Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Suspend support specific for i386/x86-64.
  4 *
 
 
  5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
  6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
  7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
  8 */
  9
 10#include <linux/suspend.h>
 11#include <linux/export.h>
 12#include <linux/smp.h>
 13#include <linux/perf_event.h>
 14#include <linux/tboot.h>
 15#include <linux/dmi.h>
 16#include <linux/pgtable.h>
 17
 
 18#include <asm/proto.h>
 19#include <asm/mtrr.h>
 20#include <asm/page.h>
 21#include <asm/mce.h>
 
 22#include <asm/suspend.h>
 23#include <asm/fpu/api.h>
 24#include <asm/debugreg.h>
 
 25#include <asm/cpu.h>
 26#include <asm/cacheinfo.h>
 27#include <asm/mmu_context.h>
 28#include <asm/cpu_device_id.h>
 29#include <asm/microcode.h>
 30
 31#ifdef CONFIG_X86_32
 32__visible unsigned long saved_context_ebx;
 33__visible unsigned long saved_context_esp, saved_context_ebp;
 34__visible unsigned long saved_context_esi, saved_context_edi;
 35__visible unsigned long saved_context_eflags;
 36#endif
 37struct saved_context saved_context;
 38
 39static void msr_save_context(struct saved_context *ctxt)
 40{
 41	struct saved_msr *msr = ctxt->saved_msrs.array;
 42	struct saved_msr *end = msr + ctxt->saved_msrs.num;
 43
 44	while (msr < end) {
 45		if (msr->valid)
 46			rdmsrl(msr->info.msr_no, msr->info.reg.q);
 47		msr++;
 48	}
 49}
 50
 51static void msr_restore_context(struct saved_context *ctxt)
 52{
 53	struct saved_msr *msr = ctxt->saved_msrs.array;
 54	struct saved_msr *end = msr + ctxt->saved_msrs.num;
 55
 56	while (msr < end) {
 57		if (msr->valid)
 58			wrmsrl(msr->info.msr_no, msr->info.reg.q);
 59		msr++;
 60	}
 61}
 62
 63/**
 64 * __save_processor_state() - Save CPU registers before creating a
 65 *                             hibernation image and before restoring
 66 *                             the memory state from it
 67 * @ctxt: Structure to store the registers contents in.
 68 *
 69 * NOTE: If there is a CPU register the modification of which by the
 70 * boot kernel (ie. the kernel used for loading the hibernation image)
 71 * might affect the operations of the restored target kernel (ie. the one
 72 * saved in the hibernation image), then its contents must be saved by this
 73 * function.  In other words, if kernel A is hibernated and different
 74 * kernel B is used for loading the hibernation image into memory, the
 75 * kernel A's __save_processor_state() function must save all registers
 76 * needed by kernel A, so that it can operate correctly after the resume
 77 * regardless of what kernel B does in the meantime.
 78 */
 79static void __save_processor_state(struct saved_context *ctxt)
 80{
 81#ifdef CONFIG_X86_32
 82	mtrr_save_fixed_ranges(NULL);
 83#endif
 84	kernel_fpu_begin();
 85
 86	/*
 87	 * descriptor tables
 88	 */
 
 89	store_idt(&ctxt->idt);
 90
 
 
 
 91	/*
 92	 * We save it here, but restore it only in the hibernate case.
 93	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
 94	 * mode in "secondary_startup_64". In 32-bit mode it is done via
 95	 * 'pmode_gdt' in wakeup_start.
 96	 */
 97	ctxt->gdt_desc.size = GDT_SIZE - 1;
 98	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
 99
100	store_tr(ctxt->tr);
101
102	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
103	/*
104	 * segment registers
105	 */
106	savesegment(gs, ctxt->gs);
107#ifdef CONFIG_X86_64
108	savesegment(fs, ctxt->fs);
109	savesegment(ds, ctxt->ds);
110	savesegment(es, ctxt->es);
 
 
 
 
 
 
 
 
 
 
111
112	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
113	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
114	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
115	mtrr_save_fixed_ranges(NULL);
116
117	rdmsrl(MSR_EFER, ctxt->efer);
118#endif
119
120	/*
121	 * control registers
122	 */
123	ctxt->cr0 = read_cr0();
124	ctxt->cr2 = read_cr2();
125	ctxt->cr3 = __read_cr3();
126	ctxt->cr4 = __read_cr4();
 
 
 
 
 
 
127	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
128					       &ctxt->misc_enable);
129	msr_save_context(ctxt);
130}
131
132/* Needed by apm.c */
133void save_processor_state(void)
134{
135	__save_processor_state(&saved_context);
136	x86_platform.save_sched_clock_state();
137}
138#ifdef CONFIG_X86_32
139EXPORT_SYMBOL(save_processor_state);
140#endif
141
142static void do_fpu_end(void)
143{
144	/*
145	 * Restore FPU regs if necessary.
146	 */
147	kernel_fpu_end();
148}
149
150static void fix_processor_context(void)
151{
152	int cpu = smp_processor_id();
 
153#ifdef CONFIG_X86_64
154	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
155	tss_desc tss;
156#endif
157
158	/*
159	 * We need to reload TR, which requires that we change the
160	 * GDT entry to indicate "available" first.
161	 *
162	 * XXX: This could probably all be replaced by a call to
163	 * force_reload_TR().
164	 */
165	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
166
167#ifdef CONFIG_X86_64
168	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
169	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
170	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
171
172	syscall_init();				/* This sets MSR_*STAR and related */
173#else
174	if (boot_cpu_has(X86_FEATURE_SEP))
175		enable_sep_cpu();
176#endif
177	load_TR_desc();				/* This does ltr */
178	load_mm_ldt(current->active_mm);	/* This does lldt */
179	initialize_tlbstate_and_flush();
180
181	fpu__resume_cpu();
182
183	/* The processor is back on the direct GDT, load back the fixmap */
184	load_fixmap_gdt(cpu);
185}
186
187/**
188 * __restore_processor_state() - Restore the contents of CPU registers saved
189 *                               by __save_processor_state()
190 * @ctxt: Structure to load the registers contents from.
191 *
192 * The asm code that gets us here will have restored a usable GDT, although
193 * it will be pointing to the wrong alias.
194 */
195static void notrace __restore_processor_state(struct saved_context *ctxt)
196{
197	struct cpuinfo_x86 *c;
198
199	if (ctxt->misc_enable_saved)
200		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
201	/*
202	 * control registers
203	 */
204	/* cr4 was introduced in the Pentium CPU */
205#ifdef CONFIG_X86_32
206	if (ctxt->cr4)
207		__write_cr4(ctxt->cr4);
208#else
209/* CONFIG X86_64 */
210	wrmsrl(MSR_EFER, ctxt->efer);
211	__write_cr4(ctxt->cr4);
 
212#endif
213	write_cr3(ctxt->cr3);
214	write_cr2(ctxt->cr2);
215	write_cr0(ctxt->cr0);
216
217	/* Restore the IDT. */
218	load_idt(&ctxt->idt);
219
220	/*
221	 * Just in case the asm code got us here with the SS, DS, or ES
222	 * out of sync with the GDT, update them.
223	 */
224	loadsegment(ss, __KERNEL_DS);
225	loadsegment(ds, __USER_DS);
226	loadsegment(es, __USER_DS);
227
228	/*
229	 * Restore percpu access.  Percpu access can happen in exception
230	 * handlers or in complicated helpers like load_gs_index().
231	 */
232#ifdef CONFIG_X86_64
233	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
234#else
235	loadsegment(fs, __KERNEL_PERCPU);
 
236#endif
237
238	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
239	fix_processor_context();
240
241	/*
242	 * Now that we have descriptor tables fully restored and working
243	 * exception handling, restore the usermode segments.
244	 */
245#ifdef CONFIG_X86_64
246	loadsegment(ds, ctxt->es);
247	loadsegment(es, ctxt->es);
248	loadsegment(fs, ctxt->fs);
249	load_gs_index(ctxt->gs);
 
250
251	/*
252	 * Restore FSBASE and GSBASE after restoring the selectors, since
253	 * restoring the selectors clobbers the bases.  Keep in mind
254	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
255	 */
256	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
257	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
258#else
259	loadsegment(gs, ctxt->gs);
 
 
 
 
 
 
 
 
 
260#endif
261
 
 
 
 
 
 
 
 
262	do_fpu_end();
263	tsc_verify_tsc_adjust(true);
264	x86_platform.restore_sched_clock_state();
265	cache_bp_restore();
266	perf_restore_debug_store();
267
268	c = &cpu_data(smp_processor_id());
269	if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
270		init_ia32_feat_ctl(c);
271
272	microcode_bsp_resume();
273
274	/*
275	 * This needs to happen after the microcode has been updated upon resume
276	 * because some of the MSRs are "emulated" in microcode.
277	 */
278	msr_restore_context(ctxt);
279}
280
281/* Needed by apm.c */
282void notrace restore_processor_state(void)
283{
284	__restore_processor_state(&saved_context);
285}
286#ifdef CONFIG_X86_32
287EXPORT_SYMBOL(restore_processor_state);
288#endif
289
290#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
291static void resume_play_dead(void)
292{
293	play_dead_common();
294	tboot_shutdown(TB_SHUTDOWN_WFS);
295	hlt_play_dead();
296}
297
298int hibernate_resume_nonboot_cpu_disable(void)
299{
300	void (*play_dead)(void) = smp_ops.play_dead;
301	int ret;
302
303	/*
304	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
305	 * during hibernate image restoration, because it is likely that the
306	 * monitored address will be actually written to at that time and then
307	 * the "dead" CPU will attempt to execute instructions again, but the
308	 * address in its instruction pointer may not be possible to resolve
309	 * any more at that point (the page tables used by it previously may
310	 * have been overwritten by hibernate image data).
311	 *
312	 * First, make sure that we wake up all the potentially disabled SMT
313	 * threads which have been initially brought up and then put into
314	 * mwait/cpuidle sleep.
315	 * Those will be put to proper (not interfering with hibernation
316	 * resume) sleep afterwards, and the resumed kernel will decide itself
317	 * what to do with them.
318	 */
319	ret = cpuhp_smt_enable();
320	if (ret)
321		return ret;
322	smp_ops.play_dead = resume_play_dead;
323	ret = freeze_secondary_cpus(0);
324	smp_ops.play_dead = play_dead;
325	return ret;
326}
327#endif
328
329/*
330 * When bsp_check() is called in hibernate and suspend, cpu hotplug
331 * is disabled already. So it's unnecessary to handle race condition between
332 * cpumask query and cpu hotplug.
333 */
334static int bsp_check(void)
335{
336	if (cpumask_first(cpu_online_mask) != 0) {
337		pr_warn("CPU0 is offline.\n");
338		return -ENODEV;
339	}
340
341	return 0;
342}
343
344static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
345			   void *ptr)
346{
347	int ret = 0;
348
349	switch (action) {
350	case PM_SUSPEND_PREPARE:
351	case PM_HIBERNATION_PREPARE:
352		ret = bsp_check();
353		break;
354#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
355	case PM_RESTORE_PREPARE:
356		/*
357		 * When system resumes from hibernation, online CPU0 because
358		 * 1. it's required for resume and
359		 * 2. the CPU was online before hibernation
360		 */
361		if (!cpu_online(0))
362			_debug_hotplug_cpu(0, 1);
363		break;
364	case PM_POST_RESTORE:
365		/*
366		 * When a resume really happens, this code won't be called.
367		 *
368		 * This code is called only when user space hibernation software
369		 * prepares for snapshot device during boot time. So we just
370		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
371		 * preparing the snapshot device.
372		 *
373		 * This works for normal boot case in our CPU0 hotplug debug
374		 * mode, i.e. CPU0 is offline and user mode hibernation
375		 * software initializes during boot time.
376		 *
377		 * If CPU0 is online and user application accesses snapshot
378		 * device after boot time, this will offline CPU0 and user may
379		 * see different CPU0 state before and after accessing
380		 * the snapshot device. But hopefully this is not a case when
381		 * user debugging CPU0 hotplug. Even if users hit this case,
382		 * they can easily online CPU0 back.
383		 *
384		 * To simplify this debug code, we only consider normal boot
385		 * case. Otherwise we need to remember CPU0's state and restore
386		 * to that state and resolve racy conditions etc.
387		 */
388		_debug_hotplug_cpu(0, 0);
389		break;
390#endif
391	default:
392		break;
393	}
394	return notifier_from_errno(ret);
395}
396
397static int __init bsp_pm_check_init(void)
398{
399	/*
400	 * Set this bsp_pm_callback as lower priority than
401	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
402	 * earlier to disable cpu hotplug before bsp online check.
403	 */
404	pm_notifier(bsp_pm_callback, -INT_MAX);
405	return 0;
406}
407
408core_initcall(bsp_pm_check_init);
409
410static int msr_build_context(const u32 *msr_id, const int num)
411{
412	struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
413	struct saved_msr *msr_array;
414	int total_num;
415	int i, j;
416
417	total_num = saved_msrs->num + num;
418
419	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
420	if (!msr_array) {
421		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
422		return -ENOMEM;
423	}
424
425	if (saved_msrs->array) {
426		/*
427		 * Multiple callbacks can invoke this function, so copy any
428		 * MSR save requests from previous invocations.
429		 */
430		memcpy(msr_array, saved_msrs->array,
431		       sizeof(struct saved_msr) * saved_msrs->num);
432
433		kfree(saved_msrs->array);
434	}
435
436	for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
437		u64 dummy;
438
439		msr_array[i].info.msr_no	= msr_id[j];
440		msr_array[i].valid		= !rdmsrl_safe(msr_id[j], &dummy);
441		msr_array[i].info.reg.q		= 0;
442	}
443	saved_msrs->num   = total_num;
444	saved_msrs->array = msr_array;
445
446	return 0;
447}
448
449/*
450 * The following sections are a quirk framework for problematic BIOSen:
451 * Sometimes MSRs are modified by the BIOSen after suspended to
452 * RAM, this might cause unexpected behavior after wakeup.
453 * Thus we save/restore these specified MSRs across suspend/resume
454 * in order to work around it.
455 *
456 * For any further problematic BIOSen/platforms,
457 * please add your own function similar to msr_initialize_bdw.
458 */
459static int msr_initialize_bdw(const struct dmi_system_id *d)
460{
461	/* Add any extra MSR ids into this array. */
462	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
463
464	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
465	return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
466}
467
468static const struct dmi_system_id msr_save_dmi_table[] = {
469	{
470	 .callback = msr_initialize_bdw,
471	 .ident = "BROADWELL BDX_EP",
472	 .matches = {
473		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
474		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
475		},
476	},
477	{}
478};
479
480static int msr_save_cpuid_features(const struct x86_cpu_id *c)
481{
482	u32 cpuid_msr_id[] = {
483		MSR_AMD64_CPUID_FN_1,
484	};
485
486	pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
487		c->family);
488
489	return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
490}
491
492static const struct x86_cpu_id msr_save_cpu_table[] = {
493	X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
494	X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
495	{}
496};
497
498typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
499static int pm_cpu_check(const struct x86_cpu_id *c)
500{
501	const struct x86_cpu_id *m;
502	int ret = 0;
503
504	m = x86_match_cpu(msr_save_cpu_table);
505	if (m) {
506		pm_cpu_match_t fn;
507
508		fn = (pm_cpu_match_t)m->driver_data;
509		ret = fn(m);
510	}
511
512	return ret;
513}
514
515static void pm_save_spec_msr(void)
516{
517	struct msr_enumeration {
518		u32 msr_no;
519		u32 feature;
520	} msr_enum[] = {
521		{ MSR_IA32_SPEC_CTRL,	 X86_FEATURE_MSR_SPEC_CTRL },
522		{ MSR_IA32_TSX_CTRL,	 X86_FEATURE_MSR_TSX_CTRL },
523		{ MSR_TSX_FORCE_ABORT,	 X86_FEATURE_TSX_FORCE_ABORT },
524		{ MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL },
525		{ MSR_AMD64_LS_CFG,	 X86_FEATURE_LS_CFG_SSBD },
526		{ MSR_AMD64_DE_CFG,	 X86_FEATURE_LFENCE_RDTSC },
527	};
528	int i;
529
530	for (i = 0; i < ARRAY_SIZE(msr_enum); i++) {
531		if (boot_cpu_has(msr_enum[i].feature))
532			msr_build_context(&msr_enum[i].msr_no, 1);
533	}
534}
535
536static int pm_check_save_msr(void)
537{
538	dmi_check_system(msr_save_dmi_table);
539	pm_cpu_check(msr_save_cpu_table);
540	pm_save_spec_msr();
541
542	return 0;
543}
544
545device_initcall(pm_check_save_msr);
v3.15
 
  1/*
  2 * Suspend support specific for i386/x86-64.
  3 *
  4 * Distribute under GPLv2
  5 *
  6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
  7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
  8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
  9 */
 10
 11#include <linux/suspend.h>
 12#include <linux/export.h>
 13#include <linux/smp.h>
 14#include <linux/perf_event.h>
 
 
 
 15
 16#include <asm/pgtable.h>
 17#include <asm/proto.h>
 18#include <asm/mtrr.h>
 19#include <asm/page.h>
 20#include <asm/mce.h>
 21#include <asm/xcr.h>
 22#include <asm/suspend.h>
 
 23#include <asm/debugreg.h>
 24#include <asm/fpu-internal.h> /* pcntxt_mask */
 25#include <asm/cpu.h>
 
 
 
 
 26
 27#ifdef CONFIG_X86_32
 28__visible unsigned long saved_context_ebx;
 29__visible unsigned long saved_context_esp, saved_context_ebp;
 30__visible unsigned long saved_context_esi, saved_context_edi;
 31__visible unsigned long saved_context_eflags;
 32#endif
 33struct saved_context saved_context;
 34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35/**
 36 *	__save_processor_state - save CPU registers before creating a
 37 *		hibernation image and before restoring the memory state from it
 38 *	@ctxt - structure to store the registers contents in
 
 39 *
 40 *	NOTE: If there is a CPU register the modification of which by the
 41 *	boot kernel (ie. the kernel used for loading the hibernation image)
 42 *	might affect the operations of the restored target kernel (ie. the one
 43 *	saved in the hibernation image), then its contents must be saved by this
 44 *	function.  In other words, if kernel A is hibernated and different
 45 *	kernel B is used for loading the hibernation image into memory, the
 46 *	kernel A's __save_processor_state() function must save all registers
 47 *	needed by kernel A, so that it can operate correctly after the resume
 48 *	regardless of what kernel B does in the meantime.
 49 */
 50static void __save_processor_state(struct saved_context *ctxt)
 51{
 52#ifdef CONFIG_X86_32
 53	mtrr_save_fixed_ranges(NULL);
 54#endif
 55	kernel_fpu_begin();
 56
 57	/*
 58	 * descriptor tables
 59	 */
 60#ifdef CONFIG_X86_32
 61	store_idt(&ctxt->idt);
 62#else
 63/* CONFIG_X86_64 */
 64	store_idt((struct desc_ptr *)&ctxt->idt_limit);
 65#endif
 66	/*
 67	 * We save it here, but restore it only in the hibernate case.
 68	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
 69	 * mode in "secondary_startup_64". In 32-bit mode it is done via
 70	 * 'pmode_gdt' in wakeup_start.
 71	 */
 72	ctxt->gdt_desc.size = GDT_SIZE - 1;
 73	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id());
 74
 75	store_tr(ctxt->tr);
 76
 77	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
 78	/*
 79	 * segment registers
 80	 */
 81#ifdef CONFIG_X86_32
 
 
 
 82	savesegment(es, ctxt->es);
 83	savesegment(fs, ctxt->fs);
 84	savesegment(gs, ctxt->gs);
 85	savesegment(ss, ctxt->ss);
 86#else
 87/* CONFIG_X86_64 */
 88	asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
 89	asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
 90	asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
 91	asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
 92	asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
 93
 94	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
 95	rdmsrl(MSR_GS_BASE, ctxt->gs_base);
 96	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
 97	mtrr_save_fixed_ranges(NULL);
 98
 99	rdmsrl(MSR_EFER, ctxt->efer);
100#endif
101
102	/*
103	 * control registers
104	 */
105	ctxt->cr0 = read_cr0();
106	ctxt->cr2 = read_cr2();
107	ctxt->cr3 = read_cr3();
108#ifdef CONFIG_X86_32
109	ctxt->cr4 = read_cr4_safe();
110#else
111/* CONFIG_X86_64 */
112	ctxt->cr4 = read_cr4();
113	ctxt->cr8 = read_cr8();
114#endif
115	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
116					       &ctxt->misc_enable);
 
117}
118
119/* Needed by apm.c */
120void save_processor_state(void)
121{
122	__save_processor_state(&saved_context);
123	x86_platform.save_sched_clock_state();
124}
125#ifdef CONFIG_X86_32
126EXPORT_SYMBOL(save_processor_state);
127#endif
128
129static void do_fpu_end(void)
130{
131	/*
132	 * Restore FPU regs if necessary.
133	 */
134	kernel_fpu_end();
135}
136
137static void fix_processor_context(void)
138{
139	int cpu = smp_processor_id();
140	struct tss_struct *t = &per_cpu(init_tss, cpu);
141#ifdef CONFIG_X86_64
142	struct desc_struct *desc = get_cpu_gdt_table(cpu);
143	tss_desc tss;
144#endif
145	set_tss_desc(cpu, t);	/*
146				 * This just modifies memory; should not be
147				 * necessary. But... This is necessary, because
148				 * 386 hardware has concept of busy TSS or some
149				 * similar stupidity.
150				 */
 
 
 
151
152#ifdef CONFIG_X86_64
153	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
154	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
155	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
156
157	syscall_init();				/* This sets MSR_*STAR and related */
 
 
 
158#endif
159	load_TR_desc();				/* This does ltr */
160	load_LDT(&current->active_mm->context);	/* This does lldt */
 
 
 
 
 
 
161}
162
163/**
164 *	__restore_processor_state - restore the contents of CPU registers saved
165 *		by __save_processor_state()
166 *	@ctxt - structure to load the registers contents from
 
 
 
167 */
168static void __restore_processor_state(struct saved_context *ctxt)
169{
 
 
170	if (ctxt->misc_enable_saved)
171		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
172	/*
173	 * control registers
174	 */
175	/* cr4 was introduced in the Pentium CPU */
176#ifdef CONFIG_X86_32
177	if (ctxt->cr4)
178		write_cr4(ctxt->cr4);
179#else
180/* CONFIG X86_64 */
181	wrmsrl(MSR_EFER, ctxt->efer);
182	write_cr8(ctxt->cr8);
183	write_cr4(ctxt->cr4);
184#endif
185	write_cr3(ctxt->cr3);
186	write_cr2(ctxt->cr2);
187	write_cr0(ctxt->cr0);
188
 
 
 
189	/*
190	 * now restore the descriptor tables to their proper values
191	 * ltr is done i fix_processor_context().
192	 */
193#ifdef CONFIG_X86_32
194	load_idt(&ctxt->idt);
 
 
 
 
 
 
 
 
195#else
196/* CONFIG_X86_64 */
197	load_idt((const struct desc_ptr *)&ctxt->idt_limit);
198#endif
199
 
 
 
200	/*
201	 * segment registers
 
202	 */
203#ifdef CONFIG_X86_32
 
204	loadsegment(es, ctxt->es);
205	loadsegment(fs, ctxt->fs);
206	loadsegment(gs, ctxt->gs);
207	loadsegment(ss, ctxt->ss);
208
209	/*
210	 * sysenter MSRs
 
 
211	 */
212	if (boot_cpu_has(X86_FEATURE_SEP))
213		enable_sep_cpu();
214#else
215/* CONFIG_X86_64 */
216	asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
217	asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
218	asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
219	load_gs_index(ctxt->gs);
220	asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
221
222	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
223	wrmsrl(MSR_GS_BASE, ctxt->gs_base);
224	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
225#endif
226
227	/*
228	 * restore XCR0 for xsave capable cpu's.
229	 */
230	if (cpu_has_xsave)
231		xsetbv(XCR_XFEATURE_ENABLED_MASK, pcntxt_mask);
232
233	fix_processor_context();
234
235	do_fpu_end();
 
236	x86_platform.restore_sched_clock_state();
237	mtrr_bp_restore();
238	perf_restore_debug_store();
 
 
 
 
 
 
 
 
 
 
 
 
239}
240
241/* Needed by apm.c */
242void restore_processor_state(void)
243{
244	__restore_processor_state(&saved_context);
245}
246#ifdef CONFIG_X86_32
247EXPORT_SYMBOL(restore_processor_state);
248#endif
249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250/*
251 * When bsp_check() is called in hibernate and suspend, cpu hotplug
252 * is disabled already. So it's unnessary to handle race condition between
253 * cpumask query and cpu hotplug.
254 */
255static int bsp_check(void)
256{
257	if (cpumask_first(cpu_online_mask) != 0) {
258		pr_warn("CPU0 is offline.\n");
259		return -ENODEV;
260	}
261
262	return 0;
263}
264
265static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
266			   void *ptr)
267{
268	int ret = 0;
269
270	switch (action) {
271	case PM_SUSPEND_PREPARE:
272	case PM_HIBERNATION_PREPARE:
273		ret = bsp_check();
274		break;
275#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
276	case PM_RESTORE_PREPARE:
277		/*
278		 * When system resumes from hibernation, online CPU0 because
279		 * 1. it's required for resume and
280		 * 2. the CPU was online before hibernation
281		 */
282		if (!cpu_online(0))
283			_debug_hotplug_cpu(0, 1);
284		break;
285	case PM_POST_RESTORE:
286		/*
287		 * When a resume really happens, this code won't be called.
288		 *
289		 * This code is called only when user space hibernation software
290		 * prepares for snapshot device during boot time. So we just
291		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
292		 * preparing the snapshot device.
293		 *
294		 * This works for normal boot case in our CPU0 hotplug debug
295		 * mode, i.e. CPU0 is offline and user mode hibernation
296		 * software initializes during boot time.
297		 *
298		 * If CPU0 is online and user application accesses snapshot
299		 * device after boot time, this will offline CPU0 and user may
300		 * see different CPU0 state before and after accessing
301		 * the snapshot device. But hopefully this is not a case when
302		 * user debugging CPU0 hotplug. Even if users hit this case,
303		 * they can easily online CPU0 back.
304		 *
305		 * To simplify this debug code, we only consider normal boot
306		 * case. Otherwise we need to remember CPU0's state and restore
307		 * to that state and resolve racy conditions etc.
308		 */
309		_debug_hotplug_cpu(0, 0);
310		break;
311#endif
312	default:
313		break;
314	}
315	return notifier_from_errno(ret);
316}
317
318static int __init bsp_pm_check_init(void)
319{
320	/*
321	 * Set this bsp_pm_callback as lower priority than
322	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
323	 * earlier to disable cpu hotplug before bsp online check.
324	 */
325	pm_notifier(bsp_pm_callback, -INT_MAX);
326	return 0;
327}
328
329core_initcall(bsp_pm_check_init);