Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  This file contains pgtable related functions for 64-bit machines.
  4 *
  5 *  Derived from arch/ppc64/mm/init.c
  6 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  7 *
  8 *  Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
  9 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 10 *    Copyright (C) 1996 Paul Mackerras
 11 *
 12 *  Derived from "arch/i386/mm/init.c"
 13 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 14 *
 15 *  Dave Engebretsen <engebret@us.ibm.com>
 16 *      Rework for PPC64 port.
 
 
 
 
 
 
 17 */
 18
 19#include <linux/signal.h>
 20#include <linux/sched.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/string.h>
 24#include <linux/export.h>
 25#include <linux/types.h>
 26#include <linux/mman.h>
 27#include <linux/mm.h>
 28#include <linux/swap.h>
 29#include <linux/stddef.h>
 30#include <linux/vmalloc.h>
 
 
 31#include <linux/slab.h>
 32#include <linux/hugetlb.h>
 33
 
 34#include <asm/page.h>
 
 
 35#include <asm/mmu_context.h>
 
 36#include <asm/mmu.h>
 37#include <asm/smp.h>
 38#include <asm/machdep.h>
 39#include <asm/tlb.h>
 40#include <asm/processor.h>
 41#include <asm/cputable.h>
 42#include <asm/sections.h>
 43#include <asm/firmware.h>
 44#include <asm/dma.h>
 45
 46#include <mm/mmu_decl.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47
 
 
 
 
 
 
 
 
 
 
 48
 49#ifdef CONFIG_PPC_BOOK3S_64
 50/*
 51 * partition table and process table for ISA 3.0
 
 
 52 */
 53struct prtb_entry *process_tb;
 54struct patb_entry *partition_tb;
 55/*
 56 * page table size
 57 */
 58unsigned long __pte_index_size;
 59EXPORT_SYMBOL(__pte_index_size);
 60unsigned long __pmd_index_size;
 61EXPORT_SYMBOL(__pmd_index_size);
 62unsigned long __pud_index_size;
 63EXPORT_SYMBOL(__pud_index_size);
 64unsigned long __pgd_index_size;
 65EXPORT_SYMBOL(__pgd_index_size);
 66unsigned long __pud_cache_index;
 67EXPORT_SYMBOL(__pud_cache_index);
 68unsigned long __pte_table_size;
 69EXPORT_SYMBOL(__pte_table_size);
 70unsigned long __pmd_table_size;
 71EXPORT_SYMBOL(__pmd_table_size);
 72unsigned long __pud_table_size;
 73EXPORT_SYMBOL(__pud_table_size);
 74unsigned long __pgd_table_size;
 75EXPORT_SYMBOL(__pgd_table_size);
 76unsigned long __pmd_val_bits;
 77EXPORT_SYMBOL(__pmd_val_bits);
 78unsigned long __pud_val_bits;
 79EXPORT_SYMBOL(__pud_val_bits);
 80unsigned long __pgd_val_bits;
 81EXPORT_SYMBOL(__pgd_val_bits);
 82unsigned long __kernel_virt_start;
 83EXPORT_SYMBOL(__kernel_virt_start);
 84unsigned long __vmalloc_start;
 85EXPORT_SYMBOL(__vmalloc_start);
 86unsigned long __vmalloc_end;
 87EXPORT_SYMBOL(__vmalloc_end);
 88unsigned long __kernel_io_start;
 89EXPORT_SYMBOL(__kernel_io_start);
 90unsigned long __kernel_io_end;
 91struct page *vmemmap;
 92EXPORT_SYMBOL(vmemmap);
 93unsigned long __pte_frag_nr;
 94EXPORT_SYMBOL(__pte_frag_nr);
 95unsigned long __pte_frag_size_shift;
 96EXPORT_SYMBOL(__pte_frag_size_shift);
 97#endif
 98
 99#ifndef __PAGETABLE_PUD_FOLDED
100/* 4 level page table */
101struct page *p4d_page(p4d_t p4d)
102{
103	if (p4d_is_leaf(p4d)) {
104		if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMAP))
105			VM_WARN_ON(!p4d_huge(p4d));
106		return pte_page(p4d_pte(p4d));
107	}
108	return virt_to_page(p4d_pgtable(p4d));
109}
110#endif
111
112struct page *pud_page(pud_t pud)
113{
114	if (pud_is_leaf(pud)) {
115		if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMAP))
116			VM_WARN_ON(!pud_huge(pud));
117		return pte_page(pud_pte(pud));
118	}
119	return virt_to_page(pud_pgtable(pud));
 
 
 
 
 
 
 
 
 
 
 
 
120}
121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122/*
123 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
124 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
125 */
126struct page *pmd_page(pmd_t pmd)
127{
128	if (pmd_is_leaf(pmd)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129		/*
130		 * vmalloc_to_page may be called on any vmap address (not only
131		 * vmalloc), and it uses pmd_page() etc., when huge vmap is
132		 * enabled so these checks can't be used.
133		 */
134		if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMAP))
135			VM_WARN_ON(!(pmd_large(pmd) || pmd_huge(pmd)));
136		return pte_page(pmd_pte(pmd));
137	}
138	return virt_to_page(pmd_page_vaddr(pmd));
 
139}
140
141#ifdef CONFIG_STRICT_KERNEL_RWX
142void mark_rodata_ro(void)
143{
144	if (!mmu_has_feature(MMU_FTR_KERNEL_RO)) {
145		pr_warn("Warning: Unable to mark rodata read only on this CPU.\n");
146		return;
 
 
 
 
 
147	}
148
149	if (radix_enabled())
150		radix__mark_rodata_ro();
151	else
152		hash__mark_rodata_ro();
 
 
 
 
 
 
 
 
153
154	// mark_initmem_nx() should have already run by now
155	ptdump_check_wx();
156}
157
158void mark_initmem_nx(void)
159{
160	if (radix_enabled())
161		radix__mark_initmem_nx();
162	else
163		hash__mark_initmem_nx();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164}
165#endif
v3.15
 
  1/*
  2 *  This file contains ioremap and related functions for 64-bit machines.
  3 *
  4 *  Derived from arch/ppc64/mm/init.c
  5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  6 *
  7 *  Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
  8 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
  9 *    Copyright (C) 1996 Paul Mackerras
 10 *
 11 *  Derived from "arch/i386/mm/init.c"
 12 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 13 *
 14 *  Dave Engebretsen <engebret@us.ibm.com>
 15 *      Rework for PPC64 port.
 16 *
 17 *  This program is free software; you can redistribute it and/or
 18 *  modify it under the terms of the GNU General Public License
 19 *  as published by the Free Software Foundation; either version
 20 *  2 of the License, or (at your option) any later version.
 21 *
 22 */
 23
 24#include <linux/signal.h>
 25#include <linux/sched.h>
 26#include <linux/kernel.h>
 27#include <linux/errno.h>
 28#include <linux/string.h>
 29#include <linux/export.h>
 30#include <linux/types.h>
 31#include <linux/mman.h>
 32#include <linux/mm.h>
 33#include <linux/swap.h>
 34#include <linux/stddef.h>
 35#include <linux/vmalloc.h>
 36#include <linux/bootmem.h>
 37#include <linux/memblock.h>
 38#include <linux/slab.h>
 
 39
 40#include <asm/pgalloc.h>
 41#include <asm/page.h>
 42#include <asm/prom.h>
 43#include <asm/io.h>
 44#include <asm/mmu_context.h>
 45#include <asm/pgtable.h>
 46#include <asm/mmu.h>
 47#include <asm/smp.h>
 48#include <asm/machdep.h>
 49#include <asm/tlb.h>
 50#include <asm/processor.h>
 51#include <asm/cputable.h>
 52#include <asm/sections.h>
 53#include <asm/firmware.h>
 
 54
 55#include "mmu_decl.h"
 56
 57/* Some sanity checking */
 58#if TASK_SIZE_USER64 > PGTABLE_RANGE
 59#error TASK_SIZE_USER64 exceeds pagetable range
 60#endif
 61
 62#ifdef CONFIG_PPC_STD_MMU_64
 63#if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
 64#error TASK_SIZE_USER64 exceeds user VSID range
 65#endif
 66#endif
 67
 68unsigned long ioremap_bot = IOREMAP_BASE;
 69
 70#ifdef CONFIG_PPC_MMU_NOHASH
 71static void *early_alloc_pgtable(unsigned long size)
 72{
 73	void *pt;
 74
 75	if (init_bootmem_done)
 76		pt = __alloc_bootmem(size, size, __pa(MAX_DMA_ADDRESS));
 77	else
 78		pt = __va(memblock_alloc_base(size, size,
 79					 __pa(MAX_DMA_ADDRESS)));
 80	memset(pt, 0, size);
 81
 82	return pt;
 83}
 84#endif /* CONFIG_PPC_MMU_NOHASH */
 85
 
 86/*
 87 * map_kernel_page currently only called by __ioremap
 88 * map_kernel_page adds an entry to the ioremap page table
 89 * and adds an entry to the HPT, possibly bolting it
 90 */
 91int map_kernel_page(unsigned long ea, unsigned long pa, int flags)
 92{
 93	pgd_t *pgdp;
 94	pud_t *pudp;
 95	pmd_t *pmdp;
 96	pte_t *ptep;
 97
 98	if (slab_is_available()) {
 99		pgdp = pgd_offset_k(ea);
100		pudp = pud_alloc(&init_mm, pgdp, ea);
101		if (!pudp)
102			return -ENOMEM;
103		pmdp = pmd_alloc(&init_mm, pudp, ea);
104		if (!pmdp)
105			return -ENOMEM;
106		ptep = pte_alloc_kernel(pmdp, ea);
107		if (!ptep)
108			return -ENOMEM;
109		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
110							  __pgprot(flags)));
111	} else {
112#ifdef CONFIG_PPC_MMU_NOHASH
113		/* Warning ! This will blow up if bootmem is not initialized
114		 * which our ppc64 code is keen to do that, we'll need to
115		 * fix it and/or be more careful
116		 */
117		pgdp = pgd_offset_k(ea);
118#ifdef PUD_TABLE_SIZE
119		if (pgd_none(*pgdp)) {
120			pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
121			BUG_ON(pudp == NULL);
122			pgd_populate(&init_mm, pgdp, pudp);
123		}
124#endif /* PUD_TABLE_SIZE */
125		pudp = pud_offset(pgdp, ea);
126		if (pud_none(*pudp)) {
127			pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
128			BUG_ON(pmdp == NULL);
129			pud_populate(&init_mm, pudp, pmdp);
130		}
131		pmdp = pmd_offset(pudp, ea);
132		if (!pmd_present(*pmdp)) {
133			ptep = early_alloc_pgtable(PAGE_SIZE);
134			BUG_ON(ptep == NULL);
135			pmd_populate_kernel(&init_mm, pmdp, ptep);
136		}
137		ptep = pte_offset_kernel(pmdp, ea);
138		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
139							  __pgprot(flags)));
140#else /* CONFIG_PPC_MMU_NOHASH */
141		/*
142		 * If the mm subsystem is not fully up, we cannot create a
143		 * linux page table entry for this mapping.  Simply bolt an
144		 * entry in the hardware page table.
145		 *
146		 */
147		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
148				      mmu_io_psize, mmu_kernel_ssize)) {
149			printk(KERN_ERR "Failed to do bolted mapping IO "
150			       "memory at %016lx !\n", pa);
151			return -ENOMEM;
152		}
153#endif /* !CONFIG_PPC_MMU_NOHASH */
 
 
154	}
155
156#ifdef CONFIG_PPC_BOOK3E_64
157	/*
158	 * With hardware tablewalk, a sync is needed to ensure that
159	 * subsequent accesses see the PTE we just wrote.  Unlike userspace
160	 * mappings, we can't tolerate spurious faults, so make sure
161	 * the new PTE will be seen the first time.
162	 */
163	mb();
164#else
165	smp_wmb();
166#endif
167	return 0;
168}
169
170
171/**
172 * __ioremap_at - Low level function to establish the page tables
173 *                for an IO mapping
174 */
175void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
176			    unsigned long flags)
177{
178	unsigned long i;
179
180	/* Make sure we have the base flags */
181	if ((flags & _PAGE_PRESENT) == 0)
182		flags |= pgprot_val(PAGE_KERNEL);
183
184	/* Non-cacheable page cannot be coherent */
185	if (flags & _PAGE_NO_CACHE)
186		flags &= ~_PAGE_COHERENT;
187
188	/* We don't support the 4K PFN hack with ioremap */
189	if (flags & _PAGE_4K_PFN)
190		return NULL;
191
192	WARN_ON(pa & ~PAGE_MASK);
193	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
194	WARN_ON(size & ~PAGE_MASK);
195
196	for (i = 0; i < size; i += PAGE_SIZE)
197		if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
198			return NULL;
199
200	return (void __iomem *)ea;
201}
202
203/**
204 * __iounmap_from - Low level function to tear down the page tables
205 *                  for an IO mapping. This is used for mappings that
206 *                  are manipulated manually, like partial unmapping of
207 *                  PCI IOs or ISA space.
208 */
209void __iounmap_at(void *ea, unsigned long size)
210{
211	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
212	WARN_ON(size & ~PAGE_MASK);
213
214	unmap_kernel_range((unsigned long)ea, size);
215}
216
217void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
218				unsigned long flags, void *caller)
219{
220	phys_addr_t paligned;
221	void __iomem *ret;
222
223	/*
224	 * Choose an address to map it to.
225	 * Once the imalloc system is running, we use it.
226	 * Before that, we map using addresses going
227	 * up from ioremap_bot.  imalloc will use
228	 * the addresses from ioremap_bot through
229	 * IMALLOC_END
230	 * 
231	 */
232	paligned = addr & PAGE_MASK;
233	size = PAGE_ALIGN(addr + size) - paligned;
234
235	if ((size == 0) || (paligned == 0))
236		return NULL;
237
238	if (mem_init_done) {
239		struct vm_struct *area;
240
241		area = __get_vm_area_caller(size, VM_IOREMAP,
242					    ioremap_bot, IOREMAP_END,
243					    caller);
244		if (area == NULL)
245			return NULL;
246
247		area->phys_addr = paligned;
248		ret = __ioremap_at(paligned, area->addr, size, flags);
249		if (!ret)
250			vunmap(area->addr);
251	} else {
252		ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
253		if (ret)
254			ioremap_bot += size;
255	}
256
257	if (ret)
258		ret += addr & ~PAGE_MASK;
259	return ret;
260}
261
262void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
263			 unsigned long flags)
264{
265	return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
266}
267
268void __iomem * ioremap(phys_addr_t addr, unsigned long size)
269{
270	unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
271	void *caller = __builtin_return_address(0);
272
273	if (ppc_md.ioremap)
274		return ppc_md.ioremap(addr, size, flags, caller);
275	return __ioremap_caller(addr, size, flags, caller);
276}
277
278void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
279{
280	unsigned long flags = _PAGE_NO_CACHE;
281	void *caller = __builtin_return_address(0);
282
283	if (ppc_md.ioremap)
284		return ppc_md.ioremap(addr, size, flags, caller);
285	return __ioremap_caller(addr, size, flags, caller);
286}
287
288void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
289			     unsigned long flags)
290{
291	void *caller = __builtin_return_address(0);
292
293	/* writeable implies dirty for kernel addresses */
294	if (flags & _PAGE_RW)
295		flags |= _PAGE_DIRTY;
296
297	/* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
298	flags &= ~(_PAGE_USER | _PAGE_EXEC);
299
300#ifdef _PAGE_BAP_SR
301	/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
302	 * which means that we just cleared supervisor access... oops ;-) This
303	 * restores it
304	 */
305	flags |= _PAGE_BAP_SR;
306#endif
307
308	if (ppc_md.ioremap)
309		return ppc_md.ioremap(addr, size, flags, caller);
310	return __ioremap_caller(addr, size, flags, caller);
311}
312
313
314/*  
315 * Unmap an IO region and remove it from imalloc'd list.
316 * Access to IO memory should be serialized by driver.
317 */
318void __iounmap(volatile void __iomem *token)
319{
320	void *addr;
321
322	if (!mem_init_done)
323		return;
324	
325	addr = (void *) ((unsigned long __force)
326			 PCI_FIX_ADDR(token) & PAGE_MASK);
327	if ((unsigned long)addr < ioremap_bot) {
328		printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
329		       " at 0x%p\n", addr);
330		return;
331	}
332	vunmap(addr);
333}
334
335void iounmap(volatile void __iomem *token)
336{
337	if (ppc_md.iounmap)
338		ppc_md.iounmap(token);
339	else
340		__iounmap(token);
341}
342
343EXPORT_SYMBOL(ioremap);
344EXPORT_SYMBOL(ioremap_wc);
345EXPORT_SYMBOL(ioremap_prot);
346EXPORT_SYMBOL(__ioremap);
347EXPORT_SYMBOL(__ioremap_at);
348EXPORT_SYMBOL(iounmap);
349EXPORT_SYMBOL(__iounmap);
350EXPORT_SYMBOL(__iounmap_at);
351
352/*
353 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
354 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
355 */
356struct page *pmd_page(pmd_t pmd)
357{
358#ifdef CONFIG_TRANSPARENT_HUGEPAGE
359	if (pmd_trans_huge(pmd))
360		return pfn_to_page(pmd_pfn(pmd));
361#endif
362	return virt_to_page(pmd_page_vaddr(pmd));
363}
364
365#ifdef CONFIG_PPC_64K_PAGES
366static pte_t *get_from_cache(struct mm_struct *mm)
367{
368	void *pte_frag, *ret;
369
370	spin_lock(&mm->page_table_lock);
371	ret = mm->context.pte_frag;
372	if (ret) {
373		pte_frag = ret + PTE_FRAG_SIZE;
374		/*
375		 * If we have taken up all the fragments mark PTE page NULL
376		 */
377		if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
378			pte_frag = NULL;
379		mm->context.pte_frag = pte_frag;
 
 
380	}
381	spin_unlock(&mm->page_table_lock);
382	return (pte_t *)ret;
383}
384
385static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
 
386{
387	void *ret = NULL;
388	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
389				       __GFP_REPEAT | __GFP_ZERO);
390	if (!page)
391		return NULL;
392	if (!kernel && !pgtable_page_ctor(page)) {
393		__free_page(page);
394		return NULL;
395	}
396
397	ret = page_address(page);
398	spin_lock(&mm->page_table_lock);
399	/*
400	 * If we find pgtable_page set, we return
401	 * the allocated page with single fragement
402	 * count.
403	 */
404	if (likely(!mm->context.pte_frag)) {
405		atomic_set(&page->_count, PTE_FRAG_NR);
406		mm->context.pte_frag = ret + PTE_FRAG_SIZE;
407	}
408	spin_unlock(&mm->page_table_lock);
409
410	return (pte_t *)ret;
 
411}
412
413pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
414{
415	pte_t *pte;
416
417	pte = get_from_cache(mm);
418	if (pte)
419		return pte;
420
421	return __alloc_for_cache(mm, kernel);
422}
423
424void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
425{
426	struct page *page = virt_to_page(table);
427	if (put_page_testzero(page)) {
428		if (!kernel)
429			pgtable_page_dtor(page);
430		free_hot_cold_page(page, 0);
431	}
432}
433
434#ifdef CONFIG_SMP
435static void page_table_free_rcu(void *table)
436{
437	struct page *page = virt_to_page(table);
438	if (put_page_testzero(page)) {
439		pgtable_page_dtor(page);
440		free_hot_cold_page(page, 0);
441	}
442}
443
444void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
445{
446	unsigned long pgf = (unsigned long)table;
447
448	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
449	pgf |= shift;
450	tlb_remove_table(tlb, (void *)pgf);
451}
452
453void __tlb_remove_table(void *_table)
454{
455	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
456	unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
457
458	if (!shift)
459		/* PTE page needs special handling */
460		page_table_free_rcu(table);
461	else {
462		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
463		kmem_cache_free(PGT_CACHE(shift), table);
464	}
465}
466#else
467void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
468{
469	if (!shift) {
470		/* PTE page needs special handling */
471		struct page *page = virt_to_page(table);
472		if (put_page_testzero(page)) {
473			pgtable_page_dtor(page);
474			free_hot_cold_page(page, 0);
475		}
476	} else {
477		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
478		kmem_cache_free(PGT_CACHE(shift), table);
479	}
480}
481#endif
482#endif /* CONFIG_PPC_64K_PAGES */
483
484#ifdef CONFIG_TRANSPARENT_HUGEPAGE
485
486/*
487 * This is called when relaxing access to a hugepage. It's also called in the page
488 * fault path when we don't hit any of the major fault cases, ie, a minor
489 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
490 * handled those two for us, we additionally deal with missing execute
491 * permission here on some processors
492 */
493int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
494			  pmd_t *pmdp, pmd_t entry, int dirty)
495{
496	int changed;
497#ifdef CONFIG_DEBUG_VM
498	WARN_ON(!pmd_trans_huge(*pmdp));
499	assert_spin_locked(&vma->vm_mm->page_table_lock);
500#endif
501	changed = !pmd_same(*(pmdp), entry);
502	if (changed) {
503		__ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
504		/*
505		 * Since we are not supporting SW TLB systems, we don't
506		 * have any thing similar to flush_tlb_page_nohash()
507		 */
508	}
509	return changed;
510}
511
512unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
513				  pmd_t *pmdp, unsigned long clr,
514				  unsigned long set)
515{
516
517	unsigned long old, tmp;
518
519#ifdef CONFIG_DEBUG_VM
520	WARN_ON(!pmd_trans_huge(*pmdp));
521	assert_spin_locked(&mm->page_table_lock);
522#endif
523
524#ifdef PTE_ATOMIC_UPDATES
525	__asm__ __volatile__(
526	"1:	ldarx	%0,0,%3\n\
527		andi.	%1,%0,%6\n\
528		bne-	1b \n\
529		andc	%1,%0,%4 \n\
530		or	%1,%1,%7\n\
531		stdcx.	%1,0,%3 \n\
532		bne-	1b"
533	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
534	: "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY), "r" (set)
535	: "cc" );
536#else
537	old = pmd_val(*pmdp);
538	*pmdp = __pmd((old & ~clr) | set);
539#endif
540	if (old & _PAGE_HASHPTE)
541		hpte_do_hugepage_flush(mm, addr, pmdp);
542	return old;
543}
544
545pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
546		       pmd_t *pmdp)
547{
548	pmd_t pmd;
549
550	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
551	if (pmd_trans_huge(*pmdp)) {
552		pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
553	} else {
554		/*
555		 * khugepaged calls this for normal pmd
556		 */
557		pmd = *pmdp;
558		pmd_clear(pmdp);
559		/*
560		 * Wait for all pending hash_page to finish. This is needed
561		 * in case of subpage collapse. When we collapse normal pages
562		 * to hugepage, we first clear the pmd, then invalidate all
563		 * the PTE entries. The assumption here is that any low level
564		 * page fault will see a none pmd and take the slow path that
565		 * will wait on mmap_sem. But we could very well be in a
566		 * hash_page with local ptep pointer value. Such a hash page
567		 * can result in adding new HPTE entries for normal subpages.
568		 * That means we could be modifying the page content as we
569		 * copy them to a huge page. So wait for parallel hash_page
570		 * to finish before invalidating HPTE entries. We can do this
571		 * by sending an IPI to all the cpus and executing a dummy
572		 * function there.
573		 */
574		kick_all_cpus_sync();
575		/*
576		 * Now invalidate the hpte entries in the range
577		 * covered by pmd. This make sure we take a
578		 * fault and will find the pmd as none, which will
579		 * result in a major fault which takes mmap_sem and
580		 * hence wait for collapse to complete. Without this
581		 * the __collapse_huge_page_copy can result in copying
582		 * the old content.
583		 */
584		flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
585	}
586	return pmd;
587}
588
589int pmdp_test_and_clear_young(struct vm_area_struct *vma,
590			      unsigned long address, pmd_t *pmdp)
591{
592	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
593}
594
595/*
596 * We currently remove entries from the hashtable regardless of whether
597 * the entry was young or dirty. The generic routines only flush if the
598 * entry was young or dirty which is not good enough.
599 *
600 * We should be more intelligent about this but for the moment we override
601 * these functions and force a tlb flush unconditionally
602 */
603int pmdp_clear_flush_young(struct vm_area_struct *vma,
604				  unsigned long address, pmd_t *pmdp)
605{
606	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
607}
608
609/*
610 * We mark the pmd splitting and invalidate all the hpte
611 * entries for this hugepage.
612 */
613void pmdp_splitting_flush(struct vm_area_struct *vma,
614			  unsigned long address, pmd_t *pmdp)
615{
616	unsigned long old, tmp;
617
618	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
619
620#ifdef CONFIG_DEBUG_VM
621	WARN_ON(!pmd_trans_huge(*pmdp));
622	assert_spin_locked(&vma->vm_mm->page_table_lock);
623#endif
624
625#ifdef PTE_ATOMIC_UPDATES
626
627	__asm__ __volatile__(
628	"1:	ldarx	%0,0,%3\n\
629		andi.	%1,%0,%6\n\
630		bne-	1b \n\
631		ori	%1,%0,%4 \n\
632		stdcx.	%1,0,%3 \n\
633		bne-	1b"
634	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
635	: "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
636	: "cc" );
637#else
638	old = pmd_val(*pmdp);
639	*pmdp = __pmd(old | _PAGE_SPLITTING);
640#endif
641	/*
642	 * If we didn't had the splitting flag set, go and flush the
643	 * HPTE entries.
644	 */
645	if (!(old & _PAGE_SPLITTING)) {
646		/* We need to flush the hpte */
647		if (old & _PAGE_HASHPTE)
648			hpte_do_hugepage_flush(vma->vm_mm, address, pmdp);
649	}
650	/*
651	 * This ensures that generic code that rely on IRQ disabling
652	 * to prevent a parallel THP split work as expected.
653	 */
654	kick_all_cpus_sync();
655}
656
657/*
658 * We want to put the pgtable in pmd and use pgtable for tracking
659 * the base page size hptes
660 */
661void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
662				pgtable_t pgtable)
663{
664	pgtable_t *pgtable_slot;
665	assert_spin_locked(&mm->page_table_lock);
666	/*
667	 * we store the pgtable in the second half of PMD
668	 */
669	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
670	*pgtable_slot = pgtable;
671	/*
672	 * expose the deposited pgtable to other cpus.
673	 * before we set the hugepage PTE at pmd level
674	 * hash fault code looks at the deposted pgtable
675	 * to store hash index values.
676	 */
677	smp_wmb();
678}
679
680pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
681{
682	pgtable_t pgtable;
683	pgtable_t *pgtable_slot;
684
685	assert_spin_locked(&mm->page_table_lock);
686	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
687	pgtable = *pgtable_slot;
688	/*
689	 * Once we withdraw, mark the entry NULL.
690	 */
691	*pgtable_slot = NULL;
692	/*
693	 * We store HPTE information in the deposited PTE fragment.
694	 * zero out the content on withdraw.
695	 */
696	memset(pgtable, 0, PTE_FRAG_SIZE);
697	return pgtable;
698}
699
700/*
701 * set a new huge pmd. We should not be called for updating
702 * an existing pmd entry. That should go via pmd_hugepage_update.
703 */
704void set_pmd_at(struct mm_struct *mm, unsigned long addr,
705		pmd_t *pmdp, pmd_t pmd)
706{
707#ifdef CONFIG_DEBUG_VM
708	WARN_ON(pmd_val(*pmdp) & _PAGE_PRESENT);
709	assert_spin_locked(&mm->page_table_lock);
710	WARN_ON(!pmd_trans_huge(pmd));
711#endif
712	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
713}
714
715void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
716		     pmd_t *pmdp)
717{
718	pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
719}
720
721/*
722 * A linux hugepage PMD was changed and the corresponding hash table entries
723 * neesd to be flushed.
724 */
725void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
726			    pmd_t *pmdp)
727{
728	int ssize, i;
729	unsigned long s_addr;
730	int max_hpte_count;
731	unsigned int psize, valid;
732	unsigned char *hpte_slot_array;
733	unsigned long hidx, vpn, vsid, hash, shift, slot;
734
735	/*
736	 * Flush all the hptes mapping this hugepage
737	 */
738	s_addr = addr & HPAGE_PMD_MASK;
739	hpte_slot_array = get_hpte_slot_array(pmdp);
740	/*
741	 * IF we try to do a HUGE PTE update after a withdraw is done.
742	 * we will find the below NULL. This happens when we do
743	 * split_huge_page_pmd
744	 */
745	if (!hpte_slot_array)
746		return;
747
748	/* get the base page size */
749	psize = get_slice_psize(mm, s_addr);
750
751	if (ppc_md.hugepage_invalidate)
752		return ppc_md.hugepage_invalidate(mm, hpte_slot_array,
753						  s_addr, psize);
754	/*
755	 * No bluk hpte removal support, invalidate each entry
756	 */
757	shift = mmu_psize_defs[psize].shift;
758	max_hpte_count = HPAGE_PMD_SIZE >> shift;
759	for (i = 0; i < max_hpte_count; i++) {
760		/*
761		 * 8 bits per each hpte entries
762		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
763		 */
764		valid = hpte_valid(hpte_slot_array, i);
765		if (!valid)
766			continue;
767		hidx =  hpte_hash_index(hpte_slot_array, i);
768
769		/* get the vpn */
770		addr = s_addr + (i * (1ul << shift));
771		if (!is_kernel_addr(addr)) {
772			ssize = user_segment_size(addr);
773			vsid = get_vsid(mm->context.id, addr, ssize);
774			WARN_ON(vsid == 0);
775		} else {
776			vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
777			ssize = mmu_kernel_ssize;
778		}
779
780		vpn = hpt_vpn(addr, vsid, ssize);
781		hash = hpt_hash(vpn, shift, ssize);
782		if (hidx & _PTEIDX_SECONDARY)
783			hash = ~hash;
784
785		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
786		slot += hidx & _PTEIDX_GROUP_IX;
787		ppc_md.hpte_invalidate(slot, vpn, psize,
788				       MMU_PAGE_16M, ssize, 0);
789	}
790}
791
792static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
793{
794	pmd_val(pmd) |= pgprot_val(pgprot);
795	return pmd;
796}
797
798pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
799{
800	pmd_t pmd;
801	/*
802	 * For a valid pte, we would have _PAGE_PRESENT or _PAGE_FILE always
803	 * set. We use this to check THP page at pmd level.
804	 * leaf pte for huge page, bottom two bits != 00
805	 */
806	pmd_val(pmd) = pfn << PTE_RPN_SHIFT;
807	pmd_val(pmd) |= _PAGE_THP_HUGE;
808	pmd = pmd_set_protbits(pmd, pgprot);
809	return pmd;
810}
811
812pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
813{
814	return pfn_pmd(page_to_pfn(page), pgprot);
815}
816
817pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
818{
819
820	pmd_val(pmd) &= _HPAGE_CHG_MASK;
821	pmd = pmd_set_protbits(pmd, newprot);
822	return pmd;
823}
824
825/*
826 * This is called at the end of handling a user page fault, when the
827 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
828 * We use it to preload an HPTE into the hash table corresponding to
829 * the updated linux HUGE PMD entry.
830 */
831void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
832			  pmd_t *pmd)
833{
834	return;
835}
836
837pmd_t pmdp_get_and_clear(struct mm_struct *mm,
838			 unsigned long addr, pmd_t *pmdp)
839{
840	pmd_t old_pmd;
841	pgtable_t pgtable;
842	unsigned long old;
843	pgtable_t *pgtable_slot;
844
845	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
846	old_pmd = __pmd(old);
847	/*
848	 * We have pmd == none and we are holding page_table_lock.
849	 * So we can safely go and clear the pgtable hash
850	 * index info.
851	 */
852	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
853	pgtable = *pgtable_slot;
854	/*
855	 * Let's zero out old valid and hash index details
856	 * hash fault look at them.
857	 */
858	memset(pgtable, 0, PTE_FRAG_SIZE);
859	return old_pmd;
860}
861
862int has_transparent_hugepage(void)
863{
864	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
865		return 0;
866	/*
867	 * We support THP only if PMD_SIZE is 16MB.
868	 */
869	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
870		return 0;
871	/*
872	 * We need to make sure that we support 16MB hugepage in a segement
873	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
874	 * of 64K.
875	 */
876	/*
877	 * If we have 64K HPTE, we will be using that by default
878	 */
879	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
880	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
881		return 0;
882	/*
883	 * Ok we only have 4K HPTE
884	 */
885	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
886		return 0;
887
888	return 1;
889}
890#endif /* CONFIG_TRANSPARENT_HUGEPAGE */