Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2014 NVIDIA CORPORATION.  All rights reserved.
  4 */
  5
  6#include <linux/clk.h>
  7#include <linux/delay.h>
  8#include <linux/dma-mapping.h>
  9#include <linux/export.h>
 10#include <linux/interrupt.h>
 11#include <linux/kernel.h>
 12#include <linux/module.h>
 13#include <linux/of.h>
 14#include <linux/of_device.h>
 15#include <linux/platform_device.h>
 16#include <linux/slab.h>
 17#include <linux/sort.h>
 18
 19#include <soc/tegra/fuse.h>
 20
 21#include "mc.h"
 22
 23static const struct of_device_id tegra_mc_of_match[] = {
 24#ifdef CONFIG_ARCH_TEGRA_2x_SOC
 25	{ .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
 26#endif
 27#ifdef CONFIG_ARCH_TEGRA_3x_SOC
 28	{ .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
 29#endif
 30#ifdef CONFIG_ARCH_TEGRA_114_SOC
 31	{ .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
 32#endif
 33#ifdef CONFIG_ARCH_TEGRA_124_SOC
 34	{ .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
 35#endif
 36#ifdef CONFIG_ARCH_TEGRA_132_SOC
 37	{ .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
 38#endif
 39#ifdef CONFIG_ARCH_TEGRA_210_SOC
 40	{ .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
 41#endif
 42#ifdef CONFIG_ARCH_TEGRA_186_SOC
 43	{ .compatible = "nvidia,tegra186-mc", .data = &tegra186_mc_soc },
 44#endif
 45#ifdef CONFIG_ARCH_TEGRA_194_SOC
 46	{ .compatible = "nvidia,tegra194-mc", .data = &tegra194_mc_soc },
 47#endif
 48#ifdef CONFIG_ARCH_TEGRA_234_SOC
 49	{ .compatible = "nvidia,tegra234-mc", .data = &tegra234_mc_soc },
 50#endif
 51	{ /* sentinel */ }
 52};
 53MODULE_DEVICE_TABLE(of, tegra_mc_of_match);
 54
 55static void tegra_mc_devm_action_put_device(void *data)
 56{
 57	struct tegra_mc *mc = data;
 58
 59	put_device(mc->dev);
 60}
 61
 62/**
 63 * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle
 64 * @dev: device pointer for the consumer device
 65 *
 66 * This function will search for the Memory Controller node in a device-tree
 67 * and retrieve the Memory Controller handle.
 68 *
 69 * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc.
 70 */
 71struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev)
 72{
 73	struct platform_device *pdev;
 74	struct device_node *np;
 75	struct tegra_mc *mc;
 76	int err;
 77
 78	np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0);
 79	if (!np)
 80		return ERR_PTR(-ENOENT);
 81
 82	pdev = of_find_device_by_node(np);
 83	of_node_put(np);
 84	if (!pdev)
 85		return ERR_PTR(-ENODEV);
 86
 87	mc = platform_get_drvdata(pdev);
 88	if (!mc) {
 89		put_device(&pdev->dev);
 90		return ERR_PTR(-EPROBE_DEFER);
 91	}
 92
 93	err = devm_add_action_or_reset(dev, tegra_mc_devm_action_put_device, mc);
 94	if (err)
 95		return ERR_PTR(err);
 96
 97	return mc;
 98}
 99EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get);
100
101int tegra_mc_probe_device(struct tegra_mc *mc, struct device *dev)
102{
103	if (mc->soc->ops && mc->soc->ops->probe_device)
104		return mc->soc->ops->probe_device(mc, dev);
105
106	return 0;
107}
108EXPORT_SYMBOL_GPL(tegra_mc_probe_device);
109
110int tegra_mc_get_carveout_info(struct tegra_mc *mc, unsigned int id,
111                               phys_addr_t *base, u64 *size)
112{
113	u32 offset;
114
115	if (id < 1 || id >= mc->soc->num_carveouts)
116		return -EINVAL;
117
118	if (id < 6)
119		offset = 0xc0c + 0x50 * (id - 1);
120	else
121		offset = 0x2004 + 0x50 * (id - 6);
122
123	*base = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x0);
124#ifdef CONFIG_PHYS_ADDR_T_64BIT
125	*base |= (phys_addr_t)mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x4) << 32;
126#endif
127
128	if (size)
129		*size = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x8) << 17;
130
131	return 0;
132}
133EXPORT_SYMBOL_GPL(tegra_mc_get_carveout_info);
134
135static int tegra_mc_block_dma_common(struct tegra_mc *mc,
136				     const struct tegra_mc_reset *rst)
137{
138	unsigned long flags;
139	u32 value;
140
141	spin_lock_irqsave(&mc->lock, flags);
142
143	value = mc_readl(mc, rst->control) | BIT(rst->bit);
144	mc_writel(mc, value, rst->control);
145
146	spin_unlock_irqrestore(&mc->lock, flags);
147
148	return 0;
149}
150
151static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
152				       const struct tegra_mc_reset *rst)
153{
154	return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
155}
156
157static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
158				       const struct tegra_mc_reset *rst)
159{
160	unsigned long flags;
161	u32 value;
162
163	spin_lock_irqsave(&mc->lock, flags);
164
165	value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
166	mc_writel(mc, value, rst->control);
167
168	spin_unlock_irqrestore(&mc->lock, flags);
169
170	return 0;
171}
172
173static int tegra_mc_reset_status_common(struct tegra_mc *mc,
174					const struct tegra_mc_reset *rst)
175{
176	return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
177}
178
179const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
180	.block_dma = tegra_mc_block_dma_common,
181	.dma_idling = tegra_mc_dma_idling_common,
182	.unblock_dma = tegra_mc_unblock_dma_common,
183	.reset_status = tegra_mc_reset_status_common,
184};
185
186static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
187{
188	return container_of(rcdev, struct tegra_mc, reset);
189}
190
191static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
192							unsigned long id)
193{
194	unsigned int i;
195
196	for (i = 0; i < mc->soc->num_resets; i++)
197		if (mc->soc->resets[i].id == id)
198			return &mc->soc->resets[i];
199
200	return NULL;
201}
202
203static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
204				    unsigned long id)
205{
206	struct tegra_mc *mc = reset_to_mc(rcdev);
207	const struct tegra_mc_reset_ops *rst_ops;
208	const struct tegra_mc_reset *rst;
209	int retries = 500;
210	int err;
211
212	rst = tegra_mc_reset_find(mc, id);
213	if (!rst)
214		return -ENODEV;
215
216	rst_ops = mc->soc->reset_ops;
217	if (!rst_ops)
218		return -ENODEV;
219
220	/* DMA flushing will fail if reset is already asserted */
221	if (rst_ops->reset_status) {
222		/* check whether reset is asserted */
223		if (rst_ops->reset_status(mc, rst))
224			return 0;
225	}
226
227	if (rst_ops->block_dma) {
228		/* block clients DMA requests */
229		err = rst_ops->block_dma(mc, rst);
230		if (err) {
231			dev_err(mc->dev, "failed to block %s DMA: %d\n",
232				rst->name, err);
233			return err;
234		}
235	}
236
237	if (rst_ops->dma_idling) {
238		/* wait for completion of the outstanding DMA requests */
239		while (!rst_ops->dma_idling(mc, rst)) {
240			if (!retries--) {
241				dev_err(mc->dev, "failed to flush %s DMA\n",
242					rst->name);
243				return -EBUSY;
244			}
245
246			usleep_range(10, 100);
247		}
248	}
249
250	if (rst_ops->hotreset_assert) {
251		/* clear clients DMA requests sitting before arbitration */
252		err = rst_ops->hotreset_assert(mc, rst);
253		if (err) {
254			dev_err(mc->dev, "failed to hot reset %s: %d\n",
255				rst->name, err);
256			return err;
257		}
258	}
259
260	return 0;
261}
262
263static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
264				      unsigned long id)
265{
266	struct tegra_mc *mc = reset_to_mc(rcdev);
267	const struct tegra_mc_reset_ops *rst_ops;
268	const struct tegra_mc_reset *rst;
269	int err;
270
271	rst = tegra_mc_reset_find(mc, id);
272	if (!rst)
273		return -ENODEV;
274
275	rst_ops = mc->soc->reset_ops;
276	if (!rst_ops)
277		return -ENODEV;
278
279	if (rst_ops->hotreset_deassert) {
280		/* take out client from hot reset */
281		err = rst_ops->hotreset_deassert(mc, rst);
282		if (err) {
283			dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
284				rst->name, err);
285			return err;
286		}
287	}
288
289	if (rst_ops->unblock_dma) {
290		/* allow new DMA requests to proceed to arbitration */
291		err = rst_ops->unblock_dma(mc, rst);
292		if (err) {
293			dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
294				rst->name, err);
295			return err;
296		}
297	}
298
299	return 0;
300}
301
302static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
303				    unsigned long id)
304{
305	struct tegra_mc *mc = reset_to_mc(rcdev);
306	const struct tegra_mc_reset_ops *rst_ops;
307	const struct tegra_mc_reset *rst;
308
309	rst = tegra_mc_reset_find(mc, id);
310	if (!rst)
311		return -ENODEV;
312
313	rst_ops = mc->soc->reset_ops;
314	if (!rst_ops)
315		return -ENODEV;
316
317	return rst_ops->reset_status(mc, rst);
318}
319
320static const struct reset_control_ops tegra_mc_reset_ops = {
321	.assert = tegra_mc_hotreset_assert,
322	.deassert = tegra_mc_hotreset_deassert,
323	.status = tegra_mc_hotreset_status,
324};
325
326static int tegra_mc_reset_setup(struct tegra_mc *mc)
327{
328	int err;
329
330	mc->reset.ops = &tegra_mc_reset_ops;
331	mc->reset.owner = THIS_MODULE;
332	mc->reset.of_node = mc->dev->of_node;
333	mc->reset.of_reset_n_cells = 1;
334	mc->reset.nr_resets = mc->soc->num_resets;
335
336	err = reset_controller_register(&mc->reset);
337	if (err < 0)
338		return err;
339
340	return 0;
341}
342
343int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
344{
345	unsigned int i;
346	struct tegra_mc_timing *timing = NULL;
347
348	for (i = 0; i < mc->num_timings; i++) {
349		if (mc->timings[i].rate == rate) {
350			timing = &mc->timings[i];
351			break;
352		}
353	}
354
355	if (!timing) {
356		dev_err(mc->dev, "no memory timing registered for rate %lu\n",
357			rate);
358		return -EINVAL;
359	}
360
361	for (i = 0; i < mc->soc->num_emem_regs; ++i)
362		mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
363
364	return 0;
365}
366EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration);
367
368unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
369{
370	u8 dram_count;
371
372	dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
373	dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
374	dram_count++;
375
376	return dram_count;
377}
378EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count);
379
380#if defined(CONFIG_ARCH_TEGRA_3x_SOC) || \
381    defined(CONFIG_ARCH_TEGRA_114_SOC) || \
382    defined(CONFIG_ARCH_TEGRA_124_SOC) || \
383    defined(CONFIG_ARCH_TEGRA_132_SOC) || \
384    defined(CONFIG_ARCH_TEGRA_210_SOC)
385static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
386{
387	unsigned long long tick;
388	unsigned int i;
389	u32 value;
390
391	/* compute the number of MC clock cycles per tick */
392	tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
393	do_div(tick, NSEC_PER_SEC);
394
395	value = mc_readl(mc, MC_EMEM_ARB_CFG);
396	value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
397	value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
398	mc_writel(mc, value, MC_EMEM_ARB_CFG);
399
400	/* write latency allowance defaults */
401	for (i = 0; i < mc->soc->num_clients; i++) {
402		const struct tegra_mc_client *client = &mc->soc->clients[i];
403		u32 value;
404
405		value = mc_readl(mc, client->regs.la.reg);
406		value &= ~(client->regs.la.mask << client->regs.la.shift);
407		value |= (client->regs.la.def & client->regs.la.mask) << client->regs.la.shift;
408		mc_writel(mc, value, client->regs.la.reg);
409	}
410
411	/* latch new values */
412	mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
413
414	return 0;
415}
416
417static int load_one_timing(struct tegra_mc *mc,
418			   struct tegra_mc_timing *timing,
419			   struct device_node *node)
420{
421	int err;
422	u32 tmp;
423
424	err = of_property_read_u32(node, "clock-frequency", &tmp);
425	if (err) {
426		dev_err(mc->dev,
427			"timing %pOFn: failed to read rate\n", node);
428		return err;
429	}
430
431	timing->rate = tmp;
432	timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
433					 sizeof(u32), GFP_KERNEL);
434	if (!timing->emem_data)
435		return -ENOMEM;
436
437	err = of_property_read_u32_array(node, "nvidia,emem-configuration",
438					 timing->emem_data,
439					 mc->soc->num_emem_regs);
440	if (err) {
441		dev_err(mc->dev,
442			"timing %pOFn: failed to read EMEM configuration\n",
443			node);
444		return err;
445	}
446
447	return 0;
448}
449
450static int load_timings(struct tegra_mc *mc, struct device_node *node)
451{
452	struct device_node *child;
453	struct tegra_mc_timing *timing;
454	int child_count = of_get_child_count(node);
455	int i = 0, err;
456
457	mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
458				   GFP_KERNEL);
459	if (!mc->timings)
460		return -ENOMEM;
461
462	mc->num_timings = child_count;
463
464	for_each_child_of_node(node, child) {
465		timing = &mc->timings[i++];
466
467		err = load_one_timing(mc, timing, child);
468		if (err) {
469			of_node_put(child);
470			return err;
471		}
472	}
473
474	return 0;
475}
476
477static int tegra_mc_setup_timings(struct tegra_mc *mc)
478{
479	struct device_node *node;
480	u32 ram_code, node_ram_code;
481	int err;
482
483	ram_code = tegra_read_ram_code();
484
485	mc->num_timings = 0;
486
487	for_each_child_of_node(mc->dev->of_node, node) {
488		err = of_property_read_u32(node, "nvidia,ram-code",
489					   &node_ram_code);
490		if (err || (node_ram_code != ram_code))
491			continue;
492
493		err = load_timings(mc, node);
494		of_node_put(node);
495		if (err)
496			return err;
497		break;
498	}
499
500	if (mc->num_timings == 0)
501		dev_warn(mc->dev,
502			 "no memory timings for RAM code %u registered\n",
503			 ram_code);
504
505	return 0;
506}
507
508int tegra30_mc_probe(struct tegra_mc *mc)
509{
510	int err;
511
512	mc->clk = devm_clk_get_optional(mc->dev, "mc");
513	if (IS_ERR(mc->clk)) {
514		dev_err(mc->dev, "failed to get MC clock: %ld\n", PTR_ERR(mc->clk));
515		return PTR_ERR(mc->clk);
516	}
517
518	/* ensure that debug features are disabled */
519	mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG);
520
521	err = tegra_mc_setup_latency_allowance(mc);
522	if (err < 0) {
523		dev_err(mc->dev, "failed to setup latency allowance: %d\n", err);
524		return err;
525	}
526
527	err = tegra_mc_setup_timings(mc);
528	if (err < 0) {
529		dev_err(mc->dev, "failed to setup timings: %d\n", err);
530		return err;
531	}
532
533	return 0;
534}
535
536const struct tegra_mc_ops tegra30_mc_ops = {
537	.probe = tegra30_mc_probe,
538	.handle_irq = tegra30_mc_handle_irq,
539};
540#endif
541
542static int mc_global_intstatus_to_channel(const struct tegra_mc *mc, u32 status,
543					  unsigned int *mc_channel)
544{
545	if ((status & mc->soc->ch_intmask) == 0)
546		return -EINVAL;
547
548	*mc_channel = __ffs((status & mc->soc->ch_intmask) >>
549			    mc->soc->global_intstatus_channel_shift);
550
551	return 0;
552}
553
554static u32 mc_channel_to_global_intstatus(const struct tegra_mc *mc,
555					  unsigned int channel)
556{
557	return BIT(channel) << mc->soc->global_intstatus_channel_shift;
558}
559
560irqreturn_t tegra30_mc_handle_irq(int irq, void *data)
561{
562	struct tegra_mc *mc = data;
563	unsigned int bit, channel;
564	unsigned long status;
565
566	if (mc->soc->num_channels) {
567		u32 global_status;
568		int err;
569
570		global_status = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, MC_GLOBAL_INTSTATUS);
571		err = mc_global_intstatus_to_channel(mc, global_status, &channel);
572		if (err < 0) {
573			dev_err_ratelimited(mc->dev, "unknown interrupt channel 0x%08x\n",
574					    global_status);
575			return IRQ_NONE;
576		}
577
578		/* mask all interrupts to avoid flooding */
579		status = mc_ch_readl(mc, channel, MC_INTSTATUS) & mc->soc->intmask;
580	} else {
581		status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
582	}
583
584	if (!status)
585		return IRQ_NONE;
586
587	for_each_set_bit(bit, &status, 32) {
588		const char *error = tegra_mc_status_names[bit] ?: "unknown";
589		const char *client = "unknown", *desc;
590		const char *direction, *secure;
591		u32 status_reg, addr_reg;
592		u32 intmask = BIT(bit);
593		phys_addr_t addr = 0;
594#ifdef CONFIG_PHYS_ADDR_T_64BIT
595		u32 addr_hi_reg = 0;
596#endif
597		unsigned int i;
598		char perm[7];
599		u8 id, type;
600		u32 value;
601
602		switch (intmask) {
603		case MC_INT_DECERR_VPR:
604			status_reg = MC_ERR_VPR_STATUS;
605			addr_reg = MC_ERR_VPR_ADR;
606			break;
607
608		case MC_INT_SECERR_SEC:
609			status_reg = MC_ERR_SEC_STATUS;
610			addr_reg = MC_ERR_SEC_ADR;
611			break;
612
613		case MC_INT_DECERR_MTS:
614			status_reg = MC_ERR_MTS_STATUS;
615			addr_reg = MC_ERR_MTS_ADR;
616			break;
617
618		case MC_INT_DECERR_GENERALIZED_CARVEOUT:
619			status_reg = MC_ERR_GENERALIZED_CARVEOUT_STATUS;
620			addr_reg = MC_ERR_GENERALIZED_CARVEOUT_ADR;
621			break;
622
623		case MC_INT_DECERR_ROUTE_SANITY:
624			status_reg = MC_ERR_ROUTE_SANITY_STATUS;
625			addr_reg = MC_ERR_ROUTE_SANITY_ADR;
626			break;
627
628		default:
629			status_reg = MC_ERR_STATUS;
630			addr_reg = MC_ERR_ADR;
631
632#ifdef CONFIG_PHYS_ADDR_T_64BIT
633			if (mc->soc->has_addr_hi_reg)
634				addr_hi_reg = MC_ERR_ADR_HI;
635#endif
636			break;
637		}
638
639		if (mc->soc->num_channels)
640			value = mc_ch_readl(mc, channel, status_reg);
641		else
642			value = mc_readl(mc, status_reg);
643
644#ifdef CONFIG_PHYS_ADDR_T_64BIT
645		if (mc->soc->num_address_bits > 32) {
646			if (addr_hi_reg) {
647				if (mc->soc->num_channels)
648					addr = mc_ch_readl(mc, channel, addr_hi_reg);
649				else
650					addr = mc_readl(mc, addr_hi_reg);
651			} else {
652				addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
653					MC_ERR_STATUS_ADR_HI_MASK);
654			}
655			addr <<= 32;
656		}
657#endif
658
659		if (value & MC_ERR_STATUS_RW)
660			direction = "write";
661		else
662			direction = "read";
663
664		if (value & MC_ERR_STATUS_SECURITY)
665			secure = "secure ";
666		else
667			secure = "";
668
669		id = value & mc->soc->client_id_mask;
670
671		for (i = 0; i < mc->soc->num_clients; i++) {
672			if (mc->soc->clients[i].id == id) {
673				client = mc->soc->clients[i].name;
674				break;
675			}
676		}
677
678		type = (value & MC_ERR_STATUS_TYPE_MASK) >>
679		       MC_ERR_STATUS_TYPE_SHIFT;
680		desc = tegra_mc_error_names[type];
681
682		switch (value & MC_ERR_STATUS_TYPE_MASK) {
683		case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
684			perm[0] = ' ';
685			perm[1] = '[';
686
687			if (value & MC_ERR_STATUS_READABLE)
688				perm[2] = 'R';
689			else
690				perm[2] = '-';
691
692			if (value & MC_ERR_STATUS_WRITABLE)
693				perm[3] = 'W';
694			else
695				perm[3] = '-';
696
697			if (value & MC_ERR_STATUS_NONSECURE)
698				perm[4] = '-';
699			else
700				perm[4] = 'S';
701
702			perm[5] = ']';
703			perm[6] = '\0';
704			break;
705
706		default:
707			perm[0] = '\0';
708			break;
709		}
710
711		if (mc->soc->num_channels)
712			value = mc_ch_readl(mc, channel, addr_reg);
713		else
714			value = mc_readl(mc, addr_reg);
715		addr |= value;
716
717		dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
718				    client, secure, direction, &addr, error,
719				    desc, perm);
720	}
721
722	/* clear interrupts */
723	if (mc->soc->num_channels) {
724		mc_ch_writel(mc, channel, status, MC_INTSTATUS);
725		mc_ch_writel(mc, MC_BROADCAST_CHANNEL,
726			     mc_channel_to_global_intstatus(mc, channel),
727			     MC_GLOBAL_INTSTATUS);
728	} else {
729		mc_writel(mc, status, MC_INTSTATUS);
730	}
731
732	return IRQ_HANDLED;
733}
734
735const char *const tegra_mc_status_names[32] = {
736	[ 1] = "External interrupt",
737	[ 6] = "EMEM address decode error",
738	[ 7] = "GART page fault",
739	[ 8] = "Security violation",
740	[ 9] = "EMEM arbitration error",
741	[10] = "Page fault",
742	[11] = "Invalid APB ASID update",
743	[12] = "VPR violation",
744	[13] = "Secure carveout violation",
745	[16] = "MTS carveout violation",
746	[17] = "Generalized carveout violation",
747	[20] = "Route Sanity error",
748};
749
750const char *const tegra_mc_error_names[8] = {
751	[2] = "EMEM decode error",
752	[3] = "TrustZone violation",
753	[4] = "Carveout violation",
754	[6] = "SMMU translation error",
755};
756
757/*
758 * Memory Controller (MC) has few Memory Clients that are issuing memory
759 * bandwidth allocation requests to the MC interconnect provider. The MC
760 * provider aggregates the requests and then sends the aggregated request
761 * up to the External Memory Controller (EMC) interconnect provider which
762 * re-configures hardware interface to External Memory (EMEM) in accordance
763 * to the required bandwidth. Each MC interconnect node represents an
764 * individual Memory Client.
765 *
766 * Memory interconnect topology:
767 *
768 *               +----+
769 * +--------+    |    |
770 * | TEXSRD +--->+    |
771 * +--------+    |    |
772 *               |    |    +-----+    +------+
773 *    ...        | MC +--->+ EMC +--->+ EMEM |
774 *               |    |    +-----+    +------+
775 * +--------+    |    |
776 * | DISP.. +--->+    |
777 * +--------+    |    |
778 *               +----+
779 */
780static int tegra_mc_interconnect_setup(struct tegra_mc *mc)
781{
782	struct icc_node *node;
783	unsigned int i;
784	int err;
785
786	/* older device-trees don't have interconnect properties */
787	if (!device_property_present(mc->dev, "#interconnect-cells") ||
788	    !mc->soc->icc_ops)
789		return 0;
790
791	mc->provider.dev = mc->dev;
792	mc->provider.data = &mc->provider;
793	mc->provider.set = mc->soc->icc_ops->set;
794	mc->provider.aggregate = mc->soc->icc_ops->aggregate;
795	mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended;
796
797	err = icc_provider_add(&mc->provider);
798	if (err)
799		return err;
800
801	/* create Memory Controller node */
802	node = icc_node_create(TEGRA_ICC_MC);
803	if (IS_ERR(node)) {
804		err = PTR_ERR(node);
805		goto del_provider;
806	}
807
808	node->name = "Memory Controller";
809	icc_node_add(node, &mc->provider);
810
811	/* link Memory Controller to External Memory Controller */
812	err = icc_link_create(node, TEGRA_ICC_EMC);
813	if (err)
814		goto remove_nodes;
815
816	for (i = 0; i < mc->soc->num_clients; i++) {
817		/* create MC client node */
818		node = icc_node_create(mc->soc->clients[i].id);
819		if (IS_ERR(node)) {
820			err = PTR_ERR(node);
821			goto remove_nodes;
822		}
823
824		node->name = mc->soc->clients[i].name;
825		icc_node_add(node, &mc->provider);
826
827		/* link Memory Client to Memory Controller */
828		err = icc_link_create(node, TEGRA_ICC_MC);
829		if (err)
830			goto remove_nodes;
831	}
832
833	return 0;
834
835remove_nodes:
836	icc_nodes_remove(&mc->provider);
837del_provider:
838	icc_provider_del(&mc->provider);
839
840	return err;
841}
842
843static int tegra_mc_probe(struct platform_device *pdev)
844{
845	struct tegra_mc *mc;
846	u64 mask;
847	int err;
848
849	mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
850	if (!mc)
851		return -ENOMEM;
852
853	platform_set_drvdata(pdev, mc);
854	spin_lock_init(&mc->lock);
855	mc->soc = of_device_get_match_data(&pdev->dev);
856	mc->dev = &pdev->dev;
857
858	mask = DMA_BIT_MASK(mc->soc->num_address_bits);
859
860	err = dma_coerce_mask_and_coherent(&pdev->dev, mask);
861	if (err < 0) {
862		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
863		return err;
864	}
865
866	/* length of MC tick in nanoseconds */
867	mc->tick = 30;
868
869	mc->regs = devm_platform_ioremap_resource(pdev, 0);
870	if (IS_ERR(mc->regs))
871		return PTR_ERR(mc->regs);
872
873	mc->debugfs.root = debugfs_create_dir("mc", NULL);
874
875	if (mc->soc->ops && mc->soc->ops->probe) {
876		err = mc->soc->ops->probe(mc);
877		if (err < 0)
878			return err;
879	}
880
881	if (mc->soc->ops && mc->soc->ops->handle_irq) {
882		mc->irq = platform_get_irq(pdev, 0);
883		if (mc->irq < 0)
884			return mc->irq;
885
886		WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");
887
888		if (mc->soc->num_channels)
889			mc_ch_writel(mc, MC_BROADCAST_CHANNEL, mc->soc->intmask,
890				     MC_INTMASK);
891		else
892			mc_writel(mc, mc->soc->intmask, MC_INTMASK);
893
894		err = devm_request_irq(&pdev->dev, mc->irq, mc->soc->ops->handle_irq, 0,
895				       dev_name(&pdev->dev), mc);
896		if (err < 0) {
897			dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
898				err);
899			return err;
900		}
901	}
902
903	if (mc->soc->reset_ops) {
904		err = tegra_mc_reset_setup(mc);
905		if (err < 0)
906			dev_err(&pdev->dev, "failed to register reset controller: %d\n", err);
907	}
908
909	err = tegra_mc_interconnect_setup(mc);
910	if (err < 0)
911		dev_err(&pdev->dev, "failed to initialize interconnect: %d\n",
912			err);
913
914	if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
915		mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
916		if (IS_ERR(mc->smmu)) {
917			dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
918				PTR_ERR(mc->smmu));
919			mc->smmu = NULL;
920		}
921	}
922
923	if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && !mc->soc->smmu) {
924		mc->gart = tegra_gart_probe(&pdev->dev, mc);
925		if (IS_ERR(mc->gart)) {
926			dev_err(&pdev->dev, "failed to probe GART: %ld\n",
927				PTR_ERR(mc->gart));
928			mc->gart = NULL;
929		}
930	}
931
932	return 0;
933}
934
935static int __maybe_unused tegra_mc_suspend(struct device *dev)
936{
937	struct tegra_mc *mc = dev_get_drvdata(dev);
938
939	if (mc->soc->ops && mc->soc->ops->suspend)
940		return mc->soc->ops->suspend(mc);
941
942	return 0;
943}
944
945static int __maybe_unused tegra_mc_resume(struct device *dev)
946{
947	struct tegra_mc *mc = dev_get_drvdata(dev);
948
949	if (mc->soc->ops && mc->soc->ops->resume)
950		return mc->soc->ops->resume(mc);
951
952	return 0;
953}
954
955static void tegra_mc_sync_state(struct device *dev)
956{
957	struct tegra_mc *mc = dev_get_drvdata(dev);
958
959	/* check whether ICC provider is registered */
960	if (mc->provider.dev == dev)
961		icc_sync_state(dev);
962}
963
964static const struct dev_pm_ops tegra_mc_pm_ops = {
965	SET_SYSTEM_SLEEP_PM_OPS(tegra_mc_suspend, tegra_mc_resume)
966};
967
968static struct platform_driver tegra_mc_driver = {
969	.driver = {
970		.name = "tegra-mc",
971		.of_match_table = tegra_mc_of_match,
972		.pm = &tegra_mc_pm_ops,
973		.suppress_bind_attrs = true,
974		.sync_state = tegra_mc_sync_state,
975	},
976	.prevent_deferred_probe = true,
977	.probe = tegra_mc_probe,
978};
979
980static int tegra_mc_init(void)
981{
982	return platform_driver_register(&tegra_mc_driver);
983}
984arch_initcall(tegra_mc_init);
985
986MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
987MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
988MODULE_LICENSE("GPL v2");