Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
 
 
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/sched/loadavg.h>
  24#include <linux/module.h>
  25#include <linux/irq_work.h>
  26#include <linux/posix-timers.h>
  27#include <linux/context_tracking.h>
  28#include <linux/mm.h>
  29
  30#include <asm/irq_regs.h>
  31
  32#include "tick-internal.h"
  33
  34#include <trace/events/timer.h>
  35
  36/*
  37 * Per-CPU nohz control structure
  38 */
  39static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  40
 
 
 
 
 
  41struct tick_sched *tick_get_tick_sched(int cpu)
  42{
  43	return &per_cpu(tick_cpu_sched, cpu);
  44}
  45
  46#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  47/*
  48 * The time, when the last jiffy update happened. Write access must hold
  49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
  50 * consistent view of jiffies and last_jiffies_update.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 1;
  60	ktime_t delta, nextp;
  61
  62	/*
  63	 * 64bit can do a quick check without holding jiffies lock and
  64	 * without looking at the sequence count. The smp_load_acquire()
  65	 * pairs with the update done later in this function.
  66	 *
  67	 * 32bit cannot do that because the store of tick_next_period
  68	 * consists of two 32bit stores and the first store could move it
  69	 * to a random point in the future.
  70	 */
  71	if (IS_ENABLED(CONFIG_64BIT)) {
  72		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
  73			return;
  74	} else {
  75		unsigned int seq;
  76
  77		/*
  78		 * Avoid contention on jiffies_lock and protect the quick
  79		 * check with the sequence count.
  80		 */
  81		do {
  82			seq = read_seqcount_begin(&jiffies_seq);
  83			nextp = tick_next_period;
  84		} while (read_seqcount_retry(&jiffies_seq, seq));
  85
  86		if (ktime_before(now, nextp))
  87			return;
  88	}
  89
  90	/* Quick check failed, i.e. update is required. */
  91	raw_spin_lock(&jiffies_lock);
  92	/*
  93	 * Reevaluate with the lock held. Another CPU might have done the
  94	 * update already.
  95	 */
  96	if (ktime_before(now, tick_next_period)) {
  97		raw_spin_unlock(&jiffies_lock);
  98		return;
  99	}
 100
 101	write_seqcount_begin(&jiffies_seq);
 
 102
 103	delta = ktime_sub(now, tick_next_period);
 104	if (unlikely(delta >= TICK_NSEC)) {
 105		/* Slow path for long idle sleep times */
 106		s64 incr = TICK_NSEC;
 107
 108		ticks += ktime_divns(delta, incr);
 
 
 109
 110		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 111						   incr * ticks);
 112	} else {
 113		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 114						   TICK_NSEC);
 115	}
 116
 117	/* Advance jiffies to complete the jiffies_seq protected job */
 118	jiffies_64 += ticks;
 119
 120	/*
 121	 * Keep the tick_next_period variable up to date.
 122	 */
 123	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
 124
 125	if (IS_ENABLED(CONFIG_64BIT)) {
 126		/*
 127		 * Pairs with smp_load_acquire() in the lockless quick
 128		 * check above and ensures that the update to jiffies_64 is
 129		 * not reordered vs. the store to tick_next_period, neither
 130		 * by the compiler nor by the CPU.
 131		 */
 132		smp_store_release(&tick_next_period, nextp);
 133	} else {
 134		/*
 135		 * A plain store is good enough on 32bit as the quick check
 136		 * above is protected by the sequence count.
 137		 */
 138		tick_next_period = nextp;
 139	}
 140
 141	/*
 142	 * Release the sequence count. calc_global_load() below is not
 143	 * protected by it, but jiffies_lock needs to be held to prevent
 144	 * concurrent invocations.
 145	 */
 146	write_seqcount_end(&jiffies_seq);
 147
 148	calc_global_load();
 149
 150	raw_spin_unlock(&jiffies_lock);
 151	update_wall_time();
 152}
 153
 154/*
 155 * Initialize and return retrieve the jiffies update.
 156 */
 157static ktime_t tick_init_jiffy_update(void)
 158{
 159	ktime_t period;
 160
 161	raw_spin_lock(&jiffies_lock);
 162	write_seqcount_begin(&jiffies_seq);
 163	/* Did we start the jiffies update yet ? */
 164	if (last_jiffies_update == 0)
 165		last_jiffies_update = tick_next_period;
 166	period = last_jiffies_update;
 167	write_seqcount_end(&jiffies_seq);
 168	raw_spin_unlock(&jiffies_lock);
 169	return period;
 170}
 171
 172#define MAX_STALLED_JIFFIES 5
 173
 174static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 175{
 176	int cpu = smp_processor_id();
 177
 178#ifdef CONFIG_NO_HZ_COMMON
 179	/*
 180	 * Check if the do_timer duty was dropped. We don't care about
 181	 * concurrency: This happens only when the CPU in charge went
 182	 * into a long sleep. If two CPUs happen to assign themselves to
 183	 * this duty, then the jiffies update is still serialized by
 184	 * jiffies_lock.
 185	 *
 186	 * If nohz_full is enabled, this should not happen because the
 187	 * tick_do_timer_cpu never relinquishes.
 188	 */
 189	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 190#ifdef CONFIG_NO_HZ_FULL
 191		WARN_ON_ONCE(tick_nohz_full_running);
 192#endif
 193		tick_do_timer_cpu = cpu;
 194	}
 195#endif
 196
 197	/* Check, if the jiffies need an update */
 198	if (tick_do_timer_cpu == cpu)
 199		tick_do_update_jiffies64(now);
 200
 201	/*
 202	 * If jiffies update stalled for too long (timekeeper in stop_machine()
 203	 * or VMEXIT'ed for several msecs), force an update.
 204	 */
 205	if (ts->last_tick_jiffies != jiffies) {
 206		ts->stalled_jiffies = 0;
 207		ts->last_tick_jiffies = READ_ONCE(jiffies);
 208	} else {
 209		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
 210			tick_do_update_jiffies64(now);
 211			ts->stalled_jiffies = 0;
 212			ts->last_tick_jiffies = READ_ONCE(jiffies);
 213		}
 214	}
 215
 216	if (ts->inidle)
 217		ts->got_idle_tick = 1;
 218}
 219
 220static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 221{
 222#ifdef CONFIG_NO_HZ_COMMON
 223	/*
 224	 * When we are idle and the tick is stopped, we have to touch
 225	 * the watchdog as we might not schedule for a really long
 226	 * time. This happens on complete idle SMP systems while
 227	 * waiting on the login prompt. We also increment the "start of
 228	 * idle" jiffy stamp so the idle accounting adjustment we do
 229	 * when we go busy again does not account too much ticks.
 230	 */
 231	if (ts->tick_stopped) {
 232		touch_softlockup_watchdog_sched();
 233		if (is_idle_task(current))
 234			ts->idle_jiffies++;
 235		/*
 236		 * In case the current tick fired too early past its expected
 237		 * expiration, make sure we don't bypass the next clock reprogramming
 238		 * to the same deadline.
 239		 */
 240		ts->next_tick = 0;
 241	}
 242#endif
 243	update_process_times(user_mode(regs));
 244	profile_tick(CPU_PROFILING);
 245}
 246#endif
 247
 248#ifdef CONFIG_NO_HZ_FULL
 249cpumask_var_t tick_nohz_full_mask;
 250EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
 251bool tick_nohz_full_running;
 252EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 253static atomic_t tick_dep_mask;
 254
 255static bool check_tick_dependency(atomic_t *dep)
 256{
 257	int val = atomic_read(dep);
 258
 259	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 260		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 261		return true;
 262	}
 263
 264	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 265		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 266		return true;
 267	}
 268
 269	if (val & TICK_DEP_MASK_SCHED) {
 270		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 271		return true;
 272	}
 273
 274	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 275		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 276		return true;
 277	}
 278
 279	if (val & TICK_DEP_MASK_RCU) {
 280		trace_tick_stop(0, TICK_DEP_MASK_RCU);
 281		return true;
 282	}
 283
 284	return false;
 285}
 286
 287static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 288{
 289	lockdep_assert_irqs_disabled();
 290
 291	if (unlikely(!cpu_online(cpu)))
 292		return false;
 293
 294	if (check_tick_dependency(&tick_dep_mask))
 295		return false;
 296
 297	if (check_tick_dependency(&ts->tick_dep_mask))
 298		return false;
 299
 300	if (check_tick_dependency(&current->tick_dep_mask))
 301		return false;
 302
 303	if (check_tick_dependency(&current->signal->tick_dep_mask))
 304		return false;
 305
 306	return true;
 307}
 308
 309static void nohz_full_kick_func(struct irq_work *work)
 310{
 311	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 312}
 313
 314static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
 315	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
 316
 317/*
 318 * Kick this CPU if it's full dynticks in order to force it to
 319 * re-evaluate its dependency on the tick and restart it if necessary.
 320 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 321 * is NMI safe.
 322 */
 323static void tick_nohz_full_kick(void)
 324{
 325	if (!tick_nohz_full_cpu(smp_processor_id()))
 326		return;
 327
 328	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 329}
 330
 331/*
 332 * Kick the CPU if it's full dynticks in order to force it to
 333 * re-evaluate its dependency on the tick and restart it if necessary.
 334 */
 335void tick_nohz_full_kick_cpu(int cpu)
 336{
 337	if (!tick_nohz_full_cpu(cpu))
 338		return;
 339
 340	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 341}
 342
 343static void tick_nohz_kick_task(struct task_struct *tsk)
 344{
 345	int cpu;
 346
 347	/*
 348	 * If the task is not running, run_posix_cpu_timers()
 349	 * has nothing to elapse, IPI can then be spared.
 350	 *
 351	 * activate_task()                      STORE p->tick_dep_mask
 352	 *   STORE p->on_rq
 353	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
 354	 *   LOCK rq->lock                      LOAD p->on_rq
 355	 *   smp_mb__after_spin_lock()
 356	 *   tick_nohz_task_switch()
 357	 *     LOAD p->tick_dep_mask
 358	 */
 359	if (!sched_task_on_rq(tsk))
 360		return;
 361
 362	/*
 363	 * If the task concurrently migrates to another CPU,
 364	 * we guarantee it sees the new tick dependency upon
 365	 * schedule.
 366	 *
 367	 * set_task_cpu(p, cpu);
 368	 *   STORE p->cpu = @cpu
 369	 * __schedule() (switch to task 'p')
 370	 *   LOCK rq->lock
 371	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
 372	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
 373	 *      LOAD p->tick_dep_mask           LOAD p->cpu
 374	 */
 375	cpu = task_cpu(tsk);
 376
 377	preempt_disable();
 378	if (cpu_online(cpu))
 379		tick_nohz_full_kick_cpu(cpu);
 380	preempt_enable();
 381}
 382
 383/*
 384 * Kick all full dynticks CPUs in order to force these to re-evaluate
 385 * their dependency on the tick and restart it if necessary.
 386 */
 387static void tick_nohz_full_kick_all(void)
 388{
 389	int cpu;
 390
 391	if (!tick_nohz_full_running)
 392		return;
 393
 394	preempt_disable();
 395	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 396		tick_nohz_full_kick_cpu(cpu);
 397	preempt_enable();
 398}
 399
 400static void tick_nohz_dep_set_all(atomic_t *dep,
 401				  enum tick_dep_bits bit)
 402{
 403	int prev;
 404
 405	prev = atomic_fetch_or(BIT(bit), dep);
 406	if (!prev)
 407		tick_nohz_full_kick_all();
 408}
 409
 410/*
 411 * Set a global tick dependency. Used by perf events that rely on freq and
 412 * by unstable clock.
 413 */
 414void tick_nohz_dep_set(enum tick_dep_bits bit)
 415{
 416	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 417}
 418
 419void tick_nohz_dep_clear(enum tick_dep_bits bit)
 420{
 421	atomic_andnot(BIT(bit), &tick_dep_mask);
 422}
 423
 424/*
 425 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 426 * manage events throttling.
 427 */
 428void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 429{
 430	int prev;
 431	struct tick_sched *ts;
 432
 433	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 434
 435	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 436	if (!prev) {
 437		preempt_disable();
 438		/* Perf needs local kick that is NMI safe */
 439		if (cpu == smp_processor_id()) {
 440			tick_nohz_full_kick();
 441		} else {
 442			/* Remote irq work not NMI-safe */
 443			if (!WARN_ON_ONCE(in_nmi()))
 444				tick_nohz_full_kick_cpu(cpu);
 445		}
 446		preempt_enable();
 447	}
 448}
 449EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 450
 451void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 452{
 453	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 454
 455	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 456}
 457EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 458
 459/*
 460 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
 461 * in order to elapse per task timers.
 462 */
 463void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 464{
 465	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
 466		tick_nohz_kick_task(tsk);
 467}
 468EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 469
 470void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 471{
 472	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 473}
 474EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 475
 476/*
 477 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 478 * per process timers.
 479 */
 480void tick_nohz_dep_set_signal(struct task_struct *tsk,
 481			      enum tick_dep_bits bit)
 482{
 483	int prev;
 484	struct signal_struct *sig = tsk->signal;
 485
 486	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
 487	if (!prev) {
 488		struct task_struct *t;
 489
 490		lockdep_assert_held(&tsk->sighand->siglock);
 491		__for_each_thread(sig, t)
 492			tick_nohz_kick_task(t);
 493	}
 494}
 495
 496void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 497{
 498	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 499}
 500
 501/*
 502 * Re-evaluate the need for the tick as we switch the current task.
 503 * It might need the tick due to per task/process properties:
 504 * perf events, posix CPU timers, ...
 505 */
 506void __tick_nohz_task_switch(void)
 507{
 508	struct tick_sched *ts;
 509
 510	if (!tick_nohz_full_cpu(smp_processor_id()))
 511		return;
 512
 513	ts = this_cpu_ptr(&tick_cpu_sched);
 514
 515	if (ts->tick_stopped) {
 516		if (atomic_read(&current->tick_dep_mask) ||
 517		    atomic_read(&current->signal->tick_dep_mask))
 518			tick_nohz_full_kick();
 519	}
 520}
 521
 522/* Get the boot-time nohz CPU list from the kernel parameters. */
 523void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 524{
 525	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 526	cpumask_copy(tick_nohz_full_mask, cpumask);
 527	tick_nohz_full_running = true;
 528}
 529
 530static int tick_nohz_cpu_down(unsigned int cpu)
 531{
 532	/*
 533	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 534	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 535	 * CPUs. It must remain online when nohz full is enabled.
 536	 */
 537	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 538		return -EBUSY;
 539	return 0;
 540}
 541
 542void __init tick_nohz_init(void)
 543{
 544	int cpu, ret;
 545
 546	if (!tick_nohz_full_running)
 547		return;
 548
 549	/*
 550	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 551	 * locking contexts. But then we need irq work to raise its own
 552	 * interrupts to avoid circular dependency on the tick
 553	 */
 554	if (!arch_irq_work_has_interrupt()) {
 555		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 556		cpumask_clear(tick_nohz_full_mask);
 557		tick_nohz_full_running = false;
 558		return;
 559	}
 560
 561	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 562			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 563		cpu = smp_processor_id();
 564
 565		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 566			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 567				"for timekeeping\n", cpu);
 568			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 569		}
 570	}
 571
 572	for_each_cpu(cpu, tick_nohz_full_mask)
 573		ct_cpu_track_user(cpu);
 574
 575	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 576					"kernel/nohz:predown", NULL,
 577					tick_nohz_cpu_down);
 578	WARN_ON(ret < 0);
 579	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 580		cpumask_pr_args(tick_nohz_full_mask));
 581}
 582#endif
 583
 584/*
 585 * NOHZ - aka dynamic tick functionality
 586 */
 587#ifdef CONFIG_NO_HZ_COMMON
 588/*
 589 * NO HZ enabled ?
 590 */
 591bool tick_nohz_enabled __read_mostly  = true;
 592unsigned long tick_nohz_active  __read_mostly;
 593/*
 594 * Enable / Disable tickless mode
 595 */
 596static int __init setup_tick_nohz(char *str)
 597{
 598	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 
 
 
 
 
 
 599}
 600
 601__setup("nohz=", setup_tick_nohz);
 602
 603bool tick_nohz_tick_stopped(void)
 604{
 605	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 606
 607	return ts->tick_stopped;
 608}
 609
 610bool tick_nohz_tick_stopped_cpu(int cpu)
 611{
 612	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 613
 614	return ts->tick_stopped;
 615}
 616
 617/**
 618 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 619 *
 620 * Called from interrupt entry when the CPU was idle
 621 *
 622 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 623 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 624 * value. We do this unconditionally on any CPU, as we don't know whether the
 625 * CPU, which has the update task assigned is in a long sleep.
 626 */
 627static void tick_nohz_update_jiffies(ktime_t now)
 628{
 
 
 629	unsigned long flags;
 630
 631	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 
 632
 633	local_irq_save(flags);
 634	tick_do_update_jiffies64(now);
 635	local_irq_restore(flags);
 636
 637	touch_softlockup_watchdog_sched();
 638}
 639
 640/*
 641 * Updates the per-CPU time idle statistics counters
 642 */
 643static void
 644update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 645{
 646	ktime_t delta;
 647
 648	if (ts->idle_active) {
 649		delta = ktime_sub(now, ts->idle_entrytime);
 
 650		if (nr_iowait_cpu(cpu) > 0)
 651			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 652		else
 653			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 654		ts->idle_entrytime = now;
 655	}
 656
 657	if (last_update_time)
 658		*last_update_time = ktime_to_us(now);
 659
 660}
 661
 662static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 663{
 664	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 
 
 665	ts->idle_active = 0;
 666
 667	sched_clock_idle_wakeup_event();
 668}
 669
 670static void tick_nohz_start_idle(struct tick_sched *ts)
 671{
 672	ts->idle_entrytime = ktime_get();
 
 
 
 
 
 
 673	ts->idle_active = 1;
 674	sched_clock_idle_sleep_event();
 
 675}
 676
 677/**
 678 * get_cpu_idle_time_us - get the total idle time of a CPU
 679 * @cpu: CPU number to query
 680 * @last_update_time: variable to store update time in. Do not update
 681 * counters if NULL.
 682 *
 683 * Return the cumulative idle time (since boot) for a given
 684 * CPU, in microseconds.
 
 685 *
 686 * This time is measured via accounting rather than sampling,
 687 * and is as accurate as ktime_get() is.
 688 *
 689 * This function returns -1 if NOHZ is not enabled.
 690 */
 691u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 692{
 693	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 694	ktime_t now, idle;
 695
 696	if (!tick_nohz_active)
 697		return -1;
 698
 699	now = ktime_get();
 700	if (last_update_time) {
 701		update_ts_time_stats(cpu, ts, now, last_update_time);
 702		idle = ts->idle_sleeptime;
 703	} else {
 704		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 705			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 706
 707			idle = ktime_add(ts->idle_sleeptime, delta);
 708		} else {
 709			idle = ts->idle_sleeptime;
 710		}
 711	}
 712
 713	return ktime_to_us(idle);
 714
 
 715}
 716EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 717
 718/**
 719 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 720 * @cpu: CPU number to query
 721 * @last_update_time: variable to store update time in. Do not update
 722 * counters if NULL.
 723 *
 724 * Return the cumulative iowait time (since boot) for a given
 725 * CPU, in microseconds.
 726 *
 727 * This time is measured via accounting rather than sampling,
 728 * and is as accurate as ktime_get() is.
 729 *
 730 * This function returns -1 if NOHZ is not enabled.
 731 */
 732u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 733{
 734	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 735	ktime_t now, iowait;
 736
 737	if (!tick_nohz_active)
 738		return -1;
 739
 740	now = ktime_get();
 741	if (last_update_time) {
 742		update_ts_time_stats(cpu, ts, now, last_update_time);
 743		iowait = ts->iowait_sleeptime;
 744	} else {
 745		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 746			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 747
 748			iowait = ktime_add(ts->iowait_sleeptime, delta);
 749		} else {
 750			iowait = ts->iowait_sleeptime;
 751		}
 752	}
 753
 754	return ktime_to_us(iowait);
 755}
 756EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 757
 758static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 759{
 760	hrtimer_cancel(&ts->sched_timer);
 761	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 762
 763	/* Forward the time to expire in the future */
 764	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
 765
 766	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 767		hrtimer_start_expires(&ts->sched_timer,
 768				      HRTIMER_MODE_ABS_PINNED_HARD);
 769	} else {
 770		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 771	}
 772
 773	/*
 774	 * Reset to make sure next tick stop doesn't get fooled by past
 775	 * cached clock deadline.
 776	 */
 777	ts->next_tick = 0;
 778}
 779
 780static inline bool local_timer_softirq_pending(void)
 781{
 782	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 783}
 784
 785static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 786{
 787	u64 basemono, next_tick, delta, expires;
 788	unsigned long basejiff;
 789	unsigned int seq;
 790
 791	/* Read jiffies and the time when jiffies were updated last */
 792	do {
 793		seq = read_seqcount_begin(&jiffies_seq);
 794		basemono = last_jiffies_update;
 795		basejiff = jiffies;
 796	} while (read_seqcount_retry(&jiffies_seq, seq));
 797	ts->last_jiffies = basejiff;
 798	ts->timer_expires_base = basemono;
 799
 800	/*
 801	 * Keep the periodic tick, when RCU, architecture or irq_work
 802	 * requests it.
 803	 * Aside of that check whether the local timer softirq is
 804	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 805	 * because there is an already expired timer, so it will request
 806	 * immediate expiry, which rearms the hardware timer with a
 807	 * minimal delta which brings us back to this place
 808	 * immediately. Lather, rinse and repeat...
 809	 */
 810	if (rcu_needs_cpu() || arch_needs_cpu() ||
 811	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 812		next_tick = basemono + TICK_NSEC;
 813	} else {
 814		/*
 815		 * Get the next pending timer. If high resolution
 816		 * timers are enabled this only takes the timer wheel
 817		 * timers into account. If high resolution timers are
 818		 * disabled this also looks at the next expiring
 819		 * hrtimer.
 820		 */
 821		next_tick = get_next_timer_interrupt(basejiff, basemono);
 822		ts->next_timer = next_tick;
 823	}
 824
 825	/*
 826	 * If the tick is due in the next period, keep it ticking or
 827	 * force prod the timer.
 828	 */
 829	delta = next_tick - basemono;
 830	if (delta <= (u64)TICK_NSEC) {
 831		/*
 832		 * Tell the timer code that the base is not idle, i.e. undo
 833		 * the effect of get_next_timer_interrupt():
 834		 */
 835		timer_clear_idle();
 836		/*
 837		 * We've not stopped the tick yet, and there's a timer in the
 838		 * next period, so no point in stopping it either, bail.
 839		 */
 840		if (!ts->tick_stopped) {
 841			ts->timer_expires = 0;
 842			goto out;
 843		}
 844	}
 845
 846	/*
 847	 * If this CPU is the one which had the do_timer() duty last, we limit
 848	 * the sleep time to the timekeeping max_deferment value.
 849	 * Otherwise we can sleep as long as we want.
 850	 */
 851	delta = timekeeping_max_deferment();
 852	if (cpu != tick_do_timer_cpu &&
 853	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 854		delta = KTIME_MAX;
 855
 856	/* Calculate the next expiry time */
 857	if (delta < (KTIME_MAX - basemono))
 858		expires = basemono + delta;
 859	else
 860		expires = KTIME_MAX;
 861
 862	ts->timer_expires = min_t(u64, expires, next_tick);
 863
 864out:
 865	return ts->timer_expires;
 866}
 867
 868static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 869{
 870	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 871	u64 basemono = ts->timer_expires_base;
 872	u64 expires = ts->timer_expires;
 873	ktime_t tick = expires;
 874
 875	/* Make sure we won't be trying to stop it twice in a row. */
 876	ts->timer_expires_base = 0;
 877
 878	/*
 879	 * If this CPU is the one which updates jiffies, then give up
 880	 * the assignment and let it be taken by the CPU which runs
 881	 * the tick timer next, which might be this CPU as well. If we
 882	 * don't drop this here the jiffies might be stale and
 883	 * do_timer() never invoked. Keep track of the fact that it
 884	 * was the one which had the do_timer() duty last.
 885	 */
 886	if (cpu == tick_do_timer_cpu) {
 887		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 888		ts->do_timer_last = 1;
 889	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 890		ts->do_timer_last = 0;
 891	}
 892
 893	/* Skip reprogram of event if its not changed */
 894	if (ts->tick_stopped && (expires == ts->next_tick)) {
 895		/* Sanity check: make sure clockevent is actually programmed */
 896		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 897			return;
 898
 899		WARN_ON_ONCE(1);
 900		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 901			    basemono, ts->next_tick, dev->next_event,
 902			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 903	}
 904
 905	/*
 906	 * nohz_stop_sched_tick can be called several times before
 907	 * the nohz_restart_sched_tick is called. This happens when
 908	 * interrupts arrive which do not cause a reschedule. In the
 909	 * first call we save the current tick time, so we can restart
 910	 * the scheduler tick in nohz_restart_sched_tick.
 911	 */
 912	if (!ts->tick_stopped) {
 913		calc_load_nohz_start();
 914		quiet_vmstat();
 915
 916		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 917		ts->tick_stopped = 1;
 918		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 919	}
 920
 921	ts->next_tick = tick;
 922
 923	/*
 924	 * If the expiration time == KTIME_MAX, then we simply stop
 925	 * the tick timer.
 926	 */
 927	if (unlikely(expires == KTIME_MAX)) {
 928		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 929			hrtimer_cancel(&ts->sched_timer);
 930		else
 931			tick_program_event(KTIME_MAX, 1);
 932		return;
 933	}
 934
 935	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 936		hrtimer_start(&ts->sched_timer, tick,
 937			      HRTIMER_MODE_ABS_PINNED_HARD);
 938	} else {
 939		hrtimer_set_expires(&ts->sched_timer, tick);
 940		tick_program_event(tick, 1);
 941	}
 942}
 943
 944static void tick_nohz_retain_tick(struct tick_sched *ts)
 945{
 946	ts->timer_expires_base = 0;
 947}
 
 
 
 
 948
 949#ifdef CONFIG_NO_HZ_FULL
 950static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 951{
 952	if (tick_nohz_next_event(ts, cpu))
 953		tick_nohz_stop_tick(ts, cpu);
 954	else
 955		tick_nohz_retain_tick(ts);
 956}
 957#endif /* CONFIG_NO_HZ_FULL */
 958
 959static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 960{
 961	/* Update jiffies first */
 962	tick_do_update_jiffies64(now);
 963
 964	/*
 965	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 966	 * the clock forward checks in the enqueue path:
 
 967	 */
 968	timer_clear_idle();
 
 969
 970	calc_load_nohz_stop();
 971	touch_softlockup_watchdog_sched();
 972	/*
 973	 * Cancel the scheduled timer and restore the tick
 
 
 974	 */
 975	ts->tick_stopped  = 0;
 976	tick_nohz_restart(ts, now);
 977}
 978
 979static void __tick_nohz_full_update_tick(struct tick_sched *ts,
 980					 ktime_t now)
 981{
 982#ifdef CONFIG_NO_HZ_FULL
 983	int cpu = smp_processor_id();
 984
 985	if (can_stop_full_tick(cpu, ts))
 986		tick_nohz_stop_sched_tick(ts, cpu);
 987	else if (ts->tick_stopped)
 988		tick_nohz_restart_sched_tick(ts, now);
 989#endif
 990}
 991
 992static void tick_nohz_full_update_tick(struct tick_sched *ts)
 993{
 994	if (!tick_nohz_full_cpu(smp_processor_id()))
 995		return;
 996
 997	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 998		return;
 999
1000	__tick_nohz_full_update_tick(ts, ktime_get());
1001}
1002
1003/*
1004 * A pending softirq outside an IRQ (or softirq disabled section) context
1005 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1006 * reach here due to the need_resched() early check in can_stop_idle_tick().
1007 *
1008 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1009 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1010 * triggering the below since wakep_softirqd() is ignored.
1011 *
1012 */
1013static bool report_idle_softirq(void)
1014{
1015	static int ratelimit;
1016	unsigned int pending = local_softirq_pending();
1017
1018	if (likely(!pending))
1019		return false;
1020
1021	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1022	if (!cpu_active(smp_processor_id())) {
1023		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1024		if (!pending)
1025			return false;
1026	}
1027
1028	if (ratelimit < 10)
1029		return false;
1030
1031	/* On RT, softirqs handling may be waiting on some lock */
1032	if (!local_bh_blocked())
1033		return false;
1034
1035	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1036		pending);
1037	ratelimit++;
1038
1039	return true;
1040}
1041
1042static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1043{
1044	/*
1045	 * If this CPU is offline and it is the one which updates
1046	 * jiffies, then give up the assignment and let it be taken by
1047	 * the CPU which runs the tick timer next. If we don't drop
1048	 * this here the jiffies might be stale and do_timer() never
1049	 * invoked.
1050	 */
1051	if (unlikely(!cpu_online(cpu))) {
1052		if (cpu == tick_do_timer_cpu)
1053			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1054		/*
1055		 * Make sure the CPU doesn't get fooled by obsolete tick
1056		 * deadline if it comes back online later.
1057		 */
1058		ts->next_tick = 0;
1059		return false;
1060	}
1061
1062	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1063		return false;
1064
1065	if (need_resched())
1066		return false;
1067
1068	if (unlikely(report_idle_softirq()))
1069		return false;
1070
1071	if (tick_nohz_full_enabled()) {
1072		/*
1073		 * Keep the tick alive to guarantee timekeeping progression
1074		 * if there are full dynticks CPUs around
1075		 */
1076		if (tick_do_timer_cpu == cpu)
1077			return false;
1078
1079		/* Should not happen for nohz-full */
1080		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1081			return false;
1082	}
1083
1084	return true;
1085}
1086
1087static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1088{
1089	ktime_t expires;
1090	int cpu = smp_processor_id();
1091
 
 
 
 
 
 
 
 
 
 
1092	/*
1093	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1094	 * tick timer expiration time is known already.
1095	 */
1096	if (ts->timer_expires_base)
1097		expires = ts->timer_expires;
1098	else if (can_stop_idle_tick(cpu, ts))
1099		expires = tick_nohz_next_event(ts, cpu);
1100	else
1101		return;
1102
1103	ts->idle_calls++;
1104
1105	if (expires > 0LL) {
1106		int was_stopped = ts->tick_stopped;
1107
1108		tick_nohz_stop_tick(ts, cpu);
1109
1110		ts->idle_sleeps++;
1111		ts->idle_expires = expires;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112
1113		if (!was_stopped && ts->tick_stopped) {
1114			ts->idle_jiffies = ts->last_jiffies;
1115			nohz_balance_enter_idle(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116		}
1117	} else {
1118		tick_nohz_retain_tick(ts);
1119	}
1120}
1121
1122/**
1123 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1124 *
1125 * When the next event is more than a tick into the future, stop the idle tick
1126 */
1127void tick_nohz_idle_stop_tick(void)
1128{
1129	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1130}
1131
1132void tick_nohz_idle_retain_tick(void)
1133{
1134	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1135	/*
1136	 * Undo the effect of get_next_timer_interrupt() called from
1137	 * tick_nohz_next_event().
1138	 */
1139	timer_clear_idle();
1140}
1141
1142/**
1143 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1144 *
1145 * Called when we start the idle loop.
1146 */
1147void tick_nohz_idle_enter(void)
1148{
1149	struct tick_sched *ts;
1150
1151	lockdep_assert_irqs_enabled();
 
 
 
 
 
 
 
 
1152
1153	local_irq_disable();
 
 
 
 
1154
1155	ts = this_cpu_ptr(&tick_cpu_sched);
1156
1157	WARN_ON_ONCE(ts->timer_expires_base);
 
1158
1159	ts->inidle = 1;
1160	tick_nohz_start_idle(ts);
 
 
 
 
 
 
 
1161
1162	local_irq_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163}
1164
1165/**
1166 * tick_nohz_irq_exit - update next tick event from interrupt exit
1167 *
1168 * When an interrupt fires while we are idle and it doesn't cause
1169 * a reschedule, it may still add, modify or delete a timer, enqueue
1170 * an RCU callback, etc...
1171 * So we need to re-calculate and reprogram the next tick event.
1172 */
1173void tick_nohz_irq_exit(void)
1174{
1175	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1176
1177	if (ts->inidle)
1178		tick_nohz_start_idle(ts);
1179	else
1180		tick_nohz_full_update_tick(ts);
1181}
1182
1183/**
1184 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1185 */
1186bool tick_nohz_idle_got_tick(void)
1187{
1188	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
1189
1190	if (ts->got_idle_tick) {
1191		ts->got_idle_tick = 0;
1192		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1193	}
1194	return false;
1195}
1196
1197/**
1198 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1199 * or the tick, whatever that expires first. Note that, if the tick has been
1200 * stopped, it returns the next hrtimer.
1201 *
1202 * Called from power state control code with interrupts disabled
1203 */
1204ktime_t tick_nohz_get_next_hrtimer(void)
1205{
1206	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1207}
1208
1209/**
1210 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1211 * @delta_next: duration until the next event if the tick cannot be stopped
1212 *
1213 * Called from power state control code with interrupts disabled.
1214 *
1215 * The return value of this function and/or the value returned by it through the
1216 * @delta_next pointer can be negative which must be taken into account by its
1217 * callers.
1218 */
1219ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1220{
1221	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1222	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1223	int cpu = smp_processor_id();
1224	/*
1225	 * The idle entry time is expected to be a sufficient approximation of
1226	 * the current time at this point.
1227	 */
1228	ktime_t now = ts->idle_entrytime;
1229	ktime_t next_event;
1230
1231	WARN_ON_ONCE(!ts->inidle);
1232
1233	*delta_next = ktime_sub(dev->next_event, now);
1234
1235	if (!can_stop_idle_tick(cpu, ts))
1236		return *delta_next;
1237
1238	next_event = tick_nohz_next_event(ts, cpu);
1239	if (!next_event)
1240		return *delta_next;
1241
1242	/*
1243	 * If the next highres timer to expire is earlier than next_event, the
1244	 * idle governor needs to know that.
1245	 */
1246	next_event = min_t(u64, next_event,
1247			   hrtimer_next_event_without(&ts->sched_timer));
1248
1249	return ktime_sub(next_event, now);
1250}
1251
1252/**
1253 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1254 * for a particular CPU.
1255 *
1256 * Called from the schedutil frequency scaling governor in scheduler context.
1257 */
1258unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1259{
1260	struct tick_sched *ts = tick_get_tick_sched(cpu);
1261
1262	return ts->idle_calls;
1263}
1264
1265/**
1266 * tick_nohz_get_idle_calls - return the current idle calls counter value
1267 *
1268 * Called from the schedutil frequency scaling governor in scheduler context.
1269 */
1270unsigned long tick_nohz_get_idle_calls(void)
1271{
1272	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1273
1274	return ts->idle_calls;
1275}
1276
1277static void tick_nohz_account_idle_time(struct tick_sched *ts,
1278					ktime_t now)
1279{
1280	unsigned long ticks;
1281
1282	ts->idle_exittime = now;
 
 
 
1283
1284	if (vtime_accounting_enabled_this_cpu())
1285		return;
1286	/*
1287	 * We stopped the tick in idle. Update process times would miss the
1288	 * time we slept as update_process_times does only a 1 tick
1289	 * accounting. Enforce that this is accounted to idle !
1290	 */
1291	ticks = jiffies - ts->idle_jiffies;
1292	/*
1293	 * We might be one off. Do not randomly account a huge number of ticks!
1294	 */
1295	if (ticks && ticks < LONG_MAX)
1296		account_idle_ticks(ticks);
1297}
1298
1299void tick_nohz_idle_restart_tick(void)
1300{
1301	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1302
1303	if (ts->tick_stopped) {
1304		ktime_t now = ktime_get();
1305		tick_nohz_restart_sched_tick(ts, now);
1306		tick_nohz_account_idle_time(ts, now);
1307	}
1308}
1309
1310static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1311{
1312	if (tick_nohz_full_cpu(smp_processor_id()))
1313		__tick_nohz_full_update_tick(ts, now);
1314	else
1315		tick_nohz_restart_sched_tick(ts, now);
1316
1317	tick_nohz_account_idle_time(ts, now);
1318}
1319
1320/**
1321 * tick_nohz_idle_exit - restart the idle tick from the idle task
1322 *
1323 * Restart the idle tick when the CPU is woken up from idle
1324 * This also exit the RCU extended quiescent state. The CPU
1325 * can use RCU again after this function is called.
1326 */
1327void tick_nohz_idle_exit(void)
1328{
1329	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1330	bool idle_active, tick_stopped;
1331	ktime_t now;
1332
1333	local_irq_disable();
1334
1335	WARN_ON_ONCE(!ts->inidle);
1336	WARN_ON_ONCE(ts->timer_expires_base);
1337
1338	ts->inidle = 0;
1339	idle_active = ts->idle_active;
1340	tick_stopped = ts->tick_stopped;
1341
1342	if (idle_active || tick_stopped)
1343		now = ktime_get();
1344
1345	if (idle_active)
1346		tick_nohz_stop_idle(ts, now);
1347
1348	if (tick_stopped)
1349		tick_nohz_idle_update_tick(ts, now);
1350
1351	local_irq_enable();
1352}
1353
1354/*
1355 * The nohz low res interrupt handler
1356 */
1357static void tick_nohz_handler(struct clock_event_device *dev)
1358{
1359	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1360	struct pt_regs *regs = get_irq_regs();
 
1361	ktime_t now = ktime_get();
1362
1363	dev->next_event = KTIME_MAX;
1364
1365	tick_sched_do_timer(ts, now);
1366	tick_sched_handle(ts, regs);
 
 
 
 
 
 
 
1367
1368	if (unlikely(ts->tick_stopped)) {
1369		/*
1370		 * The clockevent device is not reprogrammed, so change the
1371		 * clock event device to ONESHOT_STOPPED to avoid spurious
1372		 * interrupts on devices which might not be truly one shot.
1373		 */
1374		tick_program_event(KTIME_MAX, 1);
1375		return;
 
 
 
 
 
 
 
1376	}
1377
1378	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1379	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1380}
1381
1382static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1383{
1384	if (!tick_nohz_enabled)
1385		return;
1386	ts->nohz_mode = mode;
1387	/* One update is enough */
1388	if (!test_and_set_bit(0, &tick_nohz_active))
1389		timers_update_nohz();
1390}
1391
1392/**
1393 * tick_nohz_switch_to_nohz - switch to nohz mode
1394 */
1395static void tick_nohz_switch_to_nohz(void)
1396{
1397	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1398	ktime_t next;
1399
1400	if (!tick_nohz_enabled)
1401		return;
1402
1403	if (tick_switch_to_oneshot(tick_nohz_handler))
 
 
1404		return;
 
 
 
1405
1406	/*
1407	 * Recycle the hrtimer in ts, so we can share the
1408	 * hrtimer_forward with the highres code.
1409	 */
1410	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1411	/* Get the next period */
1412	next = tick_init_jiffy_update();
1413
1414	hrtimer_set_expires(&ts->sched_timer, next);
1415	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1416	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1417	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
 
 
 
 
 
1418}
1419
1420static inline void tick_nohz_irq_enter(void)
 
 
 
 
 
 
 
 
 
 
 
1421{
1422	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423	ktime_t now;
1424
1425	if (!ts->idle_active && !ts->tick_stopped)
1426		return;
1427	now = ktime_get();
1428	if (ts->idle_active)
1429		tick_nohz_stop_idle(ts, now);
1430	/*
1431	 * If all CPUs are idle. We may need to update a stale jiffies value.
1432	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1433	 * alive but it might be busy looping with interrupts disabled in some
1434	 * rare case (typically stop machine). So we must make sure we have a
1435	 * last resort.
1436	 */
1437	if (ts->tick_stopped)
1438		tick_nohz_update_jiffies(now);
 
 
1439}
1440
1441#else
1442
1443static inline void tick_nohz_switch_to_nohz(void) { }
1444static inline void tick_nohz_irq_enter(void) { }
1445static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1446
1447#endif /* CONFIG_NO_HZ_COMMON */
1448
1449/*
1450 * Called from irq_enter to notify about the possible interruption of idle()
1451 */
1452void tick_irq_enter(void)
1453{
1454	tick_check_oneshot_broadcast_this_cpu();
1455	tick_nohz_irq_enter();
1456}
1457
1458/*
1459 * High resolution timer specific code
1460 */
1461#ifdef CONFIG_HIGH_RES_TIMERS
1462/*
1463 * We rearm the timer until we get disabled by the idle code.
1464 * Called with interrupts disabled.
1465 */
1466static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1467{
1468	struct tick_sched *ts =
1469		container_of(timer, struct tick_sched, sched_timer);
1470	struct pt_regs *regs = get_irq_regs();
1471	ktime_t now = ktime_get();
 
1472
1473	tick_sched_do_timer(ts, now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474
1475	/*
1476	 * Do not call, when we are not in irq context and have
1477	 * no valid regs pointer
1478	 */
1479	if (regs)
1480		tick_sched_handle(ts, regs);
1481	else
1482		ts->next_tick = 0;
1483
1484	/* No need to reprogram if we are in idle or full dynticks mode */
1485	if (unlikely(ts->tick_stopped))
1486		return HRTIMER_NORESTART;
 
 
 
 
 
 
 
 
1487
1488	hrtimer_forward(timer, now, TICK_NSEC);
1489
1490	return HRTIMER_RESTART;
1491}
1492
1493static int sched_skew_tick;
1494
1495static int __init skew_tick(char *str)
1496{
1497	get_option(&str, &sched_skew_tick);
1498
1499	return 0;
1500}
1501early_param("skew_tick", skew_tick);
1502
1503/**
1504 * tick_setup_sched_timer - setup the tick emulation timer
1505 */
1506void tick_setup_sched_timer(void)
1507{
1508	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1509	ktime_t now = ktime_get();
1510
1511	/*
1512	 * Emulate tick processing via per-CPU hrtimers:
1513	 */
1514	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1515	ts->sched_timer.function = tick_sched_timer;
1516
1517	/* Get the next period (per-CPU) */
1518	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1519
1520	/* Offset the tick to avert jiffies_lock contention. */
1521	if (sched_skew_tick) {
1522		u64 offset = TICK_NSEC >> 1;
1523		do_div(offset, num_possible_cpus());
1524		offset *= smp_processor_id();
1525		hrtimer_add_expires_ns(&ts->sched_timer, offset);
 
 
1526	}
1527
1528	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1529	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1530	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
 
 
 
1531}
1532#endif /* HIGH_RES_TIMERS */
1533
1534#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1535void tick_cancel_sched_timer(int cpu)
1536{
1537	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1538
1539# ifdef CONFIG_HIGH_RES_TIMERS
1540	if (ts->sched_timer.base)
1541		hrtimer_cancel(&ts->sched_timer);
1542# endif
1543
1544	memset(ts, 0, sizeof(*ts));
1545}
1546#endif
1547
1548/*
1549 * Async notification about clocksource changes
1550 */
1551void tick_clock_notify(void)
1552{
1553	int cpu;
1554
1555	for_each_possible_cpu(cpu)
1556		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1557}
1558
1559/*
1560 * Async notification about clock event changes
1561 */
1562void tick_oneshot_notify(void)
1563{
1564	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1565
1566	set_bit(0, &ts->check_clocks);
1567}
1568
1569/*
1570 * Check, if a change happened, which makes oneshot possible.
1571 *
1572 * Called cyclic from the hrtimer softirq (driven by the timer
1573 * softirq) allow_nohz signals, that we can switch into low-res nohz
1574 * mode, because high resolution timers are disabled (either compile
1575 * or runtime). Called with interrupts disabled.
1576 */
1577int tick_check_oneshot_change(int allow_nohz)
1578{
1579	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1580
1581	if (!test_and_clear_bit(0, &ts->check_clocks))
1582		return 0;
1583
1584	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1585		return 0;
1586
1587	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1588		return 0;
1589
1590	if (!allow_nohz)
1591		return 1;
1592
1593	tick_nohz_switch_to_nohz();
1594	return 0;
1595}
v3.1
 
  1/*
  2 *  linux/kernel/time/tick-sched.c
  3 *
  4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
  7 *
  8 *  No idle tick implementation for low and high resolution timers
  9 *
 10 *  Started by: Thomas Gleixner and Ingo Molnar
 11 *
 12 *  Distribute under GPLv2.
 13 */
 14#include <linux/cpu.h>
 15#include <linux/err.h>
 16#include <linux/hrtimer.h>
 17#include <linux/interrupt.h>
 18#include <linux/kernel_stat.h>
 19#include <linux/percpu.h>
 
 20#include <linux/profile.h>
 21#include <linux/sched.h>
 
 
 
 
 22#include <linux/module.h>
 
 
 
 
 23
 24#include <asm/irq_regs.h>
 25
 26#include "tick-internal.h"
 27
 
 
 28/*
 29 * Per cpu nohz control structure
 30 */
 31static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
 32
 33/*
 34 * The time, when the last jiffy update happened. Protected by xtime_lock.
 35 */
 36static ktime_t last_jiffies_update;
 37
 38struct tick_sched *tick_get_tick_sched(int cpu)
 39{
 40	return &per_cpu(tick_cpu_sched, cpu);
 41}
 42
 
 
 
 
 
 
 
 
 43/*
 44 * Must be called with interrupts disabled !
 45 */
 46static void tick_do_update_jiffies64(ktime_t now)
 47{
 48	unsigned long ticks = 0;
 49	ktime_t delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50
 
 
 51	/*
 52	 * Do a quick check without holding xtime_lock:
 
 53	 */
 54	delta = ktime_sub(now, last_jiffies_update);
 55	if (delta.tv64 < tick_period.tv64)
 56		return;
 
 57
 58	/* Reevalute with xtime_lock held */
 59	write_seqlock(&xtime_lock);
 60
 61	delta = ktime_sub(now, last_jiffies_update);
 62	if (delta.tv64 >= tick_period.tv64) {
 
 
 63
 64		delta = ktime_sub(delta, tick_period);
 65		last_jiffies_update = ktime_add(last_jiffies_update,
 66						tick_period);
 67
 68		/* Slow path for long timeouts */
 69		if (unlikely(delta.tv64 >= tick_period.tv64)) {
 70			s64 incr = ktime_to_ns(tick_period);
 
 
 
 71
 72			ticks = ktime_divns(delta, incr);
 
 73
 74			last_jiffies_update = ktime_add_ns(last_jiffies_update,
 75							   incr * ticks);
 76		}
 77		do_timer(++ticks);
 78
 79		/* Keep the tick_next_period variable up to date */
 80		tick_next_period = ktime_add(last_jiffies_update, tick_period);
 
 
 
 
 
 
 
 
 
 
 
 
 81	}
 82	write_sequnlock(&xtime_lock);
 
 
 
 
 
 
 
 
 
 
 
 83}
 84
 85/*
 86 * Initialize and return retrieve the jiffies update.
 87 */
 88static ktime_t tick_init_jiffy_update(void)
 89{
 90	ktime_t period;
 91
 92	write_seqlock(&xtime_lock);
 
 93	/* Did we start the jiffies update yet ? */
 94	if (last_jiffies_update.tv64 == 0)
 95		last_jiffies_update = tick_next_period;
 96	period = last_jiffies_update;
 97	write_sequnlock(&xtime_lock);
 
 98	return period;
 99}
100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101/*
102 * NOHZ - aka dynamic tick functionality
103 */
104#ifdef CONFIG_NO_HZ
105/*
106 * NO HZ enabled ?
107 */
108static int tick_nohz_enabled __read_mostly  = 1;
109
110/*
111 * Enable / Disable tickless mode
112 */
113static int __init setup_tick_nohz(char *str)
114{
115	if (!strcmp(str, "off"))
116		tick_nohz_enabled = 0;
117	else if (!strcmp(str, "on"))
118		tick_nohz_enabled = 1;
119	else
120		return 0;
121	return 1;
122}
123
124__setup("nohz=", setup_tick_nohz);
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126/**
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
128 *
129 * Called from interrupt entry when the CPU was idle
130 *
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
135 */
136static void tick_nohz_update_jiffies(ktime_t now)
137{
138	int cpu = smp_processor_id();
139	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
140	unsigned long flags;
141
142	cpumask_clear_cpu(cpu, nohz_cpu_mask);
143	ts->idle_waketime = now;
144
145	local_irq_save(flags);
146	tick_do_update_jiffies64(now);
147	local_irq_restore(flags);
148
149	touch_softlockup_watchdog();
150}
151
152/*
153 * Updates the per cpu time idle statistics counters
154 */
155static void
156update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
157{
158	ktime_t delta;
159
160	if (ts->idle_active) {
161		delta = ktime_sub(now, ts->idle_entrytime);
162		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
163		if (nr_iowait_cpu(cpu) > 0)
164			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 
 
165		ts->idle_entrytime = now;
166	}
167
168	if (last_update_time)
169		*last_update_time = ktime_to_us(now);
170
171}
172
173static void tick_nohz_stop_idle(int cpu, ktime_t now)
174{
175	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
176
177	update_ts_time_stats(cpu, ts, now, NULL);
178	ts->idle_active = 0;
179
180	sched_clock_idle_wakeup_event(0);
181}
182
183static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
184{
185	ktime_t now;
186
187	now = ktime_get();
188
189	update_ts_time_stats(cpu, ts, now, NULL);
190
191	ts->idle_entrytime = now;
192	ts->idle_active = 1;
193	sched_clock_idle_sleep_event();
194	return now;
195}
196
197/**
198 * get_cpu_idle_time_us - get the total idle time of a cpu
199 * @cpu: CPU number to query
200 * @last_update_time: variable to store update time in
 
201 *
202 * Return the cummulative idle time (since boot) for a given
203 * CPU, in microseconds. The idle time returned includes
204 * the iowait time (unlike what "top" and co report).
205 *
206 * This time is measured via accounting rather than sampling,
207 * and is as accurate as ktime_get() is.
208 *
209 * This function returns -1 if NOHZ is not enabled.
210 */
211u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
212{
213	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
214
215	if (!tick_nohz_enabled)
216		return -1;
217
218	update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219
220	return ktime_to_us(ts->idle_sleeptime);
221}
222EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
223
224/*
225 * get_cpu_iowait_time_us - get the total iowait time of a cpu
226 * @cpu: CPU number to query
227 * @last_update_time: variable to store update time in
 
228 *
229 * Return the cummulative iowait time (since boot) for a given
230 * CPU, in microseconds.
231 *
232 * This time is measured via accounting rather than sampling,
233 * and is as accurate as ktime_get() is.
234 *
235 * This function returns -1 if NOHZ is not enabled.
236 */
237u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
238{
239	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
240
241	if (!tick_nohz_enabled)
242		return -1;
243
244	update_ts_time_stats(cpu, ts, ktime_get(), last_update_time);
 
 
 
 
 
 
 
 
 
 
 
 
245
246	return ktime_to_us(ts->iowait_sleeptime);
247}
248EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
249
250/**
251 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
252 *
253 * When the next event is more than a tick into the future, stop the idle tick
254 * Called either from the idle loop or from irq_exit() when an idle period was
255 * just interrupted by an interrupt which did not cause a reschedule.
256 */
257void tick_nohz_stop_sched_tick(int inidle)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258{
259	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
260	struct tick_sched *ts;
261	ktime_t last_update, expires, now;
262	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
263	u64 time_delta;
264	int cpu;
265
266	local_irq_save(flags);
 
 
 
 
 
 
 
 
267
268	cpu = smp_processor_id();
269	ts = &per_cpu(tick_cpu_sched, cpu);
 
 
270
271	/*
272	 * Call to tick_nohz_start_idle stops the last_update_time from being
273	 * updated. Thus, it must not be called in the event we are called from
274	 * irq_exit() with the prior state different than idle.
275	 */
276	if (!inidle && !ts->inidle)
277		goto end;
278
 
 
279	/*
280	 * Set ts->inidle unconditionally. Even if the system did not
281	 * switch to NOHZ mode the cpu frequency governers rely on the
282	 * update of the idle time accounting in tick_nohz_start_idle().
283	 */
284	ts->inidle = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
286	now = tick_nohz_start_idle(cpu, ts);
 
287
 
 
288	/*
289	 * If this cpu is offline and it is the one which updates
290	 * jiffies, then give up the assignment and let it be taken by
291	 * the cpu which runs the tick timer next. If we don't drop
292	 * this here the jiffies might be stale and do_timer() never
293	 * invoked.
294	 */
295	if (unlikely(!cpu_online(cpu))) {
296		if (cpu == tick_do_timer_cpu)
297			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 
 
 
 
 
 
298	}
299
300	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
301		goto end;
302
303	if (need_resched())
304		goto end;
305
306	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
307		static int ratelimit;
308
309		if (ratelimit < 10) {
310			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
311			       (unsigned int) local_softirq_pending());
312			ratelimit++;
313		}
314		goto end;
 
 
 
 
 
315	}
316
317	ts->idle_calls++;
318	/* Read jiffies and the time when jiffies were updated last */
319	do {
320		seq = read_seqbegin(&xtime_lock);
321		last_update = last_jiffies_update;
322		last_jiffies = jiffies;
323		time_delta = timekeeping_max_deferment();
324	} while (read_seqretry(&xtime_lock, seq));
325
326	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
327	    arch_needs_cpu(cpu)) {
328		next_jiffies = last_jiffies + 1;
329		delta_jiffies = 1;
330	} else {
331		/* Get the next timer wheel timer */
332		next_jiffies = get_next_timer_interrupt(last_jiffies);
333		delta_jiffies = next_jiffies - last_jiffies;
334	}
335	/*
336	 * Do not stop the tick, if we are only one off
337	 * or if the cpu is required for rcu
338	 */
339	if (!ts->tick_stopped && delta_jiffies == 1)
340		goto out;
 
 
 
 
 
 
341
342	/* Schedule the tick, if we are at least one jiffie off */
343	if ((long)delta_jiffies >= 1) {
344
345		/*
346		 * If this cpu is the one which updates jiffies, then
347		 * give up the assignment and let it be taken by the
348		 * cpu which runs the tick timer next, which might be
349		 * this cpu as well. If we don't drop this here the
350		 * jiffies might be stale and do_timer() never
351		 * invoked. Keep track of the fact that it was the one
352		 * which had the do_timer() duty last. If this cpu is
353		 * the one which had the do_timer() duty last, we
354		 * limit the sleep time to the timekeeping
355		 * max_deferement value which we retrieved
356		 * above. Otherwise we can sleep as long as we want.
357		 */
358		if (cpu == tick_do_timer_cpu) {
359			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
360			ts->do_timer_last = 1;
361		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
362			time_delta = KTIME_MAX;
363			ts->do_timer_last = 0;
364		} else if (!ts->do_timer_last) {
365			time_delta = KTIME_MAX;
366		}
367
368		/*
369		 * calculate the expiry time for the next timer wheel
370		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
371		 * that there is no timer pending or at least extremely
372		 * far into the future (12 days for HZ=1000). In this
373		 * case we set the expiry to the end of time.
374		 */
375		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
376			/*
377			 * Calculate the time delta for the next timer event.
378			 * If the time delta exceeds the maximum time delta
379			 * permitted by the current clocksource then adjust
380			 * the time delta accordingly to ensure the
381			 * clocksource does not wrap.
382			 */
383			time_delta = min_t(u64, time_delta,
384					   tick_period.tv64 * delta_jiffies);
385		}
 
 
 
 
386
387		if (time_delta < KTIME_MAX)
388			expires = ktime_add_ns(last_update, time_delta);
389		else
390			expires.tv64 = KTIME_MAX;
 
 
 
 
 
391
392		if (delta_jiffies > 1)
393			cpumask_set_cpu(cpu, nohz_cpu_mask);
 
 
 
 
 
 
 
394
395		/* Skip reprogram of event if its not changed */
396		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
397			goto out;
 
 
 
 
 
398
399		/*
400		 * nohz_stop_sched_tick can be called several times before
401		 * the nohz_restart_sched_tick is called. This happens when
402		 * interrupts arrive which do not cause a reschedule. In the
403		 * first call we save the current tick time, so we can restart
404		 * the scheduler tick in nohz_restart_sched_tick.
405		 */
406		if (!ts->tick_stopped) {
407			select_nohz_load_balancer(1);
408
409			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
410			ts->tick_stopped = 1;
411			ts->idle_jiffies = last_jiffies;
412			rcu_enter_nohz();
413		}
414
415		ts->idle_sleeps++;
416
417		/* Mark expires */
418		ts->idle_expires = expires;
419
420		/*
421		 * If the expiration time == KTIME_MAX, then
422		 * in this case we simply stop the tick timer.
423		 */
424		 if (unlikely(expires.tv64 == KTIME_MAX)) {
425			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
426				hrtimer_cancel(&ts->sched_timer);
427			goto out;
428		}
429
430		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
431			hrtimer_start(&ts->sched_timer, expires,
432				      HRTIMER_MODE_ABS_PINNED);
433			/* Check, if the timer was already in the past */
434			if (hrtimer_active(&ts->sched_timer))
435				goto out;
436		} else if (!tick_program_event(expires, 0))
437				goto out;
438		/*
439		 * We are past the event already. So we crossed a
440		 * jiffie boundary. Update jiffies and raise the
441		 * softirq.
442		 */
443		tick_do_update_jiffies64(ktime_get());
444		cpumask_clear_cpu(cpu, nohz_cpu_mask);
445	}
446	raise_softirq_irqoff(TIMER_SOFTIRQ);
447out:
448	ts->next_jiffies = next_jiffies;
449	ts->last_jiffies = last_jiffies;
450	ts->sleep_length = ktime_sub(dev->next_event, now);
451end:
452	local_irq_restore(flags);
453}
454
455/**
456 * tick_nohz_get_sleep_length - return the length of the current sleep
457 *
458 * Called from power state control code with interrupts disabled
 
 
 
459 */
460ktime_t tick_nohz_get_sleep_length(void)
461{
462	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
463
464	return ts->sleep_length;
 
 
 
465}
466
467static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 
 
 
468{
469	hrtimer_cancel(&ts->sched_timer);
470	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
471
472	while (1) {
473		/* Forward the time to expire in the future */
474		hrtimer_forward(&ts->sched_timer, now, tick_period);
475
476		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
477			hrtimer_start_expires(&ts->sched_timer,
478					      HRTIMER_MODE_ABS_PINNED);
479			/* Check, if the timer was already in the past */
480			if (hrtimer_active(&ts->sched_timer))
481				break;
482		} else {
483			if (!tick_program_event(
484				hrtimer_get_expires(&ts->sched_timer), 0))
485				break;
486		}
487		/* Update jiffies and reread time */
488		tick_do_update_jiffies64(now);
489		now = ktime_get();
490	}
 
491}
492
493/**
494 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
 
 
495 *
496 * Restart the idle tick when the CPU is woken up from idle
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
497 */
498void tick_nohz_restart_sched_tick(void)
499{
 
 
500	int cpu = smp_processor_id();
501	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
502#ifndef CONFIG_VIRT_CPU_ACCOUNTING
503	unsigned long ticks;
504#endif
505	ktime_t now;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506
507	local_irq_disable();
508	if (ts->idle_active || (ts->inidle && ts->tick_stopped))
509		now = ktime_get();
 
 
 
 
 
 
510
511	if (ts->idle_active)
512		tick_nohz_stop_idle(cpu, now);
513
514	if (!ts->inidle || !ts->tick_stopped) {
515		ts->inidle = 0;
516		local_irq_enable();
517		return;
518	}
 
 
 
519
520	ts->inidle = 0;
 
521
522	rcu_exit_nohz();
 
 
 
523
524	/* Update jiffies first */
525	select_nohz_load_balancer(0);
526	tick_do_update_jiffies64(now);
527	cpumask_clear_cpu(cpu, nohz_cpu_mask);
528
529#ifndef CONFIG_VIRT_CPU_ACCOUNTING
 
530	/*
531	 * We stopped the tick in idle. Update process times would miss the
532	 * time we slept as update_process_times does only a 1 tick
533	 * accounting. Enforce that this is accounted to idle !
534	 */
535	ticks = jiffies - ts->idle_jiffies;
536	/*
537	 * We might be one off. Do not randomly account a huge number of ticks!
538	 */
539	if (ticks && ticks < LONG_MAX)
540		account_idle_ticks(ticks);
541#endif
 
 
 
 
542
543	touch_softlockup_watchdog();
544	/*
545	 * Cancel the scheduled timer and restore the tick
546	 */
547	ts->tick_stopped  = 0;
548	ts->idle_exittime = now;
549
550	tick_nohz_restart(ts, now);
 
 
 
 
 
551
552	local_irq_enable();
553}
554
555static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
 
 
 
 
 
 
 
556{
557	hrtimer_forward(&ts->sched_timer, now, tick_period);
558	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559}
560
561/*
562 * The nohz low res interrupt handler
563 */
564static void tick_nohz_handler(struct clock_event_device *dev)
565{
566	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
567	struct pt_regs *regs = get_irq_regs();
568	int cpu = smp_processor_id();
569	ktime_t now = ktime_get();
570
571	dev->next_event.tv64 = KTIME_MAX;
572
573	/*
574	 * Check if the do_timer duty was dropped. We don't care about
575	 * concurrency: This happens only when the cpu in charge went
576	 * into a long sleep. If two cpus happen to assign themself to
577	 * this duty, then the jiffies update is still serialized by
578	 * xtime_lock.
579	 */
580	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
581		tick_do_timer_cpu = cpu;
582
583	/* Check, if the jiffies need an update */
584	if (tick_do_timer_cpu == cpu)
585		tick_do_update_jiffies64(now);
586
587	/*
588	 * When we are idle and the tick is stopped, we have to touch
589	 * the watchdog as we might not schedule for a really long
590	 * time. This happens on complete idle SMP systems while
591	 * waiting on the login prompt. We also increment the "start
592	 * of idle" jiffy stamp so the idle accounting adjustment we
593	 * do when we go busy again does not account too much ticks.
594	 */
595	if (ts->tick_stopped) {
596		touch_softlockup_watchdog();
597		ts->idle_jiffies++;
598	}
599
600	update_process_times(user_mode(regs));
601	profile_tick(CPU_PROFILING);
 
602
603	while (tick_nohz_reprogram(ts, now)) {
604		now = ktime_get();
605		tick_do_update_jiffies64(now);
606	}
 
 
 
 
607}
608
609/**
610 * tick_nohz_switch_to_nohz - switch to nohz mode
611 */
612static void tick_nohz_switch_to_nohz(void)
613{
614	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
615	ktime_t next;
616
617	if (!tick_nohz_enabled)
618		return;
619
620	local_irq_disable();
621	if (tick_switch_to_oneshot(tick_nohz_handler)) {
622		local_irq_enable();
623		return;
624	}
625
626	ts->nohz_mode = NOHZ_MODE_LOWRES;
627
628	/*
629	 * Recycle the hrtimer in ts, so we can share the
630	 * hrtimer_forward with the highres code.
631	 */
632	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
633	/* Get the next period */
634	next = tick_init_jiffy_update();
635
636	for (;;) {
637		hrtimer_set_expires(&ts->sched_timer, next);
638		if (!tick_program_event(next, 0))
639			break;
640		next = ktime_add(next, tick_period);
641	}
642	local_irq_enable();
643
644	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
645}
646
647/*
648 * When NOHZ is enabled and the tick is stopped, we need to kick the
649 * tick timer from irq_enter() so that the jiffies update is kept
650 * alive during long running softirqs. That's ugly as hell, but
651 * correctness is key even if we need to fix the offending softirq in
652 * the first place.
653 *
654 * Note, this is different to tick_nohz_restart. We just kick the
655 * timer and do not touch the other magic bits which need to be done
656 * when idle is left.
657 */
658static void tick_nohz_kick_tick(int cpu, ktime_t now)
659{
660#if 0
661	/* Switch back to 2.6.27 behaviour */
662
663	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
664	ktime_t delta;
665
666	/*
667	 * Do not touch the tick device, when the next expiry is either
668	 * already reached or less/equal than the tick period.
669	 */
670	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
671	if (delta.tv64 <= tick_period.tv64)
672		return;
673
674	tick_nohz_restart(ts, now);
675#endif
676}
677
678static inline void tick_check_nohz(int cpu)
679{
680	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
681	ktime_t now;
682
683	if (!ts->idle_active && !ts->tick_stopped)
684		return;
685	now = ktime_get();
686	if (ts->idle_active)
687		tick_nohz_stop_idle(cpu, now);
688	if (ts->tick_stopped) {
 
 
 
 
 
 
 
689		tick_nohz_update_jiffies(now);
690		tick_nohz_kick_tick(cpu, now);
691	}
692}
693
694#else
695
696static inline void tick_nohz_switch_to_nohz(void) { }
697static inline void tick_check_nohz(int cpu) { }
 
698
699#endif /* NO_HZ */
700
701/*
702 * Called from irq_enter to notify about the possible interruption of idle()
703 */
704void tick_check_idle(int cpu)
705{
706	tick_check_oneshot_broadcast(cpu);
707	tick_check_nohz(cpu);
708}
709
710/*
711 * High resolution timer specific code
712 */
713#ifdef CONFIG_HIGH_RES_TIMERS
714/*
715 * We rearm the timer until we get disabled by the idle code.
716 * Called with interrupts disabled and timer->base->cpu_base->lock held.
717 */
718static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
719{
720	struct tick_sched *ts =
721		container_of(timer, struct tick_sched, sched_timer);
722	struct pt_regs *regs = get_irq_regs();
723	ktime_t now = ktime_get();
724	int cpu = smp_processor_id();
725
726#ifdef CONFIG_NO_HZ
727	/*
728	 * Check if the do_timer duty was dropped. We don't care about
729	 * concurrency: This happens only when the cpu in charge went
730	 * into a long sleep. If two cpus happen to assign themself to
731	 * this duty, then the jiffies update is still serialized by
732	 * xtime_lock.
733	 */
734	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
735		tick_do_timer_cpu = cpu;
736#endif
737
738	/* Check, if the jiffies need an update */
739	if (tick_do_timer_cpu == cpu)
740		tick_do_update_jiffies64(now);
741
742	/*
743	 * Do not call, when we are not in irq context and have
744	 * no valid regs pointer
745	 */
746	if (regs) {
747		/*
748		 * When we are idle and the tick is stopped, we have to touch
749		 * the watchdog as we might not schedule for a really long
750		 * time. This happens on complete idle SMP systems while
751		 * waiting on the login prompt. We also increment the "start of
752		 * idle" jiffy stamp so the idle accounting adjustment we do
753		 * when we go busy again does not account too much ticks.
754		 */
755		if (ts->tick_stopped) {
756			touch_softlockup_watchdog();
757			ts->idle_jiffies++;
758		}
759		update_process_times(user_mode(regs));
760		profile_tick(CPU_PROFILING);
761	}
762
763	hrtimer_forward(timer, now, tick_period);
764
765	return HRTIMER_RESTART;
766}
767
 
 
 
 
 
 
 
 
 
 
768/**
769 * tick_setup_sched_timer - setup the tick emulation timer
770 */
771void tick_setup_sched_timer(void)
772{
773	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
774	ktime_t now = ktime_get();
775
776	/*
777	 * Emulate tick processing via per-CPU hrtimers:
778	 */
779	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
780	ts->sched_timer.function = tick_sched_timer;
781
782	/* Get the next period (per cpu) */
783	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
784
785	for (;;) {
786		hrtimer_forward(&ts->sched_timer, now, tick_period);
787		hrtimer_start_expires(&ts->sched_timer,
788				      HRTIMER_MODE_ABS_PINNED);
789		/* Check, if the timer was already in the past */
790		if (hrtimer_active(&ts->sched_timer))
791			break;
792		now = ktime_get();
793	}
794
795#ifdef CONFIG_NO_HZ
796	if (tick_nohz_enabled) {
797		ts->nohz_mode = NOHZ_MODE_HIGHRES;
798		printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", smp_processor_id());
799	}
800#endif
801}
802#endif /* HIGH_RES_TIMERS */
803
804#if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
805void tick_cancel_sched_timer(int cpu)
806{
807	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
808
809# ifdef CONFIG_HIGH_RES_TIMERS
810	if (ts->sched_timer.base)
811		hrtimer_cancel(&ts->sched_timer);
812# endif
813
814	ts->nohz_mode = NOHZ_MODE_INACTIVE;
815}
816#endif
817
818/**
819 * Async notification about clocksource changes
820 */
821void tick_clock_notify(void)
822{
823	int cpu;
824
825	for_each_possible_cpu(cpu)
826		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
827}
828
829/*
830 * Async notification about clock event changes
831 */
832void tick_oneshot_notify(void)
833{
834	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
835
836	set_bit(0, &ts->check_clocks);
837}
838
839/**
840 * Check, if a change happened, which makes oneshot possible.
841 *
842 * Called cyclic from the hrtimer softirq (driven by the timer
843 * softirq) allow_nohz signals, that we can switch into low-res nohz
844 * mode, because high resolution timers are disabled (either compile
845 * or runtime).
846 */
847int tick_check_oneshot_change(int allow_nohz)
848{
849	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
850
851	if (!test_and_clear_bit(0, &ts->check_clocks))
852		return 0;
853
854	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
855		return 0;
856
857	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
858		return 0;
859
860	if (!allow_nohz)
861		return 1;
862
863	tick_nohz_switch_to_nohz();
864	return 0;
865}