Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * An SPI driver for the Philips PCF2123 RTC
  4 * Copyright 2009 Cyber Switching, Inc.
  5 *
  6 * Author: Chris Verges <chrisv@cyberswitching.com>
  7 * Maintainers: http://www.cyberswitching.com
  8 *
  9 * based on the RS5C348 driver in this same directory.
 10 *
 11 * Thanks to Christian Pellegrin <chripell@fsfe.org> for
 12 * the sysfs contributions to this driver.
 13 *
 
 
 
 
 14 * Please note that the CS is active high, so platform data
 15 * should look something like:
 16 *
 17 * static struct spi_board_info ek_spi_devices[] = {
 18 *	...
 19 *	{
 20 *		.modalias		= "rtc-pcf2123",
 21 *		.chip_select		= 1,
 22 *		.controller_data	= (void *)AT91_PIN_PA10,
 23 *		.max_speed_hz		= 1000 * 1000,
 24 *		.mode			= SPI_CS_HIGH,
 25 *		.bus_num		= 0,
 26 *	},
 27 *	...
 28 *};
 
 29 */
 30
 31#include <linux/bcd.h>
 32#include <linux/delay.h>
 33#include <linux/device.h>
 34#include <linux/errno.h>
 35#include <linux/init.h>
 36#include <linux/kernel.h>
 37#include <linux/of.h>
 38#include <linux/string.h>
 39#include <linux/slab.h>
 40#include <linux/rtc.h>
 41#include <linux/spi/spi.h>
 42#include <linux/module.h>
 43#include <linux/regmap.h>
 44
 45/* REGISTERS */
 
 46#define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
 47#define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
 48#define PCF2123_REG_SC		(0x02)	/* datetime */
 49#define PCF2123_REG_MN		(0x03)
 50#define PCF2123_REG_HR		(0x04)
 51#define PCF2123_REG_DM		(0x05)
 52#define PCF2123_REG_DW		(0x06)
 53#define PCF2123_REG_MO		(0x07)
 54#define PCF2123_REG_YR		(0x08)
 55#define PCF2123_REG_ALRM_MN	(0x09)	/* Alarm Registers */
 56#define PCF2123_REG_ALRM_HR	(0x0a)
 57#define PCF2123_REG_ALRM_DM	(0x0b)
 58#define PCF2123_REG_ALRM_DW	(0x0c)
 59#define PCF2123_REG_OFFSET	(0x0d)	/* Clock Rate Offset Register */
 60#define PCF2123_REG_TMR_CLKOUT	(0x0e)	/* Timer Registers */
 61#define PCF2123_REG_CTDWN_TMR	(0x0f)
 62
 63/* PCF2123_REG_CTRL1 BITS */
 64#define CTRL1_CLEAR		(0)	/* Clear */
 65#define CTRL1_CORR_INT		BIT(1)	/* Correction irq enable */
 66#define CTRL1_12_HOUR		BIT(2)	/* 12 hour time */
 67#define CTRL1_SW_RESET	(BIT(3) | BIT(4) | BIT(6))	/* Software reset */
 68#define CTRL1_STOP		BIT(5)	/* Stop the clock */
 69#define CTRL1_EXT_TEST		BIT(7)	/* External clock test mode */
 70
 71/* PCF2123_REG_CTRL2 BITS */
 72#define CTRL2_TIE		BIT(0)	/* Countdown timer irq enable */
 73#define CTRL2_AIE		BIT(1)	/* Alarm irq enable */
 74#define CTRL2_TF		BIT(2)	/* Countdown timer flag */
 75#define CTRL2_AF		BIT(3)	/* Alarm flag */
 76#define CTRL2_TI_TP		BIT(4)	/* Irq pin generates pulse */
 77#define CTRL2_MSF		BIT(5)	/* Minute or second irq flag */
 78#define CTRL2_SI		BIT(6)	/* Second irq enable */
 79#define CTRL2_MI		BIT(7)	/* Minute irq enable */
 80
 81/* PCF2123_REG_SC BITS */
 82#define OSC_HAS_STOPPED		BIT(7)	/* Clock has been stopped */
 83
 84/* PCF2123_REG_ALRM_XX BITS */
 85#define ALRM_DISABLE		BIT(7)	/* MN, HR, DM, or DW alarm matching */
 86
 87/* PCF2123_REG_TMR_CLKOUT BITS */
 88#define CD_TMR_4096KHZ		(0)	/* 4096 KHz countdown timer */
 89#define CD_TMR_64HZ		(1)	/* 64 Hz countdown timer */
 90#define CD_TMR_1HZ		(2)	/* 1 Hz countdown timer */
 91#define CD_TMR_60th_HZ		(3)	/* 60th Hz countdown timer */
 92#define CD_TMR_TE		BIT(3)	/* Countdown timer enable */
 93
 94/* PCF2123_REG_OFFSET BITS */
 95#define OFFSET_SIGN_BIT		6	/* 2's complement sign bit */
 96#define OFFSET_COARSE		BIT(7)	/* Coarse mode offset */
 97#define OFFSET_STEP		(2170)	/* Offset step in parts per billion */
 98#define OFFSET_MASK		GENMASK(6, 0)	/* Offset value */
 99
100/* READ/WRITE ADDRESS BITS */
101#define PCF2123_WRITE		BIT(4)
102#define PCF2123_READ		(BIT(4) | BIT(7))
103
 
 
 
104
105static struct spi_driver pcf2123_driver;
106
107struct pcf2123_data {
108	struct rtc_device *rtc;
109	struct regmap *map;
110};
111
112static const struct regmap_config pcf2123_regmap_config = {
113	.reg_bits = 8,
114	.val_bits = 8,
115	.read_flag_mask = PCF2123_READ,
116	.write_flag_mask = PCF2123_WRITE,
117	.max_register = PCF2123_REG_CTDWN_TMR,
118};
119
120static int pcf2123_read_offset(struct device *dev, long *offset)
 
 
 
 
 
121{
122	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
123	int ret, val;
124	unsigned int reg;
125
126	ret = regmap_read(pcf2123->map, PCF2123_REG_OFFSET, &reg);
127	if (ret)
128		return ret;
129
130	val = sign_extend32((reg & OFFSET_MASK), OFFSET_SIGN_BIT);
 
 
 
 
 
 
 
131
132	if (reg & OFFSET_COARSE)
133		val *= 2;
134
135	*offset = ((long)val) * OFFSET_STEP;
 
136
137	return 0;
 
 
 
 
 
138}
139
140/*
141 * The offset register is a 7 bit signed value with a coarse bit in bit 7.
142 * The main difference between the two is normal offset adjusts the first
143 * second of n minutes every other hour, with 61, 62 and 63 being shoved
144 * into the 60th minute.
145 * The coarse adjustment does the same, but every hour.
146 * the two overlap, with every even normal offset value corresponding
147 * to a coarse offset. Based on this algorithm, it seems that despite the
148 * name, coarse offset is a better fit for overlapping values.
149 */
150static int pcf2123_set_offset(struct device *dev, long offset)
151{
152	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
153	s8 reg;
154
155	if (offset > OFFSET_STEP * 127)
156		reg = 127;
157	else if (offset < OFFSET_STEP * -128)
158		reg = -128;
159	else
160		reg = DIV_ROUND_CLOSEST(offset, OFFSET_STEP);
161
162	/* choose fine offset only for odd values in the normal range */
163	if (reg & 1 && reg <= 63 && reg >= -64) {
164		/* Normal offset. Clear the coarse bit */
165		reg &= ~OFFSET_COARSE;
166	} else {
167		/* Coarse offset. Divide by 2 and set the coarse bit */
168		reg >>= 1;
169		reg |= OFFSET_COARSE;
170	}
171
172	return regmap_write(pcf2123->map, PCF2123_REG_OFFSET, (unsigned int)reg);
 
 
 
 
 
 
 
 
 
 
173}
174
175static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
176{
177	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
178	u8 rxbuf[7];
179	int ret;
180
181	ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_SC, rxbuf,
182				sizeof(rxbuf));
183	if (ret)
 
184		return ret;
185
186	if (rxbuf[0] & OSC_HAS_STOPPED) {
187		dev_info(dev, "clock was stopped. Time is not valid\n");
188		return -EINVAL;
189	}
190
191	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
192	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
193	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
194	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
195	tm->tm_wday = rxbuf[4] & 0x07;
196	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
197	tm->tm_year = bcd2bin(rxbuf[6]) + 100;
 
 
 
 
 
 
 
 
198
199	dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
 
 
 
 
200
201	return 0;
202}
203
204static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
205{
206	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
207	u8 txbuf[7];
208	int ret;
209
210	dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
 
 
 
 
211
212	/* Stop the counter first */
213	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP);
214	if (ret)
 
 
215		return ret;
 
216
217	/* Set the new time */
218	txbuf[0] = bin2bcd(tm->tm_sec & 0x7F);
219	txbuf[1] = bin2bcd(tm->tm_min & 0x7F);
220	txbuf[2] = bin2bcd(tm->tm_hour & 0x3F);
221	txbuf[3] = bin2bcd(tm->tm_mday & 0x3F);
222	txbuf[4] = tm->tm_wday & 0x07;
223	txbuf[5] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
224	txbuf[6] = bin2bcd(tm->tm_year - 100);
225
226	ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_SC, txbuf,
227				sizeof(txbuf));
228	if (ret)
229		return ret;
230
231	/* Start the counter */
232	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
233	if (ret)
234		return ret;
235
236	return 0;
237}
238
239static int pcf2123_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
240{
241	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
242
243	return regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE,
244				  en ? CTRL2_AIE : 0);
245}
246
247static int pcf2123_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
248{
249	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
250	u8 rxbuf[4];
251	int ret;
252	unsigned int val = 0;
253
254	ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_ALRM_MN, rxbuf,
255				sizeof(rxbuf));
256	if (ret)
257		return ret;
258
259	alm->time.tm_min = bcd2bin(rxbuf[0] & 0x7F);
260	alm->time.tm_hour = bcd2bin(rxbuf[1] & 0x3F);
261	alm->time.tm_mday = bcd2bin(rxbuf[2] & 0x3F);
262	alm->time.tm_wday = bcd2bin(rxbuf[3] & 0x07);
263
264	dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
265
266	ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val);
267	if (ret)
268		return ret;
269
270	alm->enabled = !!(val & CTRL2_AIE);
271
272	return 0;
273}
274
275static int pcf2123_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
276{
277	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
278	u8 txbuf[4];
279	int ret;
280
281	dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
282
283	/* Disable alarm interrupt */
284	ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE, 0);
285	if (ret)
286		return ret;
287
288	/* Ensure alarm flag is clear */
289	ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
290	if (ret)
291		return ret;
292
293	/* Set new alarm */
294	txbuf[0] = bin2bcd(alm->time.tm_min & 0x7F);
295	txbuf[1] = bin2bcd(alm->time.tm_hour & 0x3F);
296	txbuf[2] = bin2bcd(alm->time.tm_mday & 0x3F);
297	txbuf[3] = ALRM_DISABLE;
298
299	ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_ALRM_MN, txbuf,
300				sizeof(txbuf));
301	if (ret)
302		return ret;
303
304	return pcf2123_rtc_alarm_irq_enable(dev, alm->enabled);
305}
306
307static irqreturn_t pcf2123_rtc_irq(int irq, void *dev)
308{
309	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
310	unsigned int val = 0;
311	int ret = IRQ_NONE;
312
313	rtc_lock(pcf2123->rtc);
314	regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val);
315
316	/* Alarm? */
317	if (val & CTRL2_AF) {
318		ret = IRQ_HANDLED;
319
320		/* Clear alarm flag */
321		regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
322
323		rtc_update_irq(pcf2123->rtc, 1, RTC_IRQF | RTC_AF);
324	}
325
326	rtc_unlock(pcf2123->rtc);
327
328	return ret;
329}
330
331static int pcf2123_reset(struct device *dev)
332{
333	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
334	int ret;
335	unsigned int val = 0;
336
337	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
338	if (ret)
339		return ret;
340
341	/* Stop the counter */
342	dev_dbg(dev, "stopping RTC\n");
343	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP);
344	if (ret)
345		return ret;
346
347	/* See if the counter was actually stopped */
348	dev_dbg(dev, "checking for presence of RTC\n");
349	ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL1, &val);
350	if (ret)
351		return ret;
352
353	dev_dbg(dev, "received data from RTC (0x%08X)\n", val);
354	if (!(val & CTRL1_STOP))
355		return -ENODEV;
356
357	/* Start the counter */
358	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
359	if (ret)
 
 
360		return ret;
 
361
362	return 0;
363}
364
365static const struct rtc_class_ops pcf2123_rtc_ops = {
366	.read_time	= pcf2123_rtc_read_time,
367	.set_time	= pcf2123_rtc_set_time,
368	.read_offset	= pcf2123_read_offset,
369	.set_offset	= pcf2123_set_offset,
370	.read_alarm	= pcf2123_rtc_read_alarm,
371	.set_alarm	= pcf2123_rtc_set_alarm,
372	.alarm_irq_enable = pcf2123_rtc_alarm_irq_enable,
373};
374
375static int pcf2123_probe(struct spi_device *spi)
376{
377	struct rtc_device *rtc;
378	struct rtc_time tm;
379	struct pcf2123_data *pcf2123;
380	int ret = 0;
381
382	pcf2123 = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_data),
383				GFP_KERNEL);
384	if (!pcf2123)
385		return -ENOMEM;
 
386
387	dev_set_drvdata(&spi->dev, pcf2123);
 
 
 
 
 
 
 
 
388
389	pcf2123->map = devm_regmap_init_spi(spi, &pcf2123_regmap_config);
390	if (IS_ERR(pcf2123->map)) {
391		dev_err(&spi->dev, "regmap init failed.\n");
392		return PTR_ERR(pcf2123->map);
393	}
 
 
 
 
394
395	ret = pcf2123_rtc_read_time(&spi->dev, &tm);
396	if (ret < 0) {
397		ret = pcf2123_reset(&spi->dev);
398		if (ret < 0) {
399			dev_err(&spi->dev, "chip not found\n");
400			return ret;
401		}
 
 
 
 
 
 
 
 
402	}
403
 
404	dev_info(&spi->dev, "spiclk %u KHz.\n",
405			(spi->max_speed_hz + 500) / 1000);
406
 
 
 
 
 
 
 
 
407	/* Finalize the initialization */
408	rtc = devm_rtc_allocate_device(&spi->dev);
409	if (IS_ERR(rtc))
410		return PTR_ERR(rtc);
411
412	pcf2123->rtc = rtc;
413
414	/* Register alarm irq */
415	if (spi->irq > 0) {
416		ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
417				pcf2123_rtc_irq,
418				IRQF_TRIGGER_LOW | IRQF_ONESHOT,
419				pcf2123_driver.driver.name, &spi->dev);
420		if (!ret)
421			device_init_wakeup(&spi->dev, true);
422		else
423			dev_err(&spi->dev, "could not request irq.\n");
424	}
425
426	/* The PCF2123's alarm only has minute accuracy. Must add timer
427	 * support to this driver to generate interrupts more than once
428	 * per minute.
429	 */
430	set_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features);
431	clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features);
432	rtc->ops = &pcf2123_rtc_ops;
433	rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
434	rtc->range_max = RTC_TIMESTAMP_END_2099;
435	rtc->set_start_time = true;
436
437	ret = devm_rtc_register_device(rtc);
438	if (ret)
439		return ret;
 
 
 
 
 
 
 
 
 
 
440
441	return 0;
 
 
 
 
 
 
 
 
 
442}
443
444#ifdef CONFIG_OF
445static const struct of_device_id pcf2123_dt_ids[] = {
446	{ .compatible = "nxp,pcf2123", },
447	{ .compatible = "microcrystal,rv2123", },
448	/* Deprecated, do not use */
449	{ .compatible = "nxp,rtc-pcf2123", },
450	{ /* sentinel */ }
451};
452MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
453#endif
454
455static const struct spi_device_id pcf2123_spi_ids[] = {
456	{ .name = "pcf2123", },
457	{ .name = "rv2123", },
458	{ .name = "rtc-pcf2123", },
459	{ /* sentinel */ }
460};
461MODULE_DEVICE_TABLE(spi, pcf2123_spi_ids);
 
 
 
 
 
 
 
462
463static struct spi_driver pcf2123_driver = {
464	.driver	= {
465			.name	= "rtc-pcf2123",
466			.of_match_table = of_match_ptr(pcf2123_dt_ids),
 
467	},
468	.probe	= pcf2123_probe,
469	.id_table = pcf2123_spi_ids,
470};
471
472module_spi_driver(pcf2123_driver);
 
 
 
 
 
 
 
 
473
474MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
475MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
476MODULE_LICENSE("GPL");
v3.1
 
  1/*
  2 * An SPI driver for the Philips PCF2123 RTC
  3 * Copyright 2009 Cyber Switching, Inc.
  4 *
  5 * Author: Chris Verges <chrisv@cyberswitching.com>
  6 * Maintainers: http://www.cyberswitching.com
  7 *
  8 * based on the RS5C348 driver in this same directory.
  9 *
 10 * Thanks to Christian Pellegrin <chripell@fsfe.org> for
 11 * the sysfs contributions to this driver.
 12 *
 13 * This program is free software; you can redistribute it and/or modify
 14 * it under the terms of the GNU General Public License version 2 as
 15 * published by the Free Software Foundation.
 16 *
 17 * Please note that the CS is active high, so platform data
 18 * should look something like:
 19 *
 20 * static struct spi_board_info ek_spi_devices[] = {
 21 * 	...
 22 * 	{
 23 * 		.modalias		= "rtc-pcf2123",
 24 * 		.chip_select		= 1,
 25 * 		.controller_data	= (void *)AT91_PIN_PA10,
 26 *		.max_speed_hz		= 1000 * 1000,
 27 *		.mode			= SPI_CS_HIGH,
 28 *		.bus_num		= 0,
 29 *	},
 30 *	...
 31 *};
 32 *
 33 */
 34
 35#include <linux/bcd.h>
 36#include <linux/delay.h>
 37#include <linux/device.h>
 38#include <linux/errno.h>
 39#include <linux/init.h>
 40#include <linux/kernel.h>
 
 41#include <linux/string.h>
 42#include <linux/slab.h>
 43#include <linux/rtc.h>
 44#include <linux/spi/spi.h>
 
 
 45
 46#define DRV_VERSION "0.6"
 47
 48#define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
 49#define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
 50#define PCF2123_REG_SC		(0x02)	/* datetime */
 51#define PCF2123_REG_MN		(0x03)
 52#define PCF2123_REG_HR		(0x04)
 53#define PCF2123_REG_DM		(0x05)
 54#define PCF2123_REG_DW		(0x06)
 55#define PCF2123_REG_MO		(0x07)
 56#define PCF2123_REG_YR		(0x08)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 57
 58#define PCF2123_SUBADDR		(1 << 4)
 59#define PCF2123_WRITE		((0 << 7) | PCF2123_SUBADDR)
 60#define PCF2123_READ		((1 << 7) | PCF2123_SUBADDR)
 61
 62static struct spi_driver pcf2123_driver;
 63
 64struct pcf2123_sysfs_reg {
 65	struct device_attribute attr;
 66	char name[2];
 67};
 68
 69struct pcf2123_plat_data {
 70	struct rtc_device *rtc;
 71	struct pcf2123_sysfs_reg regs[16];
 
 
 
 72};
 73
 74/*
 75 * Causes a 30 nanosecond delay to ensure that the PCF2123 chip select
 76 * is released properly after an SPI write.  This function should be
 77 * called after EVERY read/write call over SPI.
 78 */
 79static inline void pcf2123_delay_trec(void)
 80{
 81	ndelay(30);
 82}
 
 
 
 
 
 83
 84static ssize_t pcf2123_show(struct device *dev, struct device_attribute *attr,
 85			    char *buffer)
 86{
 87	struct spi_device *spi = to_spi_device(dev);
 88	struct pcf2123_sysfs_reg *r;
 89	u8 txbuf[1], rxbuf[1];
 90	unsigned long reg;
 91	int ret;
 92
 93	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
 
 94
 95	if (strict_strtoul(r->name, 16, &reg))
 96		return -EINVAL;
 97
 98	txbuf[0] = PCF2123_READ | reg;
 99	ret = spi_write_then_read(spi, txbuf, 1, rxbuf, 1);
100	if (ret < 0)
101		return -EIO;
102	pcf2123_delay_trec();
103	return sprintf(buffer, "0x%x\n", rxbuf[0]);
104}
105
106static ssize_t pcf2123_store(struct device *dev, struct device_attribute *attr,
107			     const char *buffer, size_t count) {
108	struct spi_device *spi = to_spi_device(dev);
109	struct pcf2123_sysfs_reg *r;
110	u8 txbuf[2];
111	unsigned long reg;
112	unsigned long val;
 
 
 
 
 
 
 
113
114	int ret;
115
116	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
117
118	if (strict_strtoul(r->name, 16, &reg)
119		|| strict_strtoul(buffer, 10, &val))
120		return -EINVAL;
121
122	txbuf[0] = PCF2123_WRITE | reg;
123	txbuf[1] = val;
124	ret = spi_write(spi, txbuf, sizeof(txbuf));
125	if (ret < 0)
126		return -EIO;
127	pcf2123_delay_trec();
128	return count;
129}
130
131static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
132{
133	struct spi_device *spi = to_spi_device(dev);
134	u8 txbuf[1], rxbuf[7];
135	int ret;
136
137	txbuf[0] = PCF2123_READ | PCF2123_REG_SC;
138	ret = spi_write_then_read(spi, txbuf, sizeof(txbuf),
139			rxbuf, sizeof(rxbuf));
140	if (ret < 0)
141		return ret;
142	pcf2123_delay_trec();
 
 
 
 
143
144	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
145	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
146	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
147	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
148	tm->tm_wday = rxbuf[4] & 0x07;
149	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
150	tm->tm_year = bcd2bin(rxbuf[6]);
151	if (tm->tm_year < 70)
152		tm->tm_year += 100;	/* assume we are in 1970...2069 */
153
154	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
155			"mday=%d, mon=%d, year=%d, wday=%d\n",
156			__func__,
157			tm->tm_sec, tm->tm_min, tm->tm_hour,
158			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
159
160	/* the clock can give out invalid datetime, but we cannot return
161	 * -EINVAL otherwise hwclock will refuse to set the time on bootup.
162	 */
163	if (rtc_valid_tm(tm) < 0)
164		dev_err(dev, "retrieved date/time is not valid.\n");
165
166	return 0;
167}
168
169static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
170{
171	struct spi_device *spi = to_spi_device(dev);
172	u8 txbuf[8];
173	int ret;
174
175	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
176			"mday=%d, mon=%d, year=%d, wday=%d\n",
177			__func__,
178			tm->tm_sec, tm->tm_min, tm->tm_hour,
179			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
180
181	/* Stop the counter first */
182	txbuf[0] = PCF2123_WRITE | PCF2123_REG_CTRL1;
183	txbuf[1] = 0x20;
184	ret = spi_write(spi, txbuf, 2);
185	if (ret < 0)
186		return ret;
187	pcf2123_delay_trec();
188
189	/* Set the new time */
190	txbuf[0] = PCF2123_WRITE | PCF2123_REG_SC;
191	txbuf[1] = bin2bcd(tm->tm_sec & 0x7F);
192	txbuf[2] = bin2bcd(tm->tm_min & 0x7F);
193	txbuf[3] = bin2bcd(tm->tm_hour & 0x3F);
194	txbuf[4] = bin2bcd(tm->tm_mday & 0x3F);
195	txbuf[5] = tm->tm_wday & 0x07;
196	txbuf[6] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
197	txbuf[7] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
199	ret = spi_write(spi, txbuf, sizeof(txbuf));
200	if (ret < 0)
 
 
 
 
 
 
 
 
 
 
 
201		return ret;
202	pcf2123_delay_trec();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
204	/* Start the counter */
205	txbuf[0] = PCF2123_WRITE | PCF2123_REG_CTRL1;
206	txbuf[1] = 0x00;
207	ret = spi_write(spi, txbuf, 2);
208	if (ret < 0)
209		return ret;
210	pcf2123_delay_trec();
211
212	return 0;
213}
214
215static const struct rtc_class_ops pcf2123_rtc_ops = {
216	.read_time	= pcf2123_rtc_read_time,
217	.set_time	= pcf2123_rtc_set_time,
 
 
 
 
 
218};
219
220static int __devinit pcf2123_probe(struct spi_device *spi)
221{
222	struct rtc_device *rtc;
223	struct pcf2123_plat_data *pdata;
224	u8 txbuf[2], rxbuf[2];
225	int ret, i;
226
227	pdata = kzalloc(sizeof(struct pcf2123_plat_data), GFP_KERNEL);
228	if (!pdata)
 
229		return -ENOMEM;
230	spi->dev.platform_data = pdata;
231
232	/* Send a software reset command */
233	txbuf[0] = PCF2123_WRITE | PCF2123_REG_CTRL1;
234	txbuf[1] = 0x58;
235	dev_dbg(&spi->dev, "resetting RTC (0x%02X 0x%02X)\n",
236			txbuf[0], txbuf[1]);
237	ret = spi_write(spi, txbuf, 2 * sizeof(u8));
238	if (ret < 0)
239		goto kfree_exit;
240	pcf2123_delay_trec();
241
242	/* Stop the counter */
243	txbuf[0] = PCF2123_WRITE | PCF2123_REG_CTRL1;
244	txbuf[1] = 0x20;
245	dev_dbg(&spi->dev, "stopping RTC (0x%02X 0x%02X)\n",
246			txbuf[0], txbuf[1]);
247	ret = spi_write(spi, txbuf, 2 * sizeof(u8));
248	if (ret < 0)
249		goto kfree_exit;
250	pcf2123_delay_trec();
251
252	/* See if the counter was actually stopped */
253	txbuf[0] = PCF2123_READ | PCF2123_REG_CTRL1;
254	dev_dbg(&spi->dev, "checking for presence of RTC (0x%02X)\n",
255			txbuf[0]);
256	ret = spi_write_then_read(spi, txbuf, 1 * sizeof(u8),
257					rxbuf, 2 * sizeof(u8));
258	dev_dbg(&spi->dev, "received data from RTC (0x%02X 0x%02X)\n",
259			rxbuf[0], rxbuf[1]);
260	if (ret < 0)
261		goto kfree_exit;
262	pcf2123_delay_trec();
263
264	if (!(rxbuf[0] & 0x20)) {
265		dev_err(&spi->dev, "chip not found\n");
266		goto kfree_exit;
267	}
268
269	dev_info(&spi->dev, "chip found, driver version " DRV_VERSION "\n");
270	dev_info(&spi->dev, "spiclk %u KHz.\n",
271			(spi->max_speed_hz + 500) / 1000);
272
273	/* Start the counter */
274	txbuf[0] = PCF2123_WRITE | PCF2123_REG_CTRL1;
275	txbuf[1] = 0x00;
276	ret = spi_write(spi, txbuf, sizeof(txbuf));
277	if (ret < 0)
278		goto kfree_exit;
279	pcf2123_delay_trec();
280
281	/* Finalize the initialization */
282	rtc = rtc_device_register(pcf2123_driver.driver.name, &spi->dev,
283			&pcf2123_rtc_ops, THIS_MODULE);
284
285	if (IS_ERR(rtc)) {
286		dev_err(&spi->dev, "failed to register.\n");
287		ret = PTR_ERR(rtc);
288		goto kfree_exit;
 
 
 
 
 
 
 
 
 
289	}
290
291	pdata->rtc = rtc;
 
 
 
 
 
 
 
 
 
292
293	for (i = 0; i < 16; i++) {
294		sprintf(pdata->regs[i].name, "%1x", i);
295		pdata->regs[i].attr.attr.mode = S_IRUGO | S_IWUSR;
296		pdata->regs[i].attr.attr.name = pdata->regs[i].name;
297		pdata->regs[i].attr.show = pcf2123_show;
298		pdata->regs[i].attr.store = pcf2123_store;
299		ret = device_create_file(&spi->dev, &pdata->regs[i].attr);
300		if (ret) {
301			dev_err(&spi->dev, "Unable to create sysfs %s\n",
302				pdata->regs[i].name);
303			goto sysfs_exit;
304		}
305	}
306
307	return 0;
308
309sysfs_exit:
310	for (i--; i >= 0; i--)
311		device_remove_file(&spi->dev, &pdata->regs[i].attr);
312
313kfree_exit:
314	kfree(pdata);
315	spi->dev.platform_data = NULL;
316	return ret;
317}
318
319static int __devexit pcf2123_remove(struct spi_device *spi)
320{
321	struct pcf2123_plat_data *pdata = spi->dev.platform_data;
322	int i;
 
 
 
 
 
 
323
324	if (pdata) {
325		struct rtc_device *rtc = pdata->rtc;
326
327		if (rtc)
328			rtc_device_unregister(rtc);
329		for (i = 0; i < 16; i++)
330			if (pdata->regs[i].name[0])
331				device_remove_file(&spi->dev,
332						   &pdata->regs[i].attr);
333		kfree(pdata);
334	}
335
336	return 0;
337}
338
339static struct spi_driver pcf2123_driver = {
340	.driver	= {
341			.name	= "rtc-pcf2123",
342			.bus	= &spi_bus_type,
343			.owner	= THIS_MODULE,
344	},
345	.probe	= pcf2123_probe,
346	.remove	= __devexit_p(pcf2123_remove),
347};
348
349static int __init pcf2123_init(void)
350{
351	return spi_register_driver(&pcf2123_driver);
352}
353
354static void __exit pcf2123_exit(void)
355{
356	spi_unregister_driver(&pcf2123_driver);
357}
358
359MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
360MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
361MODULE_LICENSE("GPL");
362MODULE_VERSION(DRV_VERSION);
363
364module_init(pcf2123_init);
365module_exit(pcf2123_exit);