Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Author: Artem Bityutskiy (Битюцкий Артём)
   6 */
   7
   8/*
   9 * UBI attaching sub-system.
  10 *
  11 * This sub-system is responsible for attaching MTD devices and it also
  12 * implements flash media scanning.
  13 *
  14 * The attaching information is represented by a &struct ubi_attach_info'
  15 * object. Information about volumes is represented by &struct ubi_ainf_volume
  16 * objects which are kept in volume RB-tree with root at the @volumes field.
  17 * The RB-tree is indexed by the volume ID.
  18 *
  19 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  20 * objects are kept in per-volume RB-trees with the root at the corresponding
  21 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  22 * per-volume objects and each of these objects is the root of RB-tree of
  23 * per-LEB objects.
  24 *
  25 * Corrupted physical eraseblocks are put to the @corr list, free physical
  26 * eraseblocks are put to the @free list and the physical eraseblock to be
  27 * erased are put to the @erase list.
  28 *
  29 * About corruptions
  30 * ~~~~~~~~~~~~~~~~~
  31 *
  32 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  33 * whether the headers are corrupted or not. Sometimes UBI also protects the
  34 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  35 * when it moves the contents of a PEB for wear-leveling purposes.
  36 *
  37 * UBI tries to distinguish between 2 types of corruptions.
  38 *
  39 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  40 * tries to handle them gracefully, without printing too many warnings and
  41 * error messages. The idea is that we do not lose important data in these
  42 * cases - we may lose only the data which were being written to the media just
  43 * before the power cut happened, and the upper layers (e.g., UBIFS) are
  44 * supposed to handle such data losses (e.g., by using the FS journal).
  45 *
  46 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  47 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  48 * PEBs in the @erase list are scheduled for erasure later.
  49 *
  50 * 2. Unexpected corruptions which are not caused by power cuts. During
  51 * attaching, such PEBs are put to the @corr list and UBI preserves them.
  52 * Obviously, this lessens the amount of available PEBs, and if at some  point
  53 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  54 * about such PEBs every time the MTD device is attached.
  55 *
  56 * However, it is difficult to reliably distinguish between these types of
  57 * corruptions and UBI's strategy is as follows (in case of attaching by
  58 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  59 * the data area does not contain all 0xFFs, and there were no bit-flips or
  60 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  61 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  62 * are as follows.
  63 *   o If the data area contains only 0xFFs, there are no data, and it is safe
  64 *     to just erase this PEB - this is corruption type 1.
  65 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  66 *     NAND), it is probably a PEB which was being erased when power cut
  67 *     happened, so this is corruption type 1. However, this is just a guess,
  68 *     which might be wrong.
  69 *   o Otherwise this is corruption type 2.
  70 */
  71
  72#include <linux/err.h>
  73#include <linux/slab.h>
  74#include <linux/crc32.h>
  75#include <linux/math64.h>
  76#include <linux/random.h>
  77#include "ubi.h"
  78
  79static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  80
  81#define AV_FIND		BIT(0)
  82#define AV_ADD		BIT(1)
  83#define AV_FIND_OR_ADD	(AV_FIND | AV_ADD)
  84
  85/**
  86 * find_or_add_av - internal function to find a volume, add a volume or do
  87 *		    both (find and add if missing).
  88 * @ai: attaching information
  89 * @vol_id: the requested volume ID
  90 * @flags: a combination of the %AV_FIND and %AV_ADD flags describing the
  91 *	   expected operation. If only %AV_ADD is set, -EEXIST is returned
  92 *	   if the volume already exists. If only %AV_FIND is set, NULL is
  93 *	   returned if the volume does not exist. And if both flags are
  94 *	   set, the helper first tries to find an existing volume, and if
  95 *	   it does not exist it creates a new one.
  96 * @created: in value used to inform the caller whether it"s a newly created
  97 *	     volume or not.
  98 *
  99 * This function returns a pointer to a volume description or an ERR_PTR if
 100 * the operation failed. It can also return NULL if only %AV_FIND is set and
 101 * the volume does not exist.
 102 */
 103static struct ubi_ainf_volume *find_or_add_av(struct ubi_attach_info *ai,
 104					      int vol_id, unsigned int flags,
 105					      bool *created)
 106{
 107	struct ubi_ainf_volume *av;
 108	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 109
 110	/* Walk the volume RB-tree to look if this volume is already present */
 111	while (*p) {
 112		parent = *p;
 113		av = rb_entry(parent, struct ubi_ainf_volume, rb);
 114
 115		if (vol_id == av->vol_id) {
 116			*created = false;
 117
 118			if (!(flags & AV_FIND))
 119				return ERR_PTR(-EEXIST);
 120
 121			return av;
 122		}
 123
 124		if (vol_id > av->vol_id)
 125			p = &(*p)->rb_left;
 126		else
 127			p = &(*p)->rb_right;
 128	}
 129
 130	if (!(flags & AV_ADD))
 131		return NULL;
 132
 133	/* The volume is absent - add it */
 134	av = kzalloc(sizeof(*av), GFP_KERNEL);
 135	if (!av)
 136		return ERR_PTR(-ENOMEM);
 137
 138	av->vol_id = vol_id;
 139
 140	if (vol_id > ai->highest_vol_id)
 141		ai->highest_vol_id = vol_id;
 142
 143	rb_link_node(&av->rb, parent, p);
 144	rb_insert_color(&av->rb, &ai->volumes);
 145	ai->vols_found += 1;
 146	*created = true;
 147	dbg_bld("added volume %d", vol_id);
 148	return av;
 149}
 150
 151/**
 152 * ubi_find_or_add_av - search for a volume in the attaching information and
 153 *			add one if it does not exist.
 154 * @ai: attaching information
 155 * @vol_id: the requested volume ID
 156 * @created: whether the volume has been created or not
 157 *
 158 * This function returns a pointer to the new volume description or an
 159 * ERR_PTR if the operation failed.
 160 */
 161static struct ubi_ainf_volume *ubi_find_or_add_av(struct ubi_attach_info *ai,
 162						  int vol_id, bool *created)
 163{
 164	return find_or_add_av(ai, vol_id, AV_FIND_OR_ADD, created);
 165}
 166
 167/**
 168 * ubi_alloc_aeb - allocate an aeb element
 169 * @ai: attaching information
 170 * @pnum: physical eraseblock number
 171 * @ec: erase counter of the physical eraseblock
 172 *
 173 * Allocate an aeb object and initialize the pnum and ec information.
 174 * vol_id and lnum are set to UBI_UNKNOWN, and the other fields are
 175 * initialized to zero.
 176 * Note that the element is not added in any list or RB tree.
 177 */
 178struct ubi_ainf_peb *ubi_alloc_aeb(struct ubi_attach_info *ai, int pnum,
 179				   int ec)
 180{
 181	struct ubi_ainf_peb *aeb;
 182
 183	aeb = kmem_cache_zalloc(ai->aeb_slab_cache, GFP_KERNEL);
 184	if (!aeb)
 185		return NULL;
 186
 187	aeb->pnum = pnum;
 188	aeb->ec = ec;
 189	aeb->vol_id = UBI_UNKNOWN;
 190	aeb->lnum = UBI_UNKNOWN;
 191
 192	return aeb;
 193}
 194
 195/**
 196 * ubi_free_aeb - free an aeb element
 197 * @ai: attaching information
 198 * @aeb: the element to free
 199 *
 200 * Free an aeb object. The caller must have removed the element from any list
 201 * or RB tree.
 202 */
 203void ubi_free_aeb(struct ubi_attach_info *ai, struct ubi_ainf_peb *aeb)
 204{
 205	kmem_cache_free(ai->aeb_slab_cache, aeb);
 206}
 207
 208/**
 209 * add_to_list - add physical eraseblock to a list.
 210 * @ai: attaching information
 211 * @pnum: physical eraseblock number to add
 212 * @vol_id: the last used volume id for the PEB
 213 * @lnum: the last used LEB number for the PEB
 214 * @ec: erase counter of the physical eraseblock
 215 * @to_head: if not zero, add to the head of the list
 216 * @list: the list to add to
 217 *
 218 * This function allocates a 'struct ubi_ainf_peb' object for physical
 219 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 220 * It stores the @lnum and @vol_id alongside, which can both be
 221 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 222 * If @to_head is not zero, PEB will be added to the head of the list, which
 223 * basically means it will be processed first later. E.g., we add corrupted
 224 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 225 * sure we erase them first and get rid of corruptions ASAP. This function
 226 * returns zero in case of success and a negative error code in case of
 227 * failure.
 228 */
 229static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 230		       int lnum, int ec, int to_head, struct list_head *list)
 231{
 232	struct ubi_ainf_peb *aeb;
 233
 234	if (list == &ai->free) {
 235		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 236	} else if (list == &ai->erase) {
 237		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 238	} else if (list == &ai->alien) {
 239		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 240		ai->alien_peb_count += 1;
 241	} else
 242		BUG();
 243
 244	aeb = ubi_alloc_aeb(ai, pnum, ec);
 245	if (!aeb)
 246		return -ENOMEM;
 247
 
 248	aeb->vol_id = vol_id;
 249	aeb->lnum = lnum;
 
 250	if (to_head)
 251		list_add(&aeb->u.list, list);
 252	else
 253		list_add_tail(&aeb->u.list, list);
 254	return 0;
 255}
 256
 257/**
 258 * add_corrupted - add a corrupted physical eraseblock.
 259 * @ai: attaching information
 260 * @pnum: physical eraseblock number to add
 261 * @ec: erase counter of the physical eraseblock
 262 *
 263 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 264 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 265 * was presumably not caused by a power cut. Returns zero in case of success
 266 * and a negative error code in case of failure.
 267 */
 268static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 269{
 270	struct ubi_ainf_peb *aeb;
 271
 272	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 273
 274	aeb = ubi_alloc_aeb(ai, pnum, ec);
 275	if (!aeb)
 276		return -ENOMEM;
 277
 278	ai->corr_peb_count += 1;
 
 
 279	list_add(&aeb->u.list, &ai->corr);
 280	return 0;
 281}
 282
 283/**
 284 * add_fastmap - add a Fastmap related physical eraseblock.
 285 * @ai: attaching information
 286 * @pnum: physical eraseblock number the VID header came from
 287 * @vid_hdr: the volume identifier header
 288 * @ec: erase counter of the physical eraseblock
 289 *
 290 * This function allocates a 'struct ubi_ainf_peb' object for a Fastamp
 291 * physical eraseblock @pnum and adds it to the 'fastmap' list.
 292 * Such blocks can be Fastmap super and data blocks from both the most
 293 * recent Fastmap we're attaching from or from old Fastmaps which will
 294 * be erased.
 295 */
 296static int add_fastmap(struct ubi_attach_info *ai, int pnum,
 297		       struct ubi_vid_hdr *vid_hdr, int ec)
 298{
 299	struct ubi_ainf_peb *aeb;
 300
 301	aeb = ubi_alloc_aeb(ai, pnum, ec);
 302	if (!aeb)
 303		return -ENOMEM;
 304
 305	aeb->vol_id = be32_to_cpu(vid_hdr->vol_id);
 306	aeb->sqnum = be64_to_cpu(vid_hdr->sqnum);
 307	list_add(&aeb->u.list, &ai->fastmap);
 308
 309	dbg_bld("add to fastmap list: PEB %d, vol_id %d, sqnum: %llu", pnum,
 310		aeb->vol_id, aeb->sqnum);
 311
 312	return 0;
 313}
 314
 315/**
 316 * validate_vid_hdr - check volume identifier header.
 317 * @ubi: UBI device description object
 318 * @vid_hdr: the volume identifier header to check
 319 * @av: information about the volume this logical eraseblock belongs to
 320 * @pnum: physical eraseblock number the VID header came from
 321 *
 322 * This function checks that data stored in @vid_hdr is consistent. Returns
 323 * non-zero if an inconsistency was found and zero if not.
 324 *
 325 * Note, UBI does sanity check of everything it reads from the flash media.
 326 * Most of the checks are done in the I/O sub-system. Here we check that the
 327 * information in the VID header is consistent to the information in other VID
 328 * headers of the same volume.
 329 */
 330static int validate_vid_hdr(const struct ubi_device *ubi,
 331			    const struct ubi_vid_hdr *vid_hdr,
 332			    const struct ubi_ainf_volume *av, int pnum)
 333{
 334	int vol_type = vid_hdr->vol_type;
 335	int vol_id = be32_to_cpu(vid_hdr->vol_id);
 336	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 337	int data_pad = be32_to_cpu(vid_hdr->data_pad);
 338
 339	if (av->leb_count != 0) {
 340		int av_vol_type;
 341
 342		/*
 343		 * This is not the first logical eraseblock belonging to this
 344		 * volume. Ensure that the data in its VID header is consistent
 345		 * to the data in previous logical eraseblock headers.
 346		 */
 347
 348		if (vol_id != av->vol_id) {
 349			ubi_err(ubi, "inconsistent vol_id");
 350			goto bad;
 351		}
 352
 353		if (av->vol_type == UBI_STATIC_VOLUME)
 354			av_vol_type = UBI_VID_STATIC;
 355		else
 356			av_vol_type = UBI_VID_DYNAMIC;
 357
 358		if (vol_type != av_vol_type) {
 359			ubi_err(ubi, "inconsistent vol_type");
 360			goto bad;
 361		}
 362
 363		if (used_ebs != av->used_ebs) {
 364			ubi_err(ubi, "inconsistent used_ebs");
 365			goto bad;
 366		}
 367
 368		if (data_pad != av->data_pad) {
 369			ubi_err(ubi, "inconsistent data_pad");
 370			goto bad;
 371		}
 372	}
 373
 374	return 0;
 375
 376bad:
 377	ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
 378	ubi_dump_vid_hdr(vid_hdr);
 379	ubi_dump_av(av);
 380	return -EINVAL;
 381}
 382
 383/**
 384 * add_volume - add volume to the attaching information.
 385 * @ai: attaching information
 386 * @vol_id: ID of the volume to add
 387 * @pnum: physical eraseblock number
 388 * @vid_hdr: volume identifier header
 389 *
 390 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 391 * present in the attaching information, this function does nothing. Otherwise
 392 * it adds corresponding volume to the attaching information. Returns a pointer
 393 * to the allocated "av" object in case of success and a negative error code in
 394 * case of failure.
 395 */
 396static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 397					  int vol_id, int pnum,
 398					  const struct ubi_vid_hdr *vid_hdr)
 399{
 400	struct ubi_ainf_volume *av;
 401	bool created;
 402
 403	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 404
 405	av = ubi_find_or_add_av(ai, vol_id, &created);
 406	if (IS_ERR(av) || !created)
 407		return av;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408
 
 
 
 409	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 410	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 411	av->compat = vid_hdr->compat;
 412	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 413							    : UBI_STATIC_VOLUME;
 
 
 414
 
 
 
 
 415	return av;
 416}
 417
 418/**
 419 * ubi_compare_lebs - find out which logical eraseblock is newer.
 420 * @ubi: UBI device description object
 421 * @aeb: first logical eraseblock to compare
 422 * @pnum: physical eraseblock number of the second logical eraseblock to
 423 * compare
 424 * @vid_hdr: volume identifier header of the second logical eraseblock
 425 *
 426 * This function compares 2 copies of a LEB and informs which one is newer. In
 427 * case of success this function returns a positive value, in case of failure, a
 428 * negative error code is returned. The success return codes use the following
 429 * bits:
 430 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 431 *       second PEB (described by @pnum and @vid_hdr);
 432 *     o bit 0 is set: the second PEB is newer;
 433 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 434 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 435 *     o bit 2 is cleared: the older LEB is not corrupted;
 436 *     o bit 2 is set: the older LEB is corrupted.
 437 */
 438int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 439			int pnum, const struct ubi_vid_hdr *vid_hdr)
 440{
 441	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 442	uint32_t data_crc, crc;
 443	struct ubi_vid_io_buf *vidb = NULL;
 444	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 445
 446	if (sqnum2 == aeb->sqnum) {
 447		/*
 448		 * This must be a really ancient UBI image which has been
 449		 * created before sequence numbers support has been added. At
 450		 * that times we used 32-bit LEB versions stored in logical
 451		 * eraseblocks. That was before UBI got into mainline. We do not
 452		 * support these images anymore. Well, those images still work,
 453		 * but only if no unclean reboots happened.
 454		 */
 455		ubi_err(ubi, "unsupported on-flash UBI format");
 456		return -EINVAL;
 457	}
 458
 459	/* Obviously the LEB with lower sequence counter is older */
 460	second_is_newer = (sqnum2 > aeb->sqnum);
 461
 462	/*
 463	 * Now we know which copy is newer. If the copy flag of the PEB with
 464	 * newer version is not set, then we just return, otherwise we have to
 465	 * check data CRC. For the second PEB we already have the VID header,
 466	 * for the first one - we'll need to re-read it from flash.
 467	 *
 468	 * Note: this may be optimized so that we wouldn't read twice.
 469	 */
 470
 471	if (second_is_newer) {
 472		if (!vid_hdr->copy_flag) {
 473			/* It is not a copy, so it is newer */
 474			dbg_bld("second PEB %d is newer, copy_flag is unset",
 475				pnum);
 476			return 1;
 477		}
 478	} else {
 479		if (!aeb->copy_flag) {
 480			/* It is not a copy, so it is newer */
 481			dbg_bld("first PEB %d is newer, copy_flag is unset",
 482				pnum);
 483			return bitflips << 1;
 484		}
 485
 486		vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
 487		if (!vidb)
 488			return -ENOMEM;
 489
 490		pnum = aeb->pnum;
 491		err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0);
 492		if (err) {
 493			if (err == UBI_IO_BITFLIPS)
 494				bitflips = 1;
 495			else {
 496				ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
 497					pnum, err);
 498				if (err > 0)
 499					err = -EIO;
 500
 501				goto out_free_vidh;
 502			}
 503		}
 504
 505		vid_hdr = ubi_get_vid_hdr(vidb);
 506	}
 507
 508	/* Read the data of the copy and check the CRC */
 509
 510	len = be32_to_cpu(vid_hdr->data_size);
 511
 512	mutex_lock(&ubi->buf_mutex);
 513	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 514	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 515		goto out_unlock;
 516
 517	data_crc = be32_to_cpu(vid_hdr->data_crc);
 518	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 519	if (crc != data_crc) {
 520		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 521			pnum, crc, data_crc);
 522		corrupted = 1;
 523		bitflips = 0;
 524		second_is_newer = !second_is_newer;
 525	} else {
 526		dbg_bld("PEB %d CRC is OK", pnum);
 527		bitflips |= !!err;
 528	}
 529	mutex_unlock(&ubi->buf_mutex);
 530
 531	ubi_free_vid_buf(vidb);
 532
 533	if (second_is_newer)
 534		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 535	else
 536		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 537
 538	return second_is_newer | (bitflips << 1) | (corrupted << 2);
 539
 540out_unlock:
 541	mutex_unlock(&ubi->buf_mutex);
 542out_free_vidh:
 543	ubi_free_vid_buf(vidb);
 544	return err;
 545}
 546
 547/**
 548 * ubi_add_to_av - add used physical eraseblock to the attaching information.
 549 * @ubi: UBI device description object
 550 * @ai: attaching information
 551 * @pnum: the physical eraseblock number
 552 * @ec: erase counter
 553 * @vid_hdr: the volume identifier header
 554 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 555 *
 556 * This function adds information about a used physical eraseblock to the
 557 * 'used' tree of the corresponding volume. The function is rather complex
 558 * because it has to handle cases when this is not the first physical
 559 * eraseblock belonging to the same logical eraseblock, and the newer one has
 560 * to be picked, while the older one has to be dropped. This function returns
 561 * zero in case of success and a negative error code in case of failure.
 562 */
 563int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 564		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 565{
 566	int err, vol_id, lnum;
 567	unsigned long long sqnum;
 568	struct ubi_ainf_volume *av;
 569	struct ubi_ainf_peb *aeb;
 570	struct rb_node **p, *parent = NULL;
 571
 572	vol_id = be32_to_cpu(vid_hdr->vol_id);
 573	lnum = be32_to_cpu(vid_hdr->lnum);
 574	sqnum = be64_to_cpu(vid_hdr->sqnum);
 575
 576	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 577		pnum, vol_id, lnum, ec, sqnum, bitflips);
 578
 579	av = add_volume(ai, vol_id, pnum, vid_hdr);
 580	if (IS_ERR(av))
 581		return PTR_ERR(av);
 582
 583	if (ai->max_sqnum < sqnum)
 584		ai->max_sqnum = sqnum;
 585
 586	/*
 587	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 588	 * if this is the first instance of this logical eraseblock or not.
 589	 */
 590	p = &av->root.rb_node;
 591	while (*p) {
 592		int cmp_res;
 593
 594		parent = *p;
 595		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 596		if (lnum != aeb->lnum) {
 597			if (lnum < aeb->lnum)
 598				p = &(*p)->rb_left;
 599			else
 600				p = &(*p)->rb_right;
 601			continue;
 602		}
 603
 604		/*
 605		 * There is already a physical eraseblock describing the same
 606		 * logical eraseblock present.
 607		 */
 608
 609		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 610			aeb->pnum, aeb->sqnum, aeb->ec);
 611
 612		/*
 613		 * Make sure that the logical eraseblocks have different
 614		 * sequence numbers. Otherwise the image is bad.
 615		 *
 616		 * However, if the sequence number is zero, we assume it must
 617		 * be an ancient UBI image from the era when UBI did not have
 618		 * sequence numbers. We still can attach these images, unless
 619		 * there is a need to distinguish between old and new
 620		 * eraseblocks, in which case we'll refuse the image in
 621		 * 'ubi_compare_lebs()'. In other words, we attach old clean
 622		 * images, but refuse attaching old images with duplicated
 623		 * logical eraseblocks because there was an unclean reboot.
 624		 */
 625		if (aeb->sqnum == sqnum && sqnum != 0) {
 626			ubi_err(ubi, "two LEBs with same sequence number %llu",
 627				sqnum);
 628			ubi_dump_aeb(aeb, 0);
 629			ubi_dump_vid_hdr(vid_hdr);
 630			return -EINVAL;
 631		}
 632
 633		/*
 634		 * Now we have to drop the older one and preserve the newer
 635		 * one.
 636		 */
 637		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 638		if (cmp_res < 0)
 639			return cmp_res;
 640
 641		if (cmp_res & 1) {
 642			/*
 643			 * This logical eraseblock is newer than the one
 644			 * found earlier.
 645			 */
 646			err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 647			if (err)
 648				return err;
 649
 650			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 651					  aeb->lnum, aeb->ec, cmp_res & 4,
 652					  &ai->erase);
 653			if (err)
 654				return err;
 655
 656			aeb->ec = ec;
 657			aeb->pnum = pnum;
 658			aeb->vol_id = vol_id;
 659			aeb->lnum = lnum;
 660			aeb->scrub = ((cmp_res & 2) || bitflips);
 661			aeb->copy_flag = vid_hdr->copy_flag;
 662			aeb->sqnum = sqnum;
 663
 664			if (av->highest_lnum == lnum)
 665				av->last_data_size =
 666					be32_to_cpu(vid_hdr->data_size);
 667
 668			return 0;
 669		} else {
 670			/*
 671			 * This logical eraseblock is older than the one found
 672			 * previously.
 673			 */
 674			return add_to_list(ai, pnum, vol_id, lnum, ec,
 675					   cmp_res & 4, &ai->erase);
 676		}
 677	}
 678
 679	/*
 680	 * We've met this logical eraseblock for the first time, add it to the
 681	 * attaching information.
 682	 */
 683
 684	err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 685	if (err)
 686		return err;
 687
 688	aeb = ubi_alloc_aeb(ai, pnum, ec);
 689	if (!aeb)
 690		return -ENOMEM;
 691
 
 
 692	aeb->vol_id = vol_id;
 693	aeb->lnum = lnum;
 694	aeb->scrub = bitflips;
 695	aeb->copy_flag = vid_hdr->copy_flag;
 696	aeb->sqnum = sqnum;
 697
 698	if (av->highest_lnum <= lnum) {
 699		av->highest_lnum = lnum;
 700		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 701	}
 702
 703	av->leb_count += 1;
 704	rb_link_node(&aeb->u.rb, parent, p);
 705	rb_insert_color(&aeb->u.rb, &av->root);
 706	return 0;
 707}
 708
 709/**
 710 * ubi_add_av - add volume to the attaching information.
 711 * @ai: attaching information
 712 * @vol_id: the requested volume ID
 713 *
 714 * This function returns a pointer to the new volume description or an
 715 * ERR_PTR if the operation failed.
 716 */
 717struct ubi_ainf_volume *ubi_add_av(struct ubi_attach_info *ai, int vol_id)
 718{
 719	bool created;
 720
 721	return find_or_add_av(ai, vol_id, AV_ADD, &created);
 722}
 723
 724/**
 725 * ubi_find_av - find volume in the attaching information.
 726 * @ai: attaching information
 727 * @vol_id: the requested volume ID
 728 *
 729 * This function returns a pointer to the volume description or %NULL if there
 730 * are no data about this volume in the attaching information.
 731 */
 732struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 733				    int vol_id)
 734{
 735	bool created;
 
 736
 737	return find_or_add_av((struct ubi_attach_info *)ai, vol_id, AV_FIND,
 738			      &created);
 739}
 
 
 740
 741static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av,
 742		       struct list_head *list);
 
 
 
 
 
 
 743
 744/**
 745 * ubi_remove_av - delete attaching information about a volume.
 746 * @ai: attaching information
 747 * @av: the volume attaching information to delete
 748 */
 749void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 750{
 
 
 
 751	dbg_bld("remove attaching information about volume %d", av->vol_id);
 752
 
 
 
 
 
 
 753	rb_erase(&av->rb, &ai->volumes);
 754	destroy_av(ai, av, &ai->erase);
 755	ai->vols_found -= 1;
 756}
 757
 758/**
 759 * early_erase_peb - erase a physical eraseblock.
 760 * @ubi: UBI device description object
 761 * @ai: attaching information
 762 * @pnum: physical eraseblock number to erase;
 763 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 764 *
 765 * This function erases physical eraseblock 'pnum', and writes the erase
 766 * counter header to it. This function should only be used on UBI device
 767 * initialization stages, when the EBA sub-system had not been yet initialized.
 768 * This function returns zero in case of success and a negative error code in
 769 * case of failure.
 770 */
 771static int early_erase_peb(struct ubi_device *ubi,
 772			   const struct ubi_attach_info *ai, int pnum, int ec)
 773{
 774	int err;
 775	struct ubi_ec_hdr *ec_hdr;
 776
 777	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 778		/*
 779		 * Erase counter overflow. Upgrade UBI and use 64-bit
 780		 * erase counters internally.
 781		 */
 782		ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
 783			pnum, ec);
 784		return -EINVAL;
 785	}
 786
 787	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 788	if (!ec_hdr)
 789		return -ENOMEM;
 790
 791	ec_hdr->ec = cpu_to_be64(ec);
 792
 793	err = ubi_io_sync_erase(ubi, pnum, 0);
 794	if (err < 0)
 795		goto out_free;
 796
 797	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 798
 799out_free:
 800	kfree(ec_hdr);
 801	return err;
 802}
 803
 804/**
 805 * ubi_early_get_peb - get a free physical eraseblock.
 806 * @ubi: UBI device description object
 807 * @ai: attaching information
 808 *
 809 * This function returns a free physical eraseblock. It is supposed to be
 810 * called on the UBI initialization stages when the wear-leveling sub-system is
 811 * not initialized yet. This function picks a physical eraseblocks from one of
 812 * the lists, writes the EC header if it is needed, and removes it from the
 813 * list.
 814 *
 815 * This function returns a pointer to the "aeb" of the found free PEB in case
 816 * of success and an error code in case of failure.
 817 */
 818struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 819				       struct ubi_attach_info *ai)
 820{
 821	int err = 0;
 822	struct ubi_ainf_peb *aeb, *tmp_aeb;
 823
 824	if (!list_empty(&ai->free)) {
 825		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 826		list_del(&aeb->u.list);
 827		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 828		return aeb;
 829	}
 830
 831	/*
 832	 * We try to erase the first physical eraseblock from the erase list
 833	 * and pick it if we succeed, or try to erase the next one if not. And
 834	 * so forth. We don't want to take care about bad eraseblocks here -
 835	 * they'll be handled later.
 836	 */
 837	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 838		if (aeb->ec == UBI_UNKNOWN)
 839			aeb->ec = ai->mean_ec;
 840
 841		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 842		if (err)
 843			continue;
 844
 845		aeb->ec += 1;
 846		list_del(&aeb->u.list);
 847		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 848		return aeb;
 849	}
 850
 851	ubi_err(ubi, "no free eraseblocks");
 852	return ERR_PTR(-ENOSPC);
 853}
 854
 855/**
 856 * check_corruption - check the data area of PEB.
 857 * @ubi: UBI device description object
 858 * @vid_hdr: the (corrupted) VID header of this PEB
 859 * @pnum: the physical eraseblock number to check
 860 *
 861 * This is a helper function which is used to distinguish between VID header
 862 * corruptions caused by power cuts and other reasons. If the PEB contains only
 863 * 0xFF bytes in the data area, the VID header is most probably corrupted
 864 * because of a power cut (%0 is returned in this case). Otherwise, it was
 865 * probably corrupted for some other reasons (%1 is returned in this case). A
 866 * negative error code is returned if a read error occurred.
 867 *
 868 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 869 * Otherwise, it should preserve it to avoid possibly destroying important
 870 * information.
 871 */
 872static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 873			    int pnum)
 874{
 875	int err;
 876
 877	mutex_lock(&ubi->buf_mutex);
 878	memset(ubi->peb_buf, 0x00, ubi->leb_size);
 879
 880	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 881			  ubi->leb_size);
 882	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 883		/*
 884		 * Bit-flips or integrity errors while reading the data area.
 885		 * It is difficult to say for sure what type of corruption is
 886		 * this, but presumably a power cut happened while this PEB was
 887		 * erased, so it became unstable and corrupted, and should be
 888		 * erased.
 889		 */
 890		err = 0;
 891		goto out_unlock;
 892	}
 893
 894	if (err)
 895		goto out_unlock;
 896
 897	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 898		goto out_unlock;
 899
 900	ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 901		pnum);
 902	ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 903	ubi_dump_vid_hdr(vid_hdr);
 904	pr_err("hexdump of PEB %d offset %d, length %d",
 905	       pnum, ubi->leb_start, ubi->leb_size);
 906	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 907			       ubi->peb_buf, ubi->leb_size, 1);
 908	err = 1;
 909
 910out_unlock:
 911	mutex_unlock(&ubi->buf_mutex);
 912	return err;
 913}
 914
 915static bool vol_ignored(int vol_id)
 916{
 917	switch (vol_id) {
 918		case UBI_LAYOUT_VOLUME_ID:
 919		return true;
 920	}
 921
 922#ifdef CONFIG_MTD_UBI_FASTMAP
 923	return ubi_is_fm_vol(vol_id);
 924#else
 925	return false;
 926#endif
 927}
 928
 929/**
 930 * scan_peb - scan and process UBI headers of a PEB.
 931 * @ubi: UBI device description object
 932 * @ai: attaching information
 933 * @pnum: the physical eraseblock number
 934 * @fast: true if we're scanning for a Fastmap
 
 935 *
 936 * This function reads UBI headers of PEB @pnum, checks them, and adds
 937 * information about this PEB to the corresponding list or RB-tree in the
 938 * "attaching info" structure. Returns zero if the physical eraseblock was
 939 * successfully handled and a negative error code in case of failure.
 940 */
 941static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 942		    int pnum, bool fast)
 943{
 944	struct ubi_ec_hdr *ech = ai->ech;
 945	struct ubi_vid_io_buf *vidb = ai->vidb;
 946	struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb);
 947	long long ec;
 948	int err, bitflips = 0, vol_id = -1, ec_err = 0;
 949
 950	dbg_bld("scan PEB %d", pnum);
 951
 952	/* Skip bad physical eraseblocks */
 953	err = ubi_io_is_bad(ubi, pnum);
 954	if (err < 0)
 955		return err;
 956	else if (err) {
 957		ai->bad_peb_count += 1;
 958		return 0;
 959	}
 960
 961	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 962	if (err < 0)
 963		return err;
 964	switch (err) {
 965	case 0:
 966		break;
 967	case UBI_IO_BITFLIPS:
 968		bitflips = 1;
 969		break;
 970	case UBI_IO_FF:
 971		ai->empty_peb_count += 1;
 972		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 973				   UBI_UNKNOWN, 0, &ai->erase);
 974	case UBI_IO_FF_BITFLIPS:
 975		ai->empty_peb_count += 1;
 976		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 977				   UBI_UNKNOWN, 1, &ai->erase);
 978	case UBI_IO_BAD_HDR_EBADMSG:
 979	case UBI_IO_BAD_HDR:
 980		/*
 981		 * We have to also look at the VID header, possibly it is not
 982		 * corrupted. Set %bitflips flag in order to make this PEB be
 983		 * moved and EC be re-created.
 984		 */
 985		ec_err = err;
 986		ec = UBI_UNKNOWN;
 987		bitflips = 1;
 988		break;
 989	default:
 990		ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
 991			err);
 992		return -EINVAL;
 993	}
 994
 995	if (!ec_err) {
 996		int image_seq;
 997
 998		/* Make sure UBI version is OK */
 999		if (ech->version != UBI_VERSION) {
1000			ubi_err(ubi, "this UBI version is %d, image version is %d",
1001				UBI_VERSION, (int)ech->version);
1002			return -EINVAL;
1003		}
1004
1005		ec = be64_to_cpu(ech->ec);
1006		if (ec > UBI_MAX_ERASECOUNTER) {
1007			/*
1008			 * Erase counter overflow. The EC headers have 64 bits
1009			 * reserved, but we anyway make use of only 31 bit
1010			 * values, as this seems to be enough for any existing
1011			 * flash. Upgrade UBI and use 64-bit erase counters
1012			 * internally.
1013			 */
1014			ubi_err(ubi, "erase counter overflow, max is %d",
1015				UBI_MAX_ERASECOUNTER);
1016			ubi_dump_ec_hdr(ech);
1017			return -EINVAL;
1018		}
1019
1020		/*
1021		 * Make sure that all PEBs have the same image sequence number.
1022		 * This allows us to detect situations when users flash UBI
1023		 * images incorrectly, so that the flash has the new UBI image
1024		 * and leftovers from the old one. This feature was added
1025		 * relatively recently, and the sequence number was always
1026		 * zero, because old UBI implementations always set it to zero.
1027		 * For this reasons, we do not panic if some PEBs have zero
1028		 * sequence number, while other PEBs have non-zero sequence
1029		 * number.
1030		 */
1031		image_seq = be32_to_cpu(ech->image_seq);
1032		if (!ubi->image_seq)
1033			ubi->image_seq = image_seq;
1034		if (image_seq && ubi->image_seq != image_seq) {
1035			ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
1036				image_seq, pnum, ubi->image_seq);
1037			ubi_dump_ec_hdr(ech);
1038			return -EINVAL;
1039		}
1040	}
1041
1042	/* OK, we've done with the EC header, let's look at the VID header */
1043
1044	err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0);
1045	if (err < 0)
1046		return err;
1047	switch (err) {
1048	case 0:
1049		break;
1050	case UBI_IO_BITFLIPS:
1051		bitflips = 1;
1052		break;
1053	case UBI_IO_BAD_HDR_EBADMSG:
1054		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
1055			/*
1056			 * Both EC and VID headers are corrupted and were read
1057			 * with data integrity error, probably this is a bad
1058			 * PEB, bit it is not marked as bad yet. This may also
1059			 * be a result of power cut during erasure.
1060			 */
1061			ai->maybe_bad_peb_count += 1;
1062		fallthrough;
1063	case UBI_IO_BAD_HDR:
1064			/*
1065			 * If we're facing a bad VID header we have to drop *all*
1066			 * Fastmap data structures we find. The most recent Fastmap
1067			 * could be bad and therefore there is a chance that we attach
1068			 * from an old one. On a fine MTD stack a PEB must not render
1069			 * bad all of a sudden, but the reality is different.
1070			 * So, let's be paranoid and help finding the root cause by
1071			 * falling back to scanning mode instead of attaching with a
1072			 * bad EBA table and cause data corruption which is hard to
1073			 * analyze.
1074			 */
1075			if (fast)
1076				ai->force_full_scan = 1;
1077
1078		if (ec_err)
1079			/*
1080			 * Both headers are corrupted. There is a possibility
1081			 * that this a valid UBI PEB which has corresponding
1082			 * LEB, but the headers are corrupted. However, it is
1083			 * impossible to distinguish it from a PEB which just
1084			 * contains garbage because of a power cut during erase
1085			 * operation. So we just schedule this PEB for erasure.
1086			 *
1087			 * Besides, in case of NOR flash, we deliberately
1088			 * corrupt both headers because NOR flash erasure is
1089			 * slow and can start from the end.
1090			 */
1091			err = 0;
1092		else
1093			/*
1094			 * The EC was OK, but the VID header is corrupted. We
1095			 * have to check what is in the data area.
1096			 */
1097			err = check_corruption(ubi, vidh, pnum);
1098
1099		if (err < 0)
1100			return err;
1101		else if (!err)
1102			/* This corruption is caused by a power cut */
1103			err = add_to_list(ai, pnum, UBI_UNKNOWN,
1104					  UBI_UNKNOWN, ec, 1, &ai->erase);
1105		else
1106			/* This is an unexpected corruption */
1107			err = add_corrupted(ai, pnum, ec);
1108		if (err)
1109			return err;
1110		goto adjust_mean_ec;
1111	case UBI_IO_FF_BITFLIPS:
1112		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
1113				  ec, 1, &ai->erase);
1114		if (err)
1115			return err;
1116		goto adjust_mean_ec;
1117	case UBI_IO_FF:
1118		if (ec_err || bitflips)
1119			err = add_to_list(ai, pnum, UBI_UNKNOWN,
1120					  UBI_UNKNOWN, ec, 1, &ai->erase);
1121		else
1122			err = add_to_list(ai, pnum, UBI_UNKNOWN,
1123					  UBI_UNKNOWN, ec, 0, &ai->free);
1124		if (err)
1125			return err;
1126		goto adjust_mean_ec;
1127	default:
1128		ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
1129			err);
1130		return -EINVAL;
1131	}
1132
1133	vol_id = be32_to_cpu(vidh->vol_id);
1134	if (vol_id > UBI_MAX_VOLUMES && !vol_ignored(vol_id)) {
 
 
 
 
1135		int lnum = be32_to_cpu(vidh->lnum);
1136
1137		/* Unsupported internal volume */
1138		switch (vidh->compat) {
1139		case UBI_COMPAT_DELETE:
1140			ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1141				vol_id, lnum);
1142
 
 
1143			err = add_to_list(ai, pnum, vol_id, lnum,
1144					  ec, 1, &ai->erase);
1145			if (err)
1146				return err;
1147			return 0;
1148
1149		case UBI_COMPAT_RO:
1150			ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1151				vol_id, lnum);
1152			ubi->ro_mode = 1;
1153			break;
1154
1155		case UBI_COMPAT_PRESERVE:
1156			ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1157				vol_id, lnum);
1158			err = add_to_list(ai, pnum, vol_id, lnum,
1159					  ec, 0, &ai->alien);
1160			if (err)
1161				return err;
1162			return 0;
1163
1164		case UBI_COMPAT_REJECT:
1165			ubi_err(ubi, "incompatible internal volume %d:%d found",
1166				vol_id, lnum);
1167			return -EINVAL;
1168		}
1169	}
1170
1171	if (ec_err)
1172		ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1173			 pnum);
1174
1175	if (ubi_is_fm_vol(vol_id))
1176		err = add_fastmap(ai, pnum, vidh, ec);
1177	else
1178		err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1179
1180	if (err)
1181		return err;
1182
1183adjust_mean_ec:
1184	if (!ec_err) {
1185		ai->ec_sum += ec;
1186		ai->ec_count += 1;
1187		if (ec > ai->max_ec)
1188			ai->max_ec = ec;
1189		if (ec < ai->min_ec)
1190			ai->min_ec = ec;
1191	}
1192
1193	return 0;
1194}
1195
1196/**
1197 * late_analysis - analyze the overall situation with PEB.
1198 * @ubi: UBI device description object
1199 * @ai: attaching information
1200 *
1201 * This is a helper function which takes a look what PEBs we have after we
1202 * gather information about all of them ("ai" is compete). It decides whether
1203 * the flash is empty and should be formatted of whether there are too many
1204 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1205 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1206 */
1207static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1208{
1209	struct ubi_ainf_peb *aeb;
1210	int max_corr, peb_count;
1211
1212	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1213	max_corr = peb_count / 20 ?: 8;
1214
1215	/*
1216	 * Few corrupted PEBs is not a problem and may be just a result of
1217	 * unclean reboots. However, many of them may indicate some problems
1218	 * with the flash HW or driver.
1219	 */
1220	if (ai->corr_peb_count) {
1221		ubi_err(ubi, "%d PEBs are corrupted and preserved",
1222			ai->corr_peb_count);
1223		pr_err("Corrupted PEBs are:");
1224		list_for_each_entry(aeb, &ai->corr, u.list)
1225			pr_cont(" %d", aeb->pnum);
1226		pr_cont("\n");
1227
1228		/*
1229		 * If too many PEBs are corrupted, we refuse attaching,
1230		 * otherwise, only print a warning.
1231		 */
1232		if (ai->corr_peb_count >= max_corr) {
1233			ubi_err(ubi, "too many corrupted PEBs, refusing");
1234			return -EINVAL;
1235		}
1236	}
1237
1238	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1239		/*
1240		 * All PEBs are empty, or almost all - a couple PEBs look like
1241		 * they may be bad PEBs which were not marked as bad yet.
1242		 *
1243		 * This piece of code basically tries to distinguish between
1244		 * the following situations:
1245		 *
1246		 * 1. Flash is empty, but there are few bad PEBs, which are not
1247		 *    marked as bad so far, and which were read with error. We
1248		 *    want to go ahead and format this flash. While formatting,
1249		 *    the faulty PEBs will probably be marked as bad.
1250		 *
1251		 * 2. Flash contains non-UBI data and we do not want to format
1252		 *    it and destroy possibly important information.
1253		 */
1254		if (ai->maybe_bad_peb_count <= 2) {
1255			ai->is_empty = 1;
1256			ubi_msg(ubi, "empty MTD device detected");
1257			get_random_bytes(&ubi->image_seq,
1258					 sizeof(ubi->image_seq));
1259		} else {
1260			ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1261			return -EINVAL;
1262		}
1263
1264	}
1265
1266	return 0;
1267}
1268
1269/**
1270 * destroy_av - free volume attaching information.
1271 * @av: volume attaching information
1272 * @ai: attaching information
1273 * @list: put the aeb elements in there if !NULL, otherwise free them
1274 *
1275 * This function destroys the volume attaching information.
1276 */
1277static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av,
1278		       struct list_head *list)
1279{
1280	struct ubi_ainf_peb *aeb;
1281	struct rb_node *this = av->root.rb_node;
1282
1283	while (this) {
1284		if (this->rb_left)
1285			this = this->rb_left;
1286		else if (this->rb_right)
1287			this = this->rb_right;
1288		else {
1289			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1290			this = rb_parent(this);
1291			if (this) {
1292				if (this->rb_left == &aeb->u.rb)
1293					this->rb_left = NULL;
1294				else
1295					this->rb_right = NULL;
1296			}
1297
1298			if (list)
1299				list_add_tail(&aeb->u.list, list);
1300			else
1301				ubi_free_aeb(ai, aeb);
1302		}
1303	}
1304	kfree(av);
1305}
1306
1307/**
1308 * destroy_ai - destroy attaching information.
1309 * @ai: attaching information
1310 */
1311static void destroy_ai(struct ubi_attach_info *ai)
1312{
1313	struct ubi_ainf_peb *aeb, *aeb_tmp;
1314	struct ubi_ainf_volume *av;
1315	struct rb_node *rb;
1316
1317	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1318		list_del(&aeb->u.list);
1319		ubi_free_aeb(ai, aeb);
1320	}
1321	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1322		list_del(&aeb->u.list);
1323		ubi_free_aeb(ai, aeb);
1324	}
1325	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1326		list_del(&aeb->u.list);
1327		ubi_free_aeb(ai, aeb);
1328	}
1329	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1330		list_del(&aeb->u.list);
1331		ubi_free_aeb(ai, aeb);
1332	}
1333	list_for_each_entry_safe(aeb, aeb_tmp, &ai->fastmap, u.list) {
1334		list_del(&aeb->u.list);
1335		ubi_free_aeb(ai, aeb);
1336	}
1337
1338	/* Destroy the volume RB-tree */
1339	rb = ai->volumes.rb_node;
1340	while (rb) {
1341		if (rb->rb_left)
1342			rb = rb->rb_left;
1343		else if (rb->rb_right)
1344			rb = rb->rb_right;
1345		else {
1346			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1347
1348			rb = rb_parent(rb);
1349			if (rb) {
1350				if (rb->rb_left == &av->rb)
1351					rb->rb_left = NULL;
1352				else
1353					rb->rb_right = NULL;
1354			}
1355
1356			destroy_av(ai, av, NULL);
1357		}
1358	}
1359
1360	kmem_cache_destroy(ai->aeb_slab_cache);
 
 
1361	kfree(ai);
1362}
1363
1364/**
1365 * scan_all - scan entire MTD device.
1366 * @ubi: UBI device description object
1367 * @ai: attach info object
1368 * @start: start scanning at this PEB
1369 *
1370 * This function does full scanning of an MTD device and returns complete
1371 * information about it in form of a "struct ubi_attach_info" object. In case
1372 * of failure, an error code is returned.
1373 */
1374static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1375		    int start)
1376{
1377	int err, pnum;
1378	struct rb_node *rb1, *rb2;
1379	struct ubi_ainf_volume *av;
1380	struct ubi_ainf_peb *aeb;
1381
1382	err = -ENOMEM;
1383
1384	ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1385	if (!ai->ech)
1386		return err;
1387
1388	ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
1389	if (!ai->vidb)
1390		goto out_ech;
1391
1392	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1393		cond_resched();
1394
1395		dbg_gen("process PEB %d", pnum);
1396		err = scan_peb(ubi, ai, pnum, false);
1397		if (err < 0)
1398			goto out_vidh;
1399	}
1400
1401	ubi_msg(ubi, "scanning is finished");
1402
1403	/* Calculate mean erase counter */
1404	if (ai->ec_count)
1405		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1406
1407	err = late_analysis(ubi, ai);
1408	if (err)
1409		goto out_vidh;
1410
1411	/*
1412	 * In case of unknown erase counter we use the mean erase counter
1413	 * value.
1414	 */
1415	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1416		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1417			if (aeb->ec == UBI_UNKNOWN)
1418				aeb->ec = ai->mean_ec;
1419	}
1420
1421	list_for_each_entry(aeb, &ai->free, u.list) {
1422		if (aeb->ec == UBI_UNKNOWN)
1423			aeb->ec = ai->mean_ec;
1424	}
1425
1426	list_for_each_entry(aeb, &ai->corr, u.list)
1427		if (aeb->ec == UBI_UNKNOWN)
1428			aeb->ec = ai->mean_ec;
1429
1430	list_for_each_entry(aeb, &ai->erase, u.list)
1431		if (aeb->ec == UBI_UNKNOWN)
1432			aeb->ec = ai->mean_ec;
1433
1434	err = self_check_ai(ubi, ai);
1435	if (err)
1436		goto out_vidh;
1437
1438	ubi_free_vid_buf(ai->vidb);
1439	kfree(ai->ech);
1440
1441	return 0;
1442
1443out_vidh:
1444	ubi_free_vid_buf(ai->vidb);
1445out_ech:
1446	kfree(ai->ech);
1447	return err;
1448}
1449
1450static struct ubi_attach_info *alloc_ai(void)
1451{
1452	struct ubi_attach_info *ai;
1453
1454	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1455	if (!ai)
1456		return ai;
1457
1458	INIT_LIST_HEAD(&ai->corr);
1459	INIT_LIST_HEAD(&ai->free);
1460	INIT_LIST_HEAD(&ai->erase);
1461	INIT_LIST_HEAD(&ai->alien);
1462	INIT_LIST_HEAD(&ai->fastmap);
1463	ai->volumes = RB_ROOT;
1464	ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1465					       sizeof(struct ubi_ainf_peb),
1466					       0, 0, NULL);
1467	if (!ai->aeb_slab_cache) {
1468		kfree(ai);
1469		ai = NULL;
1470	}
1471
1472	return ai;
1473}
1474
1475#ifdef CONFIG_MTD_UBI_FASTMAP
1476
1477/**
1478 * scan_fast - try to find a fastmap and attach from it.
1479 * @ubi: UBI device description object
1480 * @ai: attach info object
1481 *
1482 * Returns 0 on success, negative return values indicate an internal
1483 * error.
1484 * UBI_NO_FASTMAP denotes that no fastmap was found.
1485 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1486 */
1487static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1488{
1489	int err, pnum;
1490	struct ubi_attach_info *scan_ai;
1491
1492	err = -ENOMEM;
1493
1494	scan_ai = alloc_ai();
1495	if (!scan_ai)
1496		goto out;
1497
1498	scan_ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1499	if (!scan_ai->ech)
1500		goto out_ai;
1501
1502	scan_ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
1503	if (!scan_ai->vidb)
1504		goto out_ech;
1505
1506	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
 
 
1507		cond_resched();
1508
1509		dbg_gen("process PEB %d", pnum);
1510		err = scan_peb(ubi, scan_ai, pnum, true);
1511		if (err < 0)
1512			goto out_vidh;
1513	}
1514
1515	ubi_free_vid_buf(scan_ai->vidb);
1516	kfree(scan_ai->ech);
 
 
 
1517
1518	if (scan_ai->force_full_scan)
1519		err = UBI_NO_FASTMAP;
1520	else
1521		err = ubi_scan_fastmap(ubi, *ai, scan_ai);
1522
1523	if (err) {
1524		/*
1525		 * Didn't attach via fastmap, do a full scan but reuse what
1526		 * we've aready scanned.
1527		 */
1528		destroy_ai(*ai);
1529		*ai = scan_ai;
1530	} else
1531		destroy_ai(scan_ai);
1532
1533	return err;
1534
1535out_vidh:
1536	ubi_free_vid_buf(scan_ai->vidb);
1537out_ech:
1538	kfree(scan_ai->ech);
1539out_ai:
1540	destroy_ai(scan_ai);
1541out:
1542	return err;
1543}
1544
1545#endif
1546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547/**
1548 * ubi_attach - attach an MTD device.
1549 * @ubi: UBI device descriptor
1550 * @force_scan: if set to non-zero attach by scanning
1551 *
1552 * This function returns zero in case of success and a negative error code in
1553 * case of failure.
1554 */
1555int ubi_attach(struct ubi_device *ubi, int force_scan)
1556{
1557	int err;
1558	struct ubi_attach_info *ai;
1559
1560	ai = alloc_ai();
1561	if (!ai)
1562		return -ENOMEM;
1563
1564#ifdef CONFIG_MTD_UBI_FASTMAP
1565	/* On small flash devices we disable fastmap in any case. */
1566	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1567		ubi->fm_disabled = 1;
1568		force_scan = 1;
1569	}
1570
1571	if (force_scan)
1572		err = scan_all(ubi, ai, 0);
1573	else {
1574		err = scan_fast(ubi, &ai);
1575		if (err > 0 || mtd_is_eccerr(err)) {
1576			if (err != UBI_NO_FASTMAP) {
1577				destroy_ai(ai);
1578				ai = alloc_ai();
1579				if (!ai)
1580					return -ENOMEM;
1581
1582				err = scan_all(ubi, ai, 0);
1583			} else {
1584				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1585			}
1586		}
1587	}
1588#else
1589	err = scan_all(ubi, ai, 0);
1590#endif
1591	if (err)
1592		goto out_ai;
1593
1594	ubi->bad_peb_count = ai->bad_peb_count;
1595	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1596	ubi->corr_peb_count = ai->corr_peb_count;
1597	ubi->max_ec = ai->max_ec;
1598	ubi->mean_ec = ai->mean_ec;
1599	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1600
1601	err = ubi_read_volume_table(ubi, ai);
1602	if (err)
1603		goto out_ai;
1604
1605	err = ubi_wl_init(ubi, ai);
1606	if (err)
1607		goto out_vtbl;
1608
1609	err = ubi_eba_init(ubi, ai);
1610	if (err)
1611		goto out_wl;
1612
1613#ifdef CONFIG_MTD_UBI_FASTMAP
1614	if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1615		struct ubi_attach_info *scan_ai;
1616
1617		scan_ai = alloc_ai();
1618		if (!scan_ai) {
1619			err = -ENOMEM;
1620			goto out_wl;
1621		}
1622
1623		err = scan_all(ubi, scan_ai, 0);
1624		if (err) {
1625			destroy_ai(scan_ai);
1626			goto out_wl;
1627		}
1628
1629		err = self_check_eba(ubi, ai, scan_ai);
1630		destroy_ai(scan_ai);
1631
1632		if (err)
1633			goto out_wl;
1634	}
1635#endif
1636
1637	destroy_ai(ai);
1638	return 0;
1639
1640out_wl:
1641	ubi_wl_close(ubi);
1642out_vtbl:
1643	ubi_free_all_volumes(ubi);
1644	vfree(ubi->vtbl);
1645out_ai:
1646	destroy_ai(ai);
1647	return err;
1648}
1649
1650/**
1651 * self_check_ai - check the attaching information.
1652 * @ubi: UBI device description object
1653 * @ai: attaching information
1654 *
1655 * This function returns zero if the attaching information is all right, and a
1656 * negative error code if not or if an error occurred.
1657 */
1658static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1659{
1660	struct ubi_vid_io_buf *vidb = ai->vidb;
1661	struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb);
1662	int pnum, err, vols_found = 0;
1663	struct rb_node *rb1, *rb2;
1664	struct ubi_ainf_volume *av;
1665	struct ubi_ainf_peb *aeb, *last_aeb;
1666	uint8_t *buf;
1667
1668	if (!ubi_dbg_chk_gen(ubi))
1669		return 0;
1670
1671	/*
1672	 * At first, check that attaching information is OK.
1673	 */
1674	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1675		int leb_count = 0;
1676
1677		cond_resched();
1678
1679		vols_found += 1;
1680
1681		if (ai->is_empty) {
1682			ubi_err(ubi, "bad is_empty flag");
1683			goto bad_av;
1684		}
1685
1686		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1687		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1688		    av->data_pad < 0 || av->last_data_size < 0) {
1689			ubi_err(ubi, "negative values");
1690			goto bad_av;
1691		}
1692
1693		if (av->vol_id >= UBI_MAX_VOLUMES &&
1694		    av->vol_id < UBI_INTERNAL_VOL_START) {
1695			ubi_err(ubi, "bad vol_id");
1696			goto bad_av;
1697		}
1698
1699		if (av->vol_id > ai->highest_vol_id) {
1700			ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1701				ai->highest_vol_id, av->vol_id);
1702			goto out;
1703		}
1704
1705		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1706		    av->vol_type != UBI_STATIC_VOLUME) {
1707			ubi_err(ubi, "bad vol_type");
1708			goto bad_av;
1709		}
1710
1711		if (av->data_pad > ubi->leb_size / 2) {
1712			ubi_err(ubi, "bad data_pad");
1713			goto bad_av;
1714		}
1715
1716		last_aeb = NULL;
1717		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1718			cond_resched();
1719
1720			last_aeb = aeb;
1721			leb_count += 1;
1722
1723			if (aeb->pnum < 0 || aeb->ec < 0) {
1724				ubi_err(ubi, "negative values");
1725				goto bad_aeb;
1726			}
1727
1728			if (aeb->ec < ai->min_ec) {
1729				ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1730					ai->min_ec, aeb->ec);
1731				goto bad_aeb;
1732			}
1733
1734			if (aeb->ec > ai->max_ec) {
1735				ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1736					ai->max_ec, aeb->ec);
1737				goto bad_aeb;
1738			}
1739
1740			if (aeb->pnum >= ubi->peb_count) {
1741				ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1742					aeb->pnum, ubi->peb_count);
1743				goto bad_aeb;
1744			}
1745
1746			if (av->vol_type == UBI_STATIC_VOLUME) {
1747				if (aeb->lnum >= av->used_ebs) {
1748					ubi_err(ubi, "bad lnum or used_ebs");
1749					goto bad_aeb;
1750				}
1751			} else {
1752				if (av->used_ebs != 0) {
1753					ubi_err(ubi, "non-zero used_ebs");
1754					goto bad_aeb;
1755				}
1756			}
1757
1758			if (aeb->lnum > av->highest_lnum) {
1759				ubi_err(ubi, "incorrect highest_lnum or lnum");
1760				goto bad_aeb;
1761			}
1762		}
1763
1764		if (av->leb_count != leb_count) {
1765			ubi_err(ubi, "bad leb_count, %d objects in the tree",
1766				leb_count);
1767			goto bad_av;
1768		}
1769
1770		if (!last_aeb)
1771			continue;
1772
1773		aeb = last_aeb;
1774
1775		if (aeb->lnum != av->highest_lnum) {
1776			ubi_err(ubi, "bad highest_lnum");
1777			goto bad_aeb;
1778		}
1779	}
1780
1781	if (vols_found != ai->vols_found) {
1782		ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1783			ai->vols_found, vols_found);
1784		goto out;
1785	}
1786
1787	/* Check that attaching information is correct */
1788	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1789		last_aeb = NULL;
1790		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1791			int vol_type;
1792
1793			cond_resched();
1794
1795			last_aeb = aeb;
1796
1797			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidb, 1);
1798			if (err && err != UBI_IO_BITFLIPS) {
1799				ubi_err(ubi, "VID header is not OK (%d)",
1800					err);
1801				if (err > 0)
1802					err = -EIO;
1803				return err;
1804			}
1805
1806			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1807				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1808			if (av->vol_type != vol_type) {
1809				ubi_err(ubi, "bad vol_type");
1810				goto bad_vid_hdr;
1811			}
1812
1813			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1814				ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1815				goto bad_vid_hdr;
1816			}
1817
1818			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1819				ubi_err(ubi, "bad vol_id %d", av->vol_id);
1820				goto bad_vid_hdr;
1821			}
1822
1823			if (av->compat != vidh->compat) {
1824				ubi_err(ubi, "bad compat %d", vidh->compat);
1825				goto bad_vid_hdr;
1826			}
1827
1828			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1829				ubi_err(ubi, "bad lnum %d", aeb->lnum);
1830				goto bad_vid_hdr;
1831			}
1832
1833			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1834				ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1835				goto bad_vid_hdr;
1836			}
1837
1838			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1839				ubi_err(ubi, "bad data_pad %d", av->data_pad);
1840				goto bad_vid_hdr;
1841			}
1842		}
1843
1844		if (!last_aeb)
1845			continue;
1846
1847		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1848			ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1849			goto bad_vid_hdr;
1850		}
1851
1852		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1853			ubi_err(ubi, "bad last_data_size %d",
1854				av->last_data_size);
1855			goto bad_vid_hdr;
1856		}
1857	}
1858
1859	/*
1860	 * Make sure that all the physical eraseblocks are in one of the lists
1861	 * or trees.
1862	 */
1863	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1864	if (!buf)
1865		return -ENOMEM;
1866
1867	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1868		err = ubi_io_is_bad(ubi, pnum);
1869		if (err < 0) {
1870			kfree(buf);
1871			return err;
1872		} else if (err)
1873			buf[pnum] = 1;
1874	}
1875
1876	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1877		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1878			buf[aeb->pnum] = 1;
1879
1880	list_for_each_entry(aeb, &ai->free, u.list)
1881		buf[aeb->pnum] = 1;
1882
1883	list_for_each_entry(aeb, &ai->corr, u.list)
1884		buf[aeb->pnum] = 1;
1885
1886	list_for_each_entry(aeb, &ai->erase, u.list)
1887		buf[aeb->pnum] = 1;
1888
1889	list_for_each_entry(aeb, &ai->alien, u.list)
1890		buf[aeb->pnum] = 1;
1891
1892	err = 0;
1893	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1894		if (!buf[pnum]) {
1895			ubi_err(ubi, "PEB %d is not referred", pnum);
1896			err = 1;
1897		}
1898
1899	kfree(buf);
1900	if (err)
1901		goto out;
1902	return 0;
1903
1904bad_aeb:
1905	ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1906	ubi_dump_aeb(aeb, 0);
1907	ubi_dump_av(av);
1908	goto out;
1909
1910bad_av:
1911	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1912	ubi_dump_av(av);
1913	goto out;
1914
1915bad_vid_hdr:
1916	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1917	ubi_dump_av(av);
1918	ubi_dump_vid_hdr(vidh);
1919
1920out:
1921	dump_stack();
1922	return -EINVAL;
1923}
v3.15
 
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/*
  22 * UBI attaching sub-system.
  23 *
  24 * This sub-system is responsible for attaching MTD devices and it also
  25 * implements flash media scanning.
  26 *
  27 * The attaching information is represented by a &struct ubi_attach_info'
  28 * object. Information about volumes is represented by &struct ubi_ainf_volume
  29 * objects which are kept in volume RB-tree with root at the @volumes field.
  30 * The RB-tree is indexed by the volume ID.
  31 *
  32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  33 * objects are kept in per-volume RB-trees with the root at the corresponding
  34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  35 * per-volume objects and each of these objects is the root of RB-tree of
  36 * per-LEB objects.
  37 *
  38 * Corrupted physical eraseblocks are put to the @corr list, free physical
  39 * eraseblocks are put to the @free list and the physical eraseblock to be
  40 * erased are put to the @erase list.
  41 *
  42 * About corruptions
  43 * ~~~~~~~~~~~~~~~~~
  44 *
  45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  46 * whether the headers are corrupted or not. Sometimes UBI also protects the
  47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  48 * when it moves the contents of a PEB for wear-leveling purposes.
  49 *
  50 * UBI tries to distinguish between 2 types of corruptions.
  51 *
  52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  53 * tries to handle them gracefully, without printing too many warnings and
  54 * error messages. The idea is that we do not lose important data in these
  55 * cases - we may lose only the data which were being written to the media just
  56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
  57 * supposed to handle such data losses (e.g., by using the FS journal).
  58 *
  59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  61 * PEBs in the @erase list are scheduled for erasure later.
  62 *
  63 * 2. Unexpected corruptions which are not caused by power cuts. During
  64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
  65 * Obviously, this lessens the amount of available PEBs, and if at some  point
  66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  67 * about such PEBs every time the MTD device is attached.
  68 *
  69 * However, it is difficult to reliably distinguish between these types of
  70 * corruptions and UBI's strategy is as follows (in case of attaching by
  71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  72 * the data area does not contain all 0xFFs, and there were no bit-flips or
  73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  74 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  75 * are as follows.
  76 *   o If the data area contains only 0xFFs, there are no data, and it is safe
  77 *     to just erase this PEB - this is corruption type 1.
  78 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  79 *     NAND), it is probably a PEB which was being erased when power cut
  80 *     happened, so this is corruption type 1. However, this is just a guess,
  81 *     which might be wrong.
  82 *   o Otherwise this is corruption type 2.
  83 */
  84
  85#include <linux/err.h>
  86#include <linux/slab.h>
  87#include <linux/crc32.h>
  88#include <linux/math64.h>
  89#include <linux/random.h>
  90#include "ubi.h"
  91
  92static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  93
  94/* Temporary variables used during scanning */
  95static struct ubi_ec_hdr *ech;
  96static struct ubi_vid_hdr *vidh;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97
  98/**
  99 * add_to_list - add physical eraseblock to a list.
 100 * @ai: attaching information
 101 * @pnum: physical eraseblock number to add
 102 * @vol_id: the last used volume id for the PEB
 103 * @lnum: the last used LEB number for the PEB
 104 * @ec: erase counter of the physical eraseblock
 105 * @to_head: if not zero, add to the head of the list
 106 * @list: the list to add to
 107 *
 108 * This function allocates a 'struct ubi_ainf_peb' object for physical
 109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 110 * It stores the @lnum and @vol_id alongside, which can both be
 111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 112 * If @to_head is not zero, PEB will be added to the head of the list, which
 113 * basically means it will be processed first later. E.g., we add corrupted
 114 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 115 * sure we erase them first and get rid of corruptions ASAP. This function
 116 * returns zero in case of success and a negative error code in case of
 117 * failure.
 118 */
 119static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 120		       int lnum, int ec, int to_head, struct list_head *list)
 121{
 122	struct ubi_ainf_peb *aeb;
 123
 124	if (list == &ai->free) {
 125		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 126	} else if (list == &ai->erase) {
 127		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 128	} else if (list == &ai->alien) {
 129		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 130		ai->alien_peb_count += 1;
 131	} else
 132		BUG();
 133
 134	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 135	if (!aeb)
 136		return -ENOMEM;
 137
 138	aeb->pnum = pnum;
 139	aeb->vol_id = vol_id;
 140	aeb->lnum = lnum;
 141	aeb->ec = ec;
 142	if (to_head)
 143		list_add(&aeb->u.list, list);
 144	else
 145		list_add_tail(&aeb->u.list, list);
 146	return 0;
 147}
 148
 149/**
 150 * add_corrupted - add a corrupted physical eraseblock.
 151 * @ai: attaching information
 152 * @pnum: physical eraseblock number to add
 153 * @ec: erase counter of the physical eraseblock
 154 *
 155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 156 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 157 * was presumably not caused by a power cut. Returns zero in case of success
 158 * and a negative error code in case of failure.
 159 */
 160static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 161{
 162	struct ubi_ainf_peb *aeb;
 163
 164	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 165
 166	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 167	if (!aeb)
 168		return -ENOMEM;
 169
 170	ai->corr_peb_count += 1;
 171	aeb->pnum = pnum;
 172	aeb->ec = ec;
 173	list_add(&aeb->u.list, &ai->corr);
 174	return 0;
 175}
 176
 177/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 178 * validate_vid_hdr - check volume identifier header.
 
 179 * @vid_hdr: the volume identifier header to check
 180 * @av: information about the volume this logical eraseblock belongs to
 181 * @pnum: physical eraseblock number the VID header came from
 182 *
 183 * This function checks that data stored in @vid_hdr is consistent. Returns
 184 * non-zero if an inconsistency was found and zero if not.
 185 *
 186 * Note, UBI does sanity check of everything it reads from the flash media.
 187 * Most of the checks are done in the I/O sub-system. Here we check that the
 188 * information in the VID header is consistent to the information in other VID
 189 * headers of the same volume.
 190 */
 191static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
 
 192			    const struct ubi_ainf_volume *av, int pnum)
 193{
 194	int vol_type = vid_hdr->vol_type;
 195	int vol_id = be32_to_cpu(vid_hdr->vol_id);
 196	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 197	int data_pad = be32_to_cpu(vid_hdr->data_pad);
 198
 199	if (av->leb_count != 0) {
 200		int av_vol_type;
 201
 202		/*
 203		 * This is not the first logical eraseblock belonging to this
 204		 * volume. Ensure that the data in its VID header is consistent
 205		 * to the data in previous logical eraseblock headers.
 206		 */
 207
 208		if (vol_id != av->vol_id) {
 209			ubi_err("inconsistent vol_id");
 210			goto bad;
 211		}
 212
 213		if (av->vol_type == UBI_STATIC_VOLUME)
 214			av_vol_type = UBI_VID_STATIC;
 215		else
 216			av_vol_type = UBI_VID_DYNAMIC;
 217
 218		if (vol_type != av_vol_type) {
 219			ubi_err("inconsistent vol_type");
 220			goto bad;
 221		}
 222
 223		if (used_ebs != av->used_ebs) {
 224			ubi_err("inconsistent used_ebs");
 225			goto bad;
 226		}
 227
 228		if (data_pad != av->data_pad) {
 229			ubi_err("inconsistent data_pad");
 230			goto bad;
 231		}
 232	}
 233
 234	return 0;
 235
 236bad:
 237	ubi_err("inconsistent VID header at PEB %d", pnum);
 238	ubi_dump_vid_hdr(vid_hdr);
 239	ubi_dump_av(av);
 240	return -EINVAL;
 241}
 242
 243/**
 244 * add_volume - add volume to the attaching information.
 245 * @ai: attaching information
 246 * @vol_id: ID of the volume to add
 247 * @pnum: physical eraseblock number
 248 * @vid_hdr: volume identifier header
 249 *
 250 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 251 * present in the attaching information, this function does nothing. Otherwise
 252 * it adds corresponding volume to the attaching information. Returns a pointer
 253 * to the allocated "av" object in case of success and a negative error code in
 254 * case of failure.
 255 */
 256static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 257					  int vol_id, int pnum,
 258					  const struct ubi_vid_hdr *vid_hdr)
 259{
 260	struct ubi_ainf_volume *av;
 261	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 262
 263	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 264
 265	/* Walk the volume RB-tree to look if this volume is already present */
 266	while (*p) {
 267		parent = *p;
 268		av = rb_entry(parent, struct ubi_ainf_volume, rb);
 269
 270		if (vol_id == av->vol_id)
 271			return av;
 272
 273		if (vol_id > av->vol_id)
 274			p = &(*p)->rb_left;
 275		else
 276			p = &(*p)->rb_right;
 277	}
 278
 279	/* The volume is absent - add it */
 280	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
 281	if (!av)
 282		return ERR_PTR(-ENOMEM);
 283
 284	av->highest_lnum = av->leb_count = 0;
 285	av->vol_id = vol_id;
 286	av->root = RB_ROOT;
 287	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 288	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 289	av->compat = vid_hdr->compat;
 290	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 291							    : UBI_STATIC_VOLUME;
 292	if (vol_id > ai->highest_vol_id)
 293		ai->highest_vol_id = vol_id;
 294
 295	rb_link_node(&av->rb, parent, p);
 296	rb_insert_color(&av->rb, &ai->volumes);
 297	ai->vols_found += 1;
 298	dbg_bld("added volume %d", vol_id);
 299	return av;
 300}
 301
 302/**
 303 * ubi_compare_lebs - find out which logical eraseblock is newer.
 304 * @ubi: UBI device description object
 305 * @aeb: first logical eraseblock to compare
 306 * @pnum: physical eraseblock number of the second logical eraseblock to
 307 * compare
 308 * @vid_hdr: volume identifier header of the second logical eraseblock
 309 *
 310 * This function compares 2 copies of a LEB and informs which one is newer. In
 311 * case of success this function returns a positive value, in case of failure, a
 312 * negative error code is returned. The success return codes use the following
 313 * bits:
 314 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 315 *       second PEB (described by @pnum and @vid_hdr);
 316 *     o bit 0 is set: the second PEB is newer;
 317 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 318 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 319 *     o bit 2 is cleared: the older LEB is not corrupted;
 320 *     o bit 2 is set: the older LEB is corrupted.
 321 */
 322int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 323			int pnum, const struct ubi_vid_hdr *vid_hdr)
 324{
 325	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 326	uint32_t data_crc, crc;
 327	struct ubi_vid_hdr *vh = NULL;
 328	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 329
 330	if (sqnum2 == aeb->sqnum) {
 331		/*
 332		 * This must be a really ancient UBI image which has been
 333		 * created before sequence numbers support has been added. At
 334		 * that times we used 32-bit LEB versions stored in logical
 335		 * eraseblocks. That was before UBI got into mainline. We do not
 336		 * support these images anymore. Well, those images still work,
 337		 * but only if no unclean reboots happened.
 338		 */
 339		ubi_err("unsupported on-flash UBI format");
 340		return -EINVAL;
 341	}
 342
 343	/* Obviously the LEB with lower sequence counter is older */
 344	second_is_newer = (sqnum2 > aeb->sqnum);
 345
 346	/*
 347	 * Now we know which copy is newer. If the copy flag of the PEB with
 348	 * newer version is not set, then we just return, otherwise we have to
 349	 * check data CRC. For the second PEB we already have the VID header,
 350	 * for the first one - we'll need to re-read it from flash.
 351	 *
 352	 * Note: this may be optimized so that we wouldn't read twice.
 353	 */
 354
 355	if (second_is_newer) {
 356		if (!vid_hdr->copy_flag) {
 357			/* It is not a copy, so it is newer */
 358			dbg_bld("second PEB %d is newer, copy_flag is unset",
 359				pnum);
 360			return 1;
 361		}
 362	} else {
 363		if (!aeb->copy_flag) {
 364			/* It is not a copy, so it is newer */
 365			dbg_bld("first PEB %d is newer, copy_flag is unset",
 366				pnum);
 367			return bitflips << 1;
 368		}
 369
 370		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 371		if (!vh)
 372			return -ENOMEM;
 373
 374		pnum = aeb->pnum;
 375		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 376		if (err) {
 377			if (err == UBI_IO_BITFLIPS)
 378				bitflips = 1;
 379			else {
 380				ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d",
 381					pnum, err);
 382				if (err > 0)
 383					err = -EIO;
 384
 385				goto out_free_vidh;
 386			}
 387		}
 388
 389		vid_hdr = vh;
 390	}
 391
 392	/* Read the data of the copy and check the CRC */
 393
 394	len = be32_to_cpu(vid_hdr->data_size);
 395
 396	mutex_lock(&ubi->buf_mutex);
 397	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 398	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 399		goto out_unlock;
 400
 401	data_crc = be32_to_cpu(vid_hdr->data_crc);
 402	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 403	if (crc != data_crc) {
 404		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 405			pnum, crc, data_crc);
 406		corrupted = 1;
 407		bitflips = 0;
 408		second_is_newer = !second_is_newer;
 409	} else {
 410		dbg_bld("PEB %d CRC is OK", pnum);
 411		bitflips = !!err;
 412	}
 413	mutex_unlock(&ubi->buf_mutex);
 414
 415	ubi_free_vid_hdr(ubi, vh);
 416
 417	if (second_is_newer)
 418		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 419	else
 420		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 421
 422	return second_is_newer | (bitflips << 1) | (corrupted << 2);
 423
 424out_unlock:
 425	mutex_unlock(&ubi->buf_mutex);
 426out_free_vidh:
 427	ubi_free_vid_hdr(ubi, vh);
 428	return err;
 429}
 430
 431/**
 432 * ubi_add_to_av - add used physical eraseblock to the attaching information.
 433 * @ubi: UBI device description object
 434 * @ai: attaching information
 435 * @pnum: the physical eraseblock number
 436 * @ec: erase counter
 437 * @vid_hdr: the volume identifier header
 438 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 439 *
 440 * This function adds information about a used physical eraseblock to the
 441 * 'used' tree of the corresponding volume. The function is rather complex
 442 * because it has to handle cases when this is not the first physical
 443 * eraseblock belonging to the same logical eraseblock, and the newer one has
 444 * to be picked, while the older one has to be dropped. This function returns
 445 * zero in case of success and a negative error code in case of failure.
 446 */
 447int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 448		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 449{
 450	int err, vol_id, lnum;
 451	unsigned long long sqnum;
 452	struct ubi_ainf_volume *av;
 453	struct ubi_ainf_peb *aeb;
 454	struct rb_node **p, *parent = NULL;
 455
 456	vol_id = be32_to_cpu(vid_hdr->vol_id);
 457	lnum = be32_to_cpu(vid_hdr->lnum);
 458	sqnum = be64_to_cpu(vid_hdr->sqnum);
 459
 460	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 461		pnum, vol_id, lnum, ec, sqnum, bitflips);
 462
 463	av = add_volume(ai, vol_id, pnum, vid_hdr);
 464	if (IS_ERR(av))
 465		return PTR_ERR(av);
 466
 467	if (ai->max_sqnum < sqnum)
 468		ai->max_sqnum = sqnum;
 469
 470	/*
 471	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 472	 * if this is the first instance of this logical eraseblock or not.
 473	 */
 474	p = &av->root.rb_node;
 475	while (*p) {
 476		int cmp_res;
 477
 478		parent = *p;
 479		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 480		if (lnum != aeb->lnum) {
 481			if (lnum < aeb->lnum)
 482				p = &(*p)->rb_left;
 483			else
 484				p = &(*p)->rb_right;
 485			continue;
 486		}
 487
 488		/*
 489		 * There is already a physical eraseblock describing the same
 490		 * logical eraseblock present.
 491		 */
 492
 493		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 494			aeb->pnum, aeb->sqnum, aeb->ec);
 495
 496		/*
 497		 * Make sure that the logical eraseblocks have different
 498		 * sequence numbers. Otherwise the image is bad.
 499		 *
 500		 * However, if the sequence number is zero, we assume it must
 501		 * be an ancient UBI image from the era when UBI did not have
 502		 * sequence numbers. We still can attach these images, unless
 503		 * there is a need to distinguish between old and new
 504		 * eraseblocks, in which case we'll refuse the image in
 505		 * 'ubi_compare_lebs()'. In other words, we attach old clean
 506		 * images, but refuse attaching old images with duplicated
 507		 * logical eraseblocks because there was an unclean reboot.
 508		 */
 509		if (aeb->sqnum == sqnum && sqnum != 0) {
 510			ubi_err("two LEBs with same sequence number %llu",
 511				sqnum);
 512			ubi_dump_aeb(aeb, 0);
 513			ubi_dump_vid_hdr(vid_hdr);
 514			return -EINVAL;
 515		}
 516
 517		/*
 518		 * Now we have to drop the older one and preserve the newer
 519		 * one.
 520		 */
 521		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 522		if (cmp_res < 0)
 523			return cmp_res;
 524
 525		if (cmp_res & 1) {
 526			/*
 527			 * This logical eraseblock is newer than the one
 528			 * found earlier.
 529			 */
 530			err = validate_vid_hdr(vid_hdr, av, pnum);
 531			if (err)
 532				return err;
 533
 534			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 535					  aeb->lnum, aeb->ec, cmp_res & 4,
 536					  &ai->erase);
 537			if (err)
 538				return err;
 539
 540			aeb->ec = ec;
 541			aeb->pnum = pnum;
 542			aeb->vol_id = vol_id;
 543			aeb->lnum = lnum;
 544			aeb->scrub = ((cmp_res & 2) || bitflips);
 545			aeb->copy_flag = vid_hdr->copy_flag;
 546			aeb->sqnum = sqnum;
 547
 548			if (av->highest_lnum == lnum)
 549				av->last_data_size =
 550					be32_to_cpu(vid_hdr->data_size);
 551
 552			return 0;
 553		} else {
 554			/*
 555			 * This logical eraseblock is older than the one found
 556			 * previously.
 557			 */
 558			return add_to_list(ai, pnum, vol_id, lnum, ec,
 559					   cmp_res & 4, &ai->erase);
 560		}
 561	}
 562
 563	/*
 564	 * We've met this logical eraseblock for the first time, add it to the
 565	 * attaching information.
 566	 */
 567
 568	err = validate_vid_hdr(vid_hdr, av, pnum);
 569	if (err)
 570		return err;
 571
 572	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 573	if (!aeb)
 574		return -ENOMEM;
 575
 576	aeb->ec = ec;
 577	aeb->pnum = pnum;
 578	aeb->vol_id = vol_id;
 579	aeb->lnum = lnum;
 580	aeb->scrub = bitflips;
 581	aeb->copy_flag = vid_hdr->copy_flag;
 582	aeb->sqnum = sqnum;
 583
 584	if (av->highest_lnum <= lnum) {
 585		av->highest_lnum = lnum;
 586		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 587	}
 588
 589	av->leb_count += 1;
 590	rb_link_node(&aeb->u.rb, parent, p);
 591	rb_insert_color(&aeb->u.rb, &av->root);
 592	return 0;
 593}
 594
 595/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 596 * ubi_find_av - find volume in the attaching information.
 597 * @ai: attaching information
 598 * @vol_id: the requested volume ID
 599 *
 600 * This function returns a pointer to the volume description or %NULL if there
 601 * are no data about this volume in the attaching information.
 602 */
 603struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 604				    int vol_id)
 605{
 606	struct ubi_ainf_volume *av;
 607	struct rb_node *p = ai->volumes.rb_node;
 608
 609	while (p) {
 610		av = rb_entry(p, struct ubi_ainf_volume, rb);
 611
 612		if (vol_id == av->vol_id)
 613			return av;
 614
 615		if (vol_id > av->vol_id)
 616			p = p->rb_left;
 617		else
 618			p = p->rb_right;
 619	}
 620
 621	return NULL;
 622}
 623
 624/**
 625 * ubi_remove_av - delete attaching information about a volume.
 626 * @ai: attaching information
 627 * @av: the volume attaching information to delete
 628 */
 629void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 630{
 631	struct rb_node *rb;
 632	struct ubi_ainf_peb *aeb;
 633
 634	dbg_bld("remove attaching information about volume %d", av->vol_id);
 635
 636	while ((rb = rb_first(&av->root))) {
 637		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
 638		rb_erase(&aeb->u.rb, &av->root);
 639		list_add_tail(&aeb->u.list, &ai->erase);
 640	}
 641
 642	rb_erase(&av->rb, &ai->volumes);
 643	kfree(av);
 644	ai->vols_found -= 1;
 645}
 646
 647/**
 648 * early_erase_peb - erase a physical eraseblock.
 649 * @ubi: UBI device description object
 650 * @ai: attaching information
 651 * @pnum: physical eraseblock number to erase;
 652 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 653 *
 654 * This function erases physical eraseblock 'pnum', and writes the erase
 655 * counter header to it. This function should only be used on UBI device
 656 * initialization stages, when the EBA sub-system had not been yet initialized.
 657 * This function returns zero in case of success and a negative error code in
 658 * case of failure.
 659 */
 660static int early_erase_peb(struct ubi_device *ubi,
 661			   const struct ubi_attach_info *ai, int pnum, int ec)
 662{
 663	int err;
 664	struct ubi_ec_hdr *ec_hdr;
 665
 666	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 667		/*
 668		 * Erase counter overflow. Upgrade UBI and use 64-bit
 669		 * erase counters internally.
 670		 */
 671		ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
 
 672		return -EINVAL;
 673	}
 674
 675	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 676	if (!ec_hdr)
 677		return -ENOMEM;
 678
 679	ec_hdr->ec = cpu_to_be64(ec);
 680
 681	err = ubi_io_sync_erase(ubi, pnum, 0);
 682	if (err < 0)
 683		goto out_free;
 684
 685	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 686
 687out_free:
 688	kfree(ec_hdr);
 689	return err;
 690}
 691
 692/**
 693 * ubi_early_get_peb - get a free physical eraseblock.
 694 * @ubi: UBI device description object
 695 * @ai: attaching information
 696 *
 697 * This function returns a free physical eraseblock. It is supposed to be
 698 * called on the UBI initialization stages when the wear-leveling sub-system is
 699 * not initialized yet. This function picks a physical eraseblocks from one of
 700 * the lists, writes the EC header if it is needed, and removes it from the
 701 * list.
 702 *
 703 * This function returns a pointer to the "aeb" of the found free PEB in case
 704 * of success and an error code in case of failure.
 705 */
 706struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 707				       struct ubi_attach_info *ai)
 708{
 709	int err = 0;
 710	struct ubi_ainf_peb *aeb, *tmp_aeb;
 711
 712	if (!list_empty(&ai->free)) {
 713		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 714		list_del(&aeb->u.list);
 715		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 716		return aeb;
 717	}
 718
 719	/*
 720	 * We try to erase the first physical eraseblock from the erase list
 721	 * and pick it if we succeed, or try to erase the next one if not. And
 722	 * so forth. We don't want to take care about bad eraseblocks here -
 723	 * they'll be handled later.
 724	 */
 725	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 726		if (aeb->ec == UBI_UNKNOWN)
 727			aeb->ec = ai->mean_ec;
 728
 729		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 730		if (err)
 731			continue;
 732
 733		aeb->ec += 1;
 734		list_del(&aeb->u.list);
 735		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 736		return aeb;
 737	}
 738
 739	ubi_err("no free eraseblocks");
 740	return ERR_PTR(-ENOSPC);
 741}
 742
 743/**
 744 * check_corruption - check the data area of PEB.
 745 * @ubi: UBI device description object
 746 * @vid_hdr: the (corrupted) VID header of this PEB
 747 * @pnum: the physical eraseblock number to check
 748 *
 749 * This is a helper function which is used to distinguish between VID header
 750 * corruptions caused by power cuts and other reasons. If the PEB contains only
 751 * 0xFF bytes in the data area, the VID header is most probably corrupted
 752 * because of a power cut (%0 is returned in this case). Otherwise, it was
 753 * probably corrupted for some other reasons (%1 is returned in this case). A
 754 * negative error code is returned if a read error occurred.
 755 *
 756 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 757 * Otherwise, it should preserve it to avoid possibly destroying important
 758 * information.
 759 */
 760static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 761			    int pnum)
 762{
 763	int err;
 764
 765	mutex_lock(&ubi->buf_mutex);
 766	memset(ubi->peb_buf, 0x00, ubi->leb_size);
 767
 768	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 769			  ubi->leb_size);
 770	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 771		/*
 772		 * Bit-flips or integrity errors while reading the data area.
 773		 * It is difficult to say for sure what type of corruption is
 774		 * this, but presumably a power cut happened while this PEB was
 775		 * erased, so it became unstable and corrupted, and should be
 776		 * erased.
 777		 */
 778		err = 0;
 779		goto out_unlock;
 780	}
 781
 782	if (err)
 783		goto out_unlock;
 784
 785	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 786		goto out_unlock;
 787
 788	ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 789		pnum);
 790	ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 791	ubi_dump_vid_hdr(vid_hdr);
 792	pr_err("hexdump of PEB %d offset %d, length %d",
 793	       pnum, ubi->leb_start, ubi->leb_size);
 794	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 795			       ubi->peb_buf, ubi->leb_size, 1);
 796	err = 1;
 797
 798out_unlock:
 799	mutex_unlock(&ubi->buf_mutex);
 800	return err;
 801}
 802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803/**
 804 * scan_peb - scan and process UBI headers of a PEB.
 805 * @ubi: UBI device description object
 806 * @ai: attaching information
 807 * @pnum: the physical eraseblock number
 808 * @vid: The volume ID of the found volume will be stored in this pointer
 809 * @sqnum: The sqnum of the found volume will be stored in this pointer
 810 *
 811 * This function reads UBI headers of PEB @pnum, checks them, and adds
 812 * information about this PEB to the corresponding list or RB-tree in the
 813 * "attaching info" structure. Returns zero if the physical eraseblock was
 814 * successfully handled and a negative error code in case of failure.
 815 */
 816static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 817		    int pnum, int *vid, unsigned long long *sqnum)
 818{
 819	long long uninitialized_var(ec);
 
 
 
 820	int err, bitflips = 0, vol_id = -1, ec_err = 0;
 821
 822	dbg_bld("scan PEB %d", pnum);
 823
 824	/* Skip bad physical eraseblocks */
 825	err = ubi_io_is_bad(ubi, pnum);
 826	if (err < 0)
 827		return err;
 828	else if (err) {
 829		ai->bad_peb_count += 1;
 830		return 0;
 831	}
 832
 833	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 834	if (err < 0)
 835		return err;
 836	switch (err) {
 837	case 0:
 838		break;
 839	case UBI_IO_BITFLIPS:
 840		bitflips = 1;
 841		break;
 842	case UBI_IO_FF:
 843		ai->empty_peb_count += 1;
 844		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 845				   UBI_UNKNOWN, 0, &ai->erase);
 846	case UBI_IO_FF_BITFLIPS:
 847		ai->empty_peb_count += 1;
 848		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 849				   UBI_UNKNOWN, 1, &ai->erase);
 850	case UBI_IO_BAD_HDR_EBADMSG:
 851	case UBI_IO_BAD_HDR:
 852		/*
 853		 * We have to also look at the VID header, possibly it is not
 854		 * corrupted. Set %bitflips flag in order to make this PEB be
 855		 * moved and EC be re-created.
 856		 */
 857		ec_err = err;
 858		ec = UBI_UNKNOWN;
 859		bitflips = 1;
 860		break;
 861	default:
 862		ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
 
 863		return -EINVAL;
 864	}
 865
 866	if (!ec_err) {
 867		int image_seq;
 868
 869		/* Make sure UBI version is OK */
 870		if (ech->version != UBI_VERSION) {
 871			ubi_err("this UBI version is %d, image version is %d",
 872				UBI_VERSION, (int)ech->version);
 873			return -EINVAL;
 874		}
 875
 876		ec = be64_to_cpu(ech->ec);
 877		if (ec > UBI_MAX_ERASECOUNTER) {
 878			/*
 879			 * Erase counter overflow. The EC headers have 64 bits
 880			 * reserved, but we anyway make use of only 31 bit
 881			 * values, as this seems to be enough for any existing
 882			 * flash. Upgrade UBI and use 64-bit erase counters
 883			 * internally.
 884			 */
 885			ubi_err("erase counter overflow, max is %d",
 886				UBI_MAX_ERASECOUNTER);
 887			ubi_dump_ec_hdr(ech);
 888			return -EINVAL;
 889		}
 890
 891		/*
 892		 * Make sure that all PEBs have the same image sequence number.
 893		 * This allows us to detect situations when users flash UBI
 894		 * images incorrectly, so that the flash has the new UBI image
 895		 * and leftovers from the old one. This feature was added
 896		 * relatively recently, and the sequence number was always
 897		 * zero, because old UBI implementations always set it to zero.
 898		 * For this reasons, we do not panic if some PEBs have zero
 899		 * sequence number, while other PEBs have non-zero sequence
 900		 * number.
 901		 */
 902		image_seq = be32_to_cpu(ech->image_seq);
 903		if (!ubi->image_seq)
 904			ubi->image_seq = image_seq;
 905		if (image_seq && ubi->image_seq != image_seq) {
 906			ubi_err("bad image sequence number %d in PEB %d, expected %d",
 907				image_seq, pnum, ubi->image_seq);
 908			ubi_dump_ec_hdr(ech);
 909			return -EINVAL;
 910		}
 911	}
 912
 913	/* OK, we've done with the EC header, let's look at the VID header */
 914
 915	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 916	if (err < 0)
 917		return err;
 918	switch (err) {
 919	case 0:
 920		break;
 921	case UBI_IO_BITFLIPS:
 922		bitflips = 1;
 923		break;
 924	case UBI_IO_BAD_HDR_EBADMSG:
 925		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
 926			/*
 927			 * Both EC and VID headers are corrupted and were read
 928			 * with data integrity error, probably this is a bad
 929			 * PEB, bit it is not marked as bad yet. This may also
 930			 * be a result of power cut during erasure.
 931			 */
 932			ai->maybe_bad_peb_count += 1;
 
 933	case UBI_IO_BAD_HDR:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934		if (ec_err)
 935			/*
 936			 * Both headers are corrupted. There is a possibility
 937			 * that this a valid UBI PEB which has corresponding
 938			 * LEB, but the headers are corrupted. However, it is
 939			 * impossible to distinguish it from a PEB which just
 940			 * contains garbage because of a power cut during erase
 941			 * operation. So we just schedule this PEB for erasure.
 942			 *
 943			 * Besides, in case of NOR flash, we deliberately
 944			 * corrupt both headers because NOR flash erasure is
 945			 * slow and can start from the end.
 946			 */
 947			err = 0;
 948		else
 949			/*
 950			 * The EC was OK, but the VID header is corrupted. We
 951			 * have to check what is in the data area.
 952			 */
 953			err = check_corruption(ubi, vidh, pnum);
 954
 955		if (err < 0)
 956			return err;
 957		else if (!err)
 958			/* This corruption is caused by a power cut */
 959			err = add_to_list(ai, pnum, UBI_UNKNOWN,
 960					  UBI_UNKNOWN, ec, 1, &ai->erase);
 961		else
 962			/* This is an unexpected corruption */
 963			err = add_corrupted(ai, pnum, ec);
 964		if (err)
 965			return err;
 966		goto adjust_mean_ec;
 967	case UBI_IO_FF_BITFLIPS:
 968		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 969				  ec, 1, &ai->erase);
 970		if (err)
 971			return err;
 972		goto adjust_mean_ec;
 973	case UBI_IO_FF:
 974		if (ec_err || bitflips)
 975			err = add_to_list(ai, pnum, UBI_UNKNOWN,
 976					  UBI_UNKNOWN, ec, 1, &ai->erase);
 977		else
 978			err = add_to_list(ai, pnum, UBI_UNKNOWN,
 979					  UBI_UNKNOWN, ec, 0, &ai->free);
 980		if (err)
 981			return err;
 982		goto adjust_mean_ec;
 983	default:
 984		ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
 985			err);
 986		return -EINVAL;
 987	}
 988
 989	vol_id = be32_to_cpu(vidh->vol_id);
 990	if (vid)
 991		*vid = vol_id;
 992	if (sqnum)
 993		*sqnum = be64_to_cpu(vidh->sqnum);
 994	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
 995		int lnum = be32_to_cpu(vidh->lnum);
 996
 997		/* Unsupported internal volume */
 998		switch (vidh->compat) {
 999		case UBI_COMPAT_DELETE:
1000			if (vol_id != UBI_FM_SB_VOLUME_ID
1001			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
1002				ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it",
1003					vol_id, lnum);
1004			}
1005			err = add_to_list(ai, pnum, vol_id, lnum,
1006					  ec, 1, &ai->erase);
1007			if (err)
1008				return err;
1009			return 0;
1010
1011		case UBI_COMPAT_RO:
1012			ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode",
1013				vol_id, lnum);
1014			ubi->ro_mode = 1;
1015			break;
1016
1017		case UBI_COMPAT_PRESERVE:
1018			ubi_msg("\"preserve\" compatible internal volume %d:%d found",
1019				vol_id, lnum);
1020			err = add_to_list(ai, pnum, vol_id, lnum,
1021					  ec, 0, &ai->alien);
1022			if (err)
1023				return err;
1024			return 0;
1025
1026		case UBI_COMPAT_REJECT:
1027			ubi_err("incompatible internal volume %d:%d found",
1028				vol_id, lnum);
1029			return -EINVAL;
1030		}
1031	}
1032
1033	if (ec_err)
1034		ubi_warn("valid VID header but corrupted EC header at PEB %d",
1035			 pnum);
1036	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
 
 
 
 
 
1037	if (err)
1038		return err;
1039
1040adjust_mean_ec:
1041	if (!ec_err) {
1042		ai->ec_sum += ec;
1043		ai->ec_count += 1;
1044		if (ec > ai->max_ec)
1045			ai->max_ec = ec;
1046		if (ec < ai->min_ec)
1047			ai->min_ec = ec;
1048	}
1049
1050	return 0;
1051}
1052
1053/**
1054 * late_analysis - analyze the overall situation with PEB.
1055 * @ubi: UBI device description object
1056 * @ai: attaching information
1057 *
1058 * This is a helper function which takes a look what PEBs we have after we
1059 * gather information about all of them ("ai" is compete). It decides whether
1060 * the flash is empty and should be formatted of whether there are too many
1061 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1062 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1063 */
1064static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1065{
1066	struct ubi_ainf_peb *aeb;
1067	int max_corr, peb_count;
1068
1069	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1070	max_corr = peb_count / 20 ?: 8;
1071
1072	/*
1073	 * Few corrupted PEBs is not a problem and may be just a result of
1074	 * unclean reboots. However, many of them may indicate some problems
1075	 * with the flash HW or driver.
1076	 */
1077	if (ai->corr_peb_count) {
1078		ubi_err("%d PEBs are corrupted and preserved",
1079			ai->corr_peb_count);
1080		pr_err("Corrupted PEBs are:");
1081		list_for_each_entry(aeb, &ai->corr, u.list)
1082			pr_cont(" %d", aeb->pnum);
1083		pr_cont("\n");
1084
1085		/*
1086		 * If too many PEBs are corrupted, we refuse attaching,
1087		 * otherwise, only print a warning.
1088		 */
1089		if (ai->corr_peb_count >= max_corr) {
1090			ubi_err("too many corrupted PEBs, refusing");
1091			return -EINVAL;
1092		}
1093	}
1094
1095	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1096		/*
1097		 * All PEBs are empty, or almost all - a couple PEBs look like
1098		 * they may be bad PEBs which were not marked as bad yet.
1099		 *
1100		 * This piece of code basically tries to distinguish between
1101		 * the following situations:
1102		 *
1103		 * 1. Flash is empty, but there are few bad PEBs, which are not
1104		 *    marked as bad so far, and which were read with error. We
1105		 *    want to go ahead and format this flash. While formatting,
1106		 *    the faulty PEBs will probably be marked as bad.
1107		 *
1108		 * 2. Flash contains non-UBI data and we do not want to format
1109		 *    it and destroy possibly important information.
1110		 */
1111		if (ai->maybe_bad_peb_count <= 2) {
1112			ai->is_empty = 1;
1113			ubi_msg("empty MTD device detected");
1114			get_random_bytes(&ubi->image_seq,
1115					 sizeof(ubi->image_seq));
1116		} else {
1117			ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1118			return -EINVAL;
1119		}
1120
1121	}
1122
1123	return 0;
1124}
1125
1126/**
1127 * destroy_av - free volume attaching information.
1128 * @av: volume attaching information
1129 * @ai: attaching information
 
1130 *
1131 * This function destroys the volume attaching information.
1132 */
1133static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 
1134{
1135	struct ubi_ainf_peb *aeb;
1136	struct rb_node *this = av->root.rb_node;
1137
1138	while (this) {
1139		if (this->rb_left)
1140			this = this->rb_left;
1141		else if (this->rb_right)
1142			this = this->rb_right;
1143		else {
1144			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1145			this = rb_parent(this);
1146			if (this) {
1147				if (this->rb_left == &aeb->u.rb)
1148					this->rb_left = NULL;
1149				else
1150					this->rb_right = NULL;
1151			}
1152
1153			kmem_cache_free(ai->aeb_slab_cache, aeb);
 
 
 
1154		}
1155	}
1156	kfree(av);
1157}
1158
1159/**
1160 * destroy_ai - destroy attaching information.
1161 * @ai: attaching information
1162 */
1163static void destroy_ai(struct ubi_attach_info *ai)
1164{
1165	struct ubi_ainf_peb *aeb, *aeb_tmp;
1166	struct ubi_ainf_volume *av;
1167	struct rb_node *rb;
1168
1169	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1170		list_del(&aeb->u.list);
1171		kmem_cache_free(ai->aeb_slab_cache, aeb);
1172	}
1173	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1174		list_del(&aeb->u.list);
1175		kmem_cache_free(ai->aeb_slab_cache, aeb);
1176	}
1177	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1178		list_del(&aeb->u.list);
1179		kmem_cache_free(ai->aeb_slab_cache, aeb);
1180	}
1181	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1182		list_del(&aeb->u.list);
1183		kmem_cache_free(ai->aeb_slab_cache, aeb);
 
 
 
 
1184	}
1185
1186	/* Destroy the volume RB-tree */
1187	rb = ai->volumes.rb_node;
1188	while (rb) {
1189		if (rb->rb_left)
1190			rb = rb->rb_left;
1191		else if (rb->rb_right)
1192			rb = rb->rb_right;
1193		else {
1194			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1195
1196			rb = rb_parent(rb);
1197			if (rb) {
1198				if (rb->rb_left == &av->rb)
1199					rb->rb_left = NULL;
1200				else
1201					rb->rb_right = NULL;
1202			}
1203
1204			destroy_av(ai, av);
1205		}
1206	}
1207
1208	if (ai->aeb_slab_cache)
1209		kmem_cache_destroy(ai->aeb_slab_cache);
1210
1211	kfree(ai);
1212}
1213
1214/**
1215 * scan_all - scan entire MTD device.
1216 * @ubi: UBI device description object
1217 * @ai: attach info object
1218 * @start: start scanning at this PEB
1219 *
1220 * This function does full scanning of an MTD device and returns complete
1221 * information about it in form of a "struct ubi_attach_info" object. In case
1222 * of failure, an error code is returned.
1223 */
1224static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1225		    int start)
1226{
1227	int err, pnum;
1228	struct rb_node *rb1, *rb2;
1229	struct ubi_ainf_volume *av;
1230	struct ubi_ainf_peb *aeb;
1231
1232	err = -ENOMEM;
1233
1234	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1235	if (!ech)
1236		return err;
1237
1238	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1239	if (!vidh)
1240		goto out_ech;
1241
1242	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1243		cond_resched();
1244
1245		dbg_gen("process PEB %d", pnum);
1246		err = scan_peb(ubi, ai, pnum, NULL, NULL);
1247		if (err < 0)
1248			goto out_vidh;
1249	}
1250
1251	ubi_msg("scanning is finished");
1252
1253	/* Calculate mean erase counter */
1254	if (ai->ec_count)
1255		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1256
1257	err = late_analysis(ubi, ai);
1258	if (err)
1259		goto out_vidh;
1260
1261	/*
1262	 * In case of unknown erase counter we use the mean erase counter
1263	 * value.
1264	 */
1265	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1266		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1267			if (aeb->ec == UBI_UNKNOWN)
1268				aeb->ec = ai->mean_ec;
1269	}
1270
1271	list_for_each_entry(aeb, &ai->free, u.list) {
1272		if (aeb->ec == UBI_UNKNOWN)
1273			aeb->ec = ai->mean_ec;
1274	}
1275
1276	list_for_each_entry(aeb, &ai->corr, u.list)
1277		if (aeb->ec == UBI_UNKNOWN)
1278			aeb->ec = ai->mean_ec;
1279
1280	list_for_each_entry(aeb, &ai->erase, u.list)
1281		if (aeb->ec == UBI_UNKNOWN)
1282			aeb->ec = ai->mean_ec;
1283
1284	err = self_check_ai(ubi, ai);
1285	if (err)
1286		goto out_vidh;
1287
1288	ubi_free_vid_hdr(ubi, vidh);
1289	kfree(ech);
1290
1291	return 0;
1292
1293out_vidh:
1294	ubi_free_vid_hdr(ubi, vidh);
1295out_ech:
1296	kfree(ech);
1297	return err;
1298}
1299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300#ifdef CONFIG_MTD_UBI_FASTMAP
1301
1302/**
1303 * scan_fastmap - try to find a fastmap and attach from it.
1304 * @ubi: UBI device description object
1305 * @ai: attach info object
1306 *
1307 * Returns 0 on success, negative return values indicate an internal
1308 * error.
1309 * UBI_NO_FASTMAP denotes that no fastmap was found.
1310 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1311 */
1312static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai)
1313{
1314	int err, pnum, fm_anchor = -1;
1315	unsigned long long max_sqnum = 0;
1316
1317	err = -ENOMEM;
1318
1319	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1320	if (!ech)
1321		goto out;
1322
1323	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1324	if (!vidh)
 
 
 
 
1325		goto out_ech;
1326
1327	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1328		int vol_id = -1;
1329		unsigned long long sqnum = -1;
1330		cond_resched();
1331
1332		dbg_gen("process PEB %d", pnum);
1333		err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum);
1334		if (err < 0)
1335			goto out_vidh;
 
1336
1337		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1338			max_sqnum = sqnum;
1339			fm_anchor = pnum;
1340		}
1341	}
1342
1343	ubi_free_vid_hdr(ubi, vidh);
1344	kfree(ech);
 
 
1345
1346	if (fm_anchor < 0)
1347		return UBI_NO_FASTMAP;
 
 
 
 
 
 
 
1348
1349	return ubi_scan_fastmap(ubi, ai, fm_anchor);
1350
1351out_vidh:
1352	ubi_free_vid_hdr(ubi, vidh);
1353out_ech:
1354	kfree(ech);
 
 
1355out:
1356	return err;
1357}
1358
1359#endif
1360
1361static struct ubi_attach_info *alloc_ai(const char *slab_name)
1362{
1363	struct ubi_attach_info *ai;
1364
1365	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1366	if (!ai)
1367		return ai;
1368
1369	INIT_LIST_HEAD(&ai->corr);
1370	INIT_LIST_HEAD(&ai->free);
1371	INIT_LIST_HEAD(&ai->erase);
1372	INIT_LIST_HEAD(&ai->alien);
1373	ai->volumes = RB_ROOT;
1374	ai->aeb_slab_cache = kmem_cache_create(slab_name,
1375					       sizeof(struct ubi_ainf_peb),
1376					       0, 0, NULL);
1377	if (!ai->aeb_slab_cache) {
1378		kfree(ai);
1379		ai = NULL;
1380	}
1381
1382	return ai;
1383}
1384
1385/**
1386 * ubi_attach - attach an MTD device.
1387 * @ubi: UBI device descriptor
1388 * @force_scan: if set to non-zero attach by scanning
1389 *
1390 * This function returns zero in case of success and a negative error code in
1391 * case of failure.
1392 */
1393int ubi_attach(struct ubi_device *ubi, int force_scan)
1394{
1395	int err;
1396	struct ubi_attach_info *ai;
1397
1398	ai = alloc_ai("ubi_aeb_slab_cache");
1399	if (!ai)
1400		return -ENOMEM;
1401
1402#ifdef CONFIG_MTD_UBI_FASTMAP
1403	/* On small flash devices we disable fastmap in any case. */
1404	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1405		ubi->fm_disabled = 1;
1406		force_scan = 1;
1407	}
1408
1409	if (force_scan)
1410		err = scan_all(ubi, ai, 0);
1411	else {
1412		err = scan_fast(ubi, ai);
1413		if (err > 0) {
1414			if (err != UBI_NO_FASTMAP) {
1415				destroy_ai(ai);
1416				ai = alloc_ai("ubi_aeb_slab_cache2");
1417				if (!ai)
1418					return -ENOMEM;
1419
1420				err = scan_all(ubi, ai, 0);
1421			} else {
1422				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1423			}
1424		}
1425	}
1426#else
1427	err = scan_all(ubi, ai, 0);
1428#endif
1429	if (err)
1430		goto out_ai;
1431
1432	ubi->bad_peb_count = ai->bad_peb_count;
1433	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1434	ubi->corr_peb_count = ai->corr_peb_count;
1435	ubi->max_ec = ai->max_ec;
1436	ubi->mean_ec = ai->mean_ec;
1437	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1438
1439	err = ubi_read_volume_table(ubi, ai);
1440	if (err)
1441		goto out_ai;
1442
1443	err = ubi_wl_init(ubi, ai);
1444	if (err)
1445		goto out_vtbl;
1446
1447	err = ubi_eba_init(ubi, ai);
1448	if (err)
1449		goto out_wl;
1450
1451#ifdef CONFIG_MTD_UBI_FASTMAP
1452	if (ubi->fm && ubi_dbg_chk_gen(ubi)) {
1453		struct ubi_attach_info *scan_ai;
1454
1455		scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache");
1456		if (!scan_ai) {
1457			err = -ENOMEM;
1458			goto out_wl;
1459		}
1460
1461		err = scan_all(ubi, scan_ai, 0);
1462		if (err) {
1463			destroy_ai(scan_ai);
1464			goto out_wl;
1465		}
1466
1467		err = self_check_eba(ubi, ai, scan_ai);
1468		destroy_ai(scan_ai);
1469
1470		if (err)
1471			goto out_wl;
1472	}
1473#endif
1474
1475	destroy_ai(ai);
1476	return 0;
1477
1478out_wl:
1479	ubi_wl_close(ubi);
1480out_vtbl:
1481	ubi_free_internal_volumes(ubi);
1482	vfree(ubi->vtbl);
1483out_ai:
1484	destroy_ai(ai);
1485	return err;
1486}
1487
1488/**
1489 * self_check_ai - check the attaching information.
1490 * @ubi: UBI device description object
1491 * @ai: attaching information
1492 *
1493 * This function returns zero if the attaching information is all right, and a
1494 * negative error code if not or if an error occurred.
1495 */
1496static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1497{
 
 
1498	int pnum, err, vols_found = 0;
1499	struct rb_node *rb1, *rb2;
1500	struct ubi_ainf_volume *av;
1501	struct ubi_ainf_peb *aeb, *last_aeb;
1502	uint8_t *buf;
1503
1504	if (!ubi_dbg_chk_gen(ubi))
1505		return 0;
1506
1507	/*
1508	 * At first, check that attaching information is OK.
1509	 */
1510	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1511		int leb_count = 0;
1512
1513		cond_resched();
1514
1515		vols_found += 1;
1516
1517		if (ai->is_empty) {
1518			ubi_err("bad is_empty flag");
1519			goto bad_av;
1520		}
1521
1522		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1523		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1524		    av->data_pad < 0 || av->last_data_size < 0) {
1525			ubi_err("negative values");
1526			goto bad_av;
1527		}
1528
1529		if (av->vol_id >= UBI_MAX_VOLUMES &&
1530		    av->vol_id < UBI_INTERNAL_VOL_START) {
1531			ubi_err("bad vol_id");
1532			goto bad_av;
1533		}
1534
1535		if (av->vol_id > ai->highest_vol_id) {
1536			ubi_err("highest_vol_id is %d, but vol_id %d is there",
1537				ai->highest_vol_id, av->vol_id);
1538			goto out;
1539		}
1540
1541		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1542		    av->vol_type != UBI_STATIC_VOLUME) {
1543			ubi_err("bad vol_type");
1544			goto bad_av;
1545		}
1546
1547		if (av->data_pad > ubi->leb_size / 2) {
1548			ubi_err("bad data_pad");
1549			goto bad_av;
1550		}
1551
1552		last_aeb = NULL;
1553		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1554			cond_resched();
1555
1556			last_aeb = aeb;
1557			leb_count += 1;
1558
1559			if (aeb->pnum < 0 || aeb->ec < 0) {
1560				ubi_err("negative values");
1561				goto bad_aeb;
1562			}
1563
1564			if (aeb->ec < ai->min_ec) {
1565				ubi_err("bad ai->min_ec (%d), %d found",
1566					ai->min_ec, aeb->ec);
1567				goto bad_aeb;
1568			}
1569
1570			if (aeb->ec > ai->max_ec) {
1571				ubi_err("bad ai->max_ec (%d), %d found",
1572					ai->max_ec, aeb->ec);
1573				goto bad_aeb;
1574			}
1575
1576			if (aeb->pnum >= ubi->peb_count) {
1577				ubi_err("too high PEB number %d, total PEBs %d",
1578					aeb->pnum, ubi->peb_count);
1579				goto bad_aeb;
1580			}
1581
1582			if (av->vol_type == UBI_STATIC_VOLUME) {
1583				if (aeb->lnum >= av->used_ebs) {
1584					ubi_err("bad lnum or used_ebs");
1585					goto bad_aeb;
1586				}
1587			} else {
1588				if (av->used_ebs != 0) {
1589					ubi_err("non-zero used_ebs");
1590					goto bad_aeb;
1591				}
1592			}
1593
1594			if (aeb->lnum > av->highest_lnum) {
1595				ubi_err("incorrect highest_lnum or lnum");
1596				goto bad_aeb;
1597			}
1598		}
1599
1600		if (av->leb_count != leb_count) {
1601			ubi_err("bad leb_count, %d objects in the tree",
1602				leb_count);
1603			goto bad_av;
1604		}
1605
1606		if (!last_aeb)
1607			continue;
1608
1609		aeb = last_aeb;
1610
1611		if (aeb->lnum != av->highest_lnum) {
1612			ubi_err("bad highest_lnum");
1613			goto bad_aeb;
1614		}
1615	}
1616
1617	if (vols_found != ai->vols_found) {
1618		ubi_err("bad ai->vols_found %d, should be %d",
1619			ai->vols_found, vols_found);
1620		goto out;
1621	}
1622
1623	/* Check that attaching information is correct */
1624	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1625		last_aeb = NULL;
1626		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1627			int vol_type;
1628
1629			cond_resched();
1630
1631			last_aeb = aeb;
1632
1633			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1634			if (err && err != UBI_IO_BITFLIPS) {
1635				ubi_err("VID header is not OK (%d)", err);
 
1636				if (err > 0)
1637					err = -EIO;
1638				return err;
1639			}
1640
1641			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1642				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1643			if (av->vol_type != vol_type) {
1644				ubi_err("bad vol_type");
1645				goto bad_vid_hdr;
1646			}
1647
1648			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1649				ubi_err("bad sqnum %llu", aeb->sqnum);
1650				goto bad_vid_hdr;
1651			}
1652
1653			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1654				ubi_err("bad vol_id %d", av->vol_id);
1655				goto bad_vid_hdr;
1656			}
1657
1658			if (av->compat != vidh->compat) {
1659				ubi_err("bad compat %d", vidh->compat);
1660				goto bad_vid_hdr;
1661			}
1662
1663			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1664				ubi_err("bad lnum %d", aeb->lnum);
1665				goto bad_vid_hdr;
1666			}
1667
1668			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1669				ubi_err("bad used_ebs %d", av->used_ebs);
1670				goto bad_vid_hdr;
1671			}
1672
1673			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1674				ubi_err("bad data_pad %d", av->data_pad);
1675				goto bad_vid_hdr;
1676			}
1677		}
1678
1679		if (!last_aeb)
1680			continue;
1681
1682		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1683			ubi_err("bad highest_lnum %d", av->highest_lnum);
1684			goto bad_vid_hdr;
1685		}
1686
1687		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1688			ubi_err("bad last_data_size %d", av->last_data_size);
 
1689			goto bad_vid_hdr;
1690		}
1691	}
1692
1693	/*
1694	 * Make sure that all the physical eraseblocks are in one of the lists
1695	 * or trees.
1696	 */
1697	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1698	if (!buf)
1699		return -ENOMEM;
1700
1701	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1702		err = ubi_io_is_bad(ubi, pnum);
1703		if (err < 0) {
1704			kfree(buf);
1705			return err;
1706		} else if (err)
1707			buf[pnum] = 1;
1708	}
1709
1710	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1711		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1712			buf[aeb->pnum] = 1;
1713
1714	list_for_each_entry(aeb, &ai->free, u.list)
1715		buf[aeb->pnum] = 1;
1716
1717	list_for_each_entry(aeb, &ai->corr, u.list)
1718		buf[aeb->pnum] = 1;
1719
1720	list_for_each_entry(aeb, &ai->erase, u.list)
1721		buf[aeb->pnum] = 1;
1722
1723	list_for_each_entry(aeb, &ai->alien, u.list)
1724		buf[aeb->pnum] = 1;
1725
1726	err = 0;
1727	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1728		if (!buf[pnum]) {
1729			ubi_err("PEB %d is not referred", pnum);
1730			err = 1;
1731		}
1732
1733	kfree(buf);
1734	if (err)
1735		goto out;
1736	return 0;
1737
1738bad_aeb:
1739	ubi_err("bad attaching information about LEB %d", aeb->lnum);
1740	ubi_dump_aeb(aeb, 0);
1741	ubi_dump_av(av);
1742	goto out;
1743
1744bad_av:
1745	ubi_err("bad attaching information about volume %d", av->vol_id);
1746	ubi_dump_av(av);
1747	goto out;
1748
1749bad_vid_hdr:
1750	ubi_err("bad attaching information about volume %d", av->vol_id);
1751	ubi_dump_av(av);
1752	ubi_dump_vid_hdr(vidh);
1753
1754out:
1755	dump_stack();
1756	return -EINVAL;
1757}