Linux Audio

Check our new training course

Loading...
v6.2
  1/* Software floating-point emulation. Common operations.
  2   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
  3   This file is part of the GNU C Library.
  4   Contributed by Richard Henderson (rth@cygnus.com),
  5		  Jakub Jelinek (jj@ultra.linux.cz),
  6		  David S. Miller (davem@redhat.com) and
  7		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
  8
  9   The GNU C Library is free software; you can redistribute it and/or
 10   modify it under the terms of the GNU Library General Public License as
 11   published by the Free Software Foundation; either version 2 of the
 12   License, or (at your option) any later version.
 13
 14   The GNU C Library is distributed in the hope that it will be useful,
 15   but WITHOUT ANY WARRANTY; without even the implied warranty of
 16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 17   Library General Public License for more details.
 18
 19   You should have received a copy of the GNU Library General Public
 20   License along with the GNU C Library; see the file COPYING.LIB.  If
 21   not, write to the Free Software Foundation, Inc.,
 22   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
 23
 24#ifndef __MATH_EMU_OP_COMMON_H__
 25#define __MATH_EMU_OP_COMMON_H__
 26
 27#define _FP_DECL(wc, X)			\
 28  _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0;	\
 29  _FP_FRAC_DECL_##wc(X)
 30
 31/*
 32 * Finish truly unpacking a native fp value by classifying the kind
 33 * of fp value and normalizing both the exponent and the fraction.
 34 */
 35
 36#define _FP_UNPACK_CANONICAL(fs, wc, X)					\
 37do {									\
 38  switch (X##_e)							\
 39  {									\
 40  default:								\
 41    _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs;			\
 42    _FP_FRAC_SLL_##wc(X, _FP_WORKBITS);					\
 43    X##_e -= _FP_EXPBIAS_##fs;						\
 44    X##_c = FP_CLS_NORMAL;						\
 45    break;								\
 46									\
 47  case 0:								\
 48    if (_FP_FRAC_ZEROP_##wc(X))						\
 49      X##_c = FP_CLS_ZERO;						\
 50    else								\
 51      {									\
 52	/* a denormalized number */					\
 53	_FP_I_TYPE _shift;						\
 54	_FP_FRAC_CLZ_##wc(_shift, X);					\
 55	_shift -= _FP_FRACXBITS_##fs;					\
 56	_FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS));			\
 57	X##_e -= _FP_EXPBIAS_##fs - 1 + _shift;				\
 58	X##_c = FP_CLS_NORMAL;						\
 59	FP_SET_EXCEPTION(FP_EX_DENORM);					\
 60	if (FP_DENORM_ZERO)						\
 61	  {								\
 62	    FP_SET_EXCEPTION(FP_EX_INEXACT);				\
 63	    X##_c = FP_CLS_ZERO;					\
 64	  }								\
 65      }									\
 66    break;								\
 67									\
 68  case _FP_EXPMAX_##fs:							\
 69    if (_FP_FRAC_ZEROP_##wc(X))						\
 70      X##_c = FP_CLS_INF;						\
 71    else								\
 72      {									\
 73	X##_c = FP_CLS_NAN;						\
 74	/* Check for signaling NaN */					\
 75	if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))		\
 76	  FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_SNAN);		\
 77      }									\
 78    break;								\
 79  }									\
 80} while (0)
 81
 82/*
 83 * Before packing the bits back into the native fp result, take care
 84 * of such mundane things as rounding and overflow.  Also, for some
 85 * kinds of fp values, the original parts may not have been fully
 86 * extracted -- but that is ok, we can regenerate them now.
 87 */
 88
 89#define _FP_PACK_CANONICAL(fs, wc, X)				\
 90do {								\
 91  switch (X##_c)						\
 92  {								\
 93  case FP_CLS_NORMAL:						\
 94    X##_e += _FP_EXPBIAS_##fs;					\
 95    if (X##_e > 0)						\
 96      {								\
 97	_FP_ROUND(wc, X);					\
 98	if (_FP_FRAC_OVERP_##wc(fs, X))				\
 99	  {							\
100	    _FP_FRAC_CLEAR_OVERP_##wc(fs, X);			\
101	    X##_e++;						\
102	  }							\
103	_FP_FRAC_SRL_##wc(X, _FP_WORKBITS);			\
104	if (X##_e >= _FP_EXPMAX_##fs)				\
105	  {							\
106	    /* overflow */					\
107	    switch (FP_ROUNDMODE)				\
108	      {							\
109	      case FP_RND_NEAREST:				\
110		X##_c = FP_CLS_INF;				\
111		break;						\
112	      case FP_RND_PINF:					\
113		if (!X##_s) X##_c = FP_CLS_INF;			\
114		break;						\
115	      case FP_RND_MINF:					\
116		if (X##_s) X##_c = FP_CLS_INF;			\
117		break;						\
118	      }							\
119	    if (X##_c == FP_CLS_INF)				\
120	      {							\
121		/* Overflow to infinity */			\
122		X##_e = _FP_EXPMAX_##fs;			\
123		_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
124	      }							\
125	    else						\
126	      {							\
127		/* Overflow to maximum normal */		\
128		X##_e = _FP_EXPMAX_##fs - 1;			\
129		_FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc);		\
130	      }							\
131	    FP_SET_EXCEPTION(FP_EX_OVERFLOW);			\
132            FP_SET_EXCEPTION(FP_EX_INEXACT);			\
133	  }							\
134      }								\
135    else							\
136      {								\
137	/* we've got a denormalized number */			\
138	X##_e = -X##_e + 1;					\
139	if (X##_e <= _FP_WFRACBITS_##fs)			\
140	  {							\
141	    _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs);	\
142	    if (_FP_FRAC_HIGH_##fs(X)				\
143		& (_FP_OVERFLOW_##fs >> 1))			\
144	      {							\
145	        X##_e = 1;					\
146	        _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
147	      }							\
148	    else						\
149	      {							\
150		_FP_ROUND(wc, X);				\
151		if (_FP_FRAC_HIGH_##fs(X)			\
152		   & (_FP_OVERFLOW_##fs >> 1))			\
153		  {						\
154		    X##_e = 1;					\
155		    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
156		    FP_SET_EXCEPTION(FP_EX_INEXACT);		\
157		  }						\
158		else						\
159		  {						\
160		    X##_e = 0;					\
161		    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);		\
162		  }						\
163	      }							\
164	    if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) ||		\
165		(FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW))	\
166		FP_SET_EXCEPTION(FP_EX_UNDERFLOW);		\
167	  }							\
168	else							\
169	  {							\
170	    /* underflow to zero */				\
171	    X##_e = 0;						\
172	    if (!_FP_FRAC_ZEROP_##wc(X))			\
173	      {							\
174	        _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);		\
175	        _FP_ROUND(wc, X);				\
176	        _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS);	\
177	      }							\
178	    FP_SET_EXCEPTION(FP_EX_UNDERFLOW);			\
179	  }							\
180      }								\
181    break;							\
182								\
183  case FP_CLS_ZERO:						\
184    X##_e = 0;							\
185    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
186    break;							\
187								\
188  case FP_CLS_INF:						\
189    X##_e = _FP_EXPMAX_##fs;					\
190    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
191    break;							\
192								\
193  case FP_CLS_NAN:						\
194    X##_e = _FP_EXPMAX_##fs;					\
195    if (!_FP_KEEPNANFRACP)					\
196      {								\
197	_FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs);			\
198	X##_s = _FP_NANSIGN_##fs;				\
199      }								\
200    else							\
201      _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs;		\
202    break;							\
203  }								\
204} while (0)
205
206/* This one accepts raw argument and not cooked,  returns
207 * 1 if X is a signaling NaN.
208 */
209#define _FP_ISSIGNAN(fs, wc, X)					\
210({								\
211  int __ret = 0;						\
212  if (X##_e == _FP_EXPMAX_##fs)					\
213    {								\
214      if (!_FP_FRAC_ZEROP_##wc(X)				\
215	  && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))	\
216	__ret = 1;						\
217    }								\
218  __ret;							\
219})
220
221
222
223
224
225/*
226 * Main addition routine.  The input values should be cooked.
227 */
228
229#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP)				     \
230do {									     \
231  switch (_FP_CLS_COMBINE(X##_c, Y##_c))				     \
232  {									     \
233  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):			     \
234    {									     \
235      /* shift the smaller number so that its exponent matches the larger */ \
236      _FP_I_TYPE diff = X##_e - Y##_e;					     \
237									     \
238      if (diff < 0)							     \
239	{								     \
240	  diff = -diff;							     \
241	  if (diff <= _FP_WFRACBITS_##fs)				     \
242	    _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs);		     \
243	  else if (!_FP_FRAC_ZEROP_##wc(X))				     \
244	    _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);			     \
245	  R##_e = Y##_e;						     \
246	}								     \
247      else								     \
248	{								     \
249	  if (diff > 0)							     \
250	    {								     \
251	      if (diff <= _FP_WFRACBITS_##fs)				     \
252	        _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs);		     \
253	      else if (!_FP_FRAC_ZEROP_##wc(Y))				     \
254	        _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc);			     \
255	    }								     \
256	  R##_e = X##_e;						     \
257	}								     \
258									     \
259      R##_c = FP_CLS_NORMAL;						     \
260									     \
261      if (X##_s == Y##_s)						     \
262	{								     \
263	  R##_s = X##_s;						     \
264	  _FP_FRAC_ADD_##wc(R, X, Y);					     \
265	  if (_FP_FRAC_OVERP_##wc(fs, R))				     \
266	    {								     \
267	      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);		     \
268	      R##_e++;							     \
269	    }								     \
270	}								     \
271      else								     \
272	{								     \
273	  R##_s = X##_s;						     \
274	  _FP_FRAC_SUB_##wc(R, X, Y);					     \
275	  if (_FP_FRAC_ZEROP_##wc(R))					     \
276	    {								     \
277	      /* return an exact zero */				     \
278	      if (FP_ROUNDMODE == FP_RND_MINF)				     \
279		R##_s |= Y##_s;						     \
280	      else							     \
281		R##_s &= Y##_s;						     \
282	      R##_c = FP_CLS_ZERO;					     \
283	    }								     \
284	  else								     \
285	    {								     \
286	      if (_FP_FRAC_NEGP_##wc(R))				     \
287		{							     \
288		  _FP_FRAC_SUB_##wc(R, Y, X);				     \
289		  R##_s = Y##_s;					     \
290		}							     \
291									     \
292	      /* renormalize after subtraction */			     \
293	      _FP_FRAC_CLZ_##wc(diff, R);				     \
294	      diff -= _FP_WFRACXBITS_##fs;				     \
295	      if (diff)							     \
296		{							     \
297		  R##_e -= diff;					     \
298		  _FP_FRAC_SLL_##wc(R, diff);				     \
299		}							     \
300	    }								     \
301	}								     \
302      break;								     \
303    }									     \
304									     \
305  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):				     \
306    _FP_CHOOSENAN(fs, wc, R, X, Y, OP);					     \
307    break;								     \
308									     \
309  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):			     \
310    R##_e = X##_e;							     \
311	fallthrough;							     \
312  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):			     \
313  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):				     \
314  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):				     \
315    _FP_FRAC_COPY_##wc(R, X);						     \
316    R##_s = X##_s;							     \
317    R##_c = X##_c;							     \
318    break;								     \
319									     \
320  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):			     \
321    R##_e = Y##_e;							     \
322	fallthrough;							     \
323  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):			     \
324  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):				     \
325  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):				     \
326    _FP_FRAC_COPY_##wc(R, Y);						     \
327    R##_s = Y##_s;							     \
328    R##_c = Y##_c;							     \
329    break;								     \
330									     \
331  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):				     \
332    if (X##_s != Y##_s)							     \
333      {									     \
334	/* +INF + -INF => NAN */					     \
335	_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);				     \
336	R##_s = _FP_NANSIGN_##fs;					     \
337	R##_c = FP_CLS_NAN;						     \
338	FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ISI);		     \
339	break;								     \
340      }									     \
341    fallthrough;							     \
342									     \
343  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):			     \
344  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):				     \
345    R##_s = X##_s;							     \
346    R##_c = FP_CLS_INF;							     \
347    break;								     \
348									     \
349  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):			     \
350  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):				     \
351    R##_s = Y##_s;							     \
352    R##_c = FP_CLS_INF;							     \
353    break;								     \
354									     \
355  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):			     \
356    /* make sure the sign is correct */					     \
357    if (FP_ROUNDMODE == FP_RND_MINF)					     \
358      R##_s = X##_s | Y##_s;						     \
359    else								     \
360      R##_s = X##_s & Y##_s;						     \
361    R##_c = FP_CLS_ZERO;						     \
362    break;								     \
363									     \
364  default:								     \
365    abort();								     \
366  }									     \
367} while (0)
368
369#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
370#define _FP_SUB(fs, wc, R, X, Y)					     \
371  do {									     \
372    if (Y##_c != FP_CLS_NAN) Y##_s ^= 1;				     \
373    _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-');				     \
374  } while (0)
375
376
377/*
378 * Main negation routine.  FIXME -- when we care about setting exception
379 * bits reliably, this will not do.  We should examine all of the fp classes.
380 */
381
382#define _FP_NEG(fs, wc, R, X)		\
383  do {					\
384    _FP_FRAC_COPY_##wc(R, X);		\
385    R##_c = X##_c;			\
386    R##_e = X##_e;			\
387    R##_s = 1 ^ X##_s;			\
388  } while (0)
389
390
391/*
392 * Main multiplication routine.  The input values should be cooked.
393 */
394
395#define _FP_MUL(fs, wc, R, X, Y)			\
396do {							\
397  R##_s = X##_s ^ Y##_s;				\
398  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
399  {							\
400  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
401    R##_c = FP_CLS_NORMAL;				\
402    R##_e = X##_e + Y##_e + 1;				\
403							\
404    _FP_MUL_MEAT_##fs(R,X,Y);				\
405							\
406    if (_FP_FRAC_OVERP_##wc(fs, R))			\
407      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);	\
408    else						\
409      R##_e--;						\
410    break;						\
411							\
412  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
413    _FP_CHOOSENAN(fs, wc, R, X, Y, '*');		\
414    break;						\
415							\
416  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
417  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
418  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
419    R##_s = X##_s;					\
420	  fallthrough;					\
421							\
422  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
423  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
424  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
425  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
426    _FP_FRAC_COPY_##wc(R, X);				\
427    R##_c = X##_c;					\
428    break;						\
429							\
430  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
431  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
432  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
433    R##_s = Y##_s;					\
434	  fallthrough;					\
435							\
436  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
437  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
438    _FP_FRAC_COPY_##wc(R, Y);				\
439    R##_c = Y##_c;					\
440    break;						\
441							\
442  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
443  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
444    R##_s = _FP_NANSIGN_##fs;				\
445    R##_c = FP_CLS_NAN;					\
446    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
447    FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IMZ);\
448    break;						\
449							\
450  default:						\
451    abort();						\
452  }							\
453} while (0)
454
455
456/*
457 * Main division routine.  The input values should be cooked.
458 */
459
460#define _FP_DIV(fs, wc, R, X, Y)			\
461do {							\
462  R##_s = X##_s ^ Y##_s;				\
463  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
464  {							\
465  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
466    R##_c = FP_CLS_NORMAL;				\
467    R##_e = X##_e - Y##_e;				\
468							\
469    _FP_DIV_MEAT_##fs(R,X,Y);				\
470    break;						\
471							\
472  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
473    _FP_CHOOSENAN(fs, wc, R, X, Y, '/');		\
474    break;						\
475							\
476  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
477  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
478  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
479    R##_s = X##_s;					\
480    _FP_FRAC_COPY_##wc(R, X);				\
481    R##_c = X##_c;					\
482    break;						\
483							\
484  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
485  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
486  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
487    R##_s = Y##_s;					\
488    _FP_FRAC_COPY_##wc(R, Y);				\
489    R##_c = Y##_c;					\
490    break;						\
491							\
492  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
493  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
494  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
495    R##_c = FP_CLS_ZERO;				\
496    break;						\
497							\
498  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
499    FP_SET_EXCEPTION(FP_EX_DIVZERO);			\
500	fallthrough;					\
501  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
502  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
503    R##_c = FP_CLS_INF;					\
504    break;						\
505							\
506  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
507    R##_s = _FP_NANSIGN_##fs;				\
508    R##_c = FP_CLS_NAN;					\
509    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
510    FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IDI);\
511    break;						\
512							\
513  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
514    R##_s = _FP_NANSIGN_##fs;				\
515    R##_c = FP_CLS_NAN;					\
516    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
517    FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ZDZ);\
518    break;						\
519							\
520  default:						\
521    abort();						\
522  }							\
523} while (0)
524
525
526/*
527 * Main differential comparison routine.  The inputs should be raw not
528 * cooked.  The return is -1,0,1 for normal values, 2 otherwise.
529 */
530
531#define _FP_CMP(fs, wc, ret, X, Y, un)					\
532  do {									\
533    /* NANs are unordered */						\
534    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		\
535	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	\
536      {									\
537	ret = un;							\
538      }									\
539    else								\
540      {									\
541	int __is_zero_x;						\
542	int __is_zero_y;						\
543									\
544	__is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0;	\
545	__is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0;	\
546									\
547	if (__is_zero_x && __is_zero_y)					\
548		ret = 0;						\
549	else if (__is_zero_x)						\
550		ret = Y##_s ? 1 : -1;					\
551	else if (__is_zero_y)						\
552		ret = X##_s ? -1 : 1;					\
553	else if (X##_s != Y##_s)					\
554	  ret = X##_s ? -1 : 1;						\
555	else if (X##_e > Y##_e)						\
556	  ret = X##_s ? -1 : 1;						\
557	else if (X##_e < Y##_e)						\
558	  ret = X##_s ? 1 : -1;						\
559	else if (_FP_FRAC_GT_##wc(X, Y))				\
560	  ret = X##_s ? -1 : 1;						\
561	else if (_FP_FRAC_GT_##wc(Y, X))				\
562	  ret = X##_s ? 1 : -1;						\
563	else								\
564	  ret = 0;							\
565      }									\
566  } while (0)
567
568
569/* Simplification for strict equality.  */
570
571#define _FP_CMP_EQ(fs, wc, ret, X, Y)					  \
572  do {									  \
573    /* NANs are unordered */						  \
574    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		  \
575	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	  \
576      {									  \
577	ret = 1;							  \
578      }									  \
579    else								  \
580      {									  \
581	ret = !(X##_e == Y##_e						  \
582		&& _FP_FRAC_EQ_##wc(X, Y)				  \
583		&& (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
584      }									  \
585  } while (0)
586
587/*
588 * Main square root routine.  The input value should be cooked.
589 */
590
591#define _FP_SQRT(fs, wc, R, X)						\
592do {									\
593    _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S);			\
594    _FP_W_TYPE q;							\
595    switch (X##_c)							\
596    {									\
597    case FP_CLS_NAN:							\
598	_FP_FRAC_COPY_##wc(R, X);					\
599	R##_s = X##_s;							\
600    	R##_c = FP_CLS_NAN;						\
601    	break;								\
602    case FP_CLS_INF:							\
603    	if (X##_s)							\
604    	  {								\
605    	    R##_s = _FP_NANSIGN_##fs;					\
606	    R##_c = FP_CLS_NAN; /* NAN */				\
607	    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);			\
608	    FP_SET_EXCEPTION(FP_EX_INVALID);				\
609    	  }								\
610    	else								\
611    	  {								\
612    	    R##_s = 0;							\
613    	    R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */			\
614    	  }								\
615    	break;								\
616    case FP_CLS_ZERO:							\
617	R##_s = X##_s;							\
618	R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */			\
619	break;								\
620    case FP_CLS_NORMAL:							\
621    	R##_s = 0;							\
622        if (X##_s)							\
623          {								\
624	    R##_c = FP_CLS_NAN; /* sNAN */				\
625	    R##_s = _FP_NANSIGN_##fs;					\
626	    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);			\
627	    FP_SET_EXCEPTION(FP_EX_INVALID);				\
628	    break;							\
629          }								\
630    	R##_c = FP_CLS_NORMAL;						\
631        if (X##_e & 1)							\
632          _FP_FRAC_SLL_##wc(X, 1);					\
633        R##_e = X##_e >> 1;						\
634        _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc);			\
635        _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc);			\
636        q = _FP_OVERFLOW_##fs >> 1;					\
637        _FP_SQRT_MEAT_##wc(R, S, T, X, q);				\
638    }									\
639  } while (0)
640
641/*
642 * Convert from FP to integer
643 */
644
645/* RSIGNED can have following values:
646 * 0:  the number is required to be 0..(2^rsize)-1, if not, NV is set plus
647 *     the result is either 0 or (2^rsize)-1 depending on the sign in such case.
648 * 1:  the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
649 *     set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
650 *     on the sign in such case.
651 * 2:  the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
652 *     set plus the result is truncated to fit into destination.
653 * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
654 *     set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
655 *     on the sign in such case.
656 */
657#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned)				\
658  do {										\
659    switch (X##_c)								\
660      {										\
661      case FP_CLS_NORMAL:							\
662	if (X##_e < 0)								\
663	  {									\
664	    FP_SET_EXCEPTION(FP_EX_INEXACT);					\
665	    fallthrough;							\
666	  case FP_CLS_ZERO:							\
667	    r = 0;								\
668	  }									\
669	else if (X##_e >= rsize - (rsigned > 0 || X##_s)			\
670		 || (!rsigned && X##_s))					\
671	  {	/* overflow */							\
672	    fallthrough;							\
673	  case FP_CLS_NAN:                                                      \
674	  case FP_CLS_INF:							\
675	    if (rsigned == 2)							\
676	      {									\
677		if (X##_c != FP_CLS_NORMAL					\
678		    || X##_e >= rsize - 1 + _FP_WFRACBITS_##fs)			\
679		  r = 0;							\
680		else								\
681		  {								\
682		    _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));	\
683		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
684		  }								\
685	      }									\
686	    else if (rsigned)							\
687	      {									\
688		r = 1;								\
689		r <<= rsize - 1;						\
690		r -= 1 - X##_s;							\
691	      }									\
692	    else								\
693	      {									\
694		r = 0;								\
695		if (!X##_s)							\
696		  r = ~r;							\
697	      }									\
698	    FP_SET_EXCEPTION(FP_EX_INVALID);					\
699	  }									\
700	else									\
701	  {									\
702	    if (_FP_W_TYPE_SIZE*wc < rsize)					\
703	      {									\
704		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
705		r <<= X##_e - _FP_WFRACBITS_##fs;				\
706	      }									\
707	    else								\
708	      {									\
709		if (X##_e >= _FP_WFRACBITS_##fs)				\
710		  _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));	\
711		else if (X##_e < _FP_WFRACBITS_##fs - 1)			\
712		  {								\
713		    _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2),	\
714				      _FP_WFRACBITS_##fs);			\
715		    if (_FP_FRAC_LOW_##wc(X) & 1)				\
716		      FP_SET_EXCEPTION(FP_EX_INEXACT);				\
717		    _FP_FRAC_SRL_##wc(X, 1);					\
718		  }								\
719		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
720	      }									\
721	    if (rsigned && X##_s)						\
722	      r = -r;								\
723	  }									\
724	break;									\
725      }										\
726  } while (0)
727
728#define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned)				\
729  do {										\
730    r = 0;									\
731    switch (X##_c)								\
732      {										\
733      case FP_CLS_NORMAL:							\
734	if (X##_e >= _FP_FRACBITS_##fs - 1)					\
735	  {									\
736	    if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs)				\
737	      {									\
738		if (X##_e >= _FP_WFRACBITS_##fs - 1)				\
739		  {								\
740		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
741		    r <<= X##_e - _FP_WFRACBITS_##fs + 1;			\
742		  }								\
743		else								\
744		  {								\
745		    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e			\
746				      + _FP_FRACBITS_##fs - 1);			\
747		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
748		  }								\
749	      }									\
750	  }									\
751	else									\
752	  {									\
753	    int _lz0, _lz1;							\
754	    if (X##_e <= -_FP_WORKBITS - 1)					\
755	      _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);				\
756	    else								\
757	      _FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e,		\
758				_FP_WFRACBITS_##fs);				\
759	    _FP_FRAC_CLZ_##wc(_lz0, X);						\
760	    _FP_ROUND(wc, X);							\
761	    _FP_FRAC_CLZ_##wc(_lz1, X);						\
762	    if (_lz1 < _lz0)							\
763	      X##_e++; /* For overflow detection.  */				\
764	    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);					\
765	    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
766	  }									\
767	if (rsigned && X##_s)							\
768	  r = -r;								\
769	if (X##_e >= rsize - (rsigned > 0 || X##_s)				\
770	    || (!rsigned && X##_s))						\
771	  {	/* overflow */							\
772	    fallthrough;							\
773	  case FP_CLS_NAN:                                                      \
774	  case FP_CLS_INF:							\
775	    if (!rsigned)							\
776	      {									\
777		r = 0;								\
778		if (!X##_s)							\
779		  r = ~r;							\
780	      }									\
781	    else if (rsigned != 2)						\
782	      {									\
783		r = 1;								\
784		r <<= rsize - 1;						\
785		r -= 1 - X##_s;							\
786	      }									\
787	    FP_SET_EXCEPTION(FP_EX_INVALID);					\
788	  }									\
789	break;									\
790      case FP_CLS_ZERO:								\
791        break;									\
792      }										\
793  } while (0)
794
795#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype)			\
796  do {									\
797    if (r)								\
798      {									\
799        unsigned rtype ur_;						\
800	X##_c = FP_CLS_NORMAL;						\
801									\
802	if ((X##_s = (r < 0)))						\
803	  ur_ = (unsigned rtype) -r;					\
804	else								\
805	  ur_ = (unsigned rtype) r;					\
806	(void) (((rsize) <= _FP_W_TYPE_SIZE)				\
807		? ({ __FP_CLZ(X##_e, ur_); })				\
808		: ({							\
809		     __FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE),  \
810							    (_FP_W_TYPE)ur_); \
811		  }));							\
812	if (rsize < _FP_W_TYPE_SIZE)					\
813		X##_e -= (_FP_W_TYPE_SIZE - rsize);			\
814	X##_e = rsize - X##_e - 1;					\
815									\
816	if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs <= X##_e)	\
817	  __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\
818	_FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize);			\
819	if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0)			\
820	  _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));	\
821      }									\
822    else								\
823      {									\
824	X##_c = FP_CLS_ZERO, X##_s = 0;					\
825      }									\
826  } while (0)
827
828
829#define FP_CONV(dfs,sfs,dwc,swc,D,S)			\
830  do {							\
831    _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S);	\
832    D##_e = S##_e;					\
833    D##_c = S##_c;					\
834    D##_s = S##_s;					\
835  } while (0)
836
837/*
838 * Helper primitives.
839 */
840
841/* Count leading zeros in a word.  */
842
843#ifndef __FP_CLZ
844#if _FP_W_TYPE_SIZE < 64
845/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
846#define __FP_CLZ(r, x)				\
847  do {						\
848    _FP_W_TYPE _t = (x);			\
849    r = _FP_W_TYPE_SIZE - 1;			\
850    if (_t > 0xffff) r -= 16;			\
851    if (_t > 0xffff) _t >>= 16;			\
852    if (_t > 0xff) r -= 8;			\
853    if (_t > 0xff) _t >>= 8;			\
854    if (_t & 0xf0) r -= 4;			\
855    if (_t & 0xf0) _t >>= 4;			\
856    if (_t & 0xc) r -= 2;			\
857    if (_t & 0xc) _t >>= 2;			\
858    if (_t & 0x2) r -= 1;			\
859  } while (0)
860#else /* not _FP_W_TYPE_SIZE < 64 */
861#define __FP_CLZ(r, x)				\
862  do {						\
863    _FP_W_TYPE _t = (x);			\
864    r = _FP_W_TYPE_SIZE - 1;			\
865    if (_t > 0xffffffff) r -= 32;		\
866    if (_t > 0xffffffff) _t >>= 32;		\
867    if (_t > 0xffff) r -= 16;			\
868    if (_t > 0xffff) _t >>= 16;			\
869    if (_t > 0xff) r -= 8;			\
870    if (_t > 0xff) _t >>= 8;			\
871    if (_t & 0xf0) r -= 4;			\
872    if (_t & 0xf0) _t >>= 4;			\
873    if (_t & 0xc) r -= 2;			\
874    if (_t & 0xc) _t >>= 2;			\
875    if (_t & 0x2) r -= 1;			\
876  } while (0)
877#endif /* not _FP_W_TYPE_SIZE < 64 */
878#endif /* ndef __FP_CLZ */
879
880#define _FP_DIV_HELP_imm(q, r, n, d)		\
881  do {						\
882    q = n / d, r = n % d;			\
883  } while (0)
884
885#endif /* __MATH_EMU_OP_COMMON_H__ */
v3.1
  1/* Software floating-point emulation. Common operations.
  2   Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
  3   This file is part of the GNU C Library.
  4   Contributed by Richard Henderson (rth@cygnus.com),
  5		  Jakub Jelinek (jj@ultra.linux.cz),
  6		  David S. Miller (davem@redhat.com) and
  7		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
  8
  9   The GNU C Library is free software; you can redistribute it and/or
 10   modify it under the terms of the GNU Library General Public License as
 11   published by the Free Software Foundation; either version 2 of the
 12   License, or (at your option) any later version.
 13
 14   The GNU C Library is distributed in the hope that it will be useful,
 15   but WITHOUT ANY WARRANTY; without even the implied warranty of
 16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 17   Library General Public License for more details.
 18
 19   You should have received a copy of the GNU Library General Public
 20   License along with the GNU C Library; see the file COPYING.LIB.  If
 21   not, write to the Free Software Foundation, Inc.,
 22   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
 23
 24#ifndef __MATH_EMU_OP_COMMON_H__
 25#define __MATH_EMU_OP_COMMON_H__
 26
 27#define _FP_DECL(wc, X)			\
 28  _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0;	\
 29  _FP_FRAC_DECL_##wc(X)
 30
 31/*
 32 * Finish truly unpacking a native fp value by classifying the kind
 33 * of fp value and normalizing both the exponent and the fraction.
 34 */
 35
 36#define _FP_UNPACK_CANONICAL(fs, wc, X)					\
 37do {									\
 38  switch (X##_e)							\
 39  {									\
 40  default:								\
 41    _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs;			\
 42    _FP_FRAC_SLL_##wc(X, _FP_WORKBITS);					\
 43    X##_e -= _FP_EXPBIAS_##fs;						\
 44    X##_c = FP_CLS_NORMAL;						\
 45    break;								\
 46									\
 47  case 0:								\
 48    if (_FP_FRAC_ZEROP_##wc(X))						\
 49      X##_c = FP_CLS_ZERO;						\
 50    else								\
 51      {									\
 52	/* a denormalized number */					\
 53	_FP_I_TYPE _shift;						\
 54	_FP_FRAC_CLZ_##wc(_shift, X);					\
 55	_shift -= _FP_FRACXBITS_##fs;					\
 56	_FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS));			\
 57	X##_e -= _FP_EXPBIAS_##fs - 1 + _shift;				\
 58	X##_c = FP_CLS_NORMAL;						\
 59	FP_SET_EXCEPTION(FP_EX_DENORM);					\
 60	if (FP_DENORM_ZERO)						\
 61	  {								\
 62	    FP_SET_EXCEPTION(FP_EX_INEXACT);				\
 63	    X##_c = FP_CLS_ZERO;					\
 64	  }								\
 65      }									\
 66    break;								\
 67									\
 68  case _FP_EXPMAX_##fs:							\
 69    if (_FP_FRAC_ZEROP_##wc(X))						\
 70      X##_c = FP_CLS_INF;						\
 71    else								\
 72      {									\
 73	X##_c = FP_CLS_NAN;						\
 74	/* Check for signaling NaN */					\
 75	if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))		\
 76	  FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_SNAN);		\
 77      }									\
 78    break;								\
 79  }									\
 80} while (0)
 81
 82/*
 83 * Before packing the bits back into the native fp result, take care
 84 * of such mundane things as rounding and overflow.  Also, for some
 85 * kinds of fp values, the original parts may not have been fully
 86 * extracted -- but that is ok, we can regenerate them now.
 87 */
 88
 89#define _FP_PACK_CANONICAL(fs, wc, X)				\
 90do {								\
 91  switch (X##_c)						\
 92  {								\
 93  case FP_CLS_NORMAL:						\
 94    X##_e += _FP_EXPBIAS_##fs;					\
 95    if (X##_e > 0)						\
 96      {								\
 97	_FP_ROUND(wc, X);					\
 98	if (_FP_FRAC_OVERP_##wc(fs, X))				\
 99	  {							\
100	    _FP_FRAC_CLEAR_OVERP_##wc(fs, X);			\
101	    X##_e++;						\
102	  }							\
103	_FP_FRAC_SRL_##wc(X, _FP_WORKBITS);			\
104	if (X##_e >= _FP_EXPMAX_##fs)				\
105	  {							\
106	    /* overflow */					\
107	    switch (FP_ROUNDMODE)				\
108	      {							\
109	      case FP_RND_NEAREST:				\
110		X##_c = FP_CLS_INF;				\
111		break;						\
112	      case FP_RND_PINF:					\
113		if (!X##_s) X##_c = FP_CLS_INF;			\
114		break;						\
115	      case FP_RND_MINF:					\
116		if (X##_s) X##_c = FP_CLS_INF;			\
117		break;						\
118	      }							\
119	    if (X##_c == FP_CLS_INF)				\
120	      {							\
121		/* Overflow to infinity */			\
122		X##_e = _FP_EXPMAX_##fs;			\
123		_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
124	      }							\
125	    else						\
126	      {							\
127		/* Overflow to maximum normal */		\
128		X##_e = _FP_EXPMAX_##fs - 1;			\
129		_FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc);		\
130	      }							\
131	    FP_SET_EXCEPTION(FP_EX_OVERFLOW);			\
132            FP_SET_EXCEPTION(FP_EX_INEXACT);			\
133	  }							\
134      }								\
135    else							\
136      {								\
137	/* we've got a denormalized number */			\
138	X##_e = -X##_e + 1;					\
139	if (X##_e <= _FP_WFRACBITS_##fs)			\
140	  {							\
141	    _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs);	\
142	    if (_FP_FRAC_HIGH_##fs(X)				\
143		& (_FP_OVERFLOW_##fs >> 1))			\
144	      {							\
145	        X##_e = 1;					\
146	        _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
147	      }							\
148	    else						\
149	      {							\
150		_FP_ROUND(wc, X);				\
151		if (_FP_FRAC_HIGH_##fs(X)			\
152		   & (_FP_OVERFLOW_##fs >> 1))			\
153		  {						\
154		    X##_e = 1;					\
155		    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\
156		    FP_SET_EXCEPTION(FP_EX_INEXACT);		\
157		  }						\
158		else						\
159		  {						\
160		    X##_e = 0;					\
161		    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);		\
162		  }						\
163	      }							\
164	    if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) ||		\
165		(FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW))	\
166		FP_SET_EXCEPTION(FP_EX_UNDERFLOW);		\
167	  }							\
168	else							\
169	  {							\
170	    /* underflow to zero */				\
171	    X##_e = 0;						\
172	    if (!_FP_FRAC_ZEROP_##wc(X))			\
173	      {							\
174	        _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);		\
175	        _FP_ROUND(wc, X);				\
176	        _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS);	\
177	      }							\
178	    FP_SET_EXCEPTION(FP_EX_UNDERFLOW);			\
179	  }							\
180      }								\
181    break;							\
182								\
183  case FP_CLS_ZERO:						\
184    X##_e = 0;							\
185    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
186    break;							\
187								\
188  case FP_CLS_INF:						\
189    X##_e = _FP_EXPMAX_##fs;					\
190    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\
191    break;							\
192								\
193  case FP_CLS_NAN:						\
194    X##_e = _FP_EXPMAX_##fs;					\
195    if (!_FP_KEEPNANFRACP)					\
196      {								\
197	_FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs);			\
198	X##_s = _FP_NANSIGN_##fs;				\
199      }								\
200    else							\
201      _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs;		\
202    break;							\
203  }								\
204} while (0)
205
206/* This one accepts raw argument and not cooked,  returns
207 * 1 if X is a signaling NaN.
208 */
209#define _FP_ISSIGNAN(fs, wc, X)					\
210({								\
211  int __ret = 0;						\
212  if (X##_e == _FP_EXPMAX_##fs)					\
213    {								\
214      if (!_FP_FRAC_ZEROP_##wc(X)				\
215	  && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))	\
216	__ret = 1;						\
217    }								\
218  __ret;							\
219})
220
221
222
223
224
225/*
226 * Main addition routine.  The input values should be cooked.
227 */
228
229#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP)				     \
230do {									     \
231  switch (_FP_CLS_COMBINE(X##_c, Y##_c))				     \
232  {									     \
233  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):			     \
234    {									     \
235      /* shift the smaller number so that its exponent matches the larger */ \
236      _FP_I_TYPE diff = X##_e - Y##_e;					     \
237									     \
238      if (diff < 0)							     \
239	{								     \
240	  diff = -diff;							     \
241	  if (diff <= _FP_WFRACBITS_##fs)				     \
242	    _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs);		     \
243	  else if (!_FP_FRAC_ZEROP_##wc(X))				     \
244	    _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);			     \
245	  R##_e = Y##_e;						     \
246	}								     \
247      else								     \
248	{								     \
249	  if (diff > 0)							     \
250	    {								     \
251	      if (diff <= _FP_WFRACBITS_##fs)				     \
252	        _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs);		     \
253	      else if (!_FP_FRAC_ZEROP_##wc(Y))				     \
254	        _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc);			     \
255	    }								     \
256	  R##_e = X##_e;						     \
257	}								     \
258									     \
259      R##_c = FP_CLS_NORMAL;						     \
260									     \
261      if (X##_s == Y##_s)						     \
262	{								     \
263	  R##_s = X##_s;						     \
264	  _FP_FRAC_ADD_##wc(R, X, Y);					     \
265	  if (_FP_FRAC_OVERP_##wc(fs, R))				     \
266	    {								     \
267	      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);		     \
268	      R##_e++;							     \
269	    }								     \
270	}								     \
271      else								     \
272	{								     \
273	  R##_s = X##_s;						     \
274	  _FP_FRAC_SUB_##wc(R, X, Y);					     \
275	  if (_FP_FRAC_ZEROP_##wc(R))					     \
276	    {								     \
277	      /* return an exact zero */				     \
278	      if (FP_ROUNDMODE == FP_RND_MINF)				     \
279		R##_s |= Y##_s;						     \
280	      else							     \
281		R##_s &= Y##_s;						     \
282	      R##_c = FP_CLS_ZERO;					     \
283	    }								     \
284	  else								     \
285	    {								     \
286	      if (_FP_FRAC_NEGP_##wc(R))				     \
287		{							     \
288		  _FP_FRAC_SUB_##wc(R, Y, X);				     \
289		  R##_s = Y##_s;					     \
290		}							     \
291									     \
292	      /* renormalize after subtraction */			     \
293	      _FP_FRAC_CLZ_##wc(diff, R);				     \
294	      diff -= _FP_WFRACXBITS_##fs;				     \
295	      if (diff)							     \
296		{							     \
297		  R##_e -= diff;					     \
298		  _FP_FRAC_SLL_##wc(R, diff);				     \
299		}							     \
300	    }								     \
301	}								     \
302      break;								     \
303    }									     \
304									     \
305  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):				     \
306    _FP_CHOOSENAN(fs, wc, R, X, Y, OP);					     \
307    break;								     \
308									     \
309  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):			     \
310    R##_e = X##_e;							     \
 
311  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):			     \
312  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):				     \
313  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):				     \
314    _FP_FRAC_COPY_##wc(R, X);						     \
315    R##_s = X##_s;							     \
316    R##_c = X##_c;							     \
317    break;								     \
318									     \
319  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):			     \
320    R##_e = Y##_e;							     \
 
321  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):			     \
322  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):				     \
323  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):				     \
324    _FP_FRAC_COPY_##wc(R, Y);						     \
325    R##_s = Y##_s;							     \
326    R##_c = Y##_c;							     \
327    break;								     \
328									     \
329  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):				     \
330    if (X##_s != Y##_s)							     \
331      {									     \
332	/* +INF + -INF => NAN */					     \
333	_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);				     \
334	R##_s = _FP_NANSIGN_##fs;					     \
335	R##_c = FP_CLS_NAN;						     \
336	FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ISI);		     \
337	break;								     \
338      }									     \
339    /* FALLTHRU */							     \
340									     \
341  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):			     \
342  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):				     \
343    R##_s = X##_s;							     \
344    R##_c = FP_CLS_INF;							     \
345    break;								     \
346									     \
347  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):			     \
348  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):				     \
349    R##_s = Y##_s;							     \
350    R##_c = FP_CLS_INF;							     \
351    break;								     \
352									     \
353  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):			     \
354    /* make sure the sign is correct */					     \
355    if (FP_ROUNDMODE == FP_RND_MINF)					     \
356      R##_s = X##_s | Y##_s;						     \
357    else								     \
358      R##_s = X##_s & Y##_s;						     \
359    R##_c = FP_CLS_ZERO;						     \
360    break;								     \
361									     \
362  default:								     \
363    abort();								     \
364  }									     \
365} while (0)
366
367#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
368#define _FP_SUB(fs, wc, R, X, Y)					     \
369  do {									     \
370    if (Y##_c != FP_CLS_NAN) Y##_s ^= 1;				     \
371    _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-');				     \
372  } while (0)
373
374
375/*
376 * Main negation routine.  FIXME -- when we care about setting exception
377 * bits reliably, this will not do.  We should examine all of the fp classes.
378 */
379
380#define _FP_NEG(fs, wc, R, X)		\
381  do {					\
382    _FP_FRAC_COPY_##wc(R, X);		\
383    R##_c = X##_c;			\
384    R##_e = X##_e;			\
385    R##_s = 1 ^ X##_s;			\
386  } while (0)
387
388
389/*
390 * Main multiplication routine.  The input values should be cooked.
391 */
392
393#define _FP_MUL(fs, wc, R, X, Y)			\
394do {							\
395  R##_s = X##_s ^ Y##_s;				\
396  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
397  {							\
398  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
399    R##_c = FP_CLS_NORMAL;				\
400    R##_e = X##_e + Y##_e + 1;				\
401							\
402    _FP_MUL_MEAT_##fs(R,X,Y);				\
403							\
404    if (_FP_FRAC_OVERP_##wc(fs, R))			\
405      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);	\
406    else						\
407      R##_e--;						\
408    break;						\
409							\
410  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
411    _FP_CHOOSENAN(fs, wc, R, X, Y, '*');		\
412    break;						\
413							\
414  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
415  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
416  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
417    R##_s = X##_s;					\
 
418							\
419  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
420  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
421  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
422  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
423    _FP_FRAC_COPY_##wc(R, X);				\
424    R##_c = X##_c;					\
425    break;						\
426							\
427  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
428  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
429  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
430    R##_s = Y##_s;					\
 
431							\
432  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
433  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
434    _FP_FRAC_COPY_##wc(R, Y);				\
435    R##_c = Y##_c;					\
436    break;						\
437							\
438  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
439  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
440    R##_s = _FP_NANSIGN_##fs;				\
441    R##_c = FP_CLS_NAN;					\
442    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
443    FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IMZ);\
444    break;						\
445							\
446  default:						\
447    abort();						\
448  }							\
449} while (0)
450
451
452/*
453 * Main division routine.  The input values should be cooked.
454 */
455
456#define _FP_DIV(fs, wc, R, X, Y)			\
457do {							\
458  R##_s = X##_s ^ Y##_s;				\
459  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\
460  {							\
461  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\
462    R##_c = FP_CLS_NORMAL;				\
463    R##_e = X##_e - Y##_e;				\
464							\
465    _FP_DIV_MEAT_##fs(R,X,Y);				\
466    break;						\
467							\
468  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\
469    _FP_CHOOSENAN(fs, wc, R, X, Y, '/');		\
470    break;						\
471							\
472  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\
473  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\
474  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\
475    R##_s = X##_s;					\
476    _FP_FRAC_COPY_##wc(R, X);				\
477    R##_c = X##_c;					\
478    break;						\
479							\
480  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\
481  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\
482  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\
483    R##_s = Y##_s;					\
484    _FP_FRAC_COPY_##wc(R, Y);				\
485    R##_c = Y##_c;					\
486    break;						\
487							\
488  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\
489  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\
490  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\
491    R##_c = FP_CLS_ZERO;				\
492    break;						\
493							\
494  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\
495    FP_SET_EXCEPTION(FP_EX_DIVZERO);			\
 
496  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\
497  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\
498    R##_c = FP_CLS_INF;					\
499    break;						\
500							\
501  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\
502    R##_s = _FP_NANSIGN_##fs;				\
503    R##_c = FP_CLS_NAN;					\
504    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
505    FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IDI);\
506    break;						\
507							\
508  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\
509    R##_s = _FP_NANSIGN_##fs;				\
510    R##_c = FP_CLS_NAN;					\
511    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\
512    FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ZDZ);\
513    break;						\
514							\
515  default:						\
516    abort();						\
517  }							\
518} while (0)
519
520
521/*
522 * Main differential comparison routine.  The inputs should be raw not
523 * cooked.  The return is -1,0,1 for normal values, 2 otherwise.
524 */
525
526#define _FP_CMP(fs, wc, ret, X, Y, un)					\
527  do {									\
528    /* NANs are unordered */						\
529    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		\
530	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	\
531      {									\
532	ret = un;							\
533      }									\
534    else								\
535      {									\
536	int __is_zero_x;						\
537	int __is_zero_y;						\
538									\
539	__is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0;	\
540	__is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0;	\
541									\
542	if (__is_zero_x && __is_zero_y)					\
543		ret = 0;						\
544	else if (__is_zero_x)						\
545		ret = Y##_s ? 1 : -1;					\
546	else if (__is_zero_y)						\
547		ret = X##_s ? -1 : 1;					\
548	else if (X##_s != Y##_s)					\
549	  ret = X##_s ? -1 : 1;						\
550	else if (X##_e > Y##_e)						\
551	  ret = X##_s ? -1 : 1;						\
552	else if (X##_e < Y##_e)						\
553	  ret = X##_s ? 1 : -1;						\
554	else if (_FP_FRAC_GT_##wc(X, Y))				\
555	  ret = X##_s ? -1 : 1;						\
556	else if (_FP_FRAC_GT_##wc(Y, X))				\
557	  ret = X##_s ? 1 : -1;						\
558	else								\
559	  ret = 0;							\
560      }									\
561  } while (0)
562
563
564/* Simplification for strict equality.  */
565
566#define _FP_CMP_EQ(fs, wc, ret, X, Y)					  \
567  do {									  \
568    /* NANs are unordered */						  \
569    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		  \
570	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	  \
571      {									  \
572	ret = 1;							  \
573      }									  \
574    else								  \
575      {									  \
576	ret = !(X##_e == Y##_e						  \
577		&& _FP_FRAC_EQ_##wc(X, Y)				  \
578		&& (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
579      }									  \
580  } while (0)
581
582/*
583 * Main square root routine.  The input value should be cooked.
584 */
585
586#define _FP_SQRT(fs, wc, R, X)						\
587do {									\
588    _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S);			\
589    _FP_W_TYPE q;							\
590    switch (X##_c)							\
591    {									\
592    case FP_CLS_NAN:							\
593	_FP_FRAC_COPY_##wc(R, X);					\
594	R##_s = X##_s;							\
595    	R##_c = FP_CLS_NAN;						\
596    	break;								\
597    case FP_CLS_INF:							\
598    	if (X##_s)							\
599    	  {								\
600    	    R##_s = _FP_NANSIGN_##fs;					\
601	    R##_c = FP_CLS_NAN; /* NAN */				\
602	    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);			\
603	    FP_SET_EXCEPTION(FP_EX_INVALID);				\
604    	  }								\
605    	else								\
606    	  {								\
607    	    R##_s = 0;							\
608    	    R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */			\
609    	  }								\
610    	break;								\
611    case FP_CLS_ZERO:							\
612	R##_s = X##_s;							\
613	R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */			\
614	break;								\
615    case FP_CLS_NORMAL:							\
616    	R##_s = 0;							\
617        if (X##_s)							\
618          {								\
619	    R##_c = FP_CLS_NAN; /* sNAN */				\
620	    R##_s = _FP_NANSIGN_##fs;					\
621	    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);			\
622	    FP_SET_EXCEPTION(FP_EX_INVALID);				\
623	    break;							\
624          }								\
625    	R##_c = FP_CLS_NORMAL;						\
626        if (X##_e & 1)							\
627          _FP_FRAC_SLL_##wc(X, 1);					\
628        R##_e = X##_e >> 1;						\
629        _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc);			\
630        _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc);			\
631        q = _FP_OVERFLOW_##fs >> 1;					\
632        _FP_SQRT_MEAT_##wc(R, S, T, X, q);				\
633    }									\
634  } while (0)
635
636/*
637 * Convert from FP to integer
638 */
639
640/* RSIGNED can have following values:
641 * 0:  the number is required to be 0..(2^rsize)-1, if not, NV is set plus
642 *     the result is either 0 or (2^rsize)-1 depending on the sign in such case.
643 * 1:  the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
644 *     set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
645 *     on the sign in such case.
646 * 2:  the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
647 *     set plus the result is truncated to fit into destination.
648 * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
649 *     set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
650 *     on the sign in such case.
651 */
652#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned)				\
653  do {										\
654    switch (X##_c)								\
655      {										\
656      case FP_CLS_NORMAL:							\
657	if (X##_e < 0)								\
658	  {									\
659	    FP_SET_EXCEPTION(FP_EX_INEXACT);					\
 
660	  case FP_CLS_ZERO:							\
661	    r = 0;								\
662	  }									\
663	else if (X##_e >= rsize - (rsigned > 0 || X##_s)			\
664		 || (!rsigned && X##_s))					\
665	  {	/* overflow */							\
 
666	  case FP_CLS_NAN:                                                      \
667	  case FP_CLS_INF:							\
668	    if (rsigned == 2)							\
669	      {									\
670		if (X##_c != FP_CLS_NORMAL					\
671		    || X##_e >= rsize - 1 + _FP_WFRACBITS_##fs)			\
672		  r = 0;							\
673		else								\
674		  {								\
675		    _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));	\
676		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
677		  }								\
678	      }									\
679	    else if (rsigned)							\
680	      {									\
681		r = 1;								\
682		r <<= rsize - 1;						\
683		r -= 1 - X##_s;							\
684	      }									\
685	    else								\
686	      {									\
687		r = 0;								\
688		if (X##_s)							\
689		  r = ~r;							\
690	      }									\
691	    FP_SET_EXCEPTION(FP_EX_INVALID);					\
692	  }									\
693	else									\
694	  {									\
695	    if (_FP_W_TYPE_SIZE*wc < rsize)					\
696	      {									\
697		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
698		r <<= X##_e - _FP_WFRACBITS_##fs;				\
699	      }									\
700	    else								\
701	      {									\
702		if (X##_e >= _FP_WFRACBITS_##fs)				\
703		  _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));	\
704		else if (X##_e < _FP_WFRACBITS_##fs - 1)			\
705		  {								\
706		    _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2),	\
707				      _FP_WFRACBITS_##fs);			\
708		    if (_FP_FRAC_LOW_##wc(X) & 1)				\
709		      FP_SET_EXCEPTION(FP_EX_INEXACT);				\
710		    _FP_FRAC_SRL_##wc(X, 1);					\
711		  }								\
712		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
713	      }									\
714	    if (rsigned && X##_s)						\
715	      r = -r;								\
716	  }									\
717	break;									\
718      }										\
719  } while (0)
720
721#define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned)				\
722  do {										\
723    r = 0;									\
724    switch (X##_c)								\
725      {										\
726      case FP_CLS_NORMAL:							\
727	if (X##_e >= _FP_FRACBITS_##fs - 1)					\
728	  {									\
729	    if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs)				\
730	      {									\
731		if (X##_e >= _FP_WFRACBITS_##fs - 1)				\
732		  {								\
733		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
734		    r <<= X##_e - _FP_WFRACBITS_##fs + 1;			\
735		  }								\
736		else								\
737		  {								\
738		    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e			\
739				      + _FP_FRACBITS_##fs - 1);			\
740		    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\
741		  }								\
742	      }									\
743	  }									\
744	else									\
745	  {									\
 
746	    if (X##_e <= -_FP_WORKBITS - 1)					\
747	      _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);				\
748	    else								\
749	      _FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e,		\
750				_FP_WFRACBITS_##fs);				\
 
751	    _FP_ROUND(wc, X);							\
 
 
 
752	    _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);					\
753	    _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);				\
754	  }									\
755	if (rsigned && X##_s)							\
756	  r = -r;								\
757	if (X##_e >= rsize - (rsigned > 0 || X##_s)				\
758	    || (!rsigned && X##_s))						\
759	  {	/* overflow */							\
 
760	  case FP_CLS_NAN:                                                      \
761	  case FP_CLS_INF:							\
762	    if (!rsigned)							\
763	      {									\
764		r = 0;								\
765		if (X##_s)							\
766		  r = ~r;							\
767	      }									\
768	    else if (rsigned != 2)						\
769	      {									\
770		r = 1;								\
771		r <<= rsize - 1;						\
772		r -= 1 - X##_s;							\
773	      }									\
774	    FP_SET_EXCEPTION(FP_EX_INVALID);					\
775	  }									\
776	break;									\
777      case FP_CLS_ZERO:								\
778        break;									\
779      }										\
780  } while (0)
781
782#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype)			\
783  do {									\
784    if (r)								\
785      {									\
786        unsigned rtype ur_;						\
787	X##_c = FP_CLS_NORMAL;						\
788									\
789	if ((X##_s = (r < 0)))						\
790	  ur_ = (unsigned rtype) -r;					\
791	else								\
792	  ur_ = (unsigned rtype) r;					\
793	if (rsize <= _FP_W_TYPE_SIZE)					\
794	  __FP_CLZ(X##_e, ur_);						\
795	else								\
796	  __FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE), 	\
797		     (_FP_W_TYPE)ur_);					\
 
798	if (rsize < _FP_W_TYPE_SIZE)					\
799		X##_e -= (_FP_W_TYPE_SIZE - rsize);			\
800	X##_e = rsize - X##_e - 1;					\
801									\
802	if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs <= X##_e)	\
803	  __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\
804	_FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize);			\
805	if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0)			\
806	  _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));	\
807      }									\
808    else								\
809      {									\
810	X##_c = FP_CLS_ZERO, X##_s = 0;					\
811      }									\
812  } while (0)
813
814
815#define FP_CONV(dfs,sfs,dwc,swc,D,S)			\
816  do {							\
817    _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S);	\
818    D##_e = S##_e;					\
819    D##_c = S##_c;					\
820    D##_s = S##_s;					\
821  } while (0)
822
823/*
824 * Helper primitives.
825 */
826
827/* Count leading zeros in a word.  */
828
829#ifndef __FP_CLZ
830#if _FP_W_TYPE_SIZE < 64
831/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
832#define __FP_CLZ(r, x)				\
833  do {						\
834    _FP_W_TYPE _t = (x);			\
835    r = _FP_W_TYPE_SIZE - 1;			\
836    if (_t > 0xffff) r -= 16;			\
837    if (_t > 0xffff) _t >>= 16;			\
838    if (_t > 0xff) r -= 8;			\
839    if (_t > 0xff) _t >>= 8;			\
840    if (_t & 0xf0) r -= 4;			\
841    if (_t & 0xf0) _t >>= 4;			\
842    if (_t & 0xc) r -= 2;			\
843    if (_t & 0xc) _t >>= 2;			\
844    if (_t & 0x2) r -= 1;			\
845  } while (0)
846#else /* not _FP_W_TYPE_SIZE < 64 */
847#define __FP_CLZ(r, x)				\
848  do {						\
849    _FP_W_TYPE _t = (x);			\
850    r = _FP_W_TYPE_SIZE - 1;			\
851    if (_t > 0xffffffff) r -= 32;		\
852    if (_t > 0xffffffff) _t >>= 32;		\
853    if (_t > 0xffff) r -= 16;			\
854    if (_t > 0xffff) _t >>= 16;			\
855    if (_t > 0xff) r -= 8;			\
856    if (_t > 0xff) _t >>= 8;			\
857    if (_t & 0xf0) r -= 4;			\
858    if (_t & 0xf0) _t >>= 4;			\
859    if (_t & 0xc) r -= 2;			\
860    if (_t & 0xc) _t >>= 2;			\
861    if (_t & 0x2) r -= 1;			\
862  } while (0)
863#endif /* not _FP_W_TYPE_SIZE < 64 */
864#endif /* ndef __FP_CLZ */
865
866#define _FP_DIV_HELP_imm(q, r, n, d)		\
867  do {						\
868    q = n / d, r = n % d;			\
869  } while (0)
870
871#endif /* __MATH_EMU_OP_COMMON_H__ */