Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2012 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-array.h"
   8#include "dm-space-map.h"
   9#include "dm-transaction-manager.h"
  10
  11#include <linux/export.h>
  12#include <linux/device-mapper.h>
  13
  14#define DM_MSG_PREFIX "array"
  15
  16/*----------------------------------------------------------------*/
  17
  18/*
  19 * The array is implemented as a fully populated btree, which points to
  20 * blocks that contain the packed values.  This is more space efficient
  21 * than just using a btree since we don't store 1 key per value.
  22 */
  23struct array_block {
  24	__le32 csum;
  25	__le32 max_entries;
  26	__le32 nr_entries;
  27	__le32 value_size;
  28	__le64 blocknr; /* Block this node is supposed to live in. */
  29} __packed;
  30
  31/*----------------------------------------------------------------*/
  32
  33/*
  34 * Validator methods.  As usual we calculate a checksum, and also write the
  35 * block location into the header (paranoia about ssds remapping areas by
  36 * mistake).
  37 */
  38#define CSUM_XOR 595846735
  39
  40static void array_block_prepare_for_write(struct dm_block_validator *v,
  41					  struct dm_block *b,
  42					  size_t size_of_block)
  43{
  44	struct array_block *bh_le = dm_block_data(b);
  45
  46	bh_le->blocknr = cpu_to_le64(dm_block_location(b));
  47	bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
  48						 size_of_block - sizeof(__le32),
  49						 CSUM_XOR));
  50}
  51
  52static int array_block_check(struct dm_block_validator *v,
  53			     struct dm_block *b,
  54			     size_t size_of_block)
  55{
  56	struct array_block *bh_le = dm_block_data(b);
  57	__le32 csum_disk;
  58
  59	if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) {
  60		DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu",
  61			    (unsigned long long) le64_to_cpu(bh_le->blocknr),
  62			    (unsigned long long) dm_block_location(b));
  63		return -ENOTBLK;
  64	}
  65
  66	csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
  67					       size_of_block - sizeof(__le32),
  68					       CSUM_XOR));
  69	if (csum_disk != bh_le->csum) {
  70		DMERR_LIMIT("array_block_check failed: csum %u != wanted %u",
  71			    (unsigned) le32_to_cpu(csum_disk),
  72			    (unsigned) le32_to_cpu(bh_le->csum));
  73		return -EILSEQ;
  74	}
  75
  76	return 0;
  77}
  78
  79static struct dm_block_validator array_validator = {
  80	.name = "array",
  81	.prepare_for_write = array_block_prepare_for_write,
  82	.check = array_block_check
  83};
  84
  85/*----------------------------------------------------------------*/
  86
  87/*
  88 * Functions for manipulating the array blocks.
  89 */
  90
  91/*
  92 * Returns a pointer to a value within an array block.
  93 *
  94 * index - The index into _this_ specific block.
  95 */
  96static void *element_at(struct dm_array_info *info, struct array_block *ab,
  97			unsigned index)
  98{
  99	unsigned char *entry = (unsigned char *) (ab + 1);
 100
 101	entry += index * info->value_type.size;
 102
 103	return entry;
 104}
 105
 106/*
 107 * Utility function that calls one of the value_type methods on every value
 108 * in an array block.
 109 */
 110static void on_entries(struct dm_array_info *info, struct array_block *ab,
 111		       void (*fn)(void *, const void *, unsigned))
 112{
 113	unsigned nr_entries = le32_to_cpu(ab->nr_entries);
 114	fn(info->value_type.context, element_at(info, ab, 0), nr_entries);
 115}
 116
 117/*
 118 * Increment every value in an array block.
 119 */
 120static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab)
 121{
 122	struct dm_btree_value_type *vt = &info->value_type;
 123
 124	if (vt->inc)
 125		on_entries(info, ab, vt->inc);
 126}
 127
 128/*
 129 * Decrement every value in an array block.
 130 */
 131static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab)
 132{
 133	struct dm_btree_value_type *vt = &info->value_type;
 134
 135	if (vt->dec)
 136		on_entries(info, ab, vt->dec);
 137}
 138
 139/*
 140 * Each array block can hold this many values.
 141 */
 142static uint32_t calc_max_entries(size_t value_size, size_t size_of_block)
 143{
 144	return (size_of_block - sizeof(struct array_block)) / value_size;
 145}
 146
 147/*
 148 * Allocate a new array block.  The caller will need to unlock block.
 149 */
 150static int alloc_ablock(struct dm_array_info *info, size_t size_of_block,
 151			uint32_t max_entries,
 152			struct dm_block **block, struct array_block **ab)
 153{
 154	int r;
 155
 156	r = dm_tm_new_block(info->btree_info.tm, &array_validator, block);
 157	if (r)
 158		return r;
 159
 160	(*ab) = dm_block_data(*block);
 161	(*ab)->max_entries = cpu_to_le32(max_entries);
 162	(*ab)->nr_entries = cpu_to_le32(0);
 163	(*ab)->value_size = cpu_to_le32(info->value_type.size);
 164
 165	return 0;
 166}
 167
 168/*
 169 * Pad an array block out with a particular value.  Every instance will
 170 * cause an increment of the value_type.  new_nr must always be more than
 171 * the current number of entries.
 172 */
 173static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
 174			const void *value, unsigned new_nr)
 175{
 176	uint32_t nr_entries, delta, i;
 177	struct dm_btree_value_type *vt = &info->value_type;
 178
 179	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
 180	BUG_ON(new_nr < le32_to_cpu(ab->nr_entries));
 181
 182	nr_entries = le32_to_cpu(ab->nr_entries);
 183	delta = new_nr - nr_entries;
 184	if (vt->inc)
 185		vt->inc(vt->context, value, delta);
 186	for (i = nr_entries; i < new_nr; i++)
 187		memcpy(element_at(info, ab, i), value, vt->size);
 188	ab->nr_entries = cpu_to_le32(new_nr);
 189}
 190
 191/*
 192 * Remove some entries from the back of an array block.  Every value
 193 * removed will be decremented.  new_nr must be <= the current number of
 194 * entries.
 195 */
 196static void trim_ablock(struct dm_array_info *info, struct array_block *ab,
 197			unsigned new_nr)
 198{
 199	uint32_t nr_entries, delta;
 200	struct dm_btree_value_type *vt = &info->value_type;
 201
 202	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
 203	BUG_ON(new_nr > le32_to_cpu(ab->nr_entries));
 204
 205	nr_entries = le32_to_cpu(ab->nr_entries);
 206	delta = nr_entries - new_nr;
 207	if (vt->dec)
 208		vt->dec(vt->context, element_at(info, ab, new_nr - 1), delta);
 209	ab->nr_entries = cpu_to_le32(new_nr);
 210}
 211
 212/*
 213 * Read locks a block, and coerces it to an array block.  The caller must
 214 * unlock 'block' when finished.
 215 */
 216static int get_ablock(struct dm_array_info *info, dm_block_t b,
 217		      struct dm_block **block, struct array_block **ab)
 218{
 219	int r;
 220
 221	r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block);
 222	if (r)
 223		return r;
 224
 225	*ab = dm_block_data(*block);
 226	return 0;
 227}
 228
 229/*
 230 * Unlocks an array block.
 231 */
 232static void unlock_ablock(struct dm_array_info *info, struct dm_block *block)
 233{
 234	dm_tm_unlock(info->btree_info.tm, block);
 235}
 236
 237/*----------------------------------------------------------------*/
 238
 239/*
 240 * Btree manipulation.
 241 */
 242
 243/*
 244 * Looks up an array block in the btree, and then read locks it.
 245 *
 246 * index is the index of the index of the array_block, (ie. the array index
 247 * / max_entries).
 248 */
 249static int lookup_ablock(struct dm_array_info *info, dm_block_t root,
 250			 unsigned index, struct dm_block **block,
 251			 struct array_block **ab)
 252{
 253	int r;
 254	uint64_t key = index;
 255	__le64 block_le;
 256
 257	r = dm_btree_lookup(&info->btree_info, root, &key, &block_le);
 258	if (r)
 259		return r;
 260
 261	return get_ablock(info, le64_to_cpu(block_le), block, ab);
 262}
 263
 264/*
 265 * Insert an array block into the btree.  The block is _not_ unlocked.
 266 */
 267static int insert_ablock(struct dm_array_info *info, uint64_t index,
 268			 struct dm_block *block, dm_block_t *root)
 269{
 270	__le64 block_le = cpu_to_le64(dm_block_location(block));
 271
 272	__dm_bless_for_disk(block_le);
 273	return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root);
 274}
 275
 276/*----------------------------------------------------------------*/
 277
 278static int __shadow_ablock(struct dm_array_info *info, dm_block_t b,
 279			   struct dm_block **block, struct array_block **ab)
 280{
 281	int inc;
 282	int r = dm_tm_shadow_block(info->btree_info.tm, b,
 283				   &array_validator, block, &inc);
 284	if (r)
 285		return r;
 286
 287	*ab = dm_block_data(*block);
 288	if (inc)
 289		inc_ablock_entries(info, *ab);
 290
 291	return 0;
 292}
 293
 294/*
 295 * The shadow op will often be a noop.  Only insert if it really
 296 * copied data.
 297 */
 298static int __reinsert_ablock(struct dm_array_info *info, unsigned index,
 299			     struct dm_block *block, dm_block_t b,
 300			     dm_block_t *root)
 301{
 302	int r = 0;
 303
 304	if (dm_block_location(block) != b) {
 305		/*
 306		 * dm_tm_shadow_block will have already decremented the old
 307		 * block, but it is still referenced by the btree.  We
 308		 * increment to stop the insert decrementing it below zero
 309		 * when overwriting the old value.
 310		 */
 311		dm_tm_inc(info->btree_info.tm, b);
 312		r = insert_ablock(info, index, block, root);
 313	}
 314
 315	return r;
 316}
 317
 318/*
 319 * Looks up an array block in the btree.  Then shadows it, and updates the
 320 * btree to point to this new shadow.  'root' is an input/output parameter
 321 * for both the current root block, and the new one.
 322 */
 323static int shadow_ablock(struct dm_array_info *info, dm_block_t *root,
 324			 unsigned index, struct dm_block **block,
 325			 struct array_block **ab)
 326{
 327	int r;
 328	uint64_t key = index;
 329	dm_block_t b;
 330	__le64 block_le;
 331
 332	r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le);
 333	if (r)
 334		return r;
 335	b = le64_to_cpu(block_le);
 336
 337	r = __shadow_ablock(info, b, block, ab);
 338	if (r)
 339		return r;
 340
 341	return __reinsert_ablock(info, index, *block, b, root);
 342}
 343
 344/*
 345 * Allocate an new array block, and fill it with some values.
 346 */
 347static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block,
 348			     uint32_t max_entries,
 349			     unsigned block_index, uint32_t nr,
 350			     const void *value, dm_block_t *root)
 351{
 352	int r;
 353	struct dm_block *block;
 354	struct array_block *ab;
 355
 356	r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
 357	if (r)
 358		return r;
 359
 360	fill_ablock(info, ab, value, nr);
 361	r = insert_ablock(info, block_index, block, root);
 362	unlock_ablock(info, block);
 363
 364	return r;
 365}
 366
 367static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block,
 368			       unsigned begin_block, unsigned end_block,
 369			       unsigned max_entries, const void *value,
 370			       dm_block_t *root)
 371{
 372	int r = 0;
 373
 374	for (; !r && begin_block != end_block; begin_block++)
 375		r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root);
 376
 377	return r;
 378}
 379
 380/*
 381 * There are a bunch of functions involved with resizing an array.  This
 382 * structure holds information that commonly needed by them.  Purely here
 383 * to reduce parameter count.
 384 */
 385struct resize {
 386	/*
 387	 * Describes the array.
 388	 */
 389	struct dm_array_info *info;
 390
 391	/*
 392	 * The current root of the array.  This gets updated.
 393	 */
 394	dm_block_t root;
 395
 396	/*
 397	 * Metadata block size.  Used to calculate the nr entries in an
 398	 * array block.
 399	 */
 400	size_t size_of_block;
 401
 402	/*
 403	 * Maximum nr entries in an array block.
 404	 */
 405	unsigned max_entries;
 406
 407	/*
 408	 * nr of completely full blocks in the array.
 409	 *
 410	 * 'old' refers to before the resize, 'new' after.
 411	 */
 412	unsigned old_nr_full_blocks, new_nr_full_blocks;
 413
 414	/*
 415	 * Number of entries in the final block.  0 iff only full blocks in
 416	 * the array.
 417	 */
 418	unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block;
 419
 420	/*
 421	 * The default value used when growing the array.
 422	 */
 423	const void *value;
 424};
 425
 426/*
 427 * Removes a consecutive set of array blocks from the btree.  The values
 428 * in block are decremented as a side effect of the btree remove.
 429 *
 430 * begin_index - the index of the first array block to remove.
 431 * end_index - the one-past-the-end value.  ie. this block is not removed.
 432 */
 433static int drop_blocks(struct resize *resize, unsigned begin_index,
 434		       unsigned end_index)
 435{
 436	int r;
 437
 438	while (begin_index != end_index) {
 439		uint64_t key = begin_index++;
 440		r = dm_btree_remove(&resize->info->btree_info, resize->root,
 441				    &key, &resize->root);
 442		if (r)
 443			return r;
 444	}
 445
 446	return 0;
 447}
 448
 449/*
 450 * Calculates how many blocks are needed for the array.
 451 */
 452static unsigned total_nr_blocks_needed(unsigned nr_full_blocks,
 453				       unsigned nr_entries_in_last_block)
 454{
 455	return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0);
 456}
 457
 458/*
 459 * Shrink an array.
 460 */
 461static int shrink(struct resize *resize)
 462{
 463	int r;
 464	unsigned begin, end;
 465	struct dm_block *block;
 466	struct array_block *ab;
 467
 468	/*
 469	 * Lose some blocks from the back?
 470	 */
 471	if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) {
 472		begin = total_nr_blocks_needed(resize->new_nr_full_blocks,
 473					       resize->new_nr_entries_in_last_block);
 474		end = total_nr_blocks_needed(resize->old_nr_full_blocks,
 475					     resize->old_nr_entries_in_last_block);
 476
 477		r = drop_blocks(resize, begin, end);
 478		if (r)
 479			return r;
 480	}
 481
 482	/*
 483	 * Trim the new tail block
 484	 */
 485	if (resize->new_nr_entries_in_last_block) {
 486		r = shadow_ablock(resize->info, &resize->root,
 487				  resize->new_nr_full_blocks, &block, &ab);
 488		if (r)
 489			return r;
 490
 491		trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block);
 492		unlock_ablock(resize->info, block);
 493	}
 494
 495	return 0;
 496}
 497
 498/*
 499 * Grow an array.
 500 */
 501static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries)
 502{
 503	int r;
 504	struct dm_block *block;
 505	struct array_block *ab;
 506
 507	r = shadow_ablock(resize->info, &resize->root,
 508			  resize->old_nr_full_blocks, &block, &ab);
 509	if (r)
 510		return r;
 511
 512	fill_ablock(resize->info, ab, resize->value, new_nr_entries);
 513	unlock_ablock(resize->info, block);
 514
 515	return r;
 516}
 517
 518static int grow_add_tail_block(struct resize *resize)
 519{
 520	return insert_new_ablock(resize->info, resize->size_of_block,
 521				 resize->max_entries,
 522				 resize->new_nr_full_blocks,
 523				 resize->new_nr_entries_in_last_block,
 524				 resize->value, &resize->root);
 525}
 526
 527static int grow_needs_more_blocks(struct resize *resize)
 528{
 529	int r;
 530	unsigned old_nr_blocks = resize->old_nr_full_blocks;
 531
 532	if (resize->old_nr_entries_in_last_block > 0) {
 533		old_nr_blocks++;
 534
 535		r = grow_extend_tail_block(resize, resize->max_entries);
 536		if (r)
 537			return r;
 538	}
 539
 540	r = insert_full_ablocks(resize->info, resize->size_of_block,
 541				old_nr_blocks,
 542				resize->new_nr_full_blocks,
 543				resize->max_entries, resize->value,
 544				&resize->root);
 545	if (r)
 546		return r;
 547
 548	if (resize->new_nr_entries_in_last_block)
 549		r = grow_add_tail_block(resize);
 550
 551	return r;
 552}
 553
 554static int grow(struct resize *resize)
 555{
 556	if (resize->new_nr_full_blocks > resize->old_nr_full_blocks)
 557		return grow_needs_more_blocks(resize);
 558
 559	else if (resize->old_nr_entries_in_last_block)
 560		return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block);
 561
 562	else
 563		return grow_add_tail_block(resize);
 564}
 565
 566/*----------------------------------------------------------------*/
 567
 568/*
 569 * These are the value_type functions for the btree elements, which point
 570 * to array blocks.
 571 */
 572static void block_inc(void *context, const void *value, unsigned count)
 573{
 574	const __le64 *block_le = value;
 575	struct dm_array_info *info = context;
 576	unsigned i;
 577
 578	for (i = 0; i < count; i++, block_le++)
 579		dm_tm_inc(info->btree_info.tm, le64_to_cpu(*block_le));
 580}
 581
 582static void __block_dec(void *context, const void *value)
 583{
 584	int r;
 585	uint64_t b;
 586	__le64 block_le;
 587	uint32_t ref_count;
 588	struct dm_block *block;
 589	struct array_block *ab;
 590	struct dm_array_info *info = context;
 591
 592	memcpy(&block_le, value, sizeof(block_le));
 593	b = le64_to_cpu(block_le);
 594
 595	r = dm_tm_ref(info->btree_info.tm, b, &ref_count);
 596	if (r) {
 597		DMERR_LIMIT("couldn't get reference count for block %llu",
 598			    (unsigned long long) b);
 599		return;
 600	}
 601
 602	if (ref_count == 1) {
 603		/*
 604		 * We're about to drop the last reference to this ablock.
 605		 * So we need to decrement the ref count of the contents.
 606		 */
 607		r = get_ablock(info, b, &block, &ab);
 608		if (r) {
 609			DMERR_LIMIT("couldn't get array block %llu",
 610				    (unsigned long long) b);
 611			return;
 612		}
 613
 614		dec_ablock_entries(info, ab);
 615		unlock_ablock(info, block);
 616	}
 617
 618	dm_tm_dec(info->btree_info.tm, b);
 619}
 620
 621static void block_dec(void *context, const void *value, unsigned count)
 622{
 623	unsigned i;
 624	for (i = 0; i < count; i++, value += sizeof(__le64))
 625		__block_dec(context, value);
 626}
 627
 628static int block_equal(void *context, const void *value1, const void *value2)
 629{
 630	return !memcmp(value1, value2, sizeof(__le64));
 631}
 632
 633/*----------------------------------------------------------------*/
 634
 635void dm_array_info_init(struct dm_array_info *info,
 636			struct dm_transaction_manager *tm,
 637			struct dm_btree_value_type *vt)
 638{
 639	struct dm_btree_value_type *bvt = &info->btree_info.value_type;
 640
 641	memcpy(&info->value_type, vt, sizeof(info->value_type));
 642	info->btree_info.tm = tm;
 643	info->btree_info.levels = 1;
 644
 645	bvt->context = info;
 646	bvt->size = sizeof(__le64);
 647	bvt->inc = block_inc;
 648	bvt->dec = block_dec;
 649	bvt->equal = block_equal;
 650}
 651EXPORT_SYMBOL_GPL(dm_array_info_init);
 652
 653int dm_array_empty(struct dm_array_info *info, dm_block_t *root)
 654{
 655	return dm_btree_empty(&info->btree_info, root);
 656}
 657EXPORT_SYMBOL_GPL(dm_array_empty);
 658
 659static int array_resize(struct dm_array_info *info, dm_block_t root,
 660			uint32_t old_size, uint32_t new_size,
 661			const void *value, dm_block_t *new_root)
 662{
 663	int r;
 664	struct resize resize;
 665
 666	if (old_size == new_size) {
 667		*new_root = root;
 668		return 0;
 669	}
 670
 671	resize.info = info;
 672	resize.root = root;
 673	resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
 674	resize.max_entries = calc_max_entries(info->value_type.size,
 675					      resize.size_of_block);
 676
 677	resize.old_nr_full_blocks = old_size / resize.max_entries;
 678	resize.old_nr_entries_in_last_block = old_size % resize.max_entries;
 679	resize.new_nr_full_blocks = new_size / resize.max_entries;
 680	resize.new_nr_entries_in_last_block = new_size % resize.max_entries;
 681	resize.value = value;
 682
 683	r = ((new_size > old_size) ? grow : shrink)(&resize);
 684	if (r)
 685		return r;
 686
 687	*new_root = resize.root;
 688	return 0;
 689}
 690
 691int dm_array_resize(struct dm_array_info *info, dm_block_t root,
 692		    uint32_t old_size, uint32_t new_size,
 693		    const void *value, dm_block_t *new_root)
 694		    __dm_written_to_disk(value)
 695{
 696	int r = array_resize(info, root, old_size, new_size, value, new_root);
 697	__dm_unbless_for_disk(value);
 698	return r;
 699}
 700EXPORT_SYMBOL_GPL(dm_array_resize);
 701
 702static int populate_ablock_with_values(struct dm_array_info *info, struct array_block *ab,
 703				       value_fn fn, void *context, unsigned base, unsigned new_nr)
 704{
 705	int r;
 706	unsigned i;
 707	struct dm_btree_value_type *vt = &info->value_type;
 708
 709	BUG_ON(le32_to_cpu(ab->nr_entries));
 710	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
 711
 712	for (i = 0; i < new_nr; i++) {
 713		r = fn(base + i, element_at(info, ab, i), context);
 714		if (r)
 715			return r;
 716
 717		if (vt->inc)
 718			vt->inc(vt->context, element_at(info, ab, i), 1);
 719	}
 720
 721	ab->nr_entries = cpu_to_le32(new_nr);
 722	return 0;
 723}
 724
 725int dm_array_new(struct dm_array_info *info, dm_block_t *root,
 726		 uint32_t size, value_fn fn, void *context)
 727{
 728	int r;
 729	struct dm_block *block;
 730	struct array_block *ab;
 731	unsigned block_index, end_block, size_of_block, max_entries;
 732
 733	r = dm_array_empty(info, root);
 734	if (r)
 735		return r;
 736
 737	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
 738	max_entries = calc_max_entries(info->value_type.size, size_of_block);
 739	end_block = dm_div_up(size, max_entries);
 740
 741	for (block_index = 0; block_index != end_block; block_index++) {
 742		r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
 743		if (r)
 744			break;
 745
 746		r = populate_ablock_with_values(info, ab, fn, context,
 747						block_index * max_entries,
 748						min(max_entries, size));
 749		if (r) {
 750			unlock_ablock(info, block);
 751			break;
 752		}
 753
 754		r = insert_ablock(info, block_index, block, root);
 755		unlock_ablock(info, block);
 756		if (r)
 757			break;
 758
 759		size -= max_entries;
 760	}
 761
 762	return r;
 763}
 764EXPORT_SYMBOL_GPL(dm_array_new);
 765
 766int dm_array_del(struct dm_array_info *info, dm_block_t root)
 767{
 768	return dm_btree_del(&info->btree_info, root);
 769}
 770EXPORT_SYMBOL_GPL(dm_array_del);
 771
 772int dm_array_get_value(struct dm_array_info *info, dm_block_t root,
 773		       uint32_t index, void *value_le)
 774{
 775	int r;
 776	struct dm_block *block;
 777	struct array_block *ab;
 778	size_t size_of_block;
 779	unsigned entry, max_entries;
 780
 781	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
 782	max_entries = calc_max_entries(info->value_type.size, size_of_block);
 783
 784	r = lookup_ablock(info, root, index / max_entries, &block, &ab);
 785	if (r)
 786		return r;
 787
 788	entry = index % max_entries;
 789	if (entry >= le32_to_cpu(ab->nr_entries))
 790		r = -ENODATA;
 791	else
 792		memcpy(value_le, element_at(info, ab, entry),
 793		       info->value_type.size);
 794
 795	unlock_ablock(info, block);
 796	return r;
 797}
 798EXPORT_SYMBOL_GPL(dm_array_get_value);
 799
 800static int array_set_value(struct dm_array_info *info, dm_block_t root,
 801			   uint32_t index, const void *value, dm_block_t *new_root)
 802{
 803	int r;
 804	struct dm_block *block;
 805	struct array_block *ab;
 806	size_t size_of_block;
 807	unsigned max_entries;
 808	unsigned entry;
 809	void *old_value;
 810	struct dm_btree_value_type *vt = &info->value_type;
 811
 812	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
 813	max_entries = calc_max_entries(info->value_type.size, size_of_block);
 814
 815	r = shadow_ablock(info, &root, index / max_entries, &block, &ab);
 816	if (r)
 817		return r;
 818	*new_root = root;
 819
 820	entry = index % max_entries;
 821	if (entry >= le32_to_cpu(ab->nr_entries)) {
 822		r = -ENODATA;
 823		goto out;
 824	}
 825
 826	old_value = element_at(info, ab, entry);
 827	if (vt->dec &&
 828	    (!vt->equal || !vt->equal(vt->context, old_value, value))) {
 829		vt->dec(vt->context, old_value, 1);
 830		if (vt->inc)
 831			vt->inc(vt->context, value, 1);
 832	}
 833
 834	memcpy(old_value, value, info->value_type.size);
 835
 836out:
 837	unlock_ablock(info, block);
 838	return r;
 839}
 840
 841int dm_array_set_value(struct dm_array_info *info, dm_block_t root,
 842		 uint32_t index, const void *value, dm_block_t *new_root)
 843		 __dm_written_to_disk(value)
 844{
 845	int r;
 846
 847	r = array_set_value(info, root, index, value, new_root);
 848	__dm_unbless_for_disk(value);
 849	return r;
 850}
 851EXPORT_SYMBOL_GPL(dm_array_set_value);
 852
 853struct walk_info {
 854	struct dm_array_info *info;
 855	int (*fn)(void *context, uint64_t key, void *leaf);
 856	void *context;
 857};
 858
 859static int walk_ablock(void *context, uint64_t *keys, void *leaf)
 860{
 861	struct walk_info *wi = context;
 862
 863	int r;
 864	unsigned i;
 865	__le64 block_le;
 866	unsigned nr_entries, max_entries;
 867	struct dm_block *block;
 868	struct array_block *ab;
 869
 870	memcpy(&block_le, leaf, sizeof(block_le));
 871	r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab);
 872	if (r)
 873		return r;
 874
 875	max_entries = le32_to_cpu(ab->max_entries);
 876	nr_entries = le32_to_cpu(ab->nr_entries);
 877	for (i = 0; i < nr_entries; i++) {
 878		r = wi->fn(wi->context, keys[0] * max_entries + i,
 879			   element_at(wi->info, ab, i));
 880
 881		if (r)
 882			break;
 883	}
 884
 885	unlock_ablock(wi->info, block);
 886	return r;
 887}
 888
 889int dm_array_walk(struct dm_array_info *info, dm_block_t root,
 890		  int (*fn)(void *, uint64_t key, void *leaf),
 891		  void *context)
 892{
 893	struct walk_info wi;
 894
 895	wi.info = info;
 896	wi.fn = fn;
 897	wi.context = context;
 898
 899	return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi);
 900}
 901EXPORT_SYMBOL_GPL(dm_array_walk);
 902
 903/*----------------------------------------------------------------*/
 904
 905static int load_ablock(struct dm_array_cursor *c)
 906{
 907	int r;
 908	__le64 value_le;
 909	uint64_t key;
 910
 911	if (c->block)
 912		unlock_ablock(c->info, c->block);
 913
 914	c->block = NULL;
 915	c->ab = NULL;
 916	c->index = 0;
 917
 918	r = dm_btree_cursor_get_value(&c->cursor, &key, &value_le);
 919	if (r) {
 920		DMERR("dm_btree_cursor_get_value failed");
 921		dm_btree_cursor_end(&c->cursor);
 922
 923	} else {
 924		r = get_ablock(c->info, le64_to_cpu(value_le), &c->block, &c->ab);
 925		if (r) {
 926			DMERR("get_ablock failed");
 927			dm_btree_cursor_end(&c->cursor);
 928		}
 929	}
 930
 931	return r;
 932}
 933
 934int dm_array_cursor_begin(struct dm_array_info *info, dm_block_t root,
 935			  struct dm_array_cursor *c)
 936{
 937	int r;
 938
 939	memset(c, 0, sizeof(*c));
 940	c->info = info;
 941	r = dm_btree_cursor_begin(&info->btree_info, root, true, &c->cursor);
 942	if (r) {
 943		DMERR("couldn't create btree cursor");
 944		return r;
 945	}
 946
 947	return load_ablock(c);
 948}
 949EXPORT_SYMBOL_GPL(dm_array_cursor_begin);
 950
 951void dm_array_cursor_end(struct dm_array_cursor *c)
 952{
 953	if (c->block) {
 954		unlock_ablock(c->info, c->block);
 955		dm_btree_cursor_end(&c->cursor);
 956	}
 957}
 958EXPORT_SYMBOL_GPL(dm_array_cursor_end);
 959
 960int dm_array_cursor_next(struct dm_array_cursor *c)
 961{
 962	int r;
 963
 964	if (!c->block)
 965		return -ENODATA;
 966
 967	c->index++;
 968
 969	if (c->index >= le32_to_cpu(c->ab->nr_entries)) {
 970		r = dm_btree_cursor_next(&c->cursor);
 971		if (r)
 972			return r;
 973
 974		r = load_ablock(c);
 975		if (r)
 976			return r;
 977	}
 978
 979	return 0;
 980}
 981EXPORT_SYMBOL_GPL(dm_array_cursor_next);
 982
 983int dm_array_cursor_skip(struct dm_array_cursor *c, uint32_t count)
 984{
 985	int r;
 986
 987	do {
 988		uint32_t remaining = le32_to_cpu(c->ab->nr_entries) - c->index;
 989
 990		if (count < remaining) {
 991			c->index += count;
 992			return 0;
 993		}
 994
 995		count -= remaining;
 996		r = dm_array_cursor_next(c);
 997
 998	} while (!r);
 999
1000	return r;
1001}
1002EXPORT_SYMBOL_GPL(dm_array_cursor_skip);
1003
1004void dm_array_cursor_get_value(struct dm_array_cursor *c, void **value_le)
1005{
1006	*value_le = element_at(c->info, c->ab, c->index);
1007}
1008EXPORT_SYMBOL_GPL(dm_array_cursor_get_value);
1009
1010/*----------------------------------------------------------------*/