Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/* Support for MMIO probes.
  3 * Benefit many code from kprobes
  4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
  5 *     2007 Alexander Eichner
  6 *     2008 Pekka Paalanen <pq@iki.fi>
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include <linux/list.h>
 12#include <linux/rculist.h>
 13#include <linux/spinlock.h>
 14#include <linux/hash.h>
 15#include <linux/export.h>
 
 16#include <linux/kernel.h>
 17#include <linux/uaccess.h>
 18#include <linux/ptrace.h>
 19#include <linux/preempt.h>
 20#include <linux/percpu.h>
 21#include <linux/kdebug.h>
 22#include <linux/mutex.h>
 23#include <linux/io.h>
 24#include <linux/slab.h>
 25#include <asm/cacheflush.h>
 26#include <asm/tlbflush.h>
 27#include <linux/errno.h>
 28#include <asm/debugreg.h>
 29#include <linux/mmiotrace.h>
 30
 31#define KMMIO_PAGE_HASH_BITS 4
 32#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
 33
 34struct kmmio_fault_page {
 35	struct list_head list;
 36	struct kmmio_fault_page *release_next;
 37	unsigned long addr; /* the requested address */
 38	pteval_t old_presence; /* page presence prior to arming */
 39	bool armed;
 40
 41	/*
 42	 * Number of times this page has been registered as a part
 43	 * of a probe. If zero, page is disarmed and this may be freed.
 44	 * Used only by writers (RCU) and post_kmmio_handler().
 45	 * Protected by kmmio_lock, when linked into kmmio_page_table.
 46	 */
 47	int count;
 48
 49	bool scheduled_for_release;
 50};
 51
 52struct kmmio_delayed_release {
 53	struct rcu_head rcu;
 54	struct kmmio_fault_page *release_list;
 55};
 56
 57struct kmmio_context {
 58	struct kmmio_fault_page *fpage;
 59	struct kmmio_probe *probe;
 60	unsigned long saved_flags;
 61	unsigned long addr;
 62	int active;
 63};
 64
 65/*
 66 * The kmmio_lock is taken in int3 context, which is treated as NMI context.
 67 * This causes lockdep to complain about it bein in both NMI and normal
 68 * context. Hide it from lockdep, as it should not have any other locks
 69 * taken under it, and this is only enabled for debugging mmio anyway.
 70 */
 71static arch_spinlock_t kmmio_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 72
 73/* Protected by kmmio_lock */
 74unsigned int kmmio_count;
 75
 76/* Read-protected by RCU, write-protected by kmmio_lock. */
 77static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
 78static LIST_HEAD(kmmio_probes);
 79
 80static struct list_head *kmmio_page_list(unsigned long addr)
 81{
 82	unsigned int l;
 83	pte_t *pte = lookup_address(addr, &l);
 84
 85	if (!pte)
 86		return NULL;
 87	addr &= page_level_mask(l);
 88
 89	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
 90}
 91
 92/* Accessed per-cpu */
 93static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
 94
 95/*
 96 * this is basically a dynamic stabbing problem:
 97 * Could use the existing prio tree code or
 98 * Possible better implementations:
 99 * The Interval Skip List: A Data Structure for Finding All Intervals That
100 * Overlap a Point (might be simple)
101 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
102 */
103/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
104static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
105{
106	struct kmmio_probe *p;
107	list_for_each_entry_rcu(p, &kmmio_probes, list) {
108		if (addr >= p->addr && addr < (p->addr + p->len))
109			return p;
110	}
111	return NULL;
112}
113
114/* You must be holding RCU read lock. */
115static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
116{
117	struct list_head *head;
118	struct kmmio_fault_page *f;
119	unsigned int l;
120	pte_t *pte = lookup_address(addr, &l);
121
122	if (!pte)
123		return NULL;
124	addr &= page_level_mask(l);
125	head = kmmio_page_list(addr);
126	list_for_each_entry_rcu(f, head, list) {
127		if (f->addr == addr)
128			return f;
129	}
130	return NULL;
131}
132
133static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
134{
135	pmd_t new_pmd;
136	pmdval_t v = pmd_val(*pmd);
137	if (clear) {
138		*old = v;
139		new_pmd = pmd_mkinvalid(*pmd);
140	} else {
141		/* Presume this has been called with clear==true previously */
142		new_pmd = __pmd(*old);
143	}
144	set_pmd(pmd, new_pmd);
145}
146
147static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
148{
149	pteval_t v = pte_val(*pte);
150	if (clear) {
151		*old = v;
152		/* Nothing should care about address */
153		pte_clear(&init_mm, 0, pte);
154	} else {
155		/* Presume this has been called with clear==true previously */
156		set_pte_atomic(pte, __pte(*old));
157	}
158}
159
160static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
161{
162	unsigned int level;
163	pte_t *pte = lookup_address(f->addr, &level);
164
165	if (!pte) {
166		pr_err("no pte for addr 0x%08lx\n", f->addr);
167		return -1;
168	}
169
170	switch (level) {
171	case PG_LEVEL_2M:
172		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
173		break;
174	case PG_LEVEL_4K:
175		clear_pte_presence(pte, clear, &f->old_presence);
176		break;
177	default:
178		pr_err("unexpected page level 0x%x.\n", level);
179		return -1;
180	}
181
182	flush_tlb_one_kernel(f->addr);
183	return 0;
184}
185
186/*
187 * Mark the given page as not present. Access to it will trigger a fault.
188 *
189 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
190 * protection is ignored here. RCU read lock is assumed held, so the struct
191 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
192 * that double arming the same virtual address (page) cannot occur.
193 *
194 * Double disarming on the other hand is allowed, and may occur when a fault
195 * and mmiotrace shutdown happen simultaneously.
196 */
197static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
198{
199	int ret;
200	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
201	if (f->armed) {
202		pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n",
203			f->addr, f->count, !!f->old_presence);
204	}
205	ret = clear_page_presence(f, true);
206	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
207		  f->addr);
208	f->armed = true;
209	return ret;
210}
211
212/** Restore the given page to saved presence state. */
213static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
214{
215	int ret = clear_page_presence(f, false);
216	WARN_ONCE(ret < 0,
217			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
218	f->armed = false;
219}
220
221/*
222 * This is being called from do_page_fault().
223 *
224 * We may be in an interrupt or a critical section. Also prefecthing may
225 * trigger a page fault. We may be in the middle of process switch.
226 * We cannot take any locks, because we could be executing especially
227 * within a kmmio critical section.
228 *
229 * Local interrupts are disabled, so preemption cannot happen.
230 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
231 */
232/*
233 * Interrupts are disabled on entry as trap3 is an interrupt gate
234 * and they remain disabled throughout this function.
235 */
236int kmmio_handler(struct pt_regs *regs, unsigned long addr)
237{
238	struct kmmio_context *ctx;
239	struct kmmio_fault_page *faultpage;
240	int ret = 0; /* default to fault not handled */
241	unsigned long page_base = addr;
242	unsigned int l;
243	pte_t *pte = lookup_address(addr, &l);
244	if (!pte)
245		return -EINVAL;
246	page_base &= page_level_mask(l);
247
248	/*
249	 * Hold the RCU read lock over single stepping to avoid looking
250	 * up the probe and kmmio_fault_page again. The rcu_read_lock_sched()
251	 * also disables preemption and prevents process switch during
252	 * the single stepping. We can only handle one active kmmio trace
253	 * per cpu, so ensure that we finish it before something else
254	 * gets to run.
 
 
255	 */
256	rcu_read_lock_sched_notrace();
 
257
258	faultpage = get_kmmio_fault_page(page_base);
259	if (!faultpage) {
260		/*
261		 * Either this page fault is not caused by kmmio, or
262		 * another CPU just pulled the kmmio probe from under
263		 * our feet. The latter case should not be possible.
264		 */
265		goto no_kmmio;
266	}
267
268	ctx = this_cpu_ptr(&kmmio_ctx);
269	if (ctx->active) {
270		if (page_base == ctx->addr) {
271			/*
272			 * A second fault on the same page means some other
273			 * condition needs handling by do_page_fault(), the
274			 * page really not being present is the most common.
275			 */
276			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
277				 addr, smp_processor_id());
278
279			if (!faultpage->old_presence)
280				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
281					addr, smp_processor_id());
282		} else {
283			/*
284			 * Prevent overwriting already in-flight context.
285			 * This should not happen, let's hope disarming at
286			 * least prevents a panic.
287			 */
288			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
289				 smp_processor_id(), addr);
290			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
291			disarm_kmmio_fault_page(faultpage);
292		}
293		goto no_kmmio;
294	}
295	ctx->active++;
296
297	ctx->fpage = faultpage;
298	ctx->probe = get_kmmio_probe(page_base);
299	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
300	ctx->addr = page_base;
301
302	if (ctx->probe && ctx->probe->pre_handler)
303		ctx->probe->pre_handler(ctx->probe, regs, addr);
304
305	/*
306	 * Enable single-stepping and disable interrupts for the faulting
307	 * context. Local interrupts must not get enabled during stepping.
308	 */
309	regs->flags |= X86_EFLAGS_TF;
310	regs->flags &= ~X86_EFLAGS_IF;
311
312	/* Now we set present bit in PTE and single step. */
313	disarm_kmmio_fault_page(ctx->fpage);
314
315	/*
316	 * If another cpu accesses the same page while we are stepping,
317	 * the access will not be caught. It will simply succeed and the
318	 * only downside is we lose the event. If this becomes a problem,
319	 * the user should drop to single cpu before tracing.
320	 */
321
 
322	return 1; /* fault handled */
323
 
 
324no_kmmio:
325	rcu_read_unlock_sched_notrace();
 
326	return ret;
327}
328
329/*
330 * Interrupts are disabled on entry as trap1 is an interrupt gate
331 * and they remain disabled throughout this function.
332 * This must always get called as the pair to kmmio_handler().
333 */
334static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
335{
336	int ret = 0;
337	struct kmmio_context *ctx = this_cpu_ptr(&kmmio_ctx);
338
339	if (!ctx->active) {
340		/*
341		 * debug traps without an active context are due to either
342		 * something external causing them (f.e. using a debugger while
343		 * mmio tracing enabled), or erroneous behaviour
344		 */
345		pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id());
 
346		goto out;
347	}
348
349	if (ctx->probe && ctx->probe->post_handler)
350		ctx->probe->post_handler(ctx->probe, condition, regs);
351
352	/* Prevent racing against release_kmmio_fault_page(). */
353	arch_spin_lock(&kmmio_lock);
354	if (ctx->fpage->count)
355		arm_kmmio_fault_page(ctx->fpage);
356	arch_spin_unlock(&kmmio_lock);
357
358	regs->flags &= ~X86_EFLAGS_TF;
359	regs->flags |= ctx->saved_flags;
360
361	/* These were acquired in kmmio_handler(). */
362	ctx->active--;
363	BUG_ON(ctx->active);
364	rcu_read_unlock_sched_notrace();
 
365
366	/*
367	 * if somebody else is singlestepping across a probe point, flags
368	 * will have TF set, in which case, continue the remaining processing
369	 * of do_debug, as if this is not a probe hit.
370	 */
371	if (!(regs->flags & X86_EFLAGS_TF))
372		ret = 1;
373out:
 
374	return ret;
375}
376
377/* You must be holding kmmio_lock. */
378static int add_kmmio_fault_page(unsigned long addr)
379{
380	struct kmmio_fault_page *f;
381
382	f = get_kmmio_fault_page(addr);
 
383	if (f) {
384		if (!f->count)
385			arm_kmmio_fault_page(f);
386		f->count++;
387		return 0;
388	}
389
390	f = kzalloc(sizeof(*f), GFP_ATOMIC);
391	if (!f)
392		return -1;
393
394	f->count = 1;
395	f->addr = addr;
396
397	if (arm_kmmio_fault_page(f)) {
398		kfree(f);
399		return -1;
400	}
401
402	list_add_rcu(&f->list, kmmio_page_list(f->addr));
403
404	return 0;
405}
406
407/* You must be holding kmmio_lock. */
408static void release_kmmio_fault_page(unsigned long addr,
409				struct kmmio_fault_page **release_list)
410{
411	struct kmmio_fault_page *f;
412
413	f = get_kmmio_fault_page(addr);
 
414	if (!f)
415		return;
416
417	f->count--;
418	BUG_ON(f->count < 0);
419	if (!f->count) {
420		disarm_kmmio_fault_page(f);
421		if (!f->scheduled_for_release) {
422			f->release_next = *release_list;
423			*release_list = f;
424			f->scheduled_for_release = true;
425		}
426	}
427}
428
429/*
430 * With page-unaligned ioremaps, one or two armed pages may contain
431 * addresses from outside the intended mapping. Events for these addresses
432 * are currently silently dropped. The events may result only from programming
433 * mistakes by accessing addresses before the beginning or past the end of a
434 * mapping.
435 */
436int register_kmmio_probe(struct kmmio_probe *p)
437{
438	unsigned long flags;
439	int ret = 0;
440	unsigned long size = 0;
441	unsigned long addr = p->addr & PAGE_MASK;
442	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
443	unsigned int l;
444	pte_t *pte;
445
446	local_irq_save(flags);
447	arch_spin_lock(&kmmio_lock);
448	if (get_kmmio_probe(addr)) {
449		ret = -EEXIST;
450		goto out;
451	}
452
453	pte = lookup_address(addr, &l);
454	if (!pte) {
455		ret = -EINVAL;
456		goto out;
457	}
458
459	kmmio_count++;
460	list_add_rcu(&p->list, &kmmio_probes);
461	while (size < size_lim) {
462		if (add_kmmio_fault_page(addr + size))
463			pr_err("Unable to set page fault.\n");
464		size += page_level_size(l);
465	}
466out:
467	arch_spin_unlock(&kmmio_lock);
468	local_irq_restore(flags);
469
470	/*
471	 * XXX: What should I do here?
472	 * Here was a call to global_flush_tlb(), but it does not exist
473	 * anymore. It seems it's not needed after all.
474	 */
475	return ret;
476}
477EXPORT_SYMBOL(register_kmmio_probe);
478
479static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
480{
481	struct kmmio_delayed_release *dr = container_of(
482						head,
483						struct kmmio_delayed_release,
484						rcu);
485	struct kmmio_fault_page *f = dr->release_list;
486	while (f) {
487		struct kmmio_fault_page *next = f->release_next;
488		BUG_ON(f->count);
489		kfree(f);
490		f = next;
491	}
492	kfree(dr);
493}
494
495static void remove_kmmio_fault_pages(struct rcu_head *head)
496{
497	struct kmmio_delayed_release *dr =
498		container_of(head, struct kmmio_delayed_release, rcu);
499	struct kmmio_fault_page *f = dr->release_list;
500	struct kmmio_fault_page **prevp = &dr->release_list;
501	unsigned long flags;
502
503	local_irq_save(flags);
504	arch_spin_lock(&kmmio_lock);
505	while (f) {
506		if (!f->count) {
507			list_del_rcu(&f->list);
508			prevp = &f->release_next;
509		} else {
510			*prevp = f->release_next;
511			f->release_next = NULL;
512			f->scheduled_for_release = false;
513		}
514		f = *prevp;
515	}
516	arch_spin_unlock(&kmmio_lock);
517	local_irq_restore(flags);
518
519	/* This is the real RCU destroy call. */
520	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
521}
522
523/*
524 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
525 * sure that the callbacks will not be called anymore. Only after that
526 * you may actually release your struct kmmio_probe.
527 *
528 * Unregistering a kmmio fault page has three steps:
529 * 1. release_kmmio_fault_page()
530 *    Disarm the page, wait a grace period to let all faults finish.
531 * 2. remove_kmmio_fault_pages()
532 *    Remove the pages from kmmio_page_table.
533 * 3. rcu_free_kmmio_fault_pages()
534 *    Actually free the kmmio_fault_page structs as with RCU.
535 */
536void unregister_kmmio_probe(struct kmmio_probe *p)
537{
538	unsigned long flags;
539	unsigned long size = 0;
540	unsigned long addr = p->addr & PAGE_MASK;
541	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
542	struct kmmio_fault_page *release_list = NULL;
543	struct kmmio_delayed_release *drelease;
544	unsigned int l;
545	pte_t *pte;
546
547	pte = lookup_address(addr, &l);
548	if (!pte)
549		return;
550
551	local_irq_save(flags);
552	arch_spin_lock(&kmmio_lock);
553	while (size < size_lim) {
554		release_kmmio_fault_page(addr + size, &release_list);
555		size += page_level_size(l);
556	}
557	list_del_rcu(&p->list);
558	kmmio_count--;
559	arch_spin_unlock(&kmmio_lock);
560	local_irq_restore(flags);
561
562	if (!release_list)
563		return;
564
565	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
566	if (!drelease) {
567		pr_crit("leaking kmmio_fault_page objects.\n");
568		return;
569	}
570	drelease->release_list = release_list;
571
572	/*
573	 * This is not really RCU here. We have just disarmed a set of
574	 * pages so that they cannot trigger page faults anymore. However,
575	 * we cannot remove the pages from kmmio_page_table,
576	 * because a probe hit might be in flight on another CPU. The
577	 * pages are collected into a list, and they will be removed from
578	 * kmmio_page_table when it is certain that no probe hit related to
579	 * these pages can be in flight. RCU grace period sounds like a
580	 * good choice.
581	 *
582	 * If we removed the pages too early, kmmio page fault handler might
583	 * not find the respective kmmio_fault_page and determine it's not
584	 * a kmmio fault, when it actually is. This would lead to madness.
585	 */
586	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
587}
588EXPORT_SYMBOL(unregister_kmmio_probe);
589
590static int
591kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
592{
593	struct die_args *arg = args;
594	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
595
596	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
597		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
598			/*
599			 * Reset the BS bit in dr6 (pointed by args->err) to
600			 * denote completion of processing
601			 */
602			*dr6_p &= ~DR_STEP;
603			return NOTIFY_STOP;
604		}
605
606	return NOTIFY_DONE;
607}
608
609static struct notifier_block nb_die = {
610	.notifier_call = kmmio_die_notifier
611};
612
613int kmmio_init(void)
614{
615	int i;
616
617	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
618		INIT_LIST_HEAD(&kmmio_page_table[i]);
619
620	return register_die_notifier(&nb_die);
621}
622
623void kmmio_cleanup(void)
624{
625	int i;
626
627	unregister_die_notifier(&nb_die);
628	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
629		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
630			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
631	}
632}
v3.1
 
  1/* Support for MMIO probes.
  2 * Benfit many code from kprobes
  3 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
  4 *     2007 Alexander Eichner
  5 *     2008 Pekka Paalanen <pq@iki.fi>
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/list.h>
 11#include <linux/rculist.h>
 12#include <linux/spinlock.h>
 13#include <linux/hash.h>
 14#include <linux/init.h>
 15#include <linux/module.h>
 16#include <linux/kernel.h>
 17#include <linux/uaccess.h>
 18#include <linux/ptrace.h>
 19#include <linux/preempt.h>
 20#include <linux/percpu.h>
 21#include <linux/kdebug.h>
 22#include <linux/mutex.h>
 23#include <linux/io.h>
 24#include <linux/slab.h>
 25#include <asm/cacheflush.h>
 26#include <asm/tlbflush.h>
 27#include <linux/errno.h>
 28#include <asm/debugreg.h>
 29#include <linux/mmiotrace.h>
 30
 31#define KMMIO_PAGE_HASH_BITS 4
 32#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
 33
 34struct kmmio_fault_page {
 35	struct list_head list;
 36	struct kmmio_fault_page *release_next;
 37	unsigned long page; /* location of the fault page */
 38	pteval_t old_presence; /* page presence prior to arming */
 39	bool armed;
 40
 41	/*
 42	 * Number of times this page has been registered as a part
 43	 * of a probe. If zero, page is disarmed and this may be freed.
 44	 * Used only by writers (RCU) and post_kmmio_handler().
 45	 * Protected by kmmio_lock, when linked into kmmio_page_table.
 46	 */
 47	int count;
 48
 49	bool scheduled_for_release;
 50};
 51
 52struct kmmio_delayed_release {
 53	struct rcu_head rcu;
 54	struct kmmio_fault_page *release_list;
 55};
 56
 57struct kmmio_context {
 58	struct kmmio_fault_page *fpage;
 59	struct kmmio_probe *probe;
 60	unsigned long saved_flags;
 61	unsigned long addr;
 62	int active;
 63};
 64
 65static DEFINE_SPINLOCK(kmmio_lock);
 
 
 
 
 
 
 66
 67/* Protected by kmmio_lock */
 68unsigned int kmmio_count;
 69
 70/* Read-protected by RCU, write-protected by kmmio_lock. */
 71static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
 72static LIST_HEAD(kmmio_probes);
 73
 74static struct list_head *kmmio_page_list(unsigned long page)
 75{
 76	return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
 
 
 
 
 
 
 
 77}
 78
 79/* Accessed per-cpu */
 80static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
 81
 82/*
 83 * this is basically a dynamic stabbing problem:
 84 * Could use the existing prio tree code or
 85 * Possible better implementations:
 86 * The Interval Skip List: A Data Structure for Finding All Intervals That
 87 * Overlap a Point (might be simple)
 88 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
 89 */
 90/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
 91static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
 92{
 93	struct kmmio_probe *p;
 94	list_for_each_entry_rcu(p, &kmmio_probes, list) {
 95		if (addr >= p->addr && addr < (p->addr + p->len))
 96			return p;
 97	}
 98	return NULL;
 99}
100
101/* You must be holding RCU read lock. */
102static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
103{
104	struct list_head *head;
105	struct kmmio_fault_page *f;
 
 
106
107	page &= PAGE_MASK;
108	head = kmmio_page_list(page);
 
 
109	list_for_each_entry_rcu(f, head, list) {
110		if (f->page == page)
111			return f;
112	}
113	return NULL;
114}
115
116static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
117{
 
118	pmdval_t v = pmd_val(*pmd);
119	if (clear) {
120		*old = v & _PAGE_PRESENT;
121		v &= ~_PAGE_PRESENT;
122	} else	/* presume this has been called with clear==true previously */
123		v |= *old;
124	set_pmd(pmd, __pmd(v));
 
 
125}
126
127static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
128{
129	pteval_t v = pte_val(*pte);
130	if (clear) {
131		*old = v & _PAGE_PRESENT;
132		v &= ~_PAGE_PRESENT;
133	} else	/* presume this has been called with clear==true previously */
134		v |= *old;
135	set_pte_atomic(pte, __pte(v));
 
 
136}
137
138static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
139{
140	unsigned int level;
141	pte_t *pte = lookup_address(f->page, &level);
142
143	if (!pte) {
144		pr_err("no pte for page 0x%08lx\n", f->page);
145		return -1;
146	}
147
148	switch (level) {
149	case PG_LEVEL_2M:
150		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
151		break;
152	case PG_LEVEL_4K:
153		clear_pte_presence(pte, clear, &f->old_presence);
154		break;
155	default:
156		pr_err("unexpected page level 0x%x.\n", level);
157		return -1;
158	}
159
160	__flush_tlb_one(f->page);
161	return 0;
162}
163
164/*
165 * Mark the given page as not present. Access to it will trigger a fault.
166 *
167 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
168 * protection is ignored here. RCU read lock is assumed held, so the struct
169 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
170 * that double arming the same virtual address (page) cannot occur.
171 *
172 * Double disarming on the other hand is allowed, and may occur when a fault
173 * and mmiotrace shutdown happen simultaneously.
174 */
175static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
176{
177	int ret;
178	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
179	if (f->armed) {
180		pr_warning("double-arm: page 0x%08lx, ref %d, old %d\n",
181			   f->page, f->count, !!f->old_presence);
182	}
183	ret = clear_page_presence(f, true);
184	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming 0x%08lx failed.\n"),
185		  f->page);
186	f->armed = true;
187	return ret;
188}
189
190/** Restore the given page to saved presence state. */
191static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
192{
193	int ret = clear_page_presence(f, false);
194	WARN_ONCE(ret < 0,
195			KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page);
196	f->armed = false;
197}
198
199/*
200 * This is being called from do_page_fault().
201 *
202 * We may be in an interrupt or a critical section. Also prefecthing may
203 * trigger a page fault. We may be in the middle of process switch.
204 * We cannot take any locks, because we could be executing especially
205 * within a kmmio critical section.
206 *
207 * Local interrupts are disabled, so preemption cannot happen.
208 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
209 */
210/*
211 * Interrupts are disabled on entry as trap3 is an interrupt gate
212 * and they remain disabled throughout this function.
213 */
214int kmmio_handler(struct pt_regs *regs, unsigned long addr)
215{
216	struct kmmio_context *ctx;
217	struct kmmio_fault_page *faultpage;
218	int ret = 0; /* default to fault not handled */
 
 
 
 
 
 
219
220	/*
221	 * Preemption is now disabled to prevent process switch during
222	 * single stepping. We can only handle one active kmmio trace
 
 
223	 * per cpu, so ensure that we finish it before something else
224	 * gets to run. We also hold the RCU read lock over single
225	 * stepping to avoid looking up the probe and kmmio_fault_page
226	 * again.
227	 */
228	preempt_disable();
229	rcu_read_lock();
230
231	faultpage = get_kmmio_fault_page(addr);
232	if (!faultpage) {
233		/*
234		 * Either this page fault is not caused by kmmio, or
235		 * another CPU just pulled the kmmio probe from under
236		 * our feet. The latter case should not be possible.
237		 */
238		goto no_kmmio;
239	}
240
241	ctx = &get_cpu_var(kmmio_ctx);
242	if (ctx->active) {
243		if (addr == ctx->addr) {
244			/*
245			 * A second fault on the same page means some other
246			 * condition needs handling by do_page_fault(), the
247			 * page really not being present is the most common.
248			 */
249			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
250				 addr, smp_processor_id());
251
252			if (!faultpage->old_presence)
253				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
254					addr, smp_processor_id());
255		} else {
256			/*
257			 * Prevent overwriting already in-flight context.
258			 * This should not happen, let's hope disarming at
259			 * least prevents a panic.
260			 */
261			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
262				 smp_processor_id(), addr);
263			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
264			disarm_kmmio_fault_page(faultpage);
265		}
266		goto no_kmmio_ctx;
267	}
268	ctx->active++;
269
270	ctx->fpage = faultpage;
271	ctx->probe = get_kmmio_probe(addr);
272	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
273	ctx->addr = addr;
274
275	if (ctx->probe && ctx->probe->pre_handler)
276		ctx->probe->pre_handler(ctx->probe, regs, addr);
277
278	/*
279	 * Enable single-stepping and disable interrupts for the faulting
280	 * context. Local interrupts must not get enabled during stepping.
281	 */
282	regs->flags |= X86_EFLAGS_TF;
283	regs->flags &= ~X86_EFLAGS_IF;
284
285	/* Now we set present bit in PTE and single step. */
286	disarm_kmmio_fault_page(ctx->fpage);
287
288	/*
289	 * If another cpu accesses the same page while we are stepping,
290	 * the access will not be caught. It will simply succeed and the
291	 * only downside is we lose the event. If this becomes a problem,
292	 * the user should drop to single cpu before tracing.
293	 */
294
295	put_cpu_var(kmmio_ctx);
296	return 1; /* fault handled */
297
298no_kmmio_ctx:
299	put_cpu_var(kmmio_ctx);
300no_kmmio:
301	rcu_read_unlock();
302	preempt_enable_no_resched();
303	return ret;
304}
305
306/*
307 * Interrupts are disabled on entry as trap1 is an interrupt gate
308 * and they remain disabled throughout this function.
309 * This must always get called as the pair to kmmio_handler().
310 */
311static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
312{
313	int ret = 0;
314	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
315
316	if (!ctx->active) {
317		/*
318		 * debug traps without an active context are due to either
319		 * something external causing them (f.e. using a debugger while
320		 * mmio tracing enabled), or erroneous behaviour
321		 */
322		pr_warning("unexpected debug trap on CPU %d.\n",
323			   smp_processor_id());
324		goto out;
325	}
326
327	if (ctx->probe && ctx->probe->post_handler)
328		ctx->probe->post_handler(ctx->probe, condition, regs);
329
330	/* Prevent racing against release_kmmio_fault_page(). */
331	spin_lock(&kmmio_lock);
332	if (ctx->fpage->count)
333		arm_kmmio_fault_page(ctx->fpage);
334	spin_unlock(&kmmio_lock);
335
336	regs->flags &= ~X86_EFLAGS_TF;
337	regs->flags |= ctx->saved_flags;
338
339	/* These were acquired in kmmio_handler(). */
340	ctx->active--;
341	BUG_ON(ctx->active);
342	rcu_read_unlock();
343	preempt_enable_no_resched();
344
345	/*
346	 * if somebody else is singlestepping across a probe point, flags
347	 * will have TF set, in which case, continue the remaining processing
348	 * of do_debug, as if this is not a probe hit.
349	 */
350	if (!(regs->flags & X86_EFLAGS_TF))
351		ret = 1;
352out:
353	put_cpu_var(kmmio_ctx);
354	return ret;
355}
356
357/* You must be holding kmmio_lock. */
358static int add_kmmio_fault_page(unsigned long page)
359{
360	struct kmmio_fault_page *f;
361
362	page &= PAGE_MASK;
363	f = get_kmmio_fault_page(page);
364	if (f) {
365		if (!f->count)
366			arm_kmmio_fault_page(f);
367		f->count++;
368		return 0;
369	}
370
371	f = kzalloc(sizeof(*f), GFP_ATOMIC);
372	if (!f)
373		return -1;
374
375	f->count = 1;
376	f->page = page;
377
378	if (arm_kmmio_fault_page(f)) {
379		kfree(f);
380		return -1;
381	}
382
383	list_add_rcu(&f->list, kmmio_page_list(f->page));
384
385	return 0;
386}
387
388/* You must be holding kmmio_lock. */
389static void release_kmmio_fault_page(unsigned long page,
390				struct kmmio_fault_page **release_list)
391{
392	struct kmmio_fault_page *f;
393
394	page &= PAGE_MASK;
395	f = get_kmmio_fault_page(page);
396	if (!f)
397		return;
398
399	f->count--;
400	BUG_ON(f->count < 0);
401	if (!f->count) {
402		disarm_kmmio_fault_page(f);
403		if (!f->scheduled_for_release) {
404			f->release_next = *release_list;
405			*release_list = f;
406			f->scheduled_for_release = true;
407		}
408	}
409}
410
411/*
412 * With page-unaligned ioremaps, one or two armed pages may contain
413 * addresses from outside the intended mapping. Events for these addresses
414 * are currently silently dropped. The events may result only from programming
415 * mistakes by accessing addresses before the beginning or past the end of a
416 * mapping.
417 */
418int register_kmmio_probe(struct kmmio_probe *p)
419{
420	unsigned long flags;
421	int ret = 0;
422	unsigned long size = 0;
 
423	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
 
 
424
425	spin_lock_irqsave(&kmmio_lock, flags);
426	if (get_kmmio_probe(p->addr)) {
 
427		ret = -EEXIST;
428		goto out;
429	}
 
 
 
 
 
 
 
430	kmmio_count++;
431	list_add_rcu(&p->list, &kmmio_probes);
432	while (size < size_lim) {
433		if (add_kmmio_fault_page(p->addr + size))
434			pr_err("Unable to set page fault.\n");
435		size += PAGE_SIZE;
436	}
437out:
438	spin_unlock_irqrestore(&kmmio_lock, flags);
 
 
439	/*
440	 * XXX: What should I do here?
441	 * Here was a call to global_flush_tlb(), but it does not exist
442	 * anymore. It seems it's not needed after all.
443	 */
444	return ret;
445}
446EXPORT_SYMBOL(register_kmmio_probe);
447
448static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
449{
450	struct kmmio_delayed_release *dr = container_of(
451						head,
452						struct kmmio_delayed_release,
453						rcu);
454	struct kmmio_fault_page *f = dr->release_list;
455	while (f) {
456		struct kmmio_fault_page *next = f->release_next;
457		BUG_ON(f->count);
458		kfree(f);
459		f = next;
460	}
461	kfree(dr);
462}
463
464static void remove_kmmio_fault_pages(struct rcu_head *head)
465{
466	struct kmmio_delayed_release *dr =
467		container_of(head, struct kmmio_delayed_release, rcu);
468	struct kmmio_fault_page *f = dr->release_list;
469	struct kmmio_fault_page **prevp = &dr->release_list;
470	unsigned long flags;
471
472	spin_lock_irqsave(&kmmio_lock, flags);
 
473	while (f) {
474		if (!f->count) {
475			list_del_rcu(&f->list);
476			prevp = &f->release_next;
477		} else {
478			*prevp = f->release_next;
479			f->release_next = NULL;
480			f->scheduled_for_release = false;
481		}
482		f = *prevp;
483	}
484	spin_unlock_irqrestore(&kmmio_lock, flags);
 
485
486	/* This is the real RCU destroy call. */
487	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
488}
489
490/*
491 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
492 * sure that the callbacks will not be called anymore. Only after that
493 * you may actually release your struct kmmio_probe.
494 *
495 * Unregistering a kmmio fault page has three steps:
496 * 1. release_kmmio_fault_page()
497 *    Disarm the page, wait a grace period to let all faults finish.
498 * 2. remove_kmmio_fault_pages()
499 *    Remove the pages from kmmio_page_table.
500 * 3. rcu_free_kmmio_fault_pages()
501 *    Actually free the kmmio_fault_page structs as with RCU.
502 */
503void unregister_kmmio_probe(struct kmmio_probe *p)
504{
505	unsigned long flags;
506	unsigned long size = 0;
 
507	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
508	struct kmmio_fault_page *release_list = NULL;
509	struct kmmio_delayed_release *drelease;
 
 
 
 
 
 
510
511	spin_lock_irqsave(&kmmio_lock, flags);
 
512	while (size < size_lim) {
513		release_kmmio_fault_page(p->addr + size, &release_list);
514		size += PAGE_SIZE;
515	}
516	list_del_rcu(&p->list);
517	kmmio_count--;
518	spin_unlock_irqrestore(&kmmio_lock, flags);
 
519
520	if (!release_list)
521		return;
522
523	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
524	if (!drelease) {
525		pr_crit("leaking kmmio_fault_page objects.\n");
526		return;
527	}
528	drelease->release_list = release_list;
529
530	/*
531	 * This is not really RCU here. We have just disarmed a set of
532	 * pages so that they cannot trigger page faults anymore. However,
533	 * we cannot remove the pages from kmmio_page_table,
534	 * because a probe hit might be in flight on another CPU. The
535	 * pages are collected into a list, and they will be removed from
536	 * kmmio_page_table when it is certain that no probe hit related to
537	 * these pages can be in flight. RCU grace period sounds like a
538	 * good choice.
539	 *
540	 * If we removed the pages too early, kmmio page fault handler might
541	 * not find the respective kmmio_fault_page and determine it's not
542	 * a kmmio fault, when it actually is. This would lead to madness.
543	 */
544	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
545}
546EXPORT_SYMBOL(unregister_kmmio_probe);
547
548static int
549kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
550{
551	struct die_args *arg = args;
552	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
553
554	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
555		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
556			/*
557			 * Reset the BS bit in dr6 (pointed by args->err) to
558			 * denote completion of processing
559			 */
560			*dr6_p &= ~DR_STEP;
561			return NOTIFY_STOP;
562		}
563
564	return NOTIFY_DONE;
565}
566
567static struct notifier_block nb_die = {
568	.notifier_call = kmmio_die_notifier
569};
570
571int kmmio_init(void)
572{
573	int i;
574
575	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
576		INIT_LIST_HEAD(&kmmio_page_table[i]);
577
578	return register_die_notifier(&nb_die);
579}
580
581void kmmio_cleanup(void)
582{
583	int i;
584
585	unregister_die_notifier(&nb_die);
586	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
587		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
588			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
589	}
590}