Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* ethtool support for igb */
   5
   6#include <linux/vmalloc.h>
   7#include <linux/netdevice.h>
   8#include <linux/pci.h>
   9#include <linux/delay.h>
  10#include <linux/interrupt.h>
  11#include <linux/if_ether.h>
  12#include <linux/ethtool.h>
  13#include <linux/sched.h>
  14#include <linux/slab.h>
  15#include <linux/pm_runtime.h>
  16#include <linux/highmem.h>
  17#include <linux/mdio.h>
  18
  19#include "igb.h"
  20
  21struct igb_stats {
  22	char stat_string[ETH_GSTRING_LEN];
  23	int sizeof_stat;
  24	int stat_offset;
  25};
  26
  27#define IGB_STAT(_name, _stat) { \
  28	.stat_string = _name, \
  29	.sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
  30	.stat_offset = offsetof(struct igb_adapter, _stat) \
  31}
  32static const struct igb_stats igb_gstrings_stats[] = {
  33	IGB_STAT("rx_packets", stats.gprc),
  34	IGB_STAT("tx_packets", stats.gptc),
  35	IGB_STAT("rx_bytes", stats.gorc),
  36	IGB_STAT("tx_bytes", stats.gotc),
  37	IGB_STAT("rx_broadcast", stats.bprc),
  38	IGB_STAT("tx_broadcast", stats.bptc),
  39	IGB_STAT("rx_multicast", stats.mprc),
  40	IGB_STAT("tx_multicast", stats.mptc),
  41	IGB_STAT("multicast", stats.mprc),
  42	IGB_STAT("collisions", stats.colc),
  43	IGB_STAT("rx_crc_errors", stats.crcerrs),
  44	IGB_STAT("rx_no_buffer_count", stats.rnbc),
  45	IGB_STAT("rx_missed_errors", stats.mpc),
  46	IGB_STAT("tx_aborted_errors", stats.ecol),
  47	IGB_STAT("tx_carrier_errors", stats.tncrs),
  48	IGB_STAT("tx_window_errors", stats.latecol),
  49	IGB_STAT("tx_abort_late_coll", stats.latecol),
  50	IGB_STAT("tx_deferred_ok", stats.dc),
  51	IGB_STAT("tx_single_coll_ok", stats.scc),
  52	IGB_STAT("tx_multi_coll_ok", stats.mcc),
  53	IGB_STAT("tx_timeout_count", tx_timeout_count),
  54	IGB_STAT("rx_long_length_errors", stats.roc),
  55	IGB_STAT("rx_short_length_errors", stats.ruc),
  56	IGB_STAT("rx_align_errors", stats.algnerrc),
  57	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  58	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  59	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  60	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  61	IGB_STAT("tx_flow_control_xon", stats.xontxc),
  62	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  63	IGB_STAT("rx_long_byte_count", stats.gorc),
  64	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  65	IGB_STAT("tx_smbus", stats.mgptc),
  66	IGB_STAT("rx_smbus", stats.mgprc),
  67	IGB_STAT("dropped_smbus", stats.mgpdc),
  68	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  69	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  70	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  71	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  72	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  73	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  74	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  75};
  76
  77#define IGB_NETDEV_STAT(_net_stat) { \
  78	.stat_string = __stringify(_net_stat), \
  79	.sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
  80	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
  81}
  82static const struct igb_stats igb_gstrings_net_stats[] = {
  83	IGB_NETDEV_STAT(rx_errors),
  84	IGB_NETDEV_STAT(tx_errors),
  85	IGB_NETDEV_STAT(tx_dropped),
  86	IGB_NETDEV_STAT(rx_length_errors),
  87	IGB_NETDEV_STAT(rx_over_errors),
  88	IGB_NETDEV_STAT(rx_frame_errors),
  89	IGB_NETDEV_STAT(rx_fifo_errors),
  90	IGB_NETDEV_STAT(tx_fifo_errors),
  91	IGB_NETDEV_STAT(tx_heartbeat_errors)
  92};
  93
  94#define IGB_GLOBAL_STATS_LEN	\
  95	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
  96#define IGB_NETDEV_STATS_LEN	\
  97	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
  98#define IGB_RX_QUEUE_STATS_LEN \
  99	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
 100
 101#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
 102
 103#define IGB_QUEUE_STATS_LEN \
 104	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
 105	  IGB_RX_QUEUE_STATS_LEN) + \
 106	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
 107	  IGB_TX_QUEUE_STATS_LEN))
 108#define IGB_STATS_LEN \
 109	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
 110
 111enum igb_diagnostics_results {
 112	TEST_REG = 0,
 113	TEST_EEP,
 114	TEST_IRQ,
 115	TEST_LOOP,
 116	TEST_LINK
 117};
 118
 119static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
 120	[TEST_REG]  = "Register test  (offline)",
 121	[TEST_EEP]  = "Eeprom test    (offline)",
 122	[TEST_IRQ]  = "Interrupt test (offline)",
 123	[TEST_LOOP] = "Loopback test  (offline)",
 124	[TEST_LINK] = "Link test   (on/offline)"
 125};
 126#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
 127
 128static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
 129#define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
 130	"legacy-rx",
 131};
 132
 133#define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
 134
 135static int igb_get_link_ksettings(struct net_device *netdev,
 136				  struct ethtool_link_ksettings *cmd)
 137{
 138	struct igb_adapter *adapter = netdev_priv(netdev);
 139	struct e1000_hw *hw = &adapter->hw;
 140	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 141	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 142	u32 status;
 143	u32 speed;
 144	u32 supported, advertising;
 145
 146	status = pm_runtime_suspended(&adapter->pdev->dev) ?
 147		 0 : rd32(E1000_STATUS);
 148	if (hw->phy.media_type == e1000_media_type_copper) {
 149
 150		supported = (SUPPORTED_10baseT_Half |
 151			     SUPPORTED_10baseT_Full |
 152			     SUPPORTED_100baseT_Half |
 153			     SUPPORTED_100baseT_Full |
 154			     SUPPORTED_1000baseT_Full|
 155			     SUPPORTED_Autoneg |
 156			     SUPPORTED_TP |
 157			     SUPPORTED_Pause);
 158		advertising = ADVERTISED_TP;
 159
 160		if (hw->mac.autoneg == 1) {
 161			advertising |= ADVERTISED_Autoneg;
 162			/* the e1000 autoneg seems to match ethtool nicely */
 163			advertising |= hw->phy.autoneg_advertised;
 164		}
 165
 166		cmd->base.port = PORT_TP;
 167		cmd->base.phy_address = hw->phy.addr;
 
 168	} else {
 169		supported = (SUPPORTED_FIBRE |
 170			     SUPPORTED_1000baseKX_Full |
 171			     SUPPORTED_Autoneg |
 172			     SUPPORTED_Pause);
 173		advertising = (ADVERTISED_FIBRE |
 174			       ADVERTISED_1000baseKX_Full);
 175		if (hw->mac.type == e1000_i354) {
 176			if ((hw->device_id ==
 177			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
 178			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 179				supported |= SUPPORTED_2500baseX_Full;
 180				supported &= ~SUPPORTED_1000baseKX_Full;
 181				advertising |= ADVERTISED_2500baseX_Full;
 182				advertising &= ~ADVERTISED_1000baseKX_Full;
 
 
 183			}
 184		}
 185		if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
 186			supported |= SUPPORTED_100baseT_Full;
 187			advertising |= ADVERTISED_100baseT_Full;
 188		}
 189		if (hw->mac.autoneg == 1)
 190			advertising |= ADVERTISED_Autoneg;
 191
 192		cmd->base.port = PORT_FIBRE;
 
 193	}
 194	if (hw->mac.autoneg != 1)
 195		advertising &= ~(ADVERTISED_Pause |
 196				 ADVERTISED_Asym_Pause);
 197
 198	switch (hw->fc.requested_mode) {
 199	case e1000_fc_full:
 200		advertising |= ADVERTISED_Pause;
 201		break;
 202	case e1000_fc_rx_pause:
 203		advertising |= (ADVERTISED_Pause |
 204				ADVERTISED_Asym_Pause);
 205		break;
 206	case e1000_fc_tx_pause:
 207		advertising |=  ADVERTISED_Asym_Pause;
 208		break;
 209	default:
 210		advertising &= ~(ADVERTISED_Pause |
 211				 ADVERTISED_Asym_Pause);
 212	}
 213	if (status & E1000_STATUS_LU) {
 214		if ((status & E1000_STATUS_2P5_SKU) &&
 215		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 216			speed = SPEED_2500;
 217		} else if (status & E1000_STATUS_SPEED_1000) {
 218			speed = SPEED_1000;
 219		} else if (status & E1000_STATUS_SPEED_100) {
 220			speed = SPEED_100;
 221		} else {
 222			speed = SPEED_10;
 223		}
 224		if ((status & E1000_STATUS_FD) ||
 225		    hw->phy.media_type != e1000_media_type_copper)
 226			cmd->base.duplex = DUPLEX_FULL;
 227		else
 228			cmd->base.duplex = DUPLEX_HALF;
 229	} else {
 230		speed = SPEED_UNKNOWN;
 231		cmd->base.duplex = DUPLEX_UNKNOWN;
 232	}
 233	cmd->base.speed = speed;
 234	if ((hw->phy.media_type == e1000_media_type_fiber) ||
 235	    hw->mac.autoneg)
 236		cmd->base.autoneg = AUTONEG_ENABLE;
 237	else
 238		cmd->base.autoneg = AUTONEG_DISABLE;
 239
 240	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 241	if (hw->phy.media_type == e1000_media_type_copper)
 242		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
 243						      ETH_TP_MDI;
 244	else
 245		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 246
 247	if (hw->phy.mdix == AUTO_ALL_MODES)
 248		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 249	else
 250		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 251
 252	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 253						supported);
 254	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 255						advertising);
 256
 257	return 0;
 258}
 259
 260static int igb_set_link_ksettings(struct net_device *netdev,
 261				  const struct ethtool_link_ksettings *cmd)
 262{
 263	struct igb_adapter *adapter = netdev_priv(netdev);
 264	struct e1000_hw *hw = &adapter->hw;
 265	u32 advertising;
 266
 267	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 268	 * cannot be changed
 269	 */
 270	if (igb_check_reset_block(hw)) {
 271		dev_err(&adapter->pdev->dev,
 272			"Cannot change link characteristics when SoL/IDER is active.\n");
 273		return -EINVAL;
 274	}
 275
 276	/* MDI setting is only allowed when autoneg enabled because
 277	 * some hardware doesn't allow MDI setting when speed or
 278	 * duplex is forced.
 279	 */
 280	if (cmd->base.eth_tp_mdix_ctrl) {
 281		if (hw->phy.media_type != e1000_media_type_copper)
 282			return -EOPNOTSUPP;
 283
 284		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 285		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 286			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 287			return -EINVAL;
 288		}
 289	}
 290
 291	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 292		usleep_range(1000, 2000);
 293
 294	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 295						cmd->link_modes.advertising);
 296
 297	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 298		hw->mac.autoneg = 1;
 299		if (hw->phy.media_type == e1000_media_type_fiber) {
 300			hw->phy.autoneg_advertised = advertising |
 301						     ADVERTISED_FIBRE |
 302						     ADVERTISED_Autoneg;
 303			switch (adapter->link_speed) {
 304			case SPEED_2500:
 305				hw->phy.autoneg_advertised =
 306					ADVERTISED_2500baseX_Full;
 307				break;
 308			case SPEED_1000:
 309				hw->phy.autoneg_advertised =
 310					ADVERTISED_1000baseT_Full;
 311				break;
 312			case SPEED_100:
 313				hw->phy.autoneg_advertised =
 314					ADVERTISED_100baseT_Full;
 315				break;
 316			default:
 317				break;
 318			}
 319		} else {
 320			hw->phy.autoneg_advertised = advertising |
 321						     ADVERTISED_TP |
 322						     ADVERTISED_Autoneg;
 323		}
 324		advertising = hw->phy.autoneg_advertised;
 325		if (adapter->fc_autoneg)
 326			hw->fc.requested_mode = e1000_fc_default;
 327	} else {
 328		u32 speed = cmd->base.speed;
 329		/* calling this overrides forced MDI setting */
 330		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 331			clear_bit(__IGB_RESETTING, &adapter->state);
 332			return -EINVAL;
 333		}
 334	}
 335
 336	/* MDI-X => 2; MDI => 1; Auto => 3 */
 337	if (cmd->base.eth_tp_mdix_ctrl) {
 338		/* fix up the value for auto (3 => 0) as zero is mapped
 339		 * internally to auto
 340		 */
 341		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 342			hw->phy.mdix = AUTO_ALL_MODES;
 343		else
 344			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 345	}
 346
 347	/* reset the link */
 348	if (netif_running(adapter->netdev)) {
 349		igb_down(adapter);
 350		igb_up(adapter);
 351	} else
 352		igb_reset(adapter);
 353
 354	clear_bit(__IGB_RESETTING, &adapter->state);
 355	return 0;
 356}
 357
 358static u32 igb_get_link(struct net_device *netdev)
 359{
 360	struct igb_adapter *adapter = netdev_priv(netdev);
 361	struct e1000_mac_info *mac = &adapter->hw.mac;
 362
 363	/* If the link is not reported up to netdev, interrupts are disabled,
 364	 * and so the physical link state may have changed since we last
 365	 * looked. Set get_link_status to make sure that the true link
 366	 * state is interrogated, rather than pulling a cached and possibly
 367	 * stale link state from the driver.
 368	 */
 369	if (!netif_carrier_ok(netdev))
 370		mac->get_link_status = 1;
 371
 372	return igb_has_link(adapter);
 373}
 374
 375static void igb_get_pauseparam(struct net_device *netdev,
 376			       struct ethtool_pauseparam *pause)
 377{
 378	struct igb_adapter *adapter = netdev_priv(netdev);
 379	struct e1000_hw *hw = &adapter->hw;
 380
 381	pause->autoneg =
 382		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 383
 384	if (hw->fc.current_mode == e1000_fc_rx_pause)
 385		pause->rx_pause = 1;
 386	else if (hw->fc.current_mode == e1000_fc_tx_pause)
 387		pause->tx_pause = 1;
 388	else if (hw->fc.current_mode == e1000_fc_full) {
 389		pause->rx_pause = 1;
 390		pause->tx_pause = 1;
 391	}
 392}
 393
 394static int igb_set_pauseparam(struct net_device *netdev,
 395			      struct ethtool_pauseparam *pause)
 396{
 397	struct igb_adapter *adapter = netdev_priv(netdev);
 398	struct e1000_hw *hw = &adapter->hw;
 399	int retval = 0;
 400	int i;
 401
 402	/* 100basefx does not support setting link flow control */
 403	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
 404		return -EINVAL;
 405
 406	adapter->fc_autoneg = pause->autoneg;
 407
 408	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 409		usleep_range(1000, 2000);
 410
 411	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 412		hw->fc.requested_mode = e1000_fc_default;
 413		if (netif_running(adapter->netdev)) {
 414			igb_down(adapter);
 415			igb_up(adapter);
 416		} else {
 417			igb_reset(adapter);
 418		}
 419	} else {
 420		if (pause->rx_pause && pause->tx_pause)
 421			hw->fc.requested_mode = e1000_fc_full;
 422		else if (pause->rx_pause && !pause->tx_pause)
 423			hw->fc.requested_mode = e1000_fc_rx_pause;
 424		else if (!pause->rx_pause && pause->tx_pause)
 425			hw->fc.requested_mode = e1000_fc_tx_pause;
 426		else if (!pause->rx_pause && !pause->tx_pause)
 427			hw->fc.requested_mode = e1000_fc_none;
 428
 429		hw->fc.current_mode = hw->fc.requested_mode;
 430
 431		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
 432			  igb_force_mac_fc(hw) : igb_setup_link(hw));
 433
 434		/* Make sure SRRCTL considers new fc settings for each ring */
 435		for (i = 0; i < adapter->num_rx_queues; i++) {
 436			struct igb_ring *ring = adapter->rx_ring[i];
 437
 438			igb_setup_srrctl(adapter, ring);
 439		}
 440	}
 441
 442	clear_bit(__IGB_RESETTING, &adapter->state);
 443	return retval;
 444}
 445
 446static u32 igb_get_msglevel(struct net_device *netdev)
 447{
 448	struct igb_adapter *adapter = netdev_priv(netdev);
 449	return adapter->msg_enable;
 450}
 451
 452static void igb_set_msglevel(struct net_device *netdev, u32 data)
 453{
 454	struct igb_adapter *adapter = netdev_priv(netdev);
 455	adapter->msg_enable = data;
 456}
 457
 458static int igb_get_regs_len(struct net_device *netdev)
 459{
 460#define IGB_REGS_LEN 740
 461	return IGB_REGS_LEN * sizeof(u32);
 462}
 463
 464static void igb_get_regs(struct net_device *netdev,
 465			 struct ethtool_regs *regs, void *p)
 466{
 467	struct igb_adapter *adapter = netdev_priv(netdev);
 468	struct e1000_hw *hw = &adapter->hw;
 469	u32 *regs_buff = p;
 470	u8 i;
 471
 472	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
 473
 474	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
 475
 476	/* General Registers */
 477	regs_buff[0] = rd32(E1000_CTRL);
 478	regs_buff[1] = rd32(E1000_STATUS);
 479	regs_buff[2] = rd32(E1000_CTRL_EXT);
 480	regs_buff[3] = rd32(E1000_MDIC);
 481	regs_buff[4] = rd32(E1000_SCTL);
 482	regs_buff[5] = rd32(E1000_CONNSW);
 483	regs_buff[6] = rd32(E1000_VET);
 484	regs_buff[7] = rd32(E1000_LEDCTL);
 485	regs_buff[8] = rd32(E1000_PBA);
 486	regs_buff[9] = rd32(E1000_PBS);
 487	regs_buff[10] = rd32(E1000_FRTIMER);
 488	regs_buff[11] = rd32(E1000_TCPTIMER);
 489
 490	/* NVM Register */
 491	regs_buff[12] = rd32(E1000_EECD);
 492
 493	/* Interrupt */
 494	/* Reading EICS for EICR because they read the
 495	 * same but EICS does not clear on read
 496	 */
 497	regs_buff[13] = rd32(E1000_EICS);
 498	regs_buff[14] = rd32(E1000_EICS);
 499	regs_buff[15] = rd32(E1000_EIMS);
 500	regs_buff[16] = rd32(E1000_EIMC);
 501	regs_buff[17] = rd32(E1000_EIAC);
 502	regs_buff[18] = rd32(E1000_EIAM);
 503	/* Reading ICS for ICR because they read the
 504	 * same but ICS does not clear on read
 505	 */
 506	regs_buff[19] = rd32(E1000_ICS);
 507	regs_buff[20] = rd32(E1000_ICS);
 508	regs_buff[21] = rd32(E1000_IMS);
 509	regs_buff[22] = rd32(E1000_IMC);
 510	regs_buff[23] = rd32(E1000_IAC);
 511	regs_buff[24] = rd32(E1000_IAM);
 512	regs_buff[25] = rd32(E1000_IMIRVP);
 513
 514	/* Flow Control */
 515	regs_buff[26] = rd32(E1000_FCAL);
 516	regs_buff[27] = rd32(E1000_FCAH);
 517	regs_buff[28] = rd32(E1000_FCTTV);
 518	regs_buff[29] = rd32(E1000_FCRTL);
 519	regs_buff[30] = rd32(E1000_FCRTH);
 520	regs_buff[31] = rd32(E1000_FCRTV);
 521
 522	/* Receive */
 523	regs_buff[32] = rd32(E1000_RCTL);
 524	regs_buff[33] = rd32(E1000_RXCSUM);
 525	regs_buff[34] = rd32(E1000_RLPML);
 526	regs_buff[35] = rd32(E1000_RFCTL);
 527	regs_buff[36] = rd32(E1000_MRQC);
 528	regs_buff[37] = rd32(E1000_VT_CTL);
 529
 530	/* Transmit */
 531	regs_buff[38] = rd32(E1000_TCTL);
 532	regs_buff[39] = rd32(E1000_TCTL_EXT);
 533	regs_buff[40] = rd32(E1000_TIPG);
 534	regs_buff[41] = rd32(E1000_DTXCTL);
 535
 536	/* Wake Up */
 537	regs_buff[42] = rd32(E1000_WUC);
 538	regs_buff[43] = rd32(E1000_WUFC);
 539	regs_buff[44] = rd32(E1000_WUS);
 540	regs_buff[45] = rd32(E1000_IPAV);
 541	regs_buff[46] = rd32(E1000_WUPL);
 542
 543	/* MAC */
 544	regs_buff[47] = rd32(E1000_PCS_CFG0);
 545	regs_buff[48] = rd32(E1000_PCS_LCTL);
 546	regs_buff[49] = rd32(E1000_PCS_LSTAT);
 547	regs_buff[50] = rd32(E1000_PCS_ANADV);
 548	regs_buff[51] = rd32(E1000_PCS_LPAB);
 549	regs_buff[52] = rd32(E1000_PCS_NPTX);
 550	regs_buff[53] = rd32(E1000_PCS_LPABNP);
 551
 552	/* Statistics */
 553	regs_buff[54] = adapter->stats.crcerrs;
 554	regs_buff[55] = adapter->stats.algnerrc;
 555	regs_buff[56] = adapter->stats.symerrs;
 556	regs_buff[57] = adapter->stats.rxerrc;
 557	regs_buff[58] = adapter->stats.mpc;
 558	regs_buff[59] = adapter->stats.scc;
 559	regs_buff[60] = adapter->stats.ecol;
 560	regs_buff[61] = adapter->stats.mcc;
 561	regs_buff[62] = adapter->stats.latecol;
 562	regs_buff[63] = adapter->stats.colc;
 563	regs_buff[64] = adapter->stats.dc;
 564	regs_buff[65] = adapter->stats.tncrs;
 565	regs_buff[66] = adapter->stats.sec;
 566	regs_buff[67] = adapter->stats.htdpmc;
 567	regs_buff[68] = adapter->stats.rlec;
 568	regs_buff[69] = adapter->stats.xonrxc;
 569	regs_buff[70] = adapter->stats.xontxc;
 570	regs_buff[71] = adapter->stats.xoffrxc;
 571	regs_buff[72] = adapter->stats.xofftxc;
 572	regs_buff[73] = adapter->stats.fcruc;
 573	regs_buff[74] = adapter->stats.prc64;
 574	regs_buff[75] = adapter->stats.prc127;
 575	regs_buff[76] = adapter->stats.prc255;
 576	regs_buff[77] = adapter->stats.prc511;
 577	regs_buff[78] = adapter->stats.prc1023;
 578	regs_buff[79] = adapter->stats.prc1522;
 579	regs_buff[80] = adapter->stats.gprc;
 580	regs_buff[81] = adapter->stats.bprc;
 581	regs_buff[82] = adapter->stats.mprc;
 582	regs_buff[83] = adapter->stats.gptc;
 583	regs_buff[84] = adapter->stats.gorc;
 584	regs_buff[86] = adapter->stats.gotc;
 585	regs_buff[88] = adapter->stats.rnbc;
 586	regs_buff[89] = adapter->stats.ruc;
 587	regs_buff[90] = adapter->stats.rfc;
 588	regs_buff[91] = adapter->stats.roc;
 589	regs_buff[92] = adapter->stats.rjc;
 590	regs_buff[93] = adapter->stats.mgprc;
 591	regs_buff[94] = adapter->stats.mgpdc;
 592	regs_buff[95] = adapter->stats.mgptc;
 593	regs_buff[96] = adapter->stats.tor;
 594	regs_buff[98] = adapter->stats.tot;
 595	regs_buff[100] = adapter->stats.tpr;
 596	regs_buff[101] = adapter->stats.tpt;
 597	regs_buff[102] = adapter->stats.ptc64;
 598	regs_buff[103] = adapter->stats.ptc127;
 599	regs_buff[104] = adapter->stats.ptc255;
 600	regs_buff[105] = adapter->stats.ptc511;
 601	regs_buff[106] = adapter->stats.ptc1023;
 602	regs_buff[107] = adapter->stats.ptc1522;
 603	regs_buff[108] = adapter->stats.mptc;
 604	regs_buff[109] = adapter->stats.bptc;
 605	regs_buff[110] = adapter->stats.tsctc;
 606	regs_buff[111] = adapter->stats.iac;
 607	regs_buff[112] = adapter->stats.rpthc;
 608	regs_buff[113] = adapter->stats.hgptc;
 609	regs_buff[114] = adapter->stats.hgorc;
 610	regs_buff[116] = adapter->stats.hgotc;
 611	regs_buff[118] = adapter->stats.lenerrs;
 612	regs_buff[119] = adapter->stats.scvpc;
 613	regs_buff[120] = adapter->stats.hrmpc;
 614
 615	for (i = 0; i < 4; i++)
 616		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
 617	for (i = 0; i < 4; i++)
 618		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
 619	for (i = 0; i < 4; i++)
 620		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
 621	for (i = 0; i < 4; i++)
 622		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
 623	for (i = 0; i < 4; i++)
 624		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
 625	for (i = 0; i < 4; i++)
 626		regs_buff[141 + i] = rd32(E1000_RDH(i));
 627	for (i = 0; i < 4; i++)
 628		regs_buff[145 + i] = rd32(E1000_RDT(i));
 629	for (i = 0; i < 4; i++)
 630		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
 631
 632	for (i = 0; i < 10; i++)
 633		regs_buff[153 + i] = rd32(E1000_EITR(i));
 634	for (i = 0; i < 8; i++)
 635		regs_buff[163 + i] = rd32(E1000_IMIR(i));
 636	for (i = 0; i < 8; i++)
 637		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
 638	for (i = 0; i < 16; i++)
 639		regs_buff[179 + i] = rd32(E1000_RAL(i));
 640	for (i = 0; i < 16; i++)
 641		regs_buff[195 + i] = rd32(E1000_RAH(i));
 642
 643	for (i = 0; i < 4; i++)
 644		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
 645	for (i = 0; i < 4; i++)
 646		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
 647	for (i = 0; i < 4; i++)
 648		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
 649	for (i = 0; i < 4; i++)
 650		regs_buff[223 + i] = rd32(E1000_TDH(i));
 651	for (i = 0; i < 4; i++)
 652		regs_buff[227 + i] = rd32(E1000_TDT(i));
 653	for (i = 0; i < 4; i++)
 654		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
 655	for (i = 0; i < 4; i++)
 656		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
 657	for (i = 0; i < 4; i++)
 658		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
 659	for (i = 0; i < 4; i++)
 660		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
 661
 662	for (i = 0; i < 4; i++)
 663		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
 664	for (i = 0; i < 4; i++)
 665		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
 666	for (i = 0; i < 32; i++)
 667		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
 668	for (i = 0; i < 128; i++)
 669		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
 670	for (i = 0; i < 128; i++)
 671		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
 672	for (i = 0; i < 4; i++)
 673		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
 674
 675	regs_buff[547] = rd32(E1000_TDFH);
 676	regs_buff[548] = rd32(E1000_TDFT);
 677	regs_buff[549] = rd32(E1000_TDFHS);
 678	regs_buff[550] = rd32(E1000_TDFPC);
 679
 680	if (hw->mac.type > e1000_82580) {
 681		regs_buff[551] = adapter->stats.o2bgptc;
 682		regs_buff[552] = adapter->stats.b2ospc;
 683		regs_buff[553] = adapter->stats.o2bspc;
 684		regs_buff[554] = adapter->stats.b2ogprc;
 685	}
 686
 687	if (hw->mac.type == e1000_82576) {
 688		for (i = 0; i < 12; i++)
 689			regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
 690		for (i = 0; i < 4; i++)
 691			regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
 692		for (i = 0; i < 12; i++)
 693			regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
 694		for (i = 0; i < 12; i++)
 695			regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
 696		for (i = 0; i < 12; i++)
 697			regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
 698		for (i = 0; i < 12; i++)
 699			regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
 700		for (i = 0; i < 12; i++)
 701			regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
 702		for (i = 0; i < 12; i++)
 703			regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
 704
 705		for (i = 0; i < 12; i++)
 706			regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
 707		for (i = 0; i < 12; i++)
 708			regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
 709		for (i = 0; i < 12; i++)
 710			regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
 711		for (i = 0; i < 12; i++)
 712			regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
 713		for (i = 0; i < 12; i++)
 714			regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
 715		for (i = 0; i < 12; i++)
 716			regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
 717		for (i = 0; i < 12; i++)
 718			regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
 719		for (i = 0; i < 12; i++)
 720			regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
 721	}
 722
 723	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
 724		regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
 725}
 726
 727static int igb_get_eeprom_len(struct net_device *netdev)
 728{
 729	struct igb_adapter *adapter = netdev_priv(netdev);
 730	return adapter->hw.nvm.word_size * 2;
 731}
 732
 733static int igb_get_eeprom(struct net_device *netdev,
 734			  struct ethtool_eeprom *eeprom, u8 *bytes)
 735{
 736	struct igb_adapter *adapter = netdev_priv(netdev);
 737	struct e1000_hw *hw = &adapter->hw;
 738	u16 *eeprom_buff;
 739	int first_word, last_word;
 740	int ret_val = 0;
 741	u16 i;
 742
 743	if (eeprom->len == 0)
 744		return -EINVAL;
 745
 746	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 747
 748	first_word = eeprom->offset >> 1;
 749	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 750
 751	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 752				    GFP_KERNEL);
 753	if (!eeprom_buff)
 754		return -ENOMEM;
 755
 756	if (hw->nvm.type == e1000_nvm_eeprom_spi)
 757		ret_val = hw->nvm.ops.read(hw, first_word,
 758					   last_word - first_word + 1,
 759					   eeprom_buff);
 760	else {
 761		for (i = 0; i < last_word - first_word + 1; i++) {
 762			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
 763						   &eeprom_buff[i]);
 764			if (ret_val)
 765				break;
 766		}
 767	}
 768
 769	/* Device's eeprom is always little-endian, word addressable */
 770	for (i = 0; i < last_word - first_word + 1; i++)
 771		le16_to_cpus(&eeprom_buff[i]);
 772
 773	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 774			eeprom->len);
 775	kfree(eeprom_buff);
 776
 777	return ret_val;
 778}
 779
 780static int igb_set_eeprom(struct net_device *netdev,
 781			  struct ethtool_eeprom *eeprom, u8 *bytes)
 782{
 783	struct igb_adapter *adapter = netdev_priv(netdev);
 784	struct e1000_hw *hw = &adapter->hw;
 785	u16 *eeprom_buff;
 786	void *ptr;
 787	int max_len, first_word, last_word, ret_val = 0;
 788	u16 i;
 789
 790	if (eeprom->len == 0)
 791		return -EOPNOTSUPP;
 792
 793	if ((hw->mac.type >= e1000_i210) &&
 794	    !igb_get_flash_presence_i210(hw)) {
 795		return -EOPNOTSUPP;
 796	}
 797
 798	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 799		return -EFAULT;
 800
 801	max_len = hw->nvm.word_size * 2;
 802
 803	first_word = eeprom->offset >> 1;
 804	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 805	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 806	if (!eeprom_buff)
 807		return -ENOMEM;
 808
 809	ptr = (void *)eeprom_buff;
 810
 811	if (eeprom->offset & 1) {
 812		/* need read/modify/write of first changed EEPROM word
 813		 * only the second byte of the word is being modified
 814		 */
 815		ret_val = hw->nvm.ops.read(hw, first_word, 1,
 816					    &eeprom_buff[0]);
 817		ptr++;
 818	}
 819	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 820		/* need read/modify/write of last changed EEPROM word
 821		 * only the first byte of the word is being modified
 822		 */
 823		ret_val = hw->nvm.ops.read(hw, last_word, 1,
 824				   &eeprom_buff[last_word - first_word]);
 825	}
 826
 827	/* Device's eeprom is always little-endian, word addressable */
 828	for (i = 0; i < last_word - first_word + 1; i++)
 829		le16_to_cpus(&eeprom_buff[i]);
 830
 831	memcpy(ptr, bytes, eeprom->len);
 832
 833	for (i = 0; i < last_word - first_word + 1; i++)
 834		cpu_to_le16s(&eeprom_buff[i]);
 835
 836	ret_val = hw->nvm.ops.write(hw, first_word,
 837				    last_word - first_word + 1, eeprom_buff);
 838
 839	/* Update the checksum if nvm write succeeded */
 840	if (ret_val == 0)
 841		hw->nvm.ops.update(hw);
 842
 843	igb_set_fw_version(adapter);
 844	kfree(eeprom_buff);
 845	return ret_val;
 846}
 847
 848static void igb_get_drvinfo(struct net_device *netdev,
 849			    struct ethtool_drvinfo *drvinfo)
 850{
 851	struct igb_adapter *adapter = netdev_priv(netdev);
 852
 853	strscpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
 
 854
 855	/* EEPROM image version # is reported as firmware version # for
 856	 * 82575 controllers
 857	 */
 858	strscpy(drvinfo->fw_version, adapter->fw_version,
 859		sizeof(drvinfo->fw_version));
 860	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
 861		sizeof(drvinfo->bus_info));
 862
 863	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
 
 
 864}
 865
 866static void igb_get_ringparam(struct net_device *netdev,
 867			      struct ethtool_ringparam *ring,
 868			      struct kernel_ethtool_ringparam *kernel_ring,
 869			      struct netlink_ext_ack *extack)
 870{
 871	struct igb_adapter *adapter = netdev_priv(netdev);
 872
 873	ring->rx_max_pending = IGB_MAX_RXD;
 874	ring->tx_max_pending = IGB_MAX_TXD;
 875	ring->rx_pending = adapter->rx_ring_count;
 876	ring->tx_pending = adapter->tx_ring_count;
 877}
 878
 879static int igb_set_ringparam(struct net_device *netdev,
 880			     struct ethtool_ringparam *ring,
 881			     struct kernel_ethtool_ringparam *kernel_ring,
 882			     struct netlink_ext_ack *extack)
 883{
 884	struct igb_adapter *adapter = netdev_priv(netdev);
 885	struct igb_ring *temp_ring;
 886	int i, err = 0;
 887	u16 new_rx_count, new_tx_count;
 888
 889	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 890		return -EINVAL;
 891
 892	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
 893	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
 894	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 895
 896	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
 897	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
 898	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 899
 900	if ((new_tx_count == adapter->tx_ring_count) &&
 901	    (new_rx_count == adapter->rx_ring_count)) {
 902		/* nothing to do */
 903		return 0;
 904	}
 905
 906	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 907		usleep_range(1000, 2000);
 908
 909	if (!netif_running(adapter->netdev)) {
 910		for (i = 0; i < adapter->num_tx_queues; i++)
 911			adapter->tx_ring[i]->count = new_tx_count;
 912		for (i = 0; i < adapter->num_rx_queues; i++)
 913			adapter->rx_ring[i]->count = new_rx_count;
 914		adapter->tx_ring_count = new_tx_count;
 915		adapter->rx_ring_count = new_rx_count;
 916		goto clear_reset;
 917	}
 918
 919	if (adapter->num_tx_queues > adapter->num_rx_queues)
 920		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
 921					       adapter->num_tx_queues));
 922	else
 923		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
 924					       adapter->num_rx_queues));
 925
 926	if (!temp_ring) {
 927		err = -ENOMEM;
 928		goto clear_reset;
 929	}
 930
 931	igb_down(adapter);
 932
 933	/* We can't just free everything and then setup again,
 934	 * because the ISRs in MSI-X mode get passed pointers
 935	 * to the Tx and Rx ring structs.
 936	 */
 937	if (new_tx_count != adapter->tx_ring_count) {
 938		for (i = 0; i < adapter->num_tx_queues; i++) {
 939			memcpy(&temp_ring[i], adapter->tx_ring[i],
 940			       sizeof(struct igb_ring));
 941
 942			temp_ring[i].count = new_tx_count;
 943			err = igb_setup_tx_resources(&temp_ring[i]);
 944			if (err) {
 945				while (i) {
 946					i--;
 947					igb_free_tx_resources(&temp_ring[i]);
 948				}
 949				goto err_setup;
 950			}
 951		}
 952
 953		for (i = 0; i < adapter->num_tx_queues; i++) {
 954			igb_free_tx_resources(adapter->tx_ring[i]);
 955
 956			memcpy(adapter->tx_ring[i], &temp_ring[i],
 957			       sizeof(struct igb_ring));
 958		}
 959
 960		adapter->tx_ring_count = new_tx_count;
 961	}
 962
 963	if (new_rx_count != adapter->rx_ring_count) {
 964		for (i = 0; i < adapter->num_rx_queues; i++) {
 965			memcpy(&temp_ring[i], adapter->rx_ring[i],
 966			       sizeof(struct igb_ring));
 967
 968			temp_ring[i].count = new_rx_count;
 969			err = igb_setup_rx_resources(&temp_ring[i]);
 970			if (err) {
 971				while (i) {
 972					i--;
 973					igb_free_rx_resources(&temp_ring[i]);
 974				}
 975				goto err_setup;
 976			}
 977
 978		}
 979
 980		for (i = 0; i < adapter->num_rx_queues; i++) {
 981			igb_free_rx_resources(adapter->rx_ring[i]);
 982
 983			memcpy(adapter->rx_ring[i], &temp_ring[i],
 984			       sizeof(struct igb_ring));
 985		}
 986
 987		adapter->rx_ring_count = new_rx_count;
 988	}
 989err_setup:
 990	igb_up(adapter);
 991	vfree(temp_ring);
 992clear_reset:
 993	clear_bit(__IGB_RESETTING, &adapter->state);
 994	return err;
 995}
 996
 997/* ethtool register test data */
 998struct igb_reg_test {
 999	u16 reg;
1000	u16 reg_offset;
1001	u16 array_len;
1002	u16 test_type;
1003	u32 mask;
1004	u32 write;
1005};
1006
1007/* In the hardware, registers are laid out either singly, in arrays
1008 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
1009 * most tests take place on arrays or single registers (handled
1010 * as a single-element array) and special-case the tables.
1011 * Table tests are always pattern tests.
1012 *
1013 * We also make provision for some required setup steps by specifying
1014 * registers to be written without any read-back testing.
1015 */
1016
1017#define PATTERN_TEST	1
1018#define SET_READ_TEST	2
1019#define WRITE_NO_TEST	3
1020#define TABLE32_TEST	4
1021#define TABLE64_TEST_LO	5
1022#define TABLE64_TEST_HI	6
1023
1024/* i210 reg test */
1025static struct igb_reg_test reg_test_i210[] = {
1026	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1028	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1029	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1030	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1032	/* RDH is read-only for i210, only test RDT. */
1033	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1035	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1036	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1037	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1038	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1040	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1041	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1043	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1044	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1046						0xFFFFFFFF, 0xFFFFFFFF },
1047	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1048						0x900FFFFF, 0xFFFFFFFF },
1049	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1050						0xFFFFFFFF, 0xFFFFFFFF },
1051	{ 0, 0, 0, 0, 0 }
1052};
1053
1054/* i350 reg test */
1055static struct igb_reg_test reg_test_i350[] = {
1056	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1057	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1058	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1059	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1060	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1063	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1064	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1065	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1066	/* RDH is read-only for i350, only test RDT. */
1067	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1068	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1069	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1070	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1071	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1072	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1073	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1075	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1078	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1079	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1080	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1081	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1082	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1083	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1084	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1085						0xFFFFFFFF, 0xFFFFFFFF },
1086	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1087						0xC3FFFFFF, 0xFFFFFFFF },
1088	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1089						0xFFFFFFFF, 0xFFFFFFFF },
1090	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1091						0xC3FFFFFF, 0xFFFFFFFF },
1092	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1093						0xFFFFFFFF, 0xFFFFFFFF },
1094	{ 0, 0, 0, 0 }
1095};
1096
1097/* 82580 reg test */
1098static struct igb_reg_test reg_test_82580[] = {
1099	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1100	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1101	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1102	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1104	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1106	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1107	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1109	/* RDH is read-only for 82580, only test RDT. */
1110	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1111	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1112	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1113	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1114	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1115	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1116	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1117	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1118	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1119	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1121	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1122	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1123	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1124	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1125	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1126	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1127	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1128						0xFFFFFFFF, 0xFFFFFFFF },
1129	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1130						0x83FFFFFF, 0xFFFFFFFF },
1131	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1132						0xFFFFFFFF, 0xFFFFFFFF },
1133	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1134						0x83FFFFFF, 0xFFFFFFFF },
1135	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1136						0xFFFFFFFF, 0xFFFFFFFF },
1137	{ 0, 0, 0, 0 }
1138};
1139
1140/* 82576 reg test */
1141static struct igb_reg_test reg_test_82576[] = {
1142	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1143	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1144	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1145	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1147	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1148	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1149	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152	/* Enable all RX queues before testing. */
1153	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1154	  E1000_RXDCTL_QUEUE_ENABLE },
1155	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1156	  E1000_RXDCTL_QUEUE_ENABLE },
1157	/* RDH is read-only for 82576, only test RDT. */
1158	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1159	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1160	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1161	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1162	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1163	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1164	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1165	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1166	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1168	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1169	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1171	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1172	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1173	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1174	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1175	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1176	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1177	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1178	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1179	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1180	{ 0, 0, 0, 0 }
1181};
1182
1183/* 82575 register test */
1184static struct igb_reg_test reg_test_82575[] = {
1185	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1186	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1187	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1188	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1190	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1192	/* Enable all four RX queues before testing. */
1193	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1194	  E1000_RXDCTL_QUEUE_ENABLE },
1195	/* RDH is read-only for 82575, only test RDT. */
1196	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1197	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1198	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1199	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1200	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1201	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1202	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1203	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1204	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1205	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1206	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1207	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1208	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1209	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1210	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1211	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1212	{ 0, 0, 0, 0 }
1213};
1214
1215static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1216			     int reg, u32 mask, u32 write)
1217{
1218	struct e1000_hw *hw = &adapter->hw;
1219	u32 pat, val;
1220	static const u32 _test[] = {
1221		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1222	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1223		wr32(reg, (_test[pat] & write));
1224		val = rd32(reg) & mask;
1225		if (val != (_test[pat] & write & mask)) {
1226			dev_err(&adapter->pdev->dev,
1227				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1228				reg, val, (_test[pat] & write & mask));
1229			*data = reg;
1230			return true;
1231		}
1232	}
1233
1234	return false;
1235}
1236
1237static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1238			      int reg, u32 mask, u32 write)
1239{
1240	struct e1000_hw *hw = &adapter->hw;
1241	u32 val;
1242
1243	wr32(reg, write & mask);
1244	val = rd32(reg);
1245	if ((write & mask) != (val & mask)) {
1246		dev_err(&adapter->pdev->dev,
1247			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1248			reg, (val & mask), (write & mask));
1249		*data = reg;
1250		return true;
1251	}
1252
1253	return false;
1254}
1255
1256#define REG_PATTERN_TEST(reg, mask, write) \
1257	do { \
1258		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1259			return 1; \
1260	} while (0)
1261
1262#define REG_SET_AND_CHECK(reg, mask, write) \
1263	do { \
1264		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1265			return 1; \
1266	} while (0)
1267
1268static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1269{
1270	struct e1000_hw *hw = &adapter->hw;
1271	struct igb_reg_test *test;
1272	u32 value, before, after;
1273	u32 i, toggle;
1274
1275	switch (adapter->hw.mac.type) {
1276	case e1000_i350:
1277	case e1000_i354:
1278		test = reg_test_i350;
1279		toggle = 0x7FEFF3FF;
1280		break;
1281	case e1000_i210:
1282	case e1000_i211:
1283		test = reg_test_i210;
1284		toggle = 0x7FEFF3FF;
1285		break;
1286	case e1000_82580:
1287		test = reg_test_82580;
1288		toggle = 0x7FEFF3FF;
1289		break;
1290	case e1000_82576:
1291		test = reg_test_82576;
1292		toggle = 0x7FFFF3FF;
1293		break;
1294	default:
1295		test = reg_test_82575;
1296		toggle = 0x7FFFF3FF;
1297		break;
1298	}
1299
1300	/* Because the status register is such a special case,
1301	 * we handle it separately from the rest of the register
1302	 * tests.  Some bits are read-only, some toggle, and some
1303	 * are writable on newer MACs.
1304	 */
1305	before = rd32(E1000_STATUS);
1306	value = (rd32(E1000_STATUS) & toggle);
1307	wr32(E1000_STATUS, toggle);
1308	after = rd32(E1000_STATUS) & toggle;
1309	if (value != after) {
1310		dev_err(&adapter->pdev->dev,
1311			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1312			after, value);
1313		*data = 1;
1314		return 1;
1315	}
1316	/* restore previous status */
1317	wr32(E1000_STATUS, before);
1318
1319	/* Perform the remainder of the register test, looping through
1320	 * the test table until we either fail or reach the null entry.
1321	 */
1322	while (test->reg) {
1323		for (i = 0; i < test->array_len; i++) {
1324			switch (test->test_type) {
1325			case PATTERN_TEST:
1326				REG_PATTERN_TEST(test->reg +
1327						(i * test->reg_offset),
1328						test->mask,
1329						test->write);
1330				break;
1331			case SET_READ_TEST:
1332				REG_SET_AND_CHECK(test->reg +
1333						(i * test->reg_offset),
1334						test->mask,
1335						test->write);
1336				break;
1337			case WRITE_NO_TEST:
1338				writel(test->write,
1339				    (adapter->hw.hw_addr + test->reg)
1340					+ (i * test->reg_offset));
1341				break;
1342			case TABLE32_TEST:
1343				REG_PATTERN_TEST(test->reg + (i * 4),
1344						test->mask,
1345						test->write);
1346				break;
1347			case TABLE64_TEST_LO:
1348				REG_PATTERN_TEST(test->reg + (i * 8),
1349						test->mask,
1350						test->write);
1351				break;
1352			case TABLE64_TEST_HI:
1353				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1354						test->mask,
1355						test->write);
1356				break;
1357			}
1358		}
1359		test++;
1360	}
1361
1362	*data = 0;
1363	return 0;
1364}
1365
1366static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1367{
1368	struct e1000_hw *hw = &adapter->hw;
1369
1370	*data = 0;
1371
1372	/* Validate eeprom on all parts but flashless */
1373	switch (hw->mac.type) {
1374	case e1000_i210:
1375	case e1000_i211:
1376		if (igb_get_flash_presence_i210(hw)) {
1377			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1378				*data = 2;
1379		}
1380		break;
1381	default:
1382		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1383			*data = 2;
1384		break;
1385	}
1386
1387	return *data;
1388}
1389
1390static irqreturn_t igb_test_intr(int irq, void *data)
1391{
1392	struct igb_adapter *adapter = (struct igb_adapter *) data;
1393	struct e1000_hw *hw = &adapter->hw;
1394
1395	adapter->test_icr |= rd32(E1000_ICR);
1396
1397	return IRQ_HANDLED;
1398}
1399
1400static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1401{
1402	struct e1000_hw *hw = &adapter->hw;
1403	struct net_device *netdev = adapter->netdev;
1404	u32 mask, ics_mask, i = 0, shared_int = true;
1405	u32 irq = adapter->pdev->irq;
1406
1407	*data = 0;
1408
1409	/* Hook up test interrupt handler just for this test */
1410	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1411		if (request_irq(adapter->msix_entries[0].vector,
1412				igb_test_intr, 0, netdev->name, adapter)) {
1413			*data = 1;
1414			return -1;
1415		}
1416		wr32(E1000_IVAR_MISC, E1000_IVAR_VALID << 8);
1417		wr32(E1000_EIMS, BIT(0));
1418	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1419		shared_int = false;
1420		if (request_irq(irq,
1421				igb_test_intr, 0, netdev->name, adapter)) {
1422			*data = 1;
1423			return -1;
1424		}
1425	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1426				netdev->name, adapter)) {
1427		shared_int = false;
1428	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1429		 netdev->name, adapter)) {
1430		*data = 1;
1431		return -1;
1432	}
1433	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1434		(shared_int ? "shared" : "unshared"));
1435
1436	/* Disable all the interrupts */
1437	wr32(E1000_IMC, ~0);
1438	wrfl();
1439	usleep_range(10000, 11000);
1440
1441	/* Define all writable bits for ICS */
1442	switch (hw->mac.type) {
1443	case e1000_82575:
1444		ics_mask = 0x37F47EDD;
1445		break;
1446	case e1000_82576:
1447		ics_mask = 0x77D4FBFD;
1448		break;
1449	case e1000_82580:
1450		ics_mask = 0x77DCFED5;
1451		break;
1452	case e1000_i350:
1453	case e1000_i354:
1454	case e1000_i210:
1455	case e1000_i211:
1456		ics_mask = 0x77DCFED5;
1457		break;
1458	default:
1459		ics_mask = 0x7FFFFFFF;
1460		break;
1461	}
1462
1463	/* Test each interrupt */
1464	for (; i < 31; i++) {
1465		/* Interrupt to test */
1466		mask = BIT(i);
1467
1468		if (!(mask & ics_mask))
1469			continue;
1470
1471		if (!shared_int) {
1472			/* Disable the interrupt to be reported in
1473			 * the cause register and then force the same
1474			 * interrupt and see if one gets posted.  If
1475			 * an interrupt was posted to the bus, the
1476			 * test failed.
1477			 */
1478			adapter->test_icr = 0;
1479
1480			/* Flush any pending interrupts */
1481			wr32(E1000_ICR, ~0);
1482
1483			wr32(E1000_IMC, mask);
1484			wr32(E1000_ICS, mask);
1485			wrfl();
1486			usleep_range(10000, 11000);
1487
1488			if (adapter->test_icr & mask) {
1489				*data = 3;
1490				break;
1491			}
1492		}
1493
1494		/* Enable the interrupt to be reported in
1495		 * the cause register and then force the same
1496		 * interrupt and see if one gets posted.  If
1497		 * an interrupt was not posted to the bus, the
1498		 * test failed.
1499		 */
1500		adapter->test_icr = 0;
1501
1502		/* Flush any pending interrupts */
1503		wr32(E1000_ICR, ~0);
1504
1505		wr32(E1000_IMS, mask);
1506		wr32(E1000_ICS, mask);
1507		wrfl();
1508		usleep_range(10000, 11000);
1509
1510		if (!(adapter->test_icr & mask)) {
1511			*data = 4;
1512			break;
1513		}
1514
1515		if (!shared_int) {
1516			/* Disable the other interrupts to be reported in
1517			 * the cause register and then force the other
1518			 * interrupts and see if any get posted.  If
1519			 * an interrupt was posted to the bus, the
1520			 * test failed.
1521			 */
1522			adapter->test_icr = 0;
1523
1524			/* Flush any pending interrupts */
1525			wr32(E1000_ICR, ~0);
1526
1527			wr32(E1000_IMC, ~mask);
1528			wr32(E1000_ICS, ~mask);
1529			wrfl();
1530			usleep_range(10000, 11000);
1531
1532			if (adapter->test_icr & mask) {
1533				*data = 5;
1534				break;
1535			}
1536		}
1537	}
1538
1539	/* Disable all the interrupts */
1540	wr32(E1000_IMC, ~0);
1541	wrfl();
1542	usleep_range(10000, 11000);
1543
1544	/* Unhook test interrupt handler */
1545	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1546		free_irq(adapter->msix_entries[0].vector, adapter);
1547	else
1548		free_irq(irq, adapter);
1549
1550	return *data;
1551}
1552
1553static void igb_free_desc_rings(struct igb_adapter *adapter)
1554{
1555	igb_free_tx_resources(&adapter->test_tx_ring);
1556	igb_free_rx_resources(&adapter->test_rx_ring);
1557}
1558
1559static int igb_setup_desc_rings(struct igb_adapter *adapter)
1560{
1561	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1562	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1563	struct e1000_hw *hw = &adapter->hw;
1564	int ret_val;
1565
1566	/* Setup Tx descriptor ring and Tx buffers */
1567	tx_ring->count = IGB_DEFAULT_TXD;
1568	tx_ring->dev = &adapter->pdev->dev;
1569	tx_ring->netdev = adapter->netdev;
1570	tx_ring->reg_idx = adapter->vfs_allocated_count;
1571
1572	if (igb_setup_tx_resources(tx_ring)) {
1573		ret_val = 1;
1574		goto err_nomem;
1575	}
1576
1577	igb_setup_tctl(adapter);
1578	igb_configure_tx_ring(adapter, tx_ring);
1579
1580	/* Setup Rx descriptor ring and Rx buffers */
1581	rx_ring->count = IGB_DEFAULT_RXD;
1582	rx_ring->dev = &adapter->pdev->dev;
1583	rx_ring->netdev = adapter->netdev;
1584	rx_ring->reg_idx = adapter->vfs_allocated_count;
1585
1586	if (igb_setup_rx_resources(rx_ring)) {
1587		ret_val = 3;
1588		goto err_nomem;
1589	}
1590
1591	/* set the default queue to queue 0 of PF */
1592	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1593
1594	/* enable receive ring */
1595	igb_setup_rctl(adapter);
1596	igb_configure_rx_ring(adapter, rx_ring);
1597
1598	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1599
1600	return 0;
1601
1602err_nomem:
1603	igb_free_desc_rings(adapter);
1604	return ret_val;
1605}
1606
1607static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1608{
1609	struct e1000_hw *hw = &adapter->hw;
1610
1611	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1612	igb_write_phy_reg(hw, 29, 0x001F);
1613	igb_write_phy_reg(hw, 30, 0x8FFC);
1614	igb_write_phy_reg(hw, 29, 0x001A);
1615	igb_write_phy_reg(hw, 30, 0x8FF0);
1616}
1617
1618static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1619{
1620	struct e1000_hw *hw = &adapter->hw;
1621	u32 ctrl_reg = 0;
1622
1623	hw->mac.autoneg = false;
1624
1625	if (hw->phy.type == e1000_phy_m88) {
1626		if (hw->phy.id != I210_I_PHY_ID) {
1627			/* Auto-MDI/MDIX Off */
1628			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1629			/* reset to update Auto-MDI/MDIX */
1630			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1631			/* autoneg off */
1632			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1633		} else {
1634			/* force 1000, set loopback  */
1635			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1636			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1637		}
1638	} else if (hw->phy.type == e1000_phy_82580) {
1639		/* enable MII loopback */
1640		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1641	}
1642
1643	/* add small delay to avoid loopback test failure */
1644	msleep(50);
1645
1646	/* force 1000, set loopback */
1647	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1648
1649	/* Now set up the MAC to the same speed/duplex as the PHY. */
1650	ctrl_reg = rd32(E1000_CTRL);
1651	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1652	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1653		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1654		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1655		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1656		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1657
1658	if (hw->phy.type == e1000_phy_m88)
1659		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1660
1661	wr32(E1000_CTRL, ctrl_reg);
1662
1663	/* Disable the receiver on the PHY so when a cable is plugged in, the
1664	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1665	 */
1666	if (hw->phy.type == e1000_phy_m88)
1667		igb_phy_disable_receiver(adapter);
1668
1669	msleep(500);
1670	return 0;
1671}
1672
1673static int igb_set_phy_loopback(struct igb_adapter *adapter)
1674{
1675	return igb_integrated_phy_loopback(adapter);
1676}
1677
1678static int igb_setup_loopback_test(struct igb_adapter *adapter)
1679{
1680	struct e1000_hw *hw = &adapter->hw;
1681	u32 reg;
1682
1683	reg = rd32(E1000_CTRL_EXT);
1684
1685	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1686	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1687		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1688		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1689		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1690		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1691		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1692		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1693			/* Enable DH89xxCC MPHY for near end loopback */
1694			reg = rd32(E1000_MPHY_ADDR_CTL);
1695			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1696			E1000_MPHY_PCS_CLK_REG_OFFSET;
1697			wr32(E1000_MPHY_ADDR_CTL, reg);
1698
1699			reg = rd32(E1000_MPHY_DATA);
1700			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1701			wr32(E1000_MPHY_DATA, reg);
1702		}
1703
1704		reg = rd32(E1000_RCTL);
1705		reg |= E1000_RCTL_LBM_TCVR;
1706		wr32(E1000_RCTL, reg);
1707
1708		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1709
1710		reg = rd32(E1000_CTRL);
1711		reg &= ~(E1000_CTRL_RFCE |
1712			 E1000_CTRL_TFCE |
1713			 E1000_CTRL_LRST);
1714		reg |= E1000_CTRL_SLU |
1715		       E1000_CTRL_FD;
1716		wr32(E1000_CTRL, reg);
1717
1718		/* Unset switch control to serdes energy detect */
1719		reg = rd32(E1000_CONNSW);
1720		reg &= ~E1000_CONNSW_ENRGSRC;
1721		wr32(E1000_CONNSW, reg);
1722
1723		/* Unset sigdetect for SERDES loopback on
1724		 * 82580 and newer devices.
1725		 */
1726		if (hw->mac.type >= e1000_82580) {
1727			reg = rd32(E1000_PCS_CFG0);
1728			reg |= E1000_PCS_CFG_IGN_SD;
1729			wr32(E1000_PCS_CFG0, reg);
1730		}
1731
1732		/* Set PCS register for forced speed */
1733		reg = rd32(E1000_PCS_LCTL);
1734		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1735		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1736		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1737		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1738		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1739		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1740		wr32(E1000_PCS_LCTL, reg);
1741
1742		return 0;
1743	}
1744
1745	return igb_set_phy_loopback(adapter);
1746}
1747
1748static void igb_loopback_cleanup(struct igb_adapter *adapter)
1749{
1750	struct e1000_hw *hw = &adapter->hw;
1751	u32 rctl;
1752	u16 phy_reg;
1753
1754	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1755	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1756	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1757	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1758	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1759		u32 reg;
1760
1761		/* Disable near end loopback on DH89xxCC */
1762		reg = rd32(E1000_MPHY_ADDR_CTL);
1763		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1764		E1000_MPHY_PCS_CLK_REG_OFFSET;
1765		wr32(E1000_MPHY_ADDR_CTL, reg);
1766
1767		reg = rd32(E1000_MPHY_DATA);
1768		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1769		wr32(E1000_MPHY_DATA, reg);
1770	}
1771
1772	rctl = rd32(E1000_RCTL);
1773	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1774	wr32(E1000_RCTL, rctl);
1775
1776	hw->mac.autoneg = true;
1777	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1778	if (phy_reg & MII_CR_LOOPBACK) {
1779		phy_reg &= ~MII_CR_LOOPBACK;
1780		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1781		igb_phy_sw_reset(hw);
1782	}
1783}
1784
1785static void igb_create_lbtest_frame(struct sk_buff *skb,
1786				    unsigned int frame_size)
1787{
1788	memset(skb->data, 0xFF, frame_size);
1789	frame_size /= 2;
1790	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1791	skb->data[frame_size + 10] = 0xBE;
1792	skb->data[frame_size + 12] = 0xAF;
1793}
1794
1795static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1796				  unsigned int frame_size)
1797{
1798	unsigned char *data;
1799	bool match = true;
1800
1801	frame_size >>= 1;
1802
1803	data = kmap_local_page(rx_buffer->page);
1804
1805	if (data[3] != 0xFF ||
1806	    data[frame_size + 10] != 0xBE ||
1807	    data[frame_size + 12] != 0xAF)
1808		match = false;
1809
1810	kunmap_local(data);
1811
1812	return match;
1813}
1814
1815static int igb_clean_test_rings(struct igb_ring *rx_ring,
1816				struct igb_ring *tx_ring,
1817				unsigned int size)
1818{
1819	union e1000_adv_rx_desc *rx_desc;
1820	struct igb_rx_buffer *rx_buffer_info;
1821	struct igb_tx_buffer *tx_buffer_info;
1822	u16 rx_ntc, tx_ntc, count = 0;
1823
1824	/* initialize next to clean and descriptor values */
1825	rx_ntc = rx_ring->next_to_clean;
1826	tx_ntc = tx_ring->next_to_clean;
1827	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1828
1829	while (rx_desc->wb.upper.length) {
1830		/* check Rx buffer */
1831		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1832
1833		/* sync Rx buffer for CPU read */
1834		dma_sync_single_for_cpu(rx_ring->dev,
1835					rx_buffer_info->dma,
1836					size,
1837					DMA_FROM_DEVICE);
1838
1839		/* verify contents of skb */
1840		if (igb_check_lbtest_frame(rx_buffer_info, size))
1841			count++;
1842
1843		/* sync Rx buffer for device write */
1844		dma_sync_single_for_device(rx_ring->dev,
1845					   rx_buffer_info->dma,
1846					   size,
1847					   DMA_FROM_DEVICE);
1848
1849		/* unmap buffer on Tx side */
1850		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1851
1852		/* Free all the Tx ring sk_buffs */
1853		dev_kfree_skb_any(tx_buffer_info->skb);
1854
1855		/* unmap skb header data */
1856		dma_unmap_single(tx_ring->dev,
1857				 dma_unmap_addr(tx_buffer_info, dma),
1858				 dma_unmap_len(tx_buffer_info, len),
1859				 DMA_TO_DEVICE);
1860		dma_unmap_len_set(tx_buffer_info, len, 0);
1861
1862		/* increment Rx/Tx next to clean counters */
1863		rx_ntc++;
1864		if (rx_ntc == rx_ring->count)
1865			rx_ntc = 0;
1866		tx_ntc++;
1867		if (tx_ntc == tx_ring->count)
1868			tx_ntc = 0;
1869
1870		/* fetch next descriptor */
1871		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1872	}
1873
1874	netdev_tx_reset_queue(txring_txq(tx_ring));
1875
1876	/* re-map buffers to ring, store next to clean values */
1877	igb_alloc_rx_buffers(rx_ring, count);
1878	rx_ring->next_to_clean = rx_ntc;
1879	tx_ring->next_to_clean = tx_ntc;
1880
1881	return count;
1882}
1883
1884static int igb_run_loopback_test(struct igb_adapter *adapter)
1885{
1886	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1887	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1888	u16 i, j, lc, good_cnt;
1889	int ret_val = 0;
1890	unsigned int size = IGB_RX_HDR_LEN;
1891	netdev_tx_t tx_ret_val;
1892	struct sk_buff *skb;
1893
1894	/* allocate test skb */
1895	skb = alloc_skb(size, GFP_KERNEL);
1896	if (!skb)
1897		return 11;
1898
1899	/* place data into test skb */
1900	igb_create_lbtest_frame(skb, size);
1901	skb_put(skb, size);
1902
1903	/* Calculate the loop count based on the largest descriptor ring
1904	 * The idea is to wrap the largest ring a number of times using 64
1905	 * send/receive pairs during each loop
1906	 */
1907
1908	if (rx_ring->count <= tx_ring->count)
1909		lc = ((tx_ring->count / 64) * 2) + 1;
1910	else
1911		lc = ((rx_ring->count / 64) * 2) + 1;
1912
1913	for (j = 0; j <= lc; j++) { /* loop count loop */
1914		/* reset count of good packets */
1915		good_cnt = 0;
1916
1917		/* place 64 packets on the transmit queue*/
1918		for (i = 0; i < 64; i++) {
1919			skb_get(skb);
1920			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1921			if (tx_ret_val == NETDEV_TX_OK)
1922				good_cnt++;
1923		}
1924
1925		if (good_cnt != 64) {
1926			ret_val = 12;
1927			break;
1928		}
1929
1930		/* allow 200 milliseconds for packets to go from Tx to Rx */
1931		msleep(200);
1932
1933		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1934		if (good_cnt != 64) {
1935			ret_val = 13;
1936			break;
1937		}
1938	} /* end loop count loop */
1939
1940	/* free the original skb */
1941	kfree_skb(skb);
1942
1943	return ret_val;
1944}
1945
1946static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1947{
1948	/* PHY loopback cannot be performed if SoL/IDER
1949	 * sessions are active
1950	 */
1951	if (igb_check_reset_block(&adapter->hw)) {
1952		dev_err(&adapter->pdev->dev,
1953			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1954		*data = 0;
1955		goto out;
1956	}
1957
1958	if (adapter->hw.mac.type == e1000_i354) {
1959		dev_info(&adapter->pdev->dev,
1960			"Loopback test not supported on i354.\n");
1961		*data = 0;
1962		goto out;
1963	}
1964	*data = igb_setup_desc_rings(adapter);
1965	if (*data)
1966		goto out;
1967	*data = igb_setup_loopback_test(adapter);
1968	if (*data)
1969		goto err_loopback;
1970	*data = igb_run_loopback_test(adapter);
1971	igb_loopback_cleanup(adapter);
1972
1973err_loopback:
1974	igb_free_desc_rings(adapter);
1975out:
1976	return *data;
1977}
1978
1979static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1980{
1981	struct e1000_hw *hw = &adapter->hw;
1982	*data = 0;
1983	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1984		int i = 0;
1985
1986		hw->mac.serdes_has_link = false;
1987
1988		/* On some blade server designs, link establishment
1989		 * could take as long as 2-3 minutes
1990		 */
1991		do {
1992			hw->mac.ops.check_for_link(&adapter->hw);
1993			if (hw->mac.serdes_has_link)
1994				return *data;
1995			msleep(20);
1996		} while (i++ < 3750);
1997
1998		*data = 1;
1999	} else {
2000		hw->mac.ops.check_for_link(&adapter->hw);
2001		if (hw->mac.autoneg)
2002			msleep(5000);
2003
2004		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2005			*data = 1;
2006	}
2007	return *data;
2008}
2009
2010static void igb_diag_test(struct net_device *netdev,
2011			  struct ethtool_test *eth_test, u64 *data)
2012{
2013	struct igb_adapter *adapter = netdev_priv(netdev);
2014	u16 autoneg_advertised;
2015	u8 forced_speed_duplex, autoneg;
2016	bool if_running = netif_running(netdev);
2017
2018	set_bit(__IGB_TESTING, &adapter->state);
2019
2020	/* can't do offline tests on media switching devices */
2021	if (adapter->hw.dev_spec._82575.mas_capable)
2022		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2023	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2024		/* Offline tests */
2025
2026		/* save speed, duplex, autoneg settings */
2027		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2028		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2029		autoneg = adapter->hw.mac.autoneg;
2030
2031		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2032
2033		/* power up link for link test */
2034		igb_power_up_link(adapter);
2035
2036		/* Link test performed before hardware reset so autoneg doesn't
2037		 * interfere with test result
2038		 */
2039		if (igb_link_test(adapter, &data[TEST_LINK]))
2040			eth_test->flags |= ETH_TEST_FL_FAILED;
2041
2042		if (if_running)
2043			/* indicate we're in test mode */
2044			igb_close(netdev);
2045		else
2046			igb_reset(adapter);
2047
2048		if (igb_reg_test(adapter, &data[TEST_REG]))
2049			eth_test->flags |= ETH_TEST_FL_FAILED;
2050
2051		igb_reset(adapter);
2052		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2053			eth_test->flags |= ETH_TEST_FL_FAILED;
2054
2055		igb_reset(adapter);
2056		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2057			eth_test->flags |= ETH_TEST_FL_FAILED;
2058
2059		igb_reset(adapter);
2060		/* power up link for loopback test */
2061		igb_power_up_link(adapter);
2062		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2063			eth_test->flags |= ETH_TEST_FL_FAILED;
2064
2065		/* restore speed, duplex, autoneg settings */
2066		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2067		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2068		adapter->hw.mac.autoneg = autoneg;
2069
2070		/* force this routine to wait until autoneg complete/timeout */
2071		adapter->hw.phy.autoneg_wait_to_complete = true;
2072		igb_reset(adapter);
2073		adapter->hw.phy.autoneg_wait_to_complete = false;
2074
2075		clear_bit(__IGB_TESTING, &adapter->state);
2076		if (if_running)
2077			igb_open(netdev);
2078	} else {
2079		dev_info(&adapter->pdev->dev, "online testing starting\n");
2080
2081		/* PHY is powered down when interface is down */
2082		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2083			eth_test->flags |= ETH_TEST_FL_FAILED;
2084		else
2085			data[TEST_LINK] = 0;
2086
2087		/* Online tests aren't run; pass by default */
2088		data[TEST_REG] = 0;
2089		data[TEST_EEP] = 0;
2090		data[TEST_IRQ] = 0;
2091		data[TEST_LOOP] = 0;
2092
2093		clear_bit(__IGB_TESTING, &adapter->state);
2094	}
2095	msleep_interruptible(4 * 1000);
2096}
2097
2098static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2099{
2100	struct igb_adapter *adapter = netdev_priv(netdev);
2101
2102	wol->wolopts = 0;
2103
2104	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2105		return;
2106
2107	wol->supported = WAKE_UCAST | WAKE_MCAST |
2108			 WAKE_BCAST | WAKE_MAGIC |
2109			 WAKE_PHY;
2110
2111	/* apply any specific unsupported masks here */
2112	switch (adapter->hw.device_id) {
2113	default:
2114		break;
2115	}
2116
2117	if (adapter->wol & E1000_WUFC_EX)
2118		wol->wolopts |= WAKE_UCAST;
2119	if (adapter->wol & E1000_WUFC_MC)
2120		wol->wolopts |= WAKE_MCAST;
2121	if (adapter->wol & E1000_WUFC_BC)
2122		wol->wolopts |= WAKE_BCAST;
2123	if (adapter->wol & E1000_WUFC_MAG)
2124		wol->wolopts |= WAKE_MAGIC;
2125	if (adapter->wol & E1000_WUFC_LNKC)
2126		wol->wolopts |= WAKE_PHY;
2127}
2128
2129static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2130{
2131	struct igb_adapter *adapter = netdev_priv(netdev);
2132
2133	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2134		return -EOPNOTSUPP;
2135
2136	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2137		return wol->wolopts ? -EOPNOTSUPP : 0;
2138
2139	/* these settings will always override what we currently have */
2140	adapter->wol = 0;
2141
2142	if (wol->wolopts & WAKE_UCAST)
2143		adapter->wol |= E1000_WUFC_EX;
2144	if (wol->wolopts & WAKE_MCAST)
2145		adapter->wol |= E1000_WUFC_MC;
2146	if (wol->wolopts & WAKE_BCAST)
2147		adapter->wol |= E1000_WUFC_BC;
2148	if (wol->wolopts & WAKE_MAGIC)
2149		adapter->wol |= E1000_WUFC_MAG;
2150	if (wol->wolopts & WAKE_PHY)
2151		adapter->wol |= E1000_WUFC_LNKC;
2152	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2153
2154	return 0;
2155}
2156
2157/* bit defines for adapter->led_status */
2158#define IGB_LED_ON		0
2159
2160static int igb_set_phys_id(struct net_device *netdev,
2161			   enum ethtool_phys_id_state state)
2162{
2163	struct igb_adapter *adapter = netdev_priv(netdev);
2164	struct e1000_hw *hw = &adapter->hw;
2165
2166	switch (state) {
2167	case ETHTOOL_ID_ACTIVE:
2168		igb_blink_led(hw);
2169		return 2;
2170	case ETHTOOL_ID_ON:
2171		igb_blink_led(hw);
2172		break;
2173	case ETHTOOL_ID_OFF:
2174		igb_led_off(hw);
2175		break;
2176	case ETHTOOL_ID_INACTIVE:
2177		igb_led_off(hw);
2178		clear_bit(IGB_LED_ON, &adapter->led_status);
2179		igb_cleanup_led(hw);
2180		break;
2181	}
2182
2183	return 0;
2184}
2185
2186static int igb_set_coalesce(struct net_device *netdev,
2187			    struct ethtool_coalesce *ec,
2188			    struct kernel_ethtool_coalesce *kernel_coal,
2189			    struct netlink_ext_ack *extack)
2190{
2191	struct igb_adapter *adapter = netdev_priv(netdev);
2192	int i;
2193
2194	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2195	    ((ec->rx_coalesce_usecs > 3) &&
2196	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2197	    (ec->rx_coalesce_usecs == 2))
2198		return -EINVAL;
2199
2200	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2201	    ((ec->tx_coalesce_usecs > 3) &&
2202	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2203	    (ec->tx_coalesce_usecs == 2))
2204		return -EINVAL;
2205
2206	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2207		return -EINVAL;
2208
2209	/* If ITR is disabled, disable DMAC */
2210	if (ec->rx_coalesce_usecs == 0) {
2211		if (adapter->flags & IGB_FLAG_DMAC)
2212			adapter->flags &= ~IGB_FLAG_DMAC;
2213	}
2214
2215	/* convert to rate of irq's per second */
2216	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2217		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2218	else
2219		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2220
2221	/* convert to rate of irq's per second */
2222	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2223		adapter->tx_itr_setting = adapter->rx_itr_setting;
2224	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2225		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2226	else
2227		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2228
2229	for (i = 0; i < adapter->num_q_vectors; i++) {
2230		struct igb_q_vector *q_vector = adapter->q_vector[i];
2231		q_vector->tx.work_limit = adapter->tx_work_limit;
2232		if (q_vector->rx.ring)
2233			q_vector->itr_val = adapter->rx_itr_setting;
2234		else
2235			q_vector->itr_val = adapter->tx_itr_setting;
2236		if (q_vector->itr_val && q_vector->itr_val <= 3)
2237			q_vector->itr_val = IGB_START_ITR;
2238		q_vector->set_itr = 1;
2239	}
2240
2241	return 0;
2242}
2243
2244static int igb_get_coalesce(struct net_device *netdev,
2245			    struct ethtool_coalesce *ec,
2246			    struct kernel_ethtool_coalesce *kernel_coal,
2247			    struct netlink_ext_ack *extack)
2248{
2249	struct igb_adapter *adapter = netdev_priv(netdev);
2250
2251	if (adapter->rx_itr_setting <= 3)
2252		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2253	else
2254		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2255
2256	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2257		if (adapter->tx_itr_setting <= 3)
2258			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2259		else
2260			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2261	}
2262
2263	return 0;
2264}
2265
2266static int igb_nway_reset(struct net_device *netdev)
2267{
2268	struct igb_adapter *adapter = netdev_priv(netdev);
2269	if (netif_running(netdev))
2270		igb_reinit_locked(adapter);
2271	return 0;
2272}
2273
2274static int igb_get_sset_count(struct net_device *netdev, int sset)
2275{
2276	switch (sset) {
2277	case ETH_SS_STATS:
2278		return IGB_STATS_LEN;
2279	case ETH_SS_TEST:
2280		return IGB_TEST_LEN;
2281	case ETH_SS_PRIV_FLAGS:
2282		return IGB_PRIV_FLAGS_STR_LEN;
2283	default:
2284		return -ENOTSUPP;
2285	}
2286}
2287
2288static void igb_get_ethtool_stats(struct net_device *netdev,
2289				  struct ethtool_stats *stats, u64 *data)
2290{
2291	struct igb_adapter *adapter = netdev_priv(netdev);
2292	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2293	unsigned int start;
2294	struct igb_ring *ring;
2295	int i, j;
2296	char *p;
2297
2298	spin_lock(&adapter->stats64_lock);
2299	igb_update_stats(adapter);
2300
2301	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2302		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2303		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2304			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2305	}
2306	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2307		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2308		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2309			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2310	}
2311	for (j = 0; j < adapter->num_tx_queues; j++) {
2312		u64	restart2;
2313
2314		ring = adapter->tx_ring[j];
2315		do {
2316			start = u64_stats_fetch_begin(&ring->tx_syncp);
2317			data[i]   = ring->tx_stats.packets;
2318			data[i+1] = ring->tx_stats.bytes;
2319			data[i+2] = ring->tx_stats.restart_queue;
2320		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
2321		do {
2322			start = u64_stats_fetch_begin(&ring->tx_syncp2);
2323			restart2  = ring->tx_stats.restart_queue2;
2324		} while (u64_stats_fetch_retry(&ring->tx_syncp2, start));
2325		data[i+2] += restart2;
2326
2327		i += IGB_TX_QUEUE_STATS_LEN;
2328	}
2329	for (j = 0; j < adapter->num_rx_queues; j++) {
2330		ring = adapter->rx_ring[j];
2331		do {
2332			start = u64_stats_fetch_begin(&ring->rx_syncp);
2333			data[i]   = ring->rx_stats.packets;
2334			data[i+1] = ring->rx_stats.bytes;
2335			data[i+2] = ring->rx_stats.drops;
2336			data[i+3] = ring->rx_stats.csum_err;
2337			data[i+4] = ring->rx_stats.alloc_failed;
2338		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
2339		i += IGB_RX_QUEUE_STATS_LEN;
2340	}
2341	spin_unlock(&adapter->stats64_lock);
2342}
2343
2344static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2345{
2346	struct igb_adapter *adapter = netdev_priv(netdev);
2347	u8 *p = data;
2348	int i;
2349
2350	switch (stringset) {
2351	case ETH_SS_TEST:
2352		memcpy(data, igb_gstrings_test, sizeof(igb_gstrings_test));
 
2353		break;
2354	case ETH_SS_STATS:
2355		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++)
2356			ethtool_sprintf(&p,
2357					igb_gstrings_stats[i].stat_string);
2358		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++)
2359			ethtool_sprintf(&p,
2360					igb_gstrings_net_stats[i].stat_string);
 
 
 
 
2361		for (i = 0; i < adapter->num_tx_queues; i++) {
2362			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
2363			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
2364			ethtool_sprintf(&p, "tx_queue_%u_restart", i);
 
 
 
2365		}
2366		for (i = 0; i < adapter->num_rx_queues; i++) {
2367			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
2368			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
2369			ethtool_sprintf(&p, "rx_queue_%u_drops", i);
2370			ethtool_sprintf(&p, "rx_queue_%u_csum_err", i);
2371			ethtool_sprintf(&p, "rx_queue_%u_alloc_failed", i);
 
 
 
 
 
2372		}
2373		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2374		break;
2375	case ETH_SS_PRIV_FLAGS:
2376		memcpy(data, igb_priv_flags_strings,
2377		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2378		break;
2379	}
2380}
2381
2382static int igb_get_ts_info(struct net_device *dev,
2383			   struct ethtool_ts_info *info)
2384{
2385	struct igb_adapter *adapter = netdev_priv(dev);
2386
2387	if (adapter->ptp_clock)
2388		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2389	else
2390		info->phc_index = -1;
2391
2392	switch (adapter->hw.mac.type) {
2393	case e1000_82575:
2394		info->so_timestamping =
2395			SOF_TIMESTAMPING_TX_SOFTWARE |
2396			SOF_TIMESTAMPING_RX_SOFTWARE |
2397			SOF_TIMESTAMPING_SOFTWARE;
2398		return 0;
2399	case e1000_82576:
2400	case e1000_82580:
2401	case e1000_i350:
2402	case e1000_i354:
2403	case e1000_i210:
2404	case e1000_i211:
2405		info->so_timestamping =
2406			SOF_TIMESTAMPING_TX_SOFTWARE |
2407			SOF_TIMESTAMPING_RX_SOFTWARE |
2408			SOF_TIMESTAMPING_SOFTWARE |
2409			SOF_TIMESTAMPING_TX_HARDWARE |
2410			SOF_TIMESTAMPING_RX_HARDWARE |
2411			SOF_TIMESTAMPING_RAW_HARDWARE;
2412
2413		info->tx_types =
2414			BIT(HWTSTAMP_TX_OFF) |
2415			BIT(HWTSTAMP_TX_ON);
2416
2417		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2418
2419		/* 82576 does not support timestamping all packets. */
2420		if (adapter->hw.mac.type >= e1000_82580)
2421			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2422		else
2423			info->rx_filters |=
2424				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2425				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2426				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
 
 
 
 
2427
2428		return 0;
2429	default:
2430		return -EOPNOTSUPP;
2431	}
2432}
2433
2434#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2435static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2436				     struct ethtool_rxnfc *cmd)
2437{
2438	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2439	struct igb_nfc_filter *rule = NULL;
2440
2441	/* report total rule count */
2442	cmd->data = IGB_MAX_RXNFC_FILTERS;
2443
2444	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2445		if (fsp->location <= rule->sw_idx)
2446			break;
2447	}
2448
2449	if (!rule || fsp->location != rule->sw_idx)
2450		return -EINVAL;
2451
2452	if (rule->filter.match_flags) {
2453		fsp->flow_type = ETHER_FLOW;
2454		fsp->ring_cookie = rule->action;
2455		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2456			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2457			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2458		}
2459		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2460			fsp->flow_type |= FLOW_EXT;
2461			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2462			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2463		}
2464		if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2465			ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2466					rule->filter.dst_addr);
2467			/* As we only support matching by the full
2468			 * mask, return the mask to userspace
2469			 */
2470			eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2471		}
2472		if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2473			ether_addr_copy(fsp->h_u.ether_spec.h_source,
2474					rule->filter.src_addr);
2475			/* As we only support matching by the full
2476			 * mask, return the mask to userspace
2477			 */
2478			eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2479		}
2480
2481		return 0;
2482	}
2483	return -EINVAL;
2484}
2485
2486static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2487				   struct ethtool_rxnfc *cmd,
2488				   u32 *rule_locs)
2489{
2490	struct igb_nfc_filter *rule;
2491	int cnt = 0;
2492
2493	/* report total rule count */
2494	cmd->data = IGB_MAX_RXNFC_FILTERS;
2495
2496	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2497		if (cnt == cmd->rule_cnt)
2498			return -EMSGSIZE;
2499		rule_locs[cnt] = rule->sw_idx;
2500		cnt++;
2501	}
2502
2503	cmd->rule_cnt = cnt;
2504
2505	return 0;
2506}
2507
2508static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2509				 struct ethtool_rxnfc *cmd)
2510{
2511	cmd->data = 0;
2512
2513	/* Report default options for RSS on igb */
2514	switch (cmd->flow_type) {
2515	case TCP_V4_FLOW:
2516		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2517		fallthrough;
2518	case UDP_V4_FLOW:
2519		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2520			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2521		fallthrough;
2522	case SCTP_V4_FLOW:
2523	case AH_ESP_V4_FLOW:
2524	case AH_V4_FLOW:
2525	case ESP_V4_FLOW:
2526	case IPV4_FLOW:
2527		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2528		break;
2529	case TCP_V6_FLOW:
2530		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2531		fallthrough;
2532	case UDP_V6_FLOW:
2533		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2534			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2535		fallthrough;
2536	case SCTP_V6_FLOW:
2537	case AH_ESP_V6_FLOW:
2538	case AH_V6_FLOW:
2539	case ESP_V6_FLOW:
2540	case IPV6_FLOW:
2541		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2542		break;
2543	default:
2544		return -EINVAL;
2545	}
2546
2547	return 0;
2548}
2549
2550static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2551			 u32 *rule_locs)
2552{
2553	struct igb_adapter *adapter = netdev_priv(dev);
2554	int ret = -EOPNOTSUPP;
2555
2556	switch (cmd->cmd) {
2557	case ETHTOOL_GRXRINGS:
2558		cmd->data = adapter->num_rx_queues;
2559		ret = 0;
2560		break;
2561	case ETHTOOL_GRXCLSRLCNT:
2562		cmd->rule_cnt = adapter->nfc_filter_count;
2563		ret = 0;
2564		break;
2565	case ETHTOOL_GRXCLSRULE:
2566		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2567		break;
2568	case ETHTOOL_GRXCLSRLALL:
2569		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2570		break;
2571	case ETHTOOL_GRXFH:
2572		ret = igb_get_rss_hash_opts(adapter, cmd);
2573		break;
2574	default:
2575		break;
2576	}
2577
2578	return ret;
2579}
2580
2581#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2582		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2583static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2584				struct ethtool_rxnfc *nfc)
2585{
2586	u32 flags = adapter->flags;
2587
2588	/* RSS does not support anything other than hashing
2589	 * to queues on src and dst IPs and ports
2590	 */
2591	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2592			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2593		return -EINVAL;
2594
2595	switch (nfc->flow_type) {
2596	case TCP_V4_FLOW:
2597	case TCP_V6_FLOW:
2598		if (!(nfc->data & RXH_IP_SRC) ||
2599		    !(nfc->data & RXH_IP_DST) ||
2600		    !(nfc->data & RXH_L4_B_0_1) ||
2601		    !(nfc->data & RXH_L4_B_2_3))
2602			return -EINVAL;
2603		break;
2604	case UDP_V4_FLOW:
2605		if (!(nfc->data & RXH_IP_SRC) ||
2606		    !(nfc->data & RXH_IP_DST))
2607			return -EINVAL;
2608		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2609		case 0:
2610			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2611			break;
2612		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2613			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2614			break;
2615		default:
2616			return -EINVAL;
2617		}
2618		break;
2619	case UDP_V6_FLOW:
2620		if (!(nfc->data & RXH_IP_SRC) ||
2621		    !(nfc->data & RXH_IP_DST))
2622			return -EINVAL;
2623		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2624		case 0:
2625			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2626			break;
2627		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2628			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2629			break;
2630		default:
2631			return -EINVAL;
2632		}
2633		break;
2634	case AH_ESP_V4_FLOW:
2635	case AH_V4_FLOW:
2636	case ESP_V4_FLOW:
2637	case SCTP_V4_FLOW:
2638	case AH_ESP_V6_FLOW:
2639	case AH_V6_FLOW:
2640	case ESP_V6_FLOW:
2641	case SCTP_V6_FLOW:
2642		if (!(nfc->data & RXH_IP_SRC) ||
2643		    !(nfc->data & RXH_IP_DST) ||
2644		    (nfc->data & RXH_L4_B_0_1) ||
2645		    (nfc->data & RXH_L4_B_2_3))
2646			return -EINVAL;
2647		break;
2648	default:
2649		return -EINVAL;
2650	}
2651
2652	/* if we changed something we need to update flags */
2653	if (flags != adapter->flags) {
2654		struct e1000_hw *hw = &adapter->hw;
2655		u32 mrqc = rd32(E1000_MRQC);
2656
2657		if ((flags & UDP_RSS_FLAGS) &&
2658		    !(adapter->flags & UDP_RSS_FLAGS))
2659			dev_err(&adapter->pdev->dev,
2660				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2661
2662		adapter->flags = flags;
2663
2664		/* Perform hash on these packet types */
2665		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2666			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2667			E1000_MRQC_RSS_FIELD_IPV6 |
2668			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2669
2670		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2671			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2672
2673		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2674			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2675
2676		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2677			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2678
2679		wr32(E1000_MRQC, mrqc);
2680	}
2681
2682	return 0;
2683}
2684
2685static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2686					struct igb_nfc_filter *input)
2687{
2688	struct e1000_hw *hw = &adapter->hw;
2689	u8 i;
2690	u32 etqf;
2691	u16 etype;
2692
2693	/* find an empty etype filter register */
2694	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2695		if (!adapter->etype_bitmap[i])
2696			break;
2697	}
2698	if (i == MAX_ETYPE_FILTER) {
2699		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2700		return -EINVAL;
2701	}
2702
2703	adapter->etype_bitmap[i] = true;
2704
2705	etqf = rd32(E1000_ETQF(i));
2706	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2707
2708	etqf |= E1000_ETQF_FILTER_ENABLE;
2709	etqf &= ~E1000_ETQF_ETYPE_MASK;
2710	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2711
2712	etqf &= ~E1000_ETQF_QUEUE_MASK;
2713	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2714		& E1000_ETQF_QUEUE_MASK);
2715	etqf |= E1000_ETQF_QUEUE_ENABLE;
2716
2717	wr32(E1000_ETQF(i), etqf);
2718
2719	input->etype_reg_index = i;
2720
2721	return 0;
2722}
2723
2724static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2725					    struct igb_nfc_filter *input)
2726{
2727	struct e1000_hw *hw = &adapter->hw;
2728	u8 vlan_priority;
2729	u16 queue_index;
2730	u32 vlapqf;
2731
2732	vlapqf = rd32(E1000_VLAPQF);
2733	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2734				>> VLAN_PRIO_SHIFT;
2735	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2736
2737	/* check whether this vlan prio is already set */
2738	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2739	    (queue_index != input->action)) {
2740		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2741		return -EEXIST;
2742	}
2743
2744	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2745	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2746
2747	wr32(E1000_VLAPQF, vlapqf);
2748
2749	return 0;
2750}
2751
2752int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2753{
2754	struct e1000_hw *hw = &adapter->hw;
2755	int err = -EINVAL;
2756
2757	if (hw->mac.type == e1000_i210 &&
2758	    !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2759		dev_err(&adapter->pdev->dev,
2760			"i210 doesn't support flow classification rules specifying only source addresses.\n");
2761		return -EOPNOTSUPP;
2762	}
2763
2764	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2765		err = igb_rxnfc_write_etype_filter(adapter, input);
2766		if (err)
2767			return err;
2768	}
2769
2770	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2771		err = igb_add_mac_steering_filter(adapter,
2772						  input->filter.dst_addr,
2773						  input->action, 0);
2774		err = min_t(int, err, 0);
2775		if (err)
2776			return err;
2777	}
2778
2779	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2780		err = igb_add_mac_steering_filter(adapter,
2781						  input->filter.src_addr,
2782						  input->action,
2783						  IGB_MAC_STATE_SRC_ADDR);
2784		err = min_t(int, err, 0);
2785		if (err)
2786			return err;
2787	}
2788
2789	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2790		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2791
2792	return err;
2793}
2794
2795static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2796					u16 reg_index)
2797{
2798	struct e1000_hw *hw = &adapter->hw;
2799	u32 etqf = rd32(E1000_ETQF(reg_index));
2800
2801	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2802	etqf &= ~E1000_ETQF_QUEUE_MASK;
2803	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2804
2805	wr32(E1000_ETQF(reg_index), etqf);
2806
2807	adapter->etype_bitmap[reg_index] = false;
2808}
2809
2810static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2811				       u16 vlan_tci)
2812{
2813	struct e1000_hw *hw = &adapter->hw;
2814	u8 vlan_priority;
2815	u32 vlapqf;
2816
2817	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2818
2819	vlapqf = rd32(E1000_VLAPQF);
2820	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2821	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2822						E1000_VLAPQF_QUEUE_MASK);
2823
2824	wr32(E1000_VLAPQF, vlapqf);
2825}
2826
2827int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2828{
2829	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2830		igb_clear_etype_filter_regs(adapter,
2831					    input->etype_reg_index);
2832
2833	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2834		igb_clear_vlan_prio_filter(adapter,
2835					   ntohs(input->filter.vlan_tci));
2836
2837	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2838		igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2839					    input->action,
2840					    IGB_MAC_STATE_SRC_ADDR);
2841
2842	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2843		igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2844					    input->action, 0);
2845
2846	return 0;
2847}
2848
2849static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2850					struct igb_nfc_filter *input,
2851					u16 sw_idx)
2852{
2853	struct igb_nfc_filter *rule, *parent;
2854	int err = -EINVAL;
2855
2856	parent = NULL;
2857	rule = NULL;
2858
2859	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2860		/* hash found, or no matching entry */
2861		if (rule->sw_idx >= sw_idx)
2862			break;
2863		parent = rule;
2864	}
2865
2866	/* if there is an old rule occupying our place remove it */
2867	if (rule && (rule->sw_idx == sw_idx)) {
2868		if (!input)
2869			err = igb_erase_filter(adapter, rule);
2870
2871		hlist_del(&rule->nfc_node);
2872		kfree(rule);
2873		adapter->nfc_filter_count--;
2874	}
2875
2876	/* If no input this was a delete, err should be 0 if a rule was
2877	 * successfully found and removed from the list else -EINVAL
2878	 */
2879	if (!input)
2880		return err;
2881
2882	/* initialize node */
2883	INIT_HLIST_NODE(&input->nfc_node);
2884
2885	/* add filter to the list */
2886	if (parent)
2887		hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2888	else
2889		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2890
2891	/* update counts */
2892	adapter->nfc_filter_count++;
2893
2894	return 0;
2895}
2896
2897static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2898				     struct ethtool_rxnfc *cmd)
2899{
2900	struct net_device *netdev = adapter->netdev;
2901	struct ethtool_rx_flow_spec *fsp =
2902		(struct ethtool_rx_flow_spec *)&cmd->fs;
2903	struct igb_nfc_filter *input, *rule;
2904	int err = 0;
2905
2906	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2907		return -EOPNOTSUPP;
2908
2909	/* Don't allow programming if the action is a queue greater than
2910	 * the number of online Rx queues.
2911	 */
2912	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2913	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2914		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2915		return -EINVAL;
2916	}
2917
2918	/* Don't allow indexes to exist outside of available space */
2919	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2920		dev_err(&adapter->pdev->dev, "Location out of range\n");
2921		return -EINVAL;
2922	}
2923
2924	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2925		return -EINVAL;
2926
2927	input = kzalloc(sizeof(*input), GFP_KERNEL);
2928	if (!input)
2929		return -ENOMEM;
2930
2931	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2932		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2933		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2934	}
2935
2936	/* Only support matching addresses by the full mask */
2937	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2938		input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2939		ether_addr_copy(input->filter.src_addr,
2940				fsp->h_u.ether_spec.h_source);
2941	}
2942
2943	/* Only support matching addresses by the full mask */
2944	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2945		input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2946		ether_addr_copy(input->filter.dst_addr,
2947				fsp->h_u.ether_spec.h_dest);
2948	}
2949
2950	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2951		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2952			err = -EINVAL;
2953			goto err_out;
2954		}
2955		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2956		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2957	}
2958
2959	input->action = fsp->ring_cookie;
2960	input->sw_idx = fsp->location;
2961
2962	spin_lock(&adapter->nfc_lock);
2963
2964	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2965		if (!memcmp(&input->filter, &rule->filter,
2966			    sizeof(input->filter))) {
2967			err = -EEXIST;
2968			dev_err(&adapter->pdev->dev,
2969				"ethtool: this filter is already set\n");
2970			goto err_out_w_lock;
2971		}
2972	}
2973
2974	err = igb_add_filter(adapter, input);
2975	if (err)
2976		goto err_out_w_lock;
2977
2978	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2979
2980	spin_unlock(&adapter->nfc_lock);
2981	return 0;
2982
2983err_out_w_lock:
2984	spin_unlock(&adapter->nfc_lock);
2985err_out:
2986	kfree(input);
2987	return err;
2988}
2989
2990static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2991				     struct ethtool_rxnfc *cmd)
2992{
2993	struct ethtool_rx_flow_spec *fsp =
2994		(struct ethtool_rx_flow_spec *)&cmd->fs;
2995	int err;
2996
2997	spin_lock(&adapter->nfc_lock);
2998	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
2999	spin_unlock(&adapter->nfc_lock);
3000
3001	return err;
3002}
3003
3004static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3005{
3006	struct igb_adapter *adapter = netdev_priv(dev);
3007	int ret = -EOPNOTSUPP;
3008
3009	switch (cmd->cmd) {
3010	case ETHTOOL_SRXFH:
3011		ret = igb_set_rss_hash_opt(adapter, cmd);
3012		break;
3013	case ETHTOOL_SRXCLSRLINS:
3014		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3015		break;
3016	case ETHTOOL_SRXCLSRLDEL:
3017		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3018		break;
3019	default:
3020		break;
3021	}
3022
3023	return ret;
3024}
3025
3026static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3027{
3028	struct igb_adapter *adapter = netdev_priv(netdev);
3029	struct e1000_hw *hw = &adapter->hw;
3030	u32 ret_val;
3031	u16 phy_data;
3032
3033	if ((hw->mac.type < e1000_i350) ||
3034	    (hw->phy.media_type != e1000_media_type_copper))
3035		return -EOPNOTSUPP;
3036
3037	edata->supported = (SUPPORTED_1000baseT_Full |
3038			    SUPPORTED_100baseT_Full);
3039	if (!hw->dev_spec._82575.eee_disable)
3040		edata->advertised =
3041			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3042
3043	/* The IPCNFG and EEER registers are not supported on I354. */
3044	if (hw->mac.type == e1000_i354) {
3045		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3046	} else {
3047		u32 eeer;
3048
3049		eeer = rd32(E1000_EEER);
3050
3051		/* EEE status on negotiated link */
3052		if (eeer & E1000_EEER_EEE_NEG)
3053			edata->eee_active = true;
3054
3055		if (eeer & E1000_EEER_TX_LPI_EN)
3056			edata->tx_lpi_enabled = true;
3057	}
3058
3059	/* EEE Link Partner Advertised */
3060	switch (hw->mac.type) {
3061	case e1000_i350:
3062		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3063					   &phy_data);
3064		if (ret_val)
3065			return -ENODATA;
3066
3067		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3068		break;
3069	case e1000_i354:
3070	case e1000_i210:
3071	case e1000_i211:
3072		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3073					     E1000_EEE_LP_ADV_DEV_I210,
3074					     &phy_data);
3075		if (ret_val)
3076			return -ENODATA;
3077
3078		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3079
3080		break;
3081	default:
3082		break;
3083	}
3084
3085	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3086
3087	if ((hw->mac.type == e1000_i354) &&
3088	    (edata->eee_enabled))
3089		edata->tx_lpi_enabled = true;
3090
3091	/* Report correct negotiated EEE status for devices that
3092	 * wrongly report EEE at half-duplex
3093	 */
3094	if (adapter->link_duplex == HALF_DUPLEX) {
3095		edata->eee_enabled = false;
3096		edata->eee_active = false;
3097		edata->tx_lpi_enabled = false;
3098		edata->advertised &= ~edata->advertised;
3099	}
3100
3101	return 0;
3102}
3103
3104static int igb_set_eee(struct net_device *netdev,
3105		       struct ethtool_eee *edata)
3106{
3107	struct igb_adapter *adapter = netdev_priv(netdev);
3108	struct e1000_hw *hw = &adapter->hw;
3109	struct ethtool_eee eee_curr;
3110	bool adv1g_eee = true, adv100m_eee = true;
3111	s32 ret_val;
3112
3113	if ((hw->mac.type < e1000_i350) ||
3114	    (hw->phy.media_type != e1000_media_type_copper))
3115		return -EOPNOTSUPP;
3116
3117	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3118
3119	ret_val = igb_get_eee(netdev, &eee_curr);
3120	if (ret_val)
3121		return ret_val;
3122
3123	if (eee_curr.eee_enabled) {
3124		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3125			dev_err(&adapter->pdev->dev,
3126				"Setting EEE tx-lpi is not supported\n");
3127			return -EINVAL;
3128		}
3129
3130		/* Tx LPI timer is not implemented currently */
3131		if (edata->tx_lpi_timer) {
3132			dev_err(&adapter->pdev->dev,
3133				"Setting EEE Tx LPI timer is not supported\n");
3134			return -EINVAL;
3135		}
3136
3137		if (!edata->advertised || (edata->advertised &
3138		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3139			dev_err(&adapter->pdev->dev,
3140				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3141			return -EINVAL;
3142		}
3143		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3144		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3145
3146	} else if (!edata->eee_enabled) {
3147		dev_err(&adapter->pdev->dev,
3148			"Setting EEE options are not supported with EEE disabled\n");
3149		return -EINVAL;
3150	}
3151
3152	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3153	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3154		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3155		adapter->flags |= IGB_FLAG_EEE;
 
 
 
 
3156
3157		/* reset link */
3158		if (netif_running(netdev))
3159			igb_reinit_locked(adapter);
3160		else
3161			igb_reset(adapter);
3162	}
3163
3164	if (hw->mac.type == e1000_i354)
3165		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3166	else
3167		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3168
3169	if (ret_val) {
3170		dev_err(&adapter->pdev->dev,
3171			"Problem setting EEE advertisement options\n");
3172		return -EINVAL;
3173	}
3174
3175	return 0;
3176}
3177
3178static int igb_get_module_info(struct net_device *netdev,
3179			       struct ethtool_modinfo *modinfo)
3180{
3181	struct igb_adapter *adapter = netdev_priv(netdev);
3182	struct e1000_hw *hw = &adapter->hw;
3183	u32 status = 0;
3184	u16 sff8472_rev, addr_mode;
3185	bool page_swap = false;
3186
3187	if ((hw->phy.media_type == e1000_media_type_copper) ||
3188	    (hw->phy.media_type == e1000_media_type_unknown))
3189		return -EOPNOTSUPP;
3190
3191	/* Check whether we support SFF-8472 or not */
3192	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3193	if (status)
3194		return -EIO;
3195
3196	/* addressing mode is not supported */
3197	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3198	if (status)
3199		return -EIO;
3200
3201	/* addressing mode is not supported */
3202	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3203		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3204		page_swap = true;
3205	}
3206
3207	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3208		/* We have an SFP, but it does not support SFF-8472 */
3209		modinfo->type = ETH_MODULE_SFF_8079;
3210		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3211	} else {
3212		/* We have an SFP which supports a revision of SFF-8472 */
3213		modinfo->type = ETH_MODULE_SFF_8472;
3214		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3215	}
3216
3217	return 0;
3218}
3219
3220static int igb_get_module_eeprom(struct net_device *netdev,
3221				 struct ethtool_eeprom *ee, u8 *data)
3222{
3223	struct igb_adapter *adapter = netdev_priv(netdev);
3224	struct e1000_hw *hw = &adapter->hw;
3225	u32 status = 0;
3226	u16 *dataword;
3227	u16 first_word, last_word;
3228	int i = 0;
3229
3230	if (ee->len == 0)
3231		return -EINVAL;
3232
3233	first_word = ee->offset >> 1;
3234	last_word = (ee->offset + ee->len - 1) >> 1;
3235
3236	dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3237				 GFP_KERNEL);
3238	if (!dataword)
3239		return -ENOMEM;
3240
3241	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3242	for (i = 0; i < last_word - first_word + 1; i++) {
3243		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3244					      &dataword[i]);
3245		if (status) {
3246			/* Error occurred while reading module */
3247			kfree(dataword);
3248			return -EIO;
3249		}
3250
3251		be16_to_cpus(&dataword[i]);
3252	}
3253
3254	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3255	kfree(dataword);
3256
3257	return 0;
3258}
3259
3260static int igb_ethtool_begin(struct net_device *netdev)
3261{
3262	struct igb_adapter *adapter = netdev_priv(netdev);
3263	pm_runtime_get_sync(&adapter->pdev->dev);
3264	return 0;
3265}
3266
3267static void igb_ethtool_complete(struct net_device *netdev)
3268{
3269	struct igb_adapter *adapter = netdev_priv(netdev);
3270	pm_runtime_put(&adapter->pdev->dev);
3271}
3272
3273static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3274{
3275	return IGB_RETA_SIZE;
3276}
3277
3278static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3279			u8 *hfunc)
3280{
3281	struct igb_adapter *adapter = netdev_priv(netdev);
3282	int i;
3283
3284	if (hfunc)
3285		*hfunc = ETH_RSS_HASH_TOP;
3286	if (!indir)
3287		return 0;
3288	for (i = 0; i < IGB_RETA_SIZE; i++)
3289		indir[i] = adapter->rss_indir_tbl[i];
3290
3291	return 0;
3292}
3293
3294void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3295{
3296	struct e1000_hw *hw = &adapter->hw;
3297	u32 reg = E1000_RETA(0);
3298	u32 shift = 0;
3299	int i = 0;
3300
3301	switch (hw->mac.type) {
3302	case e1000_82575:
3303		shift = 6;
3304		break;
3305	case e1000_82576:
3306		/* 82576 supports 2 RSS queues for SR-IOV */
3307		if (adapter->vfs_allocated_count)
3308			shift = 3;
3309		break;
3310	default:
3311		break;
3312	}
3313
3314	while (i < IGB_RETA_SIZE) {
3315		u32 val = 0;
3316		int j;
3317
3318		for (j = 3; j >= 0; j--) {
3319			val <<= 8;
3320			val |= adapter->rss_indir_tbl[i + j];
3321		}
3322
3323		wr32(reg, val << shift);
3324		reg += 4;
3325		i += 4;
3326	}
3327}
3328
3329static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3330			const u8 *key, const u8 hfunc)
3331{
3332	struct igb_adapter *adapter = netdev_priv(netdev);
3333	struct e1000_hw *hw = &adapter->hw;
3334	int i;
3335	u32 num_queues;
3336
3337	/* We do not allow change in unsupported parameters */
3338	if (key ||
3339	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3340		return -EOPNOTSUPP;
3341	if (!indir)
3342		return 0;
3343
3344	num_queues = adapter->rss_queues;
3345
3346	switch (hw->mac.type) {
3347	case e1000_82576:
3348		/* 82576 supports 2 RSS queues for SR-IOV */
3349		if (adapter->vfs_allocated_count)
3350			num_queues = 2;
3351		break;
3352	default:
3353		break;
3354	}
3355
3356	/* Verify user input. */
3357	for (i = 0; i < IGB_RETA_SIZE; i++)
3358		if (indir[i] >= num_queues)
3359			return -EINVAL;
3360
3361
3362	for (i = 0; i < IGB_RETA_SIZE; i++)
3363		adapter->rss_indir_tbl[i] = indir[i];
3364
3365	igb_write_rss_indir_tbl(adapter);
3366
3367	return 0;
3368}
3369
3370static unsigned int igb_max_channels(struct igb_adapter *adapter)
3371{
3372	return igb_get_max_rss_queues(adapter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3373}
3374
3375static void igb_get_channels(struct net_device *netdev,
3376			     struct ethtool_channels *ch)
3377{
3378	struct igb_adapter *adapter = netdev_priv(netdev);
3379
3380	/* Report maximum channels */
3381	ch->max_combined = igb_max_channels(adapter);
3382
3383	/* Report info for other vector */
3384	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3385		ch->max_other = NON_Q_VECTORS;
3386		ch->other_count = NON_Q_VECTORS;
3387	}
3388
3389	ch->combined_count = adapter->rss_queues;
3390}
3391
3392static int igb_set_channels(struct net_device *netdev,
3393			    struct ethtool_channels *ch)
3394{
3395	struct igb_adapter *adapter = netdev_priv(netdev);
3396	unsigned int count = ch->combined_count;
3397	unsigned int max_combined = 0;
3398
3399	/* Verify they are not requesting separate vectors */
3400	if (!count || ch->rx_count || ch->tx_count)
3401		return -EINVAL;
3402
3403	/* Verify other_count is valid and has not been changed */
3404	if (ch->other_count != NON_Q_VECTORS)
3405		return -EINVAL;
3406
3407	/* Verify the number of channels doesn't exceed hw limits */
3408	max_combined = igb_max_channels(adapter);
3409	if (count > max_combined)
3410		return -EINVAL;
3411
3412	if (count != adapter->rss_queues) {
3413		adapter->rss_queues = count;
3414		igb_set_flag_queue_pairs(adapter, max_combined);
3415
3416		/* Hardware has to reinitialize queues and interrupts to
3417		 * match the new configuration.
3418		 */
3419		return igb_reinit_queues(adapter);
3420	}
3421
3422	return 0;
3423}
3424
3425static u32 igb_get_priv_flags(struct net_device *netdev)
3426{
3427	struct igb_adapter *adapter = netdev_priv(netdev);
3428	u32 priv_flags = 0;
3429
3430	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3431		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3432
3433	return priv_flags;
3434}
3435
3436static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3437{
3438	struct igb_adapter *adapter = netdev_priv(netdev);
3439	unsigned int flags = adapter->flags;
3440
3441	flags &= ~IGB_FLAG_RX_LEGACY;
3442	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3443		flags |= IGB_FLAG_RX_LEGACY;
3444
3445	if (flags != adapter->flags) {
3446		adapter->flags = flags;
3447
3448		/* reset interface to repopulate queues */
3449		if (netif_running(netdev))
3450			igb_reinit_locked(adapter);
3451	}
3452
3453	return 0;
3454}
3455
3456static const struct ethtool_ops igb_ethtool_ops = {
3457	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
 
3458	.get_drvinfo		= igb_get_drvinfo,
3459	.get_regs_len		= igb_get_regs_len,
3460	.get_regs		= igb_get_regs,
3461	.get_wol		= igb_get_wol,
3462	.set_wol		= igb_set_wol,
3463	.get_msglevel		= igb_get_msglevel,
3464	.set_msglevel		= igb_set_msglevel,
3465	.nway_reset		= igb_nway_reset,
3466	.get_link		= igb_get_link,
3467	.get_eeprom_len		= igb_get_eeprom_len,
3468	.get_eeprom		= igb_get_eeprom,
3469	.set_eeprom		= igb_set_eeprom,
3470	.get_ringparam		= igb_get_ringparam,
3471	.set_ringparam		= igb_set_ringparam,
3472	.get_pauseparam		= igb_get_pauseparam,
3473	.set_pauseparam		= igb_set_pauseparam,
3474	.self_test		= igb_diag_test,
3475	.get_strings		= igb_get_strings,
3476	.set_phys_id		= igb_set_phys_id,
3477	.get_sset_count		= igb_get_sset_count,
3478	.get_ethtool_stats	= igb_get_ethtool_stats,
3479	.get_coalesce		= igb_get_coalesce,
3480	.set_coalesce		= igb_set_coalesce,
3481	.get_ts_info		= igb_get_ts_info,
3482	.get_rxnfc		= igb_get_rxnfc,
3483	.set_rxnfc		= igb_set_rxnfc,
3484	.get_eee		= igb_get_eee,
3485	.set_eee		= igb_set_eee,
3486	.get_module_info	= igb_get_module_info,
3487	.get_module_eeprom	= igb_get_module_eeprom,
3488	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3489	.get_rxfh		= igb_get_rxfh,
3490	.set_rxfh		= igb_set_rxfh,
3491	.get_channels		= igb_get_channels,
3492	.set_channels		= igb_set_channels,
3493	.get_priv_flags		= igb_get_priv_flags,
3494	.set_priv_flags		= igb_set_priv_flags,
3495	.begin			= igb_ethtool_begin,
3496	.complete		= igb_ethtool_complete,
3497	.get_link_ksettings	= igb_get_link_ksettings,
3498	.set_link_ksettings	= igb_set_link_ksettings,
3499};
3500
3501void igb_set_ethtool_ops(struct net_device *netdev)
3502{
3503	netdev->ethtool_ops = &igb_ethtool_ops;
3504}
v3.15
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2014 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, see <http://www.gnu.org/licenses/>.
  17
  18  The full GNU General Public License is included in this distribution in
  19  the file called "COPYING".
  20
  21  Contact Information:
  22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24
  25*******************************************************************************/
  26
  27/* ethtool support for igb */
  28
  29#include <linux/vmalloc.h>
  30#include <linux/netdevice.h>
  31#include <linux/pci.h>
  32#include <linux/delay.h>
  33#include <linux/interrupt.h>
  34#include <linux/if_ether.h>
  35#include <linux/ethtool.h>
  36#include <linux/sched.h>
  37#include <linux/slab.h>
  38#include <linux/pm_runtime.h>
  39#include <linux/highmem.h>
  40#include <linux/mdio.h>
  41
  42#include "igb.h"
  43
  44struct igb_stats {
  45	char stat_string[ETH_GSTRING_LEN];
  46	int sizeof_stat;
  47	int stat_offset;
  48};
  49
  50#define IGB_STAT(_name, _stat) { \
  51	.stat_string = _name, \
  52	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
  53	.stat_offset = offsetof(struct igb_adapter, _stat) \
  54}
  55static const struct igb_stats igb_gstrings_stats[] = {
  56	IGB_STAT("rx_packets", stats.gprc),
  57	IGB_STAT("tx_packets", stats.gptc),
  58	IGB_STAT("rx_bytes", stats.gorc),
  59	IGB_STAT("tx_bytes", stats.gotc),
  60	IGB_STAT("rx_broadcast", stats.bprc),
  61	IGB_STAT("tx_broadcast", stats.bptc),
  62	IGB_STAT("rx_multicast", stats.mprc),
  63	IGB_STAT("tx_multicast", stats.mptc),
  64	IGB_STAT("multicast", stats.mprc),
  65	IGB_STAT("collisions", stats.colc),
  66	IGB_STAT("rx_crc_errors", stats.crcerrs),
  67	IGB_STAT("rx_no_buffer_count", stats.rnbc),
  68	IGB_STAT("rx_missed_errors", stats.mpc),
  69	IGB_STAT("tx_aborted_errors", stats.ecol),
  70	IGB_STAT("tx_carrier_errors", stats.tncrs),
  71	IGB_STAT("tx_window_errors", stats.latecol),
  72	IGB_STAT("tx_abort_late_coll", stats.latecol),
  73	IGB_STAT("tx_deferred_ok", stats.dc),
  74	IGB_STAT("tx_single_coll_ok", stats.scc),
  75	IGB_STAT("tx_multi_coll_ok", stats.mcc),
  76	IGB_STAT("tx_timeout_count", tx_timeout_count),
  77	IGB_STAT("rx_long_length_errors", stats.roc),
  78	IGB_STAT("rx_short_length_errors", stats.ruc),
  79	IGB_STAT("rx_align_errors", stats.algnerrc),
  80	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
  81	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
  82	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
  83	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
  84	IGB_STAT("tx_flow_control_xon", stats.xontxc),
  85	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
  86	IGB_STAT("rx_long_byte_count", stats.gorc),
  87	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
  88	IGB_STAT("tx_smbus", stats.mgptc),
  89	IGB_STAT("rx_smbus", stats.mgprc),
  90	IGB_STAT("dropped_smbus", stats.mgpdc),
  91	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
  92	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
  93	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
  94	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
  95	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
 
  96	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  97};
  98
  99#define IGB_NETDEV_STAT(_net_stat) { \
 100	.stat_string = __stringify(_net_stat), \
 101	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
 102	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
 103}
 104static const struct igb_stats igb_gstrings_net_stats[] = {
 105	IGB_NETDEV_STAT(rx_errors),
 106	IGB_NETDEV_STAT(tx_errors),
 107	IGB_NETDEV_STAT(tx_dropped),
 108	IGB_NETDEV_STAT(rx_length_errors),
 109	IGB_NETDEV_STAT(rx_over_errors),
 110	IGB_NETDEV_STAT(rx_frame_errors),
 111	IGB_NETDEV_STAT(rx_fifo_errors),
 112	IGB_NETDEV_STAT(tx_fifo_errors),
 113	IGB_NETDEV_STAT(tx_heartbeat_errors)
 114};
 115
 116#define IGB_GLOBAL_STATS_LEN	\
 117	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
 118#define IGB_NETDEV_STATS_LEN	\
 119	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
 120#define IGB_RX_QUEUE_STATS_LEN \
 121	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
 122
 123#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
 124
 125#define IGB_QUEUE_STATS_LEN \
 126	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
 127	  IGB_RX_QUEUE_STATS_LEN) + \
 128	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
 129	  IGB_TX_QUEUE_STATS_LEN))
 130#define IGB_STATS_LEN \
 131	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
 132
 
 
 
 
 
 
 
 
 133static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
 134	"Register test  (offline)", "Eeprom test    (offline)",
 135	"Interrupt test (offline)", "Loopback test  (offline)",
 136	"Link test   (on/offline)"
 
 
 137};
 138#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
 139
 140static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 
 
 
 
 
 
 
 
 141{
 142	struct igb_adapter *adapter = netdev_priv(netdev);
 143	struct e1000_hw *hw = &adapter->hw;
 144	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 145	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 146	u32 status;
 
 
 147
 148	status = rd32(E1000_STATUS);
 
 149	if (hw->phy.media_type == e1000_media_type_copper) {
 150
 151		ecmd->supported = (SUPPORTED_10baseT_Half |
 152				   SUPPORTED_10baseT_Full |
 153				   SUPPORTED_100baseT_Half |
 154				   SUPPORTED_100baseT_Full |
 155				   SUPPORTED_1000baseT_Full|
 156				   SUPPORTED_Autoneg |
 157				   SUPPORTED_TP |
 158				   SUPPORTED_Pause);
 159		ecmd->advertising = ADVERTISED_TP;
 160
 161		if (hw->mac.autoneg == 1) {
 162			ecmd->advertising |= ADVERTISED_Autoneg;
 163			/* the e1000 autoneg seems to match ethtool nicely */
 164			ecmd->advertising |= hw->phy.autoneg_advertised;
 165		}
 166
 167		ecmd->port = PORT_TP;
 168		ecmd->phy_address = hw->phy.addr;
 169		ecmd->transceiver = XCVR_INTERNAL;
 170	} else {
 171		ecmd->supported = (SUPPORTED_FIBRE |
 172				   SUPPORTED_1000baseKX_Full |
 173				   SUPPORTED_Autoneg |
 174				   SUPPORTED_Pause);
 175		ecmd->advertising = (ADVERTISED_FIBRE |
 176				     ADVERTISED_1000baseKX_Full);
 177		if (hw->mac.type == e1000_i354) {
 178			if ((hw->device_id ==
 179			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
 180			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 181				ecmd->supported |= SUPPORTED_2500baseX_Full;
 182				ecmd->supported &=
 183					~SUPPORTED_1000baseKX_Full;
 184				ecmd->advertising |= ADVERTISED_2500baseX_Full;
 185				ecmd->advertising &=
 186					~ADVERTISED_1000baseKX_Full;
 187			}
 188		}
 189		if (eth_flags->e100_base_fx) {
 190			ecmd->supported |= SUPPORTED_100baseT_Full;
 191			ecmd->advertising |= ADVERTISED_100baseT_Full;
 192		}
 193		if (hw->mac.autoneg == 1)
 194			ecmd->advertising |= ADVERTISED_Autoneg;
 195
 196		ecmd->port = PORT_FIBRE;
 197		ecmd->transceiver = XCVR_EXTERNAL;
 198	}
 199	if (hw->mac.autoneg != 1)
 200		ecmd->advertising &= ~(ADVERTISED_Pause |
 201				       ADVERTISED_Asym_Pause);
 202
 203	switch (hw->fc.requested_mode) {
 204	case e1000_fc_full:
 205		ecmd->advertising |= ADVERTISED_Pause;
 206		break;
 207	case e1000_fc_rx_pause:
 208		ecmd->advertising |= (ADVERTISED_Pause |
 209				      ADVERTISED_Asym_Pause);
 210		break;
 211	case e1000_fc_tx_pause:
 212		ecmd->advertising |=  ADVERTISED_Asym_Pause;
 213		break;
 214	default:
 215		ecmd->advertising &= ~(ADVERTISED_Pause |
 216				       ADVERTISED_Asym_Pause);
 217	}
 218	if (status & E1000_STATUS_LU) {
 219		if ((status & E1000_STATUS_2P5_SKU) &&
 220		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
 221			ecmd->speed = SPEED_2500;
 222		} else if (status & E1000_STATUS_SPEED_1000) {
 223			ecmd->speed = SPEED_1000;
 224		} else if (status & E1000_STATUS_SPEED_100) {
 225			ecmd->speed = SPEED_100;
 226		} else {
 227			ecmd->speed = SPEED_10;
 228		}
 229		if ((status & E1000_STATUS_FD) ||
 230		    hw->phy.media_type != e1000_media_type_copper)
 231			ecmd->duplex = DUPLEX_FULL;
 232		else
 233			ecmd->duplex = DUPLEX_HALF;
 234	} else {
 235		ecmd->speed = -1;
 236		ecmd->duplex = -1;
 237	}
 
 238	if ((hw->phy.media_type == e1000_media_type_fiber) ||
 239	    hw->mac.autoneg)
 240		ecmd->autoneg = AUTONEG_ENABLE;
 241	else
 242		ecmd->autoneg = AUTONEG_DISABLE;
 243
 244	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 245	if (hw->phy.media_type == e1000_media_type_copper)
 246		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
 247						      ETH_TP_MDI;
 248	else
 249		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
 250
 251	if (hw->phy.mdix == AUTO_ALL_MODES)
 252		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 253	else
 254		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
 
 
 
 
 
 255
 256	return 0;
 257}
 258
 259static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
 
 260{
 261	struct igb_adapter *adapter = netdev_priv(netdev);
 262	struct e1000_hw *hw = &adapter->hw;
 
 263
 264	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 265	 * cannot be changed
 266	 */
 267	if (igb_check_reset_block(hw)) {
 268		dev_err(&adapter->pdev->dev,
 269			"Cannot change link characteristics when SoL/IDER is active.\n");
 270		return -EINVAL;
 271	}
 272
 273	/* MDI setting is only allowed when autoneg enabled because
 274	 * some hardware doesn't allow MDI setting when speed or
 275	 * duplex is forced.
 276	 */
 277	if (ecmd->eth_tp_mdix_ctrl) {
 278		if (hw->phy.media_type != e1000_media_type_copper)
 279			return -EOPNOTSUPP;
 280
 281		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 282		    (ecmd->autoneg != AUTONEG_ENABLE)) {
 283			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 284			return -EINVAL;
 285		}
 286	}
 287
 288	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 289		msleep(1);
 
 
 
 290
 291	if (ecmd->autoneg == AUTONEG_ENABLE) {
 292		hw->mac.autoneg = 1;
 293		if (hw->phy.media_type == e1000_media_type_fiber) {
 294			hw->phy.autoneg_advertised = ecmd->advertising |
 295						     ADVERTISED_FIBRE |
 296						     ADVERTISED_Autoneg;
 297			switch (adapter->link_speed) {
 298			case SPEED_2500:
 299				hw->phy.autoneg_advertised =
 300					ADVERTISED_2500baseX_Full;
 301				break;
 302			case SPEED_1000:
 303				hw->phy.autoneg_advertised =
 304					ADVERTISED_1000baseT_Full;
 305				break;
 306			case SPEED_100:
 307				hw->phy.autoneg_advertised =
 308					ADVERTISED_100baseT_Full;
 309				break;
 310			default:
 311				break;
 312			}
 313		} else {
 314			hw->phy.autoneg_advertised = ecmd->advertising |
 315						     ADVERTISED_TP |
 316						     ADVERTISED_Autoneg;
 317		}
 318		ecmd->advertising = hw->phy.autoneg_advertised;
 319		if (adapter->fc_autoneg)
 320			hw->fc.requested_mode = e1000_fc_default;
 321	} else {
 322		u32 speed = ethtool_cmd_speed(ecmd);
 323		/* calling this overrides forced MDI setting */
 324		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 325			clear_bit(__IGB_RESETTING, &adapter->state);
 326			return -EINVAL;
 327		}
 328	}
 329
 330	/* MDI-X => 2; MDI => 1; Auto => 3 */
 331	if (ecmd->eth_tp_mdix_ctrl) {
 332		/* fix up the value for auto (3 => 0) as zero is mapped
 333		 * internally to auto
 334		 */
 335		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 336			hw->phy.mdix = AUTO_ALL_MODES;
 337		else
 338			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
 339	}
 340
 341	/* reset the link */
 342	if (netif_running(adapter->netdev)) {
 343		igb_down(adapter);
 344		igb_up(adapter);
 345	} else
 346		igb_reset(adapter);
 347
 348	clear_bit(__IGB_RESETTING, &adapter->state);
 349	return 0;
 350}
 351
 352static u32 igb_get_link(struct net_device *netdev)
 353{
 354	struct igb_adapter *adapter = netdev_priv(netdev);
 355	struct e1000_mac_info *mac = &adapter->hw.mac;
 356
 357	/* If the link is not reported up to netdev, interrupts are disabled,
 358	 * and so the physical link state may have changed since we last
 359	 * looked. Set get_link_status to make sure that the true link
 360	 * state is interrogated, rather than pulling a cached and possibly
 361	 * stale link state from the driver.
 362	 */
 363	if (!netif_carrier_ok(netdev))
 364		mac->get_link_status = 1;
 365
 366	return igb_has_link(adapter);
 367}
 368
 369static void igb_get_pauseparam(struct net_device *netdev,
 370			       struct ethtool_pauseparam *pause)
 371{
 372	struct igb_adapter *adapter = netdev_priv(netdev);
 373	struct e1000_hw *hw = &adapter->hw;
 374
 375	pause->autoneg =
 376		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 377
 378	if (hw->fc.current_mode == e1000_fc_rx_pause)
 379		pause->rx_pause = 1;
 380	else if (hw->fc.current_mode == e1000_fc_tx_pause)
 381		pause->tx_pause = 1;
 382	else if (hw->fc.current_mode == e1000_fc_full) {
 383		pause->rx_pause = 1;
 384		pause->tx_pause = 1;
 385	}
 386}
 387
 388static int igb_set_pauseparam(struct net_device *netdev,
 389			      struct ethtool_pauseparam *pause)
 390{
 391	struct igb_adapter *adapter = netdev_priv(netdev);
 392	struct e1000_hw *hw = &adapter->hw;
 393	int retval = 0;
 
 394
 395	/* 100basefx does not support setting link flow control */
 396	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
 397		return -EINVAL;
 398
 399	adapter->fc_autoneg = pause->autoneg;
 400
 401	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 402		msleep(1);
 403
 404	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 405		hw->fc.requested_mode = e1000_fc_default;
 406		if (netif_running(adapter->netdev)) {
 407			igb_down(adapter);
 408			igb_up(adapter);
 409		} else {
 410			igb_reset(adapter);
 411		}
 412	} else {
 413		if (pause->rx_pause && pause->tx_pause)
 414			hw->fc.requested_mode = e1000_fc_full;
 415		else if (pause->rx_pause && !pause->tx_pause)
 416			hw->fc.requested_mode = e1000_fc_rx_pause;
 417		else if (!pause->rx_pause && pause->tx_pause)
 418			hw->fc.requested_mode = e1000_fc_tx_pause;
 419		else if (!pause->rx_pause && !pause->tx_pause)
 420			hw->fc.requested_mode = e1000_fc_none;
 421
 422		hw->fc.current_mode = hw->fc.requested_mode;
 423
 424		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
 425			  igb_force_mac_fc(hw) : igb_setup_link(hw));
 
 
 
 
 
 
 
 426	}
 427
 428	clear_bit(__IGB_RESETTING, &adapter->state);
 429	return retval;
 430}
 431
 432static u32 igb_get_msglevel(struct net_device *netdev)
 433{
 434	struct igb_adapter *adapter = netdev_priv(netdev);
 435	return adapter->msg_enable;
 436}
 437
 438static void igb_set_msglevel(struct net_device *netdev, u32 data)
 439{
 440	struct igb_adapter *adapter = netdev_priv(netdev);
 441	adapter->msg_enable = data;
 442}
 443
 444static int igb_get_regs_len(struct net_device *netdev)
 445{
 446#define IGB_REGS_LEN 739
 447	return IGB_REGS_LEN * sizeof(u32);
 448}
 449
 450static void igb_get_regs(struct net_device *netdev,
 451			 struct ethtool_regs *regs, void *p)
 452{
 453	struct igb_adapter *adapter = netdev_priv(netdev);
 454	struct e1000_hw *hw = &adapter->hw;
 455	u32 *regs_buff = p;
 456	u8 i;
 457
 458	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
 459
 460	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 461
 462	/* General Registers */
 463	regs_buff[0] = rd32(E1000_CTRL);
 464	regs_buff[1] = rd32(E1000_STATUS);
 465	regs_buff[2] = rd32(E1000_CTRL_EXT);
 466	regs_buff[3] = rd32(E1000_MDIC);
 467	regs_buff[4] = rd32(E1000_SCTL);
 468	regs_buff[5] = rd32(E1000_CONNSW);
 469	regs_buff[6] = rd32(E1000_VET);
 470	regs_buff[7] = rd32(E1000_LEDCTL);
 471	regs_buff[8] = rd32(E1000_PBA);
 472	regs_buff[9] = rd32(E1000_PBS);
 473	regs_buff[10] = rd32(E1000_FRTIMER);
 474	regs_buff[11] = rd32(E1000_TCPTIMER);
 475
 476	/* NVM Register */
 477	regs_buff[12] = rd32(E1000_EECD);
 478
 479	/* Interrupt */
 480	/* Reading EICS for EICR because they read the
 481	 * same but EICS does not clear on read
 482	 */
 483	regs_buff[13] = rd32(E1000_EICS);
 484	regs_buff[14] = rd32(E1000_EICS);
 485	regs_buff[15] = rd32(E1000_EIMS);
 486	regs_buff[16] = rd32(E1000_EIMC);
 487	regs_buff[17] = rd32(E1000_EIAC);
 488	regs_buff[18] = rd32(E1000_EIAM);
 489	/* Reading ICS for ICR because they read the
 490	 * same but ICS does not clear on read
 491	 */
 492	regs_buff[19] = rd32(E1000_ICS);
 493	regs_buff[20] = rd32(E1000_ICS);
 494	regs_buff[21] = rd32(E1000_IMS);
 495	regs_buff[22] = rd32(E1000_IMC);
 496	regs_buff[23] = rd32(E1000_IAC);
 497	regs_buff[24] = rd32(E1000_IAM);
 498	regs_buff[25] = rd32(E1000_IMIRVP);
 499
 500	/* Flow Control */
 501	regs_buff[26] = rd32(E1000_FCAL);
 502	regs_buff[27] = rd32(E1000_FCAH);
 503	regs_buff[28] = rd32(E1000_FCTTV);
 504	regs_buff[29] = rd32(E1000_FCRTL);
 505	regs_buff[30] = rd32(E1000_FCRTH);
 506	regs_buff[31] = rd32(E1000_FCRTV);
 507
 508	/* Receive */
 509	regs_buff[32] = rd32(E1000_RCTL);
 510	regs_buff[33] = rd32(E1000_RXCSUM);
 511	regs_buff[34] = rd32(E1000_RLPML);
 512	regs_buff[35] = rd32(E1000_RFCTL);
 513	regs_buff[36] = rd32(E1000_MRQC);
 514	regs_buff[37] = rd32(E1000_VT_CTL);
 515
 516	/* Transmit */
 517	regs_buff[38] = rd32(E1000_TCTL);
 518	regs_buff[39] = rd32(E1000_TCTL_EXT);
 519	regs_buff[40] = rd32(E1000_TIPG);
 520	regs_buff[41] = rd32(E1000_DTXCTL);
 521
 522	/* Wake Up */
 523	regs_buff[42] = rd32(E1000_WUC);
 524	regs_buff[43] = rd32(E1000_WUFC);
 525	regs_buff[44] = rd32(E1000_WUS);
 526	regs_buff[45] = rd32(E1000_IPAV);
 527	regs_buff[46] = rd32(E1000_WUPL);
 528
 529	/* MAC */
 530	regs_buff[47] = rd32(E1000_PCS_CFG0);
 531	regs_buff[48] = rd32(E1000_PCS_LCTL);
 532	regs_buff[49] = rd32(E1000_PCS_LSTAT);
 533	regs_buff[50] = rd32(E1000_PCS_ANADV);
 534	regs_buff[51] = rd32(E1000_PCS_LPAB);
 535	regs_buff[52] = rd32(E1000_PCS_NPTX);
 536	regs_buff[53] = rd32(E1000_PCS_LPABNP);
 537
 538	/* Statistics */
 539	regs_buff[54] = adapter->stats.crcerrs;
 540	regs_buff[55] = adapter->stats.algnerrc;
 541	regs_buff[56] = adapter->stats.symerrs;
 542	regs_buff[57] = adapter->stats.rxerrc;
 543	regs_buff[58] = adapter->stats.mpc;
 544	regs_buff[59] = adapter->stats.scc;
 545	regs_buff[60] = adapter->stats.ecol;
 546	regs_buff[61] = adapter->stats.mcc;
 547	regs_buff[62] = adapter->stats.latecol;
 548	regs_buff[63] = adapter->stats.colc;
 549	regs_buff[64] = adapter->stats.dc;
 550	regs_buff[65] = adapter->stats.tncrs;
 551	regs_buff[66] = adapter->stats.sec;
 552	regs_buff[67] = adapter->stats.htdpmc;
 553	regs_buff[68] = adapter->stats.rlec;
 554	regs_buff[69] = adapter->stats.xonrxc;
 555	regs_buff[70] = adapter->stats.xontxc;
 556	regs_buff[71] = adapter->stats.xoffrxc;
 557	regs_buff[72] = adapter->stats.xofftxc;
 558	regs_buff[73] = adapter->stats.fcruc;
 559	regs_buff[74] = adapter->stats.prc64;
 560	regs_buff[75] = adapter->stats.prc127;
 561	regs_buff[76] = adapter->stats.prc255;
 562	regs_buff[77] = adapter->stats.prc511;
 563	regs_buff[78] = adapter->stats.prc1023;
 564	regs_buff[79] = adapter->stats.prc1522;
 565	regs_buff[80] = adapter->stats.gprc;
 566	regs_buff[81] = adapter->stats.bprc;
 567	regs_buff[82] = adapter->stats.mprc;
 568	regs_buff[83] = adapter->stats.gptc;
 569	regs_buff[84] = adapter->stats.gorc;
 570	regs_buff[86] = adapter->stats.gotc;
 571	regs_buff[88] = adapter->stats.rnbc;
 572	regs_buff[89] = adapter->stats.ruc;
 573	regs_buff[90] = adapter->stats.rfc;
 574	regs_buff[91] = adapter->stats.roc;
 575	regs_buff[92] = adapter->stats.rjc;
 576	regs_buff[93] = adapter->stats.mgprc;
 577	regs_buff[94] = adapter->stats.mgpdc;
 578	regs_buff[95] = adapter->stats.mgptc;
 579	regs_buff[96] = adapter->stats.tor;
 580	regs_buff[98] = adapter->stats.tot;
 581	regs_buff[100] = adapter->stats.tpr;
 582	regs_buff[101] = adapter->stats.tpt;
 583	regs_buff[102] = adapter->stats.ptc64;
 584	regs_buff[103] = adapter->stats.ptc127;
 585	regs_buff[104] = adapter->stats.ptc255;
 586	regs_buff[105] = adapter->stats.ptc511;
 587	regs_buff[106] = adapter->stats.ptc1023;
 588	regs_buff[107] = adapter->stats.ptc1522;
 589	regs_buff[108] = adapter->stats.mptc;
 590	regs_buff[109] = adapter->stats.bptc;
 591	regs_buff[110] = adapter->stats.tsctc;
 592	regs_buff[111] = adapter->stats.iac;
 593	regs_buff[112] = adapter->stats.rpthc;
 594	regs_buff[113] = adapter->stats.hgptc;
 595	regs_buff[114] = adapter->stats.hgorc;
 596	regs_buff[116] = adapter->stats.hgotc;
 597	regs_buff[118] = adapter->stats.lenerrs;
 598	regs_buff[119] = adapter->stats.scvpc;
 599	regs_buff[120] = adapter->stats.hrmpc;
 600
 601	for (i = 0; i < 4; i++)
 602		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
 603	for (i = 0; i < 4; i++)
 604		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
 605	for (i = 0; i < 4; i++)
 606		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
 607	for (i = 0; i < 4; i++)
 608		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
 609	for (i = 0; i < 4; i++)
 610		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
 611	for (i = 0; i < 4; i++)
 612		regs_buff[141 + i] = rd32(E1000_RDH(i));
 613	for (i = 0; i < 4; i++)
 614		regs_buff[145 + i] = rd32(E1000_RDT(i));
 615	for (i = 0; i < 4; i++)
 616		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
 617
 618	for (i = 0; i < 10; i++)
 619		regs_buff[153 + i] = rd32(E1000_EITR(i));
 620	for (i = 0; i < 8; i++)
 621		regs_buff[163 + i] = rd32(E1000_IMIR(i));
 622	for (i = 0; i < 8; i++)
 623		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
 624	for (i = 0; i < 16; i++)
 625		regs_buff[179 + i] = rd32(E1000_RAL(i));
 626	for (i = 0; i < 16; i++)
 627		regs_buff[195 + i] = rd32(E1000_RAH(i));
 628
 629	for (i = 0; i < 4; i++)
 630		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
 631	for (i = 0; i < 4; i++)
 632		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
 633	for (i = 0; i < 4; i++)
 634		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
 635	for (i = 0; i < 4; i++)
 636		regs_buff[223 + i] = rd32(E1000_TDH(i));
 637	for (i = 0; i < 4; i++)
 638		regs_buff[227 + i] = rd32(E1000_TDT(i));
 639	for (i = 0; i < 4; i++)
 640		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
 641	for (i = 0; i < 4; i++)
 642		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
 643	for (i = 0; i < 4; i++)
 644		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
 645	for (i = 0; i < 4; i++)
 646		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
 647
 648	for (i = 0; i < 4; i++)
 649		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
 650	for (i = 0; i < 4; i++)
 651		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
 652	for (i = 0; i < 32; i++)
 653		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
 654	for (i = 0; i < 128; i++)
 655		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
 656	for (i = 0; i < 128; i++)
 657		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
 658	for (i = 0; i < 4; i++)
 659		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
 660
 661	regs_buff[547] = rd32(E1000_TDFH);
 662	regs_buff[548] = rd32(E1000_TDFT);
 663	regs_buff[549] = rd32(E1000_TDFHS);
 664	regs_buff[550] = rd32(E1000_TDFPC);
 665
 666	if (hw->mac.type > e1000_82580) {
 667		regs_buff[551] = adapter->stats.o2bgptc;
 668		regs_buff[552] = adapter->stats.b2ospc;
 669		regs_buff[553] = adapter->stats.o2bspc;
 670		regs_buff[554] = adapter->stats.b2ogprc;
 671	}
 672
 673	if (hw->mac.type != e1000_82576)
 674		return;
 675	for (i = 0; i < 12; i++)
 676		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
 677	for (i = 0; i < 4; i++)
 678		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
 679	for (i = 0; i < 12; i++)
 680		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
 681	for (i = 0; i < 12; i++)
 682		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
 683	for (i = 0; i < 12; i++)
 684		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
 685	for (i = 0; i < 12; i++)
 686		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
 687	for (i = 0; i < 12; i++)
 688		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
 689	for (i = 0; i < 12; i++)
 690		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
 691
 692	for (i = 0; i < 12; i++)
 693		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
 694	for (i = 0; i < 12; i++)
 695		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
 696	for (i = 0; i < 12; i++)
 697		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
 698	for (i = 0; i < 12; i++)
 699		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
 700	for (i = 0; i < 12; i++)
 701		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
 702	for (i = 0; i < 12; i++)
 703		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
 704	for (i = 0; i < 12; i++)
 705		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
 706	for (i = 0; i < 12; i++)
 707		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
 
 
 
 708}
 709
 710static int igb_get_eeprom_len(struct net_device *netdev)
 711{
 712	struct igb_adapter *adapter = netdev_priv(netdev);
 713	return adapter->hw.nvm.word_size * 2;
 714}
 715
 716static int igb_get_eeprom(struct net_device *netdev,
 717			  struct ethtool_eeprom *eeprom, u8 *bytes)
 718{
 719	struct igb_adapter *adapter = netdev_priv(netdev);
 720	struct e1000_hw *hw = &adapter->hw;
 721	u16 *eeprom_buff;
 722	int first_word, last_word;
 723	int ret_val = 0;
 724	u16 i;
 725
 726	if (eeprom->len == 0)
 727		return -EINVAL;
 728
 729	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 730
 731	first_word = eeprom->offset >> 1;
 732	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 733
 734	eeprom_buff = kmalloc(sizeof(u16) *
 735			(last_word - first_word + 1), GFP_KERNEL);
 736	if (!eeprom_buff)
 737		return -ENOMEM;
 738
 739	if (hw->nvm.type == e1000_nvm_eeprom_spi)
 740		ret_val = hw->nvm.ops.read(hw, first_word,
 741					   last_word - first_word + 1,
 742					   eeprom_buff);
 743	else {
 744		for (i = 0; i < last_word - first_word + 1; i++) {
 745			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
 746						   &eeprom_buff[i]);
 747			if (ret_val)
 748				break;
 749		}
 750	}
 751
 752	/* Device's eeprom is always little-endian, word addressable */
 753	for (i = 0; i < last_word - first_word + 1; i++)
 754		le16_to_cpus(&eeprom_buff[i]);
 755
 756	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 757			eeprom->len);
 758	kfree(eeprom_buff);
 759
 760	return ret_val;
 761}
 762
 763static int igb_set_eeprom(struct net_device *netdev,
 764			  struct ethtool_eeprom *eeprom, u8 *bytes)
 765{
 766	struct igb_adapter *adapter = netdev_priv(netdev);
 767	struct e1000_hw *hw = &adapter->hw;
 768	u16 *eeprom_buff;
 769	void *ptr;
 770	int max_len, first_word, last_word, ret_val = 0;
 771	u16 i;
 772
 773	if (eeprom->len == 0)
 774		return -EOPNOTSUPP;
 775
 776	if ((hw->mac.type >= e1000_i210) &&
 777	    !igb_get_flash_presence_i210(hw)) {
 778		return -EOPNOTSUPP;
 779	}
 780
 781	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 782		return -EFAULT;
 783
 784	max_len = hw->nvm.word_size * 2;
 785
 786	first_word = eeprom->offset >> 1;
 787	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 788	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 789	if (!eeprom_buff)
 790		return -ENOMEM;
 791
 792	ptr = (void *)eeprom_buff;
 793
 794	if (eeprom->offset & 1) {
 795		/* need read/modify/write of first changed EEPROM word
 796		 * only the second byte of the word is being modified
 797		 */
 798		ret_val = hw->nvm.ops.read(hw, first_word, 1,
 799					    &eeprom_buff[0]);
 800		ptr++;
 801	}
 802	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 803		/* need read/modify/write of last changed EEPROM word
 804		 * only the first byte of the word is being modified
 805		 */
 806		ret_val = hw->nvm.ops.read(hw, last_word, 1,
 807				   &eeprom_buff[last_word - first_word]);
 808	}
 809
 810	/* Device's eeprom is always little-endian, word addressable */
 811	for (i = 0; i < last_word - first_word + 1; i++)
 812		le16_to_cpus(&eeprom_buff[i]);
 813
 814	memcpy(ptr, bytes, eeprom->len);
 815
 816	for (i = 0; i < last_word - first_word + 1; i++)
 817		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 818
 819	ret_val = hw->nvm.ops.write(hw, first_word,
 820				    last_word - first_word + 1, eeprom_buff);
 821
 822	/* Update the checksum if nvm write succeeded */
 823	if (ret_val == 0)
 824		hw->nvm.ops.update(hw);
 825
 826	igb_set_fw_version(adapter);
 827	kfree(eeprom_buff);
 828	return ret_val;
 829}
 830
 831static void igb_get_drvinfo(struct net_device *netdev,
 832			    struct ethtool_drvinfo *drvinfo)
 833{
 834	struct igb_adapter *adapter = netdev_priv(netdev);
 835
 836	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
 837	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
 838
 839	/* EEPROM image version # is reported as firmware version # for
 840	 * 82575 controllers
 841	 */
 842	strlcpy(drvinfo->fw_version, adapter->fw_version,
 843		sizeof(drvinfo->fw_version));
 844	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 845		sizeof(drvinfo->bus_info));
 846	drvinfo->n_stats = IGB_STATS_LEN;
 847	drvinfo->testinfo_len = IGB_TEST_LEN;
 848	drvinfo->regdump_len = igb_get_regs_len(netdev);
 849	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
 850}
 851
 852static void igb_get_ringparam(struct net_device *netdev,
 853			      struct ethtool_ringparam *ring)
 
 
 854{
 855	struct igb_adapter *adapter = netdev_priv(netdev);
 856
 857	ring->rx_max_pending = IGB_MAX_RXD;
 858	ring->tx_max_pending = IGB_MAX_TXD;
 859	ring->rx_pending = adapter->rx_ring_count;
 860	ring->tx_pending = adapter->tx_ring_count;
 861}
 862
 863static int igb_set_ringparam(struct net_device *netdev,
 864			     struct ethtool_ringparam *ring)
 
 
 865{
 866	struct igb_adapter *adapter = netdev_priv(netdev);
 867	struct igb_ring *temp_ring;
 868	int i, err = 0;
 869	u16 new_rx_count, new_tx_count;
 870
 871	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 872		return -EINVAL;
 873
 874	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
 875	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
 876	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 877
 878	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
 879	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
 880	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 881
 882	if ((new_tx_count == adapter->tx_ring_count) &&
 883	    (new_rx_count == adapter->rx_ring_count)) {
 884		/* nothing to do */
 885		return 0;
 886	}
 887
 888	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 889		msleep(1);
 890
 891	if (!netif_running(adapter->netdev)) {
 892		for (i = 0; i < adapter->num_tx_queues; i++)
 893			adapter->tx_ring[i]->count = new_tx_count;
 894		for (i = 0; i < adapter->num_rx_queues; i++)
 895			adapter->rx_ring[i]->count = new_rx_count;
 896		adapter->tx_ring_count = new_tx_count;
 897		adapter->rx_ring_count = new_rx_count;
 898		goto clear_reset;
 899	}
 900
 901	if (adapter->num_tx_queues > adapter->num_rx_queues)
 902		temp_ring = vmalloc(adapter->num_tx_queues *
 903				    sizeof(struct igb_ring));
 904	else
 905		temp_ring = vmalloc(adapter->num_rx_queues *
 906				    sizeof(struct igb_ring));
 907
 908	if (!temp_ring) {
 909		err = -ENOMEM;
 910		goto clear_reset;
 911	}
 912
 913	igb_down(adapter);
 914
 915	/* We can't just free everything and then setup again,
 916	 * because the ISRs in MSI-X mode get passed pointers
 917	 * to the Tx and Rx ring structs.
 918	 */
 919	if (new_tx_count != adapter->tx_ring_count) {
 920		for (i = 0; i < adapter->num_tx_queues; i++) {
 921			memcpy(&temp_ring[i], adapter->tx_ring[i],
 922			       sizeof(struct igb_ring));
 923
 924			temp_ring[i].count = new_tx_count;
 925			err = igb_setup_tx_resources(&temp_ring[i]);
 926			if (err) {
 927				while (i) {
 928					i--;
 929					igb_free_tx_resources(&temp_ring[i]);
 930				}
 931				goto err_setup;
 932			}
 933		}
 934
 935		for (i = 0; i < adapter->num_tx_queues; i++) {
 936			igb_free_tx_resources(adapter->tx_ring[i]);
 937
 938			memcpy(adapter->tx_ring[i], &temp_ring[i],
 939			       sizeof(struct igb_ring));
 940		}
 941
 942		adapter->tx_ring_count = new_tx_count;
 943	}
 944
 945	if (new_rx_count != adapter->rx_ring_count) {
 946		for (i = 0; i < adapter->num_rx_queues; i++) {
 947			memcpy(&temp_ring[i], adapter->rx_ring[i],
 948			       sizeof(struct igb_ring));
 949
 950			temp_ring[i].count = new_rx_count;
 951			err = igb_setup_rx_resources(&temp_ring[i]);
 952			if (err) {
 953				while (i) {
 954					i--;
 955					igb_free_rx_resources(&temp_ring[i]);
 956				}
 957				goto err_setup;
 958			}
 959
 960		}
 961
 962		for (i = 0; i < adapter->num_rx_queues; i++) {
 963			igb_free_rx_resources(adapter->rx_ring[i]);
 964
 965			memcpy(adapter->rx_ring[i], &temp_ring[i],
 966			       sizeof(struct igb_ring));
 967		}
 968
 969		adapter->rx_ring_count = new_rx_count;
 970	}
 971err_setup:
 972	igb_up(adapter);
 973	vfree(temp_ring);
 974clear_reset:
 975	clear_bit(__IGB_RESETTING, &adapter->state);
 976	return err;
 977}
 978
 979/* ethtool register test data */
 980struct igb_reg_test {
 981	u16 reg;
 982	u16 reg_offset;
 983	u16 array_len;
 984	u16 test_type;
 985	u32 mask;
 986	u32 write;
 987};
 988
 989/* In the hardware, registers are laid out either singly, in arrays
 990 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
 991 * most tests take place on arrays or single registers (handled
 992 * as a single-element array) and special-case the tables.
 993 * Table tests are always pattern tests.
 994 *
 995 * We also make provision for some required setup steps by specifying
 996 * registers to be written without any read-back testing.
 997 */
 998
 999#define PATTERN_TEST	1
1000#define SET_READ_TEST	2
1001#define WRITE_NO_TEST	3
1002#define TABLE32_TEST	4
1003#define TABLE64_TEST_LO	5
1004#define TABLE64_TEST_HI	6
1005
1006/* i210 reg test */
1007static struct igb_reg_test reg_test_i210[] = {
1008	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1010	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1011	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1012	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1014	/* RDH is read-only for i210, only test RDT. */
1015	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1016	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1017	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1018	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1019	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1020	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1021	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1022	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1023	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1024	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1025	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1026	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1027	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1028						0xFFFFFFFF, 0xFFFFFFFF },
1029	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1030						0x900FFFFF, 0xFFFFFFFF },
1031	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1032						0xFFFFFFFF, 0xFFFFFFFF },
1033	{ 0, 0, 0, 0, 0 }
1034};
1035
1036/* i350 reg test */
1037static struct igb_reg_test reg_test_i350[] = {
1038	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1040	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1041	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1042	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1043	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1044	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1045	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1046	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1048	/* RDH is read-only for i350, only test RDT. */
1049	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1050	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1051	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1052	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1053	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1054	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1055	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1057	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1058	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1060	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1061	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1062	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1063	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1064	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1065	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1066	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1067						0xFFFFFFFF, 0xFFFFFFFF },
1068	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1069						0xC3FFFFFF, 0xFFFFFFFF },
1070	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1071						0xFFFFFFFF, 0xFFFFFFFF },
1072	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1073						0xC3FFFFFF, 0xFFFFFFFF },
1074	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1075						0xFFFFFFFF, 0xFFFFFFFF },
1076	{ 0, 0, 0, 0 }
1077};
1078
1079/* 82580 reg test */
1080static struct igb_reg_test reg_test_82580[] = {
1081	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1083	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1084	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1085	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1086	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1087	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1088	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1089	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1090	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1091	/* RDH is read-only for 82580, only test RDT. */
1092	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1093	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1094	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1095	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1096	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1097	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1098	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1099	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1100	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1101	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1102	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1103	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1104	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1105	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1106	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1107	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1108	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1109	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1110						0xFFFFFFFF, 0xFFFFFFFF },
1111	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1112						0x83FFFFFF, 0xFFFFFFFF },
1113	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1114						0xFFFFFFFF, 0xFFFFFFFF },
1115	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1116						0x83FFFFFF, 0xFFFFFFFF },
1117	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1118						0xFFFFFFFF, 0xFFFFFFFF },
1119	{ 0, 0, 0, 0 }
1120};
1121
1122/* 82576 reg test */
1123static struct igb_reg_test reg_test_82576[] = {
1124	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1126	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1127	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1128	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1129	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1130	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1131	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1132	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1133	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1134	/* Enable all RX queues before testing. */
1135	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1136	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
 
 
1137	/* RDH is read-only for 82576, only test RDT. */
1138	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1139	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1141	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1142	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1143	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1144	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1145	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1146	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1147	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1148	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1149	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1150	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1151	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1152	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1153	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1154	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1155	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1156	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1157	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1158	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1159	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1160	{ 0, 0, 0, 0 }
1161};
1162
1163/* 82575 register test */
1164static struct igb_reg_test reg_test_82575[] = {
1165	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1166	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1167	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1168	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1169	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1170	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1171	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1172	/* Enable all four RX queues before testing. */
1173	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
 
1174	/* RDH is read-only for 82575, only test RDT. */
1175	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1176	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1177	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1178	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1179	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1180	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1181	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1182	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1183	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1184	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1185	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1186	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1187	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1188	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1189	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1190	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191	{ 0, 0, 0, 0 }
1192};
1193
1194static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1195			     int reg, u32 mask, u32 write)
1196{
1197	struct e1000_hw *hw = &adapter->hw;
1198	u32 pat, val;
1199	static const u32 _test[] =
1200		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1201	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1202		wr32(reg, (_test[pat] & write));
1203		val = rd32(reg) & mask;
1204		if (val != (_test[pat] & write & mask)) {
1205			dev_err(&adapter->pdev->dev,
1206				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1207				reg, val, (_test[pat] & write & mask));
1208			*data = reg;
1209			return 1;
1210		}
1211	}
1212
1213	return 0;
1214}
1215
1216static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1217			      int reg, u32 mask, u32 write)
1218{
1219	struct e1000_hw *hw = &adapter->hw;
1220	u32 val;
 
1221	wr32(reg, write & mask);
1222	val = rd32(reg);
1223	if ((write & mask) != (val & mask)) {
1224		dev_err(&adapter->pdev->dev,
1225			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1226			(val & mask), (write & mask));
1227		*data = reg;
1228		return 1;
1229	}
1230
1231	return 0;
1232}
1233
1234#define REG_PATTERN_TEST(reg, mask, write) \
1235	do { \
1236		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1237			return 1; \
1238	} while (0)
1239
1240#define REG_SET_AND_CHECK(reg, mask, write) \
1241	do { \
1242		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1243			return 1; \
1244	} while (0)
1245
1246static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1247{
1248	struct e1000_hw *hw = &adapter->hw;
1249	struct igb_reg_test *test;
1250	u32 value, before, after;
1251	u32 i, toggle;
1252
1253	switch (adapter->hw.mac.type) {
1254	case e1000_i350:
1255	case e1000_i354:
1256		test = reg_test_i350;
1257		toggle = 0x7FEFF3FF;
1258		break;
1259	case e1000_i210:
1260	case e1000_i211:
1261		test = reg_test_i210;
1262		toggle = 0x7FEFF3FF;
1263		break;
1264	case e1000_82580:
1265		test = reg_test_82580;
1266		toggle = 0x7FEFF3FF;
1267		break;
1268	case e1000_82576:
1269		test = reg_test_82576;
1270		toggle = 0x7FFFF3FF;
1271		break;
1272	default:
1273		test = reg_test_82575;
1274		toggle = 0x7FFFF3FF;
1275		break;
1276	}
1277
1278	/* Because the status register is such a special case,
1279	 * we handle it separately from the rest of the register
1280	 * tests.  Some bits are read-only, some toggle, and some
1281	 * are writable on newer MACs.
1282	 */
1283	before = rd32(E1000_STATUS);
1284	value = (rd32(E1000_STATUS) & toggle);
1285	wr32(E1000_STATUS, toggle);
1286	after = rd32(E1000_STATUS) & toggle;
1287	if (value != after) {
1288		dev_err(&adapter->pdev->dev,
1289			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1290			after, value);
1291		*data = 1;
1292		return 1;
1293	}
1294	/* restore previous status */
1295	wr32(E1000_STATUS, before);
1296
1297	/* Perform the remainder of the register test, looping through
1298	 * the test table until we either fail or reach the null entry.
1299	 */
1300	while (test->reg) {
1301		for (i = 0; i < test->array_len; i++) {
1302			switch (test->test_type) {
1303			case PATTERN_TEST:
1304				REG_PATTERN_TEST(test->reg +
1305						(i * test->reg_offset),
1306						test->mask,
1307						test->write);
1308				break;
1309			case SET_READ_TEST:
1310				REG_SET_AND_CHECK(test->reg +
1311						(i * test->reg_offset),
1312						test->mask,
1313						test->write);
1314				break;
1315			case WRITE_NO_TEST:
1316				writel(test->write,
1317				    (adapter->hw.hw_addr + test->reg)
1318					+ (i * test->reg_offset));
1319				break;
1320			case TABLE32_TEST:
1321				REG_PATTERN_TEST(test->reg + (i * 4),
1322						test->mask,
1323						test->write);
1324				break;
1325			case TABLE64_TEST_LO:
1326				REG_PATTERN_TEST(test->reg + (i * 8),
1327						test->mask,
1328						test->write);
1329				break;
1330			case TABLE64_TEST_HI:
1331				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1332						test->mask,
1333						test->write);
1334				break;
1335			}
1336		}
1337		test++;
1338	}
1339
1340	*data = 0;
1341	return 0;
1342}
1343
1344static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1345{
1346	struct e1000_hw *hw = &adapter->hw;
1347
1348	*data = 0;
1349
1350	/* Validate eeprom on all parts but flashless */
1351	switch (hw->mac.type) {
1352	case e1000_i210:
1353	case e1000_i211:
1354		if (igb_get_flash_presence_i210(hw)) {
1355			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1356				*data = 2;
1357		}
1358		break;
1359	default:
1360		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1361			*data = 2;
1362		break;
1363	}
1364
1365	return *data;
1366}
1367
1368static irqreturn_t igb_test_intr(int irq, void *data)
1369{
1370	struct igb_adapter *adapter = (struct igb_adapter *) data;
1371	struct e1000_hw *hw = &adapter->hw;
1372
1373	adapter->test_icr |= rd32(E1000_ICR);
1374
1375	return IRQ_HANDLED;
1376}
1377
1378static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1379{
1380	struct e1000_hw *hw = &adapter->hw;
1381	struct net_device *netdev = adapter->netdev;
1382	u32 mask, ics_mask, i = 0, shared_int = true;
1383	u32 irq = adapter->pdev->irq;
1384
1385	*data = 0;
1386
1387	/* Hook up test interrupt handler just for this test */
1388	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1389		if (request_irq(adapter->msix_entries[0].vector,
1390		                igb_test_intr, 0, netdev->name, adapter)) {
1391			*data = 1;
1392			return -1;
1393		}
 
 
1394	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1395		shared_int = false;
1396		if (request_irq(irq,
1397		                igb_test_intr, 0, netdev->name, adapter)) {
1398			*data = 1;
1399			return -1;
1400		}
1401	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1402				netdev->name, adapter)) {
1403		shared_int = false;
1404	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1405		 netdev->name, adapter)) {
1406		*data = 1;
1407		return -1;
1408	}
1409	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1410		(shared_int ? "shared" : "unshared"));
1411
1412	/* Disable all the interrupts */
1413	wr32(E1000_IMC, ~0);
1414	wrfl();
1415	msleep(10);
1416
1417	/* Define all writable bits for ICS */
1418	switch (hw->mac.type) {
1419	case e1000_82575:
1420		ics_mask = 0x37F47EDD;
1421		break;
1422	case e1000_82576:
1423		ics_mask = 0x77D4FBFD;
1424		break;
1425	case e1000_82580:
1426		ics_mask = 0x77DCFED5;
1427		break;
1428	case e1000_i350:
1429	case e1000_i354:
1430	case e1000_i210:
1431	case e1000_i211:
1432		ics_mask = 0x77DCFED5;
1433		break;
1434	default:
1435		ics_mask = 0x7FFFFFFF;
1436		break;
1437	}
1438
1439	/* Test each interrupt */
1440	for (; i < 31; i++) {
1441		/* Interrupt to test */
1442		mask = 1 << i;
1443
1444		if (!(mask & ics_mask))
1445			continue;
1446
1447		if (!shared_int) {
1448			/* Disable the interrupt to be reported in
1449			 * the cause register and then force the same
1450			 * interrupt and see if one gets posted.  If
1451			 * an interrupt was posted to the bus, the
1452			 * test failed.
1453			 */
1454			adapter->test_icr = 0;
1455
1456			/* Flush any pending interrupts */
1457			wr32(E1000_ICR, ~0);
1458
1459			wr32(E1000_IMC, mask);
1460			wr32(E1000_ICS, mask);
1461			wrfl();
1462			msleep(10);
1463
1464			if (adapter->test_icr & mask) {
1465				*data = 3;
1466				break;
1467			}
1468		}
1469
1470		/* Enable the interrupt to be reported in
1471		 * the cause register and then force the same
1472		 * interrupt and see if one gets posted.  If
1473		 * an interrupt was not posted to the bus, the
1474		 * test failed.
1475		 */
1476		adapter->test_icr = 0;
1477
1478		/* Flush any pending interrupts */
1479		wr32(E1000_ICR, ~0);
1480
1481		wr32(E1000_IMS, mask);
1482		wr32(E1000_ICS, mask);
1483		wrfl();
1484		msleep(10);
1485
1486		if (!(adapter->test_icr & mask)) {
1487			*data = 4;
1488			break;
1489		}
1490
1491		if (!shared_int) {
1492			/* Disable the other interrupts to be reported in
1493			 * the cause register and then force the other
1494			 * interrupts and see if any get posted.  If
1495			 * an interrupt was posted to the bus, the
1496			 * test failed.
1497			 */
1498			adapter->test_icr = 0;
1499
1500			/* Flush any pending interrupts */
1501			wr32(E1000_ICR, ~0);
1502
1503			wr32(E1000_IMC, ~mask);
1504			wr32(E1000_ICS, ~mask);
1505			wrfl();
1506			msleep(10);
1507
1508			if (adapter->test_icr & mask) {
1509				*data = 5;
1510				break;
1511			}
1512		}
1513	}
1514
1515	/* Disable all the interrupts */
1516	wr32(E1000_IMC, ~0);
1517	wrfl();
1518	msleep(10);
1519
1520	/* Unhook test interrupt handler */
1521	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1522		free_irq(adapter->msix_entries[0].vector, adapter);
1523	else
1524		free_irq(irq, adapter);
1525
1526	return *data;
1527}
1528
1529static void igb_free_desc_rings(struct igb_adapter *adapter)
1530{
1531	igb_free_tx_resources(&adapter->test_tx_ring);
1532	igb_free_rx_resources(&adapter->test_rx_ring);
1533}
1534
1535static int igb_setup_desc_rings(struct igb_adapter *adapter)
1536{
1537	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1538	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1539	struct e1000_hw *hw = &adapter->hw;
1540	int ret_val;
1541
1542	/* Setup Tx descriptor ring and Tx buffers */
1543	tx_ring->count = IGB_DEFAULT_TXD;
1544	tx_ring->dev = &adapter->pdev->dev;
1545	tx_ring->netdev = adapter->netdev;
1546	tx_ring->reg_idx = adapter->vfs_allocated_count;
1547
1548	if (igb_setup_tx_resources(tx_ring)) {
1549		ret_val = 1;
1550		goto err_nomem;
1551	}
1552
1553	igb_setup_tctl(adapter);
1554	igb_configure_tx_ring(adapter, tx_ring);
1555
1556	/* Setup Rx descriptor ring and Rx buffers */
1557	rx_ring->count = IGB_DEFAULT_RXD;
1558	rx_ring->dev = &adapter->pdev->dev;
1559	rx_ring->netdev = adapter->netdev;
1560	rx_ring->reg_idx = adapter->vfs_allocated_count;
1561
1562	if (igb_setup_rx_resources(rx_ring)) {
1563		ret_val = 3;
1564		goto err_nomem;
1565	}
1566
1567	/* set the default queue to queue 0 of PF */
1568	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1569
1570	/* enable receive ring */
1571	igb_setup_rctl(adapter);
1572	igb_configure_rx_ring(adapter, rx_ring);
1573
1574	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1575
1576	return 0;
1577
1578err_nomem:
1579	igb_free_desc_rings(adapter);
1580	return ret_val;
1581}
1582
1583static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1584{
1585	struct e1000_hw *hw = &adapter->hw;
1586
1587	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1588	igb_write_phy_reg(hw, 29, 0x001F);
1589	igb_write_phy_reg(hw, 30, 0x8FFC);
1590	igb_write_phy_reg(hw, 29, 0x001A);
1591	igb_write_phy_reg(hw, 30, 0x8FF0);
1592}
1593
1594static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1595{
1596	struct e1000_hw *hw = &adapter->hw;
1597	u32 ctrl_reg = 0;
1598
1599	hw->mac.autoneg = false;
1600
1601	if (hw->phy.type == e1000_phy_m88) {
1602		if (hw->phy.id != I210_I_PHY_ID) {
1603			/* Auto-MDI/MDIX Off */
1604			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1605			/* reset to update Auto-MDI/MDIX */
1606			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1607			/* autoneg off */
1608			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1609		} else {
1610			/* force 1000, set loopback  */
1611			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1612			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1613		}
1614	} else if (hw->phy.type == e1000_phy_82580) {
1615		/* enable MII loopback */
1616		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1617	}
1618
1619	/* add small delay to avoid loopback test failure */
1620	msleep(50);
1621
1622	/* force 1000, set loopback */
1623	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1624
1625	/* Now set up the MAC to the same speed/duplex as the PHY. */
1626	ctrl_reg = rd32(E1000_CTRL);
1627	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1628	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1629		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1630		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1631		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1632		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1633
1634	if (hw->phy.type == e1000_phy_m88)
1635		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1636
1637	wr32(E1000_CTRL, ctrl_reg);
1638
1639	/* Disable the receiver on the PHY so when a cable is plugged in, the
1640	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1641	 */
1642	if (hw->phy.type == e1000_phy_m88)
1643		igb_phy_disable_receiver(adapter);
1644
1645	mdelay(500);
1646	return 0;
1647}
1648
1649static int igb_set_phy_loopback(struct igb_adapter *adapter)
1650{
1651	return igb_integrated_phy_loopback(adapter);
1652}
1653
1654static int igb_setup_loopback_test(struct igb_adapter *adapter)
1655{
1656	struct e1000_hw *hw = &adapter->hw;
1657	u32 reg;
1658
1659	reg = rd32(E1000_CTRL_EXT);
1660
1661	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1662	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1663		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1664		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1665		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1666		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1667		(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1668
1669			/* Enable DH89xxCC MPHY for near end loopback */
1670			reg = rd32(E1000_MPHY_ADDR_CTL);
1671			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1672			E1000_MPHY_PCS_CLK_REG_OFFSET;
1673			wr32(E1000_MPHY_ADDR_CTL, reg);
1674
1675			reg = rd32(E1000_MPHY_DATA);
1676			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1677			wr32(E1000_MPHY_DATA, reg);
1678		}
1679
1680		reg = rd32(E1000_RCTL);
1681		reg |= E1000_RCTL_LBM_TCVR;
1682		wr32(E1000_RCTL, reg);
1683
1684		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1685
1686		reg = rd32(E1000_CTRL);
1687		reg &= ~(E1000_CTRL_RFCE |
1688			 E1000_CTRL_TFCE |
1689			 E1000_CTRL_LRST);
1690		reg |= E1000_CTRL_SLU |
1691		       E1000_CTRL_FD;
1692		wr32(E1000_CTRL, reg);
1693
1694		/* Unset switch control to serdes energy detect */
1695		reg = rd32(E1000_CONNSW);
1696		reg &= ~E1000_CONNSW_ENRGSRC;
1697		wr32(E1000_CONNSW, reg);
1698
1699		/* Unset sigdetect for SERDES loopback on
1700		 * 82580 and newer devices.
1701		 */
1702		if (hw->mac.type >= e1000_82580) {
1703			reg = rd32(E1000_PCS_CFG0);
1704			reg |= E1000_PCS_CFG_IGN_SD;
1705			wr32(E1000_PCS_CFG0, reg);
1706		}
1707
1708		/* Set PCS register for forced speed */
1709		reg = rd32(E1000_PCS_LCTL);
1710		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1711		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1712		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1713		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1714		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1715		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1716		wr32(E1000_PCS_LCTL, reg);
1717
1718		return 0;
1719	}
1720
1721	return igb_set_phy_loopback(adapter);
1722}
1723
1724static void igb_loopback_cleanup(struct igb_adapter *adapter)
1725{
1726	struct e1000_hw *hw = &adapter->hw;
1727	u32 rctl;
1728	u16 phy_reg;
1729
1730	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1731	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1732	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1733	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1734	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1735		u32 reg;
1736
1737		/* Disable near end loopback on DH89xxCC */
1738		reg = rd32(E1000_MPHY_ADDR_CTL);
1739		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1740		E1000_MPHY_PCS_CLK_REG_OFFSET;
1741		wr32(E1000_MPHY_ADDR_CTL, reg);
1742
1743		reg = rd32(E1000_MPHY_DATA);
1744		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1745		wr32(E1000_MPHY_DATA, reg);
1746	}
1747
1748	rctl = rd32(E1000_RCTL);
1749	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1750	wr32(E1000_RCTL, rctl);
1751
1752	hw->mac.autoneg = true;
1753	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1754	if (phy_reg & MII_CR_LOOPBACK) {
1755		phy_reg &= ~MII_CR_LOOPBACK;
1756		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1757		igb_phy_sw_reset(hw);
1758	}
1759}
1760
1761static void igb_create_lbtest_frame(struct sk_buff *skb,
1762				    unsigned int frame_size)
1763{
1764	memset(skb->data, 0xFF, frame_size);
1765	frame_size /= 2;
1766	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1767	memset(&skb->data[frame_size + 10], 0xBE, 1);
1768	memset(&skb->data[frame_size + 12], 0xAF, 1);
1769}
1770
1771static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1772				  unsigned int frame_size)
1773{
1774	unsigned char *data;
1775	bool match = true;
1776
1777	frame_size >>= 1;
1778
1779	data = kmap(rx_buffer->page);
1780
1781	if (data[3] != 0xFF ||
1782	    data[frame_size + 10] != 0xBE ||
1783	    data[frame_size + 12] != 0xAF)
1784		match = false;
1785
1786	kunmap(rx_buffer->page);
1787
1788	return match;
1789}
1790
1791static int igb_clean_test_rings(struct igb_ring *rx_ring,
1792				struct igb_ring *tx_ring,
1793				unsigned int size)
1794{
1795	union e1000_adv_rx_desc *rx_desc;
1796	struct igb_rx_buffer *rx_buffer_info;
1797	struct igb_tx_buffer *tx_buffer_info;
1798	u16 rx_ntc, tx_ntc, count = 0;
1799
1800	/* initialize next to clean and descriptor values */
1801	rx_ntc = rx_ring->next_to_clean;
1802	tx_ntc = tx_ring->next_to_clean;
1803	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1804
1805	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1806		/* check Rx buffer */
1807		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1808
1809		/* sync Rx buffer for CPU read */
1810		dma_sync_single_for_cpu(rx_ring->dev,
1811					rx_buffer_info->dma,
1812					IGB_RX_BUFSZ,
1813					DMA_FROM_DEVICE);
1814
1815		/* verify contents of skb */
1816		if (igb_check_lbtest_frame(rx_buffer_info, size))
1817			count++;
1818
1819		/* sync Rx buffer for device write */
1820		dma_sync_single_for_device(rx_ring->dev,
1821					   rx_buffer_info->dma,
1822					   IGB_RX_BUFSZ,
1823					   DMA_FROM_DEVICE);
1824
1825		/* unmap buffer on Tx side */
1826		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1827		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
 
 
 
 
 
 
 
 
 
1828
1829		/* increment Rx/Tx next to clean counters */
1830		rx_ntc++;
1831		if (rx_ntc == rx_ring->count)
1832			rx_ntc = 0;
1833		tx_ntc++;
1834		if (tx_ntc == tx_ring->count)
1835			tx_ntc = 0;
1836
1837		/* fetch next descriptor */
1838		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1839	}
1840
1841	netdev_tx_reset_queue(txring_txq(tx_ring));
1842
1843	/* re-map buffers to ring, store next to clean values */
1844	igb_alloc_rx_buffers(rx_ring, count);
1845	rx_ring->next_to_clean = rx_ntc;
1846	tx_ring->next_to_clean = tx_ntc;
1847
1848	return count;
1849}
1850
1851static int igb_run_loopback_test(struct igb_adapter *adapter)
1852{
1853	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1854	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1855	u16 i, j, lc, good_cnt;
1856	int ret_val = 0;
1857	unsigned int size = IGB_RX_HDR_LEN;
1858	netdev_tx_t tx_ret_val;
1859	struct sk_buff *skb;
1860
1861	/* allocate test skb */
1862	skb = alloc_skb(size, GFP_KERNEL);
1863	if (!skb)
1864		return 11;
1865
1866	/* place data into test skb */
1867	igb_create_lbtest_frame(skb, size);
1868	skb_put(skb, size);
1869
1870	/* Calculate the loop count based on the largest descriptor ring
1871	 * The idea is to wrap the largest ring a number of times using 64
1872	 * send/receive pairs during each loop
1873	 */
1874
1875	if (rx_ring->count <= tx_ring->count)
1876		lc = ((tx_ring->count / 64) * 2) + 1;
1877	else
1878		lc = ((rx_ring->count / 64) * 2) + 1;
1879
1880	for (j = 0; j <= lc; j++) { /* loop count loop */
1881		/* reset count of good packets */
1882		good_cnt = 0;
1883
1884		/* place 64 packets on the transmit queue*/
1885		for (i = 0; i < 64; i++) {
1886			skb_get(skb);
1887			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1888			if (tx_ret_val == NETDEV_TX_OK)
1889				good_cnt++;
1890		}
1891
1892		if (good_cnt != 64) {
1893			ret_val = 12;
1894			break;
1895		}
1896
1897		/* allow 200 milliseconds for packets to go from Tx to Rx */
1898		msleep(200);
1899
1900		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1901		if (good_cnt != 64) {
1902			ret_val = 13;
1903			break;
1904		}
1905	} /* end loop count loop */
1906
1907	/* free the original skb */
1908	kfree_skb(skb);
1909
1910	return ret_val;
1911}
1912
1913static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1914{
1915	/* PHY loopback cannot be performed if SoL/IDER
1916	 * sessions are active
1917	 */
1918	if (igb_check_reset_block(&adapter->hw)) {
1919		dev_err(&adapter->pdev->dev,
1920			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1921		*data = 0;
1922		goto out;
1923	}
1924
1925	if (adapter->hw.mac.type == e1000_i354) {
1926		dev_info(&adapter->pdev->dev,
1927			"Loopback test not supported on i354.\n");
1928		*data = 0;
1929		goto out;
1930	}
1931	*data = igb_setup_desc_rings(adapter);
1932	if (*data)
1933		goto out;
1934	*data = igb_setup_loopback_test(adapter);
1935	if (*data)
1936		goto err_loopback;
1937	*data = igb_run_loopback_test(adapter);
1938	igb_loopback_cleanup(adapter);
1939
1940err_loopback:
1941	igb_free_desc_rings(adapter);
1942out:
1943	return *data;
1944}
1945
1946static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1947{
1948	struct e1000_hw *hw = &adapter->hw;
1949	*data = 0;
1950	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1951		int i = 0;
 
1952		hw->mac.serdes_has_link = false;
1953
1954		/* On some blade server designs, link establishment
1955		 * could take as long as 2-3 minutes
1956		 */
1957		do {
1958			hw->mac.ops.check_for_link(&adapter->hw);
1959			if (hw->mac.serdes_has_link)
1960				return *data;
1961			msleep(20);
1962		} while (i++ < 3750);
1963
1964		*data = 1;
1965	} else {
1966		hw->mac.ops.check_for_link(&adapter->hw);
1967		if (hw->mac.autoneg)
1968			msleep(5000);
1969
1970		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1971			*data = 1;
1972	}
1973	return *data;
1974}
1975
1976static void igb_diag_test(struct net_device *netdev,
1977			  struct ethtool_test *eth_test, u64 *data)
1978{
1979	struct igb_adapter *adapter = netdev_priv(netdev);
1980	u16 autoneg_advertised;
1981	u8 forced_speed_duplex, autoneg;
1982	bool if_running = netif_running(netdev);
1983
1984	set_bit(__IGB_TESTING, &adapter->state);
1985
1986	/* can't do offline tests on media switching devices */
1987	if (adapter->hw.dev_spec._82575.mas_capable)
1988		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1989	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1990		/* Offline tests */
1991
1992		/* save speed, duplex, autoneg settings */
1993		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1994		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1995		autoneg = adapter->hw.mac.autoneg;
1996
1997		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1998
1999		/* power up link for link test */
2000		igb_power_up_link(adapter);
2001
2002		/* Link test performed before hardware reset so autoneg doesn't
2003		 * interfere with test result
2004		 */
2005		if (igb_link_test(adapter, &data[4]))
2006			eth_test->flags |= ETH_TEST_FL_FAILED;
2007
2008		if (if_running)
2009			/* indicate we're in test mode */
2010			dev_close(netdev);
2011		else
2012			igb_reset(adapter);
2013
2014		if (igb_reg_test(adapter, &data[0]))
2015			eth_test->flags |= ETH_TEST_FL_FAILED;
2016
2017		igb_reset(adapter);
2018		if (igb_eeprom_test(adapter, &data[1]))
2019			eth_test->flags |= ETH_TEST_FL_FAILED;
2020
2021		igb_reset(adapter);
2022		if (igb_intr_test(adapter, &data[2]))
2023			eth_test->flags |= ETH_TEST_FL_FAILED;
2024
2025		igb_reset(adapter);
2026		/* power up link for loopback test */
2027		igb_power_up_link(adapter);
2028		if (igb_loopback_test(adapter, &data[3]))
2029			eth_test->flags |= ETH_TEST_FL_FAILED;
2030
2031		/* restore speed, duplex, autoneg settings */
2032		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2033		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2034		adapter->hw.mac.autoneg = autoneg;
2035
2036		/* force this routine to wait until autoneg complete/timeout */
2037		adapter->hw.phy.autoneg_wait_to_complete = true;
2038		igb_reset(adapter);
2039		adapter->hw.phy.autoneg_wait_to_complete = false;
2040
2041		clear_bit(__IGB_TESTING, &adapter->state);
2042		if (if_running)
2043			dev_open(netdev);
2044	} else {
2045		dev_info(&adapter->pdev->dev, "online testing starting\n");
2046
2047		/* PHY is powered down when interface is down */
2048		if (if_running && igb_link_test(adapter, &data[4]))
2049			eth_test->flags |= ETH_TEST_FL_FAILED;
2050		else
2051			data[4] = 0;
2052
2053		/* Online tests aren't run; pass by default */
2054		data[0] = 0;
2055		data[1] = 0;
2056		data[2] = 0;
2057		data[3] = 0;
2058
2059		clear_bit(__IGB_TESTING, &adapter->state);
2060	}
2061	msleep_interruptible(4 * 1000);
2062}
2063
2064static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2065{
2066	struct igb_adapter *adapter = netdev_priv(netdev);
2067
2068	wol->wolopts = 0;
2069
2070	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2071		return;
2072
2073	wol->supported = WAKE_UCAST | WAKE_MCAST |
2074			 WAKE_BCAST | WAKE_MAGIC |
2075			 WAKE_PHY;
2076
2077	/* apply any specific unsupported masks here */
2078	switch (adapter->hw.device_id) {
2079	default:
2080		break;
2081	}
2082
2083	if (adapter->wol & E1000_WUFC_EX)
2084		wol->wolopts |= WAKE_UCAST;
2085	if (adapter->wol & E1000_WUFC_MC)
2086		wol->wolopts |= WAKE_MCAST;
2087	if (adapter->wol & E1000_WUFC_BC)
2088		wol->wolopts |= WAKE_BCAST;
2089	if (adapter->wol & E1000_WUFC_MAG)
2090		wol->wolopts |= WAKE_MAGIC;
2091	if (adapter->wol & E1000_WUFC_LNKC)
2092		wol->wolopts |= WAKE_PHY;
2093}
2094
2095static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2096{
2097	struct igb_adapter *adapter = netdev_priv(netdev);
2098
2099	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2100		return -EOPNOTSUPP;
2101
2102	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2103		return wol->wolopts ? -EOPNOTSUPP : 0;
2104
2105	/* these settings will always override what we currently have */
2106	adapter->wol = 0;
2107
2108	if (wol->wolopts & WAKE_UCAST)
2109		adapter->wol |= E1000_WUFC_EX;
2110	if (wol->wolopts & WAKE_MCAST)
2111		adapter->wol |= E1000_WUFC_MC;
2112	if (wol->wolopts & WAKE_BCAST)
2113		adapter->wol |= E1000_WUFC_BC;
2114	if (wol->wolopts & WAKE_MAGIC)
2115		adapter->wol |= E1000_WUFC_MAG;
2116	if (wol->wolopts & WAKE_PHY)
2117		adapter->wol |= E1000_WUFC_LNKC;
2118	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2119
2120	return 0;
2121}
2122
2123/* bit defines for adapter->led_status */
2124#define IGB_LED_ON		0
2125
2126static int igb_set_phys_id(struct net_device *netdev,
2127			   enum ethtool_phys_id_state state)
2128{
2129	struct igb_adapter *adapter = netdev_priv(netdev);
2130	struct e1000_hw *hw = &adapter->hw;
2131
2132	switch (state) {
2133	case ETHTOOL_ID_ACTIVE:
2134		igb_blink_led(hw);
2135		return 2;
2136	case ETHTOOL_ID_ON:
2137		igb_blink_led(hw);
2138		break;
2139	case ETHTOOL_ID_OFF:
2140		igb_led_off(hw);
2141		break;
2142	case ETHTOOL_ID_INACTIVE:
2143		igb_led_off(hw);
2144		clear_bit(IGB_LED_ON, &adapter->led_status);
2145		igb_cleanup_led(hw);
2146		break;
2147	}
2148
2149	return 0;
2150}
2151
2152static int igb_set_coalesce(struct net_device *netdev,
2153			    struct ethtool_coalesce *ec)
 
 
2154{
2155	struct igb_adapter *adapter = netdev_priv(netdev);
2156	int i;
2157
2158	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2159	    ((ec->rx_coalesce_usecs > 3) &&
2160	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2161	    (ec->rx_coalesce_usecs == 2))
2162		return -EINVAL;
2163
2164	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2165	    ((ec->tx_coalesce_usecs > 3) &&
2166	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2167	    (ec->tx_coalesce_usecs == 2))
2168		return -EINVAL;
2169
2170	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2171		return -EINVAL;
2172
2173	/* If ITR is disabled, disable DMAC */
2174	if (ec->rx_coalesce_usecs == 0) {
2175		if (adapter->flags & IGB_FLAG_DMAC)
2176			adapter->flags &= ~IGB_FLAG_DMAC;
2177	}
2178
2179	/* convert to rate of irq's per second */
2180	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2181		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2182	else
2183		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2184
2185	/* convert to rate of irq's per second */
2186	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2187		adapter->tx_itr_setting = adapter->rx_itr_setting;
2188	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2189		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2190	else
2191		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2192
2193	for (i = 0; i < adapter->num_q_vectors; i++) {
2194		struct igb_q_vector *q_vector = adapter->q_vector[i];
2195		q_vector->tx.work_limit = adapter->tx_work_limit;
2196		if (q_vector->rx.ring)
2197			q_vector->itr_val = adapter->rx_itr_setting;
2198		else
2199			q_vector->itr_val = adapter->tx_itr_setting;
2200		if (q_vector->itr_val && q_vector->itr_val <= 3)
2201			q_vector->itr_val = IGB_START_ITR;
2202		q_vector->set_itr = 1;
2203	}
2204
2205	return 0;
2206}
2207
2208static int igb_get_coalesce(struct net_device *netdev,
2209			    struct ethtool_coalesce *ec)
 
 
2210{
2211	struct igb_adapter *adapter = netdev_priv(netdev);
2212
2213	if (adapter->rx_itr_setting <= 3)
2214		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2215	else
2216		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2217
2218	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2219		if (adapter->tx_itr_setting <= 3)
2220			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2221		else
2222			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2223	}
2224
2225	return 0;
2226}
2227
2228static int igb_nway_reset(struct net_device *netdev)
2229{
2230	struct igb_adapter *adapter = netdev_priv(netdev);
2231	if (netif_running(netdev))
2232		igb_reinit_locked(adapter);
2233	return 0;
2234}
2235
2236static int igb_get_sset_count(struct net_device *netdev, int sset)
2237{
2238	switch (sset) {
2239	case ETH_SS_STATS:
2240		return IGB_STATS_LEN;
2241	case ETH_SS_TEST:
2242		return IGB_TEST_LEN;
 
 
2243	default:
2244		return -ENOTSUPP;
2245	}
2246}
2247
2248static void igb_get_ethtool_stats(struct net_device *netdev,
2249				  struct ethtool_stats *stats, u64 *data)
2250{
2251	struct igb_adapter *adapter = netdev_priv(netdev);
2252	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2253	unsigned int start;
2254	struct igb_ring *ring;
2255	int i, j;
2256	char *p;
2257
2258	spin_lock(&adapter->stats64_lock);
2259	igb_update_stats(adapter, net_stats);
2260
2261	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2262		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2263		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2264			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2265	}
2266	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2267		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2268		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2269			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2270	}
2271	for (j = 0; j < adapter->num_tx_queues; j++) {
2272		u64	restart2;
2273
2274		ring = adapter->tx_ring[j];
2275		do {
2276			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2277			data[i]   = ring->tx_stats.packets;
2278			data[i+1] = ring->tx_stats.bytes;
2279			data[i+2] = ring->tx_stats.restart_queue;
2280		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2281		do {
2282			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2283			restart2  = ring->tx_stats.restart_queue2;
2284		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2285		data[i+2] += restart2;
2286
2287		i += IGB_TX_QUEUE_STATS_LEN;
2288	}
2289	for (j = 0; j < adapter->num_rx_queues; j++) {
2290		ring = adapter->rx_ring[j];
2291		do {
2292			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2293			data[i]   = ring->rx_stats.packets;
2294			data[i+1] = ring->rx_stats.bytes;
2295			data[i+2] = ring->rx_stats.drops;
2296			data[i+3] = ring->rx_stats.csum_err;
2297			data[i+4] = ring->rx_stats.alloc_failed;
2298		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2299		i += IGB_RX_QUEUE_STATS_LEN;
2300	}
2301	spin_unlock(&adapter->stats64_lock);
2302}
2303
2304static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2305{
2306	struct igb_adapter *adapter = netdev_priv(netdev);
2307	u8 *p = data;
2308	int i;
2309
2310	switch (stringset) {
2311	case ETH_SS_TEST:
2312		memcpy(data, *igb_gstrings_test,
2313			IGB_TEST_LEN*ETH_GSTRING_LEN);
2314		break;
2315	case ETH_SS_STATS:
2316		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2317			memcpy(p, igb_gstrings_stats[i].stat_string,
2318			       ETH_GSTRING_LEN);
2319			p += ETH_GSTRING_LEN;
2320		}
2321		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2322			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2323			       ETH_GSTRING_LEN);
2324			p += ETH_GSTRING_LEN;
2325		}
2326		for (i = 0; i < adapter->num_tx_queues; i++) {
2327			sprintf(p, "tx_queue_%u_packets", i);
2328			p += ETH_GSTRING_LEN;
2329			sprintf(p, "tx_queue_%u_bytes", i);
2330			p += ETH_GSTRING_LEN;
2331			sprintf(p, "tx_queue_%u_restart", i);
2332			p += ETH_GSTRING_LEN;
2333		}
2334		for (i = 0; i < adapter->num_rx_queues; i++) {
2335			sprintf(p, "rx_queue_%u_packets", i);
2336			p += ETH_GSTRING_LEN;
2337			sprintf(p, "rx_queue_%u_bytes", i);
2338			p += ETH_GSTRING_LEN;
2339			sprintf(p, "rx_queue_%u_drops", i);
2340			p += ETH_GSTRING_LEN;
2341			sprintf(p, "rx_queue_%u_csum_err", i);
2342			p += ETH_GSTRING_LEN;
2343			sprintf(p, "rx_queue_%u_alloc_failed", i);
2344			p += ETH_GSTRING_LEN;
2345		}
2346		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2347		break;
 
 
 
 
2348	}
2349}
2350
2351static int igb_get_ts_info(struct net_device *dev,
2352			   struct ethtool_ts_info *info)
2353{
2354	struct igb_adapter *adapter = netdev_priv(dev);
2355
2356	if (adapter->ptp_clock)
2357		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2358	else
2359		info->phc_index = -1;
2360
2361	switch (adapter->hw.mac.type) {
2362	case e1000_82575:
2363		info->so_timestamping =
2364			SOF_TIMESTAMPING_TX_SOFTWARE |
2365			SOF_TIMESTAMPING_RX_SOFTWARE |
2366			SOF_TIMESTAMPING_SOFTWARE;
2367		return 0;
2368	case e1000_82576:
2369	case e1000_82580:
2370	case e1000_i350:
2371	case e1000_i354:
2372	case e1000_i210:
2373	case e1000_i211:
2374		info->so_timestamping =
2375			SOF_TIMESTAMPING_TX_SOFTWARE |
2376			SOF_TIMESTAMPING_RX_SOFTWARE |
2377			SOF_TIMESTAMPING_SOFTWARE |
2378			SOF_TIMESTAMPING_TX_HARDWARE |
2379			SOF_TIMESTAMPING_RX_HARDWARE |
2380			SOF_TIMESTAMPING_RAW_HARDWARE;
2381
2382		info->tx_types =
2383			(1 << HWTSTAMP_TX_OFF) |
2384			(1 << HWTSTAMP_TX_ON);
2385
2386		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2387
2388		/* 82576 does not support timestamping all packets. */
2389		if (adapter->hw.mac.type >= e1000_82580)
2390			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2391		else
2392			info->rx_filters |=
2393				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2394				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2395				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2396				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2397				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2398				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2399				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2400
2401		return 0;
2402	default:
2403		return -EOPNOTSUPP;
2404	}
2405}
2406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2407static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2408				 struct ethtool_rxnfc *cmd)
2409{
2410	cmd->data = 0;
2411
2412	/* Report default options for RSS on igb */
2413	switch (cmd->flow_type) {
2414	case TCP_V4_FLOW:
2415		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
 
2416	case UDP_V4_FLOW:
2417		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2418			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
 
2419	case SCTP_V4_FLOW:
2420	case AH_ESP_V4_FLOW:
2421	case AH_V4_FLOW:
2422	case ESP_V4_FLOW:
2423	case IPV4_FLOW:
2424		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2425		break;
2426	case TCP_V6_FLOW:
2427		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
 
2428	case UDP_V6_FLOW:
2429		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2430			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
 
2431	case SCTP_V6_FLOW:
2432	case AH_ESP_V6_FLOW:
2433	case AH_V6_FLOW:
2434	case ESP_V6_FLOW:
2435	case IPV6_FLOW:
2436		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2437		break;
2438	default:
2439		return -EINVAL;
2440	}
2441
2442	return 0;
2443}
2444
2445static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2446			 u32 *rule_locs)
2447{
2448	struct igb_adapter *adapter = netdev_priv(dev);
2449	int ret = -EOPNOTSUPP;
2450
2451	switch (cmd->cmd) {
2452	case ETHTOOL_GRXRINGS:
2453		cmd->data = adapter->num_rx_queues;
2454		ret = 0;
2455		break;
 
 
 
 
 
 
 
 
 
 
2456	case ETHTOOL_GRXFH:
2457		ret = igb_get_rss_hash_opts(adapter, cmd);
2458		break;
2459	default:
2460		break;
2461	}
2462
2463	return ret;
2464}
2465
2466#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2467		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2468static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2469				struct ethtool_rxnfc *nfc)
2470{
2471	u32 flags = adapter->flags;
2472
2473	/* RSS does not support anything other than hashing
2474	 * to queues on src and dst IPs and ports
2475	 */
2476	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2477			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2478		return -EINVAL;
2479
2480	switch (nfc->flow_type) {
2481	case TCP_V4_FLOW:
2482	case TCP_V6_FLOW:
2483		if (!(nfc->data & RXH_IP_SRC) ||
2484		    !(nfc->data & RXH_IP_DST) ||
2485		    !(nfc->data & RXH_L4_B_0_1) ||
2486		    !(nfc->data & RXH_L4_B_2_3))
2487			return -EINVAL;
2488		break;
2489	case UDP_V4_FLOW:
2490		if (!(nfc->data & RXH_IP_SRC) ||
2491		    !(nfc->data & RXH_IP_DST))
2492			return -EINVAL;
2493		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2494		case 0:
2495			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2496			break;
2497		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2498			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2499			break;
2500		default:
2501			return -EINVAL;
2502		}
2503		break;
2504	case UDP_V6_FLOW:
2505		if (!(nfc->data & RXH_IP_SRC) ||
2506		    !(nfc->data & RXH_IP_DST))
2507			return -EINVAL;
2508		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2509		case 0:
2510			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2511			break;
2512		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2513			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2514			break;
2515		default:
2516			return -EINVAL;
2517		}
2518		break;
2519	case AH_ESP_V4_FLOW:
2520	case AH_V4_FLOW:
2521	case ESP_V4_FLOW:
2522	case SCTP_V4_FLOW:
2523	case AH_ESP_V6_FLOW:
2524	case AH_V6_FLOW:
2525	case ESP_V6_FLOW:
2526	case SCTP_V6_FLOW:
2527		if (!(nfc->data & RXH_IP_SRC) ||
2528		    !(nfc->data & RXH_IP_DST) ||
2529		    (nfc->data & RXH_L4_B_0_1) ||
2530		    (nfc->data & RXH_L4_B_2_3))
2531			return -EINVAL;
2532		break;
2533	default:
2534		return -EINVAL;
2535	}
2536
2537	/* if we changed something we need to update flags */
2538	if (flags != adapter->flags) {
2539		struct e1000_hw *hw = &adapter->hw;
2540		u32 mrqc = rd32(E1000_MRQC);
2541
2542		if ((flags & UDP_RSS_FLAGS) &&
2543		    !(adapter->flags & UDP_RSS_FLAGS))
2544			dev_err(&adapter->pdev->dev,
2545				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2546
2547		adapter->flags = flags;
2548
2549		/* Perform hash on these packet types */
2550		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2551			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2552			E1000_MRQC_RSS_FIELD_IPV6 |
2553			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2554
2555		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2556			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2557
2558		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2559			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2560
2561		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2562			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2563
2564		wr32(E1000_MRQC, mrqc);
2565	}
2566
2567	return 0;
2568}
2569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2570static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2571{
2572	struct igb_adapter *adapter = netdev_priv(dev);
2573	int ret = -EOPNOTSUPP;
2574
2575	switch (cmd->cmd) {
2576	case ETHTOOL_SRXFH:
2577		ret = igb_set_rss_hash_opt(adapter, cmd);
2578		break;
 
 
 
 
 
 
2579	default:
2580		break;
2581	}
2582
2583	return ret;
2584}
2585
2586static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2587{
2588	struct igb_adapter *adapter = netdev_priv(netdev);
2589	struct e1000_hw *hw = &adapter->hw;
2590	u32 ret_val;
2591	u16 phy_data;
2592
2593	if ((hw->mac.type < e1000_i350) ||
2594	    (hw->phy.media_type != e1000_media_type_copper))
2595		return -EOPNOTSUPP;
2596
2597	edata->supported = (SUPPORTED_1000baseT_Full |
2598			    SUPPORTED_100baseT_Full);
2599	if (!hw->dev_spec._82575.eee_disable)
2600		edata->advertised =
2601			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2602
2603	/* The IPCNFG and EEER registers are not supported on I354. */
2604	if (hw->mac.type == e1000_i354) {
2605		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2606	} else {
2607		u32 eeer;
2608
2609		eeer = rd32(E1000_EEER);
2610
2611		/* EEE status on negotiated link */
2612		if (eeer & E1000_EEER_EEE_NEG)
2613			edata->eee_active = true;
2614
2615		if (eeer & E1000_EEER_TX_LPI_EN)
2616			edata->tx_lpi_enabled = true;
2617	}
2618
2619	/* EEE Link Partner Advertised */
2620	switch (hw->mac.type) {
2621	case e1000_i350:
2622		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2623					   &phy_data);
2624		if (ret_val)
2625			return -ENODATA;
2626
2627		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2628		break;
2629	case e1000_i354:
2630	case e1000_i210:
2631	case e1000_i211:
2632		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2633					     E1000_EEE_LP_ADV_DEV_I210,
2634					     &phy_data);
2635		if (ret_val)
2636			return -ENODATA;
2637
2638		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2639
2640		break;
2641	default:
2642		break;
2643	}
2644
2645	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2646
2647	if ((hw->mac.type == e1000_i354) &&
2648	    (edata->eee_enabled))
2649		edata->tx_lpi_enabled = true;
2650
2651	/* Report correct negotiated EEE status for devices that
2652	 * wrongly report EEE at half-duplex
2653	 */
2654	if (adapter->link_duplex == HALF_DUPLEX) {
2655		edata->eee_enabled = false;
2656		edata->eee_active = false;
2657		edata->tx_lpi_enabled = false;
2658		edata->advertised &= ~edata->advertised;
2659	}
2660
2661	return 0;
2662}
2663
2664static int igb_set_eee(struct net_device *netdev,
2665		       struct ethtool_eee *edata)
2666{
2667	struct igb_adapter *adapter = netdev_priv(netdev);
2668	struct e1000_hw *hw = &adapter->hw;
2669	struct ethtool_eee eee_curr;
 
2670	s32 ret_val;
2671
2672	if ((hw->mac.type < e1000_i350) ||
2673	    (hw->phy.media_type != e1000_media_type_copper))
2674		return -EOPNOTSUPP;
2675
2676	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2677
2678	ret_val = igb_get_eee(netdev, &eee_curr);
2679	if (ret_val)
2680		return ret_val;
2681
2682	if (eee_curr.eee_enabled) {
2683		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2684			dev_err(&adapter->pdev->dev,
2685				"Setting EEE tx-lpi is not supported\n");
2686			return -EINVAL;
2687		}
2688
2689		/* Tx LPI timer is not implemented currently */
2690		if (edata->tx_lpi_timer) {
2691			dev_err(&adapter->pdev->dev,
2692				"Setting EEE Tx LPI timer is not supported\n");
2693			return -EINVAL;
2694		}
2695
2696		if (edata->advertised &
2697		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2698			dev_err(&adapter->pdev->dev,
2699				"EEE Advertisement supports only 100Tx and or 100T full duplex\n");
2700			return -EINVAL;
2701		}
 
 
2702
2703	} else if (!edata->eee_enabled) {
2704		dev_err(&adapter->pdev->dev,
2705			"Setting EEE options are not supported with EEE disabled\n");
2706			return -EINVAL;
2707		}
2708
2709	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2710	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2711		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2712		adapter->flags |= IGB_FLAG_EEE;
2713		if (hw->mac.type == e1000_i350)
2714			igb_set_eee_i350(hw);
2715		else
2716			igb_set_eee_i354(hw);
2717
2718		/* reset link */
2719		if (netif_running(netdev))
2720			igb_reinit_locked(adapter);
2721		else
2722			igb_reset(adapter);
2723	}
2724
 
 
 
 
 
 
 
 
 
 
 
2725	return 0;
2726}
2727
2728static int igb_get_module_info(struct net_device *netdev,
2729			       struct ethtool_modinfo *modinfo)
2730{
2731	struct igb_adapter *adapter = netdev_priv(netdev);
2732	struct e1000_hw *hw = &adapter->hw;
2733	u32 status = E1000_SUCCESS;
2734	u16 sff8472_rev, addr_mode;
2735	bool page_swap = false;
2736
2737	if ((hw->phy.media_type == e1000_media_type_copper) ||
2738	    (hw->phy.media_type == e1000_media_type_unknown))
2739		return -EOPNOTSUPP;
2740
2741	/* Check whether we support SFF-8472 or not */
2742	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2743	if (status != E1000_SUCCESS)
2744		return -EIO;
2745
2746	/* addressing mode is not supported */
2747	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2748	if (status != E1000_SUCCESS)
2749		return -EIO;
2750
2751	/* addressing mode is not supported */
2752	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2753		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2754		page_swap = true;
2755	}
2756
2757	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2758		/* We have an SFP, but it does not support SFF-8472 */
2759		modinfo->type = ETH_MODULE_SFF_8079;
2760		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2761	} else {
2762		/* We have an SFP which supports a revision of SFF-8472 */
2763		modinfo->type = ETH_MODULE_SFF_8472;
2764		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2765	}
2766
2767	return 0;
2768}
2769
2770static int igb_get_module_eeprom(struct net_device *netdev,
2771				 struct ethtool_eeprom *ee, u8 *data)
2772{
2773	struct igb_adapter *adapter = netdev_priv(netdev);
2774	struct e1000_hw *hw = &adapter->hw;
2775	u32 status = E1000_SUCCESS;
2776	u16 *dataword;
2777	u16 first_word, last_word;
2778	int i = 0;
2779
2780	if (ee->len == 0)
2781		return -EINVAL;
2782
2783	first_word = ee->offset >> 1;
2784	last_word = (ee->offset + ee->len - 1) >> 1;
2785
2786	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2787			   GFP_KERNEL);
2788	if (!dataword)
2789		return -ENOMEM;
2790
2791	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2792	for (i = 0; i < last_word - first_word + 1; i++) {
2793		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2794		if (status != E1000_SUCCESS) {
 
2795			/* Error occurred while reading module */
2796			kfree(dataword);
2797			return -EIO;
2798		}
2799
2800		be16_to_cpus(&dataword[i]);
2801	}
2802
2803	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2804	kfree(dataword);
2805
2806	return 0;
2807}
2808
2809static int igb_ethtool_begin(struct net_device *netdev)
2810{
2811	struct igb_adapter *adapter = netdev_priv(netdev);
2812	pm_runtime_get_sync(&adapter->pdev->dev);
2813	return 0;
2814}
2815
2816static void igb_ethtool_complete(struct net_device *netdev)
2817{
2818	struct igb_adapter *adapter = netdev_priv(netdev);
2819	pm_runtime_put(&adapter->pdev->dev);
2820}
2821
2822static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2823{
2824	return IGB_RETA_SIZE;
2825}
2826
2827static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir)
 
2828{
2829	struct igb_adapter *adapter = netdev_priv(netdev);
2830	int i;
2831
 
 
 
 
2832	for (i = 0; i < IGB_RETA_SIZE; i++)
2833		indir[i] = adapter->rss_indir_tbl[i];
2834
2835	return 0;
2836}
2837
2838void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2839{
2840	struct e1000_hw *hw = &adapter->hw;
2841	u32 reg = E1000_RETA(0);
2842	u32 shift = 0;
2843	int i = 0;
2844
2845	switch (hw->mac.type) {
2846	case e1000_82575:
2847		shift = 6;
2848		break;
2849	case e1000_82576:
2850		/* 82576 supports 2 RSS queues for SR-IOV */
2851		if (adapter->vfs_allocated_count)
2852			shift = 3;
2853		break;
2854	default:
2855		break;
2856	}
2857
2858	while (i < IGB_RETA_SIZE) {
2859		u32 val = 0;
2860		int j;
2861
2862		for (j = 3; j >= 0; j--) {
2863			val <<= 8;
2864			val |= adapter->rss_indir_tbl[i + j];
2865		}
2866
2867		wr32(reg, val << shift);
2868		reg += 4;
2869		i += 4;
2870	}
2871}
2872
2873static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir)
 
2874{
2875	struct igb_adapter *adapter = netdev_priv(netdev);
2876	struct e1000_hw *hw = &adapter->hw;
2877	int i;
2878	u32 num_queues;
2879
 
 
 
 
 
 
 
2880	num_queues = adapter->rss_queues;
2881
2882	switch (hw->mac.type) {
2883	case e1000_82576:
2884		/* 82576 supports 2 RSS queues for SR-IOV */
2885		if (adapter->vfs_allocated_count)
2886			num_queues = 2;
2887		break;
2888	default:
2889		break;
2890	}
2891
2892	/* Verify user input. */
2893	for (i = 0; i < IGB_RETA_SIZE; i++)
2894		if (indir[i] >= num_queues)
2895			return -EINVAL;
2896
2897
2898	for (i = 0; i < IGB_RETA_SIZE; i++)
2899		adapter->rss_indir_tbl[i] = indir[i];
2900
2901	igb_write_rss_indir_tbl(adapter);
2902
2903	return 0;
2904}
2905
2906static unsigned int igb_max_channels(struct igb_adapter *adapter)
2907{
2908	struct e1000_hw *hw = &adapter->hw;
2909	unsigned int max_combined = 0;
2910
2911	switch (hw->mac.type) {
2912	case e1000_i211:
2913		max_combined = IGB_MAX_RX_QUEUES_I211;
2914		break;
2915	case e1000_82575:
2916	case e1000_i210:
2917		max_combined = IGB_MAX_RX_QUEUES_82575;
2918		break;
2919	case e1000_i350:
2920		if (!!adapter->vfs_allocated_count) {
2921			max_combined = 1;
2922			break;
2923		}
2924		/* fall through */
2925	case e1000_82576:
2926		if (!!adapter->vfs_allocated_count) {
2927			max_combined = 2;
2928			break;
2929		}
2930		/* fall through */
2931	case e1000_82580:
2932	case e1000_i354:
2933	default:
2934		max_combined = IGB_MAX_RX_QUEUES;
2935		break;
2936	}
2937
2938	return max_combined;
2939}
2940
2941static void igb_get_channels(struct net_device *netdev,
2942			     struct ethtool_channels *ch)
2943{
2944	struct igb_adapter *adapter = netdev_priv(netdev);
2945
2946	/* Report maximum channels */
2947	ch->max_combined = igb_max_channels(adapter);
2948
2949	/* Report info for other vector */
2950	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2951		ch->max_other = NON_Q_VECTORS;
2952		ch->other_count = NON_Q_VECTORS;
2953	}
2954
2955	ch->combined_count = adapter->rss_queues;
2956}
2957
2958static int igb_set_channels(struct net_device *netdev,
2959			    struct ethtool_channels *ch)
2960{
2961	struct igb_adapter *adapter = netdev_priv(netdev);
2962	unsigned int count = ch->combined_count;
 
2963
2964	/* Verify they are not requesting separate vectors */
2965	if (!count || ch->rx_count || ch->tx_count)
2966		return -EINVAL;
2967
2968	/* Verify other_count is valid and has not been changed */
2969	if (ch->other_count != NON_Q_VECTORS)
2970		return -EINVAL;
2971
2972	/* Verify the number of channels doesn't exceed hw limits */
2973	if (count > igb_max_channels(adapter))
 
2974		return -EINVAL;
2975
2976	if (count != adapter->rss_queues) {
2977		adapter->rss_queues = count;
 
2978
2979		/* Hardware has to reinitialize queues and interrupts to
2980		 * match the new configuration.
2981		 */
2982		return igb_reinit_queues(adapter);
2983	}
2984
2985	return 0;
2986}
2987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2988static const struct ethtool_ops igb_ethtool_ops = {
2989	.get_settings		= igb_get_settings,
2990	.set_settings		= igb_set_settings,
2991	.get_drvinfo		= igb_get_drvinfo,
2992	.get_regs_len		= igb_get_regs_len,
2993	.get_regs		= igb_get_regs,
2994	.get_wol		= igb_get_wol,
2995	.set_wol		= igb_set_wol,
2996	.get_msglevel		= igb_get_msglevel,
2997	.set_msglevel		= igb_set_msglevel,
2998	.nway_reset		= igb_nway_reset,
2999	.get_link		= igb_get_link,
3000	.get_eeprom_len		= igb_get_eeprom_len,
3001	.get_eeprom		= igb_get_eeprom,
3002	.set_eeprom		= igb_set_eeprom,
3003	.get_ringparam		= igb_get_ringparam,
3004	.set_ringparam		= igb_set_ringparam,
3005	.get_pauseparam		= igb_get_pauseparam,
3006	.set_pauseparam		= igb_set_pauseparam,
3007	.self_test		= igb_diag_test,
3008	.get_strings		= igb_get_strings,
3009	.set_phys_id		= igb_set_phys_id,
3010	.get_sset_count		= igb_get_sset_count,
3011	.get_ethtool_stats	= igb_get_ethtool_stats,
3012	.get_coalesce		= igb_get_coalesce,
3013	.set_coalesce		= igb_set_coalesce,
3014	.get_ts_info		= igb_get_ts_info,
3015	.get_rxnfc		= igb_get_rxnfc,
3016	.set_rxnfc		= igb_set_rxnfc,
3017	.get_eee		= igb_get_eee,
3018	.set_eee		= igb_set_eee,
3019	.get_module_info	= igb_get_module_info,
3020	.get_module_eeprom	= igb_get_module_eeprom,
3021	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3022	.get_rxfh_indir		= igb_get_rxfh_indir,
3023	.set_rxfh_indir		= igb_set_rxfh_indir,
3024	.get_channels		= igb_get_channels,
3025	.set_channels		= igb_set_channels,
 
 
3026	.begin			= igb_ethtool_begin,
3027	.complete		= igb_ethtool_complete,
 
 
3028};
3029
3030void igb_set_ethtool_ops(struct net_device *netdev)
3031{
3032	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
3033}