Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Real Time Clock interface for XScale PXA27x and PXA3xx
4 *
5 * Copyright (C) 2008 Robert Jarzmik
6 */
7
8#include <linux/init.h>
9#include <linux/platform_device.h>
10#include <linux/module.h>
11#include <linux/rtc.h>
12#include <linux/seq_file.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/slab.h>
16#include <linux/of.h>
17#include <linux/of_device.h>
18
19#include "rtc-sa1100.h"
20
21#define RTC_DEF_DIVIDER (32768 - 1)
22#define RTC_DEF_TRIM 0
23#define MAXFREQ_PERIODIC 1000
24
25/*
26 * PXA Registers and bits definitions
27 */
28#define RTSR_PICE (1 << 15) /* Periodic interrupt count enable */
29#define RTSR_PIALE (1 << 14) /* Periodic interrupt Alarm enable */
30#define RTSR_PIAL (1 << 13) /* Periodic interrupt detected */
31#define RTSR_SWALE2 (1 << 11) /* RTC stopwatch alarm2 enable */
32#define RTSR_SWAL2 (1 << 10) /* RTC stopwatch alarm2 detected */
33#define RTSR_SWALE1 (1 << 9) /* RTC stopwatch alarm1 enable */
34#define RTSR_SWAL1 (1 << 8) /* RTC stopwatch alarm1 detected */
35#define RTSR_RDALE2 (1 << 7) /* RTC alarm2 enable */
36#define RTSR_RDAL2 (1 << 6) /* RTC alarm2 detected */
37#define RTSR_RDALE1 (1 << 5) /* RTC alarm1 enable */
38#define RTSR_RDAL1 (1 << 4) /* RTC alarm1 detected */
39#define RTSR_HZE (1 << 3) /* HZ interrupt enable */
40#define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */
41#define RTSR_HZ (1 << 1) /* HZ rising-edge detected */
42#define RTSR_AL (1 << 0) /* RTC alarm detected */
43#define RTSR_TRIG_MASK (RTSR_AL | RTSR_HZ | RTSR_RDAL1 | RTSR_RDAL2\
44 | RTSR_SWAL1 | RTSR_SWAL2)
45#define RYxR_YEAR_S 9
46#define RYxR_YEAR_MASK (0xfff << RYxR_YEAR_S)
47#define RYxR_MONTH_S 5
48#define RYxR_MONTH_MASK (0xf << RYxR_MONTH_S)
49#define RYxR_DAY_MASK 0x1f
50#define RDxR_WOM_S 20
51#define RDxR_WOM_MASK (0x7 << RDxR_WOM_S)
52#define RDxR_DOW_S 17
53#define RDxR_DOW_MASK (0x7 << RDxR_DOW_S)
54#define RDxR_HOUR_S 12
55#define RDxR_HOUR_MASK (0x1f << RDxR_HOUR_S)
56#define RDxR_MIN_S 6
57#define RDxR_MIN_MASK (0x3f << RDxR_MIN_S)
58#define RDxR_SEC_MASK 0x3f
59
60#define RTSR 0x08
61#define RTTR 0x0c
62#define RDCR 0x10
63#define RYCR 0x14
64#define RDAR1 0x18
65#define RYAR1 0x1c
66#define RTCPICR 0x34
67#define PIAR 0x38
68
69#define rtc_readl(pxa_rtc, reg) \
70 __raw_readl((pxa_rtc)->base + (reg))
71#define rtc_writel(pxa_rtc, reg, value) \
72 __raw_writel((value), (pxa_rtc)->base + (reg))
73
74struct pxa_rtc {
75 struct sa1100_rtc sa1100_rtc;
76 struct resource *ress;
77 void __iomem *base;
78 struct rtc_device *rtc;
79 spinlock_t lock; /* Protects this structure */
80};
81
82
83static u32 ryxr_calc(struct rtc_time *tm)
84{
85 return ((tm->tm_year + 1900) << RYxR_YEAR_S)
86 | ((tm->tm_mon + 1) << RYxR_MONTH_S)
87 | tm->tm_mday;
88}
89
90static u32 rdxr_calc(struct rtc_time *tm)
91{
92 return ((((tm->tm_mday + 6) / 7) << RDxR_WOM_S) & RDxR_WOM_MASK)
93 | (((tm->tm_wday + 1) << RDxR_DOW_S) & RDxR_DOW_MASK)
94 | (tm->tm_hour << RDxR_HOUR_S)
95 | (tm->tm_min << RDxR_MIN_S)
96 | tm->tm_sec;
97}
98
99static void tm_calc(u32 rycr, u32 rdcr, struct rtc_time *tm)
100{
101 tm->tm_year = ((rycr & RYxR_YEAR_MASK) >> RYxR_YEAR_S) - 1900;
102 tm->tm_mon = (((rycr & RYxR_MONTH_MASK) >> RYxR_MONTH_S)) - 1;
103 tm->tm_mday = (rycr & RYxR_DAY_MASK);
104 tm->tm_wday = ((rycr & RDxR_DOW_MASK) >> RDxR_DOW_S) - 1;
105 tm->tm_hour = (rdcr & RDxR_HOUR_MASK) >> RDxR_HOUR_S;
106 tm->tm_min = (rdcr & RDxR_MIN_MASK) >> RDxR_MIN_S;
107 tm->tm_sec = rdcr & RDxR_SEC_MASK;
108}
109
110static void rtsr_clear_bits(struct pxa_rtc *pxa_rtc, u32 mask)
111{
112 u32 rtsr;
113
114 rtsr = rtc_readl(pxa_rtc, RTSR);
115 rtsr &= ~RTSR_TRIG_MASK;
116 rtsr &= ~mask;
117 rtc_writel(pxa_rtc, RTSR, rtsr);
118}
119
120static void rtsr_set_bits(struct pxa_rtc *pxa_rtc, u32 mask)
121{
122 u32 rtsr;
123
124 rtsr = rtc_readl(pxa_rtc, RTSR);
125 rtsr &= ~RTSR_TRIG_MASK;
126 rtsr |= mask;
127 rtc_writel(pxa_rtc, RTSR, rtsr);
128}
129
130static irqreturn_t pxa_rtc_irq(int irq, void *dev_id)
131{
132 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev_id);
133 u32 rtsr;
134 unsigned long events = 0;
135
136 spin_lock(&pxa_rtc->lock);
137
138 /* clear interrupt sources */
139 rtsr = rtc_readl(pxa_rtc, RTSR);
140 rtc_writel(pxa_rtc, RTSR, rtsr);
141
142 /* temporary disable rtc interrupts */
143 rtsr_clear_bits(pxa_rtc, RTSR_RDALE1 | RTSR_PIALE | RTSR_HZE);
144
145 /* clear alarm interrupt if it has occurred */
146 if (rtsr & RTSR_RDAL1)
147 rtsr &= ~RTSR_RDALE1;
148
149 /* update irq data & counter */
150 if (rtsr & RTSR_RDAL1)
151 events |= RTC_AF | RTC_IRQF;
152 if (rtsr & RTSR_HZ)
153 events |= RTC_UF | RTC_IRQF;
154 if (rtsr & RTSR_PIAL)
155 events |= RTC_PF | RTC_IRQF;
156
157 rtc_update_irq(pxa_rtc->rtc, 1, events);
158
159 /* enable back rtc interrupts */
160 rtc_writel(pxa_rtc, RTSR, rtsr & ~RTSR_TRIG_MASK);
161
162 spin_unlock(&pxa_rtc->lock);
163 return IRQ_HANDLED;
164}
165
166static int pxa_rtc_open(struct device *dev)
167{
168 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
169 int ret;
170
171 ret = request_irq(pxa_rtc->sa1100_rtc.irq_1hz, pxa_rtc_irq, 0,
172 "rtc 1Hz", dev);
173 if (ret < 0) {
174 dev_err(dev, "can't get irq %i, err %d\n",
175 pxa_rtc->sa1100_rtc.irq_1hz, ret);
176 goto err_irq_1Hz;
177 }
178 ret = request_irq(pxa_rtc->sa1100_rtc.irq_alarm, pxa_rtc_irq, 0,
179 "rtc Alrm", dev);
180 if (ret < 0) {
181 dev_err(dev, "can't get irq %i, err %d\n",
182 pxa_rtc->sa1100_rtc.irq_alarm, ret);
183 goto err_irq_Alrm;
184 }
185
186 return 0;
187
188err_irq_Alrm:
189 free_irq(pxa_rtc->sa1100_rtc.irq_1hz, dev);
190err_irq_1Hz:
191 return ret;
192}
193
194static void pxa_rtc_release(struct device *dev)
195{
196 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
197
198 spin_lock_irq(&pxa_rtc->lock);
199 rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
200 spin_unlock_irq(&pxa_rtc->lock);
201
202 free_irq(pxa_rtc->sa1100_rtc.irq_1hz, dev);
203 free_irq(pxa_rtc->sa1100_rtc.irq_alarm, dev);
204}
205
206static int pxa_alarm_irq_enable(struct device *dev, unsigned int enabled)
207{
208 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
209
210 spin_lock_irq(&pxa_rtc->lock);
211
212 if (enabled)
213 rtsr_set_bits(pxa_rtc, RTSR_RDALE1);
214 else
215 rtsr_clear_bits(pxa_rtc, RTSR_RDALE1);
216
217 spin_unlock_irq(&pxa_rtc->lock);
218 return 0;
219}
220
221static int pxa_rtc_read_time(struct device *dev, struct rtc_time *tm)
222{
223 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
224 u32 rycr, rdcr;
225
226 rycr = rtc_readl(pxa_rtc, RYCR);
227 rdcr = rtc_readl(pxa_rtc, RDCR);
228
229 tm_calc(rycr, rdcr, tm);
230 return 0;
231}
232
233static int pxa_rtc_set_time(struct device *dev, struct rtc_time *tm)
234{
235 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
236
237 rtc_writel(pxa_rtc, RYCR, ryxr_calc(tm));
238 rtc_writel(pxa_rtc, RDCR, rdxr_calc(tm));
239
240 return 0;
241}
242
243static int pxa_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
244{
245 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
246 u32 rtsr, ryar, rdar;
247
248 ryar = rtc_readl(pxa_rtc, RYAR1);
249 rdar = rtc_readl(pxa_rtc, RDAR1);
250 tm_calc(ryar, rdar, &alrm->time);
251
252 rtsr = rtc_readl(pxa_rtc, RTSR);
253 alrm->enabled = (rtsr & RTSR_RDALE1) ? 1 : 0;
254 alrm->pending = (rtsr & RTSR_RDAL1) ? 1 : 0;
255 return 0;
256}
257
258static int pxa_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
259{
260 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
261 u32 rtsr;
262
263 spin_lock_irq(&pxa_rtc->lock);
264
265 rtc_writel(pxa_rtc, RYAR1, ryxr_calc(&alrm->time));
266 rtc_writel(pxa_rtc, RDAR1, rdxr_calc(&alrm->time));
267
268 rtsr = rtc_readl(pxa_rtc, RTSR);
269 if (alrm->enabled)
270 rtsr |= RTSR_RDALE1;
271 else
272 rtsr &= ~RTSR_RDALE1;
273 rtc_writel(pxa_rtc, RTSR, rtsr);
274
275 spin_unlock_irq(&pxa_rtc->lock);
276
277 return 0;
278}
279
280static int pxa_rtc_proc(struct device *dev, struct seq_file *seq)
281{
282 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
283
284 seq_printf(seq, "trim/divider\t: 0x%08x\n", rtc_readl(pxa_rtc, RTTR));
285 seq_printf(seq, "update_IRQ\t: %s\n",
286 (rtc_readl(pxa_rtc, RTSR) & RTSR_HZE) ? "yes" : "no");
287 seq_printf(seq, "periodic_IRQ\t: %s\n",
288 (rtc_readl(pxa_rtc, RTSR) & RTSR_PIALE) ? "yes" : "no");
289 seq_printf(seq, "periodic_freq\t: %u\n", rtc_readl(pxa_rtc, PIAR));
290
291 return 0;
292}
293
294static const struct rtc_class_ops pxa_rtc_ops = {
295 .read_time = pxa_rtc_read_time,
296 .set_time = pxa_rtc_set_time,
297 .read_alarm = pxa_rtc_read_alarm,
298 .set_alarm = pxa_rtc_set_alarm,
299 .alarm_irq_enable = pxa_alarm_irq_enable,
300 .proc = pxa_rtc_proc,
301};
302
303static int __init pxa_rtc_probe(struct platform_device *pdev)
304{
305 struct device *dev = &pdev->dev;
306 struct pxa_rtc *pxa_rtc;
307 struct sa1100_rtc *sa1100_rtc;
308 int ret;
309
310 pxa_rtc = devm_kzalloc(dev, sizeof(*pxa_rtc), GFP_KERNEL);
311 if (!pxa_rtc)
312 return -ENOMEM;
313 sa1100_rtc = &pxa_rtc->sa1100_rtc;
314
315 spin_lock_init(&pxa_rtc->lock);
316 platform_set_drvdata(pdev, pxa_rtc);
317
318 pxa_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
319 if (!pxa_rtc->ress) {
320 dev_err(dev, "No I/O memory resource defined\n");
321 return -ENXIO;
322 }
323
324 sa1100_rtc->irq_1hz = platform_get_irq(pdev, 0);
325 if (sa1100_rtc->irq_1hz < 0)
326 return -ENXIO;
327 sa1100_rtc->irq_alarm = platform_get_irq(pdev, 1);
328 if (sa1100_rtc->irq_alarm < 0)
329 return -ENXIO;
330
331 sa1100_rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
332 if (IS_ERR(sa1100_rtc->rtc))
333 return PTR_ERR(sa1100_rtc->rtc);
334
335 pxa_rtc->base = devm_ioremap(dev, pxa_rtc->ress->start,
336 resource_size(pxa_rtc->ress));
337 if (!pxa_rtc->base) {
338 dev_err(dev, "Unable to map pxa RTC I/O memory\n");
339 return -ENOMEM;
340 }
341
342 pxa_rtc_open(dev);
343
344 sa1100_rtc->rcnr = pxa_rtc->base + 0x0;
345 sa1100_rtc->rtsr = pxa_rtc->base + 0x8;
346 sa1100_rtc->rtar = pxa_rtc->base + 0x4;
347 sa1100_rtc->rttr = pxa_rtc->base + 0xc;
348 ret = sa1100_rtc_init(pdev, sa1100_rtc);
349 if (ret) {
350 dev_err(dev, "Unable to init SA1100 RTC sub-device\n");
351 return ret;
352 }
353
354 rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
355
356 pxa_rtc->rtc = devm_rtc_device_register(&pdev->dev, "pxa-rtc",
357 &pxa_rtc_ops, THIS_MODULE);
358 if (IS_ERR(pxa_rtc->rtc)) {
359 ret = PTR_ERR(pxa_rtc->rtc);
360 dev_err(dev, "Failed to register RTC device -> %d\n", ret);
361 return ret;
362 }
363
364 device_init_wakeup(dev, 1);
365
366 return 0;
367}
368
369static int __exit pxa_rtc_remove(struct platform_device *pdev)
370{
371 struct device *dev = &pdev->dev;
372
373 pxa_rtc_release(dev);
374 return 0;
375}
376
377#ifdef CONFIG_OF
378static const struct of_device_id pxa_rtc_dt_ids[] = {
379 { .compatible = "marvell,pxa-rtc" },
380 {}
381};
382MODULE_DEVICE_TABLE(of, pxa_rtc_dt_ids);
383#endif
384
385#ifdef CONFIG_PM_SLEEP
386static int pxa_rtc_suspend(struct device *dev)
387{
388 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
389
390 if (device_may_wakeup(dev))
391 enable_irq_wake(pxa_rtc->sa1100_rtc.irq_alarm);
392 return 0;
393}
394
395static int pxa_rtc_resume(struct device *dev)
396{
397 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
398
399 if (device_may_wakeup(dev))
400 disable_irq_wake(pxa_rtc->sa1100_rtc.irq_alarm);
401 return 0;
402}
403#endif
404
405static SIMPLE_DEV_PM_OPS(pxa_rtc_pm_ops, pxa_rtc_suspend, pxa_rtc_resume);
406
407static struct platform_driver pxa_rtc_driver = {
408 .remove = __exit_p(pxa_rtc_remove),
409 .driver = {
410 .name = "pxa-rtc",
411 .of_match_table = of_match_ptr(pxa_rtc_dt_ids),
412 .pm = &pxa_rtc_pm_ops,
413 },
414};
415
416module_platform_driver_probe(pxa_rtc_driver, pxa_rtc_probe);
417
418MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
419MODULE_DESCRIPTION("PXA27x/PXA3xx Realtime Clock Driver (RTC)");
420MODULE_LICENSE("GPL");
421MODULE_ALIAS("platform:pxa-rtc");
1/*
2 * Real Time Clock interface for XScale PXA27x and PXA3xx
3 *
4 * Copyright (C) 2008 Robert Jarzmik
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21
22#include <linux/init.h>
23#include <linux/platform_device.h>
24#include <linux/module.h>
25#include <linux/rtc.h>
26#include <linux/seq_file.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/slab.h>
30#include <linux/of.h>
31#include <linux/of_device.h>
32
33#include <mach/hardware.h>
34
35#define RTC_DEF_DIVIDER (32768 - 1)
36#define RTC_DEF_TRIM 0
37#define MAXFREQ_PERIODIC 1000
38
39/*
40 * PXA Registers and bits definitions
41 */
42#define RTSR_PICE (1 << 15) /* Periodic interrupt count enable */
43#define RTSR_PIALE (1 << 14) /* Periodic interrupt Alarm enable */
44#define RTSR_PIAL (1 << 13) /* Periodic interrupt detected */
45#define RTSR_SWALE2 (1 << 11) /* RTC stopwatch alarm2 enable */
46#define RTSR_SWAL2 (1 << 10) /* RTC stopwatch alarm2 detected */
47#define RTSR_SWALE1 (1 << 9) /* RTC stopwatch alarm1 enable */
48#define RTSR_SWAL1 (1 << 8) /* RTC stopwatch alarm1 detected */
49#define RTSR_RDALE2 (1 << 7) /* RTC alarm2 enable */
50#define RTSR_RDAL2 (1 << 6) /* RTC alarm2 detected */
51#define RTSR_RDALE1 (1 << 5) /* RTC alarm1 enable */
52#define RTSR_RDAL1 (1 << 4) /* RTC alarm1 detected */
53#define RTSR_HZE (1 << 3) /* HZ interrupt enable */
54#define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */
55#define RTSR_HZ (1 << 1) /* HZ rising-edge detected */
56#define RTSR_AL (1 << 0) /* RTC alarm detected */
57#define RTSR_TRIG_MASK (RTSR_AL | RTSR_HZ | RTSR_RDAL1 | RTSR_RDAL2\
58 | RTSR_SWAL1 | RTSR_SWAL2)
59#define RYxR_YEAR_S 9
60#define RYxR_YEAR_MASK (0xfff << RYxR_YEAR_S)
61#define RYxR_MONTH_S 5
62#define RYxR_MONTH_MASK (0xf << RYxR_MONTH_S)
63#define RYxR_DAY_MASK 0x1f
64#define RDxR_WOM_S 20
65#define RDxR_WOM_MASK (0x7 << RDxR_WOM_S)
66#define RDxR_DOW_S 17
67#define RDxR_DOW_MASK (0x7 << RDxR_DOW_S)
68#define RDxR_HOUR_S 12
69#define RDxR_HOUR_MASK (0x1f << RDxR_HOUR_S)
70#define RDxR_MIN_S 6
71#define RDxR_MIN_MASK (0x3f << RDxR_MIN_S)
72#define RDxR_SEC_MASK 0x3f
73
74#define RTSR 0x08
75#define RTTR 0x0c
76#define RDCR 0x10
77#define RYCR 0x14
78#define RDAR1 0x18
79#define RYAR1 0x1c
80#define RTCPICR 0x34
81#define PIAR 0x38
82
83#define rtc_readl(pxa_rtc, reg) \
84 __raw_readl((pxa_rtc)->base + (reg))
85#define rtc_writel(pxa_rtc, reg, value) \
86 __raw_writel((value), (pxa_rtc)->base + (reg))
87
88struct pxa_rtc {
89 struct resource *ress;
90 void __iomem *base;
91 int irq_1Hz;
92 int irq_Alrm;
93 struct rtc_device *rtc;
94 spinlock_t lock; /* Protects this structure */
95};
96
97
98static u32 ryxr_calc(struct rtc_time *tm)
99{
100 return ((tm->tm_year + 1900) << RYxR_YEAR_S)
101 | ((tm->tm_mon + 1) << RYxR_MONTH_S)
102 | tm->tm_mday;
103}
104
105static u32 rdxr_calc(struct rtc_time *tm)
106{
107 return ((((tm->tm_mday + 6) / 7) << RDxR_WOM_S) & RDxR_WOM_MASK)
108 | (((tm->tm_wday + 1) << RDxR_DOW_S) & RDxR_DOW_MASK)
109 | (tm->tm_hour << RDxR_HOUR_S)
110 | (tm->tm_min << RDxR_MIN_S)
111 | tm->tm_sec;
112}
113
114static void tm_calc(u32 rycr, u32 rdcr, struct rtc_time *tm)
115{
116 tm->tm_year = ((rycr & RYxR_YEAR_MASK) >> RYxR_YEAR_S) - 1900;
117 tm->tm_mon = (((rycr & RYxR_MONTH_MASK) >> RYxR_MONTH_S)) - 1;
118 tm->tm_mday = (rycr & RYxR_DAY_MASK);
119 tm->tm_wday = ((rycr & RDxR_DOW_MASK) >> RDxR_DOW_S) - 1;
120 tm->tm_hour = (rdcr & RDxR_HOUR_MASK) >> RDxR_HOUR_S;
121 tm->tm_min = (rdcr & RDxR_MIN_MASK) >> RDxR_MIN_S;
122 tm->tm_sec = rdcr & RDxR_SEC_MASK;
123}
124
125static void rtsr_clear_bits(struct pxa_rtc *pxa_rtc, u32 mask)
126{
127 u32 rtsr;
128
129 rtsr = rtc_readl(pxa_rtc, RTSR);
130 rtsr &= ~RTSR_TRIG_MASK;
131 rtsr &= ~mask;
132 rtc_writel(pxa_rtc, RTSR, rtsr);
133}
134
135static void rtsr_set_bits(struct pxa_rtc *pxa_rtc, u32 mask)
136{
137 u32 rtsr;
138
139 rtsr = rtc_readl(pxa_rtc, RTSR);
140 rtsr &= ~RTSR_TRIG_MASK;
141 rtsr |= mask;
142 rtc_writel(pxa_rtc, RTSR, rtsr);
143}
144
145static irqreturn_t pxa_rtc_irq(int irq, void *dev_id)
146{
147 struct platform_device *pdev = to_platform_device(dev_id);
148 struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
149 u32 rtsr;
150 unsigned long events = 0;
151
152 spin_lock(&pxa_rtc->lock);
153
154 /* clear interrupt sources */
155 rtsr = rtc_readl(pxa_rtc, RTSR);
156 rtc_writel(pxa_rtc, RTSR, rtsr);
157
158 /* temporary disable rtc interrupts */
159 rtsr_clear_bits(pxa_rtc, RTSR_RDALE1 | RTSR_PIALE | RTSR_HZE);
160
161 /* clear alarm interrupt if it has occurred */
162 if (rtsr & RTSR_RDAL1)
163 rtsr &= ~RTSR_RDALE1;
164
165 /* update irq data & counter */
166 if (rtsr & RTSR_RDAL1)
167 events |= RTC_AF | RTC_IRQF;
168 if (rtsr & RTSR_HZ)
169 events |= RTC_UF | RTC_IRQF;
170 if (rtsr & RTSR_PIAL)
171 events |= RTC_PF | RTC_IRQF;
172
173 rtc_update_irq(pxa_rtc->rtc, 1, events);
174
175 /* enable back rtc interrupts */
176 rtc_writel(pxa_rtc, RTSR, rtsr & ~RTSR_TRIG_MASK);
177
178 spin_unlock(&pxa_rtc->lock);
179 return IRQ_HANDLED;
180}
181
182static int pxa_rtc_open(struct device *dev)
183{
184 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
185 int ret;
186
187 ret = request_irq(pxa_rtc->irq_1Hz, pxa_rtc_irq, 0,
188 "rtc 1Hz", dev);
189 if (ret < 0) {
190 dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_1Hz,
191 ret);
192 goto err_irq_1Hz;
193 }
194 ret = request_irq(pxa_rtc->irq_Alrm, pxa_rtc_irq, 0,
195 "rtc Alrm", dev);
196 if (ret < 0) {
197 dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_Alrm,
198 ret);
199 goto err_irq_Alrm;
200 }
201
202 return 0;
203
204err_irq_Alrm:
205 free_irq(pxa_rtc->irq_1Hz, dev);
206err_irq_1Hz:
207 return ret;
208}
209
210static void pxa_rtc_release(struct device *dev)
211{
212 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
213
214 spin_lock_irq(&pxa_rtc->lock);
215 rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
216 spin_unlock_irq(&pxa_rtc->lock);
217
218 free_irq(pxa_rtc->irq_Alrm, dev);
219 free_irq(pxa_rtc->irq_1Hz, dev);
220}
221
222static int pxa_alarm_irq_enable(struct device *dev, unsigned int enabled)
223{
224 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
225
226 spin_lock_irq(&pxa_rtc->lock);
227
228 if (enabled)
229 rtsr_set_bits(pxa_rtc, RTSR_RDALE1);
230 else
231 rtsr_clear_bits(pxa_rtc, RTSR_RDALE1);
232
233 spin_unlock_irq(&pxa_rtc->lock);
234 return 0;
235}
236
237static int pxa_rtc_read_time(struct device *dev, struct rtc_time *tm)
238{
239 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
240 u32 rycr, rdcr;
241
242 rycr = rtc_readl(pxa_rtc, RYCR);
243 rdcr = rtc_readl(pxa_rtc, RDCR);
244
245 tm_calc(rycr, rdcr, tm);
246 return 0;
247}
248
249static int pxa_rtc_set_time(struct device *dev, struct rtc_time *tm)
250{
251 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
252
253 rtc_writel(pxa_rtc, RYCR, ryxr_calc(tm));
254 rtc_writel(pxa_rtc, RDCR, rdxr_calc(tm));
255
256 return 0;
257}
258
259static int pxa_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
260{
261 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
262 u32 rtsr, ryar, rdar;
263
264 ryar = rtc_readl(pxa_rtc, RYAR1);
265 rdar = rtc_readl(pxa_rtc, RDAR1);
266 tm_calc(ryar, rdar, &alrm->time);
267
268 rtsr = rtc_readl(pxa_rtc, RTSR);
269 alrm->enabled = (rtsr & RTSR_RDALE1) ? 1 : 0;
270 alrm->pending = (rtsr & RTSR_RDAL1) ? 1 : 0;
271 return 0;
272}
273
274static int pxa_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
275{
276 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
277 u32 rtsr;
278
279 spin_lock_irq(&pxa_rtc->lock);
280
281 rtc_writel(pxa_rtc, RYAR1, ryxr_calc(&alrm->time));
282 rtc_writel(pxa_rtc, RDAR1, rdxr_calc(&alrm->time));
283
284 rtsr = rtc_readl(pxa_rtc, RTSR);
285 if (alrm->enabled)
286 rtsr |= RTSR_RDALE1;
287 else
288 rtsr &= ~RTSR_RDALE1;
289 rtc_writel(pxa_rtc, RTSR, rtsr);
290
291 spin_unlock_irq(&pxa_rtc->lock);
292
293 return 0;
294}
295
296static int pxa_rtc_proc(struct device *dev, struct seq_file *seq)
297{
298 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
299
300 seq_printf(seq, "trim/divider\t: 0x%08x\n", rtc_readl(pxa_rtc, RTTR));
301 seq_printf(seq, "update_IRQ\t: %s\n",
302 (rtc_readl(pxa_rtc, RTSR) & RTSR_HZE) ? "yes" : "no");
303 seq_printf(seq, "periodic_IRQ\t: %s\n",
304 (rtc_readl(pxa_rtc, RTSR) & RTSR_PIALE) ? "yes" : "no");
305 seq_printf(seq, "periodic_freq\t: %u\n", rtc_readl(pxa_rtc, PIAR));
306
307 return 0;
308}
309
310static const struct rtc_class_ops pxa_rtc_ops = {
311 .read_time = pxa_rtc_read_time,
312 .set_time = pxa_rtc_set_time,
313 .read_alarm = pxa_rtc_read_alarm,
314 .set_alarm = pxa_rtc_set_alarm,
315 .alarm_irq_enable = pxa_alarm_irq_enable,
316 .proc = pxa_rtc_proc,
317};
318
319static int __init pxa_rtc_probe(struct platform_device *pdev)
320{
321 struct device *dev = &pdev->dev;
322 struct pxa_rtc *pxa_rtc;
323 int ret;
324 u32 rttr;
325
326 pxa_rtc = devm_kzalloc(dev, sizeof(*pxa_rtc), GFP_KERNEL);
327 if (!pxa_rtc)
328 return -ENOMEM;
329
330 spin_lock_init(&pxa_rtc->lock);
331 platform_set_drvdata(pdev, pxa_rtc);
332
333 pxa_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
334 if (!pxa_rtc->ress) {
335 dev_err(dev, "No I/O memory resource defined\n");
336 return -ENXIO;
337 }
338
339 pxa_rtc->irq_1Hz = platform_get_irq(pdev, 0);
340 if (pxa_rtc->irq_1Hz < 0) {
341 dev_err(dev, "No 1Hz IRQ resource defined\n");
342 return -ENXIO;
343 }
344 pxa_rtc->irq_Alrm = platform_get_irq(pdev, 1);
345 if (pxa_rtc->irq_Alrm < 0) {
346 dev_err(dev, "No alarm IRQ resource defined\n");
347 return -ENXIO;
348 }
349 pxa_rtc_open(dev);
350 pxa_rtc->base = devm_ioremap(dev, pxa_rtc->ress->start,
351 resource_size(pxa_rtc->ress));
352 if (!pxa_rtc->base) {
353 dev_err(dev, "Unable to map pxa RTC I/O memory\n");
354 return -ENOMEM;
355 }
356
357 /*
358 * If the clock divider is uninitialized then reset it to the
359 * default value to get the 1Hz clock.
360 */
361 if (rtc_readl(pxa_rtc, RTTR) == 0) {
362 rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
363 rtc_writel(pxa_rtc, RTTR, rttr);
364 dev_warn(dev, "warning: initializing default clock"
365 " divider/trim value\n");
366 }
367
368 rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
369
370 pxa_rtc->rtc = devm_rtc_device_register(&pdev->dev, "pxa-rtc",
371 &pxa_rtc_ops, THIS_MODULE);
372 if (IS_ERR(pxa_rtc->rtc)) {
373 ret = PTR_ERR(pxa_rtc->rtc);
374 dev_err(dev, "Failed to register RTC device -> %d\n", ret);
375 return ret;
376 }
377
378 device_init_wakeup(dev, 1);
379
380 return 0;
381}
382
383static int __exit pxa_rtc_remove(struct platform_device *pdev)
384{
385 struct device *dev = &pdev->dev;
386
387 pxa_rtc_release(dev);
388 return 0;
389}
390
391#ifdef CONFIG_OF
392static struct of_device_id pxa_rtc_dt_ids[] = {
393 { .compatible = "marvell,pxa-rtc" },
394 {}
395};
396MODULE_DEVICE_TABLE(of, pxa_rtc_dt_ids);
397#endif
398
399#ifdef CONFIG_PM_SLEEP
400static int pxa_rtc_suspend(struct device *dev)
401{
402 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
403
404 if (device_may_wakeup(dev))
405 enable_irq_wake(pxa_rtc->irq_Alrm);
406 return 0;
407}
408
409static int pxa_rtc_resume(struct device *dev)
410{
411 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
412
413 if (device_may_wakeup(dev))
414 disable_irq_wake(pxa_rtc->irq_Alrm);
415 return 0;
416}
417#endif
418
419static SIMPLE_DEV_PM_OPS(pxa_rtc_pm_ops, pxa_rtc_suspend, pxa_rtc_resume);
420
421static struct platform_driver pxa_rtc_driver = {
422 .remove = __exit_p(pxa_rtc_remove),
423 .driver = {
424 .name = "pxa-rtc",
425 .of_match_table = of_match_ptr(pxa_rtc_dt_ids),
426 .pm = &pxa_rtc_pm_ops,
427 },
428};
429
430module_platform_driver_probe(pxa_rtc_driver, pxa_rtc_probe);
431
432MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
433MODULE_DESCRIPTION("PXA27x/PXA3xx Realtime Clock Driver (RTC)");
434MODULE_LICENSE("GPL");
435MODULE_ALIAS("platform:pxa-rtc");