Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2012 - 2014 Allwinner Tech
  4 * Pan Nan <pannan@allwinnertech.com>
  5 *
  6 * Copyright (C) 2014 Maxime Ripard
  7 * Maxime Ripard <maxime.ripard@free-electrons.com>
  8 */
  9
 10#include <linux/clk.h>
 11#include <linux/delay.h>
 12#include <linux/device.h>
 13#include <linux/interrupt.h>
 14#include <linux/io.h>
 15#include <linux/module.h>
 16#include <linux/platform_device.h>
 17#include <linux/pm_runtime.h>
 18
 19#include <linux/spi/spi.h>
 20
 21#define SUN4I_FIFO_DEPTH		64
 22
 23#define SUN4I_RXDATA_REG		0x00
 24
 25#define SUN4I_TXDATA_REG		0x04
 26
 27#define SUN4I_CTL_REG			0x08
 28#define SUN4I_CTL_ENABLE			BIT(0)
 29#define SUN4I_CTL_MASTER			BIT(1)
 30#define SUN4I_CTL_CPHA				BIT(2)
 31#define SUN4I_CTL_CPOL				BIT(3)
 32#define SUN4I_CTL_CS_ACTIVE_LOW			BIT(4)
 33#define SUN4I_CTL_LMTF				BIT(6)
 34#define SUN4I_CTL_TF_RST			BIT(8)
 35#define SUN4I_CTL_RF_RST			BIT(9)
 36#define SUN4I_CTL_XCH				BIT(10)
 37#define SUN4I_CTL_CS_MASK			0x3000
 38#define SUN4I_CTL_CS(cs)			(((cs) << 12) & SUN4I_CTL_CS_MASK)
 39#define SUN4I_CTL_DHB				BIT(15)
 40#define SUN4I_CTL_CS_MANUAL			BIT(16)
 41#define SUN4I_CTL_CS_LEVEL			BIT(17)
 42#define SUN4I_CTL_TP				BIT(18)
 43
 44#define SUN4I_INT_CTL_REG		0x0c
 45#define SUN4I_INT_CTL_RF_F34			BIT(4)
 46#define SUN4I_INT_CTL_TF_E34			BIT(12)
 47#define SUN4I_INT_CTL_TC			BIT(16)
 48
 49#define SUN4I_INT_STA_REG		0x10
 50
 51#define SUN4I_DMA_CTL_REG		0x14
 52
 53#define SUN4I_WAIT_REG			0x18
 54
 55#define SUN4I_CLK_CTL_REG		0x1c
 56#define SUN4I_CLK_CTL_CDR2_MASK			0xff
 57#define SUN4I_CLK_CTL_CDR2(div)			((div) & SUN4I_CLK_CTL_CDR2_MASK)
 58#define SUN4I_CLK_CTL_CDR1_MASK			0xf
 59#define SUN4I_CLK_CTL_CDR1(div)			(((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
 60#define SUN4I_CLK_CTL_DRS			BIT(12)
 61
 62#define SUN4I_MAX_XFER_SIZE			0xffffff
 63
 64#define SUN4I_BURST_CNT_REG		0x20
 65#define SUN4I_BURST_CNT(cnt)			((cnt) & SUN4I_MAX_XFER_SIZE)
 66
 67#define SUN4I_XMIT_CNT_REG		0x24
 68#define SUN4I_XMIT_CNT(cnt)			((cnt) & SUN4I_MAX_XFER_SIZE)
 69
 70
 71#define SUN4I_FIFO_STA_REG		0x28
 72#define SUN4I_FIFO_STA_RF_CNT_MASK		0x7f
 73#define SUN4I_FIFO_STA_RF_CNT_BITS		0
 74#define SUN4I_FIFO_STA_TF_CNT_MASK		0x7f
 75#define SUN4I_FIFO_STA_TF_CNT_BITS		16
 76
 77struct sun4i_spi {
 78	struct spi_master	*master;
 79	void __iomem		*base_addr;
 80	struct clk		*hclk;
 81	struct clk		*mclk;
 82
 83	struct completion	done;
 84
 85	const u8		*tx_buf;
 86	u8			*rx_buf;
 87	int			len;
 88};
 89
 90static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
 91{
 92	return readl(sspi->base_addr + reg);
 93}
 94
 95static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
 96{
 97	writel(value, sspi->base_addr + reg);
 98}
 99
100static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi)
101{
102	u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
103
104	reg >>= SUN4I_FIFO_STA_TF_CNT_BITS;
105
106	return reg & SUN4I_FIFO_STA_TF_CNT_MASK;
107}
108
109static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask)
110{
111	u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
112
113	reg |= mask;
114	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
115}
116
117static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask)
118{
119	u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
120
121	reg &= ~mask;
122	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
123}
124
125static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
126{
127	u32 reg, cnt;
128	u8 byte;
129
130	/* See how much data is available */
131	reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
132	reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
133	cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
134
135	if (len > cnt)
136		len = cnt;
137
138	while (len--) {
139		byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
140		if (sspi->rx_buf)
141			*sspi->rx_buf++ = byte;
142	}
143}
144
145static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
146{
147	u32 cnt;
148	u8 byte;
149
150	/* See how much data we can fit */
151	cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi);
152
153	len = min3(len, (int)cnt, sspi->len);
154
155	while (len--) {
156		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
157		writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
158		sspi->len--;
159	}
160}
161
162static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
163{
164	struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
165	u32 reg;
166
167	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
168
169	reg &= ~SUN4I_CTL_CS_MASK;
170	reg |= SUN4I_CTL_CS(spi->chip_select);
171
172	/* We want to control the chip select manually */
173	reg |= SUN4I_CTL_CS_MANUAL;
174
175	if (enable)
176		reg |= SUN4I_CTL_CS_LEVEL;
177	else
178		reg &= ~SUN4I_CTL_CS_LEVEL;
179
180	/*
181	 * Even though this looks irrelevant since we are supposed to
182	 * be controlling the chip select manually, this bit also
183	 * controls the levels of the chip select for inactive
184	 * devices.
185	 *
186	 * If we don't set it, the chip select level will go low by
187	 * default when the device is idle, which is not really
188	 * expected in the common case where the chip select is active
189	 * low.
190	 */
191	if (spi->mode & SPI_CS_HIGH)
192		reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
193	else
194		reg |= SUN4I_CTL_CS_ACTIVE_LOW;
195
196	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
197}
198
199static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
200{
201	return SUN4I_MAX_XFER_SIZE - 1;
202}
203
204static int sun4i_spi_transfer_one(struct spi_master *master,
205				  struct spi_device *spi,
206				  struct spi_transfer *tfr)
207{
208	struct sun4i_spi *sspi = spi_master_get_devdata(master);
209	unsigned int mclk_rate, div, timeout;
210	unsigned int start, end, tx_time;
211	unsigned int tx_len = 0;
212	int ret = 0;
213	u32 reg;
214
215	/* We don't support transfer larger than the FIFO */
216	if (tfr->len > SUN4I_MAX_XFER_SIZE)
217		return -EMSGSIZE;
218
219	if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE)
220		return -EMSGSIZE;
221
222	reinit_completion(&sspi->done);
223	sspi->tx_buf = tfr->tx_buf;
224	sspi->rx_buf = tfr->rx_buf;
225	sspi->len = tfr->len;
226
227	/* Clear pending interrupts */
228	sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
229
230
231	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
232
233	/* Reset FIFOs */
234	sun4i_spi_write(sspi, SUN4I_CTL_REG,
235			reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
236
237	/*
238	 * Setup the transfer control register: Chip Select,
239	 * polarities, etc.
240	 */
241	if (spi->mode & SPI_CPOL)
242		reg |= SUN4I_CTL_CPOL;
243	else
244		reg &= ~SUN4I_CTL_CPOL;
245
246	if (spi->mode & SPI_CPHA)
247		reg |= SUN4I_CTL_CPHA;
248	else
249		reg &= ~SUN4I_CTL_CPHA;
250
251	if (spi->mode & SPI_LSB_FIRST)
252		reg |= SUN4I_CTL_LMTF;
253	else
254		reg &= ~SUN4I_CTL_LMTF;
255
256
257	/*
258	 * If it's a TX only transfer, we don't want to fill the RX
259	 * FIFO with bogus data
260	 */
261	if (sspi->rx_buf)
262		reg &= ~SUN4I_CTL_DHB;
263	else
264		reg |= SUN4I_CTL_DHB;
265
266	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
267
268	/* Ensure that we have a parent clock fast enough */
269	mclk_rate = clk_get_rate(sspi->mclk);
270	if (mclk_rate < (2 * tfr->speed_hz)) {
271		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
272		mclk_rate = clk_get_rate(sspi->mclk);
273	}
274
275	/*
276	 * Setup clock divider.
277	 *
278	 * We have two choices there. Either we can use the clock
279	 * divide rate 1, which is calculated thanks to this formula:
280	 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
281	 * Or we can use CDR2, which is calculated with the formula:
282	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
283	 * Whether we use the former or the latter is set through the
284	 * DRS bit.
285	 *
286	 * First try CDR2, and if we can't reach the expected
287	 * frequency, fall back to CDR1.
288	 */
289	div = mclk_rate / (2 * tfr->speed_hz);
290	if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
291		if (div > 0)
292			div--;
293
294		reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
295	} else {
296		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
297		reg = SUN4I_CLK_CTL_CDR1(div);
298	}
299
300	sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
301
302	/* Setup the transfer now... */
303	if (sspi->tx_buf)
304		tx_len = tfr->len;
305
306	/* Setup the counters */
307	sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
308	sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
309
310	/*
311	 * Fill the TX FIFO
312	 * Filling the FIFO fully causes timeout for some reason
313	 * at least on spi2 on A10s
314	 */
315	sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
316
317	/* Enable the interrupts */
318	sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC |
319					 SUN4I_INT_CTL_RF_F34);
320	/* Only enable Tx FIFO interrupt if we really need it */
321	if (tx_len > SUN4I_FIFO_DEPTH)
322		sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
323
324	/* Start the transfer */
325	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
326	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
327
328	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
329	start = jiffies;
330	timeout = wait_for_completion_timeout(&sspi->done,
331					      msecs_to_jiffies(tx_time));
332	end = jiffies;
333	if (!timeout) {
334		dev_warn(&master->dev,
335			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
336			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
337			 jiffies_to_msecs(end - start), tx_time);
338		ret = -ETIMEDOUT;
339		goto out;
340	}
341
342
343out:
344	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
345
346	return ret;
347}
348
349static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
350{
351	struct sun4i_spi *sspi = dev_id;
352	u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
353
354	/* Transfer complete */
355	if (status & SUN4I_INT_CTL_TC) {
356		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
357		sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
358		complete(&sspi->done);
359		return IRQ_HANDLED;
360	}
361
362	/* Receive FIFO 3/4 full */
363	if (status & SUN4I_INT_CTL_RF_F34) {
364		sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
365		/* Only clear the interrupt _after_ draining the FIFO */
366		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34);
367		return IRQ_HANDLED;
368	}
369
370	/* Transmit FIFO 3/4 empty */
371	if (status & SUN4I_INT_CTL_TF_E34) {
372		sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
373
374		if (!sspi->len)
375			/* nothing left to transmit */
376			sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
377
378		/* Only clear the interrupt _after_ re-seeding the FIFO */
379		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34);
380
381		return IRQ_HANDLED;
382	}
383
384	return IRQ_NONE;
385}
386
387static int sun4i_spi_runtime_resume(struct device *dev)
388{
389	struct spi_master *master = dev_get_drvdata(dev);
390	struct sun4i_spi *sspi = spi_master_get_devdata(master);
391	int ret;
392
393	ret = clk_prepare_enable(sspi->hclk);
394	if (ret) {
395		dev_err(dev, "Couldn't enable AHB clock\n");
396		goto out;
397	}
398
399	ret = clk_prepare_enable(sspi->mclk);
400	if (ret) {
401		dev_err(dev, "Couldn't enable module clock\n");
402		goto err;
403	}
404
405	sun4i_spi_write(sspi, SUN4I_CTL_REG,
406			SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
407
408	return 0;
409
410err:
411	clk_disable_unprepare(sspi->hclk);
412out:
413	return ret;
414}
415
416static int sun4i_spi_runtime_suspend(struct device *dev)
417{
418	struct spi_master *master = dev_get_drvdata(dev);
419	struct sun4i_spi *sspi = spi_master_get_devdata(master);
420
421	clk_disable_unprepare(sspi->mclk);
422	clk_disable_unprepare(sspi->hclk);
423
424	return 0;
425}
426
427static int sun4i_spi_probe(struct platform_device *pdev)
428{
429	struct spi_master *master;
430	struct sun4i_spi *sspi;
431	int ret = 0, irq;
432
433	master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
434	if (!master) {
435		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
436		return -ENOMEM;
437	}
438
439	platform_set_drvdata(pdev, master);
440	sspi = spi_master_get_devdata(master);
441
442	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
443	if (IS_ERR(sspi->base_addr)) {
444		ret = PTR_ERR(sspi->base_addr);
445		goto err_free_master;
446	}
447
448	irq = platform_get_irq(pdev, 0);
449	if (irq < 0) {
450		ret = -ENXIO;
451		goto err_free_master;
452	}
453
454	ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
455			       0, "sun4i-spi", sspi);
456	if (ret) {
457		dev_err(&pdev->dev, "Cannot request IRQ\n");
458		goto err_free_master;
459	}
460
461	sspi->master = master;
462	master->max_speed_hz = 100 * 1000 * 1000;
463	master->min_speed_hz = 3 * 1000;
464	master->set_cs = sun4i_spi_set_cs;
465	master->transfer_one = sun4i_spi_transfer_one;
466	master->num_chipselect = 4;
467	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
468	master->bits_per_word_mask = SPI_BPW_MASK(8);
469	master->dev.of_node = pdev->dev.of_node;
470	master->auto_runtime_pm = true;
471	master->max_transfer_size = sun4i_spi_max_transfer_size;
472
473	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
474	if (IS_ERR(sspi->hclk)) {
475		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
476		ret = PTR_ERR(sspi->hclk);
477		goto err_free_master;
478	}
479
480	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
481	if (IS_ERR(sspi->mclk)) {
482		dev_err(&pdev->dev, "Unable to acquire module clock\n");
483		ret = PTR_ERR(sspi->mclk);
484		goto err_free_master;
485	}
486
487	init_completion(&sspi->done);
488
489	/*
490	 * This wake-up/shutdown pattern is to be able to have the
491	 * device woken up, even if runtime_pm is disabled
492	 */
493	ret = sun4i_spi_runtime_resume(&pdev->dev);
494	if (ret) {
495		dev_err(&pdev->dev, "Couldn't resume the device\n");
496		goto err_free_master;
497	}
498
499	pm_runtime_set_active(&pdev->dev);
500	pm_runtime_enable(&pdev->dev);
501	pm_runtime_idle(&pdev->dev);
502
503	ret = devm_spi_register_master(&pdev->dev, master);
504	if (ret) {
505		dev_err(&pdev->dev, "cannot register SPI master\n");
506		goto err_pm_disable;
507	}
508
509	return 0;
510
511err_pm_disable:
512	pm_runtime_disable(&pdev->dev);
513	sun4i_spi_runtime_suspend(&pdev->dev);
514err_free_master:
515	spi_master_put(master);
516	return ret;
517}
518
519static int sun4i_spi_remove(struct platform_device *pdev)
520{
521	pm_runtime_force_suspend(&pdev->dev);
522
523	return 0;
524}
525
526static const struct of_device_id sun4i_spi_match[] = {
527	{ .compatible = "allwinner,sun4i-a10-spi", },
528	{}
529};
530MODULE_DEVICE_TABLE(of, sun4i_spi_match);
531
532static const struct dev_pm_ops sun4i_spi_pm_ops = {
533	.runtime_resume		= sun4i_spi_runtime_resume,
534	.runtime_suspend	= sun4i_spi_runtime_suspend,
535};
536
537static struct platform_driver sun4i_spi_driver = {
538	.probe	= sun4i_spi_probe,
539	.remove	= sun4i_spi_remove,
540	.driver	= {
541		.name		= "sun4i-spi",
542		.of_match_table	= sun4i_spi_match,
543		.pm		= &sun4i_spi_pm_ops,
544	},
545};
546module_platform_driver(sun4i_spi_driver);
547
548MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
549MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
550MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
551MODULE_LICENSE("GPL");