Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3/* Copyright (c) 2019 Facebook */
  4
  5#include <assert.h>
  6#include <limits.h>
  7#include <unistd.h>
  8#include <sys/file.h>
  9#include <sys/time.h>
 10#include <linux/err.h>
 11#include <linux/zalloc.h>
 12#include <api/fs/fs.h>
 13#include <perf/bpf_perf.h>
 14
 15#include "bpf_counter.h"
 16#include "bpf-utils.h"
 17#include "counts.h"
 18#include "debug.h"
 19#include "evsel.h"
 20#include "evlist.h"
 21#include "target.h"
 22#include "cgroup.h"
 23#include "cpumap.h"
 24#include "thread_map.h"
 25
 26#include "bpf_skel/bpf_prog_profiler.skel.h"
 27#include "bpf_skel/bperf_u.h"
 28#include "bpf_skel/bperf_leader.skel.h"
 29#include "bpf_skel/bperf_follower.skel.h"
 30
 31#define ATTR_MAP_SIZE 16
 32
 33static inline void *u64_to_ptr(__u64 ptr)
 34{
 35	return (void *)(unsigned long)ptr;
 36}
 37
 38static struct bpf_counter *bpf_counter_alloc(void)
 39{
 40	struct bpf_counter *counter;
 41
 42	counter = zalloc(sizeof(*counter));
 43	if (counter)
 44		INIT_LIST_HEAD(&counter->list);
 45	return counter;
 46}
 47
 48static int bpf_program_profiler__destroy(struct evsel *evsel)
 49{
 50	struct bpf_counter *counter, *tmp;
 51
 52	list_for_each_entry_safe(counter, tmp,
 53				 &evsel->bpf_counter_list, list) {
 54		list_del_init(&counter->list);
 55		bpf_prog_profiler_bpf__destroy(counter->skel);
 56		free(counter);
 57	}
 58	assert(list_empty(&evsel->bpf_counter_list));
 59
 60	return 0;
 61}
 62
 63static char *bpf_target_prog_name(int tgt_fd)
 64{
 65	struct bpf_func_info *func_info;
 66	struct perf_bpil *info_linear;
 67	const struct btf_type *t;
 68	struct btf *btf = NULL;
 69	char *name = NULL;
 70
 71	info_linear = get_bpf_prog_info_linear(tgt_fd, 1UL << PERF_BPIL_FUNC_INFO);
 72	if (IS_ERR_OR_NULL(info_linear)) {
 73		pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
 74		return NULL;
 75	}
 76
 77	if (info_linear->info.btf_id == 0) {
 78		pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
 79		goto out;
 80	}
 81
 82	btf = btf__load_from_kernel_by_id(info_linear->info.btf_id);
 83	if (libbpf_get_error(btf)) {
 84		pr_debug("failed to load btf for prog FD %d\n", tgt_fd);
 85		goto out;
 86	}
 87
 88	func_info = u64_to_ptr(info_linear->info.func_info);
 89	t = btf__type_by_id(btf, func_info[0].type_id);
 90	if (!t) {
 91		pr_debug("btf %d doesn't have type %d\n",
 92			 info_linear->info.btf_id, func_info[0].type_id);
 93		goto out;
 94	}
 95	name = strdup(btf__name_by_offset(btf, t->name_off));
 96out:
 97	btf__free(btf);
 98	free(info_linear);
 99	return name;
100}
101
102static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
103{
104	struct bpf_prog_profiler_bpf *skel;
105	struct bpf_counter *counter;
106	struct bpf_program *prog;
107	char *prog_name;
108	int prog_fd;
109	int err;
110
111	prog_fd = bpf_prog_get_fd_by_id(prog_id);
112	if (prog_fd < 0) {
113		pr_err("Failed to open fd for bpf prog %u\n", prog_id);
114		return -1;
115	}
116	counter = bpf_counter_alloc();
117	if (!counter) {
118		close(prog_fd);
119		return -1;
120	}
121
122	skel = bpf_prog_profiler_bpf__open();
123	if (!skel) {
124		pr_err("Failed to open bpf skeleton\n");
125		goto err_out;
126	}
127
128	skel->rodata->num_cpu = evsel__nr_cpus(evsel);
129
130	bpf_map__set_max_entries(skel->maps.events, evsel__nr_cpus(evsel));
131	bpf_map__set_max_entries(skel->maps.fentry_readings, 1);
132	bpf_map__set_max_entries(skel->maps.accum_readings, 1);
133
134	prog_name = bpf_target_prog_name(prog_fd);
135	if (!prog_name) {
136		pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
137		goto err_out;
138	}
139
140	bpf_object__for_each_program(prog, skel->obj) {
141		err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
142		if (err) {
143			pr_err("bpf_program__set_attach_target failed.\n"
144			       "Does bpf prog %u have BTF?\n", prog_id);
145			goto err_out;
146		}
147	}
148	set_max_rlimit();
149	err = bpf_prog_profiler_bpf__load(skel);
150	if (err) {
151		pr_err("bpf_prog_profiler_bpf__load failed\n");
152		goto err_out;
153	}
154
155	assert(skel != NULL);
156	counter->skel = skel;
157	list_add(&counter->list, &evsel->bpf_counter_list);
158	close(prog_fd);
159	return 0;
160err_out:
161	bpf_prog_profiler_bpf__destroy(skel);
162	free(counter);
163	close(prog_fd);
164	return -1;
165}
166
167static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
168{
169	char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
170	u32 prog_id;
171	int ret;
172
173	bpf_str_ = bpf_str = strdup(target->bpf_str);
174	if (!bpf_str)
175		return -1;
176
177	while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
178		prog_id = strtoul(tok, &p, 10);
179		if (prog_id == 0 || prog_id == UINT_MAX ||
180		    (*p != '\0' && *p != ',')) {
181			pr_err("Failed to parse bpf prog ids %s\n",
182			       target->bpf_str);
183			return -1;
184		}
185
186		ret = bpf_program_profiler_load_one(evsel, prog_id);
187		if (ret) {
188			bpf_program_profiler__destroy(evsel);
189			free(bpf_str_);
190			return -1;
191		}
192		bpf_str = NULL;
193	}
194	free(bpf_str_);
195	return 0;
196}
197
198static int bpf_program_profiler__enable(struct evsel *evsel)
199{
200	struct bpf_counter *counter;
201	int ret;
202
203	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
204		assert(counter->skel != NULL);
205		ret = bpf_prog_profiler_bpf__attach(counter->skel);
206		if (ret) {
207			bpf_program_profiler__destroy(evsel);
208			return ret;
209		}
210	}
211	return 0;
212}
213
214static int bpf_program_profiler__disable(struct evsel *evsel)
215{
216	struct bpf_counter *counter;
217
218	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
219		assert(counter->skel != NULL);
220		bpf_prog_profiler_bpf__detach(counter->skel);
221	}
222	return 0;
223}
224
225static int bpf_program_profiler__read(struct evsel *evsel)
226{
227	// BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
228	// Sometimes possible > online, like on a Ryzen 3900X that has 24
229	// threads but its possible showed 0-31 -acme
230	int num_cpu_bpf = libbpf_num_possible_cpus();
231	struct bpf_perf_event_value values[num_cpu_bpf];
232	struct bpf_counter *counter;
233	struct perf_counts_values *counts;
234	int reading_map_fd;
235	__u32 key = 0;
236	int err, idx, bpf_cpu;
237
238	if (list_empty(&evsel->bpf_counter_list))
239		return -EAGAIN;
240
241	perf_cpu_map__for_each_idx(idx, evsel__cpus(evsel)) {
242		counts = perf_counts(evsel->counts, idx, 0);
243		counts->val = 0;
244		counts->ena = 0;
245		counts->run = 0;
246	}
247	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
248		struct bpf_prog_profiler_bpf *skel = counter->skel;
249
250		assert(skel != NULL);
251		reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
252
253		err = bpf_map_lookup_elem(reading_map_fd, &key, values);
254		if (err) {
255			pr_err("failed to read value\n");
256			return err;
257		}
258
259		for (bpf_cpu = 0; bpf_cpu < num_cpu_bpf; bpf_cpu++) {
260			idx = perf_cpu_map__idx(evsel__cpus(evsel),
261						(struct perf_cpu){.cpu = bpf_cpu});
262			if (idx == -1)
263				continue;
264			counts = perf_counts(evsel->counts, idx, 0);
265			counts->val += values[bpf_cpu].counter;
266			counts->ena += values[bpf_cpu].enabled;
267			counts->run += values[bpf_cpu].running;
268		}
269	}
270	return 0;
271}
272
273static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu_map_idx,
274					    int fd)
275{
276	struct bpf_prog_profiler_bpf *skel;
277	struct bpf_counter *counter;
278	int ret;
279
280	list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
281		skel = counter->skel;
282		assert(skel != NULL);
283
284		ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
285					  &cpu_map_idx, &fd, BPF_ANY);
286		if (ret)
287			return ret;
288	}
289	return 0;
290}
291
292struct bpf_counter_ops bpf_program_profiler_ops = {
293	.load       = bpf_program_profiler__load,
294	.enable	    = bpf_program_profiler__enable,
295	.disable    = bpf_program_profiler__disable,
296	.read       = bpf_program_profiler__read,
297	.destroy    = bpf_program_profiler__destroy,
298	.install_pe = bpf_program_profiler__install_pe,
299};
300
301static bool bperf_attr_map_compatible(int attr_map_fd)
302{
303	struct bpf_map_info map_info = {0};
304	__u32 map_info_len = sizeof(map_info);
305	int err;
306
307	err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);
308
309	if (err)
310		return false;
311	return (map_info.key_size == sizeof(struct perf_event_attr)) &&
312		(map_info.value_size == sizeof(struct perf_event_attr_map_entry));
313}
314
315#ifndef HAVE_LIBBPF_BPF_MAP_CREATE
316LIBBPF_API int bpf_create_map(enum bpf_map_type map_type, int key_size,
317                              int value_size, int max_entries, __u32 map_flags);
318int
319bpf_map_create(enum bpf_map_type map_type,
320	       const char *map_name __maybe_unused,
321	       __u32 key_size,
322	       __u32 value_size,
323	       __u32 max_entries,
324	       const struct bpf_map_create_opts *opts __maybe_unused)
325{
326#pragma GCC diagnostic push
327#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
328	return bpf_create_map(map_type, key_size, value_size, max_entries, 0);
329#pragma GCC diagnostic pop
330}
331#endif
332
333static int bperf_lock_attr_map(struct target *target)
334{
335	char path[PATH_MAX];
336	int map_fd, err;
337
338	if (target->attr_map) {
339		scnprintf(path, PATH_MAX, "%s", target->attr_map);
340	} else {
341		scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
342			  BPF_PERF_DEFAULT_ATTR_MAP_PATH);
343	}
344
345	if (access(path, F_OK)) {
346		map_fd = bpf_map_create(BPF_MAP_TYPE_HASH, NULL,
347					sizeof(struct perf_event_attr),
348					sizeof(struct perf_event_attr_map_entry),
349					ATTR_MAP_SIZE, NULL);
350		if (map_fd < 0)
351			return -1;
352
353		err = bpf_obj_pin(map_fd, path);
354		if (err) {
355			/* someone pinned the map in parallel? */
356			close(map_fd);
357			map_fd = bpf_obj_get(path);
358			if (map_fd < 0)
359				return -1;
360		}
361	} else {
362		map_fd = bpf_obj_get(path);
363		if (map_fd < 0)
364			return -1;
365	}
366
367	if (!bperf_attr_map_compatible(map_fd)) {
368		close(map_fd);
369		return -1;
370
371	}
372	err = flock(map_fd, LOCK_EX);
373	if (err) {
374		close(map_fd);
375		return -1;
376	}
377	return map_fd;
378}
379
380static int bperf_check_target(struct evsel *evsel,
381			      struct target *target,
382			      enum bperf_filter_type *filter_type,
383			      __u32 *filter_entry_cnt)
384{
385	if (evsel->core.leader->nr_members > 1) {
386		pr_err("bpf managed perf events do not yet support groups.\n");
387		return -1;
388	}
389
390	/* determine filter type based on target */
391	if (target->system_wide) {
392		*filter_type = BPERF_FILTER_GLOBAL;
393		*filter_entry_cnt = 1;
394	} else if (target->cpu_list) {
395		*filter_type = BPERF_FILTER_CPU;
396		*filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
397	} else if (target->tid) {
398		*filter_type = BPERF_FILTER_PID;
399		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
400	} else if (target->pid || evsel->evlist->workload.pid != -1) {
401		*filter_type = BPERF_FILTER_TGID;
402		*filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
403	} else {
404		pr_err("bpf managed perf events do not yet support these targets.\n");
405		return -1;
406	}
407
408	return 0;
409}
410
411static	struct perf_cpu_map *all_cpu_map;
412
413static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
414				       struct perf_event_attr_map_entry *entry)
415{
416	struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
417	int link_fd, diff_map_fd, err;
418	struct bpf_link *link = NULL;
419
420	if (!skel) {
421		pr_err("Failed to open leader skeleton\n");
422		return -1;
423	}
424
425	bpf_map__set_max_entries(skel->maps.events, libbpf_num_possible_cpus());
426	err = bperf_leader_bpf__load(skel);
427	if (err) {
428		pr_err("Failed to load leader skeleton\n");
429		goto out;
430	}
431
432	link = bpf_program__attach(skel->progs.on_switch);
433	if (IS_ERR(link)) {
434		pr_err("Failed to attach leader program\n");
435		err = PTR_ERR(link);
436		goto out;
437	}
438
439	link_fd = bpf_link__fd(link);
440	diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
441	entry->link_id = bpf_link_get_id(link_fd);
442	entry->diff_map_id = bpf_map_get_id(diff_map_fd);
443	err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
444	assert(err == 0);
445
446	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
447	assert(evsel->bperf_leader_link_fd >= 0);
448
449	/*
450	 * save leader_skel for install_pe, which is called within
451	 * following evsel__open_per_cpu call
452	 */
453	evsel->leader_skel = skel;
454	evsel__open_per_cpu(evsel, all_cpu_map, -1);
455
456out:
457	bperf_leader_bpf__destroy(skel);
458	bpf_link__destroy(link);
459	return err;
460}
461
462static int bperf__load(struct evsel *evsel, struct target *target)
463{
464	struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
465	int attr_map_fd, diff_map_fd = -1, err;
466	enum bperf_filter_type filter_type;
467	__u32 filter_entry_cnt, i;
468
469	if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
470		return -1;
471
472	if (!all_cpu_map) {
473		all_cpu_map = perf_cpu_map__new(NULL);
474		if (!all_cpu_map)
475			return -1;
476	}
477
478	evsel->bperf_leader_prog_fd = -1;
479	evsel->bperf_leader_link_fd = -1;
480
481	/*
482	 * Step 1: hold a fd on the leader program and the bpf_link, if
483	 * the program is not already gone, reload the program.
484	 * Use flock() to ensure exclusive access to the perf_event_attr
485	 * map.
486	 */
487	attr_map_fd = bperf_lock_attr_map(target);
488	if (attr_map_fd < 0) {
489		pr_err("Failed to lock perf_event_attr map\n");
490		return -1;
491	}
492
493	err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
494	if (err) {
495		err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
496		if (err)
497			goto out;
498	}
499
500	evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
501	if (evsel->bperf_leader_link_fd < 0 &&
502	    bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
503		err = -1;
504		goto out;
505	}
506	/*
507	 * The bpf_link holds reference to the leader program, and the
508	 * leader program holds reference to the maps. Therefore, if
509	 * link_id is valid, diff_map_id should also be valid.
510	 */
511	evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
512		bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
513	assert(evsel->bperf_leader_prog_fd >= 0);
514
515	diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
516	assert(diff_map_fd >= 0);
517
518	/*
519	 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
520	 * whether the kernel support it
521	 */
522	err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
523	if (err) {
524		pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
525		       "Therefore, --use-bpf might show inaccurate readings\n");
526		goto out;
527	}
528
529	/* Step 2: load the follower skeleton */
530	evsel->follower_skel = bperf_follower_bpf__open();
531	if (!evsel->follower_skel) {
532		err = -1;
533		pr_err("Failed to open follower skeleton\n");
534		goto out;
535	}
536
537	/* attach fexit program to the leader program */
538	bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
539				       evsel->bperf_leader_prog_fd, "on_switch");
540
541	/* connect to leader diff_reading map */
542	bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);
543
544	/* set up reading map */
545	bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
546				 filter_entry_cnt);
547	/* set up follower filter based on target */
548	bpf_map__set_max_entries(evsel->follower_skel->maps.filter,
549				 filter_entry_cnt);
550	err = bperf_follower_bpf__load(evsel->follower_skel);
551	if (err) {
552		pr_err("Failed to load follower skeleton\n");
553		bperf_follower_bpf__destroy(evsel->follower_skel);
554		evsel->follower_skel = NULL;
555		goto out;
556	}
557
558	for (i = 0; i < filter_entry_cnt; i++) {
559		int filter_map_fd;
560		__u32 key;
561
562		if (filter_type == BPERF_FILTER_PID ||
563		    filter_type == BPERF_FILTER_TGID)
564			key = perf_thread_map__pid(evsel->core.threads, i);
565		else if (filter_type == BPERF_FILTER_CPU)
566			key = evsel->core.cpus->map[i].cpu;
567		else
568			break;
569
570		filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
571		bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY);
572	}
573
574	evsel->follower_skel->bss->type = filter_type;
575
576	err = bperf_follower_bpf__attach(evsel->follower_skel);
577
578out:
579	if (err && evsel->bperf_leader_link_fd >= 0)
580		close(evsel->bperf_leader_link_fd);
581	if (err && evsel->bperf_leader_prog_fd >= 0)
582		close(evsel->bperf_leader_prog_fd);
583	if (diff_map_fd >= 0)
584		close(diff_map_fd);
585
586	flock(attr_map_fd, LOCK_UN);
587	close(attr_map_fd);
588
589	return err;
590}
591
592static int bperf__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
593{
594	struct bperf_leader_bpf *skel = evsel->leader_skel;
595
596	return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
597				   &cpu_map_idx, &fd, BPF_ANY);
598}
599
600/*
601 * trigger the leader prog on each cpu, so the accum_reading map could get
602 * the latest readings.
603 */
604static int bperf_sync_counters(struct evsel *evsel)
605{
606	int num_cpu, i, cpu;
607
608	num_cpu = all_cpu_map->nr;
609	for (i = 0; i < num_cpu; i++) {
610		cpu = all_cpu_map->map[i].cpu;
611		bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu);
612	}
613	return 0;
614}
615
616static int bperf__enable(struct evsel *evsel)
617{
618	evsel->follower_skel->bss->enabled = 1;
619	return 0;
620}
621
622static int bperf__disable(struct evsel *evsel)
623{
624	evsel->follower_skel->bss->enabled = 0;
625	return 0;
626}
627
628static int bperf__read(struct evsel *evsel)
629{
630	struct bperf_follower_bpf *skel = evsel->follower_skel;
631	__u32 num_cpu_bpf = cpu__max_cpu().cpu;
632	struct bpf_perf_event_value values[num_cpu_bpf];
633	struct perf_counts_values *counts;
634	int reading_map_fd, err = 0;
635	__u32 i;
636	int j;
637
638	bperf_sync_counters(evsel);
639	reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
640
641	for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) {
642		struct perf_cpu entry;
643		__u32 cpu;
644
645		err = bpf_map_lookup_elem(reading_map_fd, &i, values);
646		if (err)
647			goto out;
648		switch (evsel->follower_skel->bss->type) {
649		case BPERF_FILTER_GLOBAL:
650			assert(i == 0);
651
652			perf_cpu_map__for_each_cpu(entry, j, evsel__cpus(evsel)) {
653				counts = perf_counts(evsel->counts, j, 0);
654				counts->val = values[entry.cpu].counter;
655				counts->ena = values[entry.cpu].enabled;
656				counts->run = values[entry.cpu].running;
657			}
658			break;
659		case BPERF_FILTER_CPU:
660			cpu = perf_cpu_map__cpu(evsel__cpus(evsel), i).cpu;
661			assert(cpu >= 0);
662			counts = perf_counts(evsel->counts, i, 0);
663			counts->val = values[cpu].counter;
664			counts->ena = values[cpu].enabled;
665			counts->run = values[cpu].running;
666			break;
667		case BPERF_FILTER_PID:
668		case BPERF_FILTER_TGID:
669			counts = perf_counts(evsel->counts, 0, i);
670			counts->val = 0;
671			counts->ena = 0;
672			counts->run = 0;
673
674			for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
675				counts->val += values[cpu].counter;
676				counts->ena += values[cpu].enabled;
677				counts->run += values[cpu].running;
678			}
679			break;
680		default:
681			break;
682		}
683	}
684out:
685	return err;
686}
687
688static int bperf__destroy(struct evsel *evsel)
689{
690	bperf_follower_bpf__destroy(evsel->follower_skel);
691	close(evsel->bperf_leader_prog_fd);
692	close(evsel->bperf_leader_link_fd);
693	return 0;
694}
695
696/*
697 * bperf: share hardware PMCs with BPF
698 *
699 * perf uses performance monitoring counters (PMC) to monitor system
700 * performance. The PMCs are limited hardware resources. For example,
701 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
702 *
703 * Modern data center systems use these PMCs in many different ways:
704 * system level monitoring, (maybe nested) container level monitoring, per
705 * process monitoring, profiling (in sample mode), etc. In some cases,
706 * there are more active perf_events than available hardware PMCs. To allow
707 * all perf_events to have a chance to run, it is necessary to do expensive
708 * time multiplexing of events.
709 *
710 * On the other hand, many monitoring tools count the common metrics
711 * (cycles, instructions). It is a waste to have multiple tools create
712 * multiple perf_events of "cycles" and occupy multiple PMCs.
713 *
714 * bperf tries to reduce such wastes by allowing multiple perf_events of
715 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
716 * of having each perf-stat session to read its own perf_events, bperf uses
717 * BPF programs to read the perf_events and aggregate readings to BPF maps.
718 * Then, the perf-stat session(s) reads the values from these BPF maps.
719 *
720 *                                ||
721 *       shared progs and maps <- || -> per session progs and maps
722 *                                ||
723 *   ---------------              ||
724 *   | perf_events |              ||
725 *   ---------------       fexit  ||      -----------------
726 *          |             --------||----> | follower prog |
727 *       --------------- /        || ---  -----------------
728 * cs -> | leader prog |/         ||/        |         |
729 *   --> ---------------         /||  --------------  ------------------
730 *  /       |         |         / ||  | filter map |  | accum_readings |
731 * /  ------------  ------------  ||  --------------  ------------------
732 * |  | prev map |  | diff map |  ||                        |
733 * |  ------------  ------------  ||                        |
734 *  \                             ||                        |
735 * = \ ==================================================== | ============
736 *    \                                                    /   user space
737 *     \                                                  /
738 *      \                                                /
739 *    BPF_PROG_TEST_RUN                    BPF_MAP_LOOKUP_ELEM
740 *        \                                            /
741 *         \                                          /
742 *          \------  perf-stat ----------------------/
743 *
744 * The figure above shows the architecture of bperf. Note that the figure
745 * is divided into 3 regions: shared progs and maps (top left), per session
746 * progs and maps (top right), and user space (bottom).
747 *
748 * The leader prog is triggered on each context switch (cs). The leader
749 * prog reads perf_events and stores the difference (current_reading -
750 * previous_reading) to the diff map. For the same metric, e.g. "cycles",
751 * multiple perf-stat sessions share the same leader prog.
752 *
753 * Each perf-stat session creates a follower prog as fexit program to the
754 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
755 * follower progs to the same leader prog. The follower prog checks current
756 * task and processor ID to decide whether to add the value from the diff
757 * map to its accumulated reading map (accum_readings).
758 *
759 * Finally, perf-stat user space reads the value from accum_reading map.
760 *
761 * Besides context switch, it is also necessary to trigger the leader prog
762 * before perf-stat reads the value. Otherwise, the accum_reading map may
763 * not have the latest reading from the perf_events. This is achieved by
764 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
765 *
766 * Comment before the definition of struct perf_event_attr_map_entry
767 * describes how different sessions of perf-stat share information about
768 * the leader prog.
769 */
770
771struct bpf_counter_ops bperf_ops = {
772	.load       = bperf__load,
773	.enable     = bperf__enable,
774	.disable    = bperf__disable,
775	.read       = bperf__read,
776	.install_pe = bperf__install_pe,
777	.destroy    = bperf__destroy,
778};
779
780extern struct bpf_counter_ops bperf_cgrp_ops;
781
782static inline bool bpf_counter_skip(struct evsel *evsel)
783{
784	return list_empty(&evsel->bpf_counter_list) &&
785		evsel->follower_skel == NULL;
786}
787
788int bpf_counter__install_pe(struct evsel *evsel, int cpu_map_idx, int fd)
789{
790	if (bpf_counter_skip(evsel))
791		return 0;
792	return evsel->bpf_counter_ops->install_pe(evsel, cpu_map_idx, fd);
793}
794
795int bpf_counter__load(struct evsel *evsel, struct target *target)
796{
797	if (target->bpf_str)
798		evsel->bpf_counter_ops = &bpf_program_profiler_ops;
799	else if (cgrp_event_expanded && target->use_bpf)
800		evsel->bpf_counter_ops = &bperf_cgrp_ops;
801	else if (target->use_bpf || evsel->bpf_counter ||
802		 evsel__match_bpf_counter_events(evsel->name))
803		evsel->bpf_counter_ops = &bperf_ops;
804
805	if (evsel->bpf_counter_ops)
806		return evsel->bpf_counter_ops->load(evsel, target);
807	return 0;
808}
809
810int bpf_counter__enable(struct evsel *evsel)
811{
812	if (bpf_counter_skip(evsel))
813		return 0;
814	return evsel->bpf_counter_ops->enable(evsel);
815}
816
817int bpf_counter__disable(struct evsel *evsel)
818{
819	if (bpf_counter_skip(evsel))
820		return 0;
821	return evsel->bpf_counter_ops->disable(evsel);
822}
823
824int bpf_counter__read(struct evsel *evsel)
825{
826	if (bpf_counter_skip(evsel))
827		return -EAGAIN;
828	return evsel->bpf_counter_ops->read(evsel);
829}
830
831void bpf_counter__destroy(struct evsel *evsel)
832{
833	if (bpf_counter_skip(evsel))
834		return;
835	evsel->bpf_counter_ops->destroy(evsel);
836	evsel->bpf_counter_ops = NULL;
837}