Loading...
1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30
31#include <linux/bitfield.h>
32#include <linux/hdmi.h>
33#include <linux/i2c.h>
34#include <linux/kernel.h>
35#include <linux/module.h>
36#include <linux/pci.h>
37#include <linux/slab.h>
38#include <linux/vga_switcheroo.h>
39
40#include <drm/drm_displayid.h>
41#include <drm/drm_drv.h>
42#include <drm/drm_edid.h>
43#include <drm/drm_encoder.h>
44#include <drm/drm_print.h>
45
46#include "drm_crtc_internal.h"
47
48static int oui(u8 first, u8 second, u8 third)
49{
50 return (first << 16) | (second << 8) | third;
51}
52
53#define EDID_EST_TIMINGS 16
54#define EDID_STD_TIMINGS 8
55#define EDID_DETAILED_TIMINGS 4
56
57/*
58 * EDID blocks out in the wild have a variety of bugs, try to collect
59 * them here (note that userspace may work around broken monitors first,
60 * but fixes should make their way here so that the kernel "just works"
61 * on as many displays as possible).
62 */
63
64/* First detailed mode wrong, use largest 60Hz mode */
65#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
66/* Reported 135MHz pixel clock is too high, needs adjustment */
67#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
68/* Prefer the largest mode at 75 Hz */
69#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
70/* Detail timing is in cm not mm */
71#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
72/* Detailed timing descriptors have bogus size values, so just take the
73 * maximum size and use that.
74 */
75#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
76/* use +hsync +vsync for detailed mode */
77#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
78/* Force reduced-blanking timings for detailed modes */
79#define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
80/* Force 8bpc */
81#define EDID_QUIRK_FORCE_8BPC (1 << 8)
82/* Force 12bpc */
83#define EDID_QUIRK_FORCE_12BPC (1 << 9)
84/* Force 6bpc */
85#define EDID_QUIRK_FORCE_6BPC (1 << 10)
86/* Force 10bpc */
87#define EDID_QUIRK_FORCE_10BPC (1 << 11)
88/* Non desktop display (i.e. HMD) */
89#define EDID_QUIRK_NON_DESKTOP (1 << 12)
90/* Cap the DSC target bitrate to 15bpp */
91#define EDID_QUIRK_CAP_DSC_15BPP (1 << 13)
92
93#define MICROSOFT_IEEE_OUI 0xca125c
94
95struct detailed_mode_closure {
96 struct drm_connector *connector;
97 const struct drm_edid *drm_edid;
98 bool preferred;
99 u32 quirks;
100 int modes;
101};
102
103#define LEVEL_DMT 0
104#define LEVEL_GTF 1
105#define LEVEL_GTF2 2
106#define LEVEL_CVT 3
107
108#define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
109{ \
110 .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, vend_chr_2, \
111 product_id), \
112 .quirks = _quirks \
113}
114
115static const struct edid_quirk {
116 u32 panel_id;
117 u32 quirks;
118} edid_quirk_list[] = {
119 /* Acer AL1706 */
120 EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60),
121 /* Acer F51 */
122 EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60),
123
124 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
125 EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC),
126
127 /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
128 EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC),
129
130 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
131 EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC),
132
133 /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
134 EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC),
135
136 /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
137 EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC),
138
139 /* Belinea 10 15 55 */
140 EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60),
141 EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60),
142
143 /* Envision Peripherals, Inc. EN-7100e */
144 EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH),
145 /* Envision EN2028 */
146 EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60),
147
148 /* Funai Electronics PM36B */
149 EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 |
150 EDID_QUIRK_DETAILED_IN_CM),
151
152 /* LG 27GP950 */
153 EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP),
154
155 /* LG 27GN950 */
156 EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP),
157
158 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
159 EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC),
160
161 /* LG Philips LCD LP154W01-A5 */
162 EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
163 EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE),
164
165 /* Samsung SyncMaster 205BW. Note: irony */
166 EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP),
167 /* Samsung SyncMaster 22[5-6]BW */
168 EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60),
169 EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60),
170
171 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
172 EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC),
173
174 /* ViewSonic VA2026w */
175 EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING),
176
177 /* Medion MD 30217 PG */
178 EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75),
179
180 /* Lenovo G50 */
181 EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC),
182
183 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
184 EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC),
185
186 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
187 EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC),
188
189 /* Valve Index Headset */
190 EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP),
191 EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP),
192 EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP),
193 EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP),
194 EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP),
195 EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP),
196 EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP),
197 EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP),
198 EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP),
199 EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP),
200 EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP),
201 EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP),
202 EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP),
203 EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP),
204 EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP),
205 EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP),
206 EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP),
207
208 /* HTC Vive and Vive Pro VR Headsets */
209 EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP),
210 EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP),
211
212 /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
213 EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP),
214 EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP),
215 EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP),
216 EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP),
217
218 /* Windows Mixed Reality Headsets */
219 EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP),
220 EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP),
221 EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP),
222 EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP),
223 EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP),
224 EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP),
225
226 /* Sony PlayStation VR Headset */
227 EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP),
228
229 /* Sensics VR Headsets */
230 EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP),
231
232 /* OSVR HDK and HDK2 VR Headsets */
233 EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP),
234};
235
236/*
237 * Autogenerated from the DMT spec.
238 * This table is copied from xfree86/modes/xf86EdidModes.c.
239 */
240static const struct drm_display_mode drm_dmt_modes[] = {
241 /* 0x01 - 640x350@85Hz */
242 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
243 736, 832, 0, 350, 382, 385, 445, 0,
244 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
245 /* 0x02 - 640x400@85Hz */
246 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
247 736, 832, 0, 400, 401, 404, 445, 0,
248 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
249 /* 0x03 - 720x400@85Hz */
250 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
251 828, 936, 0, 400, 401, 404, 446, 0,
252 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
253 /* 0x04 - 640x480@60Hz */
254 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
255 752, 800, 0, 480, 490, 492, 525, 0,
256 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
257 /* 0x05 - 640x480@72Hz */
258 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
259 704, 832, 0, 480, 489, 492, 520, 0,
260 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
261 /* 0x06 - 640x480@75Hz */
262 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
263 720, 840, 0, 480, 481, 484, 500, 0,
264 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
265 /* 0x07 - 640x480@85Hz */
266 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
267 752, 832, 0, 480, 481, 484, 509, 0,
268 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
269 /* 0x08 - 800x600@56Hz */
270 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
271 896, 1024, 0, 600, 601, 603, 625, 0,
272 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
273 /* 0x09 - 800x600@60Hz */
274 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
275 968, 1056, 0, 600, 601, 605, 628, 0,
276 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
277 /* 0x0a - 800x600@72Hz */
278 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
279 976, 1040, 0, 600, 637, 643, 666, 0,
280 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
281 /* 0x0b - 800x600@75Hz */
282 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
283 896, 1056, 0, 600, 601, 604, 625, 0,
284 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
285 /* 0x0c - 800x600@85Hz */
286 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
287 896, 1048, 0, 600, 601, 604, 631, 0,
288 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
289 /* 0x0d - 800x600@120Hz RB */
290 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
291 880, 960, 0, 600, 603, 607, 636, 0,
292 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
293 /* 0x0e - 848x480@60Hz */
294 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
295 976, 1088, 0, 480, 486, 494, 517, 0,
296 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
297 /* 0x0f - 1024x768@43Hz, interlace */
298 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
299 1208, 1264, 0, 768, 768, 776, 817, 0,
300 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
301 DRM_MODE_FLAG_INTERLACE) },
302 /* 0x10 - 1024x768@60Hz */
303 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
304 1184, 1344, 0, 768, 771, 777, 806, 0,
305 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
306 /* 0x11 - 1024x768@70Hz */
307 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
308 1184, 1328, 0, 768, 771, 777, 806, 0,
309 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
310 /* 0x12 - 1024x768@75Hz */
311 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
312 1136, 1312, 0, 768, 769, 772, 800, 0,
313 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
314 /* 0x13 - 1024x768@85Hz */
315 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
316 1168, 1376, 0, 768, 769, 772, 808, 0,
317 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
318 /* 0x14 - 1024x768@120Hz RB */
319 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
320 1104, 1184, 0, 768, 771, 775, 813, 0,
321 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
322 /* 0x15 - 1152x864@75Hz */
323 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
324 1344, 1600, 0, 864, 865, 868, 900, 0,
325 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
326 /* 0x55 - 1280x720@60Hz */
327 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
328 1430, 1650, 0, 720, 725, 730, 750, 0,
329 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 /* 0x16 - 1280x768@60Hz RB */
331 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
332 1360, 1440, 0, 768, 771, 778, 790, 0,
333 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
334 /* 0x17 - 1280x768@60Hz */
335 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
336 1472, 1664, 0, 768, 771, 778, 798, 0,
337 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
338 /* 0x18 - 1280x768@75Hz */
339 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
340 1488, 1696, 0, 768, 771, 778, 805, 0,
341 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
342 /* 0x19 - 1280x768@85Hz */
343 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
344 1496, 1712, 0, 768, 771, 778, 809, 0,
345 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
346 /* 0x1a - 1280x768@120Hz RB */
347 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
348 1360, 1440, 0, 768, 771, 778, 813, 0,
349 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
350 /* 0x1b - 1280x800@60Hz RB */
351 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
352 1360, 1440, 0, 800, 803, 809, 823, 0,
353 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
354 /* 0x1c - 1280x800@60Hz */
355 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
356 1480, 1680, 0, 800, 803, 809, 831, 0,
357 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
358 /* 0x1d - 1280x800@75Hz */
359 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
360 1488, 1696, 0, 800, 803, 809, 838, 0,
361 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
362 /* 0x1e - 1280x800@85Hz */
363 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
364 1496, 1712, 0, 800, 803, 809, 843, 0,
365 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
366 /* 0x1f - 1280x800@120Hz RB */
367 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
368 1360, 1440, 0, 800, 803, 809, 847, 0,
369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
370 /* 0x20 - 1280x960@60Hz */
371 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
372 1488, 1800, 0, 960, 961, 964, 1000, 0,
373 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
374 /* 0x21 - 1280x960@85Hz */
375 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
376 1504, 1728, 0, 960, 961, 964, 1011, 0,
377 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 /* 0x22 - 1280x960@120Hz RB */
379 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
380 1360, 1440, 0, 960, 963, 967, 1017, 0,
381 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
382 /* 0x23 - 1280x1024@60Hz */
383 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
384 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
385 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
386 /* 0x24 - 1280x1024@75Hz */
387 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
388 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
390 /* 0x25 - 1280x1024@85Hz */
391 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
392 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
393 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
394 /* 0x26 - 1280x1024@120Hz RB */
395 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
396 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
397 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
398 /* 0x27 - 1360x768@60Hz */
399 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
400 1536, 1792, 0, 768, 771, 777, 795, 0,
401 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
402 /* 0x28 - 1360x768@120Hz RB */
403 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
404 1440, 1520, 0, 768, 771, 776, 813, 0,
405 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
406 /* 0x51 - 1366x768@60Hz */
407 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
408 1579, 1792, 0, 768, 771, 774, 798, 0,
409 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
410 /* 0x56 - 1366x768@60Hz */
411 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
412 1436, 1500, 0, 768, 769, 772, 800, 0,
413 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 /* 0x29 - 1400x1050@60Hz RB */
415 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
416 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
417 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
418 /* 0x2a - 1400x1050@60Hz */
419 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
420 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
421 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
422 /* 0x2b - 1400x1050@75Hz */
423 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
424 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
425 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
426 /* 0x2c - 1400x1050@85Hz */
427 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
428 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
429 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
430 /* 0x2d - 1400x1050@120Hz RB */
431 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
432 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
433 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
434 /* 0x2e - 1440x900@60Hz RB */
435 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
436 1520, 1600, 0, 900, 903, 909, 926, 0,
437 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
438 /* 0x2f - 1440x900@60Hz */
439 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
440 1672, 1904, 0, 900, 903, 909, 934, 0,
441 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
442 /* 0x30 - 1440x900@75Hz */
443 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
444 1688, 1936, 0, 900, 903, 909, 942, 0,
445 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
446 /* 0x31 - 1440x900@85Hz */
447 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
448 1696, 1952, 0, 900, 903, 909, 948, 0,
449 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
450 /* 0x32 - 1440x900@120Hz RB */
451 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
452 1520, 1600, 0, 900, 903, 909, 953, 0,
453 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
454 /* 0x53 - 1600x900@60Hz */
455 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
456 1704, 1800, 0, 900, 901, 904, 1000, 0,
457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
458 /* 0x33 - 1600x1200@60Hz */
459 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
460 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
461 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
462 /* 0x34 - 1600x1200@65Hz */
463 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
464 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
465 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
466 /* 0x35 - 1600x1200@70Hz */
467 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
468 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
469 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
470 /* 0x36 - 1600x1200@75Hz */
471 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
472 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
473 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
474 /* 0x37 - 1600x1200@85Hz */
475 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
476 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
477 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
478 /* 0x38 - 1600x1200@120Hz RB */
479 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
480 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
481 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
482 /* 0x39 - 1680x1050@60Hz RB */
483 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
484 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
485 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
486 /* 0x3a - 1680x1050@60Hz */
487 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
488 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
489 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
490 /* 0x3b - 1680x1050@75Hz */
491 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
492 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
493 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
494 /* 0x3c - 1680x1050@85Hz */
495 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
496 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
497 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
498 /* 0x3d - 1680x1050@120Hz RB */
499 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
500 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
501 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
502 /* 0x3e - 1792x1344@60Hz */
503 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
504 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
505 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
506 /* 0x3f - 1792x1344@75Hz */
507 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
508 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
509 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
510 /* 0x40 - 1792x1344@120Hz RB */
511 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
512 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
513 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
514 /* 0x41 - 1856x1392@60Hz */
515 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
516 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
517 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
518 /* 0x42 - 1856x1392@75Hz */
519 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
520 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
521 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
522 /* 0x43 - 1856x1392@120Hz RB */
523 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
524 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
525 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
526 /* 0x52 - 1920x1080@60Hz */
527 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
528 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
529 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
530 /* 0x44 - 1920x1200@60Hz RB */
531 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
532 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
533 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
534 /* 0x45 - 1920x1200@60Hz */
535 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
536 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
537 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
538 /* 0x46 - 1920x1200@75Hz */
539 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
540 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
541 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
542 /* 0x47 - 1920x1200@85Hz */
543 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
544 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
545 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
546 /* 0x48 - 1920x1200@120Hz RB */
547 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
548 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
549 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
550 /* 0x49 - 1920x1440@60Hz */
551 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
552 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
553 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
554 /* 0x4a - 1920x1440@75Hz */
555 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
556 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
557 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
558 /* 0x4b - 1920x1440@120Hz RB */
559 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
560 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
561 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
562 /* 0x54 - 2048x1152@60Hz */
563 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
564 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
565 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
566 /* 0x4c - 2560x1600@60Hz RB */
567 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
568 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
569 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
570 /* 0x4d - 2560x1600@60Hz */
571 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
572 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
573 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
574 /* 0x4e - 2560x1600@75Hz */
575 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
576 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
577 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
578 /* 0x4f - 2560x1600@85Hz */
579 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
580 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
581 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
582 /* 0x50 - 2560x1600@120Hz RB */
583 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
584 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
585 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
586 /* 0x57 - 4096x2160@60Hz RB */
587 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
588 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
589 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
590 /* 0x58 - 4096x2160@59.94Hz RB */
591 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
592 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
593 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
594};
595
596/*
597 * These more or less come from the DMT spec. The 720x400 modes are
598 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
599 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
600 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
601 * mode.
602 *
603 * The DMT modes have been fact-checked; the rest are mild guesses.
604 */
605static const struct drm_display_mode edid_est_modes[] = {
606 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
607 968, 1056, 0, 600, 601, 605, 628, 0,
608 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
609 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
610 896, 1024, 0, 600, 601, 603, 625, 0,
611 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
612 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
613 720, 840, 0, 480, 481, 484, 500, 0,
614 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
615 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
616 704, 832, 0, 480, 489, 492, 520, 0,
617 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
618 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
619 768, 864, 0, 480, 483, 486, 525, 0,
620 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
621 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
622 752, 800, 0, 480, 490, 492, 525, 0,
623 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
624 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
625 846, 900, 0, 400, 421, 423, 449, 0,
626 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
627 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
628 846, 900, 0, 400, 412, 414, 449, 0,
629 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
630 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
631 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
632 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
633 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
634 1136, 1312, 0, 768, 769, 772, 800, 0,
635 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
636 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
637 1184, 1328, 0, 768, 771, 777, 806, 0,
638 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
639 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
640 1184, 1344, 0, 768, 771, 777, 806, 0,
641 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
642 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
643 1208, 1264, 0, 768, 768, 776, 817, 0,
644 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
645 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
646 928, 1152, 0, 624, 625, 628, 667, 0,
647 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
648 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
649 896, 1056, 0, 600, 601, 604, 625, 0,
650 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
651 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
652 976, 1040, 0, 600, 637, 643, 666, 0,
653 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
654 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
655 1344, 1600, 0, 864, 865, 868, 900, 0,
656 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
657};
658
659struct minimode {
660 short w;
661 short h;
662 short r;
663 short rb;
664};
665
666static const struct minimode est3_modes[] = {
667 /* byte 6 */
668 { 640, 350, 85, 0 },
669 { 640, 400, 85, 0 },
670 { 720, 400, 85, 0 },
671 { 640, 480, 85, 0 },
672 { 848, 480, 60, 0 },
673 { 800, 600, 85, 0 },
674 { 1024, 768, 85, 0 },
675 { 1152, 864, 75, 0 },
676 /* byte 7 */
677 { 1280, 768, 60, 1 },
678 { 1280, 768, 60, 0 },
679 { 1280, 768, 75, 0 },
680 { 1280, 768, 85, 0 },
681 { 1280, 960, 60, 0 },
682 { 1280, 960, 85, 0 },
683 { 1280, 1024, 60, 0 },
684 { 1280, 1024, 85, 0 },
685 /* byte 8 */
686 { 1360, 768, 60, 0 },
687 { 1440, 900, 60, 1 },
688 { 1440, 900, 60, 0 },
689 { 1440, 900, 75, 0 },
690 { 1440, 900, 85, 0 },
691 { 1400, 1050, 60, 1 },
692 { 1400, 1050, 60, 0 },
693 { 1400, 1050, 75, 0 },
694 /* byte 9 */
695 { 1400, 1050, 85, 0 },
696 { 1680, 1050, 60, 1 },
697 { 1680, 1050, 60, 0 },
698 { 1680, 1050, 75, 0 },
699 { 1680, 1050, 85, 0 },
700 { 1600, 1200, 60, 0 },
701 { 1600, 1200, 65, 0 },
702 { 1600, 1200, 70, 0 },
703 /* byte 10 */
704 { 1600, 1200, 75, 0 },
705 { 1600, 1200, 85, 0 },
706 { 1792, 1344, 60, 0 },
707 { 1792, 1344, 75, 0 },
708 { 1856, 1392, 60, 0 },
709 { 1856, 1392, 75, 0 },
710 { 1920, 1200, 60, 1 },
711 { 1920, 1200, 60, 0 },
712 /* byte 11 */
713 { 1920, 1200, 75, 0 },
714 { 1920, 1200, 85, 0 },
715 { 1920, 1440, 60, 0 },
716 { 1920, 1440, 75, 0 },
717};
718
719static const struct minimode extra_modes[] = {
720 { 1024, 576, 60, 0 },
721 { 1366, 768, 60, 0 },
722 { 1600, 900, 60, 0 },
723 { 1680, 945, 60, 0 },
724 { 1920, 1080, 60, 0 },
725 { 2048, 1152, 60, 0 },
726 { 2048, 1536, 60, 0 },
727};
728
729/*
730 * From CEA/CTA-861 spec.
731 *
732 * Do not access directly, instead always use cea_mode_for_vic().
733 */
734static const struct drm_display_mode edid_cea_modes_1[] = {
735 /* 1 - 640x480@60Hz 4:3 */
736 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
737 752, 800, 0, 480, 490, 492, 525, 0,
738 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
739 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
740 /* 2 - 720x480@60Hz 4:3 */
741 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
742 798, 858, 0, 480, 489, 495, 525, 0,
743 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
744 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
745 /* 3 - 720x480@60Hz 16:9 */
746 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
747 798, 858, 0, 480, 489, 495, 525, 0,
748 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
749 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
750 /* 4 - 1280x720@60Hz 16:9 */
751 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
752 1430, 1650, 0, 720, 725, 730, 750, 0,
753 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
754 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
755 /* 5 - 1920x1080i@60Hz 16:9 */
756 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
757 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
758 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
759 DRM_MODE_FLAG_INTERLACE),
760 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
761 /* 6 - 720(1440)x480i@60Hz 4:3 */
762 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
763 801, 858, 0, 480, 488, 494, 525, 0,
764 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
765 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
766 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
767 /* 7 - 720(1440)x480i@60Hz 16:9 */
768 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
769 801, 858, 0, 480, 488, 494, 525, 0,
770 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
771 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
772 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
773 /* 8 - 720(1440)x240@60Hz 4:3 */
774 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
775 801, 858, 0, 240, 244, 247, 262, 0,
776 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
777 DRM_MODE_FLAG_DBLCLK),
778 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
779 /* 9 - 720(1440)x240@60Hz 16:9 */
780 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
781 801, 858, 0, 240, 244, 247, 262, 0,
782 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
783 DRM_MODE_FLAG_DBLCLK),
784 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
785 /* 10 - 2880x480i@60Hz 4:3 */
786 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
787 3204, 3432, 0, 480, 488, 494, 525, 0,
788 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
789 DRM_MODE_FLAG_INTERLACE),
790 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
791 /* 11 - 2880x480i@60Hz 16:9 */
792 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
793 3204, 3432, 0, 480, 488, 494, 525, 0,
794 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
795 DRM_MODE_FLAG_INTERLACE),
796 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
797 /* 12 - 2880x240@60Hz 4:3 */
798 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
799 3204, 3432, 0, 240, 244, 247, 262, 0,
800 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
801 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
802 /* 13 - 2880x240@60Hz 16:9 */
803 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
804 3204, 3432, 0, 240, 244, 247, 262, 0,
805 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
806 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
807 /* 14 - 1440x480@60Hz 4:3 */
808 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
809 1596, 1716, 0, 480, 489, 495, 525, 0,
810 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
811 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
812 /* 15 - 1440x480@60Hz 16:9 */
813 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
814 1596, 1716, 0, 480, 489, 495, 525, 0,
815 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
816 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
817 /* 16 - 1920x1080@60Hz 16:9 */
818 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
819 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
820 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
821 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
822 /* 17 - 720x576@50Hz 4:3 */
823 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
824 796, 864, 0, 576, 581, 586, 625, 0,
825 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
826 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
827 /* 18 - 720x576@50Hz 16:9 */
828 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
829 796, 864, 0, 576, 581, 586, 625, 0,
830 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
831 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
832 /* 19 - 1280x720@50Hz 16:9 */
833 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
834 1760, 1980, 0, 720, 725, 730, 750, 0,
835 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
836 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
837 /* 20 - 1920x1080i@50Hz 16:9 */
838 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
839 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
840 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
841 DRM_MODE_FLAG_INTERLACE),
842 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 /* 21 - 720(1440)x576i@50Hz 4:3 */
844 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
845 795, 864, 0, 576, 580, 586, 625, 0,
846 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
847 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
848 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
849 /* 22 - 720(1440)x576i@50Hz 16:9 */
850 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
851 795, 864, 0, 576, 580, 586, 625, 0,
852 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
853 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
854 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
855 /* 23 - 720(1440)x288@50Hz 4:3 */
856 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
857 795, 864, 0, 288, 290, 293, 312, 0,
858 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
859 DRM_MODE_FLAG_DBLCLK),
860 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
861 /* 24 - 720(1440)x288@50Hz 16:9 */
862 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
863 795, 864, 0, 288, 290, 293, 312, 0,
864 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
865 DRM_MODE_FLAG_DBLCLK),
866 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
867 /* 25 - 2880x576i@50Hz 4:3 */
868 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
869 3180, 3456, 0, 576, 580, 586, 625, 0,
870 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
871 DRM_MODE_FLAG_INTERLACE),
872 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
873 /* 26 - 2880x576i@50Hz 16:9 */
874 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
875 3180, 3456, 0, 576, 580, 586, 625, 0,
876 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 DRM_MODE_FLAG_INTERLACE),
878 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
879 /* 27 - 2880x288@50Hz 4:3 */
880 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
881 3180, 3456, 0, 288, 290, 293, 312, 0,
882 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
883 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
884 /* 28 - 2880x288@50Hz 16:9 */
885 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
886 3180, 3456, 0, 288, 290, 293, 312, 0,
887 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
888 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
889 /* 29 - 1440x576@50Hz 4:3 */
890 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
891 1592, 1728, 0, 576, 581, 586, 625, 0,
892 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
893 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
894 /* 30 - 1440x576@50Hz 16:9 */
895 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
896 1592, 1728, 0, 576, 581, 586, 625, 0,
897 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
898 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
899 /* 31 - 1920x1080@50Hz 16:9 */
900 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
901 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
902 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
903 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
904 /* 32 - 1920x1080@24Hz 16:9 */
905 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
906 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
907 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
908 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
909 /* 33 - 1920x1080@25Hz 16:9 */
910 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
911 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
912 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
913 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
914 /* 34 - 1920x1080@30Hz 16:9 */
915 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
916 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
917 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
918 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
919 /* 35 - 2880x480@60Hz 4:3 */
920 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
921 3192, 3432, 0, 480, 489, 495, 525, 0,
922 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
923 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
924 /* 36 - 2880x480@60Hz 16:9 */
925 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
926 3192, 3432, 0, 480, 489, 495, 525, 0,
927 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
928 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
929 /* 37 - 2880x576@50Hz 4:3 */
930 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
931 3184, 3456, 0, 576, 581, 586, 625, 0,
932 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
933 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
934 /* 38 - 2880x576@50Hz 16:9 */
935 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
936 3184, 3456, 0, 576, 581, 586, 625, 0,
937 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
938 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
939 /* 39 - 1920x1080i@50Hz 16:9 */
940 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
941 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
942 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
943 DRM_MODE_FLAG_INTERLACE),
944 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 /* 40 - 1920x1080i@100Hz 16:9 */
946 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
947 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
948 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
949 DRM_MODE_FLAG_INTERLACE),
950 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
951 /* 41 - 1280x720@100Hz 16:9 */
952 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
953 1760, 1980, 0, 720, 725, 730, 750, 0,
954 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
955 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
956 /* 42 - 720x576@100Hz 4:3 */
957 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
958 796, 864, 0, 576, 581, 586, 625, 0,
959 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
960 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
961 /* 43 - 720x576@100Hz 16:9 */
962 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
963 796, 864, 0, 576, 581, 586, 625, 0,
964 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
965 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
966 /* 44 - 720(1440)x576i@100Hz 4:3 */
967 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
968 795, 864, 0, 576, 580, 586, 625, 0,
969 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
970 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
971 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
972 /* 45 - 720(1440)x576i@100Hz 16:9 */
973 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
974 795, 864, 0, 576, 580, 586, 625, 0,
975 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
976 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
977 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
978 /* 46 - 1920x1080i@120Hz 16:9 */
979 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
980 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
981 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
982 DRM_MODE_FLAG_INTERLACE),
983 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
984 /* 47 - 1280x720@120Hz 16:9 */
985 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
986 1430, 1650, 0, 720, 725, 730, 750, 0,
987 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
988 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
989 /* 48 - 720x480@120Hz 4:3 */
990 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
991 798, 858, 0, 480, 489, 495, 525, 0,
992 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
993 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
994 /* 49 - 720x480@120Hz 16:9 */
995 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
996 798, 858, 0, 480, 489, 495, 525, 0,
997 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
998 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
999 /* 50 - 720(1440)x480i@120Hz 4:3 */
1000 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1001 801, 858, 0, 480, 488, 494, 525, 0,
1002 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1003 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1004 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1005 /* 51 - 720(1440)x480i@120Hz 16:9 */
1006 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1007 801, 858, 0, 480, 488, 494, 525, 0,
1008 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1009 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1010 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1011 /* 52 - 720x576@200Hz 4:3 */
1012 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1013 796, 864, 0, 576, 581, 586, 625, 0,
1014 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1015 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1016 /* 53 - 720x576@200Hz 16:9 */
1017 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1018 796, 864, 0, 576, 581, 586, 625, 0,
1019 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1020 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1021 /* 54 - 720(1440)x576i@200Hz 4:3 */
1022 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1023 795, 864, 0, 576, 580, 586, 625, 0,
1024 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1025 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1026 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1027 /* 55 - 720(1440)x576i@200Hz 16:9 */
1028 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1029 795, 864, 0, 576, 580, 586, 625, 0,
1030 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1031 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1032 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1033 /* 56 - 720x480@240Hz 4:3 */
1034 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1035 798, 858, 0, 480, 489, 495, 525, 0,
1036 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1037 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1038 /* 57 - 720x480@240Hz 16:9 */
1039 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1040 798, 858, 0, 480, 489, 495, 525, 0,
1041 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1042 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1043 /* 58 - 720(1440)x480i@240Hz 4:3 */
1044 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1045 801, 858, 0, 480, 488, 494, 525, 0,
1046 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1047 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1048 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1049 /* 59 - 720(1440)x480i@240Hz 16:9 */
1050 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1051 801, 858, 0, 480, 488, 494, 525, 0,
1052 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1053 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1054 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1055 /* 60 - 1280x720@24Hz 16:9 */
1056 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1057 3080, 3300, 0, 720, 725, 730, 750, 0,
1058 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1059 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1060 /* 61 - 1280x720@25Hz 16:9 */
1061 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1062 3740, 3960, 0, 720, 725, 730, 750, 0,
1063 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1064 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1065 /* 62 - 1280x720@30Hz 16:9 */
1066 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1067 3080, 3300, 0, 720, 725, 730, 750, 0,
1068 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1069 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1070 /* 63 - 1920x1080@120Hz 16:9 */
1071 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1072 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1073 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1074 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1075 /* 64 - 1920x1080@100Hz 16:9 */
1076 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1077 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1078 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1079 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1080 /* 65 - 1280x720@24Hz 64:27 */
1081 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1082 3080, 3300, 0, 720, 725, 730, 750, 0,
1083 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1084 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1085 /* 66 - 1280x720@25Hz 64:27 */
1086 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1087 3740, 3960, 0, 720, 725, 730, 750, 0,
1088 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1089 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1090 /* 67 - 1280x720@30Hz 64:27 */
1091 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1092 3080, 3300, 0, 720, 725, 730, 750, 0,
1093 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1094 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1095 /* 68 - 1280x720@50Hz 64:27 */
1096 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1097 1760, 1980, 0, 720, 725, 730, 750, 0,
1098 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1099 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1100 /* 69 - 1280x720@60Hz 64:27 */
1101 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1102 1430, 1650, 0, 720, 725, 730, 750, 0,
1103 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1104 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1105 /* 70 - 1280x720@100Hz 64:27 */
1106 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1107 1760, 1980, 0, 720, 725, 730, 750, 0,
1108 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1109 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1110 /* 71 - 1280x720@120Hz 64:27 */
1111 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1112 1430, 1650, 0, 720, 725, 730, 750, 0,
1113 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1114 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1115 /* 72 - 1920x1080@24Hz 64:27 */
1116 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1117 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1118 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1119 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1120 /* 73 - 1920x1080@25Hz 64:27 */
1121 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1122 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1123 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1124 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1125 /* 74 - 1920x1080@30Hz 64:27 */
1126 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1127 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1128 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1129 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1130 /* 75 - 1920x1080@50Hz 64:27 */
1131 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1132 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1133 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1134 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1135 /* 76 - 1920x1080@60Hz 64:27 */
1136 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1137 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1138 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1139 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1140 /* 77 - 1920x1080@100Hz 64:27 */
1141 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1142 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1143 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1144 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1145 /* 78 - 1920x1080@120Hz 64:27 */
1146 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1147 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1148 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1149 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1150 /* 79 - 1680x720@24Hz 64:27 */
1151 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1152 3080, 3300, 0, 720, 725, 730, 750, 0,
1153 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1154 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1155 /* 80 - 1680x720@25Hz 64:27 */
1156 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1157 2948, 3168, 0, 720, 725, 730, 750, 0,
1158 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1159 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1160 /* 81 - 1680x720@30Hz 64:27 */
1161 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1162 2420, 2640, 0, 720, 725, 730, 750, 0,
1163 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1164 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1165 /* 82 - 1680x720@50Hz 64:27 */
1166 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1167 1980, 2200, 0, 720, 725, 730, 750, 0,
1168 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1169 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1170 /* 83 - 1680x720@60Hz 64:27 */
1171 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1172 1980, 2200, 0, 720, 725, 730, 750, 0,
1173 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1174 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1175 /* 84 - 1680x720@100Hz 64:27 */
1176 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1177 1780, 2000, 0, 720, 725, 730, 825, 0,
1178 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1179 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1180 /* 85 - 1680x720@120Hz 64:27 */
1181 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1182 1780, 2000, 0, 720, 725, 730, 825, 0,
1183 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1184 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1185 /* 86 - 2560x1080@24Hz 64:27 */
1186 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1187 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1188 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1189 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1190 /* 87 - 2560x1080@25Hz 64:27 */
1191 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1192 3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1193 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1194 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1195 /* 88 - 2560x1080@30Hz 64:27 */
1196 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1197 3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1198 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1199 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1200 /* 89 - 2560x1080@50Hz 64:27 */
1201 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1202 3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1203 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1204 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1205 /* 90 - 2560x1080@60Hz 64:27 */
1206 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1207 2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1208 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1209 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1210 /* 91 - 2560x1080@100Hz 64:27 */
1211 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1212 2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1213 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1214 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1215 /* 92 - 2560x1080@120Hz 64:27 */
1216 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1217 3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1218 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1219 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1220 /* 93 - 3840x2160@24Hz 16:9 */
1221 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1222 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1223 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1224 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1225 /* 94 - 3840x2160@25Hz 16:9 */
1226 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1227 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1228 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1229 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1230 /* 95 - 3840x2160@30Hz 16:9 */
1231 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1232 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1233 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1234 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1235 /* 96 - 3840x2160@50Hz 16:9 */
1236 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1237 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1238 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1239 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1240 /* 97 - 3840x2160@60Hz 16:9 */
1241 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1242 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1243 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1244 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1245 /* 98 - 4096x2160@24Hz 256:135 */
1246 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1247 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1248 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1249 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1250 /* 99 - 4096x2160@25Hz 256:135 */
1251 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1252 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1253 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1254 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1255 /* 100 - 4096x2160@30Hz 256:135 */
1256 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1257 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1258 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1259 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1260 /* 101 - 4096x2160@50Hz 256:135 */
1261 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1262 5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1263 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1264 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1265 /* 102 - 4096x2160@60Hz 256:135 */
1266 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1267 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1268 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1269 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1270 /* 103 - 3840x2160@24Hz 64:27 */
1271 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1272 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1273 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1274 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1275 /* 104 - 3840x2160@25Hz 64:27 */
1276 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1277 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1278 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1279 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1280 /* 105 - 3840x2160@30Hz 64:27 */
1281 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1282 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1283 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1284 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1285 /* 106 - 3840x2160@50Hz 64:27 */
1286 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1287 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1288 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1289 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1290 /* 107 - 3840x2160@60Hz 64:27 */
1291 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1292 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1293 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1294 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1295 /* 108 - 1280x720@48Hz 16:9 */
1296 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1297 2280, 2500, 0, 720, 725, 730, 750, 0,
1298 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1299 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1300 /* 109 - 1280x720@48Hz 64:27 */
1301 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1302 2280, 2500, 0, 720, 725, 730, 750, 0,
1303 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1304 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1305 /* 110 - 1680x720@48Hz 64:27 */
1306 { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1307 2530, 2750, 0, 720, 725, 730, 750, 0,
1308 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1309 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1310 /* 111 - 1920x1080@48Hz 16:9 */
1311 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1312 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1313 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1314 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1315 /* 112 - 1920x1080@48Hz 64:27 */
1316 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1317 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1318 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1319 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1320 /* 113 - 2560x1080@48Hz 64:27 */
1321 { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1322 3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1324 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1325 /* 114 - 3840x2160@48Hz 16:9 */
1326 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1327 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1328 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1329 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1330 /* 115 - 4096x2160@48Hz 256:135 */
1331 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1332 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1333 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1334 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1335 /* 116 - 3840x2160@48Hz 64:27 */
1336 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1337 5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1338 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1339 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1340 /* 117 - 3840x2160@100Hz 16:9 */
1341 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1342 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1343 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1344 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1345 /* 118 - 3840x2160@120Hz 16:9 */
1346 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1347 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1348 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1349 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1350 /* 119 - 3840x2160@100Hz 64:27 */
1351 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1352 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1353 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1354 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1355 /* 120 - 3840x2160@120Hz 64:27 */
1356 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1357 4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1358 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1359 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1360 /* 121 - 5120x2160@24Hz 64:27 */
1361 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1362 7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1363 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1364 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1365 /* 122 - 5120x2160@25Hz 64:27 */
1366 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1367 6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1368 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1369 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1370 /* 123 - 5120x2160@30Hz 64:27 */
1371 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1372 5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1373 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1374 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1375 /* 124 - 5120x2160@48Hz 64:27 */
1376 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1377 5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1378 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1379 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1380 /* 125 - 5120x2160@50Hz 64:27 */
1381 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1382 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1383 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1384 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1385 /* 126 - 5120x2160@60Hz 64:27 */
1386 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1387 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1388 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1389 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1390 /* 127 - 5120x2160@100Hz 64:27 */
1391 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1392 6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1393 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1394 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1395};
1396
1397/*
1398 * From CEA/CTA-861 spec.
1399 *
1400 * Do not access directly, instead always use cea_mode_for_vic().
1401 */
1402static const struct drm_display_mode edid_cea_modes_193[] = {
1403 /* 193 - 5120x2160@120Hz 64:27 */
1404 { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1405 5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1406 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1407 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1408 /* 194 - 7680x4320@24Hz 16:9 */
1409 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1410 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1412 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1413 /* 195 - 7680x4320@25Hz 16:9 */
1414 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1415 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1416 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1417 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1418 /* 196 - 7680x4320@30Hz 16:9 */
1419 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1420 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1421 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1422 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1423 /* 197 - 7680x4320@48Hz 16:9 */
1424 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1425 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1426 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1427 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1428 /* 198 - 7680x4320@50Hz 16:9 */
1429 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1430 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1431 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1432 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1433 /* 199 - 7680x4320@60Hz 16:9 */
1434 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1435 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1436 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1437 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1438 /* 200 - 7680x4320@100Hz 16:9 */
1439 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1440 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1441 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1442 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1443 /* 201 - 7680x4320@120Hz 16:9 */
1444 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1445 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1446 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1447 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1448 /* 202 - 7680x4320@24Hz 64:27 */
1449 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1450 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1451 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1452 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1453 /* 203 - 7680x4320@25Hz 64:27 */
1454 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1455 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1456 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1457 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1458 /* 204 - 7680x4320@30Hz 64:27 */
1459 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1460 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1461 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1462 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1463 /* 205 - 7680x4320@48Hz 64:27 */
1464 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1465 10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1466 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1467 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1468 /* 206 - 7680x4320@50Hz 64:27 */
1469 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1470 10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1471 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1472 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1473 /* 207 - 7680x4320@60Hz 64:27 */
1474 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1475 8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1476 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1477 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1478 /* 208 - 7680x4320@100Hz 64:27 */
1479 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1480 9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1481 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1482 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1483 /* 209 - 7680x4320@120Hz 64:27 */
1484 { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1485 8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1486 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1487 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1488 /* 210 - 10240x4320@24Hz 64:27 */
1489 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1490 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1491 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1492 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1493 /* 211 - 10240x4320@25Hz 64:27 */
1494 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1495 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1496 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1497 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1498 /* 212 - 10240x4320@30Hz 64:27 */
1499 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1500 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1501 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1503 /* 213 - 10240x4320@48Hz 64:27 */
1504 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1505 11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1506 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1508 /* 214 - 10240x4320@50Hz 64:27 */
1509 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1510 12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1511 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1513 /* 215 - 10240x4320@60Hz 64:27 */
1514 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1515 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1516 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1518 /* 216 - 10240x4320@100Hz 64:27 */
1519 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1520 12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1521 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1522 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1523 /* 217 - 10240x4320@120Hz 64:27 */
1524 { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1525 10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1526 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1527 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1528 /* 218 - 4096x2160@100Hz 256:135 */
1529 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1530 4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1531 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1532 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1533 /* 219 - 4096x2160@120Hz 256:135 */
1534 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1535 4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1536 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1537 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1538};
1539
1540/*
1541 * HDMI 1.4 4k modes. Index using the VIC.
1542 */
1543static const struct drm_display_mode edid_4k_modes[] = {
1544 /* 0 - dummy, VICs start at 1 */
1545 { },
1546 /* 1 - 3840x2160@30Hz */
1547 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1548 3840, 4016, 4104, 4400, 0,
1549 2160, 2168, 2178, 2250, 0,
1550 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1551 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1552 /* 2 - 3840x2160@25Hz */
1553 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1554 3840, 4896, 4984, 5280, 0,
1555 2160, 2168, 2178, 2250, 0,
1556 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1557 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1558 /* 3 - 3840x2160@24Hz */
1559 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1560 3840, 5116, 5204, 5500, 0,
1561 2160, 2168, 2178, 2250, 0,
1562 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 /* 4 - 4096x2160@24Hz (SMPTE) */
1565 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1566 4096, 5116, 5204, 5500, 0,
1567 2160, 2168, 2178, 2250, 0,
1568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1569 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1570};
1571
1572/*** DDC fetch and block validation ***/
1573
1574/*
1575 * The opaque EDID type, internal to drm_edid.c.
1576 */
1577struct drm_edid {
1578 /* Size allocated for edid */
1579 size_t size;
1580 const struct edid *edid;
1581};
1582
1583static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1584
1585static int edid_hfeeodb_block_count(const struct edid *edid)
1586{
1587 int eeodb = edid_hfeeodb_extension_block_count(edid);
1588
1589 return eeodb ? eeodb + 1 : 0;
1590}
1591
1592static int edid_extension_block_count(const struct edid *edid)
1593{
1594 return edid->extensions;
1595}
1596
1597static int edid_block_count(const struct edid *edid)
1598{
1599 return edid_extension_block_count(edid) + 1;
1600}
1601
1602static int edid_size_by_blocks(int num_blocks)
1603{
1604 return num_blocks * EDID_LENGTH;
1605}
1606
1607static int edid_size(const struct edid *edid)
1608{
1609 return edid_size_by_blocks(edid_block_count(edid));
1610}
1611
1612static const void *edid_block_data(const struct edid *edid, int index)
1613{
1614 BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1615
1616 return edid + index;
1617}
1618
1619static const void *edid_extension_block_data(const struct edid *edid, int index)
1620{
1621 return edid_block_data(edid, index + 1);
1622}
1623
1624/* EDID block count indicated in EDID, may exceed allocated size */
1625static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1626{
1627 int num_blocks;
1628
1629 /* Starting point */
1630 num_blocks = edid_block_count(drm_edid->edid);
1631
1632 /* HF-EEODB override */
1633 if (drm_edid->size >= edid_size_by_blocks(2)) {
1634 int eeodb;
1635
1636 /*
1637 * Note: HF-EEODB may specify a smaller extension count than the
1638 * regular one. Unlike in buffer allocation, here we can use it.
1639 */
1640 eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1641 if (eeodb)
1642 num_blocks = eeodb;
1643 }
1644
1645 return num_blocks;
1646}
1647
1648/* EDID block count, limited by allocated size */
1649static int drm_edid_block_count(const struct drm_edid *drm_edid)
1650{
1651 /* Limit by allocated size */
1652 return min(__drm_edid_block_count(drm_edid),
1653 (int)drm_edid->size / EDID_LENGTH);
1654}
1655
1656/* EDID extension block count, limited by allocated size */
1657static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1658{
1659 return drm_edid_block_count(drm_edid) - 1;
1660}
1661
1662static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1663{
1664 return edid_block_data(drm_edid->edid, index);
1665}
1666
1667static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1668 int index)
1669{
1670 return edid_extension_block_data(drm_edid->edid, index);
1671}
1672
1673/*
1674 * Initializer helper for legacy interfaces, where we have no choice but to
1675 * trust edid size. Not for general purpose use.
1676 */
1677static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1678 const struct edid *edid)
1679{
1680 if (!edid)
1681 return NULL;
1682
1683 memset(drm_edid, 0, sizeof(*drm_edid));
1684
1685 drm_edid->edid = edid;
1686 drm_edid->size = edid_size(edid);
1687
1688 return drm_edid;
1689}
1690
1691/*
1692 * EDID base and extension block iterator.
1693 *
1694 * struct drm_edid_iter iter;
1695 * const u8 *block;
1696 *
1697 * drm_edid_iter_begin(drm_edid, &iter);
1698 * drm_edid_iter_for_each(block, &iter) {
1699 * // do stuff with block
1700 * }
1701 * drm_edid_iter_end(&iter);
1702 */
1703struct drm_edid_iter {
1704 const struct drm_edid *drm_edid;
1705
1706 /* Current block index. */
1707 int index;
1708};
1709
1710static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1711 struct drm_edid_iter *iter)
1712{
1713 memset(iter, 0, sizeof(*iter));
1714
1715 iter->drm_edid = drm_edid;
1716}
1717
1718static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1719{
1720 const void *block = NULL;
1721
1722 if (!iter->drm_edid)
1723 return NULL;
1724
1725 if (iter->index < drm_edid_block_count(iter->drm_edid))
1726 block = drm_edid_block_data(iter->drm_edid, iter->index++);
1727
1728 return block;
1729}
1730
1731#define drm_edid_iter_for_each(__block, __iter) \
1732 while (((__block) = __drm_edid_iter_next(__iter)))
1733
1734static void drm_edid_iter_end(struct drm_edid_iter *iter)
1735{
1736 memset(iter, 0, sizeof(*iter));
1737}
1738
1739static const u8 edid_header[] = {
1740 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1741};
1742
1743static void edid_header_fix(void *edid)
1744{
1745 memcpy(edid, edid_header, sizeof(edid_header));
1746}
1747
1748/**
1749 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1750 * @_edid: pointer to raw base EDID block
1751 *
1752 * Sanity check the header of the base EDID block.
1753 *
1754 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1755 */
1756int drm_edid_header_is_valid(const void *_edid)
1757{
1758 const struct edid *edid = _edid;
1759 int i, score = 0;
1760
1761 for (i = 0; i < sizeof(edid_header); i++) {
1762 if (edid->header[i] == edid_header[i])
1763 score++;
1764 }
1765
1766 return score;
1767}
1768EXPORT_SYMBOL(drm_edid_header_is_valid);
1769
1770static int edid_fixup __read_mostly = 6;
1771module_param_named(edid_fixup, edid_fixup, int, 0400);
1772MODULE_PARM_DESC(edid_fixup,
1773 "Minimum number of valid EDID header bytes (0-8, default 6)");
1774
1775static int edid_block_compute_checksum(const void *_block)
1776{
1777 const u8 *block = _block;
1778 int i;
1779 u8 csum = 0, crc = 0;
1780
1781 for (i = 0; i < EDID_LENGTH - 1; i++)
1782 csum += block[i];
1783
1784 crc = 0x100 - csum;
1785
1786 return crc;
1787}
1788
1789static int edid_block_get_checksum(const void *_block)
1790{
1791 const struct edid *block = _block;
1792
1793 return block->checksum;
1794}
1795
1796static int edid_block_tag(const void *_block)
1797{
1798 const u8 *block = _block;
1799
1800 return block[0];
1801}
1802
1803static bool edid_block_is_zero(const void *edid)
1804{
1805 return !memchr_inv(edid, 0, EDID_LENGTH);
1806}
1807
1808/**
1809 * drm_edid_are_equal - compare two edid blobs.
1810 * @edid1: pointer to first blob
1811 * @edid2: pointer to second blob
1812 * This helper can be used during probing to determine if
1813 * edid had changed.
1814 */
1815bool drm_edid_are_equal(const struct edid *edid1, const struct edid *edid2)
1816{
1817 int edid1_len, edid2_len;
1818 bool edid1_present = edid1 != NULL;
1819 bool edid2_present = edid2 != NULL;
1820
1821 if (edid1_present != edid2_present)
1822 return false;
1823
1824 if (edid1) {
1825 edid1_len = edid_size(edid1);
1826 edid2_len = edid_size(edid2);
1827
1828 if (edid1_len != edid2_len)
1829 return false;
1830
1831 if (memcmp(edid1, edid2, edid1_len))
1832 return false;
1833 }
1834
1835 return true;
1836}
1837EXPORT_SYMBOL(drm_edid_are_equal);
1838
1839enum edid_block_status {
1840 EDID_BLOCK_OK = 0,
1841 EDID_BLOCK_READ_FAIL,
1842 EDID_BLOCK_NULL,
1843 EDID_BLOCK_ZERO,
1844 EDID_BLOCK_HEADER_CORRUPT,
1845 EDID_BLOCK_HEADER_REPAIR,
1846 EDID_BLOCK_HEADER_FIXED,
1847 EDID_BLOCK_CHECKSUM,
1848 EDID_BLOCK_VERSION,
1849};
1850
1851static enum edid_block_status edid_block_check(const void *_block,
1852 bool is_base_block)
1853{
1854 const struct edid *block = _block;
1855
1856 if (!block)
1857 return EDID_BLOCK_NULL;
1858
1859 if (is_base_block) {
1860 int score = drm_edid_header_is_valid(block);
1861
1862 if (score < clamp(edid_fixup, 0, 8)) {
1863 if (edid_block_is_zero(block))
1864 return EDID_BLOCK_ZERO;
1865 else
1866 return EDID_BLOCK_HEADER_CORRUPT;
1867 }
1868
1869 if (score < 8)
1870 return EDID_BLOCK_HEADER_REPAIR;
1871 }
1872
1873 if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1874 if (edid_block_is_zero(block))
1875 return EDID_BLOCK_ZERO;
1876 else
1877 return EDID_BLOCK_CHECKSUM;
1878 }
1879
1880 if (is_base_block) {
1881 if (block->version != 1)
1882 return EDID_BLOCK_VERSION;
1883 }
1884
1885 return EDID_BLOCK_OK;
1886}
1887
1888static bool edid_block_status_valid(enum edid_block_status status, int tag)
1889{
1890 return status == EDID_BLOCK_OK ||
1891 status == EDID_BLOCK_HEADER_FIXED ||
1892 (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1893}
1894
1895static bool edid_block_valid(const void *block, bool base)
1896{
1897 return edid_block_status_valid(edid_block_check(block, base),
1898 edid_block_tag(block));
1899}
1900
1901static void edid_block_status_print(enum edid_block_status status,
1902 const struct edid *block,
1903 int block_num)
1904{
1905 switch (status) {
1906 case EDID_BLOCK_OK:
1907 break;
1908 case EDID_BLOCK_READ_FAIL:
1909 pr_debug("EDID block %d read failed\n", block_num);
1910 break;
1911 case EDID_BLOCK_NULL:
1912 pr_debug("EDID block %d pointer is NULL\n", block_num);
1913 break;
1914 case EDID_BLOCK_ZERO:
1915 pr_notice("EDID block %d is all zeroes\n", block_num);
1916 break;
1917 case EDID_BLOCK_HEADER_CORRUPT:
1918 pr_notice("EDID has corrupt header\n");
1919 break;
1920 case EDID_BLOCK_HEADER_REPAIR:
1921 pr_debug("EDID corrupt header needs repair\n");
1922 break;
1923 case EDID_BLOCK_HEADER_FIXED:
1924 pr_debug("EDID corrupt header fixed\n");
1925 break;
1926 case EDID_BLOCK_CHECKSUM:
1927 if (edid_block_status_valid(status, edid_block_tag(block))) {
1928 pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1929 block_num, edid_block_tag(block),
1930 edid_block_compute_checksum(block));
1931 } else {
1932 pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1933 block_num, edid_block_tag(block),
1934 edid_block_compute_checksum(block));
1935 }
1936 break;
1937 case EDID_BLOCK_VERSION:
1938 pr_notice("EDID has major version %d, instead of 1\n",
1939 block->version);
1940 break;
1941 default:
1942 WARN(1, "EDID block %d unknown edid block status code %d\n",
1943 block_num, status);
1944 break;
1945 }
1946}
1947
1948static void edid_block_dump(const char *level, const void *block, int block_num)
1949{
1950 enum edid_block_status status;
1951 char prefix[20];
1952
1953 status = edid_block_check(block, block_num == 0);
1954 if (status == EDID_BLOCK_ZERO)
1955 sprintf(prefix, "\t[%02x] ZERO ", block_num);
1956 else if (!edid_block_status_valid(status, edid_block_tag(block)))
1957 sprintf(prefix, "\t[%02x] BAD ", block_num);
1958 else
1959 sprintf(prefix, "\t[%02x] GOOD ", block_num);
1960
1961 print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1962 block, EDID_LENGTH, false);
1963}
1964
1965/**
1966 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1967 * @_block: pointer to raw EDID block
1968 * @block_num: type of block to validate (0 for base, extension otherwise)
1969 * @print_bad_edid: if true, dump bad EDID blocks to the console
1970 * @edid_corrupt: if true, the header or checksum is invalid
1971 *
1972 * Validate a base or extension EDID block and optionally dump bad blocks to
1973 * the console.
1974 *
1975 * Return: True if the block is valid, false otherwise.
1976 */
1977bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid,
1978 bool *edid_corrupt)
1979{
1980 struct edid *block = (struct edid *)_block;
1981 enum edid_block_status status;
1982 bool is_base_block = block_num == 0;
1983 bool valid;
1984
1985 if (WARN_ON(!block))
1986 return false;
1987
1988 status = edid_block_check(block, is_base_block);
1989 if (status == EDID_BLOCK_HEADER_REPAIR) {
1990 DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1991 edid_header_fix(block);
1992
1993 /* Retry with fixed header, update status if that worked. */
1994 status = edid_block_check(block, is_base_block);
1995 if (status == EDID_BLOCK_OK)
1996 status = EDID_BLOCK_HEADER_FIXED;
1997 }
1998
1999 if (edid_corrupt) {
2000 /*
2001 * Unknown major version isn't corrupt but we can't use it. Only
2002 * the base block can reset edid_corrupt to false.
2003 */
2004 if (is_base_block &&
2005 (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2006 *edid_corrupt = false;
2007 else if (status != EDID_BLOCK_OK)
2008 *edid_corrupt = true;
2009 }
2010
2011 edid_block_status_print(status, block, block_num);
2012
2013 /* Determine whether we can use this block with this status. */
2014 valid = edid_block_status_valid(status, edid_block_tag(block));
2015
2016 if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2017 pr_notice("Raw EDID:\n");
2018 edid_block_dump(KERN_NOTICE, block, block_num);
2019 }
2020
2021 return valid;
2022}
2023EXPORT_SYMBOL(drm_edid_block_valid);
2024
2025/**
2026 * drm_edid_is_valid - sanity check EDID data
2027 * @edid: EDID data
2028 *
2029 * Sanity-check an entire EDID record (including extensions)
2030 *
2031 * Return: True if the EDID data is valid, false otherwise.
2032 */
2033bool drm_edid_is_valid(struct edid *edid)
2034{
2035 int i;
2036
2037 if (!edid)
2038 return false;
2039
2040 for (i = 0; i < edid_block_count(edid); i++) {
2041 void *block = (void *)edid_block_data(edid, i);
2042
2043 if (!drm_edid_block_valid(block, i, true, NULL))
2044 return false;
2045 }
2046
2047 return true;
2048}
2049EXPORT_SYMBOL(drm_edid_is_valid);
2050
2051/**
2052 * drm_edid_valid - sanity check EDID data
2053 * @drm_edid: EDID data
2054 *
2055 * Sanity check an EDID. Cross check block count against allocated size and
2056 * checksum the blocks.
2057 *
2058 * Return: True if the EDID data is valid, false otherwise.
2059 */
2060bool drm_edid_valid(const struct drm_edid *drm_edid)
2061{
2062 int i;
2063
2064 if (!drm_edid)
2065 return false;
2066
2067 if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2068 return false;
2069
2070 for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2071 const void *block = drm_edid_block_data(drm_edid, i);
2072
2073 if (!edid_block_valid(block, i == 0))
2074 return false;
2075 }
2076
2077 return true;
2078}
2079EXPORT_SYMBOL(drm_edid_valid);
2080
2081static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2082 size_t *alloc_size)
2083{
2084 struct edid *new;
2085 int i, valid_blocks = 0;
2086
2087 /*
2088 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2089 * back to regular extension count here. We don't want to start
2090 * modifying the HF-EEODB extension too.
2091 */
2092 for (i = 0; i < edid_block_count(edid); i++) {
2093 const void *src_block = edid_block_data(edid, i);
2094
2095 if (edid_block_valid(src_block, i == 0)) {
2096 void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2097
2098 memmove(dst_block, src_block, EDID_LENGTH);
2099 valid_blocks++;
2100 }
2101 }
2102
2103 /* We already trusted the base block to be valid here... */
2104 if (WARN_ON(!valid_blocks)) {
2105 kfree(edid);
2106 return NULL;
2107 }
2108
2109 edid->extensions = valid_blocks - 1;
2110 edid->checksum = edid_block_compute_checksum(edid);
2111
2112 *alloc_size = edid_size_by_blocks(valid_blocks);
2113
2114 new = krealloc(edid, *alloc_size, GFP_KERNEL);
2115 if (!new)
2116 kfree(edid);
2117
2118 return new;
2119}
2120
2121#define DDC_SEGMENT_ADDR 0x30
2122/**
2123 * drm_do_probe_ddc_edid() - get EDID information via I2C
2124 * @data: I2C device adapter
2125 * @buf: EDID data buffer to be filled
2126 * @block: 128 byte EDID block to start fetching from
2127 * @len: EDID data buffer length to fetch
2128 *
2129 * Try to fetch EDID information by calling I2C driver functions.
2130 *
2131 * Return: 0 on success or -1 on failure.
2132 */
2133static int
2134drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2135{
2136 struct i2c_adapter *adapter = data;
2137 unsigned char start = block * EDID_LENGTH;
2138 unsigned char segment = block >> 1;
2139 unsigned char xfers = segment ? 3 : 2;
2140 int ret, retries = 5;
2141
2142 /*
2143 * The core I2C driver will automatically retry the transfer if the
2144 * adapter reports EAGAIN. However, we find that bit-banging transfers
2145 * are susceptible to errors under a heavily loaded machine and
2146 * generate spurious NAKs and timeouts. Retrying the transfer
2147 * of the individual block a few times seems to overcome this.
2148 */
2149 do {
2150 struct i2c_msg msgs[] = {
2151 {
2152 .addr = DDC_SEGMENT_ADDR,
2153 .flags = 0,
2154 .len = 1,
2155 .buf = &segment,
2156 }, {
2157 .addr = DDC_ADDR,
2158 .flags = 0,
2159 .len = 1,
2160 .buf = &start,
2161 }, {
2162 .addr = DDC_ADDR,
2163 .flags = I2C_M_RD,
2164 .len = len,
2165 .buf = buf,
2166 }
2167 };
2168
2169 /*
2170 * Avoid sending the segment addr to not upset non-compliant
2171 * DDC monitors.
2172 */
2173 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2174
2175 if (ret == -ENXIO) {
2176 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2177 adapter->name);
2178 break;
2179 }
2180 } while (ret != xfers && --retries);
2181
2182 return ret == xfers ? 0 : -1;
2183}
2184
2185static void connector_bad_edid(struct drm_connector *connector,
2186 const struct edid *edid, int num_blocks)
2187{
2188 int i;
2189 u8 last_block;
2190
2191 /*
2192 * 0x7e in the EDID is the number of extension blocks. The EDID
2193 * is 1 (base block) + num_ext_blocks big. That means we can think
2194 * of 0x7e in the EDID of the _index_ of the last block in the
2195 * combined chunk of memory.
2196 */
2197 last_block = edid->extensions;
2198
2199 /* Calculate real checksum for the last edid extension block data */
2200 if (last_block < num_blocks)
2201 connector->real_edid_checksum =
2202 edid_block_compute_checksum(edid + last_block);
2203
2204 if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2205 return;
2206
2207 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2208 connector->base.id, connector->name);
2209 for (i = 0; i < num_blocks; i++)
2210 edid_block_dump(KERN_DEBUG, edid + i, i);
2211}
2212
2213/* Get override or firmware EDID */
2214static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2215{
2216 const struct drm_edid *override = NULL;
2217
2218 mutex_lock(&connector->edid_override_mutex);
2219
2220 if (connector->edid_override)
2221 override = drm_edid_dup(connector->edid_override);
2222
2223 mutex_unlock(&connector->edid_override_mutex);
2224
2225 if (!override)
2226 override = drm_edid_load_firmware(connector);
2227
2228 return IS_ERR(override) ? NULL : override;
2229}
2230
2231/* For debugfs edid_override implementation */
2232int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2233{
2234 const struct drm_edid *drm_edid;
2235
2236 mutex_lock(&connector->edid_override_mutex);
2237
2238 drm_edid = connector->edid_override;
2239 if (drm_edid)
2240 seq_write(m, drm_edid->edid, drm_edid->size);
2241
2242 mutex_unlock(&connector->edid_override_mutex);
2243
2244 return 0;
2245}
2246
2247/* For debugfs edid_override implementation */
2248int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2249 size_t size)
2250{
2251 const struct drm_edid *drm_edid;
2252
2253 drm_edid = drm_edid_alloc(edid, size);
2254 if (!drm_edid_valid(drm_edid)) {
2255 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2256 connector->base.id, connector->name);
2257 drm_edid_free(drm_edid);
2258 return -EINVAL;
2259 }
2260
2261 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2262 connector->base.id, connector->name);
2263
2264 mutex_lock(&connector->edid_override_mutex);
2265
2266 drm_edid_free(connector->edid_override);
2267 connector->edid_override = drm_edid;
2268
2269 mutex_unlock(&connector->edid_override_mutex);
2270
2271 return 0;
2272}
2273
2274/* For debugfs edid_override implementation */
2275int drm_edid_override_reset(struct drm_connector *connector)
2276{
2277 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2278 connector->base.id, connector->name);
2279
2280 mutex_lock(&connector->edid_override_mutex);
2281
2282 drm_edid_free(connector->edid_override);
2283 connector->edid_override = NULL;
2284
2285 mutex_unlock(&connector->edid_override_mutex);
2286
2287 return 0;
2288}
2289
2290/**
2291 * drm_edid_override_connector_update - add modes from override/firmware EDID
2292 * @connector: connector we're probing
2293 *
2294 * Add modes from the override/firmware EDID, if available. Only to be used from
2295 * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2296 * failed during drm_get_edid() and caused the override/firmware EDID to be
2297 * skipped.
2298 *
2299 * Return: The number of modes added or 0 if we couldn't find any.
2300 */
2301int drm_edid_override_connector_update(struct drm_connector *connector)
2302{
2303 const struct drm_edid *override;
2304 int num_modes = 0;
2305
2306 override = drm_edid_override_get(connector);
2307 if (override) {
2308 num_modes = drm_edid_connector_update(connector, override);
2309
2310 drm_edid_free(override);
2311
2312 drm_dbg_kms(connector->dev,
2313 "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2314 connector->base.id, connector->name, num_modes);
2315 }
2316
2317 return num_modes;
2318}
2319EXPORT_SYMBOL(drm_edid_override_connector_update);
2320
2321typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2322
2323static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2324 read_block_fn read_block,
2325 void *context)
2326{
2327 enum edid_block_status status;
2328 bool is_base_block = block_num == 0;
2329 int try;
2330
2331 for (try = 0; try < 4; try++) {
2332 if (read_block(context, block, block_num, EDID_LENGTH))
2333 return EDID_BLOCK_READ_FAIL;
2334
2335 status = edid_block_check(block, is_base_block);
2336 if (status == EDID_BLOCK_HEADER_REPAIR) {
2337 edid_header_fix(block);
2338
2339 /* Retry with fixed header, update status if that worked. */
2340 status = edid_block_check(block, is_base_block);
2341 if (status == EDID_BLOCK_OK)
2342 status = EDID_BLOCK_HEADER_FIXED;
2343 }
2344
2345 if (edid_block_status_valid(status, edid_block_tag(block)))
2346 break;
2347
2348 /* Fail early for unrepairable base block all zeros. */
2349 if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2350 break;
2351 }
2352
2353 return status;
2354}
2355
2356static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2357 read_block_fn read_block, void *context,
2358 size_t *size)
2359{
2360 enum edid_block_status status;
2361 int i, num_blocks, invalid_blocks = 0;
2362 const struct drm_edid *override;
2363 struct edid *edid, *new;
2364 size_t alloc_size = EDID_LENGTH;
2365
2366 override = drm_edid_override_get(connector);
2367 if (override) {
2368 alloc_size = override->size;
2369 edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2370 drm_edid_free(override);
2371 if (!edid)
2372 return NULL;
2373 goto ok;
2374 }
2375
2376 edid = kmalloc(alloc_size, GFP_KERNEL);
2377 if (!edid)
2378 return NULL;
2379
2380 status = edid_block_read(edid, 0, read_block, context);
2381
2382 edid_block_status_print(status, edid, 0);
2383
2384 if (status == EDID_BLOCK_READ_FAIL)
2385 goto fail;
2386
2387 /* FIXME: Clarify what a corrupt EDID actually means. */
2388 if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2389 connector->edid_corrupt = false;
2390 else
2391 connector->edid_corrupt = true;
2392
2393 if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2394 if (status == EDID_BLOCK_ZERO)
2395 connector->null_edid_counter++;
2396
2397 connector_bad_edid(connector, edid, 1);
2398 goto fail;
2399 }
2400
2401 if (!edid_extension_block_count(edid))
2402 goto ok;
2403
2404 alloc_size = edid_size(edid);
2405 new = krealloc(edid, alloc_size, GFP_KERNEL);
2406 if (!new)
2407 goto fail;
2408 edid = new;
2409
2410 num_blocks = edid_block_count(edid);
2411 for (i = 1; i < num_blocks; i++) {
2412 void *block = (void *)edid_block_data(edid, i);
2413
2414 status = edid_block_read(block, i, read_block, context);
2415
2416 edid_block_status_print(status, block, i);
2417
2418 if (!edid_block_status_valid(status, edid_block_tag(block))) {
2419 if (status == EDID_BLOCK_READ_FAIL)
2420 goto fail;
2421 invalid_blocks++;
2422 } else if (i == 1) {
2423 /*
2424 * If the first EDID extension is a CTA extension, and
2425 * the first Data Block is HF-EEODB, override the
2426 * extension block count.
2427 *
2428 * Note: HF-EEODB could specify a smaller extension
2429 * count too, but we can't risk allocating a smaller
2430 * amount.
2431 */
2432 int eeodb = edid_hfeeodb_block_count(edid);
2433
2434 if (eeodb > num_blocks) {
2435 num_blocks = eeodb;
2436 alloc_size = edid_size_by_blocks(num_blocks);
2437 new = krealloc(edid, alloc_size, GFP_KERNEL);
2438 if (!new)
2439 goto fail;
2440 edid = new;
2441 }
2442 }
2443 }
2444
2445 if (invalid_blocks) {
2446 connector_bad_edid(connector, edid, num_blocks);
2447
2448 edid = edid_filter_invalid_blocks(edid, &alloc_size);
2449 }
2450
2451ok:
2452 if (size)
2453 *size = alloc_size;
2454
2455 return edid;
2456
2457fail:
2458 kfree(edid);
2459 return NULL;
2460}
2461
2462/**
2463 * drm_do_get_edid - get EDID data using a custom EDID block read function
2464 * @connector: connector we're probing
2465 * @read_block: EDID block read function
2466 * @context: private data passed to the block read function
2467 *
2468 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2469 * exposes a different interface to read EDID blocks this function can be used
2470 * to get EDID data using a custom block read function.
2471 *
2472 * As in the general case the DDC bus is accessible by the kernel at the I2C
2473 * level, drivers must make all reasonable efforts to expose it as an I2C
2474 * adapter and use drm_get_edid() instead of abusing this function.
2475 *
2476 * The EDID may be overridden using debugfs override_edid or firmware EDID
2477 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2478 * order. Having either of them bypasses actual EDID reads.
2479 *
2480 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2481 */
2482struct edid *drm_do_get_edid(struct drm_connector *connector,
2483 read_block_fn read_block,
2484 void *context)
2485{
2486 return _drm_do_get_edid(connector, read_block, context, NULL);
2487}
2488EXPORT_SYMBOL_GPL(drm_do_get_edid);
2489
2490/**
2491 * drm_edid_raw - Get a pointer to the raw EDID data.
2492 * @drm_edid: drm_edid container
2493 *
2494 * Get a pointer to the raw EDID data.
2495 *
2496 * This is for transition only. Avoid using this like the plague.
2497 *
2498 * Return: Pointer to raw EDID data.
2499 */
2500const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2501{
2502 if (!drm_edid || !drm_edid->size)
2503 return NULL;
2504
2505 /*
2506 * Do not return pointers where relying on EDID extension count would
2507 * lead to buffer overflow.
2508 */
2509 if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2510 return NULL;
2511
2512 return drm_edid->edid;
2513}
2514EXPORT_SYMBOL(drm_edid_raw);
2515
2516/* Allocate struct drm_edid container *without* duplicating the edid data */
2517static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2518{
2519 struct drm_edid *drm_edid;
2520
2521 if (!edid || !size || size < EDID_LENGTH)
2522 return NULL;
2523
2524 drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2525 if (drm_edid) {
2526 drm_edid->edid = edid;
2527 drm_edid->size = size;
2528 }
2529
2530 return drm_edid;
2531}
2532
2533/**
2534 * drm_edid_alloc - Allocate a new drm_edid container
2535 * @edid: Pointer to raw EDID data
2536 * @size: Size of memory allocated for EDID
2537 *
2538 * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2539 * the actual size that has been allocated for the data. There is no validation
2540 * of the raw EDID data against the size, but at least the EDID base block must
2541 * fit in the buffer.
2542 *
2543 * The returned pointer must be freed using drm_edid_free().
2544 *
2545 * Return: drm_edid container, or NULL on errors
2546 */
2547const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2548{
2549 const struct drm_edid *drm_edid;
2550
2551 if (!edid || !size || size < EDID_LENGTH)
2552 return NULL;
2553
2554 edid = kmemdup(edid, size, GFP_KERNEL);
2555 if (!edid)
2556 return NULL;
2557
2558 drm_edid = _drm_edid_alloc(edid, size);
2559 if (!drm_edid)
2560 kfree(edid);
2561
2562 return drm_edid;
2563}
2564EXPORT_SYMBOL(drm_edid_alloc);
2565
2566/**
2567 * drm_edid_dup - Duplicate a drm_edid container
2568 * @drm_edid: EDID to duplicate
2569 *
2570 * The returned pointer must be freed using drm_edid_free().
2571 *
2572 * Returns: drm_edid container copy, or NULL on errors
2573 */
2574const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2575{
2576 if (!drm_edid)
2577 return NULL;
2578
2579 return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2580}
2581EXPORT_SYMBOL(drm_edid_dup);
2582
2583/**
2584 * drm_edid_free - Free the drm_edid container
2585 * @drm_edid: EDID to free
2586 */
2587void drm_edid_free(const struct drm_edid *drm_edid)
2588{
2589 if (!drm_edid)
2590 return;
2591
2592 kfree(drm_edid->edid);
2593 kfree(drm_edid);
2594}
2595EXPORT_SYMBOL(drm_edid_free);
2596
2597/**
2598 * drm_probe_ddc() - probe DDC presence
2599 * @adapter: I2C adapter to probe
2600 *
2601 * Return: True on success, false on failure.
2602 */
2603bool
2604drm_probe_ddc(struct i2c_adapter *adapter)
2605{
2606 unsigned char out;
2607
2608 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2609}
2610EXPORT_SYMBOL(drm_probe_ddc);
2611
2612/**
2613 * drm_get_edid - get EDID data, if available
2614 * @connector: connector we're probing
2615 * @adapter: I2C adapter to use for DDC
2616 *
2617 * Poke the given I2C channel to grab EDID data if possible. If found,
2618 * attach it to the connector.
2619 *
2620 * Return: Pointer to valid EDID or NULL if we couldn't find any.
2621 */
2622struct edid *drm_get_edid(struct drm_connector *connector,
2623 struct i2c_adapter *adapter)
2624{
2625 struct edid *edid;
2626
2627 if (connector->force == DRM_FORCE_OFF)
2628 return NULL;
2629
2630 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2631 return NULL;
2632
2633 edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2634 drm_connector_update_edid_property(connector, edid);
2635 return edid;
2636}
2637EXPORT_SYMBOL(drm_get_edid);
2638
2639/**
2640 * drm_edid_read_custom - Read EDID data using given EDID block read function
2641 * @connector: Connector to use
2642 * @read_block: EDID block read function
2643 * @context: Private data passed to the block read function
2644 *
2645 * When the I2C adapter connected to the DDC bus is hidden behind a device that
2646 * exposes a different interface to read EDID blocks this function can be used
2647 * to get EDID data using a custom block read function.
2648 *
2649 * As in the general case the DDC bus is accessible by the kernel at the I2C
2650 * level, drivers must make all reasonable efforts to expose it as an I2C
2651 * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2652 * this function.
2653 *
2654 * The EDID may be overridden using debugfs override_edid or firmware EDID
2655 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2656 * order. Having either of them bypasses actual EDID reads.
2657 *
2658 * The returned pointer must be freed using drm_edid_free().
2659 *
2660 * Return: Pointer to EDID, or NULL if probe/read failed.
2661 */
2662const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2663 read_block_fn read_block,
2664 void *context)
2665{
2666 const struct drm_edid *drm_edid;
2667 struct edid *edid;
2668 size_t size = 0;
2669
2670 edid = _drm_do_get_edid(connector, read_block, context, &size);
2671 if (!edid)
2672 return NULL;
2673
2674 /* Sanity check for now */
2675 drm_WARN_ON(connector->dev, !size);
2676
2677 drm_edid = _drm_edid_alloc(edid, size);
2678 if (!drm_edid)
2679 kfree(edid);
2680
2681 return drm_edid;
2682}
2683EXPORT_SYMBOL(drm_edid_read_custom);
2684
2685/**
2686 * drm_edid_read_ddc - Read EDID data using given I2C adapter
2687 * @connector: Connector to use
2688 * @adapter: I2C adapter to use for DDC
2689 *
2690 * Read EDID using the given I2C adapter.
2691 *
2692 * The EDID may be overridden using debugfs override_edid or firmware EDID
2693 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2694 * order. Having either of them bypasses actual EDID reads.
2695 *
2696 * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2697 * using drm_edid_read() instead of this function.
2698 *
2699 * The returned pointer must be freed using drm_edid_free().
2700 *
2701 * Return: Pointer to EDID, or NULL if probe/read failed.
2702 */
2703const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2704 struct i2c_adapter *adapter)
2705{
2706 const struct drm_edid *drm_edid;
2707
2708 if (connector->force == DRM_FORCE_OFF)
2709 return NULL;
2710
2711 if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2712 return NULL;
2713
2714 drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2715
2716 /* Note: Do *not* call connector updates here. */
2717
2718 return drm_edid;
2719}
2720EXPORT_SYMBOL(drm_edid_read_ddc);
2721
2722/**
2723 * drm_edid_read - Read EDID data using connector's I2C adapter
2724 * @connector: Connector to use
2725 *
2726 * Read EDID using the connector's I2C adapter.
2727 *
2728 * The EDID may be overridden using debugfs override_edid or firmware EDID
2729 * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2730 * order. Having either of them bypasses actual EDID reads.
2731 *
2732 * The returned pointer must be freed using drm_edid_free().
2733 *
2734 * Return: Pointer to EDID, or NULL if probe/read failed.
2735 */
2736const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2737{
2738 if (drm_WARN_ON(connector->dev, !connector->ddc))
2739 return NULL;
2740
2741 return drm_edid_read_ddc(connector, connector->ddc);
2742}
2743EXPORT_SYMBOL(drm_edid_read);
2744
2745static u32 edid_extract_panel_id(const struct edid *edid)
2746{
2747 /*
2748 * We represent the ID as a 32-bit number so it can easily be compared
2749 * with "==".
2750 *
2751 * NOTE that we deal with endianness differently for the top half
2752 * of this ID than for the bottom half. The bottom half (the product
2753 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2754 * that's how everyone seems to interpret it. The top half (the mfg_id)
2755 * gets stored as big endian because that makes
2756 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2757 * to write (it's easier to extract the ASCII). It doesn't really
2758 * matter, though, as long as the number here is unique.
2759 */
2760 return (u32)edid->mfg_id[0] << 24 |
2761 (u32)edid->mfg_id[1] << 16 |
2762 (u32)EDID_PRODUCT_ID(edid);
2763}
2764
2765/**
2766 * drm_edid_get_panel_id - Get a panel's ID through DDC
2767 * @adapter: I2C adapter to use for DDC
2768 *
2769 * This function reads the first block of the EDID of a panel and (assuming
2770 * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2771 * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2772 * supposed to be different for each different modem of panel.
2773 *
2774 * This function is intended to be used during early probing on devices where
2775 * more than one panel might be present. Because of its intended use it must
2776 * assume that the EDID of the panel is correct, at least as far as the ID
2777 * is concerned (in other words, we don't process any overrides here).
2778 *
2779 * NOTE: it's expected that this function and drm_do_get_edid() will both
2780 * be read the EDID, but there is no caching between them. Since we're only
2781 * reading the first block, hopefully this extra overhead won't be too big.
2782 *
2783 * Return: A 32-bit ID that should be different for each make/model of panel.
2784 * See the functions drm_edid_encode_panel_id() and
2785 * drm_edid_decode_panel_id() for some details on the structure of this
2786 * ID.
2787 */
2788
2789u32 drm_edid_get_panel_id(struct i2c_adapter *adapter)
2790{
2791 enum edid_block_status status;
2792 void *base_block;
2793 u32 panel_id = 0;
2794
2795 /*
2796 * There are no manufacturer IDs of 0, so if there is a problem reading
2797 * the EDID then we'll just return 0.
2798 */
2799
2800 base_block = kmalloc(EDID_LENGTH, GFP_KERNEL);
2801 if (!base_block)
2802 return 0;
2803
2804 status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2805
2806 edid_block_status_print(status, base_block, 0);
2807
2808 if (edid_block_status_valid(status, edid_block_tag(base_block)))
2809 panel_id = edid_extract_panel_id(base_block);
2810 else
2811 edid_block_dump(KERN_NOTICE, base_block, 0);
2812
2813 kfree(base_block);
2814
2815 return panel_id;
2816}
2817EXPORT_SYMBOL(drm_edid_get_panel_id);
2818
2819/**
2820 * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2821 * @connector: connector we're probing
2822 * @adapter: I2C adapter to use for DDC
2823 *
2824 * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2825 * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2826 * switch DDC to the GPU which is retrieving EDID.
2827 *
2828 * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2829 */
2830struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2831 struct i2c_adapter *adapter)
2832{
2833 struct drm_device *dev = connector->dev;
2834 struct pci_dev *pdev = to_pci_dev(dev->dev);
2835 struct edid *edid;
2836
2837 if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2838 return NULL;
2839
2840 vga_switcheroo_lock_ddc(pdev);
2841 edid = drm_get_edid(connector, adapter);
2842 vga_switcheroo_unlock_ddc(pdev);
2843
2844 return edid;
2845}
2846EXPORT_SYMBOL(drm_get_edid_switcheroo);
2847
2848/**
2849 * drm_edid_duplicate - duplicate an EDID and the extensions
2850 * @edid: EDID to duplicate
2851 *
2852 * Return: Pointer to duplicated EDID or NULL on allocation failure.
2853 */
2854struct edid *drm_edid_duplicate(const struct edid *edid)
2855{
2856 return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2857}
2858EXPORT_SYMBOL(drm_edid_duplicate);
2859
2860/*** EDID parsing ***/
2861
2862/**
2863 * edid_get_quirks - return quirk flags for a given EDID
2864 * @drm_edid: EDID to process
2865 *
2866 * This tells subsequent routines what fixes they need to apply.
2867 */
2868static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2869{
2870 u32 panel_id = edid_extract_panel_id(drm_edid->edid);
2871 const struct edid_quirk *quirk;
2872 int i;
2873
2874 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2875 quirk = &edid_quirk_list[i];
2876 if (quirk->panel_id == panel_id)
2877 return quirk->quirks;
2878 }
2879
2880 return 0;
2881}
2882
2883#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2884#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2885
2886/*
2887 * Walk the mode list for connector, clearing the preferred status on existing
2888 * modes and setting it anew for the right mode ala quirks.
2889 */
2890static void edid_fixup_preferred(struct drm_connector *connector,
2891 u32 quirks)
2892{
2893 struct drm_display_mode *t, *cur_mode, *preferred_mode;
2894 int target_refresh = 0;
2895 int cur_vrefresh, preferred_vrefresh;
2896
2897 if (list_empty(&connector->probed_modes))
2898 return;
2899
2900 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
2901 target_refresh = 60;
2902 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
2903 target_refresh = 75;
2904
2905 preferred_mode = list_first_entry(&connector->probed_modes,
2906 struct drm_display_mode, head);
2907
2908 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
2909 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
2910
2911 if (cur_mode == preferred_mode)
2912 continue;
2913
2914 /* Largest mode is preferred */
2915 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
2916 preferred_mode = cur_mode;
2917
2918 cur_vrefresh = drm_mode_vrefresh(cur_mode);
2919 preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
2920 /* At a given size, try to get closest to target refresh */
2921 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
2922 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
2923 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
2924 preferred_mode = cur_mode;
2925 }
2926 }
2927
2928 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
2929}
2930
2931static bool
2932mode_is_rb(const struct drm_display_mode *mode)
2933{
2934 return (mode->htotal - mode->hdisplay == 160) &&
2935 (mode->hsync_end - mode->hdisplay == 80) &&
2936 (mode->hsync_end - mode->hsync_start == 32) &&
2937 (mode->vsync_start - mode->vdisplay == 3);
2938}
2939
2940/*
2941 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
2942 * @dev: Device to duplicate against
2943 * @hsize: Mode width
2944 * @vsize: Mode height
2945 * @fresh: Mode refresh rate
2946 * @rb: Mode reduced-blanking-ness
2947 *
2948 * Walk the DMT mode list looking for a match for the given parameters.
2949 *
2950 * Return: A newly allocated copy of the mode, or NULL if not found.
2951 */
2952struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
2953 int hsize, int vsize, int fresh,
2954 bool rb)
2955{
2956 int i;
2957
2958 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2959 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
2960
2961 if (hsize != ptr->hdisplay)
2962 continue;
2963 if (vsize != ptr->vdisplay)
2964 continue;
2965 if (fresh != drm_mode_vrefresh(ptr))
2966 continue;
2967 if (rb != mode_is_rb(ptr))
2968 continue;
2969
2970 return drm_mode_duplicate(dev, ptr);
2971 }
2972
2973 return NULL;
2974}
2975EXPORT_SYMBOL(drm_mode_find_dmt);
2976
2977static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
2978{
2979 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
2980 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
2981 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
2982
2983 return descriptor->pixel_clock == 0 &&
2984 descriptor->data.other_data.pad1 == 0 &&
2985 descriptor->data.other_data.type == type;
2986}
2987
2988static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
2989{
2990 BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
2991
2992 return descriptor->pixel_clock != 0;
2993}
2994
2995typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
2996
2997static void
2998cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
2999{
3000 int i, n;
3001 u8 d = ext[0x02];
3002 const u8 *det_base = ext + d;
3003
3004 if (d < 4 || d > 127)
3005 return;
3006
3007 n = (127 - d) / 18;
3008 for (i = 0; i < n; i++)
3009 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3010}
3011
3012static void
3013vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3014{
3015 unsigned int i, n = min((int)ext[0x02], 6);
3016 const u8 *det_base = ext + 5;
3017
3018 if (ext[0x01] != 1)
3019 return; /* unknown version */
3020
3021 for (i = 0; i < n; i++)
3022 cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3023}
3024
3025static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3026 detailed_cb *cb, void *closure)
3027{
3028 struct drm_edid_iter edid_iter;
3029 const u8 *ext;
3030 int i;
3031
3032 if (!drm_edid)
3033 return;
3034
3035 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3036 cb(&drm_edid->edid->detailed_timings[i], closure);
3037
3038 drm_edid_iter_begin(drm_edid, &edid_iter);
3039 drm_edid_iter_for_each(ext, &edid_iter) {
3040 switch (*ext) {
3041 case CEA_EXT:
3042 cea_for_each_detailed_block(ext, cb, closure);
3043 break;
3044 case VTB_EXT:
3045 vtb_for_each_detailed_block(ext, cb, closure);
3046 break;
3047 default:
3048 break;
3049 }
3050 }
3051 drm_edid_iter_end(&edid_iter);
3052}
3053
3054static void
3055is_rb(const struct detailed_timing *descriptor, void *data)
3056{
3057 bool *res = data;
3058
3059 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3060 return;
3061
3062 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3063 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3064
3065 if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3066 descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3067 *res = true;
3068}
3069
3070/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
3071static bool
3072drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3073{
3074 if (drm_edid->edid->revision >= 4) {
3075 bool ret = false;
3076
3077 drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3078 return ret;
3079 }
3080
3081 return ((drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
3082}
3083
3084static void
3085find_gtf2(const struct detailed_timing *descriptor, void *data)
3086{
3087 const struct detailed_timing **res = data;
3088
3089 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3090 return;
3091
3092 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3093
3094 if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3095 *res = descriptor;
3096}
3097
3098/* Secondary GTF curve kicks in above some break frequency */
3099static int
3100drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3101{
3102 const struct detailed_timing *descriptor = NULL;
3103
3104 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3105
3106 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3107
3108 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3109}
3110
3111static int
3112drm_gtf2_2c(const struct drm_edid *drm_edid)
3113{
3114 const struct detailed_timing *descriptor = NULL;
3115
3116 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3117
3118 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3119
3120 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3121}
3122
3123static int
3124drm_gtf2_m(const struct drm_edid *drm_edid)
3125{
3126 const struct detailed_timing *descriptor = NULL;
3127
3128 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3129
3130 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3131
3132 return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3133}
3134
3135static int
3136drm_gtf2_k(const struct drm_edid *drm_edid)
3137{
3138 const struct detailed_timing *descriptor = NULL;
3139
3140 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3141
3142 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3143
3144 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3145}
3146
3147static int
3148drm_gtf2_2j(const struct drm_edid *drm_edid)
3149{
3150 const struct detailed_timing *descriptor = NULL;
3151
3152 drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3153
3154 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3155
3156 return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3157}
3158
3159static void
3160get_timing_level(const struct detailed_timing *descriptor, void *data)
3161{
3162 int *res = data;
3163
3164 if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3165 return;
3166
3167 BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3168
3169 switch (descriptor->data.other_data.data.range.flags) {
3170 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3171 *res = LEVEL_GTF;
3172 break;
3173 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3174 *res = LEVEL_GTF2;
3175 break;
3176 case DRM_EDID_CVT_SUPPORT_FLAG:
3177 *res = LEVEL_CVT;
3178 break;
3179 default:
3180 break;
3181 }
3182}
3183
3184/* Get standard timing level (CVT/GTF/DMT). */
3185static int standard_timing_level(const struct drm_edid *drm_edid)
3186{
3187 const struct edid *edid = drm_edid->edid;
3188
3189 if (edid->revision >= 4) {
3190 /*
3191 * If the range descriptor doesn't
3192 * indicate otherwise default to CVT
3193 */
3194 int ret = LEVEL_CVT;
3195
3196 drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3197
3198 return ret;
3199 } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3200 return LEVEL_GTF2;
3201 } else if (edid->revision >= 2) {
3202 return LEVEL_GTF;
3203 } else {
3204 return LEVEL_DMT;
3205 }
3206}
3207
3208/*
3209 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
3210 * monitors fill with ascii space (0x20) instead.
3211 */
3212static int
3213bad_std_timing(u8 a, u8 b)
3214{
3215 return (a == 0x00 && b == 0x00) ||
3216 (a == 0x01 && b == 0x01) ||
3217 (a == 0x20 && b == 0x20);
3218}
3219
3220static int drm_mode_hsync(const struct drm_display_mode *mode)
3221{
3222 if (mode->htotal <= 0)
3223 return 0;
3224
3225 return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3226}
3227
3228static struct drm_display_mode *
3229drm_gtf2_mode(struct drm_device *dev,
3230 const struct drm_edid *drm_edid,
3231 int hsize, int vsize, int vrefresh_rate)
3232{
3233 struct drm_display_mode *mode;
3234
3235 /*
3236 * This is potentially wrong if there's ever a monitor with
3237 * more than one ranges section, each claiming a different
3238 * secondary GTF curve. Please don't do that.
3239 */
3240 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3241 if (!mode)
3242 return NULL;
3243
3244 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3245 drm_mode_destroy(dev, mode);
3246 mode = drm_gtf_mode_complex(dev, hsize, vsize,
3247 vrefresh_rate, 0, 0,
3248 drm_gtf2_m(drm_edid),
3249 drm_gtf2_2c(drm_edid),
3250 drm_gtf2_k(drm_edid),
3251 drm_gtf2_2j(drm_edid));
3252 }
3253
3254 return mode;
3255}
3256
3257/*
3258 * Take the standard timing params (in this case width, aspect, and refresh)
3259 * and convert them into a real mode using CVT/GTF/DMT.
3260 */
3261static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3262 const struct drm_edid *drm_edid,
3263 const struct std_timing *t)
3264{
3265 struct drm_device *dev = connector->dev;
3266 struct drm_display_mode *m, *mode = NULL;
3267 int hsize, vsize;
3268 int vrefresh_rate;
3269 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3270 >> EDID_TIMING_ASPECT_SHIFT;
3271 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3272 >> EDID_TIMING_VFREQ_SHIFT;
3273 int timing_level = standard_timing_level(drm_edid);
3274
3275 if (bad_std_timing(t->hsize, t->vfreq_aspect))
3276 return NULL;
3277
3278 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3279 hsize = t->hsize * 8 + 248;
3280 /* vrefresh_rate = vfreq + 60 */
3281 vrefresh_rate = vfreq + 60;
3282 /* the vdisplay is calculated based on the aspect ratio */
3283 if (aspect_ratio == 0) {
3284 if (drm_edid->edid->revision < 3)
3285 vsize = hsize;
3286 else
3287 vsize = (hsize * 10) / 16;
3288 } else if (aspect_ratio == 1)
3289 vsize = (hsize * 3) / 4;
3290 else if (aspect_ratio == 2)
3291 vsize = (hsize * 4) / 5;
3292 else
3293 vsize = (hsize * 9) / 16;
3294
3295 /* HDTV hack, part 1 */
3296 if (vrefresh_rate == 60 &&
3297 ((hsize == 1360 && vsize == 765) ||
3298 (hsize == 1368 && vsize == 769))) {
3299 hsize = 1366;
3300 vsize = 768;
3301 }
3302
3303 /*
3304 * If this connector already has a mode for this size and refresh
3305 * rate (because it came from detailed or CVT info), use that
3306 * instead. This way we don't have to guess at interlace or
3307 * reduced blanking.
3308 */
3309 list_for_each_entry(m, &connector->probed_modes, head)
3310 if (m->hdisplay == hsize && m->vdisplay == vsize &&
3311 drm_mode_vrefresh(m) == vrefresh_rate)
3312 return NULL;
3313
3314 /* HDTV hack, part 2 */
3315 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3316 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3317 false);
3318 if (!mode)
3319 return NULL;
3320 mode->hdisplay = 1366;
3321 mode->hsync_start = mode->hsync_start - 1;
3322 mode->hsync_end = mode->hsync_end - 1;
3323 return mode;
3324 }
3325
3326 /* check whether it can be found in default mode table */
3327 if (drm_monitor_supports_rb(drm_edid)) {
3328 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3329 true);
3330 if (mode)
3331 return mode;
3332 }
3333 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3334 if (mode)
3335 return mode;
3336
3337 /* okay, generate it */
3338 switch (timing_level) {
3339 case LEVEL_DMT:
3340 break;
3341 case LEVEL_GTF:
3342 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3343 break;
3344 case LEVEL_GTF2:
3345 mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3346 break;
3347 case LEVEL_CVT:
3348 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3349 false);
3350 break;
3351 }
3352 return mode;
3353}
3354
3355/*
3356 * EDID is delightfully ambiguous about how interlaced modes are to be
3357 * encoded. Our internal representation is of frame height, but some
3358 * HDTV detailed timings are encoded as field height.
3359 *
3360 * The format list here is from CEA, in frame size. Technically we
3361 * should be checking refresh rate too. Whatever.
3362 */
3363static void
3364drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3365 const struct detailed_pixel_timing *pt)
3366{
3367 int i;
3368 static const struct {
3369 int w, h;
3370 } cea_interlaced[] = {
3371 { 1920, 1080 },
3372 { 720, 480 },
3373 { 1440, 480 },
3374 { 2880, 480 },
3375 { 720, 576 },
3376 { 1440, 576 },
3377 { 2880, 576 },
3378 };
3379
3380 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3381 return;
3382
3383 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3384 if ((mode->hdisplay == cea_interlaced[i].w) &&
3385 (mode->vdisplay == cea_interlaced[i].h / 2)) {
3386 mode->vdisplay *= 2;
3387 mode->vsync_start *= 2;
3388 mode->vsync_end *= 2;
3389 mode->vtotal *= 2;
3390 mode->vtotal |= 1;
3391 }
3392 }
3393
3394 mode->flags |= DRM_MODE_FLAG_INTERLACE;
3395}
3396
3397/*
3398 * Create a new mode from an EDID detailed timing section. An EDID detailed
3399 * timing block contains enough info for us to create and return a new struct
3400 * drm_display_mode.
3401 */
3402static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3403 const struct drm_edid *drm_edid,
3404 const struct detailed_timing *timing,
3405 u32 quirks)
3406{
3407 struct drm_device *dev = connector->dev;
3408 struct drm_display_mode *mode;
3409 const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3410 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3411 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3412 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3413 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3414 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3415 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3416 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3417 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3418
3419 /* ignore tiny modes */
3420 if (hactive < 64 || vactive < 64)
3421 return NULL;
3422
3423 if (pt->misc & DRM_EDID_PT_STEREO) {
3424 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3425 connector->base.id, connector->name);
3426 return NULL;
3427 }
3428 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3429 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3430 connector->base.id, connector->name);
3431 }
3432
3433 /* it is incorrect if hsync/vsync width is zero */
3434 if (!hsync_pulse_width || !vsync_pulse_width) {
3435 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3436 connector->base.id, connector->name);
3437 return NULL;
3438 }
3439
3440 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3441 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3442 if (!mode)
3443 return NULL;
3444
3445 goto set_size;
3446 }
3447
3448 mode = drm_mode_create(dev);
3449 if (!mode)
3450 return NULL;
3451
3452 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3453 mode->clock = 1088 * 10;
3454 else
3455 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3456
3457 mode->hdisplay = hactive;
3458 mode->hsync_start = mode->hdisplay + hsync_offset;
3459 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3460 mode->htotal = mode->hdisplay + hblank;
3461
3462 mode->vdisplay = vactive;
3463 mode->vsync_start = mode->vdisplay + vsync_offset;
3464 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3465 mode->vtotal = mode->vdisplay + vblank;
3466
3467 /* Some EDIDs have bogus h/vtotal values */
3468 if (mode->hsync_end > mode->htotal)
3469 mode->htotal = mode->hsync_end + 1;
3470 if (mode->vsync_end > mode->vtotal)
3471 mode->vtotal = mode->vsync_end + 1;
3472
3473 drm_mode_do_interlace_quirk(mode, pt);
3474
3475 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
3476 mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3477 } else {
3478 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3479 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3480 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3481 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3482 }
3483
3484set_size:
3485 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3486 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3487
3488 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
3489 mode->width_mm *= 10;
3490 mode->height_mm *= 10;
3491 }
3492
3493 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
3494 mode->width_mm = drm_edid->edid->width_cm * 10;
3495 mode->height_mm = drm_edid->edid->height_cm * 10;
3496 }
3497
3498 mode->type = DRM_MODE_TYPE_DRIVER;
3499 drm_mode_set_name(mode);
3500
3501 return mode;
3502}
3503
3504static bool
3505mode_in_hsync_range(const struct drm_display_mode *mode,
3506 const struct edid *edid, const u8 *t)
3507{
3508 int hsync, hmin, hmax;
3509
3510 hmin = t[7];
3511 if (edid->revision >= 4)
3512 hmin += ((t[4] & 0x04) ? 255 : 0);
3513 hmax = t[8];
3514 if (edid->revision >= 4)
3515 hmax += ((t[4] & 0x08) ? 255 : 0);
3516 hsync = drm_mode_hsync(mode);
3517
3518 return (hsync <= hmax && hsync >= hmin);
3519}
3520
3521static bool
3522mode_in_vsync_range(const struct drm_display_mode *mode,
3523 const struct edid *edid, const u8 *t)
3524{
3525 int vsync, vmin, vmax;
3526
3527 vmin = t[5];
3528 if (edid->revision >= 4)
3529 vmin += ((t[4] & 0x01) ? 255 : 0);
3530 vmax = t[6];
3531 if (edid->revision >= 4)
3532 vmax += ((t[4] & 0x02) ? 255 : 0);
3533 vsync = drm_mode_vrefresh(mode);
3534
3535 return (vsync <= vmax && vsync >= vmin);
3536}
3537
3538static u32
3539range_pixel_clock(const struct edid *edid, const u8 *t)
3540{
3541 /* unspecified */
3542 if (t[9] == 0 || t[9] == 255)
3543 return 0;
3544
3545 /* 1.4 with CVT support gives us real precision, yay */
3546 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3547 return (t[9] * 10000) - ((t[12] >> 2) * 250);
3548
3549 /* 1.3 is pathetic, so fuzz up a bit */
3550 return t[9] * 10000 + 5001;
3551}
3552
3553static bool mode_in_range(const struct drm_display_mode *mode,
3554 const struct drm_edid *drm_edid,
3555 const struct detailed_timing *timing)
3556{
3557 const struct edid *edid = drm_edid->edid;
3558 u32 max_clock;
3559 const u8 *t = (const u8 *)timing;
3560
3561 if (!mode_in_hsync_range(mode, edid, t))
3562 return false;
3563
3564 if (!mode_in_vsync_range(mode, edid, t))
3565 return false;
3566
3567 if ((max_clock = range_pixel_clock(edid, t)))
3568 if (mode->clock > max_clock)
3569 return false;
3570
3571 /* 1.4 max horizontal check */
3572 if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3573 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3574 return false;
3575
3576 if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3577 return false;
3578
3579 return true;
3580}
3581
3582static bool valid_inferred_mode(const struct drm_connector *connector,
3583 const struct drm_display_mode *mode)
3584{
3585 const struct drm_display_mode *m;
3586 bool ok = false;
3587
3588 list_for_each_entry(m, &connector->probed_modes, head) {
3589 if (mode->hdisplay == m->hdisplay &&
3590 mode->vdisplay == m->vdisplay &&
3591 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3592 return false; /* duplicated */
3593 if (mode->hdisplay <= m->hdisplay &&
3594 mode->vdisplay <= m->vdisplay)
3595 ok = true;
3596 }
3597 return ok;
3598}
3599
3600static int drm_dmt_modes_for_range(struct drm_connector *connector,
3601 const struct drm_edid *drm_edid,
3602 const struct detailed_timing *timing)
3603{
3604 int i, modes = 0;
3605 struct drm_display_mode *newmode;
3606 struct drm_device *dev = connector->dev;
3607
3608 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3609 if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3610 valid_inferred_mode(connector, drm_dmt_modes + i)) {
3611 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3612 if (newmode) {
3613 drm_mode_probed_add(connector, newmode);
3614 modes++;
3615 }
3616 }
3617 }
3618
3619 return modes;
3620}
3621
3622/* fix up 1366x768 mode from 1368x768;
3623 * GFT/CVT can't express 1366 width which isn't dividable by 8
3624 */
3625void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3626{
3627 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3628 mode->hdisplay = 1366;
3629 mode->hsync_start--;
3630 mode->hsync_end--;
3631 drm_mode_set_name(mode);
3632 }
3633}
3634
3635static int drm_gtf_modes_for_range(struct drm_connector *connector,
3636 const struct drm_edid *drm_edid,
3637 const struct detailed_timing *timing)
3638{
3639 int i, modes = 0;
3640 struct drm_display_mode *newmode;
3641 struct drm_device *dev = connector->dev;
3642
3643 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3644 const struct minimode *m = &extra_modes[i];
3645
3646 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3647 if (!newmode)
3648 return modes;
3649
3650 drm_mode_fixup_1366x768(newmode);
3651 if (!mode_in_range(newmode, drm_edid, timing) ||
3652 !valid_inferred_mode(connector, newmode)) {
3653 drm_mode_destroy(dev, newmode);
3654 continue;
3655 }
3656
3657 drm_mode_probed_add(connector, newmode);
3658 modes++;
3659 }
3660
3661 return modes;
3662}
3663
3664static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3665 const struct drm_edid *drm_edid,
3666 const struct detailed_timing *timing)
3667{
3668 int i, modes = 0;
3669 struct drm_display_mode *newmode;
3670 struct drm_device *dev = connector->dev;
3671
3672 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3673 const struct minimode *m = &extra_modes[i];
3674
3675 newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3676 if (!newmode)
3677 return modes;
3678
3679 drm_mode_fixup_1366x768(newmode);
3680 if (!mode_in_range(newmode, drm_edid, timing) ||
3681 !valid_inferred_mode(connector, newmode)) {
3682 drm_mode_destroy(dev, newmode);
3683 continue;
3684 }
3685
3686 drm_mode_probed_add(connector, newmode);
3687 modes++;
3688 }
3689
3690 return modes;
3691}
3692
3693static int drm_cvt_modes_for_range(struct drm_connector *connector,
3694 const struct drm_edid *drm_edid,
3695 const struct detailed_timing *timing)
3696{
3697 int i, modes = 0;
3698 struct drm_display_mode *newmode;
3699 struct drm_device *dev = connector->dev;
3700 bool rb = drm_monitor_supports_rb(drm_edid);
3701
3702 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3703 const struct minimode *m = &extra_modes[i];
3704
3705 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3706 if (!newmode)
3707 return modes;
3708
3709 drm_mode_fixup_1366x768(newmode);
3710 if (!mode_in_range(newmode, drm_edid, timing) ||
3711 !valid_inferred_mode(connector, newmode)) {
3712 drm_mode_destroy(dev, newmode);
3713 continue;
3714 }
3715
3716 drm_mode_probed_add(connector, newmode);
3717 modes++;
3718 }
3719
3720 return modes;
3721}
3722
3723static void
3724do_inferred_modes(const struct detailed_timing *timing, void *c)
3725{
3726 struct detailed_mode_closure *closure = c;
3727 const struct detailed_non_pixel *data = &timing->data.other_data;
3728 const struct detailed_data_monitor_range *range = &data->data.range;
3729
3730 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3731 return;
3732
3733 closure->modes += drm_dmt_modes_for_range(closure->connector,
3734 closure->drm_edid,
3735 timing);
3736
3737 if (closure->drm_edid->edid->revision < 2)
3738 return; /* GTF not defined yet */
3739
3740 switch (range->flags) {
3741 case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3742 closure->modes += drm_gtf2_modes_for_range(closure->connector,
3743 closure->drm_edid,
3744 timing);
3745 break;
3746 case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3747 closure->modes += drm_gtf_modes_for_range(closure->connector,
3748 closure->drm_edid,
3749 timing);
3750 break;
3751 case DRM_EDID_CVT_SUPPORT_FLAG:
3752 if (closure->drm_edid->edid->revision < 4)
3753 break;
3754
3755 closure->modes += drm_cvt_modes_for_range(closure->connector,
3756 closure->drm_edid,
3757 timing);
3758 break;
3759 case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3760 default:
3761 break;
3762 }
3763}
3764
3765static int add_inferred_modes(struct drm_connector *connector,
3766 const struct drm_edid *drm_edid)
3767{
3768 struct detailed_mode_closure closure = {
3769 .connector = connector,
3770 .drm_edid = drm_edid,
3771 };
3772
3773 if (drm_edid->edid->revision >= 1)
3774 drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3775
3776 return closure.modes;
3777}
3778
3779static int
3780drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3781{
3782 int i, j, m, modes = 0;
3783 struct drm_display_mode *mode;
3784 const u8 *est = ((const u8 *)timing) + 6;
3785
3786 for (i = 0; i < 6; i++) {
3787 for (j = 7; j >= 0; j--) {
3788 m = (i * 8) + (7 - j);
3789 if (m >= ARRAY_SIZE(est3_modes))
3790 break;
3791 if (est[i] & (1 << j)) {
3792 mode = drm_mode_find_dmt(connector->dev,
3793 est3_modes[m].w,
3794 est3_modes[m].h,
3795 est3_modes[m].r,
3796 est3_modes[m].rb);
3797 if (mode) {
3798 drm_mode_probed_add(connector, mode);
3799 modes++;
3800 }
3801 }
3802 }
3803 }
3804
3805 return modes;
3806}
3807
3808static void
3809do_established_modes(const struct detailed_timing *timing, void *c)
3810{
3811 struct detailed_mode_closure *closure = c;
3812
3813 if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3814 return;
3815
3816 closure->modes += drm_est3_modes(closure->connector, timing);
3817}
3818
3819/*
3820 * Get established modes from EDID and add them. Each EDID block contains a
3821 * bitmap of the supported "established modes" list (defined above). Tease them
3822 * out and add them to the global modes list.
3823 */
3824static int add_established_modes(struct drm_connector *connector,
3825 const struct drm_edid *drm_edid)
3826{
3827 struct drm_device *dev = connector->dev;
3828 const struct edid *edid = drm_edid->edid;
3829 unsigned long est_bits = edid->established_timings.t1 |
3830 (edid->established_timings.t2 << 8) |
3831 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
3832 int i, modes = 0;
3833 struct detailed_mode_closure closure = {
3834 .connector = connector,
3835 .drm_edid = drm_edid,
3836 };
3837
3838 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3839 if (est_bits & (1<<i)) {
3840 struct drm_display_mode *newmode;
3841
3842 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3843 if (newmode) {
3844 drm_mode_probed_add(connector, newmode);
3845 modes++;
3846 }
3847 }
3848 }
3849
3850 if (edid->revision >= 1)
3851 drm_for_each_detailed_block(drm_edid, do_established_modes,
3852 &closure);
3853
3854 return modes + closure.modes;
3855}
3856
3857static void
3858do_standard_modes(const struct detailed_timing *timing, void *c)
3859{
3860 struct detailed_mode_closure *closure = c;
3861 const struct detailed_non_pixel *data = &timing->data.other_data;
3862 struct drm_connector *connector = closure->connector;
3863 int i;
3864
3865 if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3866 return;
3867
3868 for (i = 0; i < 6; i++) {
3869 const struct std_timing *std = &data->data.timings[i];
3870 struct drm_display_mode *newmode;
3871
3872 newmode = drm_mode_std(connector, closure->drm_edid, std);
3873 if (newmode) {
3874 drm_mode_probed_add(connector, newmode);
3875 closure->modes++;
3876 }
3877 }
3878}
3879
3880/*
3881 * Get standard modes from EDID and add them. Standard modes can be calculated
3882 * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3883 * add them to the list.
3884 */
3885static int add_standard_modes(struct drm_connector *connector,
3886 const struct drm_edid *drm_edid)
3887{
3888 int i, modes = 0;
3889 struct detailed_mode_closure closure = {
3890 .connector = connector,
3891 .drm_edid = drm_edid,
3892 };
3893
3894 for (i = 0; i < EDID_STD_TIMINGS; i++) {
3895 struct drm_display_mode *newmode;
3896
3897 newmode = drm_mode_std(connector, drm_edid,
3898 &drm_edid->edid->standard_timings[i]);
3899 if (newmode) {
3900 drm_mode_probed_add(connector, newmode);
3901 modes++;
3902 }
3903 }
3904
3905 if (drm_edid->edid->revision >= 1)
3906 drm_for_each_detailed_block(drm_edid, do_standard_modes,
3907 &closure);
3908
3909 /* XXX should also look for standard codes in VTB blocks */
3910
3911 return modes + closure.modes;
3912}
3913
3914static int drm_cvt_modes(struct drm_connector *connector,
3915 const struct detailed_timing *timing)
3916{
3917 int i, j, modes = 0;
3918 struct drm_display_mode *newmode;
3919 struct drm_device *dev = connector->dev;
3920 const struct cvt_timing *cvt;
3921 const int rates[] = { 60, 85, 75, 60, 50 };
3922 const u8 empty[3] = { 0, 0, 0 };
3923
3924 for (i = 0; i < 4; i++) {
3925 int width, height;
3926
3927 cvt = &(timing->data.other_data.data.cvt[i]);
3928
3929 if (!memcmp(cvt->code, empty, 3))
3930 continue;
3931
3932 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
3933 switch (cvt->code[1] & 0x0c) {
3934 /* default - because compiler doesn't see that we've enumerated all cases */
3935 default:
3936 case 0x00:
3937 width = height * 4 / 3;
3938 break;
3939 case 0x04:
3940 width = height * 16 / 9;
3941 break;
3942 case 0x08:
3943 width = height * 16 / 10;
3944 break;
3945 case 0x0c:
3946 width = height * 15 / 9;
3947 break;
3948 }
3949
3950 for (j = 1; j < 5; j++) {
3951 if (cvt->code[2] & (1 << j)) {
3952 newmode = drm_cvt_mode(dev, width, height,
3953 rates[j], j == 0,
3954 false, false);
3955 if (newmode) {
3956 drm_mode_probed_add(connector, newmode);
3957 modes++;
3958 }
3959 }
3960 }
3961 }
3962
3963 return modes;
3964}
3965
3966static void
3967do_cvt_mode(const struct detailed_timing *timing, void *c)
3968{
3969 struct detailed_mode_closure *closure = c;
3970
3971 if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
3972 return;
3973
3974 closure->modes += drm_cvt_modes(closure->connector, timing);
3975}
3976
3977static int
3978add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
3979{
3980 struct detailed_mode_closure closure = {
3981 .connector = connector,
3982 .drm_edid = drm_edid,
3983 };
3984
3985 if (drm_edid->edid->revision >= 3)
3986 drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
3987
3988 /* XXX should also look for CVT codes in VTB blocks */
3989
3990 return closure.modes;
3991}
3992
3993static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
3994 struct drm_display_mode *mode);
3995
3996static void
3997do_detailed_mode(const struct detailed_timing *timing, void *c)
3998{
3999 struct detailed_mode_closure *closure = c;
4000 struct drm_display_mode *newmode;
4001
4002 if (!is_detailed_timing_descriptor(timing))
4003 return;
4004
4005 newmode = drm_mode_detailed(closure->connector,
4006 closure->drm_edid, timing,
4007 closure->quirks);
4008 if (!newmode)
4009 return;
4010
4011 if (closure->preferred)
4012 newmode->type |= DRM_MODE_TYPE_PREFERRED;
4013
4014 /*
4015 * Detailed modes are limited to 10kHz pixel clock resolution,
4016 * so fix up anything that looks like CEA/HDMI mode, but the clock
4017 * is just slightly off.
4018 */
4019 fixup_detailed_cea_mode_clock(closure->connector, newmode);
4020
4021 drm_mode_probed_add(closure->connector, newmode);
4022 closure->modes++;
4023 closure->preferred = false;
4024}
4025
4026/*
4027 * add_detailed_modes - Add modes from detailed timings
4028 * @connector: attached connector
4029 * @drm_edid: EDID block to scan
4030 * @quirks: quirks to apply
4031 */
4032static int add_detailed_modes(struct drm_connector *connector,
4033 const struct drm_edid *drm_edid, u32 quirks)
4034{
4035 struct detailed_mode_closure closure = {
4036 .connector = connector,
4037 .drm_edid = drm_edid,
4038 .quirks = quirks,
4039 };
4040
4041 if (drm_edid->edid->revision >= 4)
4042 closure.preferred = true; /* first detailed timing is always preferred */
4043 else
4044 closure.preferred =
4045 drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4046
4047 drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4048
4049 return closure.modes;
4050}
4051
4052/* CTA-861-H Table 60 - CTA Tag Codes */
4053#define CTA_DB_AUDIO 1
4054#define CTA_DB_VIDEO 2
4055#define CTA_DB_VENDOR 3
4056#define CTA_DB_SPEAKER 4
4057#define CTA_DB_EXTENDED_TAG 7
4058
4059/* CTA-861-H Table 62 - CTA Extended Tag Codes */
4060#define CTA_EXT_DB_VIDEO_CAP 0
4061#define CTA_EXT_DB_VENDOR 1
4062#define CTA_EXT_DB_HDR_STATIC_METADATA 6
4063#define CTA_EXT_DB_420_VIDEO_DATA 14
4064#define CTA_EXT_DB_420_VIDEO_CAP_MAP 15
4065#define CTA_EXT_DB_HF_EEODB 0x78
4066#define CTA_EXT_DB_HF_SCDB 0x79
4067
4068#define EDID_BASIC_AUDIO (1 << 6)
4069#define EDID_CEA_YCRCB444 (1 << 5)
4070#define EDID_CEA_YCRCB422 (1 << 4)
4071#define EDID_CEA_VCDB_QS (1 << 6)
4072
4073/*
4074 * Search EDID for CEA extension block.
4075 *
4076 * FIXME: Prefer not returning pointers to raw EDID data.
4077 */
4078const u8 *drm_find_edid_extension(const struct drm_edid *drm_edid,
4079 int ext_id, int *ext_index)
4080{
4081 const u8 *edid_ext = NULL;
4082 int i;
4083
4084 /* No EDID or EDID extensions */
4085 if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4086 return NULL;
4087
4088 /* Find CEA extension */
4089 for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4090 edid_ext = drm_edid_extension_block_data(drm_edid, i);
4091 if (edid_block_tag(edid_ext) == ext_id)
4092 break;
4093 }
4094
4095 if (i >= drm_edid_extension_block_count(drm_edid))
4096 return NULL;
4097
4098 *ext_index = i + 1;
4099
4100 return edid_ext;
4101}
4102
4103/* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
4104static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4105{
4106 const struct displayid_block *block;
4107 struct displayid_iter iter;
4108 int ext_index = 0;
4109 bool found = false;
4110
4111 /* Look for a top level CEA extension block */
4112 if (drm_find_edid_extension(drm_edid, CEA_EXT, &ext_index))
4113 return true;
4114
4115 /* CEA blocks can also be found embedded in a DisplayID block */
4116 displayid_iter_edid_begin(drm_edid, &iter);
4117 displayid_iter_for_each(block, &iter) {
4118 if (block->tag == DATA_BLOCK_CTA) {
4119 found = true;
4120 break;
4121 }
4122 }
4123 displayid_iter_end(&iter);
4124
4125 return found;
4126}
4127
4128static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4129{
4130 BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4131 BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4132
4133 if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4134 return &edid_cea_modes_1[vic - 1];
4135 if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4136 return &edid_cea_modes_193[vic - 193];
4137 return NULL;
4138}
4139
4140static u8 cea_num_vics(void)
4141{
4142 return 193 + ARRAY_SIZE(edid_cea_modes_193);
4143}
4144
4145static u8 cea_next_vic(u8 vic)
4146{
4147 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4148 vic = 193;
4149 return vic;
4150}
4151
4152/*
4153 * Calculate the alternate clock for the CEA mode
4154 * (60Hz vs. 59.94Hz etc.)
4155 */
4156static unsigned int
4157cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4158{
4159 unsigned int clock = cea_mode->clock;
4160
4161 if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4162 return clock;
4163
4164 /*
4165 * edid_cea_modes contains the 59.94Hz
4166 * variant for 240 and 480 line modes,
4167 * and the 60Hz variant otherwise.
4168 */
4169 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4170 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4171 else
4172 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4173
4174 return clock;
4175}
4176
4177static bool
4178cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4179{
4180 /*
4181 * For certain VICs the spec allows the vertical
4182 * front porch to vary by one or two lines.
4183 *
4184 * cea_modes[] stores the variant with the shortest
4185 * vertical front porch. We can adjust the mode to
4186 * get the other variants by simply increasing the
4187 * vertical front porch length.
4188 */
4189 BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4190 cea_mode_for_vic(9)->vtotal != 262 ||
4191 cea_mode_for_vic(12)->vtotal != 262 ||
4192 cea_mode_for_vic(13)->vtotal != 262 ||
4193 cea_mode_for_vic(23)->vtotal != 312 ||
4194 cea_mode_for_vic(24)->vtotal != 312 ||
4195 cea_mode_for_vic(27)->vtotal != 312 ||
4196 cea_mode_for_vic(28)->vtotal != 312);
4197
4198 if (((vic == 8 || vic == 9 ||
4199 vic == 12 || vic == 13) && mode->vtotal < 263) ||
4200 ((vic == 23 || vic == 24 ||
4201 vic == 27 || vic == 28) && mode->vtotal < 314)) {
4202 mode->vsync_start++;
4203 mode->vsync_end++;
4204 mode->vtotal++;
4205
4206 return true;
4207 }
4208
4209 return false;
4210}
4211
4212static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4213 unsigned int clock_tolerance)
4214{
4215 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4216 u8 vic;
4217
4218 if (!to_match->clock)
4219 return 0;
4220
4221 if (to_match->picture_aspect_ratio)
4222 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4223
4224 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4225 struct drm_display_mode cea_mode;
4226 unsigned int clock1, clock2;
4227
4228 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4229
4230 /* Check both 60Hz and 59.94Hz */
4231 clock1 = cea_mode.clock;
4232 clock2 = cea_mode_alternate_clock(&cea_mode);
4233
4234 if (abs(to_match->clock - clock1) > clock_tolerance &&
4235 abs(to_match->clock - clock2) > clock_tolerance)
4236 continue;
4237
4238 do {
4239 if (drm_mode_match(to_match, &cea_mode, match_flags))
4240 return vic;
4241 } while (cea_mode_alternate_timings(vic, &cea_mode));
4242 }
4243
4244 return 0;
4245}
4246
4247/**
4248 * drm_match_cea_mode - look for a CEA mode matching given mode
4249 * @to_match: display mode
4250 *
4251 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4252 * mode.
4253 */
4254u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4255{
4256 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4257 u8 vic;
4258
4259 if (!to_match->clock)
4260 return 0;
4261
4262 if (to_match->picture_aspect_ratio)
4263 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4264
4265 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4266 struct drm_display_mode cea_mode;
4267 unsigned int clock1, clock2;
4268
4269 drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4270
4271 /* Check both 60Hz and 59.94Hz */
4272 clock1 = cea_mode.clock;
4273 clock2 = cea_mode_alternate_clock(&cea_mode);
4274
4275 if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4276 KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4277 continue;
4278
4279 do {
4280 if (drm_mode_match(to_match, &cea_mode, match_flags))
4281 return vic;
4282 } while (cea_mode_alternate_timings(vic, &cea_mode));
4283 }
4284
4285 return 0;
4286}
4287EXPORT_SYMBOL(drm_match_cea_mode);
4288
4289static bool drm_valid_cea_vic(u8 vic)
4290{
4291 return cea_mode_for_vic(vic) != NULL;
4292}
4293
4294static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4295{
4296 const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4297
4298 if (mode)
4299 return mode->picture_aspect_ratio;
4300
4301 return HDMI_PICTURE_ASPECT_NONE;
4302}
4303
4304static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4305{
4306 return edid_4k_modes[video_code].picture_aspect_ratio;
4307}
4308
4309/*
4310 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4311 * specific block).
4312 */
4313static unsigned int
4314hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4315{
4316 return cea_mode_alternate_clock(hdmi_mode);
4317}
4318
4319static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4320 unsigned int clock_tolerance)
4321{
4322 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4323 u8 vic;
4324
4325 if (!to_match->clock)
4326 return 0;
4327
4328 if (to_match->picture_aspect_ratio)
4329 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4330
4331 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4332 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4333 unsigned int clock1, clock2;
4334
4335 /* Make sure to also match alternate clocks */
4336 clock1 = hdmi_mode->clock;
4337 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4338
4339 if (abs(to_match->clock - clock1) > clock_tolerance &&
4340 abs(to_match->clock - clock2) > clock_tolerance)
4341 continue;
4342
4343 if (drm_mode_match(to_match, hdmi_mode, match_flags))
4344 return vic;
4345 }
4346
4347 return 0;
4348}
4349
4350/*
4351 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4352 * @to_match: display mode
4353 *
4354 * An HDMI mode is one defined in the HDMI vendor specific block.
4355 *
4356 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4357 */
4358static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4359{
4360 unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4361 u8 vic;
4362
4363 if (!to_match->clock)
4364 return 0;
4365
4366 if (to_match->picture_aspect_ratio)
4367 match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4368
4369 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4370 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4371 unsigned int clock1, clock2;
4372
4373 /* Make sure to also match alternate clocks */
4374 clock1 = hdmi_mode->clock;
4375 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4376
4377 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4378 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4379 drm_mode_match(to_match, hdmi_mode, match_flags))
4380 return vic;
4381 }
4382 return 0;
4383}
4384
4385static bool drm_valid_hdmi_vic(u8 vic)
4386{
4387 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4388}
4389
4390static int add_alternate_cea_modes(struct drm_connector *connector,
4391 const struct drm_edid *drm_edid)
4392{
4393 struct drm_device *dev = connector->dev;
4394 struct drm_display_mode *mode, *tmp;
4395 LIST_HEAD(list);
4396 int modes = 0;
4397
4398 /* Don't add CTA modes if the CTA extension block is missing */
4399 if (!drm_edid_has_cta_extension(drm_edid))
4400 return 0;
4401
4402 /*
4403 * Go through all probed modes and create a new mode
4404 * with the alternate clock for certain CEA modes.
4405 */
4406 list_for_each_entry(mode, &connector->probed_modes, head) {
4407 const struct drm_display_mode *cea_mode = NULL;
4408 struct drm_display_mode *newmode;
4409 u8 vic = drm_match_cea_mode(mode);
4410 unsigned int clock1, clock2;
4411
4412 if (drm_valid_cea_vic(vic)) {
4413 cea_mode = cea_mode_for_vic(vic);
4414 clock2 = cea_mode_alternate_clock(cea_mode);
4415 } else {
4416 vic = drm_match_hdmi_mode(mode);
4417 if (drm_valid_hdmi_vic(vic)) {
4418 cea_mode = &edid_4k_modes[vic];
4419 clock2 = hdmi_mode_alternate_clock(cea_mode);
4420 }
4421 }
4422
4423 if (!cea_mode)
4424 continue;
4425
4426 clock1 = cea_mode->clock;
4427
4428 if (clock1 == clock2)
4429 continue;
4430
4431 if (mode->clock != clock1 && mode->clock != clock2)
4432 continue;
4433
4434 newmode = drm_mode_duplicate(dev, cea_mode);
4435 if (!newmode)
4436 continue;
4437
4438 /* Carry over the stereo flags */
4439 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4440
4441 /*
4442 * The current mode could be either variant. Make
4443 * sure to pick the "other" clock for the new mode.
4444 */
4445 if (mode->clock != clock1)
4446 newmode->clock = clock1;
4447 else
4448 newmode->clock = clock2;
4449
4450 list_add_tail(&newmode->head, &list);
4451 }
4452
4453 list_for_each_entry_safe(mode, tmp, &list, head) {
4454 list_del(&mode->head);
4455 drm_mode_probed_add(connector, mode);
4456 modes++;
4457 }
4458
4459 return modes;
4460}
4461
4462static u8 svd_to_vic(u8 svd)
4463{
4464 /* 0-6 bit vic, 7th bit native mode indicator */
4465 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
4466 return svd & 127;
4467
4468 return svd;
4469}
4470
4471static struct drm_display_mode *
4472drm_display_mode_from_vic_index(struct drm_connector *connector,
4473 const u8 *video_db, u8 video_len,
4474 u8 video_index)
4475{
4476 struct drm_device *dev = connector->dev;
4477 struct drm_display_mode *newmode;
4478 u8 vic;
4479
4480 if (video_db == NULL || video_index >= video_len)
4481 return NULL;
4482
4483 /* CEA modes are numbered 1..127 */
4484 vic = svd_to_vic(video_db[video_index]);
4485 if (!drm_valid_cea_vic(vic))
4486 return NULL;
4487
4488 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4489 if (!newmode)
4490 return NULL;
4491
4492 return newmode;
4493}
4494
4495/*
4496 * do_y420vdb_modes - Parse YCBCR 420 only modes
4497 * @connector: connector corresponding to the HDMI sink
4498 * @svds: start of the data block of CEA YCBCR 420 VDB
4499 * @len: length of the CEA YCBCR 420 VDB
4500 *
4501 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4502 * which contains modes which can be supported in YCBCR 420
4503 * output format only.
4504 */
4505static int do_y420vdb_modes(struct drm_connector *connector,
4506 const u8 *svds, u8 svds_len)
4507{
4508 int modes = 0, i;
4509 struct drm_device *dev = connector->dev;
4510 struct drm_display_info *info = &connector->display_info;
4511 struct drm_hdmi_info *hdmi = &info->hdmi;
4512
4513 for (i = 0; i < svds_len; i++) {
4514 u8 vic = svd_to_vic(svds[i]);
4515 struct drm_display_mode *newmode;
4516
4517 if (!drm_valid_cea_vic(vic))
4518 continue;
4519
4520 newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4521 if (!newmode)
4522 break;
4523 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
4524 drm_mode_probed_add(connector, newmode);
4525 modes++;
4526 }
4527
4528 if (modes > 0)
4529 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
4530 return modes;
4531}
4532
4533/*
4534 * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap
4535 * @connector: connector corresponding to the HDMI sink
4536 * @vic: CEA vic for the video mode to be added in the map
4537 *
4538 * Makes an entry for a videomode in the YCBCR 420 bitmap
4539 */
4540static void
4541drm_add_cmdb_modes(struct drm_connector *connector, u8 svd)
4542{
4543 u8 vic = svd_to_vic(svd);
4544 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4545
4546 if (!drm_valid_cea_vic(vic))
4547 return;
4548
4549 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
4550}
4551
4552/**
4553 * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4554 * @dev: DRM device
4555 * @video_code: CEA VIC of the mode
4556 *
4557 * Creates a new mode matching the specified CEA VIC.
4558 *
4559 * Returns: A new drm_display_mode on success or NULL on failure
4560 */
4561struct drm_display_mode *
4562drm_display_mode_from_cea_vic(struct drm_device *dev,
4563 u8 video_code)
4564{
4565 const struct drm_display_mode *cea_mode;
4566 struct drm_display_mode *newmode;
4567
4568 cea_mode = cea_mode_for_vic(video_code);
4569 if (!cea_mode)
4570 return NULL;
4571
4572 newmode = drm_mode_duplicate(dev, cea_mode);
4573 if (!newmode)
4574 return NULL;
4575
4576 return newmode;
4577}
4578EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4579
4580static int
4581do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
4582{
4583 int i, modes = 0;
4584 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
4585
4586 for (i = 0; i < len; i++) {
4587 struct drm_display_mode *mode;
4588
4589 mode = drm_display_mode_from_vic_index(connector, db, len, i);
4590 if (mode) {
4591 /*
4592 * YCBCR420 capability block contains a bitmap which
4593 * gives the index of CEA modes from CEA VDB, which
4594 * can support YCBCR 420 sampling output also (apart
4595 * from RGB/YCBCR444 etc).
4596 * For example, if the bit 0 in bitmap is set,
4597 * first mode in VDB can support YCBCR420 output too.
4598 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
4599 */
4600 if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
4601 drm_add_cmdb_modes(connector, db[i]);
4602
4603 drm_mode_probed_add(connector, mode);
4604 modes++;
4605 }
4606 }
4607
4608 return modes;
4609}
4610
4611struct stereo_mandatory_mode {
4612 int width, height, vrefresh;
4613 unsigned int flags;
4614};
4615
4616static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4617 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4618 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4619 { 1920, 1080, 50,
4620 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4621 { 1920, 1080, 60,
4622 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4623 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4624 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4625 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4626 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4627};
4628
4629static bool
4630stereo_match_mandatory(const struct drm_display_mode *mode,
4631 const struct stereo_mandatory_mode *stereo_mode)
4632{
4633 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4634
4635 return mode->hdisplay == stereo_mode->width &&
4636 mode->vdisplay == stereo_mode->height &&
4637 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4638 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4639}
4640
4641static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4642{
4643 struct drm_device *dev = connector->dev;
4644 const struct drm_display_mode *mode;
4645 struct list_head stereo_modes;
4646 int modes = 0, i;
4647
4648 INIT_LIST_HEAD(&stereo_modes);
4649
4650 list_for_each_entry(mode, &connector->probed_modes, head) {
4651 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4652 const struct stereo_mandatory_mode *mandatory;
4653 struct drm_display_mode *new_mode;
4654
4655 if (!stereo_match_mandatory(mode,
4656 &stereo_mandatory_modes[i]))
4657 continue;
4658
4659 mandatory = &stereo_mandatory_modes[i];
4660 new_mode = drm_mode_duplicate(dev, mode);
4661 if (!new_mode)
4662 continue;
4663
4664 new_mode->flags |= mandatory->flags;
4665 list_add_tail(&new_mode->head, &stereo_modes);
4666 modes++;
4667 }
4668 }
4669
4670 list_splice_tail(&stereo_modes, &connector->probed_modes);
4671
4672 return modes;
4673}
4674
4675static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4676{
4677 struct drm_device *dev = connector->dev;
4678 struct drm_display_mode *newmode;
4679
4680 if (!drm_valid_hdmi_vic(vic)) {
4681 drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4682 connector->base.id, connector->name, vic);
4683 return 0;
4684 }
4685
4686 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4687 if (!newmode)
4688 return 0;
4689
4690 drm_mode_probed_add(connector, newmode);
4691
4692 return 1;
4693}
4694
4695static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4696 const u8 *video_db, u8 video_len, u8 video_index)
4697{
4698 struct drm_display_mode *newmode;
4699 int modes = 0;
4700
4701 if (structure & (1 << 0)) {
4702 newmode = drm_display_mode_from_vic_index(connector, video_db,
4703 video_len,
4704 video_index);
4705 if (newmode) {
4706 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4707 drm_mode_probed_add(connector, newmode);
4708 modes++;
4709 }
4710 }
4711 if (structure & (1 << 6)) {
4712 newmode = drm_display_mode_from_vic_index(connector, video_db,
4713 video_len,
4714 video_index);
4715 if (newmode) {
4716 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4717 drm_mode_probed_add(connector, newmode);
4718 modes++;
4719 }
4720 }
4721 if (structure & (1 << 8)) {
4722 newmode = drm_display_mode_from_vic_index(connector, video_db,
4723 video_len,
4724 video_index);
4725 if (newmode) {
4726 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4727 drm_mode_probed_add(connector, newmode);
4728 modes++;
4729 }
4730 }
4731
4732 return modes;
4733}
4734
4735/*
4736 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4737 * @connector: connector corresponding to the HDMI sink
4738 * @db: start of the CEA vendor specific block
4739 * @len: length of the CEA block payload, ie. one can access up to db[len]
4740 *
4741 * Parses the HDMI VSDB looking for modes to add to @connector. This function
4742 * also adds the stereo 3d modes when applicable.
4743 */
4744static int
4745do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
4746 const u8 *video_db, u8 video_len)
4747{
4748 struct drm_display_info *info = &connector->display_info;
4749 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4750 u8 vic_len, hdmi_3d_len = 0;
4751 u16 mask;
4752 u16 structure_all;
4753
4754 if (len < 8)
4755 goto out;
4756
4757 /* no HDMI_Video_Present */
4758 if (!(db[8] & (1 << 5)))
4759 goto out;
4760
4761 /* Latency_Fields_Present */
4762 if (db[8] & (1 << 7))
4763 offset += 2;
4764
4765 /* I_Latency_Fields_Present */
4766 if (db[8] & (1 << 6))
4767 offset += 2;
4768
4769 /* the declared length is not long enough for the 2 first bytes
4770 * of additional video format capabilities */
4771 if (len < (8 + offset + 2))
4772 goto out;
4773
4774 /* 3D_Present */
4775 offset++;
4776 if (db[8 + offset] & (1 << 7)) {
4777 modes += add_hdmi_mandatory_stereo_modes(connector);
4778
4779 /* 3D_Multi_present */
4780 multi_present = (db[8 + offset] & 0x60) >> 5;
4781 }
4782
4783 offset++;
4784 vic_len = db[8 + offset] >> 5;
4785 hdmi_3d_len = db[8 + offset] & 0x1f;
4786
4787 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4788 u8 vic;
4789
4790 vic = db[9 + offset + i];
4791 modes += add_hdmi_mode(connector, vic);
4792 }
4793 offset += 1 + vic_len;
4794
4795 if (multi_present == 1)
4796 multi_len = 2;
4797 else if (multi_present == 2)
4798 multi_len = 4;
4799 else
4800 multi_len = 0;
4801
4802 if (len < (8 + offset + hdmi_3d_len - 1))
4803 goto out;
4804
4805 if (hdmi_3d_len < multi_len)
4806 goto out;
4807
4808 if (multi_present == 1 || multi_present == 2) {
4809 /* 3D_Structure_ALL */
4810 structure_all = (db[8 + offset] << 8) | db[9 + offset];
4811
4812 /* check if 3D_MASK is present */
4813 if (multi_present == 2)
4814 mask = (db[10 + offset] << 8) | db[11 + offset];
4815 else
4816 mask = 0xffff;
4817
4818 for (i = 0; i < 16; i++) {
4819 if (mask & (1 << i))
4820 modes += add_3d_struct_modes(connector,
4821 structure_all,
4822 video_db,
4823 video_len, i);
4824 }
4825 }
4826
4827 offset += multi_len;
4828
4829 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4830 int vic_index;
4831 struct drm_display_mode *newmode = NULL;
4832 unsigned int newflag = 0;
4833 bool detail_present;
4834
4835 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4836
4837 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4838 break;
4839
4840 /* 2D_VIC_order_X */
4841 vic_index = db[8 + offset + i] >> 4;
4842
4843 /* 3D_Structure_X */
4844 switch (db[8 + offset + i] & 0x0f) {
4845 case 0:
4846 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4847 break;
4848 case 6:
4849 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4850 break;
4851 case 8:
4852 /* 3D_Detail_X */
4853 if ((db[9 + offset + i] >> 4) == 1)
4854 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4855 break;
4856 }
4857
4858 if (newflag != 0) {
4859 newmode = drm_display_mode_from_vic_index(connector,
4860 video_db,
4861 video_len,
4862 vic_index);
4863
4864 if (newmode) {
4865 newmode->flags |= newflag;
4866 drm_mode_probed_add(connector, newmode);
4867 modes++;
4868 }
4869 }
4870
4871 if (detail_present)
4872 i++;
4873 }
4874
4875out:
4876 if (modes > 0)
4877 info->has_hdmi_infoframe = true;
4878 return modes;
4879}
4880
4881static int
4882cea_revision(const u8 *cea)
4883{
4884 /*
4885 * FIXME is this correct for the DispID variant?
4886 * The DispID spec doesn't really specify whether
4887 * this is the revision of the CEA extension or
4888 * the DispID CEA data block. And the only value
4889 * given as an example is 0.
4890 */
4891 return cea[1];
4892}
4893
4894/*
4895 * CTA Data Block iterator.
4896 *
4897 * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4898 * CTA Data Blocks.
4899 *
4900 * struct cea_db *db:
4901 * struct cea_db_iter iter;
4902 *
4903 * cea_db_iter_edid_begin(edid, &iter);
4904 * cea_db_iter_for_each(db, &iter) {
4905 * // do stuff with db
4906 * }
4907 * cea_db_iter_end(&iter);
4908 */
4909struct cea_db_iter {
4910 struct drm_edid_iter edid_iter;
4911 struct displayid_iter displayid_iter;
4912
4913 /* Current Data Block Collection. */
4914 const u8 *collection;
4915
4916 /* Current Data Block index in current collection. */
4917 int index;
4918
4919 /* End index in current collection. */
4920 int end;
4921};
4922
4923/* CTA-861-H section 7.4 CTA Data BLock Collection */
4924struct cea_db {
4925 u8 tag_length;
4926 u8 data[];
4927} __packed;
4928
4929static int cea_db_tag(const struct cea_db *db)
4930{
4931 return db->tag_length >> 5;
4932}
4933
4934static int cea_db_payload_len(const void *_db)
4935{
4936 /* FIXME: Transition to passing struct cea_db * everywhere. */
4937 const struct cea_db *db = _db;
4938
4939 return db->tag_length & 0x1f;
4940}
4941
4942static const void *cea_db_data(const struct cea_db *db)
4943{
4944 return db->data;
4945}
4946
4947static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
4948{
4949 return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
4950 cea_db_payload_len(db) >= 1 &&
4951 db->data[0] == tag;
4952}
4953
4954static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
4955{
4956 const u8 *data = cea_db_data(db);
4957
4958 return cea_db_tag(db) == CTA_DB_VENDOR &&
4959 cea_db_payload_len(db) >= 3 &&
4960 oui(data[2], data[1], data[0]) == vendor_oui;
4961}
4962
4963static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
4964 struct cea_db_iter *iter)
4965{
4966 memset(iter, 0, sizeof(*iter));
4967
4968 drm_edid_iter_begin(drm_edid, &iter->edid_iter);
4969 displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
4970}
4971
4972static const struct cea_db *
4973__cea_db_iter_current_block(const struct cea_db_iter *iter)
4974{
4975 const struct cea_db *db;
4976
4977 if (!iter->collection)
4978 return NULL;
4979
4980 db = (const struct cea_db *)&iter->collection[iter->index];
4981
4982 if (iter->index + sizeof(*db) <= iter->end &&
4983 iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
4984 return db;
4985
4986 return NULL;
4987}
4988
4989/*
4990 * References:
4991 * - CTA-861-H section 7.3.3 CTA Extension Version 3
4992 */
4993static int cea_db_collection_size(const u8 *cta)
4994{
4995 u8 d = cta[2];
4996
4997 if (d < 4 || d > 127)
4998 return 0;
4999
5000 return d - 4;
5001}
5002
5003/*
5004 * References:
5005 * - VESA E-EDID v1.4
5006 * - CTA-861-H section 7.3.3 CTA Extension Version 3
5007 */
5008static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5009{
5010 const u8 *ext;
5011
5012 drm_edid_iter_for_each(ext, &iter->edid_iter) {
5013 int size;
5014
5015 /* Only support CTA Extension revision 3+ */
5016 if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5017 continue;
5018
5019 size = cea_db_collection_size(ext);
5020 if (!size)
5021 continue;
5022
5023 iter->index = 4;
5024 iter->end = iter->index + size;
5025
5026 return ext;
5027 }
5028
5029 return NULL;
5030}
5031
5032/*
5033 * References:
5034 * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5035 * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5036 *
5037 * Note that the above do not specify any connection between DisplayID Data
5038 * Block revision and CTA Extension versions.
5039 */
5040static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5041{
5042 const struct displayid_block *block;
5043
5044 displayid_iter_for_each(block, &iter->displayid_iter) {
5045 if (block->tag != DATA_BLOCK_CTA)
5046 continue;
5047
5048 /*
5049 * The displayid iterator has already verified the block bounds
5050 * in displayid_iter_block().
5051 */
5052 iter->index = sizeof(*block);
5053 iter->end = iter->index + block->num_bytes;
5054
5055 return block;
5056 }
5057
5058 return NULL;
5059}
5060
5061static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5062{
5063 const struct cea_db *db;
5064
5065 if (iter->collection) {
5066 /* Current collection should always be valid. */
5067 db = __cea_db_iter_current_block(iter);
5068 if (WARN_ON(!db)) {
5069 iter->collection = NULL;
5070 return NULL;
5071 }
5072
5073 /* Next block in CTA Data Block Collection */
5074 iter->index += sizeof(*db) + cea_db_payload_len(db);
5075
5076 db = __cea_db_iter_current_block(iter);
5077 if (db)
5078 return db;
5079 }
5080
5081 for (;;) {
5082 /*
5083 * Find the next CTA Data Block Collection. First iterate all
5084 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5085 *
5086 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5087 * Extension, it's recommended that DisplayID extensions are
5088 * exposed after all of the CTA Extensions.
5089 */
5090 iter->collection = __cea_db_iter_edid_next(iter);
5091 if (!iter->collection)
5092 iter->collection = __cea_db_iter_displayid_next(iter);
5093
5094 if (!iter->collection)
5095 return NULL;
5096
5097 db = __cea_db_iter_current_block(iter);
5098 if (db)
5099 return db;
5100 }
5101}
5102
5103#define cea_db_iter_for_each(__db, __iter) \
5104 while (((__db) = __cea_db_iter_next(__iter)))
5105
5106static void cea_db_iter_end(struct cea_db_iter *iter)
5107{
5108 displayid_iter_end(&iter->displayid_iter);
5109 drm_edid_iter_end(&iter->edid_iter);
5110
5111 memset(iter, 0, sizeof(*iter));
5112}
5113
5114static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5115{
5116 return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5117 cea_db_payload_len(db) >= 5;
5118}
5119
5120static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5121{
5122 return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5123 cea_db_payload_len(db) >= 7;
5124}
5125
5126static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5127{
5128 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5129 cea_db_payload_len(db) >= 2;
5130}
5131
5132static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5133{
5134 return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5135 cea_db_payload_len(db) == 21;
5136}
5137
5138static bool cea_db_is_vcdb(const struct cea_db *db)
5139{
5140 return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5141 cea_db_payload_len(db) == 2;
5142}
5143
5144static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5145{
5146 return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5147 cea_db_payload_len(db) >= 7;
5148}
5149
5150static bool cea_db_is_y420cmdb(const struct cea_db *db)
5151{
5152 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5153}
5154
5155static bool cea_db_is_y420vdb(const struct cea_db *db)
5156{
5157 return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5158}
5159
5160static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5161{
5162 return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5163 cea_db_payload_len(db) >= 3;
5164}
5165
5166/*
5167 * Get the HF-EEODB override extension block count from EDID.
5168 *
5169 * The passed in EDID may be partially read, as long as it has at least two
5170 * blocks (base block and one extension block) if EDID extension count is > 0.
5171 *
5172 * Note that this is *not* how you should parse CTA Data Blocks in general; this
5173 * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5174 * iterators instead.
5175 *
5176 * References:
5177 * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5178 */
5179static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5180{
5181 const u8 *cta;
5182
5183 /* No extensions according to base block, no HF-EEODB. */
5184 if (!edid_extension_block_count(edid))
5185 return 0;
5186
5187 /* HF-EEODB is always in the first EDID extension block only */
5188 cta = edid_extension_block_data(edid, 0);
5189 if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5190 return 0;
5191
5192 /* Need to have the data block collection, and at least 3 bytes. */
5193 if (cea_db_collection_size(cta) < 3)
5194 return 0;
5195
5196 /*
5197 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5198 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5199 * through 6 of Block 1 of the E-EDID.
5200 */
5201 if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5202 return 0;
5203
5204 return cta[4 + 2];
5205}
5206
5207static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector,
5208 const u8 *db)
5209{
5210 struct drm_display_info *info = &connector->display_info;
5211 struct drm_hdmi_info *hdmi = &info->hdmi;
5212 u8 map_len = cea_db_payload_len(db) - 1;
5213 u8 count;
5214 u64 map = 0;
5215
5216 if (map_len == 0) {
5217 /* All CEA modes support ycbcr420 sampling also.*/
5218 hdmi->y420_cmdb_map = U64_MAX;
5219 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5220 return;
5221 }
5222
5223 /*
5224 * This map indicates which of the existing CEA block modes
5225 * from VDB can support YCBCR420 output too. So if bit=0 is
5226 * set, first mode from VDB can support YCBCR420 output too.
5227 * We will parse and keep this map, before parsing VDB itself
5228 * to avoid going through the same block again and again.
5229 *
5230 * Spec is not clear about max possible size of this block.
5231 * Clamping max bitmap block size at 8 bytes. Every byte can
5232 * address 8 CEA modes, in this way this map can address
5233 * 8*8 = first 64 SVDs.
5234 */
5235 if (WARN_ON_ONCE(map_len > 8))
5236 map_len = 8;
5237
5238 for (count = 0; count < map_len; count++)
5239 map |= (u64)db[2 + count] << (8 * count);
5240
5241 if (map)
5242 info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5243
5244 hdmi->y420_cmdb_map = map;
5245}
5246
5247static int add_cea_modes(struct drm_connector *connector,
5248 const struct drm_edid *drm_edid)
5249{
5250 const struct cea_db *db;
5251 struct cea_db_iter iter;
5252 int modes = 0;
5253
5254 cea_db_iter_edid_begin(drm_edid, &iter);
5255 cea_db_iter_for_each(db, &iter) {
5256 const u8 *hdmi = NULL, *video = NULL;
5257 u8 hdmi_len = 0, video_len = 0;
5258
5259 if (cea_db_tag(db) == CTA_DB_VIDEO) {
5260 video = cea_db_data(db);
5261 video_len = cea_db_payload_len(db);
5262 modes += do_cea_modes(connector, video, video_len);
5263 } else if (cea_db_is_hdmi_vsdb(db)) {
5264 /* FIXME: Switch to use cea_db_data() */
5265 hdmi = (const u8 *)db;
5266 hdmi_len = cea_db_payload_len(db);
5267 } else if (cea_db_is_y420vdb(db)) {
5268 const u8 *vdb420 = cea_db_data(db) + 1;
5269
5270 /* Add 4:2:0(only) modes present in EDID */
5271 modes += do_y420vdb_modes(connector, vdb420,
5272 cea_db_payload_len(db) - 1);
5273 }
5274
5275 /*
5276 * We parse the HDMI VSDB after having added the cea modes as we
5277 * will be patching their flags when the sink supports stereo
5278 * 3D.
5279 */
5280 if (hdmi)
5281 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len,
5282 video, video_len);
5283 }
5284 cea_db_iter_end(&iter);
5285
5286 return modes;
5287}
5288
5289static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5290 struct drm_display_mode *mode)
5291{
5292 const struct drm_display_mode *cea_mode;
5293 int clock1, clock2, clock;
5294 u8 vic;
5295 const char *type;
5296
5297 /*
5298 * allow 5kHz clock difference either way to account for
5299 * the 10kHz clock resolution limit of detailed timings.
5300 */
5301 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5302 if (drm_valid_cea_vic(vic)) {
5303 type = "CEA";
5304 cea_mode = cea_mode_for_vic(vic);
5305 clock1 = cea_mode->clock;
5306 clock2 = cea_mode_alternate_clock(cea_mode);
5307 } else {
5308 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5309 if (drm_valid_hdmi_vic(vic)) {
5310 type = "HDMI";
5311 cea_mode = &edid_4k_modes[vic];
5312 clock1 = cea_mode->clock;
5313 clock2 = hdmi_mode_alternate_clock(cea_mode);
5314 } else {
5315 return;
5316 }
5317 }
5318
5319 /* pick whichever is closest */
5320 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5321 clock = clock1;
5322 else
5323 clock = clock2;
5324
5325 if (mode->clock == clock)
5326 return;
5327
5328 drm_dbg_kms(connector->dev,
5329 "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5330 connector->base.id, connector->name,
5331 type, vic, mode->clock, clock);
5332 mode->clock = clock;
5333}
5334
5335static void drm_calculate_luminance_range(struct drm_connector *connector)
5336{
5337 struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1;
5338 struct drm_luminance_range_info *luminance_range =
5339 &connector->display_info.luminance_range;
5340 static const u8 pre_computed_values[] = {
5341 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5342 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5343 };
5344 u32 max_avg, min_cll, max, min, q, r;
5345
5346 if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5347 return;
5348
5349 max_avg = hdr_metadata->max_fall;
5350 min_cll = hdr_metadata->min_cll;
5351
5352 /*
5353 * From the specification (CTA-861-G), for calculating the maximum
5354 * luminance we need to use:
5355 * Luminance = 50*2**(CV/32)
5356 * Where CV is a one-byte value.
5357 * For calculating this expression we may need float point precision;
5358 * to avoid this complexity level, we take advantage that CV is divided
5359 * by a constant. From the Euclids division algorithm, we know that CV
5360 * can be written as: CV = 32*q + r. Next, we replace CV in the
5361 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5362 * need to pre-compute the value of r/32. For pre-computing the values
5363 * We just used the following Ruby line:
5364 * (0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5365 * The results of the above expressions can be verified at
5366 * pre_computed_values.
5367 */
5368 q = max_avg >> 5;
5369 r = max_avg % 32;
5370 max = (1 << q) * pre_computed_values[r];
5371
5372 /* min luminance: maxLum * (CV/255)^2 / 100 */
5373 q = DIV_ROUND_CLOSEST(min_cll, 255);
5374 min = max * DIV_ROUND_CLOSEST((q * q), 100);
5375
5376 luminance_range->min_luminance = min;
5377 luminance_range->max_luminance = max;
5378}
5379
5380static uint8_t eotf_supported(const u8 *edid_ext)
5381{
5382 return edid_ext[2] &
5383 (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5384 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5385 BIT(HDMI_EOTF_SMPTE_ST2084) |
5386 BIT(HDMI_EOTF_BT_2100_HLG));
5387}
5388
5389static uint8_t hdr_metadata_type(const u8 *edid_ext)
5390{
5391 return edid_ext[3] &
5392 BIT(HDMI_STATIC_METADATA_TYPE1);
5393}
5394
5395static void
5396drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5397{
5398 u16 len;
5399
5400 len = cea_db_payload_len(db);
5401
5402 connector->hdr_sink_metadata.hdmi_type1.eotf =
5403 eotf_supported(db);
5404 connector->hdr_sink_metadata.hdmi_type1.metadata_type =
5405 hdr_metadata_type(db);
5406
5407 if (len >= 4)
5408 connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4];
5409 if (len >= 5)
5410 connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5];
5411 if (len >= 6) {
5412 connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6];
5413
5414 /* Calculate only when all values are available */
5415 drm_calculate_luminance_range(connector);
5416 }
5417}
5418
5419static void
5420drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5421{
5422 u8 len = cea_db_payload_len(db);
5423
5424 if (len >= 6 && (db[6] & (1 << 7)))
5425 connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5426 if (len >= 8) {
5427 connector->latency_present[0] = db[8] >> 7;
5428 connector->latency_present[1] = (db[8] >> 6) & 1;
5429 }
5430 if (len >= 9)
5431 connector->video_latency[0] = db[9];
5432 if (len >= 10)
5433 connector->audio_latency[0] = db[10];
5434 if (len >= 11)
5435 connector->video_latency[1] = db[11];
5436 if (len >= 12)
5437 connector->audio_latency[1] = db[12];
5438
5439 drm_dbg_kms(connector->dev,
5440 "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5441 connector->base.id, connector->name,
5442 connector->latency_present[0], connector->latency_present[1],
5443 connector->video_latency[0], connector->video_latency[1],
5444 connector->audio_latency[0], connector->audio_latency[1]);
5445}
5446
5447static void
5448monitor_name(const struct detailed_timing *timing, void *data)
5449{
5450 const char **res = data;
5451
5452 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5453 return;
5454
5455 *res = timing->data.other_data.data.str.str;
5456}
5457
5458static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5459{
5460 const char *edid_name = NULL;
5461 int mnl;
5462
5463 if (!drm_edid || !name)
5464 return 0;
5465
5466 drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5467 for (mnl = 0; edid_name && mnl < 13; mnl++) {
5468 if (edid_name[mnl] == 0x0a)
5469 break;
5470
5471 name[mnl] = edid_name[mnl];
5472 }
5473
5474 return mnl;
5475}
5476
5477/**
5478 * drm_edid_get_monitor_name - fetch the monitor name from the edid
5479 * @edid: monitor EDID information
5480 * @name: pointer to a character array to hold the name of the monitor
5481 * @bufsize: The size of the name buffer (should be at least 14 chars.)
5482 *
5483 */
5484void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5485{
5486 int name_length = 0;
5487
5488 if (bufsize <= 0)
5489 return;
5490
5491 if (edid) {
5492 char buf[13];
5493 struct drm_edid drm_edid = {
5494 .edid = edid,
5495 .size = edid_size(edid),
5496 };
5497
5498 name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5499 memcpy(name, buf, name_length);
5500 }
5501
5502 name[name_length] = '\0';
5503}
5504EXPORT_SYMBOL(drm_edid_get_monitor_name);
5505
5506static void clear_eld(struct drm_connector *connector)
5507{
5508 memset(connector->eld, 0, sizeof(connector->eld));
5509
5510 connector->latency_present[0] = false;
5511 connector->latency_present[1] = false;
5512 connector->video_latency[0] = 0;
5513 connector->audio_latency[0] = 0;
5514 connector->video_latency[1] = 0;
5515 connector->audio_latency[1] = 0;
5516}
5517
5518/*
5519 * drm_edid_to_eld - build ELD from EDID
5520 * @connector: connector corresponding to the HDMI/DP sink
5521 * @drm_edid: EDID to parse
5522 *
5523 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5524 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5525 */
5526static void drm_edid_to_eld(struct drm_connector *connector,
5527 const struct drm_edid *drm_edid)
5528{
5529 const struct drm_display_info *info = &connector->display_info;
5530 const struct cea_db *db;
5531 struct cea_db_iter iter;
5532 uint8_t *eld = connector->eld;
5533 int total_sad_count = 0;
5534 int mnl;
5535
5536 clear_eld(connector);
5537
5538 if (!drm_edid)
5539 return;
5540
5541 mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5542 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5543 connector->base.id, connector->name,
5544 &eld[DRM_ELD_MONITOR_NAME_STRING]);
5545
5546 eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5547 eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5548
5549 eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5550
5551 eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5552 eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5553 eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5554 eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5555
5556 cea_db_iter_edid_begin(drm_edid, &iter);
5557 cea_db_iter_for_each(db, &iter) {
5558 const u8 *data = cea_db_data(db);
5559 int len = cea_db_payload_len(db);
5560 int sad_count;
5561
5562 switch (cea_db_tag(db)) {
5563 case CTA_DB_AUDIO:
5564 /* Audio Data Block, contains SADs */
5565 sad_count = min(len / 3, 15 - total_sad_count);
5566 if (sad_count >= 1)
5567 memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5568 data, sad_count * 3);
5569 total_sad_count += sad_count;
5570 break;
5571 case CTA_DB_SPEAKER:
5572 /* Speaker Allocation Data Block */
5573 if (len >= 1)
5574 eld[DRM_ELD_SPEAKER] = data[0];
5575 break;
5576 case CTA_DB_VENDOR:
5577 /* HDMI Vendor-Specific Data Block */
5578 if (cea_db_is_hdmi_vsdb(db))
5579 drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5580 break;
5581 default:
5582 break;
5583 }
5584 }
5585 cea_db_iter_end(&iter);
5586
5587 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5588
5589 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5590 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5591 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5592 else
5593 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5594
5595 eld[DRM_ELD_BASELINE_ELD_LEN] =
5596 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5597
5598 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5599 connector->base.id, connector->name,
5600 drm_eld_size(eld), total_sad_count);
5601}
5602
5603static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5604 struct cea_sad **sads)
5605{
5606 const struct cea_db *db;
5607 struct cea_db_iter iter;
5608 int count = 0;
5609
5610 cea_db_iter_edid_begin(drm_edid, &iter);
5611 cea_db_iter_for_each(db, &iter) {
5612 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5613 int j;
5614
5615 count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5616 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
5617 if (!*sads)
5618 return -ENOMEM;
5619 for (j = 0; j < count; j++) {
5620 const u8 *sad = &db->data[j * 3];
5621
5622 (*sads)[j].format = (sad[0] & 0x78) >> 3;
5623 (*sads)[j].channels = sad[0] & 0x7;
5624 (*sads)[j].freq = sad[1] & 0x7F;
5625 (*sads)[j].byte2 = sad[2];
5626 }
5627 break;
5628 }
5629 }
5630 cea_db_iter_end(&iter);
5631
5632 DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5633
5634 return count;
5635}
5636
5637/**
5638 * drm_edid_to_sad - extracts SADs from EDID
5639 * @edid: EDID to parse
5640 * @sads: pointer that will be set to the extracted SADs
5641 *
5642 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5643 *
5644 * Note: The returned pointer needs to be freed using kfree().
5645 *
5646 * Return: The number of found SADs or negative number on error.
5647 */
5648int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5649{
5650 struct drm_edid drm_edid;
5651
5652 return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5653}
5654EXPORT_SYMBOL(drm_edid_to_sad);
5655
5656static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5657 u8 **sadb)
5658{
5659 const struct cea_db *db;
5660 struct cea_db_iter iter;
5661 int count = 0;
5662
5663 cea_db_iter_edid_begin(drm_edid, &iter);
5664 cea_db_iter_for_each(db, &iter) {
5665 if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5666 cea_db_payload_len(db) == 3) {
5667 *sadb = kmemdup(db->data, cea_db_payload_len(db),
5668 GFP_KERNEL);
5669 if (!*sadb)
5670 return -ENOMEM;
5671 count = cea_db_payload_len(db);
5672 break;
5673 }
5674 }
5675 cea_db_iter_end(&iter);
5676
5677 DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5678
5679 return count;
5680}
5681
5682/**
5683 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5684 * @edid: EDID to parse
5685 * @sadb: pointer to the speaker block
5686 *
5687 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5688 *
5689 * Note: The returned pointer needs to be freed using kfree().
5690 *
5691 * Return: The number of found Speaker Allocation Blocks or negative number on
5692 * error.
5693 */
5694int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5695{
5696 struct drm_edid drm_edid;
5697
5698 return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5699 sadb);
5700}
5701EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5702
5703/**
5704 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5705 * @connector: connector associated with the HDMI/DP sink
5706 * @mode: the display mode
5707 *
5708 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5709 * the sink doesn't support audio or video.
5710 */
5711int drm_av_sync_delay(struct drm_connector *connector,
5712 const struct drm_display_mode *mode)
5713{
5714 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5715 int a, v;
5716
5717 if (!connector->latency_present[0])
5718 return 0;
5719 if (!connector->latency_present[1])
5720 i = 0;
5721
5722 a = connector->audio_latency[i];
5723 v = connector->video_latency[i];
5724
5725 /*
5726 * HDMI/DP sink doesn't support audio or video?
5727 */
5728 if (a == 255 || v == 255)
5729 return 0;
5730
5731 /*
5732 * Convert raw EDID values to millisecond.
5733 * Treat unknown latency as 0ms.
5734 */
5735 if (a)
5736 a = min(2 * (a - 1), 500);
5737 if (v)
5738 v = min(2 * (v - 1), 500);
5739
5740 return max(v - a, 0);
5741}
5742EXPORT_SYMBOL(drm_av_sync_delay);
5743
5744static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5745{
5746 const struct cea_db *db;
5747 struct cea_db_iter iter;
5748 bool hdmi = false;
5749
5750 /*
5751 * Because HDMI identifier is in Vendor Specific Block,
5752 * search it from all data blocks of CEA extension.
5753 */
5754 cea_db_iter_edid_begin(drm_edid, &iter);
5755 cea_db_iter_for_each(db, &iter) {
5756 if (cea_db_is_hdmi_vsdb(db)) {
5757 hdmi = true;
5758 break;
5759 }
5760 }
5761 cea_db_iter_end(&iter);
5762
5763 return hdmi;
5764}
5765
5766/**
5767 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5768 * @edid: monitor EDID information
5769 *
5770 * Parse the CEA extension according to CEA-861-B.
5771 *
5772 * Drivers that have added the modes parsed from EDID to drm_display_info
5773 * should use &drm_display_info.is_hdmi instead of calling this function.
5774 *
5775 * Return: True if the monitor is HDMI, false if not or unknown.
5776 */
5777bool drm_detect_hdmi_monitor(const struct edid *edid)
5778{
5779 struct drm_edid drm_edid;
5780
5781 return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5782}
5783EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5784
5785static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5786{
5787 struct drm_edid_iter edid_iter;
5788 const struct cea_db *db;
5789 struct cea_db_iter iter;
5790 const u8 *edid_ext;
5791 bool has_audio = false;
5792
5793 drm_edid_iter_begin(drm_edid, &edid_iter);
5794 drm_edid_iter_for_each(edid_ext, &edid_iter) {
5795 if (edid_ext[0] == CEA_EXT) {
5796 has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5797 if (has_audio)
5798 break;
5799 }
5800 }
5801 drm_edid_iter_end(&edid_iter);
5802
5803 if (has_audio) {
5804 DRM_DEBUG_KMS("Monitor has basic audio support\n");
5805 goto end;
5806 }
5807
5808 cea_db_iter_edid_begin(drm_edid, &iter);
5809 cea_db_iter_for_each(db, &iter) {
5810 if (cea_db_tag(db) == CTA_DB_AUDIO) {
5811 const u8 *data = cea_db_data(db);
5812 int i;
5813
5814 for (i = 0; i < cea_db_payload_len(db); i += 3)
5815 DRM_DEBUG_KMS("CEA audio format %d\n",
5816 (data[i] >> 3) & 0xf);
5817 has_audio = true;
5818 break;
5819 }
5820 }
5821 cea_db_iter_end(&iter);
5822
5823end:
5824 return has_audio;
5825}
5826
5827/**
5828 * drm_detect_monitor_audio - check monitor audio capability
5829 * @edid: EDID block to scan
5830 *
5831 * Monitor should have CEA extension block.
5832 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5833 * audio' only. If there is any audio extension block and supported
5834 * audio format, assume at least 'basic audio' support, even if 'basic
5835 * audio' is not defined in EDID.
5836 *
5837 * Return: True if the monitor supports audio, false otherwise.
5838 */
5839bool drm_detect_monitor_audio(const struct edid *edid)
5840{
5841 struct drm_edid drm_edid;
5842
5843 return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5844}
5845EXPORT_SYMBOL(drm_detect_monitor_audio);
5846
5847
5848/**
5849 * drm_default_rgb_quant_range - default RGB quantization range
5850 * @mode: display mode
5851 *
5852 * Determine the default RGB quantization range for the mode,
5853 * as specified in CEA-861.
5854 *
5855 * Return: The default RGB quantization range for the mode
5856 */
5857enum hdmi_quantization_range
5858drm_default_rgb_quant_range(const struct drm_display_mode *mode)
5859{
5860 /* All CEA modes other than VIC 1 use limited quantization range. */
5861 return drm_match_cea_mode(mode) > 1 ?
5862 HDMI_QUANTIZATION_RANGE_LIMITED :
5863 HDMI_QUANTIZATION_RANGE_FULL;
5864}
5865EXPORT_SYMBOL(drm_default_rgb_quant_range);
5866
5867static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
5868{
5869 struct drm_display_info *info = &connector->display_info;
5870
5871 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
5872 connector->base.id, connector->name, db[2]);
5873
5874 if (db[2] & EDID_CEA_VCDB_QS)
5875 info->rgb_quant_range_selectable = true;
5876}
5877
5878static
5879void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
5880{
5881 switch (max_frl_rate) {
5882 case 1:
5883 *max_lanes = 3;
5884 *max_rate_per_lane = 3;
5885 break;
5886 case 2:
5887 *max_lanes = 3;
5888 *max_rate_per_lane = 6;
5889 break;
5890 case 3:
5891 *max_lanes = 4;
5892 *max_rate_per_lane = 6;
5893 break;
5894 case 4:
5895 *max_lanes = 4;
5896 *max_rate_per_lane = 8;
5897 break;
5898 case 5:
5899 *max_lanes = 4;
5900 *max_rate_per_lane = 10;
5901 break;
5902 case 6:
5903 *max_lanes = 4;
5904 *max_rate_per_lane = 12;
5905 break;
5906 case 0:
5907 default:
5908 *max_lanes = 0;
5909 *max_rate_per_lane = 0;
5910 }
5911}
5912
5913static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
5914 const u8 *db)
5915{
5916 u8 dc_mask;
5917 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
5918
5919 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
5920 hdmi->y420_dc_modes = dc_mask;
5921}
5922
5923static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
5924 const u8 *hf_scds)
5925{
5926 hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
5927
5928 if (!hdmi_dsc->v_1p2)
5929 return;
5930
5931 hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
5932 hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
5933
5934 if (hf_scds[11] & DRM_EDID_DSC_16BPC)
5935 hdmi_dsc->bpc_supported = 16;
5936 else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
5937 hdmi_dsc->bpc_supported = 12;
5938 else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
5939 hdmi_dsc->bpc_supported = 10;
5940 else
5941 /* Supports min 8 BPC if DSC 1.2 is supported*/
5942 hdmi_dsc->bpc_supported = 8;
5943
5944 if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
5945 u8 dsc_max_slices;
5946 u8 dsc_max_frl_rate;
5947
5948 dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
5949 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
5950 &hdmi_dsc->max_frl_rate_per_lane);
5951
5952 dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
5953
5954 switch (dsc_max_slices) {
5955 case 1:
5956 hdmi_dsc->max_slices = 1;
5957 hdmi_dsc->clk_per_slice = 340;
5958 break;
5959 case 2:
5960 hdmi_dsc->max_slices = 2;
5961 hdmi_dsc->clk_per_slice = 340;
5962 break;
5963 case 3:
5964 hdmi_dsc->max_slices = 4;
5965 hdmi_dsc->clk_per_slice = 340;
5966 break;
5967 case 4:
5968 hdmi_dsc->max_slices = 8;
5969 hdmi_dsc->clk_per_slice = 340;
5970 break;
5971 case 5:
5972 hdmi_dsc->max_slices = 8;
5973 hdmi_dsc->clk_per_slice = 400;
5974 break;
5975 case 6:
5976 hdmi_dsc->max_slices = 12;
5977 hdmi_dsc->clk_per_slice = 400;
5978 break;
5979 case 7:
5980 hdmi_dsc->max_slices = 16;
5981 hdmi_dsc->clk_per_slice = 400;
5982 break;
5983 case 0:
5984 default:
5985 hdmi_dsc->max_slices = 0;
5986 hdmi_dsc->clk_per_slice = 0;
5987 }
5988 }
5989
5990 if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
5991 hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
5992}
5993
5994/* Sink Capability Data Structure */
5995static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
5996 const u8 *hf_scds)
5997{
5998 struct drm_display_info *display = &connector->display_info;
5999 struct drm_hdmi_info *hdmi = &display->hdmi;
6000 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6001 int max_tmds_clock = 0;
6002 u8 max_frl_rate = 0;
6003 bool dsc_support = false;
6004
6005 display->has_hdmi_infoframe = true;
6006
6007 if (hf_scds[6] & 0x80) {
6008 hdmi->scdc.supported = true;
6009 if (hf_scds[6] & 0x40)
6010 hdmi->scdc.read_request = true;
6011 }
6012
6013 /*
6014 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6015 * And as per the spec, three factors confirm this:
6016 * * Availability of a HF-VSDB block in EDID (check)
6017 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6018 * * SCDC support available (let's check)
6019 * Lets check it out.
6020 */
6021
6022 if (hf_scds[5]) {
6023 struct drm_scdc *scdc = &hdmi->scdc;
6024
6025 /* max clock is 5000 KHz times block value */
6026 max_tmds_clock = hf_scds[5] * 5000;
6027
6028 if (max_tmds_clock > 340000) {
6029 display->max_tmds_clock = max_tmds_clock;
6030 }
6031
6032 if (scdc->supported) {
6033 scdc->scrambling.supported = true;
6034
6035 /* Few sinks support scrambling for clocks < 340M */
6036 if ((hf_scds[6] & 0x8))
6037 scdc->scrambling.low_rates = true;
6038 }
6039 }
6040
6041 if (hf_scds[7]) {
6042 max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6043 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6044 &hdmi->max_frl_rate_per_lane);
6045 }
6046
6047 drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6048
6049 if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6050 drm_parse_dsc_info(hdmi_dsc, hf_scds);
6051 dsc_support = true;
6052 }
6053
6054 drm_dbg_kms(connector->dev,
6055 "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6056 connector->base.id, connector->name,
6057 max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6058}
6059
6060static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6061 const u8 *hdmi)
6062{
6063 struct drm_display_info *info = &connector->display_info;
6064 unsigned int dc_bpc = 0;
6065
6066 /* HDMI supports at least 8 bpc */
6067 info->bpc = 8;
6068
6069 if (cea_db_payload_len(hdmi) < 6)
6070 return;
6071
6072 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6073 dc_bpc = 10;
6074 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6075 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6076 connector->base.id, connector->name);
6077 }
6078
6079 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6080 dc_bpc = 12;
6081 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6082 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6083 connector->base.id, connector->name);
6084 }
6085
6086 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6087 dc_bpc = 16;
6088 info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6089 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6090 connector->base.id, connector->name);
6091 }
6092
6093 if (dc_bpc == 0) {
6094 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6095 connector->base.id, connector->name);
6096 return;
6097 }
6098
6099 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6100 connector->base.id, connector->name, dc_bpc);
6101 info->bpc = dc_bpc;
6102
6103 /* YCRCB444 is optional according to spec. */
6104 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6105 info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6106 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6107 connector->base.id, connector->name);
6108 }
6109
6110 /*
6111 * Spec says that if any deep color mode is supported at all,
6112 * then deep color 36 bit must be supported.
6113 */
6114 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6115 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6116 connector->base.id, connector->name);
6117 }
6118}
6119
6120static void
6121drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6122{
6123 struct drm_display_info *info = &connector->display_info;
6124 u8 len = cea_db_payload_len(db);
6125
6126 info->is_hdmi = true;
6127
6128 if (len >= 6)
6129 info->dvi_dual = db[6] & 1;
6130 if (len >= 7)
6131 info->max_tmds_clock = db[7] * 5000;
6132
6133 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6134 connector->base.id, connector->name,
6135 info->dvi_dual, info->max_tmds_clock);
6136
6137 drm_parse_hdmi_deep_color_info(connector, db);
6138}
6139
6140/*
6141 * See EDID extension for head-mounted and specialized monitors, specified at:
6142 * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6143 */
6144static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6145 const u8 *db)
6146{
6147 struct drm_display_info *info = &connector->display_info;
6148 u8 version = db[4];
6149 bool desktop_usage = db[5] & BIT(6);
6150
6151 /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6152 if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6153 info->non_desktop = true;
6154
6155 drm_dbg_kms(connector->dev,
6156 "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6157 connector->base.id, connector->name, version, db[5]);
6158}
6159
6160static void drm_parse_cea_ext(struct drm_connector *connector,
6161 const struct drm_edid *drm_edid)
6162{
6163 struct drm_display_info *info = &connector->display_info;
6164 struct drm_edid_iter edid_iter;
6165 const struct cea_db *db;
6166 struct cea_db_iter iter;
6167 const u8 *edid_ext;
6168
6169 drm_edid_iter_begin(drm_edid, &edid_iter);
6170 drm_edid_iter_for_each(edid_ext, &edid_iter) {
6171 if (edid_ext[0] != CEA_EXT)
6172 continue;
6173
6174 if (!info->cea_rev)
6175 info->cea_rev = edid_ext[1];
6176
6177 if (info->cea_rev != edid_ext[1])
6178 drm_dbg_kms(connector->dev,
6179 "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6180 connector->base.id, connector->name,
6181 info->cea_rev, edid_ext[1]);
6182
6183 /* The existence of a CTA extension should imply RGB support */
6184 info->color_formats = DRM_COLOR_FORMAT_RGB444;
6185 if (edid_ext[3] & EDID_CEA_YCRCB444)
6186 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6187 if (edid_ext[3] & EDID_CEA_YCRCB422)
6188 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6189 }
6190 drm_edid_iter_end(&edid_iter);
6191
6192 cea_db_iter_edid_begin(drm_edid, &iter);
6193 cea_db_iter_for_each(db, &iter) {
6194 /* FIXME: convert parsers to use struct cea_db */
6195 const u8 *data = (const u8 *)db;
6196
6197 if (cea_db_is_hdmi_vsdb(db))
6198 drm_parse_hdmi_vsdb_video(connector, data);
6199 else if (cea_db_is_hdmi_forum_vsdb(db) ||
6200 cea_db_is_hdmi_forum_scdb(db))
6201 drm_parse_hdmi_forum_scds(connector, data);
6202 else if (cea_db_is_microsoft_vsdb(db))
6203 drm_parse_microsoft_vsdb(connector, data);
6204 else if (cea_db_is_y420cmdb(db))
6205 drm_parse_y420cmdb_bitmap(connector, data);
6206 else if (cea_db_is_vcdb(db))
6207 drm_parse_vcdb(connector, data);
6208 else if (cea_db_is_hdmi_hdr_metadata_block(db))
6209 drm_parse_hdr_metadata_block(connector, data);
6210 }
6211 cea_db_iter_end(&iter);
6212}
6213
6214static
6215void get_monitor_range(const struct detailed_timing *timing, void *c)
6216{
6217 struct detailed_mode_closure *closure = c;
6218 struct drm_display_info *info = &closure->connector->display_info;
6219 struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6220 const struct detailed_non_pixel *data = &timing->data.other_data;
6221 const struct detailed_data_monitor_range *range = &data->data.range;
6222 const struct edid *edid = closure->drm_edid->edid;
6223
6224 if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6225 return;
6226
6227 /*
6228 * These limits are used to determine the VRR refresh
6229 * rate range. Only the "range limits only" variant
6230 * of the range descriptor seems to guarantee that
6231 * any and all timings are accepted by the sink, as
6232 * opposed to just timings conforming to the indicated
6233 * formula (GTF/GTF2/CVT). Thus other variants of the
6234 * range descriptor are not accepted here.
6235 */
6236 if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6237 return;
6238
6239 monitor_range->min_vfreq = range->min_vfreq;
6240 monitor_range->max_vfreq = range->max_vfreq;
6241
6242 if (edid->revision >= 4) {
6243 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6244 monitor_range->min_vfreq += 255;
6245 if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6246 monitor_range->max_vfreq += 255;
6247 }
6248}
6249
6250static void drm_get_monitor_range(struct drm_connector *connector,
6251 const struct drm_edid *drm_edid)
6252{
6253 const struct drm_display_info *info = &connector->display_info;
6254 struct detailed_mode_closure closure = {
6255 .connector = connector,
6256 .drm_edid = drm_edid,
6257 };
6258
6259 if (drm_edid->edid->revision < 4)
6260 return;
6261
6262 if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6263 return;
6264
6265 drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6266
6267 drm_dbg_kms(connector->dev,
6268 "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6269 connector->base.id, connector->name,
6270 info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6271}
6272
6273static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6274 const struct displayid_block *block)
6275{
6276 struct displayid_vesa_vendor_specific_block *vesa =
6277 (struct displayid_vesa_vendor_specific_block *)block;
6278 struct drm_display_info *info = &connector->display_info;
6279
6280 if (block->num_bytes < 3) {
6281 drm_dbg_kms(connector->dev,
6282 "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6283 connector->base.id, connector->name, block->num_bytes);
6284 return;
6285 }
6286
6287 if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6288 return;
6289
6290 if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6291 drm_dbg_kms(connector->dev,
6292 "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6293 connector->base.id, connector->name);
6294 return;
6295 }
6296
6297 switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6298 default:
6299 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6300 connector->base.id, connector->name);
6301 fallthrough;
6302 case 0:
6303 info->mso_stream_count = 0;
6304 break;
6305 case 1:
6306 info->mso_stream_count = 2; /* 2 or 4 links */
6307 break;
6308 case 2:
6309 info->mso_stream_count = 4; /* 4 links */
6310 break;
6311 }
6312
6313 if (!info->mso_stream_count) {
6314 info->mso_pixel_overlap = 0;
6315 return;
6316 }
6317
6318 info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6319 if (info->mso_pixel_overlap > 8) {
6320 drm_dbg_kms(connector->dev,
6321 "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6322 connector->base.id, connector->name,
6323 info->mso_pixel_overlap);
6324 info->mso_pixel_overlap = 8;
6325 }
6326
6327 drm_dbg_kms(connector->dev,
6328 "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6329 connector->base.id, connector->name,
6330 info->mso_stream_count, info->mso_pixel_overlap);
6331}
6332
6333static void drm_update_mso(struct drm_connector *connector,
6334 const struct drm_edid *drm_edid)
6335{
6336 const struct displayid_block *block;
6337 struct displayid_iter iter;
6338
6339 displayid_iter_edid_begin(drm_edid, &iter);
6340 displayid_iter_for_each(block, &iter) {
6341 if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6342 drm_parse_vesa_mso_data(connector, block);
6343 }
6344 displayid_iter_end(&iter);
6345}
6346
6347/* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6348 * all of the values which would have been set from EDID
6349 */
6350static void drm_reset_display_info(struct drm_connector *connector)
6351{
6352 struct drm_display_info *info = &connector->display_info;
6353
6354 info->width_mm = 0;
6355 info->height_mm = 0;
6356
6357 info->bpc = 0;
6358 info->color_formats = 0;
6359 info->cea_rev = 0;
6360 info->max_tmds_clock = 0;
6361 info->dvi_dual = false;
6362 info->is_hdmi = false;
6363 info->has_hdmi_infoframe = false;
6364 info->rgb_quant_range_selectable = false;
6365 memset(&info->hdmi, 0, sizeof(info->hdmi));
6366
6367 info->edid_hdmi_rgb444_dc_modes = 0;
6368 info->edid_hdmi_ycbcr444_dc_modes = 0;
6369
6370 info->non_desktop = 0;
6371 memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6372 memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6373
6374 info->mso_stream_count = 0;
6375 info->mso_pixel_overlap = 0;
6376 info->max_dsc_bpp = 0;
6377}
6378
6379static u32 update_display_info(struct drm_connector *connector,
6380 const struct drm_edid *drm_edid)
6381{
6382 struct drm_display_info *info = &connector->display_info;
6383 const struct edid *edid = drm_edid->edid;
6384
6385 u32 quirks = edid_get_quirks(drm_edid);
6386
6387 drm_reset_display_info(connector);
6388
6389 info->width_mm = edid->width_cm * 10;
6390 info->height_mm = edid->height_cm * 10;
6391
6392 drm_get_monitor_range(connector, drm_edid);
6393
6394 if (edid->revision < 3)
6395 goto out;
6396
6397 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
6398 goto out;
6399
6400 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6401 drm_parse_cea_ext(connector, drm_edid);
6402
6403 /*
6404 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6405 *
6406 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6407 * tells us to assume 8 bpc color depth if the EDID doesn't have
6408 * extensions which tell otherwise.
6409 */
6410 if (info->bpc == 0 && edid->revision == 3 &&
6411 edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6412 info->bpc = 8;
6413 drm_dbg_kms(connector->dev,
6414 "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6415 connector->base.id, connector->name, info->bpc);
6416 }
6417
6418 /* Only defined for 1.4 with digital displays */
6419 if (edid->revision < 4)
6420 goto out;
6421
6422 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6423 case DRM_EDID_DIGITAL_DEPTH_6:
6424 info->bpc = 6;
6425 break;
6426 case DRM_EDID_DIGITAL_DEPTH_8:
6427 info->bpc = 8;
6428 break;
6429 case DRM_EDID_DIGITAL_DEPTH_10:
6430 info->bpc = 10;
6431 break;
6432 case DRM_EDID_DIGITAL_DEPTH_12:
6433 info->bpc = 12;
6434 break;
6435 case DRM_EDID_DIGITAL_DEPTH_14:
6436 info->bpc = 14;
6437 break;
6438 case DRM_EDID_DIGITAL_DEPTH_16:
6439 info->bpc = 16;
6440 break;
6441 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6442 default:
6443 info->bpc = 0;
6444 break;
6445 }
6446
6447 drm_dbg_kms(connector->dev,
6448 "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6449 connector->base.id, connector->name, info->bpc);
6450
6451 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6452 info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6453 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6454 info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6455
6456 drm_update_mso(connector, drm_edid);
6457
6458out:
6459 if (quirks & EDID_QUIRK_NON_DESKTOP) {
6460 drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6461 connector->base.id, connector->name,
6462 info->non_desktop ? " (redundant quirk)" : "");
6463 info->non_desktop = true;
6464 }
6465
6466 if (quirks & EDID_QUIRK_CAP_DSC_15BPP)
6467 info->max_dsc_bpp = 15;
6468
6469 return quirks;
6470}
6471
6472static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6473 struct displayid_detailed_timings_1 *timings,
6474 bool type_7)
6475{
6476 struct drm_display_mode *mode;
6477 unsigned pixel_clock = (timings->pixel_clock[0] |
6478 (timings->pixel_clock[1] << 8) |
6479 (timings->pixel_clock[2] << 16)) + 1;
6480 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
6481 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
6482 unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1;
6483 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
6484 unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1;
6485 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
6486 unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1;
6487 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
6488 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
6489 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
6490
6491 mode = drm_mode_create(dev);
6492 if (!mode)
6493 return NULL;
6494
6495 /* resolution is kHz for type VII, and 10 kHz for type I */
6496 mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6497 mode->hdisplay = hactive;
6498 mode->hsync_start = mode->hdisplay + hsync;
6499 mode->hsync_end = mode->hsync_start + hsync_width;
6500 mode->htotal = mode->hdisplay + hblank;
6501
6502 mode->vdisplay = vactive;
6503 mode->vsync_start = mode->vdisplay + vsync;
6504 mode->vsync_end = mode->vsync_start + vsync_width;
6505 mode->vtotal = mode->vdisplay + vblank;
6506
6507 mode->flags = 0;
6508 mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6509 mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6510 mode->type = DRM_MODE_TYPE_DRIVER;
6511
6512 if (timings->flags & 0x80)
6513 mode->type |= DRM_MODE_TYPE_PREFERRED;
6514 drm_mode_set_name(mode);
6515
6516 return mode;
6517}
6518
6519static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6520 const struct displayid_block *block)
6521{
6522 struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6523 int i;
6524 int num_timings;
6525 struct drm_display_mode *newmode;
6526 int num_modes = 0;
6527 bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6528 /* blocks must be multiple of 20 bytes length */
6529 if (block->num_bytes % 20)
6530 return 0;
6531
6532 num_timings = block->num_bytes / 20;
6533 for (i = 0; i < num_timings; i++) {
6534 struct displayid_detailed_timings_1 *timings = &det->timings[i];
6535
6536 newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6537 if (!newmode)
6538 continue;
6539
6540 drm_mode_probed_add(connector, newmode);
6541 num_modes++;
6542 }
6543 return num_modes;
6544}
6545
6546static int add_displayid_detailed_modes(struct drm_connector *connector,
6547 const struct drm_edid *drm_edid)
6548{
6549 const struct displayid_block *block;
6550 struct displayid_iter iter;
6551 int num_modes = 0;
6552
6553 displayid_iter_edid_begin(drm_edid, &iter);
6554 displayid_iter_for_each(block, &iter) {
6555 if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6556 block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6557 num_modes += add_displayid_detailed_1_modes(connector, block);
6558 }
6559 displayid_iter_end(&iter);
6560
6561 return num_modes;
6562}
6563
6564static int _drm_edid_connector_update(struct drm_connector *connector,
6565 const struct drm_edid *drm_edid)
6566{
6567 int num_modes = 0;
6568 u32 quirks;
6569
6570 if (!drm_edid) {
6571 drm_reset_display_info(connector);
6572 clear_eld(connector);
6573 return 0;
6574 }
6575
6576 /*
6577 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
6578 * To avoid multiple parsing of same block, lets parse that map
6579 * from sink info, before parsing CEA modes.
6580 */
6581 quirks = update_display_info(connector, drm_edid);
6582
6583 /* Depends on info->cea_rev set by update_display_info() above */
6584 drm_edid_to_eld(connector, drm_edid);
6585
6586 /*
6587 * EDID spec says modes should be preferred in this order:
6588 * - preferred detailed mode
6589 * - other detailed modes from base block
6590 * - detailed modes from extension blocks
6591 * - CVT 3-byte code modes
6592 * - standard timing codes
6593 * - established timing codes
6594 * - modes inferred from GTF or CVT range information
6595 *
6596 * We get this pretty much right.
6597 *
6598 * XXX order for additional mode types in extension blocks?
6599 */
6600 num_modes += add_detailed_modes(connector, drm_edid, quirks);
6601 num_modes += add_cvt_modes(connector, drm_edid);
6602 num_modes += add_standard_modes(connector, drm_edid);
6603 num_modes += add_established_modes(connector, drm_edid);
6604 num_modes += add_cea_modes(connector, drm_edid);
6605 num_modes += add_alternate_cea_modes(connector, drm_edid);
6606 num_modes += add_displayid_detailed_modes(connector, drm_edid);
6607 if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6608 num_modes += add_inferred_modes(connector, drm_edid);
6609
6610 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
6611 edid_fixup_preferred(connector, quirks);
6612
6613 if (quirks & EDID_QUIRK_FORCE_6BPC)
6614 connector->display_info.bpc = 6;
6615
6616 if (quirks & EDID_QUIRK_FORCE_8BPC)
6617 connector->display_info.bpc = 8;
6618
6619 if (quirks & EDID_QUIRK_FORCE_10BPC)
6620 connector->display_info.bpc = 10;
6621
6622 if (quirks & EDID_QUIRK_FORCE_12BPC)
6623 connector->display_info.bpc = 12;
6624
6625 return num_modes;
6626}
6627
6628static void _drm_update_tile_info(struct drm_connector *connector,
6629 const struct drm_edid *drm_edid);
6630
6631static int _drm_edid_connector_property_update(struct drm_connector *connector,
6632 const struct drm_edid *drm_edid)
6633{
6634 struct drm_device *dev = connector->dev;
6635 int ret;
6636
6637 if (connector->edid_blob_ptr) {
6638 const struct edid *old_edid = connector->edid_blob_ptr->data;
6639
6640 if (old_edid) {
6641 if (!drm_edid_are_equal(drm_edid ? drm_edid->edid : NULL, old_edid)) {
6642 connector->epoch_counter++;
6643 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6644 connector->base.id, connector->name,
6645 connector->epoch_counter);
6646 }
6647 }
6648 }
6649
6650 ret = drm_property_replace_global_blob(dev,
6651 &connector->edid_blob_ptr,
6652 drm_edid ? drm_edid->size : 0,
6653 drm_edid ? drm_edid->edid : NULL,
6654 &connector->base,
6655 dev->mode_config.edid_property);
6656 if (ret) {
6657 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
6658 connector->base.id, connector->name, ret);
6659 goto out;
6660 }
6661
6662 ret = drm_object_property_set_value(&connector->base,
6663 dev->mode_config.non_desktop_property,
6664 connector->display_info.non_desktop);
6665 if (ret) {
6666 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
6667 connector->base.id, connector->name, ret);
6668 goto out;
6669 }
6670
6671 ret = drm_connector_set_tile_property(connector);
6672 if (ret) {
6673 drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
6674 connector->base.id, connector->name, ret);
6675 goto out;
6676 }
6677
6678out:
6679 return ret;
6680}
6681
6682/**
6683 * drm_edid_connector_update - Update connector information from EDID
6684 * @connector: Connector
6685 * @drm_edid: EDID
6686 *
6687 * Update the connector mode list, display info, ELD, HDR metadata, relevant
6688 * properties, etc. from the passed in EDID.
6689 *
6690 * If EDID is NULL, reset the information.
6691 *
6692 * Return: The number of modes added or 0 if we couldn't find any.
6693 */
6694int drm_edid_connector_update(struct drm_connector *connector,
6695 const struct drm_edid *drm_edid)
6696{
6697 int count;
6698
6699 count = _drm_edid_connector_update(connector, drm_edid);
6700
6701 _drm_update_tile_info(connector, drm_edid);
6702
6703 /* Note: Ignore errors for now. */
6704 _drm_edid_connector_property_update(connector, drm_edid);
6705
6706 return count;
6707}
6708EXPORT_SYMBOL(drm_edid_connector_update);
6709
6710static int _drm_connector_update_edid_property(struct drm_connector *connector,
6711 const struct drm_edid *drm_edid)
6712{
6713 /*
6714 * Set the display info, using edid if available, otherwise resetting
6715 * the values to defaults. This duplicates the work done in
6716 * drm_add_edid_modes, but that function is not consistently called
6717 * before this one in all drivers and the computation is cheap enough
6718 * that it seems better to duplicate it rather than attempt to ensure
6719 * some arbitrary ordering of calls.
6720 */
6721 if (drm_edid)
6722 update_display_info(connector, drm_edid);
6723 else
6724 drm_reset_display_info(connector);
6725
6726 _drm_update_tile_info(connector, drm_edid);
6727
6728 return _drm_edid_connector_property_update(connector, drm_edid);
6729}
6730
6731/**
6732 * drm_connector_update_edid_property - update the edid property of a connector
6733 * @connector: drm connector
6734 * @edid: new value of the edid property
6735 *
6736 * This function creates a new blob modeset object and assigns its id to the
6737 * connector's edid property.
6738 * Since we also parse tile information from EDID's displayID block, we also
6739 * set the connector's tile property here. See drm_connector_set_tile_property()
6740 * for more details.
6741 *
6742 * This function is deprecated. Use drm_edid_connector_update() instead.
6743 *
6744 * Returns:
6745 * Zero on success, negative errno on failure.
6746 */
6747int drm_connector_update_edid_property(struct drm_connector *connector,
6748 const struct edid *edid)
6749{
6750 struct drm_edid drm_edid;
6751
6752 return _drm_connector_update_edid_property(connector,
6753 drm_edid_legacy_init(&drm_edid, edid));
6754}
6755EXPORT_SYMBOL(drm_connector_update_edid_property);
6756
6757/**
6758 * drm_add_edid_modes - add modes from EDID data, if available
6759 * @connector: connector we're probing
6760 * @edid: EDID data
6761 *
6762 * Add the specified modes to the connector's mode list. Also fills out the
6763 * &drm_display_info structure and ELD in @connector with any information which
6764 * can be derived from the edid.
6765 *
6766 * This function is deprecated. Use drm_edid_connector_update() instead.
6767 *
6768 * Return: The number of modes added or 0 if we couldn't find any.
6769 */
6770int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
6771{
6772 struct drm_edid drm_edid;
6773
6774 if (edid && !drm_edid_is_valid(edid)) {
6775 drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
6776 connector->base.id, connector->name);
6777 edid = NULL;
6778 }
6779
6780 return _drm_edid_connector_update(connector,
6781 drm_edid_legacy_init(&drm_edid, edid));
6782}
6783EXPORT_SYMBOL(drm_add_edid_modes);
6784
6785/**
6786 * drm_add_modes_noedid - add modes for the connectors without EDID
6787 * @connector: connector we're probing
6788 * @hdisplay: the horizontal display limit
6789 * @vdisplay: the vertical display limit
6790 *
6791 * Add the specified modes to the connector's mode list. Only when the
6792 * hdisplay/vdisplay is not beyond the given limit, it will be added.
6793 *
6794 * Return: The number of modes added or 0 if we couldn't find any.
6795 */
6796int drm_add_modes_noedid(struct drm_connector *connector,
6797 int hdisplay, int vdisplay)
6798{
6799 int i, count, num_modes = 0;
6800 struct drm_display_mode *mode;
6801 struct drm_device *dev = connector->dev;
6802
6803 count = ARRAY_SIZE(drm_dmt_modes);
6804 if (hdisplay < 0)
6805 hdisplay = 0;
6806 if (vdisplay < 0)
6807 vdisplay = 0;
6808
6809 for (i = 0; i < count; i++) {
6810 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
6811
6812 if (hdisplay && vdisplay) {
6813 /*
6814 * Only when two are valid, they will be used to check
6815 * whether the mode should be added to the mode list of
6816 * the connector.
6817 */
6818 if (ptr->hdisplay > hdisplay ||
6819 ptr->vdisplay > vdisplay)
6820 continue;
6821 }
6822 if (drm_mode_vrefresh(ptr) > 61)
6823 continue;
6824 mode = drm_mode_duplicate(dev, ptr);
6825 if (mode) {
6826 drm_mode_probed_add(connector, mode);
6827 num_modes++;
6828 }
6829 }
6830 return num_modes;
6831}
6832EXPORT_SYMBOL(drm_add_modes_noedid);
6833
6834/**
6835 * drm_set_preferred_mode - Sets the preferred mode of a connector
6836 * @connector: connector whose mode list should be processed
6837 * @hpref: horizontal resolution of preferred mode
6838 * @vpref: vertical resolution of preferred mode
6839 *
6840 * Marks a mode as preferred if it matches the resolution specified by @hpref
6841 * and @vpref.
6842 */
6843void drm_set_preferred_mode(struct drm_connector *connector,
6844 int hpref, int vpref)
6845{
6846 struct drm_display_mode *mode;
6847
6848 list_for_each_entry(mode, &connector->probed_modes, head) {
6849 if (mode->hdisplay == hpref &&
6850 mode->vdisplay == vpref)
6851 mode->type |= DRM_MODE_TYPE_PREFERRED;
6852 }
6853}
6854EXPORT_SYMBOL(drm_set_preferred_mode);
6855
6856static bool is_hdmi2_sink(const struct drm_connector *connector)
6857{
6858 /*
6859 * FIXME: sil-sii8620 doesn't have a connector around when
6860 * we need one, so we have to be prepared for a NULL connector.
6861 */
6862 if (!connector)
6863 return true;
6864
6865 return connector->display_info.hdmi.scdc.supported ||
6866 connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
6867}
6868
6869static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
6870 const struct drm_display_mode *mode)
6871{
6872 bool has_hdmi_infoframe = connector ?
6873 connector->display_info.has_hdmi_infoframe : false;
6874
6875 if (!has_hdmi_infoframe)
6876 return 0;
6877
6878 /* No HDMI VIC when signalling 3D video format */
6879 if (mode->flags & DRM_MODE_FLAG_3D_MASK)
6880 return 0;
6881
6882 return drm_match_hdmi_mode(mode);
6883}
6884
6885static u8 drm_mode_cea_vic(const struct drm_connector *connector,
6886 const struct drm_display_mode *mode)
6887{
6888 u8 vic;
6889
6890 /*
6891 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
6892 * we should send its VIC in vendor infoframes, else send the
6893 * VIC in AVI infoframes. Lets check if this mode is present in
6894 * HDMI 1.4b 4K modes
6895 */
6896 if (drm_mode_hdmi_vic(connector, mode))
6897 return 0;
6898
6899 vic = drm_match_cea_mode(mode);
6900
6901 /*
6902 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
6903 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
6904 * have to make sure we dont break HDMI 1.4 sinks.
6905 */
6906 if (!is_hdmi2_sink(connector) && vic > 64)
6907 return 0;
6908
6909 return vic;
6910}
6911
6912/**
6913 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
6914 * data from a DRM display mode
6915 * @frame: HDMI AVI infoframe
6916 * @connector: the connector
6917 * @mode: DRM display mode
6918 *
6919 * Return: 0 on success or a negative error code on failure.
6920 */
6921int
6922drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
6923 const struct drm_connector *connector,
6924 const struct drm_display_mode *mode)
6925{
6926 enum hdmi_picture_aspect picture_aspect;
6927 u8 vic, hdmi_vic;
6928
6929 if (!frame || !mode)
6930 return -EINVAL;
6931
6932 hdmi_avi_infoframe_init(frame);
6933
6934 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
6935 frame->pixel_repeat = 1;
6936
6937 vic = drm_mode_cea_vic(connector, mode);
6938 hdmi_vic = drm_mode_hdmi_vic(connector, mode);
6939
6940 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
6941
6942 /*
6943 * As some drivers don't support atomic, we can't use connector state.
6944 * So just initialize the frame with default values, just the same way
6945 * as it's done with other properties here.
6946 */
6947 frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
6948 frame->itc = 0;
6949
6950 /*
6951 * Populate picture aspect ratio from either
6952 * user input (if specified) or from the CEA/HDMI mode lists.
6953 */
6954 picture_aspect = mode->picture_aspect_ratio;
6955 if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
6956 if (vic)
6957 picture_aspect = drm_get_cea_aspect_ratio(vic);
6958 else if (hdmi_vic)
6959 picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
6960 }
6961
6962 /*
6963 * The infoframe can't convey anything but none, 4:3
6964 * and 16:9, so if the user has asked for anything else
6965 * we can only satisfy it by specifying the right VIC.
6966 */
6967 if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
6968 if (vic) {
6969 if (picture_aspect != drm_get_cea_aspect_ratio(vic))
6970 return -EINVAL;
6971 } else if (hdmi_vic) {
6972 if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
6973 return -EINVAL;
6974 } else {
6975 return -EINVAL;
6976 }
6977
6978 picture_aspect = HDMI_PICTURE_ASPECT_NONE;
6979 }
6980
6981 frame->video_code = vic;
6982 frame->picture_aspect = picture_aspect;
6983 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
6984 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
6985
6986 return 0;
6987}
6988EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
6989
6990/**
6991 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
6992 * quantization range information
6993 * @frame: HDMI AVI infoframe
6994 * @connector: the connector
6995 * @mode: DRM display mode
6996 * @rgb_quant_range: RGB quantization range (Q)
6997 */
6998void
6999drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7000 const struct drm_connector *connector,
7001 const struct drm_display_mode *mode,
7002 enum hdmi_quantization_range rgb_quant_range)
7003{
7004 const struct drm_display_info *info = &connector->display_info;
7005
7006 /*
7007 * CEA-861:
7008 * "A Source shall not send a non-zero Q value that does not correspond
7009 * to the default RGB Quantization Range for the transmitted Picture
7010 * unless the Sink indicates support for the Q bit in a Video
7011 * Capabilities Data Block."
7012 *
7013 * HDMI 2.0 recommends sending non-zero Q when it does match the
7014 * default RGB quantization range for the mode, even when QS=0.
7015 */
7016 if (info->rgb_quant_range_selectable ||
7017 rgb_quant_range == drm_default_rgb_quant_range(mode))
7018 frame->quantization_range = rgb_quant_range;
7019 else
7020 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7021
7022 /*
7023 * CEA-861-F:
7024 * "When transmitting any RGB colorimetry, the Source should set the
7025 * YQ-field to match the RGB Quantization Range being transmitted
7026 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7027 * set YQ=1) and the Sink shall ignore the YQ-field."
7028 *
7029 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7030 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7031 * good way to tell which version of CEA-861 the sink supports, so
7032 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7033 * on CEA-861-F.
7034 */
7035 if (!is_hdmi2_sink(connector) ||
7036 rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7037 frame->ycc_quantization_range =
7038 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7039 else
7040 frame->ycc_quantization_range =
7041 HDMI_YCC_QUANTIZATION_RANGE_FULL;
7042}
7043EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7044
7045static enum hdmi_3d_structure
7046s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7047{
7048 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7049
7050 switch (layout) {
7051 case DRM_MODE_FLAG_3D_FRAME_PACKING:
7052 return HDMI_3D_STRUCTURE_FRAME_PACKING;
7053 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7054 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7055 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7056 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7057 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7058 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7059 case DRM_MODE_FLAG_3D_L_DEPTH:
7060 return HDMI_3D_STRUCTURE_L_DEPTH;
7061 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7062 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7063 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7064 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7065 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7066 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7067 default:
7068 return HDMI_3D_STRUCTURE_INVALID;
7069 }
7070}
7071
7072/**
7073 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7074 * data from a DRM display mode
7075 * @frame: HDMI vendor infoframe
7076 * @connector: the connector
7077 * @mode: DRM display mode
7078 *
7079 * Note that there's is a need to send HDMI vendor infoframes only when using a
7080 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7081 * function will return -EINVAL, error that can be safely ignored.
7082 *
7083 * Return: 0 on success or a negative error code on failure.
7084 */
7085int
7086drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7087 const struct drm_connector *connector,
7088 const struct drm_display_mode *mode)
7089{
7090 /*
7091 * FIXME: sil-sii8620 doesn't have a connector around when
7092 * we need one, so we have to be prepared for a NULL connector.
7093 */
7094 bool has_hdmi_infoframe = connector ?
7095 connector->display_info.has_hdmi_infoframe : false;
7096 int err;
7097
7098 if (!frame || !mode)
7099 return -EINVAL;
7100
7101 if (!has_hdmi_infoframe)
7102 return -EINVAL;
7103
7104 err = hdmi_vendor_infoframe_init(frame);
7105 if (err < 0)
7106 return err;
7107
7108 /*
7109 * Even if it's not absolutely necessary to send the infoframe
7110 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7111 * know that the sink can handle it. This is based on a
7112 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7113 * have trouble realizing that they should switch from 3D to 2D
7114 * mode if the source simply stops sending the infoframe when
7115 * it wants to switch from 3D to 2D.
7116 */
7117 frame->vic = drm_mode_hdmi_vic(connector, mode);
7118 frame->s3d_struct = s3d_structure_from_display_mode(mode);
7119
7120 return 0;
7121}
7122EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7123
7124static void drm_parse_tiled_block(struct drm_connector *connector,
7125 const struct displayid_block *block)
7126{
7127 const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7128 u16 w, h;
7129 u8 tile_v_loc, tile_h_loc;
7130 u8 num_v_tile, num_h_tile;
7131 struct drm_tile_group *tg;
7132
7133 w = tile->tile_size[0] | tile->tile_size[1] << 8;
7134 h = tile->tile_size[2] | tile->tile_size[3] << 8;
7135
7136 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7137 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7138 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7139 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7140
7141 connector->has_tile = true;
7142 if (tile->tile_cap & 0x80)
7143 connector->tile_is_single_monitor = true;
7144
7145 connector->num_h_tile = num_h_tile + 1;
7146 connector->num_v_tile = num_v_tile + 1;
7147 connector->tile_h_loc = tile_h_loc;
7148 connector->tile_v_loc = tile_v_loc;
7149 connector->tile_h_size = w + 1;
7150 connector->tile_v_size = h + 1;
7151
7152 drm_dbg_kms(connector->dev,
7153 "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7154 connector->base.id, connector->name,
7155 tile->tile_cap,
7156 connector->tile_h_size, connector->tile_v_size,
7157 connector->num_h_tile, connector->num_v_tile,
7158 connector->tile_h_loc, connector->tile_v_loc,
7159 tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7160
7161 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7162 if (!tg)
7163 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7164 if (!tg)
7165 return;
7166
7167 if (connector->tile_group != tg) {
7168 /* if we haven't got a pointer,
7169 take the reference, drop ref to old tile group */
7170 if (connector->tile_group)
7171 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7172 connector->tile_group = tg;
7173 } else {
7174 /* if same tile group, then release the ref we just took. */
7175 drm_mode_put_tile_group(connector->dev, tg);
7176 }
7177}
7178
7179static void _drm_update_tile_info(struct drm_connector *connector,
7180 const struct drm_edid *drm_edid)
7181{
7182 const struct displayid_block *block;
7183 struct displayid_iter iter;
7184
7185 connector->has_tile = false;
7186
7187 displayid_iter_edid_begin(drm_edid, &iter);
7188 displayid_iter_for_each(block, &iter) {
7189 if (block->tag == DATA_BLOCK_TILED_DISPLAY)
7190 drm_parse_tiled_block(connector, block);
7191 }
7192 displayid_iter_end(&iter);
7193
7194 if (!connector->has_tile && connector->tile_group) {
7195 drm_mode_put_tile_group(connector->dev, connector->tile_group);
7196 connector->tile_group = NULL;
7197 }
7198}
1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30#include <linux/kernel.h>
31#include <linux/slab.h>
32#include <linux/hdmi.h>
33#include <linux/i2c.h>
34#include <linux/module.h>
35#include <drm/drmP.h>
36#include <drm/drm_edid.h>
37
38#define version_greater(edid, maj, min) \
39 (((edid)->version > (maj)) || \
40 ((edid)->version == (maj) && (edid)->revision > (min)))
41
42#define EDID_EST_TIMINGS 16
43#define EDID_STD_TIMINGS 8
44#define EDID_DETAILED_TIMINGS 4
45
46/*
47 * EDID blocks out in the wild have a variety of bugs, try to collect
48 * them here (note that userspace may work around broken monitors first,
49 * but fixes should make their way here so that the kernel "just works"
50 * on as many displays as possible).
51 */
52
53/* First detailed mode wrong, use largest 60Hz mode */
54#define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
55/* Reported 135MHz pixel clock is too high, needs adjustment */
56#define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
57/* Prefer the largest mode at 75 Hz */
58#define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
59/* Detail timing is in cm not mm */
60#define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
61/* Detailed timing descriptors have bogus size values, so just take the
62 * maximum size and use that.
63 */
64#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
65/* Monitor forgot to set the first detailed is preferred bit. */
66#define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
67/* use +hsync +vsync for detailed mode */
68#define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
69/* Force reduced-blanking timings for detailed modes */
70#define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
71/* Force 8bpc */
72#define EDID_QUIRK_FORCE_8BPC (1 << 8)
73
74struct detailed_mode_closure {
75 struct drm_connector *connector;
76 struct edid *edid;
77 bool preferred;
78 u32 quirks;
79 int modes;
80};
81
82#define LEVEL_DMT 0
83#define LEVEL_GTF 1
84#define LEVEL_GTF2 2
85#define LEVEL_CVT 3
86
87static struct edid_quirk {
88 char vendor[4];
89 int product_id;
90 u32 quirks;
91} edid_quirk_list[] = {
92 /* Acer AL1706 */
93 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
94 /* Acer F51 */
95 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
96 /* Unknown Acer */
97 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
98
99 /* Belinea 10 15 55 */
100 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
101 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
102
103 /* Envision Peripherals, Inc. EN-7100e */
104 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
105 /* Envision EN2028 */
106 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
107
108 /* Funai Electronics PM36B */
109 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
110 EDID_QUIRK_DETAILED_IN_CM },
111
112 /* LG Philips LCD LP154W01-A5 */
113 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
114 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
115
116 /* Philips 107p5 CRT */
117 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
118
119 /* Proview AY765C */
120 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
121
122 /* Samsung SyncMaster 205BW. Note: irony */
123 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
124 /* Samsung SyncMaster 22[5-6]BW */
125 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
126 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
127
128 /* ViewSonic VA2026w */
129 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
130
131 /* Medion MD 30217 PG */
132 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
133
134 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
135 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
136};
137
138/*
139 * Autogenerated from the DMT spec.
140 * This table is copied from xfree86/modes/xf86EdidModes.c.
141 */
142static const struct drm_display_mode drm_dmt_modes[] = {
143 /* 640x350@85Hz */
144 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
145 736, 832, 0, 350, 382, 385, 445, 0,
146 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
147 /* 640x400@85Hz */
148 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
149 736, 832, 0, 400, 401, 404, 445, 0,
150 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
151 /* 720x400@85Hz */
152 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
153 828, 936, 0, 400, 401, 404, 446, 0,
154 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
155 /* 640x480@60Hz */
156 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
157 752, 800, 0, 480, 489, 492, 525, 0,
158 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
159 /* 640x480@72Hz */
160 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
161 704, 832, 0, 480, 489, 492, 520, 0,
162 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
163 /* 640x480@75Hz */
164 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
165 720, 840, 0, 480, 481, 484, 500, 0,
166 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
167 /* 640x480@85Hz */
168 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
169 752, 832, 0, 480, 481, 484, 509, 0,
170 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
171 /* 800x600@56Hz */
172 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
173 896, 1024, 0, 600, 601, 603, 625, 0,
174 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
175 /* 800x600@60Hz */
176 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
177 968, 1056, 0, 600, 601, 605, 628, 0,
178 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
179 /* 800x600@72Hz */
180 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
181 976, 1040, 0, 600, 637, 643, 666, 0,
182 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
183 /* 800x600@75Hz */
184 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
185 896, 1056, 0, 600, 601, 604, 625, 0,
186 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
187 /* 800x600@85Hz */
188 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
189 896, 1048, 0, 600, 601, 604, 631, 0,
190 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
191 /* 800x600@120Hz RB */
192 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
193 880, 960, 0, 600, 603, 607, 636, 0,
194 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
195 /* 848x480@60Hz */
196 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
197 976, 1088, 0, 480, 486, 494, 517, 0,
198 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
199 /* 1024x768@43Hz, interlace */
200 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
201 1208, 1264, 0, 768, 768, 772, 817, 0,
202 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
203 DRM_MODE_FLAG_INTERLACE) },
204 /* 1024x768@60Hz */
205 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
206 1184, 1344, 0, 768, 771, 777, 806, 0,
207 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
208 /* 1024x768@70Hz */
209 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
210 1184, 1328, 0, 768, 771, 777, 806, 0,
211 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
212 /* 1024x768@75Hz */
213 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
214 1136, 1312, 0, 768, 769, 772, 800, 0,
215 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
216 /* 1024x768@85Hz */
217 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
218 1168, 1376, 0, 768, 769, 772, 808, 0,
219 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
220 /* 1024x768@120Hz RB */
221 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
222 1104, 1184, 0, 768, 771, 775, 813, 0,
223 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
224 /* 1152x864@75Hz */
225 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
226 1344, 1600, 0, 864, 865, 868, 900, 0,
227 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
228 /* 1280x768@60Hz RB */
229 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
230 1360, 1440, 0, 768, 771, 778, 790, 0,
231 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
232 /* 1280x768@60Hz */
233 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
234 1472, 1664, 0, 768, 771, 778, 798, 0,
235 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
236 /* 1280x768@75Hz */
237 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
238 1488, 1696, 0, 768, 771, 778, 805, 0,
239 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
240 /* 1280x768@85Hz */
241 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
242 1496, 1712, 0, 768, 771, 778, 809, 0,
243 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
244 /* 1280x768@120Hz RB */
245 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
246 1360, 1440, 0, 768, 771, 778, 813, 0,
247 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
248 /* 1280x800@60Hz RB */
249 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
250 1360, 1440, 0, 800, 803, 809, 823, 0,
251 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
252 /* 1280x800@60Hz */
253 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
254 1480, 1680, 0, 800, 803, 809, 831, 0,
255 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
256 /* 1280x800@75Hz */
257 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
258 1488, 1696, 0, 800, 803, 809, 838, 0,
259 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
260 /* 1280x800@85Hz */
261 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
262 1496, 1712, 0, 800, 803, 809, 843, 0,
263 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
264 /* 1280x800@120Hz RB */
265 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
266 1360, 1440, 0, 800, 803, 809, 847, 0,
267 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
268 /* 1280x960@60Hz */
269 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
270 1488, 1800, 0, 960, 961, 964, 1000, 0,
271 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
272 /* 1280x960@85Hz */
273 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
274 1504, 1728, 0, 960, 961, 964, 1011, 0,
275 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
276 /* 1280x960@120Hz RB */
277 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
278 1360, 1440, 0, 960, 963, 967, 1017, 0,
279 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
280 /* 1280x1024@60Hz */
281 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
282 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
283 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
284 /* 1280x1024@75Hz */
285 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
286 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
287 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
288 /* 1280x1024@85Hz */
289 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
290 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
291 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
292 /* 1280x1024@120Hz RB */
293 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
294 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
295 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
296 /* 1360x768@60Hz */
297 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
298 1536, 1792, 0, 768, 771, 777, 795, 0,
299 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
300 /* 1360x768@120Hz RB */
301 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
302 1440, 1520, 0, 768, 771, 776, 813, 0,
303 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
304 /* 1400x1050@60Hz RB */
305 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
306 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
307 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
308 /* 1400x1050@60Hz */
309 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
310 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
311 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
312 /* 1400x1050@75Hz */
313 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
314 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
315 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
316 /* 1400x1050@85Hz */
317 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
318 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
319 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
320 /* 1400x1050@120Hz RB */
321 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
322 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
323 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
324 /* 1440x900@60Hz RB */
325 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
326 1520, 1600, 0, 900, 903, 909, 926, 0,
327 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
328 /* 1440x900@60Hz */
329 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
330 1672, 1904, 0, 900, 903, 909, 934, 0,
331 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
332 /* 1440x900@75Hz */
333 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
334 1688, 1936, 0, 900, 903, 909, 942, 0,
335 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
336 /* 1440x900@85Hz */
337 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
338 1696, 1952, 0, 900, 903, 909, 948, 0,
339 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
340 /* 1440x900@120Hz RB */
341 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
342 1520, 1600, 0, 900, 903, 909, 953, 0,
343 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
344 /* 1600x1200@60Hz */
345 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
346 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
347 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
348 /* 1600x1200@65Hz */
349 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
350 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
351 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 /* 1600x1200@70Hz */
353 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
354 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
355 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
356 /* 1600x1200@75Hz */
357 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
358 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
359 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
360 /* 1600x1200@85Hz */
361 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
362 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
363 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 /* 1600x1200@120Hz RB */
365 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
366 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
367 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
368 /* 1680x1050@60Hz RB */
369 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
370 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
371 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
372 /* 1680x1050@60Hz */
373 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
374 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
375 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
376 /* 1680x1050@75Hz */
377 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
378 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
379 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
380 /* 1680x1050@85Hz */
381 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
382 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
383 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 /* 1680x1050@120Hz RB */
385 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
386 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
387 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
388 /* 1792x1344@60Hz */
389 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
390 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
391 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 /* 1792x1344@75Hz */
393 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
394 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
395 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
396 /* 1792x1344@120Hz RB */
397 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
398 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
399 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
400 /* 1856x1392@60Hz */
401 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
402 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
403 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
404 /* 1856x1392@75Hz */
405 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
406 2208, 2560, 0, 1392, 1395, 1399, 1500, 0,
407 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
408 /* 1856x1392@120Hz RB */
409 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
410 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
411 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
412 /* 1920x1200@60Hz RB */
413 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
414 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
415 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
416 /* 1920x1200@60Hz */
417 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
418 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
419 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 /* 1920x1200@75Hz */
421 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
422 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
423 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
424 /* 1920x1200@85Hz */
425 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
426 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
427 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 /* 1920x1200@120Hz RB */
429 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
430 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
431 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
432 /* 1920x1440@60Hz */
433 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
434 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
435 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 /* 1920x1440@75Hz */
437 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
438 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
439 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
440 /* 1920x1440@120Hz RB */
441 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
442 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
443 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 /* 2560x1600@60Hz RB */
445 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
446 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
447 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
448 /* 2560x1600@60Hz */
449 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
450 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
451 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 /* 2560x1600@75HZ */
453 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
454 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
455 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 /* 2560x1600@85HZ */
457 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
458 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
459 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
460 /* 2560x1600@120Hz RB */
461 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
462 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
463 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
464};
465
466/*
467 * These more or less come from the DMT spec. The 720x400 modes are
468 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
469 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
470 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
471 * mode.
472 *
473 * The DMT modes have been fact-checked; the rest are mild guesses.
474 */
475static const struct drm_display_mode edid_est_modes[] = {
476 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
477 968, 1056, 0, 600, 601, 605, 628, 0,
478 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
479 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
480 896, 1024, 0, 600, 601, 603, 625, 0,
481 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
482 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
483 720, 840, 0, 480, 481, 484, 500, 0,
484 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
485 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
486 704, 832, 0, 480, 489, 491, 520, 0,
487 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
488 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
489 768, 864, 0, 480, 483, 486, 525, 0,
490 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
491 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
492 752, 800, 0, 480, 490, 492, 525, 0,
493 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
494 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
495 846, 900, 0, 400, 421, 423, 449, 0,
496 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
497 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
498 846, 900, 0, 400, 412, 414, 449, 0,
499 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
500 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
501 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
502 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
503 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
504 1136, 1312, 0, 768, 769, 772, 800, 0,
505 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
506 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
507 1184, 1328, 0, 768, 771, 777, 806, 0,
508 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
509 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
510 1184, 1344, 0, 768, 771, 777, 806, 0,
511 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
512 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
513 1208, 1264, 0, 768, 768, 776, 817, 0,
514 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
515 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
516 928, 1152, 0, 624, 625, 628, 667, 0,
517 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
518 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
519 896, 1056, 0, 600, 601, 604, 625, 0,
520 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
521 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
522 976, 1040, 0, 600, 637, 643, 666, 0,
523 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
524 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
525 1344, 1600, 0, 864, 865, 868, 900, 0,
526 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
527};
528
529struct minimode {
530 short w;
531 short h;
532 short r;
533 short rb;
534};
535
536static const struct minimode est3_modes[] = {
537 /* byte 6 */
538 { 640, 350, 85, 0 },
539 { 640, 400, 85, 0 },
540 { 720, 400, 85, 0 },
541 { 640, 480, 85, 0 },
542 { 848, 480, 60, 0 },
543 { 800, 600, 85, 0 },
544 { 1024, 768, 85, 0 },
545 { 1152, 864, 75, 0 },
546 /* byte 7 */
547 { 1280, 768, 60, 1 },
548 { 1280, 768, 60, 0 },
549 { 1280, 768, 75, 0 },
550 { 1280, 768, 85, 0 },
551 { 1280, 960, 60, 0 },
552 { 1280, 960, 85, 0 },
553 { 1280, 1024, 60, 0 },
554 { 1280, 1024, 85, 0 },
555 /* byte 8 */
556 { 1360, 768, 60, 0 },
557 { 1440, 900, 60, 1 },
558 { 1440, 900, 60, 0 },
559 { 1440, 900, 75, 0 },
560 { 1440, 900, 85, 0 },
561 { 1400, 1050, 60, 1 },
562 { 1400, 1050, 60, 0 },
563 { 1400, 1050, 75, 0 },
564 /* byte 9 */
565 { 1400, 1050, 85, 0 },
566 { 1680, 1050, 60, 1 },
567 { 1680, 1050, 60, 0 },
568 { 1680, 1050, 75, 0 },
569 { 1680, 1050, 85, 0 },
570 { 1600, 1200, 60, 0 },
571 { 1600, 1200, 65, 0 },
572 { 1600, 1200, 70, 0 },
573 /* byte 10 */
574 { 1600, 1200, 75, 0 },
575 { 1600, 1200, 85, 0 },
576 { 1792, 1344, 60, 0 },
577 { 1792, 1344, 75, 0 },
578 { 1856, 1392, 60, 0 },
579 { 1856, 1392, 75, 0 },
580 { 1920, 1200, 60, 1 },
581 { 1920, 1200, 60, 0 },
582 /* byte 11 */
583 { 1920, 1200, 75, 0 },
584 { 1920, 1200, 85, 0 },
585 { 1920, 1440, 60, 0 },
586 { 1920, 1440, 75, 0 },
587};
588
589static const struct minimode extra_modes[] = {
590 { 1024, 576, 60, 0 },
591 { 1366, 768, 60, 0 },
592 { 1600, 900, 60, 0 },
593 { 1680, 945, 60, 0 },
594 { 1920, 1080, 60, 0 },
595 { 2048, 1152, 60, 0 },
596 { 2048, 1536, 60, 0 },
597};
598
599/*
600 * Probably taken from CEA-861 spec.
601 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
602 */
603static const struct drm_display_mode edid_cea_modes[] = {
604 /* 1 - 640x480@60Hz */
605 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
606 752, 800, 0, 480, 490, 492, 525, 0,
607 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
608 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
609 /* 2 - 720x480@60Hz */
610 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
611 798, 858, 0, 480, 489, 495, 525, 0,
612 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
613 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
614 /* 3 - 720x480@60Hz */
615 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
616 798, 858, 0, 480, 489, 495, 525, 0,
617 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
618 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
619 /* 4 - 1280x720@60Hz */
620 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
621 1430, 1650, 0, 720, 725, 730, 750, 0,
622 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
623 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
624 /* 5 - 1920x1080i@60Hz */
625 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
626 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
627 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
628 DRM_MODE_FLAG_INTERLACE),
629 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
630 /* 6 - 1440x480i@60Hz */
631 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
632 1602, 1716, 0, 480, 488, 494, 525, 0,
633 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
634 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
635 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
636 /* 7 - 1440x480i@60Hz */
637 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
638 1602, 1716, 0, 480, 488, 494, 525, 0,
639 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
640 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
641 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
642 /* 8 - 1440x240@60Hz */
643 { DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
644 1602, 1716, 0, 240, 244, 247, 262, 0,
645 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
646 DRM_MODE_FLAG_DBLCLK),
647 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
648 /* 9 - 1440x240@60Hz */
649 { DRM_MODE("1440x240", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1478,
650 1602, 1716, 0, 240, 244, 247, 262, 0,
651 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
652 DRM_MODE_FLAG_DBLCLK),
653 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
654 /* 10 - 2880x480i@60Hz */
655 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
656 3204, 3432, 0, 480, 488, 494, 525, 0,
657 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
658 DRM_MODE_FLAG_INTERLACE),
659 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
660 /* 11 - 2880x480i@60Hz */
661 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
662 3204, 3432, 0, 480, 488, 494, 525, 0,
663 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
664 DRM_MODE_FLAG_INTERLACE),
665 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
666 /* 12 - 2880x240@60Hz */
667 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
668 3204, 3432, 0, 240, 244, 247, 262, 0,
669 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
670 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
671 /* 13 - 2880x240@60Hz */
672 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
673 3204, 3432, 0, 240, 244, 247, 262, 0,
674 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
675 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
676 /* 14 - 1440x480@60Hz */
677 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
678 1596, 1716, 0, 480, 489, 495, 525, 0,
679 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
680 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
681 /* 15 - 1440x480@60Hz */
682 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
683 1596, 1716, 0, 480, 489, 495, 525, 0,
684 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
685 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
686 /* 16 - 1920x1080@60Hz */
687 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
688 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
689 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
690 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
691 /* 17 - 720x576@50Hz */
692 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
693 796, 864, 0, 576, 581, 586, 625, 0,
694 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
695 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
696 /* 18 - 720x576@50Hz */
697 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
698 796, 864, 0, 576, 581, 586, 625, 0,
699 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
700 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
701 /* 19 - 1280x720@50Hz */
702 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
703 1760, 1980, 0, 720, 725, 730, 750, 0,
704 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
705 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
706 /* 20 - 1920x1080i@50Hz */
707 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
708 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
709 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
710 DRM_MODE_FLAG_INTERLACE),
711 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
712 /* 21 - 1440x576i@50Hz */
713 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
714 1590, 1728, 0, 576, 580, 586, 625, 0,
715 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
716 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
717 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
718 /* 22 - 1440x576i@50Hz */
719 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
720 1590, 1728, 0, 576, 580, 586, 625, 0,
721 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
722 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
723 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
724 /* 23 - 1440x288@50Hz */
725 { DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
726 1590, 1728, 0, 288, 290, 293, 312, 0,
727 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
728 DRM_MODE_FLAG_DBLCLK),
729 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
730 /* 24 - 1440x288@50Hz */
731 { DRM_MODE("1440x288", DRM_MODE_TYPE_DRIVER, 27000, 1440, 1464,
732 1590, 1728, 0, 288, 290, 293, 312, 0,
733 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
734 DRM_MODE_FLAG_DBLCLK),
735 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
736 /* 25 - 2880x576i@50Hz */
737 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
738 3180, 3456, 0, 576, 580, 586, 625, 0,
739 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
740 DRM_MODE_FLAG_INTERLACE),
741 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
742 /* 26 - 2880x576i@50Hz */
743 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
744 3180, 3456, 0, 576, 580, 586, 625, 0,
745 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
746 DRM_MODE_FLAG_INTERLACE),
747 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
748 /* 27 - 2880x288@50Hz */
749 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
750 3180, 3456, 0, 288, 290, 293, 312, 0,
751 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
752 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
753 /* 28 - 2880x288@50Hz */
754 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
755 3180, 3456, 0, 288, 290, 293, 312, 0,
756 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
757 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
758 /* 29 - 1440x576@50Hz */
759 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
760 1592, 1728, 0, 576, 581, 586, 625, 0,
761 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
762 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
763 /* 30 - 1440x576@50Hz */
764 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
765 1592, 1728, 0, 576, 581, 586, 625, 0,
766 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
767 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
768 /* 31 - 1920x1080@50Hz */
769 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
770 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
771 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
772 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
773 /* 32 - 1920x1080@24Hz */
774 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
775 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
776 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
777 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
778 /* 33 - 1920x1080@25Hz */
779 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
780 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
781 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
782 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
783 /* 34 - 1920x1080@30Hz */
784 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
785 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
786 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
787 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
788 /* 35 - 2880x480@60Hz */
789 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
790 3192, 3432, 0, 480, 489, 495, 525, 0,
791 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
792 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
793 /* 36 - 2880x480@60Hz */
794 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
795 3192, 3432, 0, 480, 489, 495, 525, 0,
796 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
797 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
798 /* 37 - 2880x576@50Hz */
799 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
800 3184, 3456, 0, 576, 581, 586, 625, 0,
801 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
802 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
803 /* 38 - 2880x576@50Hz */
804 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
805 3184, 3456, 0, 576, 581, 586, 625, 0,
806 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
807 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
808 /* 39 - 1920x1080i@50Hz */
809 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
810 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
811 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
812 DRM_MODE_FLAG_INTERLACE),
813 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
814 /* 40 - 1920x1080i@100Hz */
815 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
816 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
817 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
818 DRM_MODE_FLAG_INTERLACE),
819 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
820 /* 41 - 1280x720@100Hz */
821 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
822 1760, 1980, 0, 720, 725, 730, 750, 0,
823 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
824 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
825 /* 42 - 720x576@100Hz */
826 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
827 796, 864, 0, 576, 581, 586, 625, 0,
828 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
829 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
830 /* 43 - 720x576@100Hz */
831 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
832 796, 864, 0, 576, 581, 586, 625, 0,
833 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
834 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
835 /* 44 - 1440x576i@100Hz */
836 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
837 1590, 1728, 0, 576, 580, 586, 625, 0,
838 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
839 DRM_MODE_FLAG_DBLCLK),
840 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
841 /* 45 - 1440x576i@100Hz */
842 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
843 1590, 1728, 0, 576, 580, 586, 625, 0,
844 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
845 DRM_MODE_FLAG_DBLCLK),
846 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
847 /* 46 - 1920x1080i@120Hz */
848 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
849 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
850 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
851 DRM_MODE_FLAG_INTERLACE),
852 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
853 /* 47 - 1280x720@120Hz */
854 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
855 1430, 1650, 0, 720, 725, 730, 750, 0,
856 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
857 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
858 /* 48 - 720x480@120Hz */
859 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
860 798, 858, 0, 480, 489, 495, 525, 0,
861 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
862 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
863 /* 49 - 720x480@120Hz */
864 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
865 798, 858, 0, 480, 489, 495, 525, 0,
866 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
867 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
868 /* 50 - 1440x480i@120Hz */
869 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
870 1602, 1716, 0, 480, 488, 494, 525, 0,
871 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
872 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
873 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
874 /* 51 - 1440x480i@120Hz */
875 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1478,
876 1602, 1716, 0, 480, 488, 494, 525, 0,
877 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
878 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
879 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
880 /* 52 - 720x576@200Hz */
881 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
882 796, 864, 0, 576, 581, 586, 625, 0,
883 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
884 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
885 /* 53 - 720x576@200Hz */
886 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
887 796, 864, 0, 576, 581, 586, 625, 0,
888 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
889 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
890 /* 54 - 1440x576i@200Hz */
891 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
892 1590, 1728, 0, 576, 580, 586, 625, 0,
893 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
894 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
895 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
896 /* 55 - 1440x576i@200Hz */
897 { DRM_MODE("1440x576i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1464,
898 1590, 1728, 0, 576, 580, 586, 625, 0,
899 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
900 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
901 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
902 /* 56 - 720x480@240Hz */
903 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
904 798, 858, 0, 480, 489, 495, 525, 0,
905 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
906 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
907 /* 57 - 720x480@240Hz */
908 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
909 798, 858, 0, 480, 489, 495, 525, 0,
910 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
911 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
912 /* 58 - 1440x480i@240 */
913 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
914 1602, 1716, 0, 480, 488, 494, 525, 0,
915 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
916 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
917 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
918 /* 59 - 1440x480i@240 */
919 { DRM_MODE("1440x480i", DRM_MODE_TYPE_DRIVER, 108000, 1440, 1478,
920 1602, 1716, 0, 480, 488, 494, 525, 0,
921 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
922 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
923 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
924 /* 60 - 1280x720@24Hz */
925 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
926 3080, 3300, 0, 720, 725, 730, 750, 0,
927 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
928 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
929 /* 61 - 1280x720@25Hz */
930 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
931 3740, 3960, 0, 720, 725, 730, 750, 0,
932 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
933 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
934 /* 62 - 1280x720@30Hz */
935 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
936 3080, 3300, 0, 720, 725, 730, 750, 0,
937 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
938 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
939 /* 63 - 1920x1080@120Hz */
940 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
941 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
942 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
943 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
944 /* 64 - 1920x1080@100Hz */
945 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
946 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
947 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
948 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
949};
950
951/*
952 * HDMI 1.4 4k modes.
953 */
954static const struct drm_display_mode edid_4k_modes[] = {
955 /* 1 - 3840x2160@30Hz */
956 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
957 3840, 4016, 4104, 4400, 0,
958 2160, 2168, 2178, 2250, 0,
959 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
960 .vrefresh = 30, },
961 /* 2 - 3840x2160@25Hz */
962 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
963 3840, 4896, 4984, 5280, 0,
964 2160, 2168, 2178, 2250, 0,
965 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
966 .vrefresh = 25, },
967 /* 3 - 3840x2160@24Hz */
968 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
969 3840, 5116, 5204, 5500, 0,
970 2160, 2168, 2178, 2250, 0,
971 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
972 .vrefresh = 24, },
973 /* 4 - 4096x2160@24Hz (SMPTE) */
974 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
975 4096, 5116, 5204, 5500, 0,
976 2160, 2168, 2178, 2250, 0,
977 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
978 .vrefresh = 24, },
979};
980
981/*** DDC fetch and block validation ***/
982
983static const u8 edid_header[] = {
984 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
985};
986
987 /*
988 * Sanity check the header of the base EDID block. Return 8 if the header
989 * is perfect, down to 0 if it's totally wrong.
990 */
991int drm_edid_header_is_valid(const u8 *raw_edid)
992{
993 int i, score = 0;
994
995 for (i = 0; i < sizeof(edid_header); i++)
996 if (raw_edid[i] == edid_header[i])
997 score++;
998
999 return score;
1000}
1001EXPORT_SYMBOL(drm_edid_header_is_valid);
1002
1003static int edid_fixup __read_mostly = 6;
1004module_param_named(edid_fixup, edid_fixup, int, 0400);
1005MODULE_PARM_DESC(edid_fixup,
1006 "Minimum number of valid EDID header bytes (0-8, default 6)");
1007
1008/*
1009 * Sanity check the EDID block (base or extension). Return 0 if the block
1010 * doesn't check out, or 1 if it's valid.
1011 */
1012bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid)
1013{
1014 int i;
1015 u8 csum = 0;
1016 struct edid *edid = (struct edid *)raw_edid;
1017
1018 if (WARN_ON(!raw_edid))
1019 return false;
1020
1021 if (edid_fixup > 8 || edid_fixup < 0)
1022 edid_fixup = 6;
1023
1024 if (block == 0) {
1025 int score = drm_edid_header_is_valid(raw_edid);
1026 if (score == 8) ;
1027 else if (score >= edid_fixup) {
1028 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1029 memcpy(raw_edid, edid_header, sizeof(edid_header));
1030 } else {
1031 goto bad;
1032 }
1033 }
1034
1035 for (i = 0; i < EDID_LENGTH; i++)
1036 csum += raw_edid[i];
1037 if (csum) {
1038 if (print_bad_edid) {
1039 DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1040 }
1041
1042 /* allow CEA to slide through, switches mangle this */
1043 if (raw_edid[0] != 0x02)
1044 goto bad;
1045 }
1046
1047 /* per-block-type checks */
1048 switch (raw_edid[0]) {
1049 case 0: /* base */
1050 if (edid->version != 1) {
1051 DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1052 goto bad;
1053 }
1054
1055 if (edid->revision > 4)
1056 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1057 break;
1058
1059 default:
1060 break;
1061 }
1062
1063 return true;
1064
1065bad:
1066 if (print_bad_edid) {
1067 printk(KERN_ERR "Raw EDID:\n");
1068 print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1069 raw_edid, EDID_LENGTH, false);
1070 }
1071 return false;
1072}
1073EXPORT_SYMBOL(drm_edid_block_valid);
1074
1075/**
1076 * drm_edid_is_valid - sanity check EDID data
1077 * @edid: EDID data
1078 *
1079 * Sanity-check an entire EDID record (including extensions)
1080 */
1081bool drm_edid_is_valid(struct edid *edid)
1082{
1083 int i;
1084 u8 *raw = (u8 *)edid;
1085
1086 if (!edid)
1087 return false;
1088
1089 for (i = 0; i <= edid->extensions; i++)
1090 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true))
1091 return false;
1092
1093 return true;
1094}
1095EXPORT_SYMBOL(drm_edid_is_valid);
1096
1097#define DDC_SEGMENT_ADDR 0x30
1098/**
1099 * Get EDID information via I2C.
1100 *
1101 * @adapter : i2c device adaptor
1102 * @buf: EDID data buffer to be filled
1103 * @block: 128 byte EDID block to start fetching from
1104 * @len: EDID data buffer length to fetch
1105 *
1106 * Returns:
1107 *
1108 * 0 on success or -1 on failure.
1109 *
1110 * Try to fetch EDID information by calling i2c driver function.
1111 */
1112static int
1113drm_do_probe_ddc_edid(struct i2c_adapter *adapter, unsigned char *buf,
1114 int block, int len)
1115{
1116 unsigned char start = block * EDID_LENGTH;
1117 unsigned char segment = block >> 1;
1118 unsigned char xfers = segment ? 3 : 2;
1119 int ret, retries = 5;
1120
1121 /* The core i2c driver will automatically retry the transfer if the
1122 * adapter reports EAGAIN. However, we find that bit-banging transfers
1123 * are susceptible to errors under a heavily loaded machine and
1124 * generate spurious NAKs and timeouts. Retrying the transfer
1125 * of the individual block a few times seems to overcome this.
1126 */
1127 do {
1128 struct i2c_msg msgs[] = {
1129 {
1130 .addr = DDC_SEGMENT_ADDR,
1131 .flags = 0,
1132 .len = 1,
1133 .buf = &segment,
1134 }, {
1135 .addr = DDC_ADDR,
1136 .flags = 0,
1137 .len = 1,
1138 .buf = &start,
1139 }, {
1140 .addr = DDC_ADDR,
1141 .flags = I2C_M_RD,
1142 .len = len,
1143 .buf = buf,
1144 }
1145 };
1146
1147 /*
1148 * Avoid sending the segment addr to not upset non-compliant ddc
1149 * monitors.
1150 */
1151 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1152
1153 if (ret == -ENXIO) {
1154 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1155 adapter->name);
1156 break;
1157 }
1158 } while (ret != xfers && --retries);
1159
1160 return ret == xfers ? 0 : -1;
1161}
1162
1163static bool drm_edid_is_zero(u8 *in_edid, int length)
1164{
1165 if (memchr_inv(in_edid, 0, length))
1166 return false;
1167
1168 return true;
1169}
1170
1171static u8 *
1172drm_do_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1173{
1174 int i, j = 0, valid_extensions = 0;
1175 u8 *block, *new;
1176 bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1177
1178 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1179 return NULL;
1180
1181 /* base block fetch */
1182 for (i = 0; i < 4; i++) {
1183 if (drm_do_probe_ddc_edid(adapter, block, 0, EDID_LENGTH))
1184 goto out;
1185 if (drm_edid_block_valid(block, 0, print_bad_edid))
1186 break;
1187 if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1188 connector->null_edid_counter++;
1189 goto carp;
1190 }
1191 }
1192 if (i == 4)
1193 goto carp;
1194
1195 /* if there's no extensions, we're done */
1196 if (block[0x7e] == 0)
1197 return block;
1198
1199 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1200 if (!new)
1201 goto out;
1202 block = new;
1203
1204 for (j = 1; j <= block[0x7e]; j++) {
1205 for (i = 0; i < 4; i++) {
1206 if (drm_do_probe_ddc_edid(adapter,
1207 block + (valid_extensions + 1) * EDID_LENGTH,
1208 j, EDID_LENGTH))
1209 goto out;
1210 if (drm_edid_block_valid(block + (valid_extensions + 1) * EDID_LENGTH, j, print_bad_edid)) {
1211 valid_extensions++;
1212 break;
1213 }
1214 }
1215
1216 if (i == 4 && print_bad_edid) {
1217 dev_warn(connector->dev->dev,
1218 "%s: Ignoring invalid EDID block %d.\n",
1219 drm_get_connector_name(connector), j);
1220
1221 connector->bad_edid_counter++;
1222 }
1223 }
1224
1225 if (valid_extensions != block[0x7e]) {
1226 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1227 block[0x7e] = valid_extensions;
1228 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1229 if (!new)
1230 goto out;
1231 block = new;
1232 }
1233
1234 return block;
1235
1236carp:
1237 if (print_bad_edid) {
1238 dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1239 drm_get_connector_name(connector), j);
1240 }
1241 connector->bad_edid_counter++;
1242
1243out:
1244 kfree(block);
1245 return NULL;
1246}
1247
1248/**
1249 * Probe DDC presence.
1250 * @adapter: i2c adapter to probe
1251 *
1252 * Returns:
1253 *
1254 * 1 on success
1255 */
1256bool
1257drm_probe_ddc(struct i2c_adapter *adapter)
1258{
1259 unsigned char out;
1260
1261 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1262}
1263EXPORT_SYMBOL(drm_probe_ddc);
1264
1265/**
1266 * drm_get_edid - get EDID data, if available
1267 * @connector: connector we're probing
1268 * @adapter: i2c adapter to use for DDC
1269 *
1270 * Poke the given i2c channel to grab EDID data if possible. If found,
1271 * attach it to the connector.
1272 *
1273 * Return edid data or NULL if we couldn't find any.
1274 */
1275struct edid *drm_get_edid(struct drm_connector *connector,
1276 struct i2c_adapter *adapter)
1277{
1278 struct edid *edid = NULL;
1279
1280 if (drm_probe_ddc(adapter))
1281 edid = (struct edid *)drm_do_get_edid(connector, adapter);
1282
1283 return edid;
1284}
1285EXPORT_SYMBOL(drm_get_edid);
1286
1287/**
1288 * drm_edid_duplicate - duplicate an EDID and the extensions
1289 * @edid: EDID to duplicate
1290 *
1291 * Return duplicate edid or NULL on allocation failure.
1292 */
1293struct edid *drm_edid_duplicate(const struct edid *edid)
1294{
1295 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1296}
1297EXPORT_SYMBOL(drm_edid_duplicate);
1298
1299/*** EDID parsing ***/
1300
1301/**
1302 * edid_vendor - match a string against EDID's obfuscated vendor field
1303 * @edid: EDID to match
1304 * @vendor: vendor string
1305 *
1306 * Returns true if @vendor is in @edid, false otherwise
1307 */
1308static bool edid_vendor(struct edid *edid, char *vendor)
1309{
1310 char edid_vendor[3];
1311
1312 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1313 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1314 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1315 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1316
1317 return !strncmp(edid_vendor, vendor, 3);
1318}
1319
1320/**
1321 * edid_get_quirks - return quirk flags for a given EDID
1322 * @edid: EDID to process
1323 *
1324 * This tells subsequent routines what fixes they need to apply.
1325 */
1326static u32 edid_get_quirks(struct edid *edid)
1327{
1328 struct edid_quirk *quirk;
1329 int i;
1330
1331 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1332 quirk = &edid_quirk_list[i];
1333
1334 if (edid_vendor(edid, quirk->vendor) &&
1335 (EDID_PRODUCT_ID(edid) == quirk->product_id))
1336 return quirk->quirks;
1337 }
1338
1339 return 0;
1340}
1341
1342#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1343#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1344
1345/**
1346 * edid_fixup_preferred - set preferred modes based on quirk list
1347 * @connector: has mode list to fix up
1348 * @quirks: quirks list
1349 *
1350 * Walk the mode list for @connector, clearing the preferred status
1351 * on existing modes and setting it anew for the right mode ala @quirks.
1352 */
1353static void edid_fixup_preferred(struct drm_connector *connector,
1354 u32 quirks)
1355{
1356 struct drm_display_mode *t, *cur_mode, *preferred_mode;
1357 int target_refresh = 0;
1358 int cur_vrefresh, preferred_vrefresh;
1359
1360 if (list_empty(&connector->probed_modes))
1361 return;
1362
1363 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1364 target_refresh = 60;
1365 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1366 target_refresh = 75;
1367
1368 preferred_mode = list_first_entry(&connector->probed_modes,
1369 struct drm_display_mode, head);
1370
1371 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1372 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1373
1374 if (cur_mode == preferred_mode)
1375 continue;
1376
1377 /* Largest mode is preferred */
1378 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1379 preferred_mode = cur_mode;
1380
1381 cur_vrefresh = cur_mode->vrefresh ?
1382 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1383 preferred_vrefresh = preferred_mode->vrefresh ?
1384 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1385 /* At a given size, try to get closest to target refresh */
1386 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1387 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1388 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1389 preferred_mode = cur_mode;
1390 }
1391 }
1392
1393 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1394}
1395
1396static bool
1397mode_is_rb(const struct drm_display_mode *mode)
1398{
1399 return (mode->htotal - mode->hdisplay == 160) &&
1400 (mode->hsync_end - mode->hdisplay == 80) &&
1401 (mode->hsync_end - mode->hsync_start == 32) &&
1402 (mode->vsync_start - mode->vdisplay == 3);
1403}
1404
1405/*
1406 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1407 * @dev: Device to duplicate against
1408 * @hsize: Mode width
1409 * @vsize: Mode height
1410 * @fresh: Mode refresh rate
1411 * @rb: Mode reduced-blanking-ness
1412 *
1413 * Walk the DMT mode list looking for a match for the given parameters.
1414 * Return a newly allocated copy of the mode, or NULL if not found.
1415 */
1416struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1417 int hsize, int vsize, int fresh,
1418 bool rb)
1419{
1420 int i;
1421
1422 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1423 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1424 if (hsize != ptr->hdisplay)
1425 continue;
1426 if (vsize != ptr->vdisplay)
1427 continue;
1428 if (fresh != drm_mode_vrefresh(ptr))
1429 continue;
1430 if (rb != mode_is_rb(ptr))
1431 continue;
1432
1433 return drm_mode_duplicate(dev, ptr);
1434 }
1435
1436 return NULL;
1437}
1438EXPORT_SYMBOL(drm_mode_find_dmt);
1439
1440typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1441
1442static void
1443cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1444{
1445 int i, n = 0;
1446 u8 d = ext[0x02];
1447 u8 *det_base = ext + d;
1448
1449 n = (127 - d) / 18;
1450 for (i = 0; i < n; i++)
1451 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1452}
1453
1454static void
1455vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1456{
1457 unsigned int i, n = min((int)ext[0x02], 6);
1458 u8 *det_base = ext + 5;
1459
1460 if (ext[0x01] != 1)
1461 return; /* unknown version */
1462
1463 for (i = 0; i < n; i++)
1464 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1465}
1466
1467static void
1468drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1469{
1470 int i;
1471 struct edid *edid = (struct edid *)raw_edid;
1472
1473 if (edid == NULL)
1474 return;
1475
1476 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1477 cb(&(edid->detailed_timings[i]), closure);
1478
1479 for (i = 1; i <= raw_edid[0x7e]; i++) {
1480 u8 *ext = raw_edid + (i * EDID_LENGTH);
1481 switch (*ext) {
1482 case CEA_EXT:
1483 cea_for_each_detailed_block(ext, cb, closure);
1484 break;
1485 case VTB_EXT:
1486 vtb_for_each_detailed_block(ext, cb, closure);
1487 break;
1488 default:
1489 break;
1490 }
1491 }
1492}
1493
1494static void
1495is_rb(struct detailed_timing *t, void *data)
1496{
1497 u8 *r = (u8 *)t;
1498 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1499 if (r[15] & 0x10)
1500 *(bool *)data = true;
1501}
1502
1503/* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
1504static bool
1505drm_monitor_supports_rb(struct edid *edid)
1506{
1507 if (edid->revision >= 4) {
1508 bool ret = false;
1509 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1510 return ret;
1511 }
1512
1513 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1514}
1515
1516static void
1517find_gtf2(struct detailed_timing *t, void *data)
1518{
1519 u8 *r = (u8 *)t;
1520 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1521 *(u8 **)data = r;
1522}
1523
1524/* Secondary GTF curve kicks in above some break frequency */
1525static int
1526drm_gtf2_hbreak(struct edid *edid)
1527{
1528 u8 *r = NULL;
1529 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1530 return r ? (r[12] * 2) : 0;
1531}
1532
1533static int
1534drm_gtf2_2c(struct edid *edid)
1535{
1536 u8 *r = NULL;
1537 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1538 return r ? r[13] : 0;
1539}
1540
1541static int
1542drm_gtf2_m(struct edid *edid)
1543{
1544 u8 *r = NULL;
1545 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1546 return r ? (r[15] << 8) + r[14] : 0;
1547}
1548
1549static int
1550drm_gtf2_k(struct edid *edid)
1551{
1552 u8 *r = NULL;
1553 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1554 return r ? r[16] : 0;
1555}
1556
1557static int
1558drm_gtf2_2j(struct edid *edid)
1559{
1560 u8 *r = NULL;
1561 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1562 return r ? r[17] : 0;
1563}
1564
1565/**
1566 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1567 * @edid: EDID block to scan
1568 */
1569static int standard_timing_level(struct edid *edid)
1570{
1571 if (edid->revision >= 2) {
1572 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1573 return LEVEL_CVT;
1574 if (drm_gtf2_hbreak(edid))
1575 return LEVEL_GTF2;
1576 return LEVEL_GTF;
1577 }
1578 return LEVEL_DMT;
1579}
1580
1581/*
1582 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
1583 * monitors fill with ascii space (0x20) instead.
1584 */
1585static int
1586bad_std_timing(u8 a, u8 b)
1587{
1588 return (a == 0x00 && b == 0x00) ||
1589 (a == 0x01 && b == 0x01) ||
1590 (a == 0x20 && b == 0x20);
1591}
1592
1593/**
1594 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1595 * @connector: connector of for the EDID block
1596 * @edid: EDID block to scan
1597 * @t: standard timing params
1598 * @revision: standard timing level
1599 *
1600 * Take the standard timing params (in this case width, aspect, and refresh)
1601 * and convert them into a real mode using CVT/GTF/DMT.
1602 */
1603static struct drm_display_mode *
1604drm_mode_std(struct drm_connector *connector, struct edid *edid,
1605 struct std_timing *t, int revision)
1606{
1607 struct drm_device *dev = connector->dev;
1608 struct drm_display_mode *m, *mode = NULL;
1609 int hsize, vsize;
1610 int vrefresh_rate;
1611 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1612 >> EDID_TIMING_ASPECT_SHIFT;
1613 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1614 >> EDID_TIMING_VFREQ_SHIFT;
1615 int timing_level = standard_timing_level(edid);
1616
1617 if (bad_std_timing(t->hsize, t->vfreq_aspect))
1618 return NULL;
1619
1620 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1621 hsize = t->hsize * 8 + 248;
1622 /* vrefresh_rate = vfreq + 60 */
1623 vrefresh_rate = vfreq + 60;
1624 /* the vdisplay is calculated based on the aspect ratio */
1625 if (aspect_ratio == 0) {
1626 if (revision < 3)
1627 vsize = hsize;
1628 else
1629 vsize = (hsize * 10) / 16;
1630 } else if (aspect_ratio == 1)
1631 vsize = (hsize * 3) / 4;
1632 else if (aspect_ratio == 2)
1633 vsize = (hsize * 4) / 5;
1634 else
1635 vsize = (hsize * 9) / 16;
1636
1637 /* HDTV hack, part 1 */
1638 if (vrefresh_rate == 60 &&
1639 ((hsize == 1360 && vsize == 765) ||
1640 (hsize == 1368 && vsize == 769))) {
1641 hsize = 1366;
1642 vsize = 768;
1643 }
1644
1645 /*
1646 * If this connector already has a mode for this size and refresh
1647 * rate (because it came from detailed or CVT info), use that
1648 * instead. This way we don't have to guess at interlace or
1649 * reduced blanking.
1650 */
1651 list_for_each_entry(m, &connector->probed_modes, head)
1652 if (m->hdisplay == hsize && m->vdisplay == vsize &&
1653 drm_mode_vrefresh(m) == vrefresh_rate)
1654 return NULL;
1655
1656 /* HDTV hack, part 2 */
1657 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1658 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1659 false);
1660 mode->hdisplay = 1366;
1661 mode->hsync_start = mode->hsync_start - 1;
1662 mode->hsync_end = mode->hsync_end - 1;
1663 return mode;
1664 }
1665
1666 /* check whether it can be found in default mode table */
1667 if (drm_monitor_supports_rb(edid)) {
1668 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1669 true);
1670 if (mode)
1671 return mode;
1672 }
1673 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1674 if (mode)
1675 return mode;
1676
1677 /* okay, generate it */
1678 switch (timing_level) {
1679 case LEVEL_DMT:
1680 break;
1681 case LEVEL_GTF:
1682 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1683 break;
1684 case LEVEL_GTF2:
1685 /*
1686 * This is potentially wrong if there's ever a monitor with
1687 * more than one ranges section, each claiming a different
1688 * secondary GTF curve. Please don't do that.
1689 */
1690 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1691 if (!mode)
1692 return NULL;
1693 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1694 drm_mode_destroy(dev, mode);
1695 mode = drm_gtf_mode_complex(dev, hsize, vsize,
1696 vrefresh_rate, 0, 0,
1697 drm_gtf2_m(edid),
1698 drm_gtf2_2c(edid),
1699 drm_gtf2_k(edid),
1700 drm_gtf2_2j(edid));
1701 }
1702 break;
1703 case LEVEL_CVT:
1704 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1705 false);
1706 break;
1707 }
1708 return mode;
1709}
1710
1711/*
1712 * EDID is delightfully ambiguous about how interlaced modes are to be
1713 * encoded. Our internal representation is of frame height, but some
1714 * HDTV detailed timings are encoded as field height.
1715 *
1716 * The format list here is from CEA, in frame size. Technically we
1717 * should be checking refresh rate too. Whatever.
1718 */
1719static void
1720drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1721 struct detailed_pixel_timing *pt)
1722{
1723 int i;
1724 static const struct {
1725 int w, h;
1726 } cea_interlaced[] = {
1727 { 1920, 1080 },
1728 { 720, 480 },
1729 { 1440, 480 },
1730 { 2880, 480 },
1731 { 720, 576 },
1732 { 1440, 576 },
1733 { 2880, 576 },
1734 };
1735
1736 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1737 return;
1738
1739 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1740 if ((mode->hdisplay == cea_interlaced[i].w) &&
1741 (mode->vdisplay == cea_interlaced[i].h / 2)) {
1742 mode->vdisplay *= 2;
1743 mode->vsync_start *= 2;
1744 mode->vsync_end *= 2;
1745 mode->vtotal *= 2;
1746 mode->vtotal |= 1;
1747 }
1748 }
1749
1750 mode->flags |= DRM_MODE_FLAG_INTERLACE;
1751}
1752
1753/**
1754 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1755 * @dev: DRM device (needed to create new mode)
1756 * @edid: EDID block
1757 * @timing: EDID detailed timing info
1758 * @quirks: quirks to apply
1759 *
1760 * An EDID detailed timing block contains enough info for us to create and
1761 * return a new struct drm_display_mode.
1762 */
1763static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1764 struct edid *edid,
1765 struct detailed_timing *timing,
1766 u32 quirks)
1767{
1768 struct drm_display_mode *mode;
1769 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1770 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1771 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1772 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1773 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1774 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1775 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1776 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1777 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1778
1779 /* ignore tiny modes */
1780 if (hactive < 64 || vactive < 64)
1781 return NULL;
1782
1783 if (pt->misc & DRM_EDID_PT_STEREO) {
1784 DRM_DEBUG_KMS("stereo mode not supported\n");
1785 return NULL;
1786 }
1787 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1788 DRM_DEBUG_KMS("composite sync not supported\n");
1789 }
1790
1791 /* it is incorrect if hsync/vsync width is zero */
1792 if (!hsync_pulse_width || !vsync_pulse_width) {
1793 DRM_DEBUG_KMS("Incorrect Detailed timing. "
1794 "Wrong Hsync/Vsync pulse width\n");
1795 return NULL;
1796 }
1797
1798 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1799 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1800 if (!mode)
1801 return NULL;
1802
1803 goto set_size;
1804 }
1805
1806 mode = drm_mode_create(dev);
1807 if (!mode)
1808 return NULL;
1809
1810 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1811 timing->pixel_clock = cpu_to_le16(1088);
1812
1813 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1814
1815 mode->hdisplay = hactive;
1816 mode->hsync_start = mode->hdisplay + hsync_offset;
1817 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1818 mode->htotal = mode->hdisplay + hblank;
1819
1820 mode->vdisplay = vactive;
1821 mode->vsync_start = mode->vdisplay + vsync_offset;
1822 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1823 mode->vtotal = mode->vdisplay + vblank;
1824
1825 /* Some EDIDs have bogus h/vtotal values */
1826 if (mode->hsync_end > mode->htotal)
1827 mode->htotal = mode->hsync_end + 1;
1828 if (mode->vsync_end > mode->vtotal)
1829 mode->vtotal = mode->vsync_end + 1;
1830
1831 drm_mode_do_interlace_quirk(mode, pt);
1832
1833 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1834 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1835 }
1836
1837 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1838 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1839 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1840 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1841
1842set_size:
1843 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1844 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1845
1846 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1847 mode->width_mm *= 10;
1848 mode->height_mm *= 10;
1849 }
1850
1851 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1852 mode->width_mm = edid->width_cm * 10;
1853 mode->height_mm = edid->height_cm * 10;
1854 }
1855
1856 mode->type = DRM_MODE_TYPE_DRIVER;
1857 mode->vrefresh = drm_mode_vrefresh(mode);
1858 drm_mode_set_name(mode);
1859
1860 return mode;
1861}
1862
1863static bool
1864mode_in_hsync_range(const struct drm_display_mode *mode,
1865 struct edid *edid, u8 *t)
1866{
1867 int hsync, hmin, hmax;
1868
1869 hmin = t[7];
1870 if (edid->revision >= 4)
1871 hmin += ((t[4] & 0x04) ? 255 : 0);
1872 hmax = t[8];
1873 if (edid->revision >= 4)
1874 hmax += ((t[4] & 0x08) ? 255 : 0);
1875 hsync = drm_mode_hsync(mode);
1876
1877 return (hsync <= hmax && hsync >= hmin);
1878}
1879
1880static bool
1881mode_in_vsync_range(const struct drm_display_mode *mode,
1882 struct edid *edid, u8 *t)
1883{
1884 int vsync, vmin, vmax;
1885
1886 vmin = t[5];
1887 if (edid->revision >= 4)
1888 vmin += ((t[4] & 0x01) ? 255 : 0);
1889 vmax = t[6];
1890 if (edid->revision >= 4)
1891 vmax += ((t[4] & 0x02) ? 255 : 0);
1892 vsync = drm_mode_vrefresh(mode);
1893
1894 return (vsync <= vmax && vsync >= vmin);
1895}
1896
1897static u32
1898range_pixel_clock(struct edid *edid, u8 *t)
1899{
1900 /* unspecified */
1901 if (t[9] == 0 || t[9] == 255)
1902 return 0;
1903
1904 /* 1.4 with CVT support gives us real precision, yay */
1905 if (edid->revision >= 4 && t[10] == 0x04)
1906 return (t[9] * 10000) - ((t[12] >> 2) * 250);
1907
1908 /* 1.3 is pathetic, so fuzz up a bit */
1909 return t[9] * 10000 + 5001;
1910}
1911
1912static bool
1913mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
1914 struct detailed_timing *timing)
1915{
1916 u32 max_clock;
1917 u8 *t = (u8 *)timing;
1918
1919 if (!mode_in_hsync_range(mode, edid, t))
1920 return false;
1921
1922 if (!mode_in_vsync_range(mode, edid, t))
1923 return false;
1924
1925 if ((max_clock = range_pixel_clock(edid, t)))
1926 if (mode->clock > max_clock)
1927 return false;
1928
1929 /* 1.4 max horizontal check */
1930 if (edid->revision >= 4 && t[10] == 0x04)
1931 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
1932 return false;
1933
1934 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
1935 return false;
1936
1937 return true;
1938}
1939
1940static bool valid_inferred_mode(const struct drm_connector *connector,
1941 const struct drm_display_mode *mode)
1942{
1943 struct drm_display_mode *m;
1944 bool ok = false;
1945
1946 list_for_each_entry(m, &connector->probed_modes, head) {
1947 if (mode->hdisplay == m->hdisplay &&
1948 mode->vdisplay == m->vdisplay &&
1949 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
1950 return false; /* duplicated */
1951 if (mode->hdisplay <= m->hdisplay &&
1952 mode->vdisplay <= m->vdisplay)
1953 ok = true;
1954 }
1955 return ok;
1956}
1957
1958static int
1959drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
1960 struct detailed_timing *timing)
1961{
1962 int i, modes = 0;
1963 struct drm_display_mode *newmode;
1964 struct drm_device *dev = connector->dev;
1965
1966 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1967 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
1968 valid_inferred_mode(connector, drm_dmt_modes + i)) {
1969 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
1970 if (newmode) {
1971 drm_mode_probed_add(connector, newmode);
1972 modes++;
1973 }
1974 }
1975 }
1976
1977 return modes;
1978}
1979
1980/* fix up 1366x768 mode from 1368x768;
1981 * GFT/CVT can't express 1366 width which isn't dividable by 8
1982 */
1983static void fixup_mode_1366x768(struct drm_display_mode *mode)
1984{
1985 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
1986 mode->hdisplay = 1366;
1987 mode->hsync_start--;
1988 mode->hsync_end--;
1989 drm_mode_set_name(mode);
1990 }
1991}
1992
1993static int
1994drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
1995 struct detailed_timing *timing)
1996{
1997 int i, modes = 0;
1998 struct drm_display_mode *newmode;
1999 struct drm_device *dev = connector->dev;
2000
2001 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2002 const struct minimode *m = &extra_modes[i];
2003 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2004 if (!newmode)
2005 return modes;
2006
2007 fixup_mode_1366x768(newmode);
2008 if (!mode_in_range(newmode, edid, timing) ||
2009 !valid_inferred_mode(connector, newmode)) {
2010 drm_mode_destroy(dev, newmode);
2011 continue;
2012 }
2013
2014 drm_mode_probed_add(connector, newmode);
2015 modes++;
2016 }
2017
2018 return modes;
2019}
2020
2021static int
2022drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2023 struct detailed_timing *timing)
2024{
2025 int i, modes = 0;
2026 struct drm_display_mode *newmode;
2027 struct drm_device *dev = connector->dev;
2028 bool rb = drm_monitor_supports_rb(edid);
2029
2030 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2031 const struct minimode *m = &extra_modes[i];
2032 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2033 if (!newmode)
2034 return modes;
2035
2036 fixup_mode_1366x768(newmode);
2037 if (!mode_in_range(newmode, edid, timing) ||
2038 !valid_inferred_mode(connector, newmode)) {
2039 drm_mode_destroy(dev, newmode);
2040 continue;
2041 }
2042
2043 drm_mode_probed_add(connector, newmode);
2044 modes++;
2045 }
2046
2047 return modes;
2048}
2049
2050static void
2051do_inferred_modes(struct detailed_timing *timing, void *c)
2052{
2053 struct detailed_mode_closure *closure = c;
2054 struct detailed_non_pixel *data = &timing->data.other_data;
2055 struct detailed_data_monitor_range *range = &data->data.range;
2056
2057 if (data->type != EDID_DETAIL_MONITOR_RANGE)
2058 return;
2059
2060 closure->modes += drm_dmt_modes_for_range(closure->connector,
2061 closure->edid,
2062 timing);
2063
2064 if (!version_greater(closure->edid, 1, 1))
2065 return; /* GTF not defined yet */
2066
2067 switch (range->flags) {
2068 case 0x02: /* secondary gtf, XXX could do more */
2069 case 0x00: /* default gtf */
2070 closure->modes += drm_gtf_modes_for_range(closure->connector,
2071 closure->edid,
2072 timing);
2073 break;
2074 case 0x04: /* cvt, only in 1.4+ */
2075 if (!version_greater(closure->edid, 1, 3))
2076 break;
2077
2078 closure->modes += drm_cvt_modes_for_range(closure->connector,
2079 closure->edid,
2080 timing);
2081 break;
2082 case 0x01: /* just the ranges, no formula */
2083 default:
2084 break;
2085 }
2086}
2087
2088static int
2089add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2090{
2091 struct detailed_mode_closure closure = {
2092 connector, edid, 0, 0, 0
2093 };
2094
2095 if (version_greater(edid, 1, 0))
2096 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2097 &closure);
2098
2099 return closure.modes;
2100}
2101
2102static int
2103drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2104{
2105 int i, j, m, modes = 0;
2106 struct drm_display_mode *mode;
2107 u8 *est = ((u8 *)timing) + 5;
2108
2109 for (i = 0; i < 6; i++) {
2110 for (j = 7; j >= 0; j--) {
2111 m = (i * 8) + (7 - j);
2112 if (m >= ARRAY_SIZE(est3_modes))
2113 break;
2114 if (est[i] & (1 << j)) {
2115 mode = drm_mode_find_dmt(connector->dev,
2116 est3_modes[m].w,
2117 est3_modes[m].h,
2118 est3_modes[m].r,
2119 est3_modes[m].rb);
2120 if (mode) {
2121 drm_mode_probed_add(connector, mode);
2122 modes++;
2123 }
2124 }
2125 }
2126 }
2127
2128 return modes;
2129}
2130
2131static void
2132do_established_modes(struct detailed_timing *timing, void *c)
2133{
2134 struct detailed_mode_closure *closure = c;
2135 struct detailed_non_pixel *data = &timing->data.other_data;
2136
2137 if (data->type == EDID_DETAIL_EST_TIMINGS)
2138 closure->modes += drm_est3_modes(closure->connector, timing);
2139}
2140
2141/**
2142 * add_established_modes - get est. modes from EDID and add them
2143 * @connector: connector of for the EDID block
2144 * @edid: EDID block to scan
2145 *
2146 * Each EDID block contains a bitmap of the supported "established modes" list
2147 * (defined above). Tease them out and add them to the global modes list.
2148 */
2149static int
2150add_established_modes(struct drm_connector *connector, struct edid *edid)
2151{
2152 struct drm_device *dev = connector->dev;
2153 unsigned long est_bits = edid->established_timings.t1 |
2154 (edid->established_timings.t2 << 8) |
2155 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
2156 int i, modes = 0;
2157 struct detailed_mode_closure closure = {
2158 connector, edid, 0, 0, 0
2159 };
2160
2161 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2162 if (est_bits & (1<<i)) {
2163 struct drm_display_mode *newmode;
2164 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2165 if (newmode) {
2166 drm_mode_probed_add(connector, newmode);
2167 modes++;
2168 }
2169 }
2170 }
2171
2172 if (version_greater(edid, 1, 0))
2173 drm_for_each_detailed_block((u8 *)edid,
2174 do_established_modes, &closure);
2175
2176 return modes + closure.modes;
2177}
2178
2179static void
2180do_standard_modes(struct detailed_timing *timing, void *c)
2181{
2182 struct detailed_mode_closure *closure = c;
2183 struct detailed_non_pixel *data = &timing->data.other_data;
2184 struct drm_connector *connector = closure->connector;
2185 struct edid *edid = closure->edid;
2186
2187 if (data->type == EDID_DETAIL_STD_MODES) {
2188 int i;
2189 for (i = 0; i < 6; i++) {
2190 struct std_timing *std;
2191 struct drm_display_mode *newmode;
2192
2193 std = &data->data.timings[i];
2194 newmode = drm_mode_std(connector, edid, std,
2195 edid->revision);
2196 if (newmode) {
2197 drm_mode_probed_add(connector, newmode);
2198 closure->modes++;
2199 }
2200 }
2201 }
2202}
2203
2204/**
2205 * add_standard_modes - get std. modes from EDID and add them
2206 * @connector: connector of for the EDID block
2207 * @edid: EDID block to scan
2208 *
2209 * Standard modes can be calculated using the appropriate standard (DMT,
2210 * GTF or CVT. Grab them from @edid and add them to the list.
2211 */
2212static int
2213add_standard_modes(struct drm_connector *connector, struct edid *edid)
2214{
2215 int i, modes = 0;
2216 struct detailed_mode_closure closure = {
2217 connector, edid, 0, 0, 0
2218 };
2219
2220 for (i = 0; i < EDID_STD_TIMINGS; i++) {
2221 struct drm_display_mode *newmode;
2222
2223 newmode = drm_mode_std(connector, edid,
2224 &edid->standard_timings[i],
2225 edid->revision);
2226 if (newmode) {
2227 drm_mode_probed_add(connector, newmode);
2228 modes++;
2229 }
2230 }
2231
2232 if (version_greater(edid, 1, 0))
2233 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2234 &closure);
2235
2236 /* XXX should also look for standard codes in VTB blocks */
2237
2238 return modes + closure.modes;
2239}
2240
2241static int drm_cvt_modes(struct drm_connector *connector,
2242 struct detailed_timing *timing)
2243{
2244 int i, j, modes = 0;
2245 struct drm_display_mode *newmode;
2246 struct drm_device *dev = connector->dev;
2247 struct cvt_timing *cvt;
2248 const int rates[] = { 60, 85, 75, 60, 50 };
2249 const u8 empty[3] = { 0, 0, 0 };
2250
2251 for (i = 0; i < 4; i++) {
2252 int uninitialized_var(width), height;
2253 cvt = &(timing->data.other_data.data.cvt[i]);
2254
2255 if (!memcmp(cvt->code, empty, 3))
2256 continue;
2257
2258 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2259 switch (cvt->code[1] & 0x0c) {
2260 case 0x00:
2261 width = height * 4 / 3;
2262 break;
2263 case 0x04:
2264 width = height * 16 / 9;
2265 break;
2266 case 0x08:
2267 width = height * 16 / 10;
2268 break;
2269 case 0x0c:
2270 width = height * 15 / 9;
2271 break;
2272 }
2273
2274 for (j = 1; j < 5; j++) {
2275 if (cvt->code[2] & (1 << j)) {
2276 newmode = drm_cvt_mode(dev, width, height,
2277 rates[j], j == 0,
2278 false, false);
2279 if (newmode) {
2280 drm_mode_probed_add(connector, newmode);
2281 modes++;
2282 }
2283 }
2284 }
2285 }
2286
2287 return modes;
2288}
2289
2290static void
2291do_cvt_mode(struct detailed_timing *timing, void *c)
2292{
2293 struct detailed_mode_closure *closure = c;
2294 struct detailed_non_pixel *data = &timing->data.other_data;
2295
2296 if (data->type == EDID_DETAIL_CVT_3BYTE)
2297 closure->modes += drm_cvt_modes(closure->connector, timing);
2298}
2299
2300static int
2301add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2302{
2303 struct detailed_mode_closure closure = {
2304 connector, edid, 0, 0, 0
2305 };
2306
2307 if (version_greater(edid, 1, 2))
2308 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2309
2310 /* XXX should also look for CVT codes in VTB blocks */
2311
2312 return closure.modes;
2313}
2314
2315static void
2316do_detailed_mode(struct detailed_timing *timing, void *c)
2317{
2318 struct detailed_mode_closure *closure = c;
2319 struct drm_display_mode *newmode;
2320
2321 if (timing->pixel_clock) {
2322 newmode = drm_mode_detailed(closure->connector->dev,
2323 closure->edid, timing,
2324 closure->quirks);
2325 if (!newmode)
2326 return;
2327
2328 if (closure->preferred)
2329 newmode->type |= DRM_MODE_TYPE_PREFERRED;
2330
2331 drm_mode_probed_add(closure->connector, newmode);
2332 closure->modes++;
2333 closure->preferred = 0;
2334 }
2335}
2336
2337/*
2338 * add_detailed_modes - Add modes from detailed timings
2339 * @connector: attached connector
2340 * @edid: EDID block to scan
2341 * @quirks: quirks to apply
2342 */
2343static int
2344add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2345 u32 quirks)
2346{
2347 struct detailed_mode_closure closure = {
2348 connector,
2349 edid,
2350 1,
2351 quirks,
2352 0
2353 };
2354
2355 if (closure.preferred && !version_greater(edid, 1, 3))
2356 closure.preferred =
2357 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2358
2359 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2360
2361 return closure.modes;
2362}
2363
2364#define AUDIO_BLOCK 0x01
2365#define VIDEO_BLOCK 0x02
2366#define VENDOR_BLOCK 0x03
2367#define SPEAKER_BLOCK 0x04
2368#define VIDEO_CAPABILITY_BLOCK 0x07
2369#define EDID_BASIC_AUDIO (1 << 6)
2370#define EDID_CEA_YCRCB444 (1 << 5)
2371#define EDID_CEA_YCRCB422 (1 << 4)
2372#define EDID_CEA_VCDB_QS (1 << 6)
2373
2374/*
2375 * Search EDID for CEA extension block.
2376 */
2377static u8 *drm_find_cea_extension(struct edid *edid)
2378{
2379 u8 *edid_ext = NULL;
2380 int i;
2381
2382 /* No EDID or EDID extensions */
2383 if (edid == NULL || edid->extensions == 0)
2384 return NULL;
2385
2386 /* Find CEA extension */
2387 for (i = 0; i < edid->extensions; i++) {
2388 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2389 if (edid_ext[0] == CEA_EXT)
2390 break;
2391 }
2392
2393 if (i == edid->extensions)
2394 return NULL;
2395
2396 return edid_ext;
2397}
2398
2399/*
2400 * Calculate the alternate clock for the CEA mode
2401 * (60Hz vs. 59.94Hz etc.)
2402 */
2403static unsigned int
2404cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2405{
2406 unsigned int clock = cea_mode->clock;
2407
2408 if (cea_mode->vrefresh % 6 != 0)
2409 return clock;
2410
2411 /*
2412 * edid_cea_modes contains the 59.94Hz
2413 * variant for 240 and 480 line modes,
2414 * and the 60Hz variant otherwise.
2415 */
2416 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2417 clock = clock * 1001 / 1000;
2418 else
2419 clock = DIV_ROUND_UP(clock * 1000, 1001);
2420
2421 return clock;
2422}
2423
2424/**
2425 * drm_match_cea_mode - look for a CEA mode matching given mode
2426 * @to_match: display mode
2427 *
2428 * Returns the CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2429 * mode.
2430 */
2431u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2432{
2433 u8 mode;
2434
2435 if (!to_match->clock)
2436 return 0;
2437
2438 for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2439 const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2440 unsigned int clock1, clock2;
2441
2442 /* Check both 60Hz and 59.94Hz */
2443 clock1 = cea_mode->clock;
2444 clock2 = cea_mode_alternate_clock(cea_mode);
2445
2446 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2447 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2448 drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2449 return mode + 1;
2450 }
2451 return 0;
2452}
2453EXPORT_SYMBOL(drm_match_cea_mode);
2454
2455/*
2456 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2457 * specific block).
2458 *
2459 * It's almost like cea_mode_alternate_clock(), we just need to add an
2460 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2461 * one.
2462 */
2463static unsigned int
2464hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2465{
2466 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2467 return hdmi_mode->clock;
2468
2469 return cea_mode_alternate_clock(hdmi_mode);
2470}
2471
2472/*
2473 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2474 * @to_match: display mode
2475 *
2476 * An HDMI mode is one defined in the HDMI vendor specific block.
2477 *
2478 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2479 */
2480static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2481{
2482 u8 mode;
2483
2484 if (!to_match->clock)
2485 return 0;
2486
2487 for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2488 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
2489 unsigned int clock1, clock2;
2490
2491 /* Make sure to also match alternate clocks */
2492 clock1 = hdmi_mode->clock;
2493 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2494
2495 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2496 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2497 drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2498 return mode + 1;
2499 }
2500 return 0;
2501}
2502
2503static int
2504add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2505{
2506 struct drm_device *dev = connector->dev;
2507 struct drm_display_mode *mode, *tmp;
2508 LIST_HEAD(list);
2509 int modes = 0;
2510
2511 /* Don't add CEA modes if the CEA extension block is missing */
2512 if (!drm_find_cea_extension(edid))
2513 return 0;
2514
2515 /*
2516 * Go through all probed modes and create a new mode
2517 * with the alternate clock for certain CEA modes.
2518 */
2519 list_for_each_entry(mode, &connector->probed_modes, head) {
2520 const struct drm_display_mode *cea_mode = NULL;
2521 struct drm_display_mode *newmode;
2522 u8 mode_idx = drm_match_cea_mode(mode) - 1;
2523 unsigned int clock1, clock2;
2524
2525 if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2526 cea_mode = &edid_cea_modes[mode_idx];
2527 clock2 = cea_mode_alternate_clock(cea_mode);
2528 } else {
2529 mode_idx = drm_match_hdmi_mode(mode) - 1;
2530 if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2531 cea_mode = &edid_4k_modes[mode_idx];
2532 clock2 = hdmi_mode_alternate_clock(cea_mode);
2533 }
2534 }
2535
2536 if (!cea_mode)
2537 continue;
2538
2539 clock1 = cea_mode->clock;
2540
2541 if (clock1 == clock2)
2542 continue;
2543
2544 if (mode->clock != clock1 && mode->clock != clock2)
2545 continue;
2546
2547 newmode = drm_mode_duplicate(dev, cea_mode);
2548 if (!newmode)
2549 continue;
2550
2551 /* Carry over the stereo flags */
2552 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2553
2554 /*
2555 * The current mode could be either variant. Make
2556 * sure to pick the "other" clock for the new mode.
2557 */
2558 if (mode->clock != clock1)
2559 newmode->clock = clock1;
2560 else
2561 newmode->clock = clock2;
2562
2563 list_add_tail(&newmode->head, &list);
2564 }
2565
2566 list_for_each_entry_safe(mode, tmp, &list, head) {
2567 list_del(&mode->head);
2568 drm_mode_probed_add(connector, mode);
2569 modes++;
2570 }
2571
2572 return modes;
2573}
2574
2575static struct drm_display_mode *
2576drm_display_mode_from_vic_index(struct drm_connector *connector,
2577 const u8 *video_db, u8 video_len,
2578 u8 video_index)
2579{
2580 struct drm_device *dev = connector->dev;
2581 struct drm_display_mode *newmode;
2582 u8 cea_mode;
2583
2584 if (video_db == NULL || video_index >= video_len)
2585 return NULL;
2586
2587 /* CEA modes are numbered 1..127 */
2588 cea_mode = (video_db[video_index] & 127) - 1;
2589 if (cea_mode >= ARRAY_SIZE(edid_cea_modes))
2590 return NULL;
2591
2592 newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2593 if (!newmode)
2594 return NULL;
2595
2596 newmode->vrefresh = 0;
2597
2598 return newmode;
2599}
2600
2601static int
2602do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2603{
2604 int i, modes = 0;
2605
2606 for (i = 0; i < len; i++) {
2607 struct drm_display_mode *mode;
2608 mode = drm_display_mode_from_vic_index(connector, db, len, i);
2609 if (mode) {
2610 drm_mode_probed_add(connector, mode);
2611 modes++;
2612 }
2613 }
2614
2615 return modes;
2616}
2617
2618struct stereo_mandatory_mode {
2619 int width, height, vrefresh;
2620 unsigned int flags;
2621};
2622
2623static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2624 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2625 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2626 { 1920, 1080, 50,
2627 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2628 { 1920, 1080, 60,
2629 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2630 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2631 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2632 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2633 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2634};
2635
2636static bool
2637stereo_match_mandatory(const struct drm_display_mode *mode,
2638 const struct stereo_mandatory_mode *stereo_mode)
2639{
2640 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2641
2642 return mode->hdisplay == stereo_mode->width &&
2643 mode->vdisplay == stereo_mode->height &&
2644 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2645 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2646}
2647
2648static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2649{
2650 struct drm_device *dev = connector->dev;
2651 const struct drm_display_mode *mode;
2652 struct list_head stereo_modes;
2653 int modes = 0, i;
2654
2655 INIT_LIST_HEAD(&stereo_modes);
2656
2657 list_for_each_entry(mode, &connector->probed_modes, head) {
2658 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2659 const struct stereo_mandatory_mode *mandatory;
2660 struct drm_display_mode *new_mode;
2661
2662 if (!stereo_match_mandatory(mode,
2663 &stereo_mandatory_modes[i]))
2664 continue;
2665
2666 mandatory = &stereo_mandatory_modes[i];
2667 new_mode = drm_mode_duplicate(dev, mode);
2668 if (!new_mode)
2669 continue;
2670
2671 new_mode->flags |= mandatory->flags;
2672 list_add_tail(&new_mode->head, &stereo_modes);
2673 modes++;
2674 }
2675 }
2676
2677 list_splice_tail(&stereo_modes, &connector->probed_modes);
2678
2679 return modes;
2680}
2681
2682static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2683{
2684 struct drm_device *dev = connector->dev;
2685 struct drm_display_mode *newmode;
2686
2687 vic--; /* VICs start at 1 */
2688 if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2689 DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2690 return 0;
2691 }
2692
2693 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2694 if (!newmode)
2695 return 0;
2696
2697 drm_mode_probed_add(connector, newmode);
2698
2699 return 1;
2700}
2701
2702static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2703 const u8 *video_db, u8 video_len, u8 video_index)
2704{
2705 struct drm_display_mode *newmode;
2706 int modes = 0;
2707
2708 if (structure & (1 << 0)) {
2709 newmode = drm_display_mode_from_vic_index(connector, video_db,
2710 video_len,
2711 video_index);
2712 if (newmode) {
2713 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2714 drm_mode_probed_add(connector, newmode);
2715 modes++;
2716 }
2717 }
2718 if (structure & (1 << 6)) {
2719 newmode = drm_display_mode_from_vic_index(connector, video_db,
2720 video_len,
2721 video_index);
2722 if (newmode) {
2723 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2724 drm_mode_probed_add(connector, newmode);
2725 modes++;
2726 }
2727 }
2728 if (structure & (1 << 8)) {
2729 newmode = drm_display_mode_from_vic_index(connector, video_db,
2730 video_len,
2731 video_index);
2732 if (newmode) {
2733 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2734 drm_mode_probed_add(connector, newmode);
2735 modes++;
2736 }
2737 }
2738
2739 return modes;
2740}
2741
2742/*
2743 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2744 * @connector: connector corresponding to the HDMI sink
2745 * @db: start of the CEA vendor specific block
2746 * @len: length of the CEA block payload, ie. one can access up to db[len]
2747 *
2748 * Parses the HDMI VSDB looking for modes to add to @connector. This function
2749 * also adds the stereo 3d modes when applicable.
2750 */
2751static int
2752do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2753 const u8 *video_db, u8 video_len)
2754{
2755 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2756 u8 vic_len, hdmi_3d_len = 0;
2757 u16 mask;
2758 u16 structure_all;
2759
2760 if (len < 8)
2761 goto out;
2762
2763 /* no HDMI_Video_Present */
2764 if (!(db[8] & (1 << 5)))
2765 goto out;
2766
2767 /* Latency_Fields_Present */
2768 if (db[8] & (1 << 7))
2769 offset += 2;
2770
2771 /* I_Latency_Fields_Present */
2772 if (db[8] & (1 << 6))
2773 offset += 2;
2774
2775 /* the declared length is not long enough for the 2 first bytes
2776 * of additional video format capabilities */
2777 if (len < (8 + offset + 2))
2778 goto out;
2779
2780 /* 3D_Present */
2781 offset++;
2782 if (db[8 + offset] & (1 << 7)) {
2783 modes += add_hdmi_mandatory_stereo_modes(connector);
2784
2785 /* 3D_Multi_present */
2786 multi_present = (db[8 + offset] & 0x60) >> 5;
2787 }
2788
2789 offset++;
2790 vic_len = db[8 + offset] >> 5;
2791 hdmi_3d_len = db[8 + offset] & 0x1f;
2792
2793 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2794 u8 vic;
2795
2796 vic = db[9 + offset + i];
2797 modes += add_hdmi_mode(connector, vic);
2798 }
2799 offset += 1 + vic_len;
2800
2801 if (multi_present == 1)
2802 multi_len = 2;
2803 else if (multi_present == 2)
2804 multi_len = 4;
2805 else
2806 multi_len = 0;
2807
2808 if (len < (8 + offset + hdmi_3d_len - 1))
2809 goto out;
2810
2811 if (hdmi_3d_len < multi_len)
2812 goto out;
2813
2814 if (multi_present == 1 || multi_present == 2) {
2815 /* 3D_Structure_ALL */
2816 structure_all = (db[8 + offset] << 8) | db[9 + offset];
2817
2818 /* check if 3D_MASK is present */
2819 if (multi_present == 2)
2820 mask = (db[10 + offset] << 8) | db[11 + offset];
2821 else
2822 mask = 0xffff;
2823
2824 for (i = 0; i < 16; i++) {
2825 if (mask & (1 << i))
2826 modes += add_3d_struct_modes(connector,
2827 structure_all,
2828 video_db,
2829 video_len, i);
2830 }
2831 }
2832
2833 offset += multi_len;
2834
2835 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
2836 int vic_index;
2837 struct drm_display_mode *newmode = NULL;
2838 unsigned int newflag = 0;
2839 bool detail_present;
2840
2841 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
2842
2843 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
2844 break;
2845
2846 /* 2D_VIC_order_X */
2847 vic_index = db[8 + offset + i] >> 4;
2848
2849 /* 3D_Structure_X */
2850 switch (db[8 + offset + i] & 0x0f) {
2851 case 0:
2852 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
2853 break;
2854 case 6:
2855 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2856 break;
2857 case 8:
2858 /* 3D_Detail_X */
2859 if ((db[9 + offset + i] >> 4) == 1)
2860 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2861 break;
2862 }
2863
2864 if (newflag != 0) {
2865 newmode = drm_display_mode_from_vic_index(connector,
2866 video_db,
2867 video_len,
2868 vic_index);
2869
2870 if (newmode) {
2871 newmode->flags |= newflag;
2872 drm_mode_probed_add(connector, newmode);
2873 modes++;
2874 }
2875 }
2876
2877 if (detail_present)
2878 i++;
2879 }
2880
2881out:
2882 return modes;
2883}
2884
2885static int
2886cea_db_payload_len(const u8 *db)
2887{
2888 return db[0] & 0x1f;
2889}
2890
2891static int
2892cea_db_tag(const u8 *db)
2893{
2894 return db[0] >> 5;
2895}
2896
2897static int
2898cea_revision(const u8 *cea)
2899{
2900 return cea[1];
2901}
2902
2903static int
2904cea_db_offsets(const u8 *cea, int *start, int *end)
2905{
2906 /* Data block offset in CEA extension block */
2907 *start = 4;
2908 *end = cea[2];
2909 if (*end == 0)
2910 *end = 127;
2911 if (*end < 4 || *end > 127)
2912 return -ERANGE;
2913 return 0;
2914}
2915
2916static bool cea_db_is_hdmi_vsdb(const u8 *db)
2917{
2918 int hdmi_id;
2919
2920 if (cea_db_tag(db) != VENDOR_BLOCK)
2921 return false;
2922
2923 if (cea_db_payload_len(db) < 5)
2924 return false;
2925
2926 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2927
2928 return hdmi_id == HDMI_IEEE_OUI;
2929}
2930
2931#define for_each_cea_db(cea, i, start, end) \
2932 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2933
2934static int
2935add_cea_modes(struct drm_connector *connector, struct edid *edid)
2936{
2937 const u8 *cea = drm_find_cea_extension(edid);
2938 const u8 *db, *hdmi = NULL, *video = NULL;
2939 u8 dbl, hdmi_len, video_len = 0;
2940 int modes = 0;
2941
2942 if (cea && cea_revision(cea) >= 3) {
2943 int i, start, end;
2944
2945 if (cea_db_offsets(cea, &start, &end))
2946 return 0;
2947
2948 for_each_cea_db(cea, i, start, end) {
2949 db = &cea[i];
2950 dbl = cea_db_payload_len(db);
2951
2952 if (cea_db_tag(db) == VIDEO_BLOCK) {
2953 video = db + 1;
2954 video_len = dbl;
2955 modes += do_cea_modes(connector, video, dbl);
2956 }
2957 else if (cea_db_is_hdmi_vsdb(db)) {
2958 hdmi = db;
2959 hdmi_len = dbl;
2960 }
2961 }
2962 }
2963
2964 /*
2965 * We parse the HDMI VSDB after having added the cea modes as we will
2966 * be patching their flags when the sink supports stereo 3D.
2967 */
2968 if (hdmi)
2969 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
2970 video_len);
2971
2972 return modes;
2973}
2974
2975static void
2976parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
2977{
2978 u8 len = cea_db_payload_len(db);
2979
2980 if (len >= 6) {
2981 connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */
2982 connector->dvi_dual = db[6] & 1;
2983 }
2984 if (len >= 7)
2985 connector->max_tmds_clock = db[7] * 5;
2986 if (len >= 8) {
2987 connector->latency_present[0] = db[8] >> 7;
2988 connector->latency_present[1] = (db[8] >> 6) & 1;
2989 }
2990 if (len >= 9)
2991 connector->video_latency[0] = db[9];
2992 if (len >= 10)
2993 connector->audio_latency[0] = db[10];
2994 if (len >= 11)
2995 connector->video_latency[1] = db[11];
2996 if (len >= 12)
2997 connector->audio_latency[1] = db[12];
2998
2999 DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3000 "max TMDS clock %d, "
3001 "latency present %d %d, "
3002 "video latency %d %d, "
3003 "audio latency %d %d\n",
3004 connector->dvi_dual,
3005 connector->max_tmds_clock,
3006 (int) connector->latency_present[0],
3007 (int) connector->latency_present[1],
3008 connector->video_latency[0],
3009 connector->video_latency[1],
3010 connector->audio_latency[0],
3011 connector->audio_latency[1]);
3012}
3013
3014static void
3015monitor_name(struct detailed_timing *t, void *data)
3016{
3017 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3018 *(u8 **)data = t->data.other_data.data.str.str;
3019}
3020
3021/**
3022 * drm_edid_to_eld - build ELD from EDID
3023 * @connector: connector corresponding to the HDMI/DP sink
3024 * @edid: EDID to parse
3025 *
3026 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver.
3027 * Some ELD fields are left to the graphics driver caller:
3028 * - Conn_Type
3029 * - HDCP
3030 * - Port_ID
3031 */
3032void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3033{
3034 uint8_t *eld = connector->eld;
3035 u8 *cea;
3036 u8 *name;
3037 u8 *db;
3038 int sad_count = 0;
3039 int mnl;
3040 int dbl;
3041
3042 memset(eld, 0, sizeof(connector->eld));
3043
3044 cea = drm_find_cea_extension(edid);
3045 if (!cea) {
3046 DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3047 return;
3048 }
3049
3050 name = NULL;
3051 drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
3052 for (mnl = 0; name && mnl < 13; mnl++) {
3053 if (name[mnl] == 0x0a)
3054 break;
3055 eld[20 + mnl] = name[mnl];
3056 }
3057 eld[4] = (cea[1] << 5) | mnl;
3058 DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3059
3060 eld[0] = 2 << 3; /* ELD version: 2 */
3061
3062 eld[16] = edid->mfg_id[0];
3063 eld[17] = edid->mfg_id[1];
3064 eld[18] = edid->prod_code[0];
3065 eld[19] = edid->prod_code[1];
3066
3067 if (cea_revision(cea) >= 3) {
3068 int i, start, end;
3069
3070 if (cea_db_offsets(cea, &start, &end)) {
3071 start = 0;
3072 end = 0;
3073 }
3074
3075 for_each_cea_db(cea, i, start, end) {
3076 db = &cea[i];
3077 dbl = cea_db_payload_len(db);
3078
3079 switch (cea_db_tag(db)) {
3080 case AUDIO_BLOCK:
3081 /* Audio Data Block, contains SADs */
3082 sad_count = dbl / 3;
3083 if (dbl >= 1)
3084 memcpy(eld + 20 + mnl, &db[1], dbl);
3085 break;
3086 case SPEAKER_BLOCK:
3087 /* Speaker Allocation Data Block */
3088 if (dbl >= 1)
3089 eld[7] = db[1];
3090 break;
3091 case VENDOR_BLOCK:
3092 /* HDMI Vendor-Specific Data Block */
3093 if (cea_db_is_hdmi_vsdb(db))
3094 parse_hdmi_vsdb(connector, db);
3095 break;
3096 default:
3097 break;
3098 }
3099 }
3100 }
3101 eld[5] |= sad_count << 4;
3102 eld[2] = (20 + mnl + sad_count * 3 + 3) / 4;
3103
3104 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", (int)eld[2], sad_count);
3105}
3106EXPORT_SYMBOL(drm_edid_to_eld);
3107
3108/**
3109 * drm_edid_to_sad - extracts SADs from EDID
3110 * @edid: EDID to parse
3111 * @sads: pointer that will be set to the extracted SADs
3112 *
3113 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3114 * Note: returned pointer needs to be kfreed
3115 *
3116 * Return number of found SADs or negative number on error.
3117 */
3118int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3119{
3120 int count = 0;
3121 int i, start, end, dbl;
3122 u8 *cea;
3123
3124 cea = drm_find_cea_extension(edid);
3125 if (!cea) {
3126 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3127 return -ENOENT;
3128 }
3129
3130 if (cea_revision(cea) < 3) {
3131 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3132 return -ENOTSUPP;
3133 }
3134
3135 if (cea_db_offsets(cea, &start, &end)) {
3136 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3137 return -EPROTO;
3138 }
3139
3140 for_each_cea_db(cea, i, start, end) {
3141 u8 *db = &cea[i];
3142
3143 if (cea_db_tag(db) == AUDIO_BLOCK) {
3144 int j;
3145 dbl = cea_db_payload_len(db);
3146
3147 count = dbl / 3; /* SAD is 3B */
3148 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3149 if (!*sads)
3150 return -ENOMEM;
3151 for (j = 0; j < count; j++) {
3152 u8 *sad = &db[1 + j * 3];
3153
3154 (*sads)[j].format = (sad[0] & 0x78) >> 3;
3155 (*sads)[j].channels = sad[0] & 0x7;
3156 (*sads)[j].freq = sad[1] & 0x7F;
3157 (*sads)[j].byte2 = sad[2];
3158 }
3159 break;
3160 }
3161 }
3162
3163 return count;
3164}
3165EXPORT_SYMBOL(drm_edid_to_sad);
3166
3167/**
3168 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3169 * @edid: EDID to parse
3170 * @sadb: pointer to the speaker block
3171 *
3172 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3173 * Note: returned pointer needs to be kfreed
3174 *
3175 * Return number of found Speaker Allocation Blocks or negative number on error.
3176 */
3177int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3178{
3179 int count = 0;
3180 int i, start, end, dbl;
3181 const u8 *cea;
3182
3183 cea = drm_find_cea_extension(edid);
3184 if (!cea) {
3185 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3186 return -ENOENT;
3187 }
3188
3189 if (cea_revision(cea) < 3) {
3190 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3191 return -ENOTSUPP;
3192 }
3193
3194 if (cea_db_offsets(cea, &start, &end)) {
3195 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3196 return -EPROTO;
3197 }
3198
3199 for_each_cea_db(cea, i, start, end) {
3200 const u8 *db = &cea[i];
3201
3202 if (cea_db_tag(db) == SPEAKER_BLOCK) {
3203 dbl = cea_db_payload_len(db);
3204
3205 /* Speaker Allocation Data Block */
3206 if (dbl == 3) {
3207 *sadb = kmalloc(dbl, GFP_KERNEL);
3208 if (!*sadb)
3209 return -ENOMEM;
3210 memcpy(*sadb, &db[1], dbl);
3211 count = dbl;
3212 break;
3213 }
3214 }
3215 }
3216
3217 return count;
3218}
3219EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3220
3221/**
3222 * drm_av_sync_delay - HDMI/DP sink audio-video sync delay in millisecond
3223 * @connector: connector associated with the HDMI/DP sink
3224 * @mode: the display mode
3225 */
3226int drm_av_sync_delay(struct drm_connector *connector,
3227 struct drm_display_mode *mode)
3228{
3229 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3230 int a, v;
3231
3232 if (!connector->latency_present[0])
3233 return 0;
3234 if (!connector->latency_present[1])
3235 i = 0;
3236
3237 a = connector->audio_latency[i];
3238 v = connector->video_latency[i];
3239
3240 /*
3241 * HDMI/DP sink doesn't support audio or video?
3242 */
3243 if (a == 255 || v == 255)
3244 return 0;
3245
3246 /*
3247 * Convert raw EDID values to millisecond.
3248 * Treat unknown latency as 0ms.
3249 */
3250 if (a)
3251 a = min(2 * (a - 1), 500);
3252 if (v)
3253 v = min(2 * (v - 1), 500);
3254
3255 return max(v - a, 0);
3256}
3257EXPORT_SYMBOL(drm_av_sync_delay);
3258
3259/**
3260 * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3261 * @encoder: the encoder just changed display mode
3262 * @mode: the adjusted display mode
3263 *
3264 * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3265 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3266 */
3267struct drm_connector *drm_select_eld(struct drm_encoder *encoder,
3268 struct drm_display_mode *mode)
3269{
3270 struct drm_connector *connector;
3271 struct drm_device *dev = encoder->dev;
3272
3273 list_for_each_entry(connector, &dev->mode_config.connector_list, head)
3274 if (connector->encoder == encoder && connector->eld[0])
3275 return connector;
3276
3277 return NULL;
3278}
3279EXPORT_SYMBOL(drm_select_eld);
3280
3281/**
3282 * drm_detect_hdmi_monitor - detect whether monitor is hdmi.
3283 * @edid: monitor EDID information
3284 *
3285 * Parse the CEA extension according to CEA-861-B.
3286 * Return true if HDMI, false if not or unknown.
3287 */
3288bool drm_detect_hdmi_monitor(struct edid *edid)
3289{
3290 u8 *edid_ext;
3291 int i;
3292 int start_offset, end_offset;
3293
3294 edid_ext = drm_find_cea_extension(edid);
3295 if (!edid_ext)
3296 return false;
3297
3298 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3299 return false;
3300
3301 /*
3302 * Because HDMI identifier is in Vendor Specific Block,
3303 * search it from all data blocks of CEA extension.
3304 */
3305 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3306 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3307 return true;
3308 }
3309
3310 return false;
3311}
3312EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3313
3314/**
3315 * drm_detect_monitor_audio - check monitor audio capability
3316 * @edid: EDID block to scan
3317 *
3318 * Monitor should have CEA extension block.
3319 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3320 * audio' only. If there is any audio extension block and supported
3321 * audio format, assume at least 'basic audio' support, even if 'basic
3322 * audio' is not defined in EDID.
3323 *
3324 */
3325bool drm_detect_monitor_audio(struct edid *edid)
3326{
3327 u8 *edid_ext;
3328 int i, j;
3329 bool has_audio = false;
3330 int start_offset, end_offset;
3331
3332 edid_ext = drm_find_cea_extension(edid);
3333 if (!edid_ext)
3334 goto end;
3335
3336 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3337
3338 if (has_audio) {
3339 DRM_DEBUG_KMS("Monitor has basic audio support\n");
3340 goto end;
3341 }
3342
3343 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3344 goto end;
3345
3346 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3347 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3348 has_audio = true;
3349 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3350 DRM_DEBUG_KMS("CEA audio format %d\n",
3351 (edid_ext[i + j] >> 3) & 0xf);
3352 goto end;
3353 }
3354 }
3355end:
3356 return has_audio;
3357}
3358EXPORT_SYMBOL(drm_detect_monitor_audio);
3359
3360/**
3361 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3362 * @edid: EDID block to scan
3363 *
3364 * Check whether the monitor reports the RGB quantization range selection
3365 * as supported. The AVI infoframe can then be used to inform the monitor
3366 * which quantization range (full or limited) is used.
3367 */
3368bool drm_rgb_quant_range_selectable(struct edid *edid)
3369{
3370 u8 *edid_ext;
3371 int i, start, end;
3372
3373 edid_ext = drm_find_cea_extension(edid);
3374 if (!edid_ext)
3375 return false;
3376
3377 if (cea_db_offsets(edid_ext, &start, &end))
3378 return false;
3379
3380 for_each_cea_db(edid_ext, i, start, end) {
3381 if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3382 cea_db_payload_len(&edid_ext[i]) == 2) {
3383 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3384 return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3385 }
3386 }
3387
3388 return false;
3389}
3390EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3391
3392/**
3393 * drm_add_display_info - pull display info out if present
3394 * @edid: EDID data
3395 * @info: display info (attached to connector)
3396 *
3397 * Grab any available display info and stuff it into the drm_display_info
3398 * structure that's part of the connector. Useful for tracking bpp and
3399 * color spaces.
3400 */
3401static void drm_add_display_info(struct edid *edid,
3402 struct drm_display_info *info)
3403{
3404 u8 *edid_ext;
3405
3406 info->width_mm = edid->width_cm * 10;
3407 info->height_mm = edid->height_cm * 10;
3408
3409 /* driver figures it out in this case */
3410 info->bpc = 0;
3411 info->color_formats = 0;
3412
3413 if (edid->revision < 3)
3414 return;
3415
3416 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3417 return;
3418
3419 /* Get data from CEA blocks if present */
3420 edid_ext = drm_find_cea_extension(edid);
3421 if (edid_ext) {
3422 info->cea_rev = edid_ext[1];
3423
3424 /* The existence of a CEA block should imply RGB support */
3425 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3426 if (edid_ext[3] & EDID_CEA_YCRCB444)
3427 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3428 if (edid_ext[3] & EDID_CEA_YCRCB422)
3429 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3430 }
3431
3432 /* Only defined for 1.4 with digital displays */
3433 if (edid->revision < 4)
3434 return;
3435
3436 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3437 case DRM_EDID_DIGITAL_DEPTH_6:
3438 info->bpc = 6;
3439 break;
3440 case DRM_EDID_DIGITAL_DEPTH_8:
3441 info->bpc = 8;
3442 break;
3443 case DRM_EDID_DIGITAL_DEPTH_10:
3444 info->bpc = 10;
3445 break;
3446 case DRM_EDID_DIGITAL_DEPTH_12:
3447 info->bpc = 12;
3448 break;
3449 case DRM_EDID_DIGITAL_DEPTH_14:
3450 info->bpc = 14;
3451 break;
3452 case DRM_EDID_DIGITAL_DEPTH_16:
3453 info->bpc = 16;
3454 break;
3455 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3456 default:
3457 info->bpc = 0;
3458 break;
3459 }
3460
3461 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3462 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3463 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3464 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3465 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3466}
3467
3468/**
3469 * drm_add_edid_modes - add modes from EDID data, if available
3470 * @connector: connector we're probing
3471 * @edid: edid data
3472 *
3473 * Add the specified modes to the connector's mode list.
3474 *
3475 * Return number of modes added or 0 if we couldn't find any.
3476 */
3477int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3478{
3479 int num_modes = 0;
3480 u32 quirks;
3481
3482 if (edid == NULL) {
3483 return 0;
3484 }
3485 if (!drm_edid_is_valid(edid)) {
3486 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3487 drm_get_connector_name(connector));
3488 return 0;
3489 }
3490
3491 quirks = edid_get_quirks(edid);
3492
3493 /*
3494 * EDID spec says modes should be preferred in this order:
3495 * - preferred detailed mode
3496 * - other detailed modes from base block
3497 * - detailed modes from extension blocks
3498 * - CVT 3-byte code modes
3499 * - standard timing codes
3500 * - established timing codes
3501 * - modes inferred from GTF or CVT range information
3502 *
3503 * We get this pretty much right.
3504 *
3505 * XXX order for additional mode types in extension blocks?
3506 */
3507 num_modes += add_detailed_modes(connector, edid, quirks);
3508 num_modes += add_cvt_modes(connector, edid);
3509 num_modes += add_standard_modes(connector, edid);
3510 num_modes += add_established_modes(connector, edid);
3511 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3512 num_modes += add_inferred_modes(connector, edid);
3513 num_modes += add_cea_modes(connector, edid);
3514 num_modes += add_alternate_cea_modes(connector, edid);
3515
3516 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3517 edid_fixup_preferred(connector, quirks);
3518
3519 drm_add_display_info(edid, &connector->display_info);
3520
3521 if (quirks & EDID_QUIRK_FORCE_8BPC)
3522 connector->display_info.bpc = 8;
3523
3524 return num_modes;
3525}
3526EXPORT_SYMBOL(drm_add_edid_modes);
3527
3528/**
3529 * drm_add_modes_noedid - add modes for the connectors without EDID
3530 * @connector: connector we're probing
3531 * @hdisplay: the horizontal display limit
3532 * @vdisplay: the vertical display limit
3533 *
3534 * Add the specified modes to the connector's mode list. Only when the
3535 * hdisplay/vdisplay is not beyond the given limit, it will be added.
3536 *
3537 * Return number of modes added or 0 if we couldn't find any.
3538 */
3539int drm_add_modes_noedid(struct drm_connector *connector,
3540 int hdisplay, int vdisplay)
3541{
3542 int i, count, num_modes = 0;
3543 struct drm_display_mode *mode;
3544 struct drm_device *dev = connector->dev;
3545
3546 count = sizeof(drm_dmt_modes) / sizeof(struct drm_display_mode);
3547 if (hdisplay < 0)
3548 hdisplay = 0;
3549 if (vdisplay < 0)
3550 vdisplay = 0;
3551
3552 for (i = 0; i < count; i++) {
3553 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3554 if (hdisplay && vdisplay) {
3555 /*
3556 * Only when two are valid, they will be used to check
3557 * whether the mode should be added to the mode list of
3558 * the connector.
3559 */
3560 if (ptr->hdisplay > hdisplay ||
3561 ptr->vdisplay > vdisplay)
3562 continue;
3563 }
3564 if (drm_mode_vrefresh(ptr) > 61)
3565 continue;
3566 mode = drm_mode_duplicate(dev, ptr);
3567 if (mode) {
3568 drm_mode_probed_add(connector, mode);
3569 num_modes++;
3570 }
3571 }
3572 return num_modes;
3573}
3574EXPORT_SYMBOL(drm_add_modes_noedid);
3575
3576void drm_set_preferred_mode(struct drm_connector *connector,
3577 int hpref, int vpref)
3578{
3579 struct drm_display_mode *mode;
3580
3581 list_for_each_entry(mode, &connector->probed_modes, head) {
3582 if (mode->hdisplay == hpref &&
3583 mode->vdisplay == vpref)
3584 mode->type |= DRM_MODE_TYPE_PREFERRED;
3585 }
3586}
3587EXPORT_SYMBOL(drm_set_preferred_mode);
3588
3589/**
3590 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3591 * data from a DRM display mode
3592 * @frame: HDMI AVI infoframe
3593 * @mode: DRM display mode
3594 *
3595 * Returns 0 on success or a negative error code on failure.
3596 */
3597int
3598drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3599 const struct drm_display_mode *mode)
3600{
3601 int err;
3602
3603 if (!frame || !mode)
3604 return -EINVAL;
3605
3606 err = hdmi_avi_infoframe_init(frame);
3607 if (err < 0)
3608 return err;
3609
3610 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3611 frame->pixel_repeat = 1;
3612
3613 frame->video_code = drm_match_cea_mode(mode);
3614
3615 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3616 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3617 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
3618
3619 return 0;
3620}
3621EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3622
3623static enum hdmi_3d_structure
3624s3d_structure_from_display_mode(const struct drm_display_mode *mode)
3625{
3626 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
3627
3628 switch (layout) {
3629 case DRM_MODE_FLAG_3D_FRAME_PACKING:
3630 return HDMI_3D_STRUCTURE_FRAME_PACKING;
3631 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
3632 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
3633 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
3634 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
3635 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
3636 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
3637 case DRM_MODE_FLAG_3D_L_DEPTH:
3638 return HDMI_3D_STRUCTURE_L_DEPTH;
3639 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
3640 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
3641 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
3642 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
3643 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
3644 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
3645 default:
3646 return HDMI_3D_STRUCTURE_INVALID;
3647 }
3648}
3649
3650/**
3651 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
3652 * data from a DRM display mode
3653 * @frame: HDMI vendor infoframe
3654 * @mode: DRM display mode
3655 *
3656 * Note that there's is a need to send HDMI vendor infoframes only when using a
3657 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
3658 * function will return -EINVAL, error that can be safely ignored.
3659 *
3660 * Returns 0 on success or a negative error code on failure.
3661 */
3662int
3663drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
3664 const struct drm_display_mode *mode)
3665{
3666 int err;
3667 u32 s3d_flags;
3668 u8 vic;
3669
3670 if (!frame || !mode)
3671 return -EINVAL;
3672
3673 vic = drm_match_hdmi_mode(mode);
3674 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
3675
3676 if (!vic && !s3d_flags)
3677 return -EINVAL;
3678
3679 if (vic && s3d_flags)
3680 return -EINVAL;
3681
3682 err = hdmi_vendor_infoframe_init(frame);
3683 if (err < 0)
3684 return err;
3685
3686 if (vic)
3687 frame->vic = vic;
3688 else
3689 frame->s3d_struct = s3d_structure_from_display_mode(mode);
3690
3691 return 0;
3692}
3693EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);