Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
   4//
   5// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
   6//
   7// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
   8//
   9// Copyright (C) 2020 MediaTek Inc.
  10// Author: Weijie Gao <weijie.gao@mediatek.com>
  11//
  12// This controller organize the page data as several interleaved sectors
  13// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
  14// +---------+------+------+---------+------+------+-----+
  15// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
  16// +---------+------+------+---------+------+------+-----+
  17// With auto-format turned on, DMA only returns this part:
  18// +---------+---------+-----+
  19// | Sector1 | Sector2 | ... |
  20// +---------+---------+-----+
  21// The FDM data will be filled to the registers, and ECC parity data isn't
  22// accessible.
  23// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
  24// in it's original order shown in the first table. ECC can't be turned on when
  25// auto-format is off.
  26//
  27// However, Linux SPI-NAND driver expects the data returned as:
  28// +------+-----+
  29// | Page | OOB |
  30// +------+-----+
  31// where the page data is continuously stored instead of interleaved.
  32// So we assume all instructions matching the page_op template between ECC
  33// prepare_io_req and finish_io_req are for page cache r/w.
  34// Here's how this spi-mem driver operates when reading:
  35//  1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
  36//  2. Perform page ops and let the controller fill the DMA bounce buffer with
  37//     de-interleaved sector data and set FDM registers.
  38//  3. Return the data as:
  39//     +---------+---------+-----+------+------+-----+
  40//     | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
  41//     +---------+---------+-----+------+------+-----+
  42//  4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
  43//     read the data with auto-format off into the bounce buffer and copy
  44//     needed data to the buffer specified in the request.
  45//
  46// Write requests operates in a similar manner.
  47// As a limitation of this strategy, we won't be able to access any ECC parity
  48// data at all in Linux.
  49//
  50// Here's the bad block mark situation on MTK chips:
  51// In older chips like mt7622, MTK uses the first FDM byte in the first sector
  52// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
  53// in the returned data, which is the BBM position expected by kernel. However,
  54// the conventional bad block mark is the first byte of the OOB, which is part
  55// of the last sector data in the interleaved layout. Instead of fixing their
  56// hardware, MTK decided to address this inconsistency in software. On these
  57// later chips, the BootROM expects the following:
  58// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
  59//    (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
  60// 2. The original byte stored at that position in the DMA buffer will be stored
  61//    as the first byte of the FDM section in the last sector.
  62// We can't disagree with the BootROM, so after de-interleaving, we need to
  63// perform the following swaps in read:
  64// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
  65//    which is the expected BBM position by kernel.
  66// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
  67//    [page_size - (nsectors - 1) * spare_size]
  68// Similarly, when writing, we need to perform swaps in the other direction.
  69
  70#include <linux/kernel.h>
  71#include <linux/module.h>
  72#include <linux/init.h>
  73#include <linux/device.h>
  74#include <linux/mutex.h>
  75#include <linux/clk.h>
  76#include <linux/interrupt.h>
  77#include <linux/dma-mapping.h>
  78#include <linux/iopoll.h>
  79#include <linux/of_platform.h>
  80#include <linux/mtd/nand-ecc-mtk.h>
  81#include <linux/spi/spi.h>
  82#include <linux/spi/spi-mem.h>
  83#include <linux/mtd/nand.h>
  84
  85// NFI registers
  86#define NFI_CNFG 0x000
  87#define CNFG_OP_MODE_S 12
  88#define CNFG_OP_MODE_CUST 6
  89#define CNFG_OP_MODE_PROGRAM 3
  90#define CNFG_AUTO_FMT_EN BIT(9)
  91#define CNFG_HW_ECC_EN BIT(8)
  92#define CNFG_DMA_BURST_EN BIT(2)
  93#define CNFG_READ_MODE BIT(1)
  94#define CNFG_DMA_MODE BIT(0)
  95
  96#define NFI_PAGEFMT 0x0004
  97#define NFI_SPARE_SIZE_LS_S 16
  98#define NFI_FDM_ECC_NUM_S 12
  99#define NFI_FDM_NUM_S 8
 100#define NFI_SPARE_SIZE_S 4
 101#define NFI_SEC_SEL_512 BIT(2)
 102#define NFI_PAGE_SIZE_S 0
 103#define NFI_PAGE_SIZE_512_2K 0
 104#define NFI_PAGE_SIZE_2K_4K 1
 105#define NFI_PAGE_SIZE_4K_8K 2
 106#define NFI_PAGE_SIZE_8K_16K 3
 107
 108#define NFI_CON 0x008
 109#define CON_SEC_NUM_S 12
 110#define CON_BWR BIT(9)
 111#define CON_BRD BIT(8)
 112#define CON_NFI_RST BIT(1)
 113#define CON_FIFO_FLUSH BIT(0)
 114
 115#define NFI_INTR_EN 0x010
 116#define NFI_INTR_STA 0x014
 117#define NFI_IRQ_INTR_EN BIT(31)
 118#define NFI_IRQ_CUS_READ BIT(8)
 119#define NFI_IRQ_CUS_PG BIT(7)
 120
 121#define NFI_CMD 0x020
 122#define NFI_CMD_DUMMY_READ 0x00
 123#define NFI_CMD_DUMMY_WRITE 0x80
 124
 125#define NFI_STRDATA 0x040
 126#define STR_DATA BIT(0)
 127
 128#define NFI_STA 0x060
 129#define NFI_NAND_FSM_7622 GENMASK(28, 24)
 130#define NFI_NAND_FSM_7986 GENMASK(29, 23)
 131#define NFI_FSM GENMASK(19, 16)
 132#define READ_EMPTY BIT(12)
 133
 134#define NFI_FIFOSTA 0x064
 135#define FIFO_WR_REMAIN_S 8
 136#define FIFO_RD_REMAIN_S 0
 137
 138#define NFI_ADDRCNTR 0x070
 139#define SEC_CNTR GENMASK(16, 12)
 140#define SEC_CNTR_S 12
 141#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
 142
 143#define NFI_STRADDR 0x080
 144
 145#define NFI_BYTELEN 0x084
 146#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
 147
 148#define NFI_FDM0L 0x0a0
 149#define NFI_FDM0M 0x0a4
 150#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
 151#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
 152
 153#define NFI_DEBUG_CON1 0x220
 154#define WBUF_EN BIT(2)
 155
 156#define NFI_MASTERSTA 0x224
 157#define MAS_ADDR GENMASK(11, 9)
 158#define MAS_RD GENMASK(8, 6)
 159#define MAS_WR GENMASK(5, 3)
 160#define MAS_RDDLY GENMASK(2, 0)
 161#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
 162#define NFI_MASTERSTA_MASK_7986 3
 163
 164// SNFI registers
 165#define SNF_MAC_CTL 0x500
 166#define MAC_XIO_SEL BIT(4)
 167#define SF_MAC_EN BIT(3)
 168#define SF_TRIG BIT(2)
 169#define WIP_READY BIT(1)
 170#define WIP BIT(0)
 171
 172#define SNF_MAC_OUTL 0x504
 173#define SNF_MAC_INL 0x508
 174
 175#define SNF_RD_CTL2 0x510
 176#define DATA_READ_DUMMY_S 8
 177#define DATA_READ_MAX_DUMMY 0xf
 178#define DATA_READ_CMD_S 0
 179
 180#define SNF_RD_CTL3 0x514
 181
 182#define SNF_PG_CTL1 0x524
 183#define PG_LOAD_CMD_S 8
 184
 185#define SNF_PG_CTL2 0x528
 186
 187#define SNF_MISC_CTL 0x538
 188#define SW_RST BIT(28)
 189#define FIFO_RD_LTC_S 25
 190#define PG_LOAD_X4_EN BIT(20)
 191#define DATA_READ_MODE_S 16
 192#define DATA_READ_MODE GENMASK(18, 16)
 193#define DATA_READ_MODE_X1 0
 194#define DATA_READ_MODE_X2 1
 195#define DATA_READ_MODE_X4 2
 196#define DATA_READ_MODE_DUAL 5
 197#define DATA_READ_MODE_QUAD 6
 198#define PG_LOAD_CUSTOM_EN BIT(7)
 199#define DATARD_CUSTOM_EN BIT(6)
 200#define CS_DESELECT_CYC_S 0
 201
 202#define SNF_MISC_CTL2 0x53c
 203#define PROGRAM_LOAD_BYTE_NUM_S 16
 204#define READ_DATA_BYTE_NUM_S 11
 205
 206#define SNF_DLY_CTL3 0x548
 207#define SFCK_SAM_DLY_S 0
 208
 209#define SNF_STA_CTL1 0x550
 210#define CUS_PG_DONE BIT(28)
 211#define CUS_READ_DONE BIT(27)
 212#define SPI_STATE_S 0
 213#define SPI_STATE GENMASK(3, 0)
 214
 215#define SNF_CFG 0x55c
 216#define SPI_MODE BIT(0)
 217
 218#define SNF_GPRAM 0x800
 219#define SNF_GPRAM_SIZE 0xa0
 220
 221#define SNFI_POLL_INTERVAL 1000000
 222
 223static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
 224
 225static const u8 mt7986_spare_sizes[] = {
 226	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
 227	74
 228};
 229
 230struct mtk_snand_caps {
 231	u16 sector_size;
 232	u16 max_sectors;
 233	u16 fdm_size;
 234	u16 fdm_ecc_size;
 235	u16 fifo_size;
 236
 237	bool bbm_swap;
 238	bool empty_page_check;
 239	u32 mastersta_mask;
 240	u32 nandfsm_mask;
 241
 242	const u8 *spare_sizes;
 243	u32 num_spare_size;
 244};
 245
 246static const struct mtk_snand_caps mt7622_snand_caps = {
 247	.sector_size = 512,
 248	.max_sectors = 8,
 249	.fdm_size = 8,
 250	.fdm_ecc_size = 1,
 251	.fifo_size = 32,
 252	.bbm_swap = false,
 253	.empty_page_check = false,
 254	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
 255	.nandfsm_mask = NFI_NAND_FSM_7622,
 256	.spare_sizes = mt7622_spare_sizes,
 257	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
 258};
 259
 260static const struct mtk_snand_caps mt7629_snand_caps = {
 261	.sector_size = 512,
 262	.max_sectors = 8,
 263	.fdm_size = 8,
 264	.fdm_ecc_size = 1,
 265	.fifo_size = 32,
 266	.bbm_swap = true,
 267	.empty_page_check = false,
 268	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
 269	.nandfsm_mask = NFI_NAND_FSM_7622,
 270	.spare_sizes = mt7622_spare_sizes,
 271	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
 272};
 273
 274static const struct mtk_snand_caps mt7986_snand_caps = {
 275	.sector_size = 1024,
 276	.max_sectors = 8,
 277	.fdm_size = 8,
 278	.fdm_ecc_size = 1,
 279	.fifo_size = 64,
 280	.bbm_swap = true,
 281	.empty_page_check = true,
 282	.mastersta_mask = NFI_MASTERSTA_MASK_7986,
 283	.nandfsm_mask = NFI_NAND_FSM_7986,
 284	.spare_sizes = mt7986_spare_sizes,
 285	.num_spare_size = ARRAY_SIZE(mt7986_spare_sizes)
 286};
 287
 288struct mtk_snand_conf {
 289	size_t page_size;
 290	size_t oob_size;
 291	u8 nsectors;
 292	u8 spare_size;
 293};
 294
 295struct mtk_snand {
 296	struct spi_controller *ctlr;
 297	struct device *dev;
 298	struct clk *nfi_clk;
 299	struct clk *pad_clk;
 300	void __iomem *nfi_base;
 301	int irq;
 302	struct completion op_done;
 303	const struct mtk_snand_caps *caps;
 304	struct mtk_ecc_config *ecc_cfg;
 305	struct mtk_ecc *ecc;
 306	struct mtk_snand_conf nfi_cfg;
 307	struct mtk_ecc_stats ecc_stats;
 308	struct nand_ecc_engine ecc_eng;
 309	bool autofmt;
 310	u8 *buf;
 311	size_t buf_len;
 312};
 313
 314static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
 315{
 316	struct nand_ecc_engine *eng = nand->ecc.engine;
 317
 318	return container_of(eng, struct mtk_snand, ecc_eng);
 319}
 320
 321static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
 322{
 323	if (snf->buf_len >= size)
 324		return 0;
 325	kfree(snf->buf);
 326	snf->buf = kmalloc(size, GFP_KERNEL);
 327	if (!snf->buf)
 328		return -ENOMEM;
 329	snf->buf_len = size;
 330	memset(snf->buf, 0xff, snf->buf_len);
 331	return 0;
 332}
 333
 334static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
 335{
 336	return readl(snf->nfi_base + reg);
 337}
 338
 339static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
 340{
 341	writel(val, snf->nfi_base + reg);
 342}
 343
 344static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
 345{
 346	writew(val, snf->nfi_base + reg);
 347}
 348
 349static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
 350{
 351	u32 val;
 352
 353	val = readl(snf->nfi_base + reg);
 354	val &= ~clr;
 355	val |= set;
 356	writel(val, snf->nfi_base + reg);
 357}
 358
 359static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
 360{
 361	u32 i, val = 0, es = sizeof(u32);
 362
 363	for (i = reg; i < reg + len; i++) {
 364		if (i == reg || i % es == 0)
 365			val = nfi_read32(snf, i & ~(es - 1));
 366
 367		*data++ = (u8)(val >> (8 * (i % es)));
 368	}
 369}
 370
 371static int mtk_nfi_reset(struct mtk_snand *snf)
 372{
 373	u32 val, fifo_mask;
 374	int ret;
 375
 376	nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
 377
 378	ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
 379				 !(val & snf->caps->mastersta_mask), 0,
 380				 SNFI_POLL_INTERVAL);
 381	if (ret) {
 382		dev_err(snf->dev, "NFI master is still busy after reset\n");
 383		return ret;
 384	}
 385
 386	ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
 387				 !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0,
 388				 SNFI_POLL_INTERVAL);
 389	if (ret) {
 390		dev_err(snf->dev, "Failed to reset NFI\n");
 391		return ret;
 392	}
 393
 394	fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
 395		    ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
 396	ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
 397				 !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
 398	if (ret) {
 399		dev_err(snf->dev, "NFI FIFOs are not empty\n");
 400		return ret;
 401	}
 402
 403	return 0;
 404}
 405
 406static int mtk_snand_mac_reset(struct mtk_snand *snf)
 407{
 408	int ret;
 409	u32 val;
 410
 411	nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
 412
 413	ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
 414				 !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
 415	if (ret)
 416		dev_err(snf->dev, "Failed to reset SNFI MAC\n");
 417
 418	nfi_write32(snf, SNF_MISC_CTL,
 419		    (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
 420
 421	return ret;
 422}
 423
 424static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
 425{
 426	int ret;
 427	u32 val;
 428
 429	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
 430	nfi_write32(snf, SNF_MAC_OUTL, outlen);
 431	nfi_write32(snf, SNF_MAC_INL, inlen);
 432
 433	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
 434
 435	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
 436				 val & WIP_READY, 0, SNFI_POLL_INTERVAL);
 437	if (ret) {
 438		dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
 439		goto cleanup;
 440	}
 441
 442	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
 443				 0, SNFI_POLL_INTERVAL);
 444	if (ret)
 445		dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
 446
 447cleanup:
 448	nfi_write32(snf, SNF_MAC_CTL, 0);
 449
 450	return ret;
 451}
 452
 453static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
 454{
 455	u32 rx_len = 0;
 456	u32 reg_offs = 0;
 457	u32 val = 0;
 458	const u8 *tx_buf = NULL;
 459	u8 *rx_buf = NULL;
 460	int i, ret;
 461	u8 b;
 462
 463	if (op->data.dir == SPI_MEM_DATA_IN) {
 464		rx_len = op->data.nbytes;
 465		rx_buf = op->data.buf.in;
 466	} else {
 467		tx_buf = op->data.buf.out;
 468	}
 469
 470	mtk_snand_mac_reset(snf);
 471
 472	for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
 473		b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
 474		val |= b << (8 * (reg_offs % 4));
 475		if (reg_offs % 4 == 3) {
 476			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
 477			val = 0;
 478		}
 479	}
 480
 481	for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
 482		b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
 483		val |= b << (8 * (reg_offs % 4));
 484		if (reg_offs % 4 == 3) {
 485			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
 486			val = 0;
 487		}
 488	}
 489
 490	for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
 491		if (reg_offs % 4 == 3) {
 492			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
 493			val = 0;
 494		}
 495	}
 496
 497	if (op->data.dir == SPI_MEM_DATA_OUT) {
 498		for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
 499			val |= tx_buf[i] << (8 * (reg_offs % 4));
 500			if (reg_offs % 4 == 3) {
 501				nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
 502				val = 0;
 503			}
 504		}
 505	}
 506
 507	if (reg_offs % 4)
 508		nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
 509
 510	for (i = 0; i < reg_offs; i += 4)
 511		dev_dbg(snf->dev, "%d: %08X", i,
 512			nfi_read32(snf, SNF_GPRAM + i));
 513
 514	dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
 515
 516	ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
 517	if (ret)
 518		return ret;
 519
 520	if (!rx_len)
 521		return 0;
 522
 523	nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
 524	return 0;
 525}
 526
 527static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
 528				   u32 oob_size)
 529{
 530	int spare_idx = -1;
 531	u32 spare_size, spare_size_shift, pagesize_idx;
 532	u32 sector_size_512;
 533	u8 nsectors;
 534	int i;
 535
 536	// skip if it's already configured as required.
 537	if (snf->nfi_cfg.page_size == page_size &&
 538	    snf->nfi_cfg.oob_size == oob_size)
 539		return 0;
 540
 541	nsectors = page_size / snf->caps->sector_size;
 542	if (nsectors > snf->caps->max_sectors) {
 543		dev_err(snf->dev, "too many sectors required.\n");
 544		goto err;
 545	}
 546
 547	if (snf->caps->sector_size == 512) {
 548		sector_size_512 = NFI_SEC_SEL_512;
 549		spare_size_shift = NFI_SPARE_SIZE_S;
 550	} else {
 551		sector_size_512 = 0;
 552		spare_size_shift = NFI_SPARE_SIZE_LS_S;
 553	}
 554
 555	switch (page_size) {
 556	case SZ_512:
 557		pagesize_idx = NFI_PAGE_SIZE_512_2K;
 558		break;
 559	case SZ_2K:
 560		if (snf->caps->sector_size == 512)
 561			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
 562		else
 563			pagesize_idx = NFI_PAGE_SIZE_512_2K;
 564		break;
 565	case SZ_4K:
 566		if (snf->caps->sector_size == 512)
 567			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
 568		else
 569			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
 570		break;
 571	case SZ_8K:
 572		if (snf->caps->sector_size == 512)
 573			pagesize_idx = NFI_PAGE_SIZE_8K_16K;
 574		else
 575			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
 576		break;
 577	case SZ_16K:
 578		pagesize_idx = NFI_PAGE_SIZE_8K_16K;
 579		break;
 580	default:
 581		dev_err(snf->dev, "unsupported page size.\n");
 582		goto err;
 583	}
 584
 585	spare_size = oob_size / nsectors;
 586	// If we're using the 1KB sector size, HW will automatically double the
 587	// spare size. We should only use half of the value in this case.
 588	if (snf->caps->sector_size == 1024)
 589		spare_size /= 2;
 590
 591	for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
 592		if (snf->caps->spare_sizes[i] <= spare_size) {
 593			spare_size = snf->caps->spare_sizes[i];
 594			if (snf->caps->sector_size == 1024)
 595				spare_size *= 2;
 596			spare_idx = i;
 597			break;
 598		}
 599	}
 600
 601	if (spare_idx < 0) {
 602		dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
 603		goto err;
 604	}
 605
 606	nfi_write32(snf, NFI_PAGEFMT,
 607		    (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
 608			    (snf->caps->fdm_size << NFI_FDM_NUM_S) |
 609			    (spare_idx << spare_size_shift) |
 610			    (pagesize_idx << NFI_PAGE_SIZE_S) |
 611			    sector_size_512);
 612
 613	snf->nfi_cfg.page_size = page_size;
 614	snf->nfi_cfg.oob_size = oob_size;
 615	snf->nfi_cfg.nsectors = nsectors;
 616	snf->nfi_cfg.spare_size = spare_size;
 617
 618	dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
 619		snf->caps->sector_size, spare_size, nsectors);
 620	return snand_prepare_bouncebuf(snf, page_size + oob_size);
 621err:
 622	dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
 623		oob_size);
 624	return -EOPNOTSUPP;
 625}
 626
 627static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
 628				   struct mtd_oob_region *oobecc)
 629{
 630	// ECC area is not accessible
 631	return -ERANGE;
 632}
 633
 634static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
 635				    struct mtd_oob_region *oobfree)
 636{
 637	struct nand_device *nand = mtd_to_nanddev(mtd);
 638	struct mtk_snand *ms = nand_to_mtk_snand(nand);
 639
 640	if (section >= ms->nfi_cfg.nsectors)
 641		return -ERANGE;
 642
 643	oobfree->length = ms->caps->fdm_size - 1;
 644	oobfree->offset = section * ms->caps->fdm_size + 1;
 645	return 0;
 646}
 647
 648static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
 649	.ecc = mtk_snand_ooblayout_ecc,
 650	.free = mtk_snand_ooblayout_free,
 651};
 652
 653static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
 654{
 655	struct mtk_snand *snf = nand_to_mtk_snand(nand);
 656	struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
 657	struct nand_ecc_props *reqs = &nand->ecc.requirements;
 658	struct nand_ecc_props *user = &nand->ecc.user_conf;
 659	struct mtd_info *mtd = nanddev_to_mtd(nand);
 660	int step_size = 0, strength = 0, desired_correction = 0, steps;
 661	bool ecc_user = false;
 662	int ret;
 663	u32 parity_bits, max_ecc_bytes;
 664	struct mtk_ecc_config *ecc_cfg;
 665
 666	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
 667				      nand->memorg.oobsize);
 668	if (ret)
 669		return ret;
 670
 671	ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
 672	if (!ecc_cfg)
 673		return -ENOMEM;
 674
 675	nand->ecc.ctx.priv = ecc_cfg;
 676
 677	if (user->step_size && user->strength) {
 678		step_size = user->step_size;
 679		strength = user->strength;
 680		ecc_user = true;
 681	} else if (reqs->step_size && reqs->strength) {
 682		step_size = reqs->step_size;
 683		strength = reqs->strength;
 684	}
 685
 686	if (step_size && strength) {
 687		steps = mtd->writesize / step_size;
 688		desired_correction = steps * strength;
 689		strength = desired_correction / snf->nfi_cfg.nsectors;
 690	}
 691
 692	ecc_cfg->mode = ECC_NFI_MODE;
 693	ecc_cfg->sectors = snf->nfi_cfg.nsectors;
 694	ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
 695
 696	// calculate the max possible strength under current page format
 697	parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
 698	max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
 699	ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
 700	mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
 701
 702	// if there's a user requested strength, find the minimum strength that
 703	// meets the requirement. Otherwise use the maximum strength which is
 704	// expected by BootROM.
 705	if (ecc_user && strength) {
 706		u32 s_next = ecc_cfg->strength - 1;
 707
 708		while (1) {
 709			mtk_ecc_adjust_strength(snf->ecc, &s_next);
 710			if (s_next >= ecc_cfg->strength)
 711				break;
 712			if (s_next < strength)
 713				break;
 714			s_next = ecc_cfg->strength - 1;
 715		}
 716	}
 717
 718	mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
 719
 720	conf->step_size = snf->caps->sector_size;
 721	conf->strength = ecc_cfg->strength;
 722
 723	if (ecc_cfg->strength < strength)
 724		dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
 725			 strength);
 726	dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
 727		 ecc_cfg->strength, snf->caps->sector_size);
 728
 729	return 0;
 730}
 731
 732static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
 733{
 734	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
 735
 736	kfree(ecc_cfg);
 737}
 738
 739static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
 740					struct nand_page_io_req *req)
 741{
 742	struct mtk_snand *snf = nand_to_mtk_snand(nand);
 743	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
 744	int ret;
 745
 746	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
 747				      nand->memorg.oobsize);
 748	if (ret)
 749		return ret;
 750	snf->autofmt = true;
 751	snf->ecc_cfg = ecc_cfg;
 752	return 0;
 753}
 754
 755static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
 756				       struct nand_page_io_req *req)
 757{
 758	struct mtk_snand *snf = nand_to_mtk_snand(nand);
 759	struct mtd_info *mtd = nanddev_to_mtd(nand);
 760
 761	snf->ecc_cfg = NULL;
 762	snf->autofmt = false;
 763	if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
 764		return 0;
 765
 766	if (snf->ecc_stats.failed)
 767		mtd->ecc_stats.failed += snf->ecc_stats.failed;
 768	mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
 769	return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
 770}
 771
 772static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
 773	.init_ctx = mtk_snand_ecc_init_ctx,
 774	.cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
 775	.prepare_io_req = mtk_snand_ecc_prepare_io_req,
 776	.finish_io_req = mtk_snand_ecc_finish_io_req,
 777};
 778
 779static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
 780{
 781	u32 vall, valm;
 782	u8 *oobptr = buf;
 783	int i, j;
 784
 785	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
 786		vall = nfi_read32(snf, NFI_FDML(i));
 787		valm = nfi_read32(snf, NFI_FDMM(i));
 788
 789		for (j = 0; j < snf->caps->fdm_size; j++)
 790			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
 791
 792		oobptr += snf->caps->fdm_size;
 793	}
 794}
 795
 796static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
 797{
 798	u32 fdm_size = snf->caps->fdm_size;
 799	const u8 *oobptr = buf;
 800	u32 vall, valm;
 801	int i, j;
 802
 803	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
 804		vall = 0;
 805		valm = 0;
 806
 807		for (j = 0; j < 8; j++) {
 808			if (j < 4)
 809				vall |= (j < fdm_size ? oobptr[j] : 0xff)
 810					<< (j * 8);
 811			else
 812				valm |= (j < fdm_size ? oobptr[j] : 0xff)
 813					<< ((j - 4) * 8);
 814		}
 815
 816		nfi_write32(snf, NFI_FDML(i), vall);
 817		nfi_write32(snf, NFI_FDMM(i), valm);
 818
 819		oobptr += fdm_size;
 820	}
 821}
 822
 823static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
 824{
 825	u32 buf_bbm_pos, fdm_bbm_pos;
 826
 827	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
 828		return;
 829
 830	// swap [pagesize] byte on nand with the first fdm byte
 831	// in the last sector.
 832	buf_bbm_pos = snf->nfi_cfg.page_size -
 833		      (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
 834	fdm_bbm_pos = snf->nfi_cfg.page_size +
 835		      (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
 836
 837	swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
 838}
 839
 840static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
 841{
 842	u32 fdm_bbm_pos1, fdm_bbm_pos2;
 843
 844	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
 845		return;
 846
 847	// swap the first fdm byte in the first and the last sector.
 848	fdm_bbm_pos1 = snf->nfi_cfg.page_size;
 849	fdm_bbm_pos2 = snf->nfi_cfg.page_size +
 850		       (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
 851	swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
 852}
 853
 854static int mtk_snand_read_page_cache(struct mtk_snand *snf,
 855				     const struct spi_mem_op *op)
 856{
 857	u8 *buf = snf->buf;
 858	u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
 859	// the address part to be sent by the controller
 860	u32 op_addr = op->addr.val;
 861	// where to start copying data from bounce buffer
 862	u32 rd_offset = 0;
 863	u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
 864	u32 op_mode = 0;
 865	u32 dma_len = snf->buf_len;
 866	int ret = 0;
 867	u32 rd_mode, rd_bytes, val;
 868	dma_addr_t buf_dma;
 869
 870	if (snf->autofmt) {
 871		u32 last_bit;
 872		u32 mask;
 873
 874		dma_len = snf->nfi_cfg.page_size;
 875		op_mode = CNFG_AUTO_FMT_EN;
 876		if (op->data.ecc)
 877			op_mode |= CNFG_HW_ECC_EN;
 878		// extract the plane bit:
 879		// Find the highest bit set in (pagesize+oobsize).
 880		// Bits higher than that in op->addr are kept and sent over SPI
 881		// Lower bits are used as an offset for copying data from DMA
 882		// bounce buffer.
 883		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
 884		mask = (1 << last_bit) - 1;
 885		rd_offset = op_addr & mask;
 886		op_addr &= ~mask;
 887
 888		// check if we can dma to the caller memory
 889		if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
 890			buf = op->data.buf.in;
 891	}
 892	mtk_snand_mac_reset(snf);
 893	mtk_nfi_reset(snf);
 894
 895	// command and dummy cycles
 896	nfi_write32(snf, SNF_RD_CTL2,
 897		    (dummy_clk << DATA_READ_DUMMY_S) |
 898			    (op->cmd.opcode << DATA_READ_CMD_S));
 899
 900	// read address
 901	nfi_write32(snf, SNF_RD_CTL3, op_addr);
 902
 903	// Set read op_mode
 904	if (op->data.buswidth == 4)
 905		rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
 906						   DATA_READ_MODE_X4;
 907	else if (op->data.buswidth == 2)
 908		rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
 909						   DATA_READ_MODE_X2;
 910	else
 911		rd_mode = DATA_READ_MODE_X1;
 912	rd_mode <<= DATA_READ_MODE_S;
 913	nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
 914		  rd_mode | DATARD_CUSTOM_EN);
 915
 916	// Set bytes to read
 917	rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
 918		   snf->nfi_cfg.nsectors;
 919	nfi_write32(snf, SNF_MISC_CTL2,
 920		    (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
 921
 922	// NFI read prepare
 923	nfi_write16(snf, NFI_CNFG,
 924		    (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
 925			    CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
 926
 927	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
 928
 929	buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
 930	ret = dma_mapping_error(snf->dev, buf_dma);
 931	if (ret) {
 932		dev_err(snf->dev, "DMA mapping failed.\n");
 933		goto cleanup;
 934	}
 935	nfi_write32(snf, NFI_STRADDR, buf_dma);
 936	if (op->data.ecc) {
 937		snf->ecc_cfg->op = ECC_DECODE;
 938		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
 939		if (ret)
 940			goto cleanup_dma;
 941	}
 942	// Prepare for custom read interrupt
 943	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
 944	reinit_completion(&snf->op_done);
 945
 946	// Trigger NFI into custom mode
 947	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
 948
 949	// Start DMA read
 950	nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
 951	nfi_write16(snf, NFI_STRDATA, STR_DATA);
 952
 953	if (!wait_for_completion_timeout(
 954		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
 955		dev_err(snf->dev, "DMA timed out for reading from cache.\n");
 956		ret = -ETIMEDOUT;
 957		goto cleanup;
 958	}
 959
 960	// Wait for BUS_SEC_CNTR returning expected value
 961	ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
 962				 BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
 963				 SNFI_POLL_INTERVAL);
 964	if (ret) {
 965		dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
 966		goto cleanup2;
 967	}
 968
 969	// Wait for bus becoming idle
 970	ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
 971				 !(val & snf->caps->mastersta_mask), 0,
 972				 SNFI_POLL_INTERVAL);
 973	if (ret) {
 974		dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
 975		goto cleanup2;
 976	}
 977
 978	if (op->data.ecc) {
 979		ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
 980		if (ret) {
 981			dev_err(snf->dev, "wait ecc done timeout\n");
 982			goto cleanup2;
 983		}
 984		// save status before disabling ecc
 985		mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
 986				  snf->nfi_cfg.nsectors);
 987	}
 988
 989	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
 990
 991	if (snf->autofmt) {
 992		mtk_snand_read_fdm(snf, buf_fdm);
 993		if (snf->caps->bbm_swap) {
 994			mtk_snand_bm_swap(snf, buf);
 995			mtk_snand_fdm_bm_swap(snf);
 996		}
 997	}
 998
 999	// copy data back
1000	if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
1001		memset(op->data.buf.in, 0xff, op->data.nbytes);
1002		snf->ecc_stats.bitflips = 0;
1003		snf->ecc_stats.failed = 0;
1004		snf->ecc_stats.corrected = 0;
1005	} else {
1006		if (buf == op->data.buf.in) {
1007			u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
1008			u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
1009
1010			if (req_left)
1011				memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
1012				       buf_fdm,
1013				       cap_len < req_left ? cap_len : req_left);
1014		} else if (rd_offset < snf->buf_len) {
1015			u32 cap_len = snf->buf_len - rd_offset;
1016
1017			if (op->data.nbytes < cap_len)
1018				cap_len = op->data.nbytes;
1019			memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
1020		}
1021	}
1022cleanup2:
1023	if (op->data.ecc)
1024		mtk_ecc_disable(snf->ecc);
1025cleanup_dma:
1026	// unmap dma only if any error happens. (otherwise it's done before
1027	// data copying)
1028	if (ret)
1029		dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
1030cleanup:
1031	// Stop read
1032	nfi_write32(snf, NFI_CON, 0);
1033	nfi_write16(snf, NFI_CNFG, 0);
1034
1035	// Clear SNF done flag
1036	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
1037	nfi_write32(snf, SNF_STA_CTL1, 0);
1038
1039	// Disable interrupt
1040	nfi_read32(snf, NFI_INTR_STA);
1041	nfi_write32(snf, NFI_INTR_EN, 0);
1042
1043	nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
1044	return ret;
1045}
1046
1047static int mtk_snand_write_page_cache(struct mtk_snand *snf,
1048				      const struct spi_mem_op *op)
1049{
1050	// the address part to be sent by the controller
1051	u32 op_addr = op->addr.val;
1052	// where to start copying data from bounce buffer
1053	u32 wr_offset = 0;
1054	u32 op_mode = 0;
1055	int ret = 0;
1056	u32 wr_mode = 0;
1057	u32 dma_len = snf->buf_len;
1058	u32 wr_bytes, val;
1059	size_t cap_len;
1060	dma_addr_t buf_dma;
1061
1062	if (snf->autofmt) {
1063		u32 last_bit;
1064		u32 mask;
1065
1066		dma_len = snf->nfi_cfg.page_size;
1067		op_mode = CNFG_AUTO_FMT_EN;
1068		if (op->data.ecc)
1069			op_mode |= CNFG_HW_ECC_EN;
1070
1071		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
1072		mask = (1 << last_bit) - 1;
1073		wr_offset = op_addr & mask;
1074		op_addr &= ~mask;
1075	}
1076	mtk_snand_mac_reset(snf);
1077	mtk_nfi_reset(snf);
1078
1079	if (wr_offset)
1080		memset(snf->buf, 0xff, wr_offset);
1081
1082	cap_len = snf->buf_len - wr_offset;
1083	if (op->data.nbytes < cap_len)
1084		cap_len = op->data.nbytes;
1085	memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
1086	if (snf->autofmt) {
1087		if (snf->caps->bbm_swap) {
1088			mtk_snand_fdm_bm_swap(snf);
1089			mtk_snand_bm_swap(snf, snf->buf);
1090		}
1091		mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
1092	}
1093
1094	// Command
1095	nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
1096
1097	// write address
1098	nfi_write32(snf, SNF_PG_CTL2, op_addr);
1099
1100	// Set read op_mode
1101	if (op->data.buswidth == 4)
1102		wr_mode = PG_LOAD_X4_EN;
1103
1104	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
1105		  wr_mode | PG_LOAD_CUSTOM_EN);
1106
1107	// Set bytes to write
1108	wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
1109		   snf->nfi_cfg.nsectors;
1110	nfi_write32(snf, SNF_MISC_CTL2,
1111		    (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
1112
1113	// NFI write prepare
1114	nfi_write16(snf, NFI_CNFG,
1115		    (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
1116			    CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
1117
1118	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
1119	buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
1120	ret = dma_mapping_error(snf->dev, buf_dma);
1121	if (ret) {
1122		dev_err(snf->dev, "DMA mapping failed.\n");
1123		goto cleanup;
1124	}
1125	nfi_write32(snf, NFI_STRADDR, buf_dma);
1126	if (op->data.ecc) {
1127		snf->ecc_cfg->op = ECC_ENCODE;
1128		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
1129		if (ret)
1130			goto cleanup_dma;
1131	}
1132	// Prepare for custom write interrupt
1133	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
1134	reinit_completion(&snf->op_done);
1135	;
1136
1137	// Trigger NFI into custom mode
1138	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
1139
1140	// Start DMA write
1141	nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
1142	nfi_write16(snf, NFI_STRDATA, STR_DATA);
1143
1144	if (!wait_for_completion_timeout(
1145		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
1146		dev_err(snf->dev, "DMA timed out for program load.\n");
1147		ret = -ETIMEDOUT;
1148		goto cleanup_ecc;
1149	}
1150
1151	// Wait for NFI_SEC_CNTR returning expected value
1152	ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
1153				 NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
1154				 SNFI_POLL_INTERVAL);
1155	if (ret)
1156		dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
1157
1158cleanup_ecc:
1159	if (op->data.ecc)
1160		mtk_ecc_disable(snf->ecc);
1161cleanup_dma:
1162	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
1163cleanup:
1164	// Stop write
1165	nfi_write32(snf, NFI_CON, 0);
1166	nfi_write16(snf, NFI_CNFG, 0);
1167
1168	// Clear SNF done flag
1169	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
1170	nfi_write32(snf, SNF_STA_CTL1, 0);
1171
1172	// Disable interrupt
1173	nfi_read32(snf, NFI_INTR_STA);
1174	nfi_write32(snf, NFI_INTR_EN, 0);
1175
1176	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
1177
1178	return ret;
1179}
1180
1181/**
1182 * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
1183 * @op spi-mem op to check
1184 *
1185 * Check whether op can be executed with read_from_cache or program_load
1186 * mode in the controller.
1187 * This controller can execute typical Read From Cache and Program Load
1188 * instructions found on SPI-NAND with 2-byte address.
1189 * DTR and cmd buswidth & nbytes should be checked before calling this.
1190 *
1191 * Return: true if the op matches the instruction template
1192 */
1193static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
1194{
1195	if (op->addr.nbytes != 2)
1196		return false;
1197
1198	if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
1199	    op->addr.buswidth != 4)
1200		return false;
1201
1202	// match read from page instructions
1203	if (op->data.dir == SPI_MEM_DATA_IN) {
1204		// check dummy cycle first
1205		if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
1206		    DATA_READ_MAX_DUMMY)
1207			return false;
1208		// quad io / quad out
1209		if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
1210		    op->data.buswidth == 4)
1211			return true;
1212
1213		// dual io / dual out
1214		if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
1215		    op->data.buswidth == 2)
1216			return true;
1217
1218		// standard spi
1219		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1220			return true;
1221	} else if (op->data.dir == SPI_MEM_DATA_OUT) {
1222		// check dummy cycle first
1223		if (op->dummy.nbytes)
1224			return false;
1225		// program load quad out
1226		if (op->addr.buswidth == 1 && op->data.buswidth == 4)
1227			return true;
1228		// standard spi
1229		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1230			return true;
1231	}
1232	return false;
1233}
1234
1235static bool mtk_snand_supports_op(struct spi_mem *mem,
1236				  const struct spi_mem_op *op)
1237{
1238	if (!spi_mem_default_supports_op(mem, op))
1239		return false;
1240	if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
1241		return false;
1242	if (mtk_snand_is_page_ops(op))
1243		return true;
1244	return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
1245		(op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
1246		(op->data.nbytes == 0 || op->data.buswidth == 1));
1247}
1248
1249static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
1250{
1251	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1252	// page ops transfer size must be exactly ((sector_size + spare_size) *
1253	// nsectors). Limit the op size if the caller requests more than that.
1254	// exec_op will read more than needed and discard the leftover if the
1255	// caller requests less data.
1256	if (mtk_snand_is_page_ops(op)) {
1257		size_t l;
1258		// skip adjust_op_size for page ops
1259		if (ms->autofmt)
1260			return 0;
1261		l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
1262		l *= ms->nfi_cfg.nsectors;
1263		if (op->data.nbytes > l)
1264			op->data.nbytes = l;
1265	} else {
1266		size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
1267
1268		if (hl >= SNF_GPRAM_SIZE)
1269			return -EOPNOTSUPP;
1270		if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
1271			op->data.nbytes = SNF_GPRAM_SIZE - hl;
1272	}
1273	return 0;
1274}
1275
1276static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
1277{
1278	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1279
1280	dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
1281		op->addr.val, op->addr.buswidth, op->addr.nbytes,
1282		op->data.buswidth, op->data.nbytes);
1283	if (mtk_snand_is_page_ops(op)) {
1284		if (op->data.dir == SPI_MEM_DATA_IN)
1285			return mtk_snand_read_page_cache(ms, op);
1286		else
1287			return mtk_snand_write_page_cache(ms, op);
1288	} else {
1289		return mtk_snand_mac_io(ms, op);
1290	}
1291}
1292
1293static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
1294	.adjust_op_size = mtk_snand_adjust_op_size,
1295	.supports_op = mtk_snand_supports_op,
1296	.exec_op = mtk_snand_exec_op,
1297};
1298
1299static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
1300	.ecc = true,
1301};
1302
1303static irqreturn_t mtk_snand_irq(int irq, void *id)
1304{
1305	struct mtk_snand *snf = id;
1306	u32 sta, ien;
1307
1308	sta = nfi_read32(snf, NFI_INTR_STA);
1309	ien = nfi_read32(snf, NFI_INTR_EN);
1310
1311	if (!(sta & ien))
1312		return IRQ_NONE;
1313
1314	nfi_write32(snf, NFI_INTR_EN, 0);
1315	complete(&snf->op_done);
1316	return IRQ_HANDLED;
1317}
1318
1319static const struct of_device_id mtk_snand_ids[] = {
1320	{ .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
1321	{ .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
1322	{ .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps },
1323	{},
1324};
1325
1326MODULE_DEVICE_TABLE(of, mtk_snand_ids);
1327
1328static int mtk_snand_enable_clk(struct mtk_snand *ms)
1329{
1330	int ret;
1331
1332	ret = clk_prepare_enable(ms->nfi_clk);
1333	if (ret) {
1334		dev_err(ms->dev, "unable to enable nfi clk\n");
1335		return ret;
1336	}
1337	ret = clk_prepare_enable(ms->pad_clk);
1338	if (ret) {
1339		dev_err(ms->dev, "unable to enable pad clk\n");
1340		goto err1;
1341	}
1342	return 0;
1343err1:
1344	clk_disable_unprepare(ms->nfi_clk);
1345	return ret;
1346}
1347
1348static void mtk_snand_disable_clk(struct mtk_snand *ms)
1349{
1350	clk_disable_unprepare(ms->pad_clk);
1351	clk_disable_unprepare(ms->nfi_clk);
1352}
1353
1354static int mtk_snand_probe(struct platform_device *pdev)
1355{
1356	struct device_node *np = pdev->dev.of_node;
1357	const struct of_device_id *dev_id;
1358	struct spi_controller *ctlr;
1359	struct mtk_snand *ms;
1360	int ret;
1361
1362	dev_id = of_match_node(mtk_snand_ids, np);
1363	if (!dev_id)
1364		return -EINVAL;
1365
1366	ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
1367	if (!ctlr)
1368		return -ENOMEM;
1369	platform_set_drvdata(pdev, ctlr);
1370
1371	ms = spi_controller_get_devdata(ctlr);
1372
1373	ms->ctlr = ctlr;
1374	ms->caps = dev_id->data;
1375
1376	ms->ecc = of_mtk_ecc_get(np);
1377	if (IS_ERR(ms->ecc))
1378		return PTR_ERR(ms->ecc);
1379	else if (!ms->ecc)
1380		return -ENODEV;
1381
1382	ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
1383	if (IS_ERR(ms->nfi_base)) {
1384		ret = PTR_ERR(ms->nfi_base);
1385		goto release_ecc;
1386	}
1387
1388	ms->dev = &pdev->dev;
1389
1390	ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
1391	if (IS_ERR(ms->nfi_clk)) {
1392		ret = PTR_ERR(ms->nfi_clk);
1393		dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
1394		goto release_ecc;
1395	}
1396
1397	ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
1398	if (IS_ERR(ms->pad_clk)) {
1399		ret = PTR_ERR(ms->pad_clk);
1400		dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
1401		goto release_ecc;
1402	}
1403
1404	ret = mtk_snand_enable_clk(ms);
1405	if (ret)
1406		goto release_ecc;
1407
1408	init_completion(&ms->op_done);
1409
1410	ms->irq = platform_get_irq(pdev, 0);
1411	if (ms->irq < 0) {
1412		ret = ms->irq;
1413		goto disable_clk;
1414	}
1415	ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
1416			       "mtk-snand", ms);
1417	if (ret) {
1418		dev_err(ms->dev, "failed to request snfi irq\n");
1419		goto disable_clk;
1420	}
1421
1422	ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
1423	if (ret) {
1424		dev_err(ms->dev, "failed to set dma mask\n");
1425		goto disable_clk;
1426	}
1427
1428	// switch to SNFI mode
1429	nfi_write32(ms, SNF_CFG, SPI_MODE);
1430
1431	// setup an initial page format for ops matching page_cache_op template
1432	// before ECC is called.
1433	ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size,
1434				      ms->caps->spare_sizes[0]);
1435	if (ret) {
1436		dev_err(ms->dev, "failed to set initial page format\n");
1437		goto disable_clk;
1438	}
1439
1440	// setup ECC engine
1441	ms->ecc_eng.dev = &pdev->dev;
1442	ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
1443	ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
1444	ms->ecc_eng.priv = ms;
1445
1446	ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
1447	if (ret) {
1448		dev_err(&pdev->dev, "failed to register ecc engine.\n");
1449		goto disable_clk;
1450	}
1451
1452	ctlr->num_chipselect = 1;
1453	ctlr->mem_ops = &mtk_snand_mem_ops;
1454	ctlr->mem_caps = &mtk_snand_mem_caps;
1455	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1456	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
1457	ctlr->dev.of_node = pdev->dev.of_node;
1458	ret = spi_register_controller(ctlr);
1459	if (ret) {
1460		dev_err(&pdev->dev, "spi_register_controller failed.\n");
1461		goto disable_clk;
1462	}
1463
1464	return 0;
1465disable_clk:
1466	mtk_snand_disable_clk(ms);
1467release_ecc:
1468	mtk_ecc_release(ms->ecc);
1469	return ret;
1470}
1471
1472static int mtk_snand_remove(struct platform_device *pdev)
1473{
1474	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1475	struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
1476
1477	spi_unregister_controller(ctlr);
1478	mtk_snand_disable_clk(ms);
1479	mtk_ecc_release(ms->ecc);
1480	kfree(ms->buf);
1481	return 0;
1482}
1483
1484static struct platform_driver mtk_snand_driver = {
1485	.probe = mtk_snand_probe,
1486	.remove = mtk_snand_remove,
1487	.driver = {
1488		.name = "mtk-snand",
1489		.of_match_table = mtk_snand_ids,
1490	},
1491};
1492
1493module_platform_driver(mtk_snand_driver);
1494
1495MODULE_LICENSE("GPL");
1496MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
1497MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");