fs_info->scrub_lock);
3100		return -ENOTCONN;
3101	}
3102	atomic_inc(&sctx->cancel_req);
3103	while (dev->scrub_device) {
3104		mutex_unlock(&fs_info->scrub_lock);
3105		wait_event(fs_info->scrub_pause_wait,
3106			   dev->scrub_device == NULL);
3107		mutex_lock(&fs_info->scrub_lock);
3108	}
3109	mutex_unlock(&fs_info->scrub_lock);
3110
3111	return 0;
3112}
3113
3114int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3115			 struct btrfs_scrub_progress *progress)
3116{
 
3117	struct btrfs_device *dev;
3118	struct scrub_ctx *sctx = NULL;
3119
3120	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3121	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3122	if (dev)
3123		sctx = dev->scrub_device;
3124	if (sctx)
3125		memcpy(progress, &sctx->stat, sizeof(*progress));
3126	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3127
3128	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3129}
3130
3131static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3132			       u64 extent_logical, u64 extent_len,
3133			       u64 *extent_physical,
3134			       struct btrfs_device **extent_dev,
3135			       int *extent_mirror_num)
3136{
3137	u64 mapped_length;
3138	struct btrfs_bio *bbio = NULL;
3139	int ret;
3140
3141	mapped_length = extent_len;
3142	ret = btrfs_map_block(fs_info, READ, extent_logical,
3143			      &mapped_length, &bbio, 0);
3144	if (ret || !bbio || mapped_length < extent_len ||
3145	    !bbio->stripes[0].dev->bdev) {
3146		kfree(bbio);
3147		return;
3148	}
3149
3150	*extent_physical = bbio->stripes[0].physical;
3151	*extent_mirror_num = bbio->mirror_num;
3152	*extent_dev = bbio->stripes[0].dev;
3153	kfree(bbio);
3154}
3155
3156static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3157			      struct scrub_wr_ctx *wr_ctx,
3158			      struct btrfs_fs_info *fs_info,
3159			      struct btrfs_device *dev,
3160			      int is_dev_replace)
3161{
3162	WARN_ON(wr_ctx->wr_curr_bio != NULL);
3163
3164	mutex_init(&wr_ctx->wr_lock);
3165	wr_ctx->wr_curr_bio = NULL;
3166	if (!is_dev_replace)
3167		return 0;
3168
3169	WARN_ON(!dev->bdev);
3170	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3171					 bio_get_nr_vecs(dev->bdev));
3172	wr_ctx->tgtdev = dev;
3173	atomic_set(&wr_ctx->flush_all_writes, 0);
3174	return 0;
3175}
3176
3177static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3178{
3179	mutex_lock(&wr_ctx->wr_lock);
3180	kfree(wr_ctx->wr_curr_bio);
3181	wr_ctx->wr_curr_bio = NULL;
3182	mutex_unlock(&wr_ctx->wr_lock);
3183}
3184
3185static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3186			    int mirror_num, u64 physical_for_dev_replace)
3187{
3188	struct scrub_copy_nocow_ctx *nocow_ctx;
3189	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3190
3191	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3192	if (!nocow_ctx) {
3193		spin_lock(&sctx->stat_lock);
3194		sctx->stat.malloc_errors++;
3195		spin_unlock(&sctx->stat_lock);
3196		return -ENOMEM;
3197	}
3198
3199	scrub_pending_trans_workers_inc(sctx);
3200
3201	nocow_ctx->sctx = sctx;
3202	nocow_ctx->logical = logical;
3203	nocow_ctx->len = len;
3204	nocow_ctx->mirror_num = mirror_num;
3205	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3206	btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
3207	INIT_LIST_HEAD(&nocow_ctx->inodes);
3208	btrfs_queue_work(fs_info->scrub_nocow_workers,
3209			 &nocow_ctx->work);
3210
3211	return 0;
3212}
3213
3214static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3215{
3216	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3217	struct scrub_nocow_inode *nocow_inode;
3218
3219	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3220	if (!nocow_inode)
3221		return -ENOMEM;
3222	nocow_inode->inum = inum;
3223	nocow_inode->offset = offset;
3224	nocow_inode->root = root;
3225	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3226	return 0;
3227}
3228
3229#define COPY_COMPLETE 1
3230
3231static void copy_nocow_pages_worker(struct btrfs_work *work)
3232{
3233	struct scrub_copy_nocow_ctx *nocow_ctx =
3234		container_of(work, struct scrub_copy_nocow_ctx, work);
3235	struct scrub_ctx *sctx = nocow_ctx->sctx;
3236	u64 logical = nocow_ctx->logical;
3237	u64 len = nocow_ctx->len;
3238	int mirror_num = nocow_ctx->mirror_num;
3239	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3240	int ret;
3241	struct btrfs_trans_handle *trans = NULL;
3242	struct btrfs_fs_info *fs_info;
3243	struct btrfs_path *path;
3244	struct btrfs_root *root;
3245	int not_written = 0;
3246
3247	fs_info = sctx->dev_root->fs_info;
3248	root = fs_info->extent_root;
3249
3250	path = btrfs_alloc_path();
3251	if (!path) {
3252		spin_lock(&sctx->stat_lock);
3253		sctx->stat.malloc_errors++;
3254		spin_unlock(&sctx->stat_lock);
3255		not_written = 1;
3256		goto out;
3257	}
3258
3259	trans = btrfs_join_transaction(root);
3260	if (IS_ERR(trans)) {
3261		not_written = 1;
3262		goto out;
3263	}
3264
3265	ret = iterate_inodes_from_logical(logical, fs_info, path,
3266					  record_inode_for_nocow, nocow_ctx);
3267	if (ret != 0 && ret != -ENOENT) {
3268		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3269			"phys %llu, len %llu, mir %u, ret %d",
3270			logical, physical_for_dev_replace, len, mirror_num,
3271			ret);
3272		not_written = 1;
3273		goto out;
3274	}
3275
3276	btrfs_end_transaction(trans, root);
3277	trans = NULL;
3278	while (!list_empty(&nocow_ctx->inodes)) {
3279		struct scrub_nocow_inode *entry;
3280		entry = list_first_entry(&nocow_ctx->inodes,
3281					 struct scrub_nocow_inode,
3282					 list);
3283		list_del_init(&entry->list);
3284		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3285						 entry->root, nocow_ctx);
3286		kfree(entry);
3287		if (ret == COPY_COMPLETE) {
3288			ret = 0;
3289			break;
3290		} else if (ret) {
3291			break;
3292		}
3293	}
3294out:
3295	while (!list_empty(&nocow_ctx->inodes)) {
3296		struct scrub_nocow_inode *entry;
3297		entry = list_first_entry(&nocow_ctx->inodes,
3298					 struct scrub_nocow_inode,
3299					 list);
3300		list_del_init(&entry->list);
3301		kfree(entry);
3302	}
3303	if (trans && !IS_ERR(trans))
3304		btrfs_end_transaction(trans, root);
3305	if (not_written)
3306		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3307					    num_uncorrectable_read_errors);
3308
3309	btrfs_free_path(path);
3310	kfree(nocow_ctx);
3311
3312	scrub_pending_trans_workers_dec(sctx);
3313}
3314
3315static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3316				      struct scrub_copy_nocow_ctx *nocow_ctx)
3317{
3318	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3319	struct btrfs_key key;
3320	struct inode *inode;
3321	struct page *page;
3322	struct btrfs_root *local_root;
3323	struct btrfs_ordered_extent *ordered;
3324	struct extent_map *em;
3325	struct extent_state *cached_state = NULL;
3326	struct extent_io_tree *io_tree;
3327	u64 physical_for_dev_replace;
3328	u64 len = nocow_ctx->len;
3329	u64 lockstart = offset, lockend = offset + len - 1;
3330	unsigned long index;
3331	int srcu_index;
3332	int ret = 0;
3333	int err = 0;
3334
3335	key.objectid = root;
3336	key.type = BTRFS_ROOT_ITEM_KEY;
3337	key.offset = (u64)-1;
3338
3339	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3340
3341	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3342	if (IS_ERR(local_root)) {
3343		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3344		return PTR_ERR(local_root);
3345	}
3346
3347	key.type = BTRFS_INODE_ITEM_KEY;
3348	key.objectid = inum;
3349	key.offset = 0;
3350	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3351	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3352	if (IS_ERR(inode))
3353		return PTR_ERR(inode);
3354
3355	/* Avoid truncate/dio/punch hole.. */
3356	mutex_lock(&inode->i_mutex);
3357	inode_dio_wait(inode);
3358
3359	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3360	io_tree = &BTRFS_I(inode)->io_tree;
3361
3362	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3363	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3364	if (ordered) {
3365		btrfs_put_ordered_extent(ordered);
3366		goto out_unlock;
3367	}
3368
3369	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3370	if (IS_ERR(em)) {
3371		ret = PTR_ERR(em);
3372		goto out_unlock;
3373	}
3374
3375	/*
3376	 * This extent does not actually cover the logical extent anymore,
3377	 * move on to the next inode.
3378	 */
3379	if (em->block_start > nocow_ctx->logical ||
3380	    em->block_start + em->block_len < nocow_ctx->logical + len) {
3381		free_extent_map(em);
3382		goto out_unlock;
3383	}
3384	free_extent_map(em);
3385
3386	while (len >= PAGE_CACHE_SIZE) {
3387		index = offset >> PAGE_CACHE_SHIFT;
3388again:
3389		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3390		if (!page) {
3391			btrfs_err(fs_info, "find_or_create_page() failed");
3392			ret = -ENOMEM;
3393			goto out;
3394		}
3395
3396		if (PageUptodate(page)) {
3397			if (PageDirty(page))
3398				goto next_page;
3399		} else {
3400			ClearPageError(page);
3401			err = extent_read_full_page_nolock(io_tree, page,
3402							   btrfs_get_extent,
3403							   nocow_ctx->mirror_num);
3404			if (err) {
3405				ret = err;
3406				goto next_page;
3407			}
3408
3409			lock_page(page);
3410			/*
3411			 * If the page has been remove from the page cache,
3412			 * the data on it is meaningless, because it may be
3413			 * old one, the new data may be written into the new
3414			 * page in the page cache.
3415			 */
3416			if (page->mapping != inode->i_mapping) {
3417				unlock_page(page);
3418				page_cache_release(page);
3419				goto again;
3420			}
3421			if (!PageUptodate(page)) {
3422				ret = -EIO;
3423				goto next_page;
3424			}
3425		}
3426		err = write_page_nocow(nocow_ctx->sctx,
3427				       physical_for_dev_replace, page);
3428		if (err)
3429			ret = err;
3430next_page:
3431		unlock_page(page);
3432		page_cache_release(page);
3433
3434		if (ret)
3435			break;
3436
3437		offset += PAGE_CACHE_SIZE;
3438		physical_for_dev_replace += PAGE_CACHE_SIZE;
3439		len -= PAGE_CACHE_SIZE;
3440	}
3441	ret = COPY_COMPLETE;
3442out_unlock:
3443	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3444			     GFP_NOFS);
3445out:
3446	mutex_unlock(&inode->i_mutex);
3447	iput(inode);
3448	return ret;
3449}
3450
3451static int write_page_nocow(struct scrub_ctx *sctx,
3452			    u64 physical_for_dev_replace, struct page *page)
3453{
3454	struct bio *bio;
3455	struct btrfs_device *dev;
3456	int ret;
3457
3458	dev = sctx->wr_ctx.tgtdev;
3459	if (!dev)
3460		return -EIO;
3461	if (!dev->bdev) {
3462		printk_ratelimited(KERN_WARNING
3463			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3464		return -EIO;
3465	}
3466	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3467	if (!bio) {
3468		spin_lock(&sctx->stat_lock);
3469		sctx->stat.malloc_errors++;
3470		spin_unlock(&sctx->stat_lock);
3471		return -ENOMEM;
3472	}
3473	bio->bi_iter.bi_size = 0;
3474	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3475	bio->bi_bdev = dev->bdev;
3476	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3477	if (ret != PAGE_CACHE_SIZE) {
3478leave_with_eio:
3479		bio_put(bio);
3480		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3481		return -EIO;
3482	}
3483
3484	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3485		goto leave_with_eio;
3486
3487	bio_put(bio);
3488	return 0;
3489}