Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * SCSI Primary Commands (SPC) parsing and emulation.
   4 *
   5 * (c) Copyright 2002-2013 Datera, Inc.
   6 *
   7 * Nicholas A. Bellinger <nab@kernel.org>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/module.h>
  12#include <asm/unaligned.h>
  13
  14#include <scsi/scsi_proto.h>
  15#include <scsi/scsi_common.h>
  16#include <scsi/scsi_tcq.h>
  17
  18#include <target/target_core_base.h>
  19#include <target/target_core_backend.h>
  20#include <target/target_core_fabric.h>
  21
  22#include "target_core_internal.h"
  23#include "target_core_alua.h"
  24#include "target_core_pr.h"
  25#include "target_core_ua.h"
  26#include "target_core_xcopy.h"
  27
  28static void spc_fill_alua_data(struct se_lun *lun, unsigned char *buf)
  29{
  30	struct t10_alua_tg_pt_gp *tg_pt_gp;
  31
  32	/*
  33	 * Set SCCS for MAINTENANCE_IN + REPORT_TARGET_PORT_GROUPS.
  34	 */
  35	buf[5]	= 0x80;
  36
  37	/*
  38	 * Set TPGS field for explicit and/or implicit ALUA access type
  39	 * and opteration.
  40	 *
  41	 * See spc4r17 section 6.4.2 Table 135
  42	 */
  43	rcu_read_lock();
  44	tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp);
  45	if (tg_pt_gp)
  46		buf[5] |= tg_pt_gp->tg_pt_gp_alua_access_type;
  47	rcu_read_unlock();
  48}
  49
  50static u16
  51spc_find_scsi_transport_vd(int proto_id)
  52{
  53	switch (proto_id) {
  54	case SCSI_PROTOCOL_FCP:
  55		return SCSI_VERSION_DESCRIPTOR_FCP4;
  56	case SCSI_PROTOCOL_ISCSI:
  57		return SCSI_VERSION_DESCRIPTOR_ISCSI;
  58	case SCSI_PROTOCOL_SAS:
  59		return SCSI_VERSION_DESCRIPTOR_SAS3;
  60	case SCSI_PROTOCOL_SBP:
  61		return SCSI_VERSION_DESCRIPTOR_SBP3;
  62	case SCSI_PROTOCOL_SRP:
  63		return SCSI_VERSION_DESCRIPTOR_SRP;
  64	default:
  65		pr_warn("Cannot find VERSION DESCRIPTOR value for unknown SCSI"
  66			" transport PROTOCOL IDENTIFIER %#x\n", proto_id);
  67		return 0;
  68	}
  69}
  70
  71sense_reason_t
  72spc_emulate_inquiry_std(struct se_cmd *cmd, unsigned char *buf)
  73{
  74	struct se_lun *lun = cmd->se_lun;
  75	struct se_portal_group *tpg = lun->lun_tpg;
  76	struct se_device *dev = cmd->se_dev;
  77	struct se_session *sess = cmd->se_sess;
  78
  79	/* Set RMB (removable media) for tape devices */
  80	if (dev->transport->get_device_type(dev) == TYPE_TAPE)
  81		buf[1] = 0x80;
  82
  83	buf[2] = 0x06; /* SPC-4 */
  84
  85	/*
  86	 * NORMACA and HISUP = 0, RESPONSE DATA FORMAT = 2
  87	 *
  88	 * SPC4 says:
  89	 *   A RESPONSE DATA FORMAT field set to 2h indicates that the
  90	 *   standard INQUIRY data is in the format defined in this
  91	 *   standard. Response data format values less than 2h are
  92	 *   obsolete. Response data format values greater than 2h are
  93	 *   reserved.
  94	 */
  95	buf[3] = 2;
  96
  97	/*
  98	 * Enable SCCS and TPGS fields for Emulated ALUA
  99	 */
 100	spc_fill_alua_data(lun, buf);
 101
 102	/*
 103	 * Set Third-Party Copy (3PC) bit to indicate support for EXTENDED_COPY
 104	 */
 105	if (dev->dev_attrib.emulate_3pc)
 106		buf[5] |= 0x8;
 107	/*
 108	 * Set Protection (PROTECT) bit when DIF has been enabled on the
 109	 * device, and the fabric supports VERIFY + PASS.  Also report
 110	 * PROTECT=1 if sess_prot_type has been configured to allow T10-PI
 111	 * to unprotected devices.
 112	 */
 113	if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
 114		if (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)
 115			buf[5] |= 0x1;
 116	}
 117
 118	/*
 119	 * Set MULTIP bit to indicate presence of multiple SCSI target ports
 120	 */
 121	if (dev->export_count > 1)
 122		buf[6] |= 0x10;
 123
 124	buf[7] = 0x2; /* CmdQue=1 */
 125
 126	/*
 127	 * ASCII data fields described as being left-aligned shall have any
 128	 * unused bytes at the end of the field (i.e., highest offset) and the
 129	 * unused bytes shall be filled with ASCII space characters (20h).
 130	 */
 131	memset(&buf[8], 0x20,
 132	       INQUIRY_VENDOR_LEN + INQUIRY_MODEL_LEN + INQUIRY_REVISION_LEN);
 133	memcpy(&buf[8], dev->t10_wwn.vendor,
 134	       strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN));
 135	memcpy(&buf[16], dev->t10_wwn.model,
 136	       strnlen(dev->t10_wwn.model, INQUIRY_MODEL_LEN));
 137	memcpy(&buf[32], dev->t10_wwn.revision,
 138	       strnlen(dev->t10_wwn.revision, INQUIRY_REVISION_LEN));
 139
 140	/*
 141	 * Set the VERSION DESCRIPTOR fields
 142	 */
 143	put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SAM5, &buf[58]);
 144	put_unaligned_be16(spc_find_scsi_transport_vd(tpg->proto_id), &buf[60]);
 145	put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SPC4, &buf[62]);
 146	if (cmd->se_dev->transport->get_device_type(dev) == TYPE_DISK)
 147		put_unaligned_be16(SCSI_VERSION_DESCRIPTOR_SBC3, &buf[64]);
 148
 149	buf[4] = 91; /* Set additional length to 91 */
 150
 151	return 0;
 152}
 153EXPORT_SYMBOL(spc_emulate_inquiry_std);
 154
 155/* unit serial number */
 156static sense_reason_t
 157spc_emulate_evpd_80(struct se_cmd *cmd, unsigned char *buf)
 158{
 159	struct se_device *dev = cmd->se_dev;
 160	u16 len;
 161
 162	if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) {
 163		len = sprintf(&buf[4], "%s", dev->t10_wwn.unit_serial);
 164		len++; /* Extra Byte for NULL Terminator */
 165		buf[3] = len;
 166	}
 167	return 0;
 168}
 169
 170/*
 171 * Generate NAA IEEE Registered Extended designator
 172 */
 173void spc_gen_naa_6h_vendor_specific(struct se_device *dev,
 174				    unsigned char *buf)
 175{
 176	unsigned char *p = &dev->t10_wwn.unit_serial[0];
 177	u32 company_id = dev->t10_wwn.company_id;
 178	int cnt, off = 0;
 179	bool next = true;
 180
 181	/*
 182	 * Start NAA IEEE Registered Extended Identifier/Designator
 183	 */
 184	buf[off] = 0x6 << 4;
 185
 186	/* IEEE COMPANY_ID */
 187	buf[off++] |= (company_id >> 20) & 0xf;
 188	buf[off++] = (company_id >> 12) & 0xff;
 189	buf[off++] = (company_id >> 4) & 0xff;
 190	buf[off] = (company_id & 0xf) << 4;
 191
 192	/*
 193	 * Generate up to 36 bits of VENDOR SPECIFIC IDENTIFIER starting on
 194	 * byte 3 bit 3-0 for NAA IEEE Registered Extended DESIGNATOR field
 195	 * format, followed by 64 bits of VENDOR SPECIFIC IDENTIFIER EXTENSION
 196	 * to complete the payload.  These are based from VPD=0x80 PRODUCT SERIAL
 197	 * NUMBER set via vpd_unit_serial in target_core_configfs.c to ensure
 198	 * per device uniqeness.
 199	 */
 200	for (cnt = off + 13; *p && off < cnt; p++) {
 201		int val = hex_to_bin(*p);
 202
 203		if (val < 0)
 204			continue;
 205
 206		if (next) {
 207			next = false;
 208			buf[off++] |= val;
 209		} else {
 210			next = true;
 211			buf[off] = val << 4;
 212		}
 213	}
 214}
 215
 216/*
 217 * Device identification VPD, for a complete list of
 218 * DESIGNATOR TYPEs see spc4r17 Table 459.
 219 */
 220sense_reason_t
 221spc_emulate_evpd_83(struct se_cmd *cmd, unsigned char *buf)
 222{
 223	struct se_device *dev = cmd->se_dev;
 224	struct se_lun *lun = cmd->se_lun;
 225	struct se_portal_group *tpg = NULL;
 226	struct t10_alua_lu_gp_member *lu_gp_mem;
 227	struct t10_alua_tg_pt_gp *tg_pt_gp;
 228	unsigned char *prod = &dev->t10_wwn.model[0];
 229	u32 prod_len;
 230	u32 off = 0;
 231	u16 len = 0, id_len;
 232
 233	off = 4;
 234
 235	/*
 236	 * NAA IEEE Registered Extended Assigned designator format, see
 237	 * spc4r17 section 7.7.3.6.5
 238	 *
 239	 * We depend upon a target_core_mod/ConfigFS provided
 240	 * /sys/kernel/config/target/core/$HBA/$DEV/wwn/vpd_unit_serial
 241	 * value in order to return the NAA id.
 242	 */
 243	if (!(dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL))
 244		goto check_t10_vend_desc;
 245
 246	/* CODE SET == Binary */
 247	buf[off++] = 0x1;
 248
 249	/* Set ASSOCIATION == addressed logical unit: 0)b */
 250	buf[off] = 0x00;
 251
 252	/* Identifier/Designator type == NAA identifier */
 253	buf[off++] |= 0x3;
 254	off++;
 255
 256	/* Identifier/Designator length */
 257	buf[off++] = 0x10;
 258
 259	/* NAA IEEE Registered Extended designator */
 260	spc_gen_naa_6h_vendor_specific(dev, &buf[off]);
 261
 262	len = 20;
 263	off = (len + 4);
 264
 265check_t10_vend_desc:
 266	/*
 267	 * T10 Vendor Identifier Page, see spc4r17 section 7.7.3.4
 268	 */
 269	id_len = 8; /* For Vendor field */
 270	prod_len = 4; /* For VPD Header */
 271	prod_len += 8; /* For Vendor field */
 272	prod_len += strlen(prod);
 273	prod_len++; /* For : */
 274
 275	if (dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL)
 276		id_len += sprintf(&buf[off+12], "%s:%s", prod,
 277				&dev->t10_wwn.unit_serial[0]);
 278	buf[off] = 0x2; /* ASCII */
 279	buf[off+1] = 0x1; /* T10 Vendor ID */
 280	buf[off+2] = 0x0;
 281	/* left align Vendor ID and pad with spaces */
 282	memset(&buf[off+4], 0x20, INQUIRY_VENDOR_LEN);
 283	memcpy(&buf[off+4], dev->t10_wwn.vendor,
 284	       strnlen(dev->t10_wwn.vendor, INQUIRY_VENDOR_LEN));
 285	/* Extra Byte for NULL Terminator */
 286	id_len++;
 287	/* Identifier Length */
 288	buf[off+3] = id_len;
 289	/* Header size for Designation descriptor */
 290	len += (id_len + 4);
 291	off += (id_len + 4);
 292
 293	if (1) {
 294		struct t10_alua_lu_gp *lu_gp;
 295		u32 padding, scsi_name_len, scsi_target_len;
 296		u16 lu_gp_id = 0;
 297		u16 tg_pt_gp_id = 0;
 298		u16 tpgt;
 299
 300		tpg = lun->lun_tpg;
 301		/*
 302		 * Relative target port identifer, see spc4r17
 303		 * section 7.7.3.7
 304		 *
 305		 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
 306		 * section 7.5.1 Table 362
 307		 */
 308		buf[off] = tpg->proto_id << 4;
 309		buf[off++] |= 0x1; /* CODE SET == Binary */
 310		buf[off] = 0x80; /* Set PIV=1 */
 311		/* Set ASSOCIATION == target port: 01b */
 312		buf[off] |= 0x10;
 313		/* DESIGNATOR TYPE == Relative target port identifer */
 314		buf[off++] |= 0x4;
 315		off++; /* Skip over Reserved */
 316		buf[off++] = 4; /* DESIGNATOR LENGTH */
 317		/* Skip over Obsolete field in RTPI payload
 318		 * in Table 472 */
 319		off += 2;
 320		put_unaligned_be16(lun->lun_rtpi, &buf[off]);
 321		off += 2;
 322		len += 8; /* Header size + Designation descriptor */
 323		/*
 324		 * Target port group identifier, see spc4r17
 325		 * section 7.7.3.8
 326		 *
 327		 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
 328		 * section 7.5.1 Table 362
 329		 */
 330		rcu_read_lock();
 331		tg_pt_gp = rcu_dereference(lun->lun_tg_pt_gp);
 332		if (!tg_pt_gp) {
 333			rcu_read_unlock();
 334			goto check_lu_gp;
 335		}
 336		tg_pt_gp_id = tg_pt_gp->tg_pt_gp_id;
 337		rcu_read_unlock();
 338
 339		buf[off] = tpg->proto_id << 4;
 340		buf[off++] |= 0x1; /* CODE SET == Binary */
 341		buf[off] = 0x80; /* Set PIV=1 */
 342		/* Set ASSOCIATION == target port: 01b */
 343		buf[off] |= 0x10;
 344		/* DESIGNATOR TYPE == Target port group identifier */
 345		buf[off++] |= 0x5;
 346		off++; /* Skip over Reserved */
 347		buf[off++] = 4; /* DESIGNATOR LENGTH */
 348		off += 2; /* Skip over Reserved Field */
 349		put_unaligned_be16(tg_pt_gp_id, &buf[off]);
 350		off += 2;
 351		len += 8; /* Header size + Designation descriptor */
 352		/*
 353		 * Logical Unit Group identifier, see spc4r17
 354		 * section 7.7.3.8
 355		 */
 356check_lu_gp:
 357		lu_gp_mem = dev->dev_alua_lu_gp_mem;
 358		if (!lu_gp_mem)
 359			goto check_scsi_name;
 360
 361		spin_lock(&lu_gp_mem->lu_gp_mem_lock);
 362		lu_gp = lu_gp_mem->lu_gp;
 363		if (!lu_gp) {
 364			spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
 365			goto check_scsi_name;
 366		}
 367		lu_gp_id = lu_gp->lu_gp_id;
 368		spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
 369
 370		buf[off++] |= 0x1; /* CODE SET == Binary */
 371		/* DESIGNATOR TYPE == Logical Unit Group identifier */
 372		buf[off++] |= 0x6;
 373		off++; /* Skip over Reserved */
 374		buf[off++] = 4; /* DESIGNATOR LENGTH */
 375		off += 2; /* Skip over Reserved Field */
 376		put_unaligned_be16(lu_gp_id, &buf[off]);
 377		off += 2;
 378		len += 8; /* Header size + Designation descriptor */
 379		/*
 380		 * SCSI name string designator, see spc4r17
 381		 * section 7.7.3.11
 382		 *
 383		 * Get the PROTOCOL IDENTIFIER as defined by spc4r17
 384		 * section 7.5.1 Table 362
 385		 */
 386check_scsi_name:
 387		buf[off] = tpg->proto_id << 4;
 388		buf[off++] |= 0x3; /* CODE SET == UTF-8 */
 389		buf[off] = 0x80; /* Set PIV=1 */
 390		/* Set ASSOCIATION == target port: 01b */
 391		buf[off] |= 0x10;
 392		/* DESIGNATOR TYPE == SCSI name string */
 393		buf[off++] |= 0x8;
 394		off += 2; /* Skip over Reserved and length */
 395		/*
 396		 * SCSI name string identifer containing, $FABRIC_MOD
 397		 * dependent information.  For LIO-Target and iSCSI
 398		 * Target Port, this means "<iSCSI name>,t,0x<TPGT> in
 399		 * UTF-8 encoding.
 400		 */
 401		tpgt = tpg->se_tpg_tfo->tpg_get_tag(tpg);
 402		scsi_name_len = sprintf(&buf[off], "%s,t,0x%04x",
 403					tpg->se_tpg_tfo->tpg_get_wwn(tpg), tpgt);
 404		scsi_name_len += 1 /* Include  NULL terminator */;
 405		/*
 406		 * The null-terminated, null-padded (see 4.4.2) SCSI
 407		 * NAME STRING field contains a UTF-8 format string.
 408		 * The number of bytes in the SCSI NAME STRING field
 409		 * (i.e., the value in the DESIGNATOR LENGTH field)
 410		 * shall be no larger than 256 and shall be a multiple
 411		 * of four.
 412		 */
 413		padding = ((-scsi_name_len) & 3);
 414		if (padding)
 415			scsi_name_len += padding;
 416		if (scsi_name_len > 256)
 417			scsi_name_len = 256;
 418
 419		buf[off-1] = scsi_name_len;
 420		off += scsi_name_len;
 421		/* Header size + Designation descriptor */
 422		len += (scsi_name_len + 4);
 423
 424		/*
 425		 * Target device designator
 426		 */
 427		buf[off] = tpg->proto_id << 4;
 428		buf[off++] |= 0x3; /* CODE SET == UTF-8 */
 429		buf[off] = 0x80; /* Set PIV=1 */
 430		/* Set ASSOCIATION == target device: 10b */
 431		buf[off] |= 0x20;
 432		/* DESIGNATOR TYPE == SCSI name string */
 433		buf[off++] |= 0x8;
 434		off += 2; /* Skip over Reserved and length */
 435		/*
 436		 * SCSI name string identifer containing, $FABRIC_MOD
 437		 * dependent information.  For LIO-Target and iSCSI
 438		 * Target Port, this means "<iSCSI name>" in
 439		 * UTF-8 encoding.
 440		 */
 441		scsi_target_len = sprintf(&buf[off], "%s",
 442					  tpg->se_tpg_tfo->tpg_get_wwn(tpg));
 443		scsi_target_len += 1 /* Include  NULL terminator */;
 444		/*
 445		 * The null-terminated, null-padded (see 4.4.2) SCSI
 446		 * NAME STRING field contains a UTF-8 format string.
 447		 * The number of bytes in the SCSI NAME STRING field
 448		 * (i.e., the value in the DESIGNATOR LENGTH field)
 449		 * shall be no larger than 256 and shall be a multiple
 450		 * of four.
 451		 */
 452		padding = ((-scsi_target_len) & 3);
 453		if (padding)
 454			scsi_target_len += padding;
 455		if (scsi_target_len > 256)
 456			scsi_target_len = 256;
 457
 458		buf[off-1] = scsi_target_len;
 459		off += scsi_target_len;
 460
 461		/* Header size + Designation descriptor */
 462		len += (scsi_target_len + 4);
 463	}
 464	put_unaligned_be16(len, &buf[2]); /* Page Length for VPD 0x83 */
 465	return 0;
 466}
 467EXPORT_SYMBOL(spc_emulate_evpd_83);
 468
 469/* Extended INQUIRY Data VPD Page */
 470static sense_reason_t
 471spc_emulate_evpd_86(struct se_cmd *cmd, unsigned char *buf)
 472{
 473	struct se_device *dev = cmd->se_dev;
 474	struct se_session *sess = cmd->se_sess;
 475
 476	buf[3] = 0x3c;
 477	/*
 478	 * Set GRD_CHK + REF_CHK for TYPE1 protection, or GRD_CHK
 479	 * only for TYPE3 protection.
 480	 */
 481	if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
 482		if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE1_PROT ||
 483		    cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE1_PROT)
 484			buf[4] = 0x5;
 485		else if (dev->dev_attrib.pi_prot_type == TARGET_DIF_TYPE3_PROT ||
 486			 cmd->se_sess->sess_prot_type == TARGET_DIF_TYPE3_PROT)
 487			buf[4] = 0x4;
 488	}
 489
 490	/* logical unit supports type 1 and type 3 protection */
 491	if ((dev->transport->get_device_type(dev) == TYPE_DISK) &&
 492	    (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) &&
 493	    (dev->dev_attrib.pi_prot_type || cmd->se_sess->sess_prot_type)) {
 494		buf[4] |= (0x3 << 3);
 495	}
 496
 497	/* Set HEADSUP, ORDSUP, SIMPSUP */
 498	buf[5] = 0x07;
 499
 500	/* If WriteCache emulation is enabled, set V_SUP */
 501	if (target_check_wce(dev))
 502		buf[6] = 0x01;
 503	/* If an LBA map is present set R_SUP */
 504	spin_lock(&cmd->se_dev->t10_alua.lba_map_lock);
 505	if (!list_empty(&dev->t10_alua.lba_map_list))
 506		buf[8] = 0x10;
 507	spin_unlock(&cmd->se_dev->t10_alua.lba_map_lock);
 508	return 0;
 509}
 510
 511/* Block Limits VPD page */
 512static sense_reason_t
 513spc_emulate_evpd_b0(struct se_cmd *cmd, unsigned char *buf)
 514{
 515	struct se_device *dev = cmd->se_dev;
 516	u32 mtl = 0;
 517	int have_tp = 0, opt, min;
 518	u32 io_max_blocks;
 519
 520	/*
 521	 * Following spc3r22 section 6.5.3 Block Limits VPD page, when
 522	 * emulate_tpu=1 or emulate_tpws=1 we will be expect a
 523	 * different page length for Thin Provisioning.
 524	 */
 525	if (dev->dev_attrib.emulate_tpu || dev->dev_attrib.emulate_tpws)
 526		have_tp = 1;
 527
 528	buf[0] = dev->transport->get_device_type(dev);
 529	buf[3] = have_tp ? 0x3c : 0x10;
 530
 531	/* Set WSNZ to 1 */
 532	buf[4] = 0x01;
 533	/*
 534	 * Set MAXIMUM COMPARE AND WRITE LENGTH
 535	 */
 536	if (dev->dev_attrib.emulate_caw)
 537		buf[5] = 0x01;
 538
 539	/*
 540	 * Set OPTIMAL TRANSFER LENGTH GRANULARITY
 541	 */
 542	if (dev->transport->get_io_min && (min = dev->transport->get_io_min(dev)))
 543		put_unaligned_be16(min / dev->dev_attrib.block_size, &buf[6]);
 544	else
 545		put_unaligned_be16(1, &buf[6]);
 546
 547	/*
 548	 * Set MAXIMUM TRANSFER LENGTH
 549	 *
 550	 * XXX: Currently assumes single PAGE_SIZE per scatterlist for fabrics
 551	 * enforcing maximum HW scatter-gather-list entry limit
 552	 */
 553	if (cmd->se_tfo->max_data_sg_nents) {
 554		mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE) /
 555		       dev->dev_attrib.block_size;
 556	}
 557	io_max_blocks = mult_frac(dev->dev_attrib.hw_max_sectors,
 558			dev->dev_attrib.hw_block_size,
 559			dev->dev_attrib.block_size);
 560	put_unaligned_be32(min_not_zero(mtl, io_max_blocks), &buf[8]);
 561
 562	/*
 563	 * Set OPTIMAL TRANSFER LENGTH
 564	 */
 565	if (dev->transport->get_io_opt && (opt = dev->transport->get_io_opt(dev)))
 566		put_unaligned_be32(opt / dev->dev_attrib.block_size, &buf[12]);
 567	else
 568		put_unaligned_be32(dev->dev_attrib.optimal_sectors, &buf[12]);
 569
 570	/*
 571	 * Exit now if we don't support TP.
 572	 */
 573	if (!have_tp)
 574		goto max_write_same;
 575
 576	/*
 577	 * Set MAXIMUM UNMAP LBA COUNT
 578	 */
 579	put_unaligned_be32(dev->dev_attrib.max_unmap_lba_count, &buf[20]);
 580
 581	/*
 582	 * Set MAXIMUM UNMAP BLOCK DESCRIPTOR COUNT
 583	 */
 584	put_unaligned_be32(dev->dev_attrib.max_unmap_block_desc_count,
 585			   &buf[24]);
 586
 587	/*
 588	 * Set OPTIMAL UNMAP GRANULARITY
 589	 */
 590	put_unaligned_be32(dev->dev_attrib.unmap_granularity, &buf[28]);
 591
 592	/*
 593	 * UNMAP GRANULARITY ALIGNMENT
 594	 */
 595	put_unaligned_be32(dev->dev_attrib.unmap_granularity_alignment,
 596			   &buf[32]);
 597	if (dev->dev_attrib.unmap_granularity_alignment != 0)
 598		buf[32] |= 0x80; /* Set the UGAVALID bit */
 599
 600	/*
 601	 * MAXIMUM WRITE SAME LENGTH
 602	 */
 603max_write_same:
 604	put_unaligned_be64(dev->dev_attrib.max_write_same_len, &buf[36]);
 605
 606	return 0;
 607}
 608
 609/* Block Device Characteristics VPD page */
 610static sense_reason_t
 611spc_emulate_evpd_b1(struct se_cmd *cmd, unsigned char *buf)
 612{
 613	struct se_device *dev = cmd->se_dev;
 614
 615	buf[0] = dev->transport->get_device_type(dev);
 616	buf[3] = 0x3c;
 617	buf[5] = dev->dev_attrib.is_nonrot ? 1 : 0;
 618
 619	return 0;
 620}
 621
 622/* Thin Provisioning VPD */
 623static sense_reason_t
 624spc_emulate_evpd_b2(struct se_cmd *cmd, unsigned char *buf)
 625{
 626	struct se_device *dev = cmd->se_dev;
 627
 628	/*
 629	 * From spc3r22 section 6.5.4 Thin Provisioning VPD page:
 630	 *
 631	 * The PAGE LENGTH field is defined in SPC-4. If the DP bit is set to
 632	 * zero, then the page length shall be set to 0004h.  If the DP bit
 633	 * is set to one, then the page length shall be set to the value
 634	 * defined in table 162.
 635	 */
 636	buf[0] = dev->transport->get_device_type(dev);
 637
 638	/*
 639	 * Set Hardcoded length mentioned above for DP=0
 640	 */
 641	put_unaligned_be16(0x0004, &buf[2]);
 642
 643	/*
 644	 * The THRESHOLD EXPONENT field indicates the threshold set size in
 645	 * LBAs as a power of 2 (i.e., the threshold set size is equal to
 646	 * 2(threshold exponent)).
 647	 *
 648	 * Note that this is currently set to 0x00 as mkp says it will be
 649	 * changing again.  We can enable this once it has settled in T10
 650	 * and is actually used by Linux/SCSI ML code.
 651	 */
 652	buf[4] = 0x00;
 653
 654	/*
 655	 * A TPU bit set to one indicates that the device server supports
 656	 * the UNMAP command (see 5.25). A TPU bit set to zero indicates
 657	 * that the device server does not support the UNMAP command.
 658	 */
 659	if (dev->dev_attrib.emulate_tpu != 0)
 660		buf[5] = 0x80;
 661
 662	/*
 663	 * A TPWS bit set to one indicates that the device server supports
 664	 * the use of the WRITE SAME (16) command (see 5.42) to unmap LBAs.
 665	 * A TPWS bit set to zero indicates that the device server does not
 666	 * support the use of the WRITE SAME (16) command to unmap LBAs.
 667	 */
 668	if (dev->dev_attrib.emulate_tpws != 0)
 669		buf[5] |= 0x40 | 0x20;
 670
 671	/*
 672	 * The unmap_zeroes_data set means that the underlying device supports
 673	 * REQ_OP_DISCARD and has the discard_zeroes_data bit set. This
 674	 * satisfies the SBC requirements for LBPRZ, meaning that a subsequent
 675	 * read will return zeroes after an UNMAP or WRITE SAME (16) to an LBA
 676	 * See sbc4r36 6.6.4.
 677	 */
 678	if (((dev->dev_attrib.emulate_tpu != 0) ||
 679	     (dev->dev_attrib.emulate_tpws != 0)) &&
 680	     (dev->dev_attrib.unmap_zeroes_data != 0))
 681		buf[5] |= 0x04;
 682
 683	return 0;
 684}
 685
 686/* Referrals VPD page */
 687static sense_reason_t
 688spc_emulate_evpd_b3(struct se_cmd *cmd, unsigned char *buf)
 689{
 690	struct se_device *dev = cmd->se_dev;
 691
 692	buf[0] = dev->transport->get_device_type(dev);
 693	buf[3] = 0x0c;
 694	put_unaligned_be32(dev->t10_alua.lba_map_segment_size, &buf[8]);
 695	put_unaligned_be32(dev->t10_alua.lba_map_segment_multiplier, &buf[12]);
 696
 697	return 0;
 698}
 699
 700static sense_reason_t
 701spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf);
 702
 703static struct {
 704	uint8_t		page;
 705	sense_reason_t	(*emulate)(struct se_cmd *, unsigned char *);
 706} evpd_handlers[] = {
 707	{ .page = 0x00, .emulate = spc_emulate_evpd_00 },
 708	{ .page = 0x80, .emulate = spc_emulate_evpd_80 },
 709	{ .page = 0x83, .emulate = spc_emulate_evpd_83 },
 710	{ .page = 0x86, .emulate = spc_emulate_evpd_86 },
 711	{ .page = 0xb0, .emulate = spc_emulate_evpd_b0 },
 712	{ .page = 0xb1, .emulate = spc_emulate_evpd_b1 },
 713	{ .page = 0xb2, .emulate = spc_emulate_evpd_b2 },
 714	{ .page = 0xb3, .emulate = spc_emulate_evpd_b3 },
 715};
 716
 717/* supported vital product data pages */
 718static sense_reason_t
 719spc_emulate_evpd_00(struct se_cmd *cmd, unsigned char *buf)
 720{
 721	int p;
 722
 723	/*
 724	 * Only report the INQUIRY EVPD=1 pages after a valid NAA
 725	 * Registered Extended LUN WWN has been set via ConfigFS
 726	 * during device creation/restart.
 727	 */
 728	if (cmd->se_dev->dev_flags & DF_EMULATED_VPD_UNIT_SERIAL) {
 729		buf[3] = ARRAY_SIZE(evpd_handlers);
 730		for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p)
 731			buf[p + 4] = evpd_handlers[p].page;
 732	}
 733
 734	return 0;
 735}
 736
 737static sense_reason_t
 738spc_emulate_inquiry(struct se_cmd *cmd)
 739{
 740	struct se_device *dev = cmd->se_dev;
 741	unsigned char *rbuf;
 742	unsigned char *cdb = cmd->t_task_cdb;
 743	unsigned char *buf;
 744	sense_reason_t ret;
 745	int p;
 746	int len = 0;
 747
 748	buf = kzalloc(SE_INQUIRY_BUF, GFP_KERNEL);
 749	if (!buf) {
 750		pr_err("Unable to allocate response buffer for INQUIRY\n");
 751		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
 752	}
 753
 754	buf[0] = dev->transport->get_device_type(dev);
 755
 756	if (!(cdb[1] & 0x1)) {
 757		if (cdb[2]) {
 758			pr_err("INQUIRY with EVPD==0 but PAGE CODE=%02x\n",
 759			       cdb[2]);
 760			ret = TCM_INVALID_CDB_FIELD;
 761			goto out;
 762		}
 763
 764		ret = spc_emulate_inquiry_std(cmd, buf);
 765		len = buf[4] + 5;
 766		goto out;
 767	}
 768
 769	for (p = 0; p < ARRAY_SIZE(evpd_handlers); ++p) {
 770		if (cdb[2] == evpd_handlers[p].page) {
 771			buf[1] = cdb[2];
 772			ret = evpd_handlers[p].emulate(cmd, buf);
 773			len = get_unaligned_be16(&buf[2]) + 4;
 774			goto out;
 775		}
 776	}
 777
 778	pr_debug("Unknown VPD Code: 0x%02x\n", cdb[2]);
 779	ret = TCM_INVALID_CDB_FIELD;
 780
 781out:
 782	rbuf = transport_kmap_data_sg(cmd);
 783	if (rbuf) {
 784		memcpy(rbuf, buf, min_t(u32, SE_INQUIRY_BUF, cmd->data_length));
 785		transport_kunmap_data_sg(cmd);
 786	}
 787	kfree(buf);
 788
 789	if (!ret)
 790		target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, len);
 791	return ret;
 792}
 793
 794static int spc_modesense_rwrecovery(struct se_cmd *cmd, u8 pc, u8 *p)
 795{
 796	p[0] = 0x01;
 797	p[1] = 0x0a;
 798
 799	/* No changeable values for now */
 800	if (pc == 1)
 801		goto out;
 802
 803out:
 804	return 12;
 805}
 806
 807static int spc_modesense_control(struct se_cmd *cmd, u8 pc, u8 *p)
 808{
 809	struct se_device *dev = cmd->se_dev;
 810	struct se_session *sess = cmd->se_sess;
 811
 812	p[0] = 0x0a;
 813	p[1] = 0x0a;
 814
 815	/* No changeable values for now */
 816	if (pc == 1)
 817		goto out;
 818
 819	/* GLTSD: No implicit save of log parameters */
 820	p[2] = (1 << 1);
 821	if (target_sense_desc_format(dev))
 822		/* D_SENSE: Descriptor format sense data for 64bit sectors */
 823		p[2] |= (1 << 2);
 824
 825	/*
 826	 * From spc4r23, 7.4.7 Control mode page
 827	 *
 828	 * The QUEUE ALGORITHM MODIFIER field (see table 368) specifies
 829	 * restrictions on the algorithm used for reordering commands
 830	 * having the SIMPLE task attribute (see SAM-4).
 831	 *
 832	 *                    Table 368 -- QUEUE ALGORITHM MODIFIER field
 833	 *                         Code      Description
 834	 *                          0h       Restricted reordering
 835	 *                          1h       Unrestricted reordering allowed
 836	 *                          2h to 7h    Reserved
 837	 *                          8h to Fh    Vendor specific
 838	 *
 839	 * A value of zero in the QUEUE ALGORITHM MODIFIER field specifies that
 840	 * the device server shall order the processing sequence of commands
 841	 * having the SIMPLE task attribute such that data integrity is maintained
 842	 * for that I_T nexus (i.e., if the transmission of new SCSI transport protocol
 843	 * requests is halted at any time, the final value of all data observable
 844	 * on the medium shall be the same as if all the commands had been processed
 845	 * with the ORDERED task attribute).
 846	 *
 847	 * A value of one in the QUEUE ALGORITHM MODIFIER field specifies that the
 848	 * device server may reorder the processing sequence of commands having the
 849	 * SIMPLE task attribute in any manner. Any data integrity exposures related to
 850	 * command sequence order shall be explicitly handled by the application client
 851	 * through the selection of appropriate ommands and task attributes.
 852	 */
 853	p[3] = (dev->dev_attrib.emulate_rest_reord == 1) ? 0x00 : 0x10;
 854	/*
 855	 * From spc4r17, section 7.4.6 Control mode Page
 856	 *
 857	 * Unit Attention interlocks control (UN_INTLCK_CTRL) to code 00b
 858	 *
 859	 * 00b: The logical unit shall clear any unit attention condition
 860	 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
 861	 * status and shall not establish a unit attention condition when a com-
 862	 * mand is completed with BUSY, TASK SET FULL, or RESERVATION CONFLICT
 863	 * status.
 864	 *
 865	 * 10b: The logical unit shall not clear any unit attention condition
 866	 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
 867	 * status and shall not establish a unit attention condition when
 868	 * a command is completed with BUSY, TASK SET FULL, or RESERVATION
 869	 * CONFLICT status.
 870	 *
 871	 * 11b a The logical unit shall not clear any unit attention condition
 872	 * reported in the same I_T_L_Q nexus transaction as a CHECK CONDITION
 873	 * status and shall establish a unit attention condition for the
 874	 * initiator port associated with the I_T nexus on which the BUSY,
 875	 * TASK SET FULL, or RESERVATION CONFLICT status is being returned.
 876	 * Depending on the status, the additional sense code shall be set to
 877	 * PREVIOUS BUSY STATUS, PREVIOUS TASK SET FULL STATUS, or PREVIOUS
 878	 * RESERVATION CONFLICT STATUS. Until it is cleared by a REQUEST SENSE
 879	 * command, a unit attention condition shall be established only once
 880	 * for a BUSY, TASK SET FULL, or RESERVATION CONFLICT status regardless
 881	 * to the number of commands completed with one of those status codes.
 882	 */
 883	switch (dev->dev_attrib.emulate_ua_intlck_ctrl) {
 884	case TARGET_UA_INTLCK_CTRL_ESTABLISH_UA:
 885		p[4] = 0x30;
 886		break;
 887	case TARGET_UA_INTLCK_CTRL_NO_CLEAR:
 888		p[4] = 0x20;
 889		break;
 890	default:	/* TARGET_UA_INTLCK_CTRL_CLEAR */
 891		p[4] = 0x00;
 892		break;
 893	}
 894	/*
 895	 * From spc4r17, section 7.4.6 Control mode Page
 896	 *
 897	 * Task Aborted Status (TAS) bit set to zero.
 898	 *
 899	 * A task aborted status (TAS) bit set to zero specifies that aborted
 900	 * tasks shall be terminated by the device server without any response
 901	 * to the application client. A TAS bit set to one specifies that tasks
 902	 * aborted by the actions of an I_T nexus other than the I_T nexus on
 903	 * which the command was received shall be completed with TASK ABORTED
 904	 * status (see SAM-4).
 905	 */
 906	p[5] = (dev->dev_attrib.emulate_tas) ? 0x40 : 0x00;
 907	/*
 908	 * From spc4r30, section 7.5.7 Control mode page
 909	 *
 910	 * Application Tag Owner (ATO) bit set to one.
 911	 *
 912	 * If the ATO bit is set to one the device server shall not modify the
 913	 * LOGICAL BLOCK APPLICATION TAG field and, depending on the protection
 914	 * type, shall not modify the contents of the LOGICAL BLOCK REFERENCE
 915	 * TAG field.
 916	 */
 917	if (sess->sup_prot_ops & (TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS)) {
 918		if (dev->dev_attrib.pi_prot_type || sess->sess_prot_type)
 919			p[5] |= 0x80;
 920	}
 921
 922	p[8] = 0xff;
 923	p[9] = 0xff;
 924	p[11] = 30;
 925
 926out:
 927	return 12;
 928}
 929
 930static int spc_modesense_caching(struct se_cmd *cmd, u8 pc, u8 *p)
 931{
 932	struct se_device *dev = cmd->se_dev;
 933
 934	p[0] = 0x08;
 935	p[1] = 0x12;
 936
 937	/* No changeable values for now */
 938	if (pc == 1)
 939		goto out;
 940
 941	if (target_check_wce(dev))
 942		p[2] = 0x04; /* Write Cache Enable */
 943	p[12] = 0x20; /* Disabled Read Ahead */
 944
 945out:
 946	return 20;
 947}
 948
 949static int spc_modesense_informational_exceptions(struct se_cmd *cmd, u8 pc, unsigned char *p)
 950{
 951	p[0] = 0x1c;
 952	p[1] = 0x0a;
 953
 954	/* No changeable values for now */
 955	if (pc == 1)
 956		goto out;
 957
 958out:
 959	return 12;
 960}
 961
 962static struct {
 963	uint8_t		page;
 964	uint8_t		subpage;
 965	int		(*emulate)(struct se_cmd *, u8, unsigned char *);
 966} modesense_handlers[] = {
 967	{ .page = 0x01, .subpage = 0x00, .emulate = spc_modesense_rwrecovery },
 968	{ .page = 0x08, .subpage = 0x00, .emulate = spc_modesense_caching },
 969	{ .page = 0x0a, .subpage = 0x00, .emulate = spc_modesense_control },
 970	{ .page = 0x1c, .subpage = 0x00, .emulate = spc_modesense_informational_exceptions },
 971};
 972
 973static void spc_modesense_write_protect(unsigned char *buf, int type)
 974{
 975	/*
 976	 * I believe that the WP bit (bit 7) in the mode header is the same for
 977	 * all device types..
 978	 */
 979	switch (type) {
 980	case TYPE_DISK:
 981	case TYPE_TAPE:
 982	default:
 983		buf[0] |= 0x80; /* WP bit */
 984		break;
 985	}
 986}
 987
 988static void spc_modesense_dpofua(unsigned char *buf, int type)
 989{
 990	switch (type) {
 991	case TYPE_DISK:
 992		buf[0] |= 0x10; /* DPOFUA bit */
 993		break;
 994	default:
 995		break;
 996	}
 997}
 998
 999static int spc_modesense_blockdesc(unsigned char *buf, u64 blocks, u32 block_size)
1000{
1001	*buf++ = 8;
1002	put_unaligned_be32(min(blocks, 0xffffffffull), buf);
1003	buf += 4;
1004	put_unaligned_be32(block_size, buf);
1005	return 9;
1006}
1007
1008static int spc_modesense_long_blockdesc(unsigned char *buf, u64 blocks, u32 block_size)
1009{
1010	if (blocks <= 0xffffffff)
1011		return spc_modesense_blockdesc(buf + 3, blocks, block_size) + 3;
1012
1013	*buf++ = 1;		/* LONGLBA */
1014	buf += 2;
1015	*buf++ = 16;
1016	put_unaligned_be64(blocks, buf);
1017	buf += 12;
1018	put_unaligned_be32(block_size, buf);
1019
1020	return 17;
1021}
1022
1023static sense_reason_t spc_emulate_modesense(struct se_cmd *cmd)
1024{
1025	struct se_device *dev = cmd->se_dev;
1026	char *cdb = cmd->t_task_cdb;
1027	unsigned char buf[SE_MODE_PAGE_BUF], *rbuf;
1028	int type = dev->transport->get_device_type(dev);
1029	int ten = (cmd->t_task_cdb[0] == MODE_SENSE_10);
1030	bool dbd = !!(cdb[1] & 0x08);
1031	bool llba = ten ? !!(cdb[1] & 0x10) : false;
1032	u8 pc = cdb[2] >> 6;
1033	u8 page = cdb[2] & 0x3f;
1034	u8 subpage = cdb[3];
1035	int length = 0;
1036	int ret;
1037	int i;
1038
1039	memset(buf, 0, SE_MODE_PAGE_BUF);
1040
1041	/*
1042	 * Skip over MODE DATA LENGTH + MEDIUM TYPE fields to byte 3 for
1043	 * MODE_SENSE_10 and byte 2 for MODE_SENSE (6).
1044	 */
1045	length = ten ? 3 : 2;
1046
1047	/* DEVICE-SPECIFIC PARAMETER */
1048	if (cmd->se_lun->lun_access_ro || target_lun_is_rdonly(cmd))
1049		spc_modesense_write_protect(&buf[length], type);
1050
1051	/*
1052	 * SBC only allows us to enable FUA and DPO together.  Fortunately
1053	 * DPO is explicitly specified as a hint, so a noop is a perfectly
1054	 * valid implementation.
1055	 */
1056	if (target_check_fua(dev))
1057		spc_modesense_dpofua(&buf[length], type);
1058
1059	++length;
1060
1061	/* BLOCK DESCRIPTOR */
1062
1063	/*
1064	 * For now we only include a block descriptor for disk (SBC)
1065	 * devices; other command sets use a slightly different format.
1066	 */
1067	if (!dbd && type == TYPE_DISK) {
1068		u64 blocks = dev->transport->get_blocks(dev);
1069		u32 block_size = dev->dev_attrib.block_size;
1070
1071		if (ten) {
1072			if (llba) {
1073				length += spc_modesense_long_blockdesc(&buf[length],
1074								       blocks, block_size);
1075			} else {
1076				length += 3;
1077				length += spc_modesense_blockdesc(&buf[length],
1078								  blocks, block_size);
1079			}
1080		} else {
1081			length += spc_modesense_blockdesc(&buf[length], blocks,
1082							  block_size);
1083		}
1084	} else {
1085		if (ten)
1086			length += 4;
1087		else
1088			length += 1;
1089	}
1090
1091	if (page == 0x3f) {
1092		if (subpage != 0x00 && subpage != 0xff) {
1093			pr_warn("MODE_SENSE: Invalid subpage code: 0x%02x\n", subpage);
1094			return TCM_INVALID_CDB_FIELD;
1095		}
1096
1097		for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i) {
1098			/*
1099			 * Tricky way to say all subpage 00h for
1100			 * subpage==0, all subpages for subpage==0xff
1101			 * (and we just checked above that those are
1102			 * the only two possibilities).
1103			 */
1104			if ((modesense_handlers[i].subpage & ~subpage) == 0) {
1105				ret = modesense_handlers[i].emulate(cmd, pc, &buf[length]);
1106				if (!ten && length + ret >= 255)
1107					break;
1108				length += ret;
1109			}
1110		}
1111
1112		goto set_length;
1113	}
1114
1115	for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i)
1116		if (modesense_handlers[i].page == page &&
1117		    modesense_handlers[i].subpage == subpage) {
1118			length += modesense_handlers[i].emulate(cmd, pc, &buf[length]);
1119			goto set_length;
1120		}
1121
1122	/*
1123	 * We don't intend to implement:
1124	 *  - obsolete page 03h "format parameters" (checked by Solaris)
1125	 */
1126	if (page != 0x03)
1127		pr_err("MODE SENSE: unimplemented page/subpage: 0x%02x/0x%02x\n",
1128		       page, subpage);
1129
1130	return TCM_UNKNOWN_MODE_PAGE;
1131
1132set_length:
1133	if (ten)
1134		put_unaligned_be16(length - 2, buf);
1135	else
1136		buf[0] = length - 1;
1137
1138	rbuf = transport_kmap_data_sg(cmd);
1139	if (rbuf) {
1140		memcpy(rbuf, buf, min_t(u32, SE_MODE_PAGE_BUF, cmd->data_length));
1141		transport_kunmap_data_sg(cmd);
1142	}
1143
1144	target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, length);
1145	return 0;
1146}
1147
1148static sense_reason_t spc_emulate_modeselect(struct se_cmd *cmd)
1149{
1150	char *cdb = cmd->t_task_cdb;
1151	bool ten = cdb[0] == MODE_SELECT_10;
1152	int off = ten ? 8 : 4;
1153	bool pf = !!(cdb[1] & 0x10);
1154	u8 page, subpage;
1155	unsigned char *buf;
1156	unsigned char tbuf[SE_MODE_PAGE_BUF];
1157	int length;
1158	sense_reason_t ret = 0;
1159	int i;
1160
1161	if (!cmd->data_length) {
1162		target_complete_cmd(cmd, SAM_STAT_GOOD);
1163		return 0;
1164	}
1165
1166	if (cmd->data_length < off + 2)
1167		return TCM_PARAMETER_LIST_LENGTH_ERROR;
1168
1169	buf = transport_kmap_data_sg(cmd);
1170	if (!buf)
1171		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1172
1173	if (!pf) {
1174		ret = TCM_INVALID_CDB_FIELD;
1175		goto out;
1176	}
1177
1178	page = buf[off] & 0x3f;
1179	subpage = buf[off] & 0x40 ? buf[off + 1] : 0;
1180
1181	for (i = 0; i < ARRAY_SIZE(modesense_handlers); ++i)
1182		if (modesense_handlers[i].page == page &&
1183		    modesense_handlers[i].subpage == subpage) {
1184			memset(tbuf, 0, SE_MODE_PAGE_BUF);
1185			length = modesense_handlers[i].emulate(cmd, 0, tbuf);
1186			goto check_contents;
1187		}
1188
1189	ret = TCM_UNKNOWN_MODE_PAGE;
1190	goto out;
1191
1192check_contents:
1193	if (cmd->data_length < off + length) {
1194		ret = TCM_PARAMETER_LIST_LENGTH_ERROR;
1195		goto out;
1196	}
1197
1198	if (memcmp(buf + off, tbuf, length))
1199		ret = TCM_INVALID_PARAMETER_LIST;
1200
1201out:
1202	transport_kunmap_data_sg(cmd);
1203
1204	if (!ret)
1205		target_complete_cmd(cmd, SAM_STAT_GOOD);
1206	return ret;
1207}
1208
1209static sense_reason_t spc_emulate_request_sense(struct se_cmd *cmd)
1210{
1211	unsigned char *cdb = cmd->t_task_cdb;
1212	unsigned char *rbuf;
1213	u8 ua_asc = 0, ua_ascq = 0;
1214	unsigned char buf[SE_SENSE_BUF];
1215	bool desc_format = target_sense_desc_format(cmd->se_dev);
1216
1217	memset(buf, 0, SE_SENSE_BUF);
1218
1219	if (cdb[1] & 0x01) {
1220		pr_err("REQUEST_SENSE description emulation not"
1221			" supported\n");
1222		return TCM_INVALID_CDB_FIELD;
1223	}
1224
1225	rbuf = transport_kmap_data_sg(cmd);
1226	if (!rbuf)
1227		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1228
1229	if (!core_scsi3_ua_clear_for_request_sense(cmd, &ua_asc, &ua_ascq))
1230		scsi_build_sense_buffer(desc_format, buf, UNIT_ATTENTION,
1231					ua_asc, ua_ascq);
1232	else
1233		scsi_build_sense_buffer(desc_format, buf, NO_SENSE, 0x0, 0x0);
1234
1235	memcpy(rbuf, buf, min_t(u32, sizeof(buf), cmd->data_length));
1236	transport_kunmap_data_sg(cmd);
1237
1238	target_complete_cmd(cmd, SAM_STAT_GOOD);
1239	return 0;
1240}
1241
1242sense_reason_t spc_emulate_report_luns(struct se_cmd *cmd)
1243{
1244	struct se_dev_entry *deve;
1245	struct se_session *sess = cmd->se_sess;
1246	struct se_node_acl *nacl;
1247	struct scsi_lun slun;
1248	unsigned char *buf;
1249	u32 lun_count = 0, offset = 8;
1250	__be32 len;
1251
1252	buf = transport_kmap_data_sg(cmd);
1253	if (cmd->data_length && !buf)
1254		return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1255
1256	/*
1257	 * If no struct se_session pointer is present, this struct se_cmd is
1258	 * coming via a target_core_mod PASSTHROUGH op, and not through
1259	 * a $FABRIC_MOD.  In that case, report LUN=0 only.
1260	 */
1261	if (!sess)
1262		goto done;
1263
1264	nacl = sess->se_node_acl;
1265
1266	rcu_read_lock();
1267	hlist_for_each_entry_rcu(deve, &nacl->lun_entry_hlist, link) {
1268		/*
1269		 * We determine the correct LUN LIST LENGTH even once we
1270		 * have reached the initial allocation length.
1271		 * See SPC2-R20 7.19.
1272		 */
1273		lun_count++;
1274		if (offset >= cmd->data_length)
1275			continue;
1276
1277		int_to_scsilun(deve->mapped_lun, &slun);
1278		memcpy(buf + offset, &slun,
1279		       min(8u, cmd->data_length - offset));
1280		offset += 8;
1281	}
1282	rcu_read_unlock();
1283
1284	/*
1285	 * See SPC3 r07, page 159.
1286	 */
1287done:
1288	/*
1289	 * If no LUNs are accessible, report virtual LUN 0.
1290	 */
1291	if (lun_count == 0) {
1292		int_to_scsilun(0, &slun);
1293		if (cmd->data_length > 8)
1294			memcpy(buf + offset, &slun,
1295			       min(8u, cmd->data_length - offset));
1296		lun_count = 1;
1297	}
1298
1299	if (buf) {
1300		len = cpu_to_be32(lun_count * 8);
1301		memcpy(buf, &len, min_t(int, sizeof len, cmd->data_length));
1302		transport_kunmap_data_sg(cmd);
1303	}
1304
1305	target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, 8 + lun_count * 8);
1306	return 0;
1307}
1308EXPORT_SYMBOL(spc_emulate_report_luns);
1309
1310static sense_reason_t
1311spc_emulate_testunitready(struct se_cmd *cmd)
1312{
1313	target_complete_cmd(cmd, SAM_STAT_GOOD);
1314	return 0;
1315}
1316
1317static void set_dpofua_usage_bits(u8 *usage_bits, struct se_device *dev)
1318{
1319	if (!target_check_fua(dev))
1320		usage_bits[1] &= ~0x18;
1321	else
1322		usage_bits[1] |= 0x18;
1323}
1324
1325static void set_dpofua_usage_bits32(u8 *usage_bits, struct se_device *dev)
1326{
1327	if (!target_check_fua(dev))
1328		usage_bits[10] &= ~0x18;
1329	else
1330		usage_bits[10] |= 0x18;
1331}
1332
1333static struct target_opcode_descriptor tcm_opcode_read6 = {
1334	.support = SCSI_SUPPORT_FULL,
1335	.opcode = READ_6,
1336	.cdb_size = 6,
1337	.usage_bits = {READ_6, 0x1f, 0xff, 0xff,
1338		       0xff, SCSI_CONTROL_MASK},
1339};
1340
1341static struct target_opcode_descriptor tcm_opcode_read10 = {
1342	.support = SCSI_SUPPORT_FULL,
1343	.opcode = READ_10,
1344	.cdb_size = 10,
1345	.usage_bits = {READ_10, 0xf8, 0xff, 0xff,
1346		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1347		       0xff, SCSI_CONTROL_MASK},
1348	.update_usage_bits = set_dpofua_usage_bits,
1349};
1350
1351static struct target_opcode_descriptor tcm_opcode_read12 = {
1352	.support = SCSI_SUPPORT_FULL,
1353	.opcode = READ_12,
1354	.cdb_size = 12,
1355	.usage_bits = {READ_12, 0xf8, 0xff, 0xff,
1356		       0xff, 0xff, 0xff, 0xff,
1357		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1358	.update_usage_bits = set_dpofua_usage_bits,
1359};
1360
1361static struct target_opcode_descriptor tcm_opcode_read16 = {
1362	.support = SCSI_SUPPORT_FULL,
1363	.opcode = READ_16,
1364	.cdb_size = 16,
1365	.usage_bits = {READ_16, 0xf8, 0xff, 0xff,
1366		       0xff, 0xff, 0xff, 0xff,
1367		       0xff, 0xff, 0xff, 0xff,
1368		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1369	.update_usage_bits = set_dpofua_usage_bits,
1370};
1371
1372static struct target_opcode_descriptor tcm_opcode_write6 = {
1373	.support = SCSI_SUPPORT_FULL,
1374	.opcode = WRITE_6,
1375	.cdb_size = 6,
1376	.usage_bits = {WRITE_6, 0x1f, 0xff, 0xff,
1377		       0xff, SCSI_CONTROL_MASK},
1378};
1379
1380static struct target_opcode_descriptor tcm_opcode_write10 = {
1381	.support = SCSI_SUPPORT_FULL,
1382	.opcode = WRITE_10,
1383	.cdb_size = 10,
1384	.usage_bits = {WRITE_10, 0xf8, 0xff, 0xff,
1385		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1386		       0xff, SCSI_CONTROL_MASK},
1387	.update_usage_bits = set_dpofua_usage_bits,
1388};
1389
1390static struct target_opcode_descriptor tcm_opcode_write_verify10 = {
1391	.support = SCSI_SUPPORT_FULL,
1392	.opcode = WRITE_VERIFY,
1393	.cdb_size = 10,
1394	.usage_bits = {WRITE_VERIFY, 0xf0, 0xff, 0xff,
1395		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1396		       0xff, SCSI_CONTROL_MASK},
1397	.update_usage_bits = set_dpofua_usage_bits,
1398};
1399
1400static struct target_opcode_descriptor tcm_opcode_write12 = {
1401	.support = SCSI_SUPPORT_FULL,
1402	.opcode = WRITE_12,
1403	.cdb_size = 12,
1404	.usage_bits = {WRITE_12, 0xf8, 0xff, 0xff,
1405		       0xff, 0xff, 0xff, 0xff,
1406		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1407	.update_usage_bits = set_dpofua_usage_bits,
1408};
1409
1410static struct target_opcode_descriptor tcm_opcode_write16 = {
1411	.support = SCSI_SUPPORT_FULL,
1412	.opcode = WRITE_16,
1413	.cdb_size = 16,
1414	.usage_bits = {WRITE_16, 0xf8, 0xff, 0xff,
1415		       0xff, 0xff, 0xff, 0xff,
1416		       0xff, 0xff, 0xff, 0xff,
1417		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1418	.update_usage_bits = set_dpofua_usage_bits,
1419};
1420
1421static struct target_opcode_descriptor tcm_opcode_write_verify16 = {
1422	.support = SCSI_SUPPORT_FULL,
1423	.opcode = WRITE_VERIFY_16,
1424	.cdb_size = 16,
1425	.usage_bits = {WRITE_VERIFY_16, 0xf0, 0xff, 0xff,
1426		       0xff, 0xff, 0xff, 0xff,
1427		       0xff, 0xff, 0xff, 0xff,
1428		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1429	.update_usage_bits = set_dpofua_usage_bits,
1430};
1431
1432static bool tcm_is_ws_enabled(struct se_cmd *cmd)
1433{
1434	struct sbc_ops *ops = cmd->protocol_data;
1435	struct se_device *dev = cmd->se_dev;
1436
1437	return (dev->dev_attrib.emulate_tpws && !!ops->execute_unmap) ||
1438	       !!ops->execute_write_same;
1439}
1440
1441static struct target_opcode_descriptor tcm_opcode_write_same32 = {
1442	.support = SCSI_SUPPORT_FULL,
1443	.serv_action_valid = 1,
1444	.opcode = VARIABLE_LENGTH_CMD,
1445	.service_action = WRITE_SAME_32,
1446	.cdb_size = 32,
1447	.usage_bits = {VARIABLE_LENGTH_CMD, SCSI_CONTROL_MASK, 0x00, 0x00,
1448		       0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0x18,
1449		       0x00, WRITE_SAME_32, 0xe8, 0x00,
1450		       0xff, 0xff, 0xff, 0xff,
1451		       0xff, 0xff, 0xff, 0xff,
1452		       0x00, 0x00, 0x00, 0x00,
1453		       0x00, 0x00, 0x00, 0x00,
1454		       0xff, 0xff, 0xff, 0xff},
1455	.enabled = tcm_is_ws_enabled,
1456	.update_usage_bits = set_dpofua_usage_bits32,
1457};
1458
1459static bool tcm_is_caw_enabled(struct se_cmd *cmd)
1460{
1461	struct se_device *dev = cmd->se_dev;
1462
1463	return dev->dev_attrib.emulate_caw;
1464}
1465
1466static struct target_opcode_descriptor tcm_opcode_compare_write = {
1467	.support = SCSI_SUPPORT_FULL,
1468	.opcode = COMPARE_AND_WRITE,
1469	.cdb_size = 16,
1470	.usage_bits = {COMPARE_AND_WRITE, 0x18, 0xff, 0xff,
1471		       0xff, 0xff, 0xff, 0xff,
1472		       0xff, 0xff, 0x00, 0x00,
1473		       0x00, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1474	.enabled = tcm_is_caw_enabled,
1475	.update_usage_bits = set_dpofua_usage_bits,
1476};
1477
1478static struct target_opcode_descriptor tcm_opcode_read_capacity = {
1479	.support = SCSI_SUPPORT_FULL,
1480	.opcode = READ_CAPACITY,
1481	.cdb_size = 10,
1482	.usage_bits = {READ_CAPACITY, 0x00, 0xff, 0xff,
1483		       0xff, 0xff, 0x00, 0x00,
1484		       0x01, SCSI_CONTROL_MASK},
1485};
1486
1487static struct target_opcode_descriptor tcm_opcode_read_capacity16 = {
1488	.support = SCSI_SUPPORT_FULL,
1489	.serv_action_valid = 1,
1490	.opcode = SERVICE_ACTION_IN_16,
1491	.service_action = SAI_READ_CAPACITY_16,
1492	.cdb_size = 16,
1493	.usage_bits = {SERVICE_ACTION_IN_16, SAI_READ_CAPACITY_16, 0x00, 0x00,
1494		       0x00, 0x00, 0x00, 0x00,
1495		       0x00, 0x00, 0xff, 0xff,
1496		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1497};
1498
1499static bool tcm_is_rep_ref_enabled(struct se_cmd *cmd)
1500{
1501	struct se_device *dev = cmd->se_dev;
1502
1503	spin_lock(&dev->t10_alua.lba_map_lock);
1504	if (list_empty(&dev->t10_alua.lba_map_list)) {
1505		spin_unlock(&dev->t10_alua.lba_map_lock);
1506		return false;
1507	}
1508	spin_unlock(&dev->t10_alua.lba_map_lock);
1509	return true;
1510
1511}
1512
1513static struct target_opcode_descriptor tcm_opcode_read_report_refferals = {
1514	.support = SCSI_SUPPORT_FULL,
1515	.serv_action_valid = 1,
1516	.opcode = SERVICE_ACTION_IN_16,
1517	.service_action = SAI_REPORT_REFERRALS,
1518	.cdb_size = 16,
1519	.usage_bits = {SERVICE_ACTION_IN_16, SAI_REPORT_REFERRALS, 0x00, 0x00,
1520		       0x00, 0x00, 0x00, 0x00,
1521		       0x00, 0x00, 0xff, 0xff,
1522		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1523	.enabled = tcm_is_rep_ref_enabled,
1524};
1525
1526static struct target_opcode_descriptor tcm_opcode_sync_cache = {
1527	.support = SCSI_SUPPORT_FULL,
1528	.opcode = SYNCHRONIZE_CACHE,
1529	.cdb_size = 10,
1530	.usage_bits = {SYNCHRONIZE_CACHE, 0x02, 0xff, 0xff,
1531		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1532		       0xff, SCSI_CONTROL_MASK},
1533};
1534
1535static struct target_opcode_descriptor tcm_opcode_sync_cache16 = {
1536	.support = SCSI_SUPPORT_FULL,
1537	.opcode = SYNCHRONIZE_CACHE_16,
1538	.cdb_size = 16,
1539	.usage_bits = {SYNCHRONIZE_CACHE_16, 0x02, 0xff, 0xff,
1540		       0xff, 0xff, 0xff, 0xff,
1541		       0xff, 0xff, 0xff, 0xff,
1542		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1543};
1544
1545static bool tcm_is_unmap_enabled(struct se_cmd *cmd)
1546{
1547	struct sbc_ops *ops = cmd->protocol_data;
1548	struct se_device *dev = cmd->se_dev;
1549
1550	return ops->execute_unmap && dev->dev_attrib.emulate_tpu;
1551}
1552
1553static struct target_opcode_descriptor tcm_opcode_unmap = {
1554	.support = SCSI_SUPPORT_FULL,
1555	.opcode = UNMAP,
1556	.cdb_size = 10,
1557	.usage_bits = {UNMAP, 0x00, 0x00, 0x00,
1558		       0x00, 0x00, SCSI_GROUP_NUMBER_MASK, 0xff,
1559		       0xff, SCSI_CONTROL_MASK},
1560	.enabled = tcm_is_unmap_enabled,
1561};
1562
1563static struct target_opcode_descriptor tcm_opcode_write_same = {
1564	.support = SCSI_SUPPORT_FULL,
1565	.opcode = WRITE_SAME,
1566	.cdb_size = 10,
1567	.usage_bits = {WRITE_SAME, 0xe8, 0xff, 0xff,
1568		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1569		       0xff, SCSI_CONTROL_MASK},
1570	.enabled = tcm_is_ws_enabled,
1571};
1572
1573static struct target_opcode_descriptor tcm_opcode_write_same16 = {
1574	.support = SCSI_SUPPORT_FULL,
1575	.opcode = WRITE_SAME_16,
1576	.cdb_size = 16,
1577	.usage_bits = {WRITE_SAME_16, 0xe8, 0xff, 0xff,
1578		       0xff, 0xff, 0xff, 0xff,
1579		       0xff, 0xff, 0xff, 0xff,
1580		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1581	.enabled = tcm_is_ws_enabled,
1582};
1583
1584static struct target_opcode_descriptor tcm_opcode_verify = {
1585	.support = SCSI_SUPPORT_FULL,
1586	.opcode = VERIFY,
1587	.cdb_size = 10,
1588	.usage_bits = {VERIFY, 0x00, 0xff, 0xff,
1589		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, 0xff,
1590		       0xff, SCSI_CONTROL_MASK},
1591};
1592
1593static struct target_opcode_descriptor tcm_opcode_verify16 = {
1594	.support = SCSI_SUPPORT_FULL,
1595	.opcode = VERIFY_16,
1596	.cdb_size = 16,
1597	.usage_bits = {VERIFY_16, 0x00, 0xff, 0xff,
1598		       0xff, 0xff, 0xff, 0xff,
1599		       0xff, 0xff, 0xff, 0xff,
1600		       0xff, 0xff, SCSI_GROUP_NUMBER_MASK, SCSI_CONTROL_MASK},
1601};
1602
1603static struct target_opcode_descriptor tcm_opcode_start_stop = {
1604	.support = SCSI_SUPPORT_FULL,
1605	.opcode = START_STOP,
1606	.cdb_size = 6,
1607	.usage_bits = {START_STOP, 0x01, 0x00, 0x00,
1608		       0x01, SCSI_CONTROL_MASK},
1609};
1610
1611static struct target_opcode_descriptor tcm_opcode_mode_select = {
1612	.support = SCSI_SUPPORT_FULL,
1613	.opcode = MODE_SELECT,
1614	.cdb_size = 6,
1615	.usage_bits = {MODE_SELECT, 0x10, 0x00, 0x00,
1616		       0xff, SCSI_CONTROL_MASK},
1617};
1618
1619static struct target_opcode_descriptor tcm_opcode_mode_select10 = {
1620	.support = SCSI_SUPPORT_FULL,
1621	.opcode = MODE_SELECT_10,
1622	.cdb_size = 10,
1623	.usage_bits = {MODE_SELECT_10, 0x10, 0x00, 0x00,
1624		       0x00, 0x00, 0x00, 0xff,
1625		       0xff, SCSI_CONTROL_MASK},
1626};
1627
1628static struct target_opcode_descriptor tcm_opcode_mode_sense = {
1629	.support = SCSI_SUPPORT_FULL,
1630	.opcode = MODE_SENSE,
1631	.cdb_size = 6,
1632	.usage_bits = {MODE_SENSE, 0x08, 0xff, 0xff,
1633		       0xff, SCSI_CONTROL_MASK},
1634};
1635
1636static struct target_opcode_descriptor tcm_opcode_mode_sense10 = {
1637	.support = SCSI_SUPPORT_FULL,
1638	.opcode = MODE_SENSE_10,
1639	.cdb_size = 10,
1640	.usage_bits = {MODE_SENSE_10, 0x18, 0xff, 0xff,
1641		       0x00, 0x00, 0x00, 0xff,
1642		       0xff, SCSI_CONTROL_MASK},
1643};
1644
1645static struct target_opcode_descriptor tcm_opcode_pri_read_keys = {
1646	.support = SCSI_SUPPORT_FULL,
1647	.serv_action_valid = 1,
1648	.opcode = PERSISTENT_RESERVE_IN,
1649	.service_action = PRI_READ_KEYS,
1650	.cdb_size = 10,
1651	.usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_KEYS, 0x00, 0x00,
1652		       0x00, 0x00, 0x00, 0xff,
1653		       0xff, SCSI_CONTROL_MASK},
1654};
1655
1656static struct target_opcode_descriptor tcm_opcode_pri_read_resrv = {
1657	.support = SCSI_SUPPORT_FULL,
1658	.serv_action_valid = 1,
1659	.opcode = PERSISTENT_RESERVE_IN,
1660	.service_action = PRI_READ_RESERVATION,
1661	.cdb_size = 10,
1662	.usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_RESERVATION, 0x00, 0x00,
1663		       0x00, 0x00, 0x00, 0xff,
1664		       0xff, SCSI_CONTROL_MASK},
1665};
1666
1667static bool tcm_is_pr_enabled(struct se_cmd *cmd)
1668{
1669	struct se_device *dev = cmd->se_dev;
1670
1671	return dev->dev_attrib.emulate_pr;
1672}
1673
1674static struct target_opcode_descriptor tcm_opcode_pri_read_caps = {
1675	.support = SCSI_SUPPORT_FULL,
1676	.serv_action_valid = 1,
1677	.opcode = PERSISTENT_RESERVE_IN,
1678	.service_action = PRI_REPORT_CAPABILITIES,
1679	.cdb_size = 10,
1680	.usage_bits = {PERSISTENT_RESERVE_IN, PRI_REPORT_CAPABILITIES, 0x00, 0x00,
1681		       0x00, 0x00, 0x00, 0xff,
1682		       0xff, SCSI_CONTROL_MASK},
1683	.enabled = tcm_is_pr_enabled,
1684};
1685
1686static struct target_opcode_descriptor tcm_opcode_pri_read_full_status = {
1687	.support = SCSI_SUPPORT_FULL,
1688	.serv_action_valid = 1,
1689	.opcode = PERSISTENT_RESERVE_IN,
1690	.service_action = PRI_READ_FULL_STATUS,
1691	.cdb_size = 10,
1692	.usage_bits = {PERSISTENT_RESERVE_IN, PRI_READ_FULL_STATUS, 0x00, 0x00,
1693		       0x00, 0x00, 0x00, 0xff,
1694		       0xff, SCSI_CONTROL_MASK},
1695	.enabled = tcm_is_pr_enabled,
1696};
1697
1698static struct target_opcode_descriptor tcm_opcode_pro_register = {
1699	.support = SCSI_SUPPORT_FULL,
1700	.serv_action_valid = 1,
1701	.opcode = PERSISTENT_RESERVE_OUT,
1702	.service_action = PRO_REGISTER,
1703	.cdb_size = 10,
1704	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER, 0xff, 0x00,
1705		       0x00, 0xff, 0xff, 0xff,
1706		       0xff, SCSI_CONTROL_MASK},
1707	.enabled = tcm_is_pr_enabled,
1708};
1709
1710static struct target_opcode_descriptor tcm_opcode_pro_reserve = {
1711	.support = SCSI_SUPPORT_FULL,
1712	.serv_action_valid = 1,
1713	.opcode = PERSISTENT_RESERVE_OUT,
1714	.service_action = PRO_RESERVE,
1715	.cdb_size = 10,
1716	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RESERVE, 0xff, 0x00,
1717		       0x00, 0xff, 0xff, 0xff,
1718		       0xff, SCSI_CONTROL_MASK},
1719	.enabled = tcm_is_pr_enabled,
1720};
1721
1722static struct target_opcode_descriptor tcm_opcode_pro_release = {
1723	.support = SCSI_SUPPORT_FULL,
1724	.serv_action_valid = 1,
1725	.opcode = PERSISTENT_RESERVE_OUT,
1726	.service_action = PRO_RELEASE,
1727	.cdb_size = 10,
1728	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_RELEASE, 0xff, 0x00,
1729		       0x00, 0xff, 0xff, 0xff,
1730		       0xff, SCSI_CONTROL_MASK},
1731	.enabled = tcm_is_pr_enabled,
1732};
1733
1734static struct target_opcode_descriptor tcm_opcode_pro_clear = {
1735	.support = SCSI_SUPPORT_FULL,
1736	.serv_action_valid = 1,
1737	.opcode = PERSISTENT_RESERVE_OUT,
1738	.service_action = PRO_CLEAR,
1739	.cdb_size = 10,
1740	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_CLEAR, 0xff, 0x00,
1741		       0x00, 0xff, 0xff, 0xff,
1742		       0xff, SCSI_CONTROL_MASK},
1743	.enabled = tcm_is_pr_enabled,
1744};
1745
1746static struct target_opcode_descriptor tcm_opcode_pro_preempt = {
1747	.support = SCSI_SUPPORT_FULL,
1748	.serv_action_valid = 1,
1749	.opcode = PERSISTENT_RESERVE_OUT,
1750	.service_action = PRO_PREEMPT,
1751	.cdb_size = 10,
1752	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT, 0xff, 0x00,
1753		       0x00, 0xff, 0xff, 0xff,
1754		       0xff, SCSI_CONTROL_MASK},
1755	.enabled = tcm_is_pr_enabled,
1756};
1757
1758static struct target_opcode_descriptor tcm_opcode_pro_preempt_abort = {
1759	.support = SCSI_SUPPORT_FULL,
1760	.serv_action_valid = 1,
1761	.opcode = PERSISTENT_RESERVE_OUT,
1762	.service_action = PRO_PREEMPT_AND_ABORT,
1763	.cdb_size = 10,
1764	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_PREEMPT_AND_ABORT, 0xff, 0x00,
1765		       0x00, 0xff, 0xff, 0xff,
1766		       0xff, SCSI_CONTROL_MASK},
1767	.enabled = tcm_is_pr_enabled,
1768};
1769
1770static struct target_opcode_descriptor tcm_opcode_pro_reg_ign_exist = {
1771	.support = SCSI_SUPPORT_FULL,
1772	.serv_action_valid = 1,
1773	.opcode = PERSISTENT_RESERVE_OUT,
1774	.service_action = PRO_REGISTER_AND_IGNORE_EXISTING_KEY,
1775	.cdb_size = 10,
1776	.usage_bits = {
1777		PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_IGNORE_EXISTING_KEY,
1778		0xff, 0x00,
1779		0x00, 0xff, 0xff, 0xff,
1780		0xff, SCSI_CONTROL_MASK},
1781	.enabled = tcm_is_pr_enabled,
1782};
1783
1784static struct target_opcode_descriptor tcm_opcode_pro_register_move = {
1785	.support = SCSI_SUPPORT_FULL,
1786	.serv_action_valid = 1,
1787	.opcode = PERSISTENT_RESERVE_OUT,
1788	.service_action = PRO_REGISTER_AND_MOVE,
1789	.cdb_size = 10,
1790	.usage_bits = {PERSISTENT_RESERVE_OUT, PRO_REGISTER_AND_MOVE, 0xff, 0x00,
1791		       0x00, 0xff, 0xff, 0xff,
1792		       0xff, SCSI_CONTROL_MASK},
1793	.enabled = tcm_is_pr_enabled,
1794};
1795
1796static bool tcm_is_scsi2_reservations_enabled(struct se_cmd *cmd)
1797{
1798	struct se_device *dev = cmd->se_dev;
1799
1800	return dev->dev_attrib.emulate_pr;
1801}
1802
1803static struct target_opcode_descriptor tcm_opcode_release = {
1804	.support = SCSI_SUPPORT_FULL,
1805	.opcode = RELEASE,
1806	.cdb_size = 6,
1807	.usage_bits = {RELEASE, 0x00, 0x00, 0x00,
1808		       0x00, SCSI_CONTROL_MASK},
1809	.enabled = tcm_is_scsi2_reservations_enabled,
1810};
1811
1812static struct target_opcode_descriptor tcm_opcode_release10 = {
1813	.support = SCSI_SUPPORT_FULL,
1814	.opcode = RELEASE_10,
1815	.cdb_size = 10,
1816	.usage_bits = {RELEASE_10, 0x00, 0x00, 0x00,
1817		       0x00, 0x00, 0x00, 0xff,
1818		       0xff, SCSI_CONTROL_MASK},
1819	.enabled = tcm_is_scsi2_reservations_enabled,
1820};
1821
1822static struct target_opcode_descriptor tcm_opcode_reserve = {
1823	.support = SCSI_SUPPORT_FULL,
1824	.opcode = RESERVE,
1825	.cdb_size = 6,
1826	.usage_bits = {RESERVE, 0x00, 0x00, 0x00,
1827		       0x00, SCSI_CONTROL_MASK},
1828	.enabled = tcm_is_scsi2_reservations_enabled,
1829};
1830
1831static struct target_opcode_descriptor tcm_opcode_reserve10 = {
1832	.support = SCSI_SUPPORT_FULL,
1833	.opcode = RESERVE_10,
1834	.cdb_size = 10,
1835	.usage_bits = {RESERVE_10, 0x00, 0x00, 0x00,
1836		       0x00, 0x00, 0x00, 0xff,
1837		       0xff, SCSI_CONTROL_MASK},
1838	.enabled = tcm_is_scsi2_reservations_enabled,
1839};
1840
1841static struct target_opcode_descriptor tcm_opcode_request_sense = {
1842	.support = SCSI_SUPPORT_FULL,
1843	.opcode = REQUEST_SENSE,
1844	.cdb_size = 6,
1845	.usage_bits = {REQUEST_SENSE, 0x00, 0x00, 0x00,
1846		       0xff, SCSI_CONTROL_MASK},
1847};
1848
1849static struct target_opcode_descriptor tcm_opcode_inquiry = {
1850	.support = SCSI_SUPPORT_FULL,
1851	.opcode = INQUIRY,
1852	.cdb_size = 6,
1853	.usage_bits = {INQUIRY, 0x01, 0xff, 0xff,
1854		       0xff, SCSI_CONTROL_MASK},
1855};
1856
1857static bool tcm_is_3pc_enabled(struct se_cmd *cmd)
1858{
1859	struct se_device *dev = cmd->se_dev;
1860
1861	return dev->dev_attrib.emulate_3pc;
1862}
1863
1864static struct target_opcode_descriptor tcm_opcode_extended_copy_lid1 = {
1865	.support = SCSI_SUPPORT_FULL,
1866	.serv_action_valid = 1,
1867	.opcode = EXTENDED_COPY,
1868	.cdb_size = 16,
1869	.usage_bits = {EXTENDED_COPY, 0x00, 0x00, 0x00,
1870		       0x00, 0x00, 0x00, 0x00,
1871		       0x00, 0x00, 0xff, 0xff,
1872		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1873	.enabled = tcm_is_3pc_enabled,
1874};
1875
1876static struct target_opcode_descriptor tcm_opcode_rcv_copy_res_op_params = {
1877	.support = SCSI_SUPPORT_FULL,
1878	.serv_action_valid = 1,
1879	.opcode = RECEIVE_COPY_RESULTS,
1880	.service_action = RCR_SA_OPERATING_PARAMETERS,
1881	.cdb_size = 16,
1882	.usage_bits = {RECEIVE_COPY_RESULTS, RCR_SA_OPERATING_PARAMETERS,
1883		       0x00, 0x00,
1884		       0x00, 0x00, 0x00, 0x00,
1885		       0x00, 0x00, 0xff, 0xff,
1886		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1887	.enabled = tcm_is_3pc_enabled,
1888};
1889
1890static struct target_opcode_descriptor tcm_opcode_report_luns = {
1891	.support = SCSI_SUPPORT_FULL,
1892	.opcode = REPORT_LUNS,
1893	.cdb_size = 12,
1894	.usage_bits = {REPORT_LUNS, 0x00, 0xff, 0x00,
1895		       0x00, 0x00, 0xff, 0xff,
1896		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1897};
1898
1899static struct target_opcode_descriptor tcm_opcode_test_unit_ready = {
1900	.support = SCSI_SUPPORT_FULL,
1901	.opcode = TEST_UNIT_READY,
1902	.cdb_size = 6,
1903	.usage_bits = {TEST_UNIT_READY, 0x00, 0x00, 0x00,
1904		       0x00, SCSI_CONTROL_MASK},
1905};
1906
1907static struct target_opcode_descriptor tcm_opcode_report_target_pgs = {
1908	.support = SCSI_SUPPORT_FULL,
1909	.serv_action_valid = 1,
1910	.opcode = MAINTENANCE_IN,
1911	.service_action = MI_REPORT_TARGET_PGS,
1912	.cdb_size = 12,
1913	.usage_bits = {MAINTENANCE_IN, 0xE0 | MI_REPORT_TARGET_PGS, 0x00, 0x00,
1914		       0x00, 0x00, 0xff, 0xff,
1915		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1916};
1917
1918
1919static bool spc_rsoc_enabled(struct se_cmd *cmd)
1920{
1921	struct se_device *dev = cmd->se_dev;
1922
1923	return dev->dev_attrib.emulate_rsoc;
1924}
1925
1926static struct target_opcode_descriptor tcm_opcode_report_supp_opcodes = {
1927	.support = SCSI_SUPPORT_FULL,
1928	.serv_action_valid = 1,
1929	.opcode = MAINTENANCE_IN,
1930	.service_action = MI_REPORT_SUPPORTED_OPERATION_CODES,
1931	.cdb_size = 12,
1932	.usage_bits = {MAINTENANCE_IN, MI_REPORT_SUPPORTED_OPERATION_CODES,
1933		       0x87, 0xff,
1934		       0xff, 0xff, 0xff, 0xff,
1935		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1936	.enabled = spc_rsoc_enabled,
1937};
1938
1939static bool tcm_is_set_tpg_enabled(struct se_cmd *cmd)
1940{
1941	struct t10_alua_tg_pt_gp *l_tg_pt_gp;
1942	struct se_lun *l_lun = cmd->se_lun;
1943
1944	rcu_read_lock();
1945	l_tg_pt_gp = rcu_dereference(l_lun->lun_tg_pt_gp);
1946	if (!l_tg_pt_gp) {
1947		rcu_read_unlock();
1948		return false;
1949	}
1950	if (!(l_tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICIT_ALUA)) {
1951		rcu_read_unlock();
1952		return false;
1953	}
1954	rcu_read_unlock();
1955
1956	return true;
1957}
1958
1959static struct target_opcode_descriptor tcm_opcode_set_tpg = {
1960	.support = SCSI_SUPPORT_FULL,
1961	.serv_action_valid = 1,
1962	.opcode = MAINTENANCE_OUT,
1963	.service_action = MO_SET_TARGET_PGS,
1964	.cdb_size = 12,
1965	.usage_bits = {MAINTENANCE_OUT, MO_SET_TARGET_PGS, 0x00, 0x00,
1966		       0x00, 0x00, 0xff, 0xff,
1967		       0xff, 0xff, 0x00, SCSI_CONTROL_MASK},
1968	.enabled = tcm_is_set_tpg_enabled,
1969};
1970
1971static struct target_opcode_descriptor *tcm_supported_opcodes[] = {
1972	&tcm_opcode_read6,
1973	&tcm_opcode_read10,
1974	&tcm_opcode_read12,
1975	&tcm_opcode_read16,
1976	&tcm_opcode_write6,
1977	&tcm_opcode_write10,
1978	&tcm_opcode_write_verify10,
1979	&tcm_opcode_write12,
1980	&tcm_opcode_write16,
1981	&tcm_opcode_write_verify16,
1982	&tcm_opcode_write_same32,
1983	&tcm_opcode_compare_write,
1984	&tcm_opcode_read_capacity,
1985	&tcm_opcode_read_capacity16,
1986	&tcm_opcode_read_report_refferals,
1987	&tcm_opcode_sync_cache,
1988	&tcm_opcode_sync_cache16,
1989	&tcm_opcode_unmap,
1990	&tcm_opcode_write_same,
1991	&tcm_opcode_write_same16,
1992	&tcm_opcode_verify,
1993	&tcm_opcode_verify16,
1994	&tcm_opcode_start_stop,
1995	&tcm_opcode_mode_select,
1996	&tcm_opcode_mode_select10,
1997	&tcm_opcode_mode_sense,
1998	&tcm_opcode_mode_sense10,
1999	&tcm_opcode_pri_read_keys,
2000	&tcm_opcode_pri_read_resrv,
2001	&tcm_opcode_pri_read_caps,
2002	&tcm_opcode_pri_read_full_status,
2003	&tcm_opcode_pro_register,
2004	&tcm_opcode_pro_reserve,
2005	&tcm_opcode_pro_release,
2006	&tcm_opcode_pro_clear,
2007	&tcm_opcode_pro_preempt,
2008	&tcm_opcode_pro_preempt_abort,
2009	&tcm_opcode_pro_reg_ign_exist,
2010	&tcm_opcode_pro_register_move,
2011	&tcm_opcode_release,
2012	&tcm_opcode_release10,
2013	&tcm_opcode_reserve,
2014	&tcm_opcode_reserve10,
2015	&tcm_opcode_request_sense,
2016	&tcm_opcode_inquiry,
2017	&tcm_opcode_extended_copy_lid1,
2018	&tcm_opcode_rcv_copy_res_op_params,
2019	&tcm_opcode_report_luns,
2020	&tcm_opcode_test_unit_ready,
2021	&tcm_opcode_report_target_pgs,
2022	&tcm_opcode_report_supp_opcodes,
2023	&tcm_opcode_set_tpg,
2024};
2025
2026static int
2027spc_rsoc_encode_command_timeouts_descriptor(unsigned char *buf, u8 ctdp,
2028				struct target_opcode_descriptor *descr)
2029{
2030	if (!ctdp)
2031		return 0;
2032
2033	put_unaligned_be16(0xa, buf);
2034	buf[3] = descr->specific_timeout;
2035	put_unaligned_be32(descr->nominal_timeout, &buf[4]);
2036	put_unaligned_be32(descr->recommended_timeout, &buf[8]);
2037
2038	return 12;
2039}
2040
2041static int
2042spc_rsoc_encode_command_descriptor(unsigned char *buf, u8 ctdp,
2043				   struct target_opcode_descriptor *descr)
2044{
2045	int td_size = 0;
2046
2047	buf[0] = descr->opcode;
2048
2049	put_unaligned_be16(descr->service_action, &buf[2]);
2050
2051	buf[5] = (ctdp << 1) | descr->serv_action_valid;
2052	put_unaligned_be16(descr->cdb_size, &buf[6]);
2053
2054	td_size = spc_rsoc_encode_command_timeouts_descriptor(&buf[8], ctdp,
2055							      descr);
2056
2057	return 8 + td_size;
2058}
2059
2060static int
2061spc_rsoc_encode_one_command_descriptor(unsigned char *buf, u8 ctdp,
2062				       struct target_opcode_descriptor *descr,
2063				       struct se_device *dev)
2064{
2065	int td_size = 0;
2066
2067	if (!descr) {
2068		buf[1] = (ctdp << 7) | SCSI_SUPPORT_NOT_SUPPORTED;
2069		return 2;
2070	}
2071
2072	buf[1] = (ctdp << 7) | SCSI_SUPPORT_FULL;
2073	put_unaligned_be16(descr->cdb_size, &buf[2]);
2074	memcpy(&buf[4], descr->usage_bits, descr->cdb_size);
2075	if (descr->update_usage_bits)
2076		descr->update_usage_bits(&buf[4], dev);
2077
2078	td_size = spc_rsoc_encode_command_timeouts_descriptor(
2079			&buf[4 + descr->cdb_size], ctdp, descr);
2080
2081	return 4 + descr->cdb_size + td_size;
2082}
2083
2084static sense_reason_t
2085spc_rsoc_get_descr(struct se_cmd *cmd, struct target_opcode_descriptor **opcode)
2086{
2087	struct target_opcode_descriptor *descr;
2088	struct se_session *sess = cmd->se_sess;
2089	unsigned char *cdb = cmd->t_task_cdb;
2090	u8 opts = cdb[2] & 0x3;
2091	u8 requested_opcode;
2092	u16 requested_sa;
2093	int i;
2094
2095	requested_opcode = cdb[3];
2096	requested_sa = ((u16)cdb[4]) << 8 | cdb[5];
2097	*opcode = NULL;
2098
2099	if (opts > 3) {
2100		pr_debug("TARGET_CORE[%s]: Invalid REPORT SUPPORTED OPERATION CODES"
2101			" with unsupported REPORTING OPTIONS %#x for 0x%08llx from %s\n",
2102			cmd->se_tfo->fabric_name, opts,
2103			cmd->se_lun->unpacked_lun,
2104			sess->se_node_acl->initiatorname);
2105		return TCM_INVALID_CDB_FIELD;
2106	}
2107
2108	for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) {
2109		descr = tcm_supported_opcodes[i];
2110		if (descr->opcode != requested_opcode)
2111			continue;
2112
2113		switch (opts) {
2114		case 0x1:
2115			/*
2116			 * If the REQUESTED OPERATION CODE field specifies an
2117			 * operation code for which the device server implements
2118			 * service actions, then the device server shall
2119			 * terminate the command with CHECK CONDITION status,
2120			 * with the sense key set to ILLEGAL REQUEST, and the
2121			 * additional sense code set to INVALID FIELD IN CDB
2122			 */
2123			if (descr->serv_action_valid)
2124				return TCM_INVALID_CDB_FIELD;
2125
2126			if (!descr->enabled || descr->enabled(cmd))
2127				*opcode = descr;
2128			break;
2129		case 0x2:
2130			/*
2131			 * If the REQUESTED OPERATION CODE field specifies an
2132			 * operation code for which the device server does not
2133			 * implement service actions, then the device server
2134			 * shall terminate the command with CHECK CONDITION
2135			 * status, with the sense key set to ILLEGAL REQUEST,
2136			 * and the additional sense code set to INVALID FIELD IN CDB.
2137			 */
2138			if (descr->serv_action_valid &&
2139			    descr->service_action == requested_sa) {
2140				if (!descr->enabled || descr->enabled(cmd))
2141					*opcode = descr;
2142			} else if (!descr->serv_action_valid)
2143				return TCM_INVALID_CDB_FIELD;
2144			break;
2145		case 0x3:
2146			/*
2147			 * The command support data for the operation code and
2148			 * service action a specified in the REQUESTED OPERATION
2149			 * CODE field and REQUESTED SERVICE ACTION field shall
2150			 * be returned in the one_command parameter data format.
2151			 */
2152			if (descr->service_action == requested_sa)
2153				if (!descr->enabled || descr->enabled(cmd))
2154					*opcode = descr;
2155			break;
2156		}
2157	}
2158
2159	return 0;
2160}
2161
2162static sense_reason_t
2163spc_emulate_report_supp_op_codes(struct se_cmd *cmd)
2164{
2165	int descr_num = ARRAY_SIZE(tcm_supported_opcodes);
2166	struct target_opcode_descriptor *descr = NULL;
2167	unsigned char *cdb = cmd->t_task_cdb;
2168	u8 rctd = (cdb[2] >> 7) & 0x1;
2169	unsigned char *buf = NULL;
2170	int response_length = 0;
2171	u8 opts = cdb[2] & 0x3;
2172	unsigned char *rbuf;
2173	sense_reason_t ret = 0;
2174	int i;
2175
2176	if (!cmd->se_dev->dev_attrib.emulate_rsoc)
2177		return TCM_UNSUPPORTED_SCSI_OPCODE;
2178
2179	rbuf = transport_kmap_data_sg(cmd);
2180	if (cmd->data_length && !rbuf) {
2181		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2182		goto out;
2183	}
2184
2185	if (opts == 0)
2186		response_length = 4 + (8 + rctd * 12) * descr_num;
2187	else {
2188		ret = spc_rsoc_get_descr(cmd, &descr);
2189		if (ret)
2190			goto out;
2191
2192		if (descr)
2193			response_length = 4 + descr->cdb_size + rctd * 12;
2194		else
2195			response_length = 2;
2196	}
2197
2198	buf = kzalloc(response_length, GFP_KERNEL);
2199	if (!buf) {
2200		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2201		goto out;
2202	}
2203	response_length = 0;
2204
2205	if (opts == 0) {
2206		response_length += 4;
2207
2208		for (i = 0; i < ARRAY_SIZE(tcm_supported_opcodes); i++) {
2209			descr = tcm_supported_opcodes[i];
2210			if (descr->enabled && !descr->enabled(cmd))
2211				continue;
2212
2213			response_length += spc_rsoc_encode_command_descriptor(
2214					&buf[response_length], rctd, descr);
2215		}
2216		put_unaligned_be32(response_length - 3, buf);
2217	} else {
2218		response_length = spc_rsoc_encode_one_command_descriptor(
2219				&buf[response_length], rctd, descr,
2220				cmd->se_dev);
2221	}
2222
2223	memcpy(rbuf, buf, min_t(u32, response_length, cmd->data_length));
2224out:
2225	kfree(buf);
2226	transport_kunmap_data_sg(cmd);
2227
2228	if (!ret)
2229		target_complete_cmd_with_length(cmd, SAM_STAT_GOOD, response_length);
2230	return ret;
2231}
2232
2233sense_reason_t
2234spc_parse_cdb(struct se_cmd *cmd, unsigned int *size)
2235{
2236	struct se_device *dev = cmd->se_dev;
2237	unsigned char *cdb = cmd->t_task_cdb;
2238
2239	if (!dev->dev_attrib.emulate_pr &&
2240	    ((cdb[0] == PERSISTENT_RESERVE_IN) ||
2241	     (cdb[0] == PERSISTENT_RESERVE_OUT) ||
2242	     (cdb[0] == RELEASE || cdb[0] == RELEASE_10) ||
2243	     (cdb[0] == RESERVE || cdb[0] == RESERVE_10))) {
2244		return TCM_UNSUPPORTED_SCSI_OPCODE;
2245	}
2246
2247	switch (cdb[0]) {
2248	case MODE_SELECT:
2249		*size = cdb[4];
2250		cmd->execute_cmd = spc_emulate_modeselect;
2251		break;
2252	case MODE_SELECT_10:
2253		*size = get_unaligned_be16(&cdb[7]);
2254		cmd->execute_cmd = spc_emulate_modeselect;
2255		break;
2256	case MODE_SENSE:
2257		*size = cdb[4];
2258		cmd->execute_cmd = spc_emulate_modesense;
2259		break;
2260	case MODE_SENSE_10:
2261		*size = get_unaligned_be16(&cdb[7]);
2262		cmd->execute_cmd = spc_emulate_modesense;
2263		break;
2264	case LOG_SELECT:
2265	case LOG_SENSE:
2266		*size = get_unaligned_be16(&cdb[7]);
2267		break;
2268	case PERSISTENT_RESERVE_IN:
2269		*size = get_unaligned_be16(&cdb[7]);
2270		cmd->execute_cmd = target_scsi3_emulate_pr_in;
2271		break;
2272	case PERSISTENT_RESERVE_OUT:
2273		*size = get_unaligned_be32(&cdb[5]);
2274		cmd->execute_cmd = target_scsi3_emulate_pr_out;
2275		break;
2276	case RELEASE:
2277	case RELEASE_10:
2278		if (cdb[0] == RELEASE_10)
2279			*size = get_unaligned_be16(&cdb[7]);
2280		else
2281			*size = cmd->data_length;
2282
2283		cmd->execute_cmd = target_scsi2_reservation_release;
2284		break;
2285	case RESERVE:
2286	case RESERVE_10:
2287		/*
2288		 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2289		 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2290		 */
2291		if (cdb[0] == RESERVE_10)
2292			*size = get_unaligned_be16(&cdb[7]);
2293		else
2294			*size = cmd->data_length;
2295
2296		cmd->execute_cmd = target_scsi2_reservation_reserve;
2297		break;
2298	case REQUEST_SENSE:
2299		*size = cdb[4];
2300		cmd->execute_cmd = spc_emulate_request_sense;
2301		break;
2302	case INQUIRY:
2303		*size = get_unaligned_be16(&cdb[3]);
2304
2305		/*
2306		 * Do implicit HEAD_OF_QUEUE processing for INQUIRY.
2307		 * See spc4r17 section 5.3
2308		 */
2309		cmd->sam_task_attr = TCM_HEAD_TAG;
2310		cmd->execute_cmd = spc_emulate_inquiry;
2311		break;
2312	case SECURITY_PROTOCOL_IN:
2313	case SECURITY_PROTOCOL_OUT:
2314		*size = get_unaligned_be32(&cdb[6]);
2315		break;
2316	case EXTENDED_COPY:
2317		*size = get_unaligned_be32(&cdb[10]);
2318		cmd->execute_cmd = target_do_xcopy;
2319		break;
2320	case RECEIVE_COPY_RESULTS:
2321		*size = get_unaligned_be32(&cdb[10]);
2322		cmd->execute_cmd = target_do_receive_copy_results;
2323		break;
2324	case READ_ATTRIBUTE:
2325	case WRITE_ATTRIBUTE:
2326		*size = get_unaligned_be32(&cdb[10]);
2327		break;
2328	case RECEIVE_DIAGNOSTIC:
2329	case SEND_DIAGNOSTIC:
2330		*size = get_unaligned_be16(&cdb[3]);
2331		break;
2332	case WRITE_BUFFER:
2333		*size = get_unaligned_be24(&cdb[6]);
2334		break;
2335	case REPORT_LUNS:
2336		cmd->execute_cmd = spc_emulate_report_luns;
2337		*size = get_unaligned_be32(&cdb[6]);
2338		/*
2339		 * Do implicit HEAD_OF_QUEUE processing for REPORT_LUNS
2340		 * See spc4r17 section 5.3
2341		 */
2342		cmd->sam_task_attr = TCM_HEAD_TAG;
2343		break;
2344	case TEST_UNIT_READY:
2345		cmd->execute_cmd = spc_emulate_testunitready;
2346		*size = 0;
2347		break;
2348	case MAINTENANCE_IN:
2349		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2350			/*
2351			 * MAINTENANCE_IN from SCC-2
2352			 * Check for emulated MI_REPORT_TARGET_PGS
2353			 */
2354			if ((cdb[1] & 0x1f) == MI_REPORT_TARGET_PGS) {
2355				cmd->execute_cmd =
2356					target_emulate_report_target_port_groups;
2357			}
2358			if ((cdb[1] & 0x1f) ==
2359			    MI_REPORT_SUPPORTED_OPERATION_CODES)
2360				cmd->execute_cmd =
2361					spc_emulate_report_supp_op_codes;
2362			*size = get_unaligned_be32(&cdb[6]);
2363		} else {
2364			/*
2365			 * GPCMD_SEND_KEY from multi media commands
2366			 */
2367			*size = get_unaligned_be16(&cdb[8]);
2368		}
2369		break;
2370	case MAINTENANCE_OUT:
2371		if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2372			/*
2373			 * MAINTENANCE_OUT from SCC-2
2374			 * Check for emulated MO_SET_TARGET_PGS.
2375			 */
2376			if (cdb[1] == MO_SET_TARGET_PGS) {
2377				cmd->execute_cmd =
2378					target_emulate_set_target_port_groups;
2379			}
2380			*size = get_unaligned_be32(&cdb[6]);
2381		} else {
2382			/*
2383			 * GPCMD_SEND_KEY from multi media commands
2384			 */
2385			*size = get_unaligned_be16(&cdb[8]);
2386		}
2387		break;
2388	default:
2389		return TCM_UNSUPPORTED_SCSI_OPCODE;
2390	}
2391
2392	return 0;
2393}
2394EXPORT_SYMBOL(spc_parse_cdb);