Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/x86_64/mm/init.c
   4 *
   5 *  Copyright (C) 1995  Linus Torvalds
   6 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
   7 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
   8 */
   9
  10#include <linux/signal.h>
  11#include <linux/sched.h>
  12#include <linux/kernel.h>
  13#include <linux/errno.h>
  14#include <linux/string.h>
  15#include <linux/types.h>
  16#include <linux/ptrace.h>
  17#include <linux/mman.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/smp.h>
  21#include <linux/init.h>
  22#include <linux/initrd.h>
  23#include <linux/pagemap.h>
 
  24#include <linux/memblock.h>
  25#include <linux/proc_fs.h>
  26#include <linux/pci.h>
  27#include <linux/pfn.h>
  28#include <linux/poison.h>
  29#include <linux/dma-mapping.h>
 
  30#include <linux/memory.h>
  31#include <linux/memory_hotplug.h>
  32#include <linux/memremap.h>
  33#include <linux/nmi.h>
  34#include <linux/gfp.h>
  35#include <linux/kcore.h>
  36#include <linux/bootmem_info.h>
  37
  38#include <asm/processor.h>
  39#include <asm/bios_ebda.h>
  40#include <linux/uaccess.h>
 
 
  41#include <asm/pgalloc.h>
  42#include <asm/dma.h>
  43#include <asm/fixmap.h>
  44#include <asm/e820/api.h>
  45#include <asm/apic.h>
  46#include <asm/tlb.h>
  47#include <asm/mmu_context.h>
  48#include <asm/proto.h>
  49#include <asm/smp.h>
  50#include <asm/sections.h>
  51#include <asm/kdebug.h>
  52#include <asm/numa.h>
  53#include <asm/set_memory.h>
  54#include <asm/init.h>
  55#include <asm/uv/uv.h>
  56#include <asm/setup.h>
  57#include <asm/ftrace.h>
  58
  59#include "mm_internal.h"
  60
  61#include "ident_map.c"
  62
  63#define DEFINE_POPULATE(fname, type1, type2, init)		\
  64static inline void fname##_init(struct mm_struct *mm,		\
  65		type1##_t *arg1, type2##_t *arg2, bool init)	\
  66{								\
  67	if (init)						\
  68		fname##_safe(mm, arg1, arg2);			\
  69	else							\
  70		fname(mm, arg1, arg2);				\
  71}
  72
  73DEFINE_POPULATE(p4d_populate, p4d, pud, init)
  74DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
  75DEFINE_POPULATE(pud_populate, pud, pmd, init)
  76DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
  77
  78#define DEFINE_ENTRY(type1, type2, init)			\
  79static inline void set_##type1##_init(type1##_t *arg1,		\
  80			type2##_t arg2, bool init)		\
  81{								\
  82	if (init)						\
  83		set_##type1##_safe(arg1, arg2);			\
  84	else							\
  85		set_##type1(arg1, arg2);			\
  86}
 
  87
  88DEFINE_ENTRY(p4d, p4d, init)
  89DEFINE_ENTRY(pud, pud, init)
  90DEFINE_ENTRY(pmd, pmd, init)
  91DEFINE_ENTRY(pte, pte, init)
  92
  93static inline pgprot_t prot_sethuge(pgprot_t prot)
  94{
  95	WARN_ON_ONCE(pgprot_val(prot) & _PAGE_PAT);
  96
  97	return __pgprot(pgprot_val(prot) | _PAGE_PSE);
  98}
 
  99
 100/*
 101 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
 102 * physical space so we can cache the place of the first one and move
 103 * around without checking the pgd every time.
 104 */
 105
 106/* Bits supported by the hardware: */
 107pteval_t __supported_pte_mask __read_mostly = ~0;
 108/* Bits allowed in normal kernel mappings: */
 109pteval_t __default_kernel_pte_mask __read_mostly = ~0;
 110EXPORT_SYMBOL_GPL(__supported_pte_mask);
 111/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
 112EXPORT_SYMBOL(__default_kernel_pte_mask);
 113
 114int force_personality32;
 115
 116/*
 117 * noexec32=on|off
 118 * Control non executable heap for 32bit processes.
 
 119 *
 120 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
 121 * off	PROT_READ implies PROT_EXEC
 122 */
 123static int __init nonx32_setup(char *str)
 124{
 125	if (!strcmp(str, "on"))
 126		force_personality32 &= ~READ_IMPLIES_EXEC;
 127	else if (!strcmp(str, "off"))
 128		force_personality32 |= READ_IMPLIES_EXEC;
 129	return 1;
 130}
 131__setup("noexec32=", nonx32_setup);
 132
 133static void sync_global_pgds_l5(unsigned long start, unsigned long end)
 
 
 
 
 134{
 135	unsigned long addr;
 136
 137	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 138		const pgd_t *pgd_ref = pgd_offset_k(addr);
 139		struct page *page;
 140
 141		/* Check for overflow */
 142		if (addr < start)
 143			break;
 144
 145		if (pgd_none(*pgd_ref))
 146			continue;
 147
 148		spin_lock(&pgd_lock);
 149		list_for_each_entry(page, &pgd_list, lru) {
 150			pgd_t *pgd;
 151			spinlock_t *pgt_lock;
 152
 153			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 154			/* the pgt_lock only for Xen */
 155			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 156			spin_lock(pgt_lock);
 157
 158			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
 159				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 160
 161			if (pgd_none(*pgd))
 162				set_pgd(pgd, *pgd_ref);
 163
 164			spin_unlock(pgt_lock);
 165		}
 166		spin_unlock(&pgd_lock);
 167	}
 168}
 169
 170static void sync_global_pgds_l4(unsigned long start, unsigned long end)
 171{
 172	unsigned long addr;
 173
 174	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 175		pgd_t *pgd_ref = pgd_offset_k(addr);
 176		const p4d_t *p4d_ref;
 177		struct page *page;
 178
 179		/*
 180		 * With folded p4d, pgd_none() is always false, we need to
 181		 * handle synchronization on p4d level.
 182		 */
 183		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
 184		p4d_ref = p4d_offset(pgd_ref, addr);
 185
 186		if (p4d_none(*p4d_ref))
 187			continue;
 188
 189		spin_lock(&pgd_lock);
 190		list_for_each_entry(page, &pgd_list, lru) {
 191			pgd_t *pgd;
 192			p4d_t *p4d;
 193			spinlock_t *pgt_lock;
 194
 195			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 196			p4d = p4d_offset(pgd, addr);
 197			/* the pgt_lock only for Xen */
 198			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 199			spin_lock(pgt_lock);
 200
 201			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
 202				BUG_ON(p4d_pgtable(*p4d)
 203				       != p4d_pgtable(*p4d_ref));
 204
 205			if (p4d_none(*p4d))
 206				set_p4d(p4d, *p4d_ref);
 207
 208			spin_unlock(pgt_lock);
 209		}
 210		spin_unlock(&pgd_lock);
 211	}
 212}
 213
 214/*
 215 * When memory was added make sure all the processes MM have
 216 * suitable PGD entries in the local PGD level page.
 217 */
 218static void sync_global_pgds(unsigned long start, unsigned long end)
 219{
 220	if (pgtable_l5_enabled())
 221		sync_global_pgds_l5(start, end);
 222	else
 223		sync_global_pgds_l4(start, end);
 224}
 225
 226/*
 227 * NOTE: This function is marked __ref because it calls __init function
 228 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
 229 */
 230static __ref void *spp_getpage(void)
 231{
 232	void *ptr;
 233
 234	if (after_bootmem)
 235		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
 236	else
 237		ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 238
 239	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
 240		panic("set_pte_phys: cannot allocate page data %s\n",
 241			after_bootmem ? "after bootmem" : "");
 242	}
 243
 244	pr_debug("spp_getpage %p\n", ptr);
 245
 246	return ptr;
 247}
 248
 249static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
 250{
 251	if (pgd_none(*pgd)) {
 252		p4d_t *p4d = (p4d_t *)spp_getpage();
 253		pgd_populate(&init_mm, pgd, p4d);
 254		if (p4d != p4d_offset(pgd, 0))
 255			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
 256			       p4d, p4d_offset(pgd, 0));
 257	}
 258	return p4d_offset(pgd, vaddr);
 259}
 260
 261static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
 262{
 263	if (p4d_none(*p4d)) {
 264		pud_t *pud = (pud_t *)spp_getpage();
 265		p4d_populate(&init_mm, p4d, pud);
 266		if (pud != pud_offset(p4d, 0))
 267			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
 268			       pud, pud_offset(p4d, 0));
 269	}
 270	return pud_offset(p4d, vaddr);
 271}
 272
 273static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
 274{
 275	if (pud_none(*pud)) {
 276		pmd_t *pmd = (pmd_t *) spp_getpage();
 277		pud_populate(&init_mm, pud, pmd);
 278		if (pmd != pmd_offset(pud, 0))
 279			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
 280			       pmd, pmd_offset(pud, 0));
 281	}
 282	return pmd_offset(pud, vaddr);
 283}
 284
 285static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
 286{
 287	if (pmd_none(*pmd)) {
 288		pte_t *pte = (pte_t *) spp_getpage();
 289		pmd_populate_kernel(&init_mm, pmd, pte);
 290		if (pte != pte_offset_kernel(pmd, 0))
 291			printk(KERN_ERR "PAGETABLE BUG #03!\n");
 292	}
 293	return pte_offset_kernel(pmd, vaddr);
 294}
 295
 296static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
 297{
 298	pmd_t *pmd = fill_pmd(pud, vaddr);
 299	pte_t *pte = fill_pte(pmd, vaddr);
 
 
 
 
 
 300
 301	set_pte(pte, new_pte);
 302
 303	/*
 304	 * It's enough to flush this one mapping.
 305	 * (PGE mappings get flushed as well)
 306	 */
 307	flush_tlb_one_kernel(vaddr);
 308}
 309
 310void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
 311{
 312	p4d_t *p4d = p4d_page + p4d_index(vaddr);
 313	pud_t *pud = fill_pud(p4d, vaddr);
 314
 315	__set_pte_vaddr(pud, vaddr, new_pte);
 316}
 317
 318void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
 319{
 320	pud_t *pud = pud_page + pud_index(vaddr);
 321
 322	__set_pte_vaddr(pud, vaddr, new_pte);
 323}
 324
 325void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
 326{
 327	pgd_t *pgd;
 328	p4d_t *p4d_page;
 329
 330	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
 331
 332	pgd = pgd_offset_k(vaddr);
 333	if (pgd_none(*pgd)) {
 334		printk(KERN_ERR
 335			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
 336		return;
 337	}
 338
 339	p4d_page = p4d_offset(pgd, 0);
 340	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
 341}
 342
 343pmd_t * __init populate_extra_pmd(unsigned long vaddr)
 344{
 345	pgd_t *pgd;
 346	p4d_t *p4d;
 347	pud_t *pud;
 348
 349	pgd = pgd_offset_k(vaddr);
 350	p4d = fill_p4d(pgd, vaddr);
 351	pud = fill_pud(p4d, vaddr);
 352	return fill_pmd(pud, vaddr);
 353}
 354
 355pte_t * __init populate_extra_pte(unsigned long vaddr)
 356{
 357	pmd_t *pmd;
 358
 359	pmd = populate_extra_pmd(vaddr);
 360	return fill_pte(pmd, vaddr);
 361}
 362
 363/*
 364 * Create large page table mappings for a range of physical addresses.
 365 */
 366static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
 367					enum page_cache_mode cache)
 368{
 369	pgd_t *pgd;
 370	p4d_t *p4d;
 371	pud_t *pud;
 372	pmd_t *pmd;
 373	pgprot_t prot;
 374
 375	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
 376		protval_4k_2_large(cachemode2protval(cache));
 377	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
 378	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
 379		pgd = pgd_offset_k((unsigned long)__va(phys));
 380		if (pgd_none(*pgd)) {
 381			p4d = (p4d_t *) spp_getpage();
 382			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
 383						_PAGE_USER));
 384		}
 385		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
 386		if (p4d_none(*p4d)) {
 387			pud = (pud_t *) spp_getpage();
 388			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
 389						_PAGE_USER));
 390		}
 391		pud = pud_offset(p4d, (unsigned long)__va(phys));
 392		if (pud_none(*pud)) {
 393			pmd = (pmd_t *) spp_getpage();
 394			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
 395						_PAGE_USER));
 396		}
 397		pmd = pmd_offset(pud, phys);
 398		BUG_ON(!pmd_none(*pmd));
 399		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
 400	}
 401}
 402
 403void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
 404{
 405	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
 406}
 407
 408void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
 409{
 410	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
 411}
 412
 413/*
 414 * The head.S code sets up the kernel high mapping:
 415 *
 416 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
 417 *
 418 * phys_base holds the negative offset to the kernel, which is added
 419 * to the compile time generated pmds. This results in invalid pmds up
 420 * to the point where we hit the physaddr 0 mapping.
 421 *
 422 * We limit the mappings to the region from _text to _brk_end.  _brk_end
 423 * is rounded up to the 2MB boundary. This catches the invalid pmds as
 424 * well, as they are located before _text:
 425 */
 426void __init cleanup_highmap(void)
 427{
 428	unsigned long vaddr = __START_KERNEL_map;
 429	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
 430	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
 431	pmd_t *pmd = level2_kernel_pgt;
 432
 433	/*
 434	 * Native path, max_pfn_mapped is not set yet.
 435	 * Xen has valid max_pfn_mapped set in
 436	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
 437	 */
 438	if (max_pfn_mapped)
 439		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
 440
 441	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
 442		if (pmd_none(*pmd))
 443			continue;
 444		if (vaddr < (unsigned long) _text || vaddr > end)
 445			set_pmd(pmd, __pmd(0));
 446	}
 447}
 448
 449/*
 450 * Create PTE level page table mapping for physical addresses.
 451 * It returns the last physical address mapped.
 452 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453static unsigned long __meminit
 454phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
 455	      pgprot_t prot, bool init)
 456{
 457	unsigned long pages = 0, paddr_next;
 458	unsigned long paddr_last = paddr_end;
 459	pte_t *pte;
 460	int i;
 461
 462	pte = pte_page + pte_index(paddr);
 463	i = pte_index(paddr);
 464
 465	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
 466		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
 467		if (paddr >= paddr_end) {
 468			if (!after_bootmem &&
 469			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 470					     E820_TYPE_RAM) &&
 471			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 472					     E820_TYPE_RESERVED_KERN))
 473				set_pte_init(pte, __pte(0), init);
 474			continue;
 475		}
 476
 477		/*
 478		 * We will re-use the existing mapping.
 479		 * Xen for example has some special requirements, like mapping
 480		 * pagetable pages as RO. So assume someone who pre-setup
 481		 * these mappings are more intelligent.
 482		 */
 483		if (!pte_none(*pte)) {
 484			if (!after_bootmem)
 485				pages++;
 486			continue;
 487		}
 488
 489		if (0)
 490			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
 491				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
 492		pages++;
 493		set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
 494		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
 495	}
 496
 497	update_page_count(PG_LEVEL_4K, pages);
 498
 499	return paddr_last;
 500}
 501
 502/*
 503 * Create PMD level page table mapping for physical addresses. The virtual
 504 * and physical address have to be aligned at this level.
 505 * It returns the last physical address mapped.
 506 */
 507static unsigned long __meminit
 508phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
 509	      unsigned long page_size_mask, pgprot_t prot, bool init)
 510{
 511	unsigned long pages = 0, paddr_next;
 512	unsigned long paddr_last = paddr_end;
 513
 514	int i = pmd_index(paddr);
 515
 516	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
 517		pmd_t *pmd = pmd_page + pmd_index(paddr);
 
 518		pte_t *pte;
 519		pgprot_t new_prot = prot;
 520
 521		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
 522		if (paddr >= paddr_end) {
 523			if (!after_bootmem &&
 524			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 525					     E820_TYPE_RAM) &&
 526			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 527					     E820_TYPE_RESERVED_KERN))
 528				set_pmd_init(pmd, __pmd(0), init);
 529			continue;
 530		}
 531
 532		if (!pmd_none(*pmd)) {
 533			if (!pmd_large(*pmd)) {
 534				spin_lock(&init_mm.page_table_lock);
 535				pte = (pte_t *)pmd_page_vaddr(*pmd);
 536				paddr_last = phys_pte_init(pte, paddr,
 537							   paddr_end, prot,
 538							   init);
 539				spin_unlock(&init_mm.page_table_lock);
 540				continue;
 541			}
 542			/*
 543			 * If we are ok with PG_LEVEL_2M mapping, then we will
 544			 * use the existing mapping,
 545			 *
 546			 * Otherwise, we will split the large page mapping but
 547			 * use the same existing protection bits except for
 548			 * large page, so that we don't violate Intel's TLB
 549			 * Application note (317080) which says, while changing
 550			 * the page sizes, new and old translations should
 551			 * not differ with respect to page frame and
 552			 * attributes.
 553			 */
 554			if (page_size_mask & (1 << PG_LEVEL_2M)) {
 555				if (!after_bootmem)
 556					pages++;
 557				paddr_last = paddr_next;
 558				continue;
 559			}
 560			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
 561		}
 562
 563		if (page_size_mask & (1<<PG_LEVEL_2M)) {
 564			pages++;
 565			spin_lock(&init_mm.page_table_lock);
 566			set_pmd_init(pmd,
 567				     pfn_pmd(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
 568				     init);
 569			spin_unlock(&init_mm.page_table_lock);
 570			paddr_last = paddr_next;
 571			continue;
 572		}
 573
 574		pte = alloc_low_page();
 575		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
 
 576
 577		spin_lock(&init_mm.page_table_lock);
 578		pmd_populate_kernel_init(&init_mm, pmd, pte, init);
 579		spin_unlock(&init_mm.page_table_lock);
 580	}
 581	update_page_count(PG_LEVEL_2M, pages);
 582	return paddr_last;
 583}
 584
 585/*
 586 * Create PUD level page table mapping for physical addresses. The virtual
 587 * and physical address do not have to be aligned at this level. KASLR can
 588 * randomize virtual addresses up to this level.
 589 * It returns the last physical address mapped.
 590 */
 591static unsigned long __meminit
 592phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
 593	      unsigned long page_size_mask, pgprot_t _prot, bool init)
 594{
 595	unsigned long pages = 0, paddr_next;
 596	unsigned long paddr_last = paddr_end;
 597	unsigned long vaddr = (unsigned long)__va(paddr);
 598	int i = pud_index(vaddr);
 599
 600	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
 601		pud_t *pud;
 602		pmd_t *pmd;
 603		pgprot_t prot = _prot;
 
 
 
 604
 605		vaddr = (unsigned long)__va(paddr);
 606		pud = pud_page + pud_index(vaddr);
 607		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
 608
 609		if (paddr >= paddr_end) {
 610			if (!after_bootmem &&
 611			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 612					     E820_TYPE_RAM) &&
 613			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 614					     E820_TYPE_RESERVED_KERN))
 615				set_pud_init(pud, __pud(0), init);
 616			continue;
 617		}
 618
 619		if (!pud_none(*pud)) {
 620			if (!pud_large(*pud)) {
 621				pmd = pmd_offset(pud, 0);
 622				paddr_last = phys_pmd_init(pmd, paddr,
 623							   paddr_end,
 624							   page_size_mask,
 625							   prot, init);
 626				continue;
 627			}
 628			/*
 629			 * If we are ok with PG_LEVEL_1G mapping, then we will
 630			 * use the existing mapping.
 631			 *
 632			 * Otherwise, we will split the gbpage mapping but use
 633			 * the same existing protection  bits except for large
 634			 * page, so that we don't violate Intel's TLB
 635			 * Application note (317080) which says, while changing
 636			 * the page sizes, new and old translations should
 637			 * not differ with respect to page frame and
 638			 * attributes.
 639			 */
 640			if (page_size_mask & (1 << PG_LEVEL_1G)) {
 641				if (!after_bootmem)
 642					pages++;
 643				paddr_last = paddr_next;
 644				continue;
 645			}
 646			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
 647		}
 648
 649		if (page_size_mask & (1<<PG_LEVEL_1G)) {
 650			pages++;
 651			spin_lock(&init_mm.page_table_lock);
 652			set_pud_init(pud,
 653				     pfn_pud(paddr >> PAGE_SHIFT, prot_sethuge(prot)),
 654				     init);
 655			spin_unlock(&init_mm.page_table_lock);
 656			paddr_last = paddr_next;
 657			continue;
 658		}
 659
 660		pmd = alloc_low_page();
 661		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
 662					   page_size_mask, prot, init);
 
 663
 664		spin_lock(&init_mm.page_table_lock);
 665		pud_populate_init(&init_mm, pud, pmd, init);
 666		spin_unlock(&init_mm.page_table_lock);
 667	}
 
 668
 669	update_page_count(PG_LEVEL_1G, pages);
 670
 671	return paddr_last;
 672}
 673
 674static unsigned long __meminit
 675phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
 676	      unsigned long page_size_mask, pgprot_t prot, bool init)
 
 677{
 678	unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
 679
 680	paddr_last = paddr_end;
 681	vaddr = (unsigned long)__va(paddr);
 682	vaddr_end = (unsigned long)__va(paddr_end);
 683
 684	if (!pgtable_l5_enabled())
 685		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
 686				     page_size_mask, prot, init);
 687
 688	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 689		p4d_t *p4d = p4d_page + p4d_index(vaddr);
 
 690		pud_t *pud;
 691
 692		vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
 693		paddr = __pa(vaddr);
 694
 695		if (paddr >= paddr_end) {
 696			paddr_next = __pa(vaddr_next);
 697			if (!after_bootmem &&
 698			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 699					     E820_TYPE_RAM) &&
 700			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 701					     E820_TYPE_RESERVED_KERN))
 702				set_p4d_init(p4d, __p4d(0), init);
 703			continue;
 704		}
 705
 706		if (!p4d_none(*p4d)) {
 707			pud = pud_offset(p4d, 0);
 708			paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
 709					page_size_mask, prot, init);
 710			continue;
 711		}
 712
 713		pud = alloc_low_page();
 714		paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
 715					   page_size_mask, prot, init);
 716
 717		spin_lock(&init_mm.page_table_lock);
 718		p4d_populate_init(&init_mm, p4d, pud, init);
 719		spin_unlock(&init_mm.page_table_lock);
 720	}
 721
 722	return paddr_last;
 723}
 724
 725static unsigned long __meminit
 726__kernel_physical_mapping_init(unsigned long paddr_start,
 727			       unsigned long paddr_end,
 728			       unsigned long page_size_mask,
 729			       pgprot_t prot, bool init)
 730{
 731	bool pgd_changed = false;
 732	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
 733
 734	paddr_last = paddr_end;
 735	vaddr = (unsigned long)__va(paddr_start);
 736	vaddr_end = (unsigned long)__va(paddr_end);
 737	vaddr_start = vaddr;
 738
 739	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 740		pgd_t *pgd = pgd_offset_k(vaddr);
 741		p4d_t *p4d;
 742
 743		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
 744
 745		if (pgd_val(*pgd)) {
 746			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
 747			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
 748						   __pa(vaddr_end),
 749						   page_size_mask,
 750						   prot, init);
 751			continue;
 752		}
 753
 754		p4d = alloc_low_page();
 755		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
 756					   page_size_mask, prot, init);
 
 757
 758		spin_lock(&init_mm.page_table_lock);
 759		if (pgtable_l5_enabled())
 760			pgd_populate_init(&init_mm, pgd, p4d, init);
 761		else
 762			p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
 763					  (pud_t *) p4d, init);
 764
 765		spin_unlock(&init_mm.page_table_lock);
 766		pgd_changed = true;
 767	}
 768
 769	if (pgd_changed)
 770		sync_global_pgds(vaddr_start, vaddr_end - 1);
 771
 772	return paddr_last;
 773}
 774
 
 775
 776/*
 777 * Create page table mapping for the physical memory for specific physical
 778 * addresses. Note that it can only be used to populate non-present entries.
 779 * The virtual and physical addresses have to be aligned on PMD level
 780 * down. It returns the last physical address mapped.
 781 */
 782unsigned long __meminit
 783kernel_physical_mapping_init(unsigned long paddr_start,
 784			     unsigned long paddr_end,
 785			     unsigned long page_size_mask, pgprot_t prot)
 786{
 787	return __kernel_physical_mapping_init(paddr_start, paddr_end,
 788					      page_size_mask, prot, true);
 789}
 790
 791/*
 792 * This function is similar to kernel_physical_mapping_init() above with the
 793 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
 794 * when updating the mapping. The caller is responsible to flush the TLBs after
 795 * the function returns.
 796 */
 797unsigned long __meminit
 798kernel_physical_mapping_change(unsigned long paddr_start,
 799			       unsigned long paddr_end,
 800			       unsigned long page_size_mask)
 801{
 802	return __kernel_physical_mapping_init(paddr_start, paddr_end,
 803					      page_size_mask, PAGE_KERNEL,
 804					      false);
 805}
 806
 807#ifndef CONFIG_NUMA
 808void __init initmem_init(void)
 809{
 810	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
 811}
 812#endif
 813
 814void __init paging_init(void)
 815{
 
 
 
 
 
 
 
 
 
 
 816	sparse_init();
 817
 818	/*
 819	 * clear the default setting with node 0
 820	 * note: don't use nodes_clear here, that is really clearing when
 821	 *	 numa support is not compiled in, and later node_set_state
 822	 *	 will not set it back.
 823	 */
 824	node_clear_state(0, N_MEMORY);
 825	node_clear_state(0, N_NORMAL_MEMORY);
 826
 827	zone_sizes_init();
 828}
 829
 830#ifdef CONFIG_SPARSEMEM_VMEMMAP
 831#define PAGE_UNUSED 0xFD
 832
 833/*
 834 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
 835 * from unused_pmd_start to next PMD_SIZE boundary.
 836 */
 837static unsigned long unused_pmd_start __meminitdata;
 838
 839static void __meminit vmemmap_flush_unused_pmd(void)
 840{
 841	if (!unused_pmd_start)
 842		return;
 843	/*
 844	 * Clears (unused_pmd_start, PMD_END]
 845	 */
 846	memset((void *)unused_pmd_start, PAGE_UNUSED,
 847	       ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
 848	unused_pmd_start = 0;
 849}
 850
 851#ifdef CONFIG_MEMORY_HOTPLUG
 852/* Returns true if the PMD is completely unused and thus it can be freed */
 853static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
 854{
 855	unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
 856
 857	/*
 858	 * Flush the unused range cache to ensure that memchr_inv() will work
 859	 * for the whole range.
 860	 */
 861	vmemmap_flush_unused_pmd();
 862	memset((void *)addr, PAGE_UNUSED, end - addr);
 863
 864	return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
 865}
 866#endif
 867
 868static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
 869{
 870	/*
 871	 * As we expect to add in the same granularity as we remove, it's
 872	 * sufficient to mark only some piece used to block the memmap page from
 873	 * getting removed when removing some other adjacent memmap (just in
 874	 * case the first memmap never gets initialized e.g., because the memory
 875	 * block never gets onlined).
 876	 */
 877	memset((void *)start, 0, sizeof(struct page));
 878}
 879
 880static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
 881{
 882	/*
 883	 * We only optimize if the new used range directly follows the
 884	 * previously unused range (esp., when populating consecutive sections).
 885	 */
 886	if (unused_pmd_start == start) {
 887		if (likely(IS_ALIGNED(end, PMD_SIZE)))
 888			unused_pmd_start = 0;
 889		else
 890			unused_pmd_start = end;
 891		return;
 892	}
 893
 894	/*
 895	 * If the range does not contiguously follows previous one, make sure
 896	 * to mark the unused range of the previous one so it can be removed.
 897	 */
 898	vmemmap_flush_unused_pmd();
 899	__vmemmap_use_sub_pmd(start);
 900}
 901
 902
 903static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
 904{
 905	const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
 906
 907	vmemmap_flush_unused_pmd();
 908
 909	/*
 910	 * Could be our memmap page is filled with PAGE_UNUSED already from a
 911	 * previous remove. Make sure to reset it.
 912	 */
 913	__vmemmap_use_sub_pmd(start);
 914
 915	/*
 916	 * Mark with PAGE_UNUSED the unused parts of the new memmap range
 917	 */
 918	if (!IS_ALIGNED(start, PMD_SIZE))
 919		memset((void *)page, PAGE_UNUSED, start - page);
 920
 921	/*
 922	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
 923	 * consecutive sections. Remember for the last added PMD where the
 924	 * unused range begins.
 925	 */
 926	if (!IS_ALIGNED(end, PMD_SIZE))
 927		unused_pmd_start = end;
 928}
 929#endif
 930
 931/*
 932 * Memory hotplug specific functions
 933 */
 934#ifdef CONFIG_MEMORY_HOTPLUG
 935/*
 936 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
 937 * updating.
 938 */
 939static void update_end_of_memory_vars(u64 start, u64 size)
 940{
 941	unsigned long end_pfn = PFN_UP(start + size);
 942
 943	if (end_pfn > max_pfn) {
 944		max_pfn = end_pfn;
 945		max_low_pfn = end_pfn;
 946		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 947	}
 948}
 949
 950int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
 951	      struct mhp_params *params)
 
 
 
 952{
 
 
 
 
 953	int ret;
 954
 955	ret = __add_pages(nid, start_pfn, nr_pages, params);
 
 
 
 
 956	WARN_ON_ONCE(ret);
 957
 958	/* update max_pfn, max_low_pfn and high_memory */
 959	update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
 960				  nr_pages << PAGE_SHIFT);
 961
 962	return ret;
 963}
 
 964
 965int arch_add_memory(int nid, u64 start, u64 size,
 966		    struct mhp_params *params)
 967{
 968	unsigned long start_pfn = start >> PAGE_SHIFT;
 969	unsigned long nr_pages = size >> PAGE_SHIFT;
 970
 971	init_memory_mapping(start, start + size, params->pgprot);
 972
 973	return add_pages(nid, start_pfn, nr_pages, params);
 974}
 975
 976static void __meminit free_pagetable(struct page *page, int order)
 977{
 978	unsigned long magic;
 979	unsigned int nr_pages = 1 << order;
 980
 981	/* bootmem page has reserved flag */
 982	if (PageReserved(page)) {
 983		__ClearPageReserved(page);
 984
 985		magic = page->index;
 986		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
 987			while (nr_pages--)
 988				put_page_bootmem(page++);
 989		} else
 990			while (nr_pages--)
 991				free_reserved_page(page++);
 992	} else
 993		free_pages((unsigned long)page_address(page), order);
 994}
 995
 996static void __meminit free_hugepage_table(struct page *page,
 997		struct vmem_altmap *altmap)
 998{
 999	if (altmap)
1000		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
1001	else
1002		free_pagetable(page, get_order(PMD_SIZE));
1003}
1004
1005static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1006{
1007	pte_t *pte;
1008	int i;
1009
1010	for (i = 0; i < PTRS_PER_PTE; i++) {
1011		pte = pte_start + i;
1012		if (!pte_none(*pte))
1013			return;
1014	}
1015
1016	/* free a pte talbe */
1017	free_pagetable(pmd_page(*pmd), 0);
1018	spin_lock(&init_mm.page_table_lock);
1019	pmd_clear(pmd);
1020	spin_unlock(&init_mm.page_table_lock);
1021}
1022
1023static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
1024{
1025	pmd_t *pmd;
1026	int i;
1027
1028	for (i = 0; i < PTRS_PER_PMD; i++) {
1029		pmd = pmd_start + i;
1030		if (!pmd_none(*pmd))
1031			return;
1032	}
1033
1034	/* free a pmd talbe */
1035	free_pagetable(pud_page(*pud), 0);
1036	spin_lock(&init_mm.page_table_lock);
1037	pud_clear(pud);
1038	spin_unlock(&init_mm.page_table_lock);
1039}
1040
1041static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1042{
1043	pud_t *pud;
1044	int i;
1045
1046	for (i = 0; i < PTRS_PER_PUD; i++) {
1047		pud = pud_start + i;
1048		if (!pud_none(*pud))
1049			return;
1050	}
1051
1052	/* free a pud talbe */
1053	free_pagetable(p4d_page(*p4d), 0);
1054	spin_lock(&init_mm.page_table_lock);
1055	p4d_clear(p4d);
1056	spin_unlock(&init_mm.page_table_lock);
1057}
1058
1059static void __meminit
1060remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
1061		 bool direct)
1062{
1063	unsigned long next, pages = 0;
1064	pte_t *pte;
1065	phys_addr_t phys_addr;
1066
1067	pte = pte_start + pte_index(addr);
1068	for (; addr < end; addr = next, pte++) {
1069		next = (addr + PAGE_SIZE) & PAGE_MASK;
1070		if (next > end)
1071			next = end;
1072
1073		if (!pte_present(*pte))
1074			continue;
1075
1076		/*
1077		 * We mapped [0,1G) memory as identity mapping when
1078		 * initializing, in arch/x86/kernel/head_64.S. These
1079		 * pagetables cannot be removed.
1080		 */
1081		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
1082		if (phys_addr < (phys_addr_t)0x40000000)
1083			return;
1084
1085		if (!direct)
1086			free_pagetable(pte_page(*pte), 0);
1087
1088		spin_lock(&init_mm.page_table_lock);
1089		pte_clear(&init_mm, addr, pte);
1090		spin_unlock(&init_mm.page_table_lock);
1091
1092		/* For non-direct mapping, pages means nothing. */
1093		pages++;
1094	}
1095
1096	/* Call free_pte_table() in remove_pmd_table(). */
1097	flush_tlb_all();
1098	if (direct)
1099		update_page_count(PG_LEVEL_4K, -pages);
1100}
1101
1102static void __meminit
1103remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
1104		 bool direct, struct vmem_altmap *altmap)
1105{
1106	unsigned long next, pages = 0;
1107	pte_t *pte_base;
1108	pmd_t *pmd;
1109
1110	pmd = pmd_start + pmd_index(addr);
1111	for (; addr < end; addr = next, pmd++) {
1112		next = pmd_addr_end(addr, end);
1113
1114		if (!pmd_present(*pmd))
1115			continue;
1116
1117		if (pmd_large(*pmd)) {
1118			if (IS_ALIGNED(addr, PMD_SIZE) &&
1119			    IS_ALIGNED(next, PMD_SIZE)) {
1120				if (!direct)
1121					free_hugepage_table(pmd_page(*pmd),
1122							    altmap);
1123
1124				spin_lock(&init_mm.page_table_lock);
1125				pmd_clear(pmd);
1126				spin_unlock(&init_mm.page_table_lock);
1127				pages++;
1128			}
1129#ifdef CONFIG_SPARSEMEM_VMEMMAP
1130			else if (vmemmap_pmd_is_unused(addr, next)) {
1131					free_hugepage_table(pmd_page(*pmd),
1132							    altmap);
1133					spin_lock(&init_mm.page_table_lock);
1134					pmd_clear(pmd);
1135					spin_unlock(&init_mm.page_table_lock);
1136			}
1137#endif
1138			continue;
1139		}
1140
1141		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
1142		remove_pte_table(pte_base, addr, next, direct);
1143		free_pte_table(pte_base, pmd);
1144	}
1145
1146	/* Call free_pmd_table() in remove_pud_table(). */
1147	if (direct)
1148		update_page_count(PG_LEVEL_2M, -pages);
1149}
1150
1151static void __meminit
1152remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
1153		 struct vmem_altmap *altmap, bool direct)
1154{
1155	unsigned long next, pages = 0;
1156	pmd_t *pmd_base;
1157	pud_t *pud;
1158
1159	pud = pud_start + pud_index(addr);
1160	for (; addr < end; addr = next, pud++) {
1161		next = pud_addr_end(addr, end);
1162
1163		if (!pud_present(*pud))
1164			continue;
1165
1166		if (pud_large(*pud) &&
1167		    IS_ALIGNED(addr, PUD_SIZE) &&
1168		    IS_ALIGNED(next, PUD_SIZE)) {
1169			spin_lock(&init_mm.page_table_lock);
1170			pud_clear(pud);
1171			spin_unlock(&init_mm.page_table_lock);
1172			pages++;
1173			continue;
1174		}
1175
1176		pmd_base = pmd_offset(pud, 0);
1177		remove_pmd_table(pmd_base, addr, next, direct, altmap);
1178		free_pmd_table(pmd_base, pud);
1179	}
1180
1181	if (direct)
1182		update_page_count(PG_LEVEL_1G, -pages);
1183}
1184
1185static void __meminit
1186remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
1187		 struct vmem_altmap *altmap, bool direct)
1188{
1189	unsigned long next, pages = 0;
1190	pud_t *pud_base;
1191	p4d_t *p4d;
1192
1193	p4d = p4d_start + p4d_index(addr);
1194	for (; addr < end; addr = next, p4d++) {
1195		next = p4d_addr_end(addr, end);
1196
1197		if (!p4d_present(*p4d))
1198			continue;
1199
1200		BUILD_BUG_ON(p4d_large(*p4d));
1201
1202		pud_base = pud_offset(p4d, 0);
1203		remove_pud_table(pud_base, addr, next, altmap, direct);
1204		/*
1205		 * For 4-level page tables we do not want to free PUDs, but in the
1206		 * 5-level case we should free them. This code will have to change
1207		 * to adapt for boot-time switching between 4 and 5 level page tables.
1208		 */
1209		if (pgtable_l5_enabled())
1210			free_pud_table(pud_base, p4d);
1211	}
1212
1213	if (direct)
1214		update_page_count(PG_LEVEL_512G, -pages);
1215}
1216
1217/* start and end are both virtual address. */
1218static void __meminit
1219remove_pagetable(unsigned long start, unsigned long end, bool direct,
1220		struct vmem_altmap *altmap)
1221{
1222	unsigned long next;
1223	unsigned long addr;
1224	pgd_t *pgd;
1225	p4d_t *p4d;
1226
1227	for (addr = start; addr < end; addr = next) {
1228		next = pgd_addr_end(addr, end);
1229
1230		pgd = pgd_offset_k(addr);
1231		if (!pgd_present(*pgd))
1232			continue;
1233
1234		p4d = p4d_offset(pgd, 0);
1235		remove_p4d_table(p4d, addr, next, altmap, direct);
1236	}
1237
1238	flush_tlb_all();
1239}
1240
1241void __ref vmemmap_free(unsigned long start, unsigned long end,
1242		struct vmem_altmap *altmap)
1243{
1244	VM_BUG_ON(!PAGE_ALIGNED(start));
1245	VM_BUG_ON(!PAGE_ALIGNED(end));
1246
1247	remove_pagetable(start, end, false, altmap);
1248}
1249
1250static void __meminit
1251kernel_physical_mapping_remove(unsigned long start, unsigned long end)
1252{
1253	start = (unsigned long)__va(start);
1254	end = (unsigned long)__va(end);
1255
1256	remove_pagetable(start, end, true, NULL);
1257}
1258
1259void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1260{
1261	unsigned long start_pfn = start >> PAGE_SHIFT;
1262	unsigned long nr_pages = size >> PAGE_SHIFT;
1263
1264	__remove_pages(start_pfn, nr_pages, altmap);
1265	kernel_physical_mapping_remove(start, start + size);
1266}
1267#endif /* CONFIG_MEMORY_HOTPLUG */
1268
1269static struct kcore_list kcore_vsyscall;
 
 
1270
1271static void __init register_page_bootmem_info(void)
1272{
1273#if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
1274	int i;
 
 
 
 
 
 
 
 
 
 
1275
1276	for_each_online_node(i)
1277		register_page_bootmem_info_node(NODE_DATA(i));
1278#endif
1279}
1280
1281/*
1282 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
1283 * Only the level which needs to be synchronized between all page-tables is
1284 * allocated because the synchronization can be expensive.
1285 */
1286static void __init preallocate_vmalloc_pages(void)
1287{
1288	unsigned long addr;
1289	const char *lvl;
1290
1291	for (addr = VMALLOC_START; addr <= VMEMORY_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1292		pgd_t *pgd = pgd_offset_k(addr);
1293		p4d_t *p4d;
1294		pud_t *pud;
1295
1296		lvl = "p4d";
1297		p4d = p4d_alloc(&init_mm, pgd, addr);
1298		if (!p4d)
1299			goto failed;
1300
1301		if (pgtable_l5_enabled())
1302			continue;
1303
1304		/*
1305		 * The goal here is to allocate all possibly required
1306		 * hardware page tables pointed to by the top hardware
1307		 * level.
1308		 *
1309		 * On 4-level systems, the P4D layer is folded away and
1310		 * the above code does no preallocation.  Below, go down
1311		 * to the pud _software_ level to ensure the second
1312		 * hardware level is allocated on 4-level systems too.
1313		 */
1314		lvl = "pud";
1315		pud = pud_alloc(&init_mm, p4d, addr);
1316		if (!pud)
1317			goto failed;
1318	}
1319
1320	return;
 
1321
1322failed:
 
1323
1324	/*
1325	 * The pages have to be there now or they will be missing in
1326	 * process page-tables later.
 
1327	 */
1328	panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
1329}
1330
1331void __init mem_init(void)
1332{
1333	pci_iommu_alloc();
1334
1335	/* clear_bss() already clear the empty_zero_page */
1336
1337	/* this will put all memory onto the freelists */
1338	memblock_free_all();
1339	after_bootmem = 1;
1340	x86_init.hyper.init_after_bootmem();
1341
1342	/*
1343	 * Must be done after boot memory is put on freelist, because here we
1344	 * might set fields in deferred struct pages that have not yet been
1345	 * initialized, and memblock_free_all() initializes all the reserved
1346	 * deferred pages for us.
1347	 */
1348	register_page_bootmem_info();
1349
1350	/* Register memory areas for /proc/kcore */
1351	if (get_gate_vma(&init_mm))
1352		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
1353
1354	preallocate_vmalloc_pages();
1355}
1356
1357#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1358int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1359{
1360	/*
1361	 * More CPUs always led to greater speedups on tested systems, up to
1362	 * all the nodes' CPUs.  Use all since the system is otherwise idle
1363	 * now.
1364	 */
1365	return max_t(int, cpumask_weight(node_cpumask), 1);
1366}
1367#endif
1368
1369int kernel_set_to_readonly;
1370
1371void mark_rodata_ro(void)
1372{
1373	unsigned long start = PFN_ALIGN(_text);
1374	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1375	unsigned long end = (unsigned long)__end_rodata_hpage_align;
1376	unsigned long text_end = PFN_ALIGN(_etext);
1377	unsigned long rodata_end = PFN_ALIGN(__end_rodata);
1378	unsigned long all_end;
 
1379
1380	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1381	       (end - start) >> 10);
1382	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1383
1384	kernel_set_to_readonly = 1;
1385
1386	/*
1387	 * The rodata/data/bss/brk section (but not the kernel text!)
1388	 * should also be not-executable.
1389	 *
1390	 * We align all_end to PMD_SIZE because the existing mapping
1391	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1392	 * split the PMD and the reminder between _brk_end and the end
1393	 * of the PMD will remain mapped executable.
1394	 *
1395	 * Any PMD which was setup after the one which covers _brk_end
1396	 * has been zapped already via cleanup_highmem().
1397	 */
1398	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1399	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1400
1401	set_ftrace_ops_ro();
1402
1403#ifdef CONFIG_CPA_DEBUG
1404	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1405	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1406
1407	printk(KERN_INFO "Testing CPA: again\n");
1408	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1409#endif
1410
1411	free_kernel_image_pages("unused kernel image (text/rodata gap)",
1412				(void *)text_end, (void *)rodata_start);
1413	free_kernel_image_pages("unused kernel image (rodata/data gap)",
1414				(void *)rodata_end, (void *)_sdata);
1415
1416	debug_checkwx();
 
1417}
1418
1419/*
1420 * Block size is the minimum amount of memory which can be hotplugged or
1421 * hotremoved. It must be power of two and must be equal or larger than
1422 * MIN_MEMORY_BLOCK_SIZE.
1423 */
1424#define MAX_BLOCK_SIZE (2UL << 30)
1425
1426/* Amount of ram needed to start using large blocks */
1427#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
1428
1429/* Adjustable memory block size */
1430static unsigned long set_memory_block_size;
1431int __init set_memory_block_size_order(unsigned int order)
1432{
1433	unsigned long size = 1UL << order;
 
 
 
 
1434
1435	if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
1436		return -EINVAL;
1437
1438	set_memory_block_size = size;
1439	return 0;
1440}
1441
1442static unsigned long probe_memory_block_size(void)
1443{
1444	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
1445	unsigned long bz;
1446
1447	/* If memory block size has been set, then use it */
1448	bz = set_memory_block_size;
1449	if (bz)
1450		goto done;
1451
1452	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
1453	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
1454		bz = MIN_MEMORY_BLOCK_SIZE;
1455		goto done;
1456	}
1457
1458	/*
1459	 * Use max block size to minimize overhead on bare metal, where
1460	 * alignment for memory hotplug isn't a concern.
1461	 */
1462	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1463		bz = MAX_BLOCK_SIZE;
1464		goto done;
1465	}
1466
1467	/* Find the largest allowed block size that aligns to memory end */
1468	for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
1469		if (IS_ALIGNED(boot_mem_end, bz))
1470			break;
1471	}
1472done:
1473	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1474
1475	return bz;
1476}
1477
1478static unsigned long memory_block_size_probed;
1479unsigned long memory_block_size_bytes(void)
1480{
1481	if (!memory_block_size_probed)
1482		memory_block_size_probed = probe_memory_block_size();
1483
1484	return memory_block_size_probed;
1485}
1486
1487#ifdef CONFIG_SPARSEMEM_VMEMMAP
1488/*
1489 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
 
 
1490 */
1491static long __meminitdata addr_start, addr_end;
1492static void __meminitdata *p_start, *p_end;
1493static int __meminitdata node_start;
 
 
 
1494
1495void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1496			       unsigned long addr, unsigned long next)
1497{
1498	pte_t entry;
 
 
 
 
 
1499
1500	entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1501			PAGE_KERNEL_LARGE);
1502	set_pmd(pmd, __pmd(pte_val(entry)));
1503
1504	/* check to see if we have contiguous blocks */
1505	if (p_end != p || node_start != node) {
1506		if (p_start)
1507			pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1508				addr_start, addr_end-1, p_start, p_end-1, node_start);
1509		addr_start = addr;
1510		node_start = node;
1511		p_start = p;
1512	}
1513
1514	addr_end = addr + PMD_SIZE;
1515	p_end = p + PMD_SIZE;
1516
1517	if (!IS_ALIGNED(addr, PMD_SIZE) ||
1518		!IS_ALIGNED(next, PMD_SIZE))
1519		vmemmap_use_new_sub_pmd(addr, next);
1520}
1521
1522int __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
1523				unsigned long addr, unsigned long next)
 
 
 
 
1524{
1525	int large = pmd_large(*pmd);
1526
1527	if (pmd_large(*pmd)) {
1528		vmemmap_verify((pte_t *)pmd, node, addr, next);
1529		vmemmap_use_sub_pmd(addr, next);
1530	}
1531
1532	return large;
 
 
 
 
 
 
1533}
1534
1535int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1536		struct vmem_altmap *altmap)
1537{
1538	int err;
 
 
 
 
 
 
1539
1540	VM_BUG_ON(!PAGE_ALIGNED(start));
1541	VM_BUG_ON(!PAGE_ALIGNED(end));
1542
1543	if (end - start < PAGES_PER_SECTION * sizeof(struct page))
1544		err = vmemmap_populate_basepages(start, end, node, NULL);
1545	else if (boot_cpu_has(X86_FEATURE_PSE))
1546		err = vmemmap_populate_hugepages(start, end, node, altmap);
1547	else if (altmap) {
1548		pr_err_once("%s: no cpu support for altmap allocations\n",
1549				__func__);
1550		err = -ENOMEM;
1551	} else
1552		err = vmemmap_populate_basepages(start, end, node, NULL);
1553	if (!err)
1554		sync_global_pgds(start, end - 1);
1555	return err;
1556}
1557
1558#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
1559void register_page_bootmem_memmap(unsigned long section_nr,
1560				  struct page *start_page, unsigned long nr_pages)
1561{
1562	unsigned long addr = (unsigned long)start_page;
1563	unsigned long end = (unsigned long)(start_page + nr_pages);
1564	unsigned long next;
1565	pgd_t *pgd;
1566	p4d_t *p4d;
1567	pud_t *pud;
1568	pmd_t *pmd;
1569	unsigned int nr_pmd_pages;
1570	struct page *page;
1571
1572	for (; addr < end; addr = next) {
1573		pte_t *pte = NULL;
1574
1575		pgd = pgd_offset_k(addr);
1576		if (pgd_none(*pgd)) {
1577			next = (addr + PAGE_SIZE) & PAGE_MASK;
1578			continue;
1579		}
1580		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1581
1582		p4d = p4d_offset(pgd, addr);
1583		if (p4d_none(*p4d)) {
1584			next = (addr + PAGE_SIZE) & PAGE_MASK;
1585			continue;
1586		}
1587		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
1588
1589		pud = pud_offset(p4d, addr);
1590		if (pud_none(*pud)) {
1591			next = (addr + PAGE_SIZE) & PAGE_MASK;
1592			continue;
1593		}
1594		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1595
1596		if (!boot_cpu_has(X86_FEATURE_PSE)) {
1597			next = (addr + PAGE_SIZE) & PAGE_MASK;
1598			pmd = pmd_offset(pud, addr);
1599			if (pmd_none(*pmd))
1600				continue;
1601			get_page_bootmem(section_nr, pmd_page(*pmd),
1602					 MIX_SECTION_INFO);
1603
1604			pte = pte_offset_kernel(pmd, addr);
1605			if (pte_none(*pte))
1606				continue;
1607			get_page_bootmem(section_nr, pte_page(*pte),
1608					 SECTION_INFO);
 
 
1609		} else {
1610			next = pmd_addr_end(addr, end);
1611
1612			pmd = pmd_offset(pud, addr);
1613			if (pmd_none(*pmd))
1614				continue;
1615
1616			nr_pmd_pages = 1 << get_order(PMD_SIZE);
1617			page = pmd_page(*pmd);
1618			while (nr_pmd_pages--)
1619				get_page_bootmem(section_nr, page++,
1620						 SECTION_INFO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621		}
 
1622	}
 
 
1623}
1624#endif
1625
1626void __meminit vmemmap_populate_print_last(void)
1627{
1628	if (p_start) {
1629		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1630			addr_start, addr_end-1, p_start, p_end-1, node_start);
1631		p_start = NULL;
1632		p_end = NULL;
1633		node_start = 0;
1634	}
1635}
1636#endif
v3.1
 
  1/*
  2 *  linux/arch/x86_64/mm/init.c
  3 *
  4 *  Copyright (C) 1995  Linus Torvalds
  5 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
  6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7 */
  8
  9#include <linux/signal.h>
 10#include <linux/sched.h>
 11#include <linux/kernel.h>
 12#include <linux/errno.h>
 13#include <linux/string.h>
 14#include <linux/types.h>
 15#include <linux/ptrace.h>
 16#include <linux/mman.h>
 17#include <linux/mm.h>
 18#include <linux/swap.h>
 19#include <linux/smp.h>
 20#include <linux/init.h>
 21#include <linux/initrd.h>
 22#include <linux/pagemap.h>
 23#include <linux/bootmem.h>
 24#include <linux/memblock.h>
 25#include <linux/proc_fs.h>
 26#include <linux/pci.h>
 27#include <linux/pfn.h>
 28#include <linux/poison.h>
 29#include <linux/dma-mapping.h>
 30#include <linux/module.h>
 31#include <linux/memory.h>
 32#include <linux/memory_hotplug.h>
 
 33#include <linux/nmi.h>
 34#include <linux/gfp.h>
 
 
 35
 36#include <asm/processor.h>
 37#include <asm/bios_ebda.h>
 38#include <asm/system.h>
 39#include <asm/uaccess.h>
 40#include <asm/pgtable.h>
 41#include <asm/pgalloc.h>
 42#include <asm/dma.h>
 43#include <asm/fixmap.h>
 44#include <asm/e820.h>
 45#include <asm/apic.h>
 46#include <asm/tlb.h>
 47#include <asm/mmu_context.h>
 48#include <asm/proto.h>
 49#include <asm/smp.h>
 50#include <asm/sections.h>
 51#include <asm/kdebug.h>
 52#include <asm/numa.h>
 53#include <asm/cacheflush.h>
 54#include <asm/init.h>
 55#include <asm/uv/uv.h>
 56#include <asm/setup.h>
 
 57
 58static int __init parse_direct_gbpages_off(char *arg)
 59{
 60	direct_gbpages = 0;
 61	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62}
 63early_param("nogbpages", parse_direct_gbpages_off);
 64
 65static int __init parse_direct_gbpages_on(char *arg)
 
 
 
 
 
 66{
 67	direct_gbpages = 1;
 68	return 0;
 
 69}
 70early_param("gbpages", parse_direct_gbpages_on);
 71
 72/*
 73 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
 74 * physical space so we can cache the place of the first one and move
 75 * around without checking the pgd every time.
 76 */
 77
 78pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
 
 
 
 79EXPORT_SYMBOL_GPL(__supported_pte_mask);
 
 
 80
 81int force_personality32;
 82
 83/*
 84 * noexec32=on|off
 85 * Control non executable heap for 32bit processes.
 86 * To control the stack too use noexec=off
 87 *
 88 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
 89 * off	PROT_READ implies PROT_EXEC
 90 */
 91static int __init nonx32_setup(char *str)
 92{
 93	if (!strcmp(str, "on"))
 94		force_personality32 &= ~READ_IMPLIES_EXEC;
 95	else if (!strcmp(str, "off"))
 96		force_personality32 |= READ_IMPLIES_EXEC;
 97	return 1;
 98}
 99__setup("noexec32=", nonx32_setup);
100
101/*
102 * When memory was added/removed make sure all the processes MM have
103 * suitable PGD entries in the local PGD level page.
104 */
105void sync_global_pgds(unsigned long start, unsigned long end)
106{
107	unsigned long address;
108
109	for (address = start; address <= end; address += PGDIR_SIZE) {
110		const pgd_t *pgd_ref = pgd_offset_k(address);
111		struct page *page;
112
 
 
 
 
113		if (pgd_none(*pgd_ref))
114			continue;
115
116		spin_lock(&pgd_lock);
117		list_for_each_entry(page, &pgd_list, lru) {
118			pgd_t *pgd;
119			spinlock_t *pgt_lock;
120
121			pgd = (pgd_t *)page_address(page) + pgd_index(address);
122			/* the pgt_lock only for Xen */
123			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
124			spin_lock(pgt_lock);
125
 
 
 
126			if (pgd_none(*pgd))
127				set_pgd(pgd, *pgd_ref);
128			else
129				BUG_ON(pgd_page_vaddr(*pgd)
130				       != pgd_page_vaddr(*pgd_ref));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
132			spin_unlock(pgt_lock);
133		}
134		spin_unlock(&pgd_lock);
135	}
136}
137
138/*
 
 
 
 
 
 
 
 
 
 
 
 
139 * NOTE: This function is marked __ref because it calls __init function
140 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
141 */
142static __ref void *spp_getpage(void)
143{
144	void *ptr;
145
146	if (after_bootmem)
147		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
148	else
149		ptr = alloc_bootmem_pages(PAGE_SIZE);
150
151	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
152		panic("set_pte_phys: cannot allocate page data %s\n",
153			after_bootmem ? "after bootmem" : "");
154	}
155
156	pr_debug("spp_getpage %p\n", ptr);
157
158	return ptr;
159}
160
161static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
162{
163	if (pgd_none(*pgd)) {
 
 
 
 
 
 
 
 
 
 
 
 
164		pud_t *pud = (pud_t *)spp_getpage();
165		pgd_populate(&init_mm, pgd, pud);
166		if (pud != pud_offset(pgd, 0))
167			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
168			       pud, pud_offset(pgd, 0));
169	}
170	return pud_offset(pgd, vaddr);
171}
172
173static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
174{
175	if (pud_none(*pud)) {
176		pmd_t *pmd = (pmd_t *) spp_getpage();
177		pud_populate(&init_mm, pud, pmd);
178		if (pmd != pmd_offset(pud, 0))
179			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
180			       pmd, pmd_offset(pud, 0));
181	}
182	return pmd_offset(pud, vaddr);
183}
184
185static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
186{
187	if (pmd_none(*pmd)) {
188		pte_t *pte = (pte_t *) spp_getpage();
189		pmd_populate_kernel(&init_mm, pmd, pte);
190		if (pte != pte_offset_kernel(pmd, 0))
191			printk(KERN_ERR "PAGETABLE BUG #02!\n");
192	}
193	return pte_offset_kernel(pmd, vaddr);
194}
195
196void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
197{
198	pud_t *pud;
199	pmd_t *pmd;
200	pte_t *pte;
201
202	pud = pud_page + pud_index(vaddr);
203	pmd = fill_pmd(pud, vaddr);
204	pte = fill_pte(pmd, vaddr);
205
206	set_pte(pte, new_pte);
207
208	/*
209	 * It's enough to flush this one mapping.
210	 * (PGE mappings get flushed as well)
211	 */
212	__flush_tlb_one(vaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213}
214
215void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
216{
217	pgd_t *pgd;
218	pud_t *pud_page;
219
220	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
221
222	pgd = pgd_offset_k(vaddr);
223	if (pgd_none(*pgd)) {
224		printk(KERN_ERR
225			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
226		return;
227	}
228	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
229	set_pte_vaddr_pud(pud_page, vaddr, pteval);
 
230}
231
232pmd_t * __init populate_extra_pmd(unsigned long vaddr)
233{
234	pgd_t *pgd;
 
235	pud_t *pud;
236
237	pgd = pgd_offset_k(vaddr);
238	pud = fill_pud(pgd, vaddr);
 
239	return fill_pmd(pud, vaddr);
240}
241
242pte_t * __init populate_extra_pte(unsigned long vaddr)
243{
244	pmd_t *pmd;
245
246	pmd = populate_extra_pmd(vaddr);
247	return fill_pte(pmd, vaddr);
248}
249
250/*
251 * Create large page table mappings for a range of physical addresses.
252 */
253static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
254						pgprot_t prot)
255{
256	pgd_t *pgd;
 
257	pud_t *pud;
258	pmd_t *pmd;
 
259
 
 
260	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
261	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
262		pgd = pgd_offset_k((unsigned long)__va(phys));
263		if (pgd_none(*pgd)) {
 
 
 
 
 
 
264			pud = (pud_t *) spp_getpage();
265			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
266						_PAGE_USER));
267		}
268		pud = pud_offset(pgd, (unsigned long)__va(phys));
269		if (pud_none(*pud)) {
270			pmd = (pmd_t *) spp_getpage();
271			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
272						_PAGE_USER));
273		}
274		pmd = pmd_offset(pud, phys);
275		BUG_ON(!pmd_none(*pmd));
276		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
277	}
278}
279
280void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
281{
282	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
283}
284
285void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
286{
287	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
288}
289
290/*
291 * The head.S code sets up the kernel high mapping:
292 *
293 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
294 *
295 * phys_addr holds the negative offset to the kernel, which is added
296 * to the compile time generated pmds. This results in invalid pmds up
297 * to the point where we hit the physaddr 0 mapping.
298 *
299 * We limit the mappings to the region from _text to _brk_end.  _brk_end
300 * is rounded up to the 2MB boundary. This catches the invalid pmds as
301 * well, as they are located before _text:
302 */
303void __init cleanup_highmap(void)
304{
305	unsigned long vaddr = __START_KERNEL_map;
306	unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
307	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
308	pmd_t *pmd = level2_kernel_pgt;
309
 
 
 
 
 
 
 
 
310	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
311		if (pmd_none(*pmd))
312			continue;
313		if (vaddr < (unsigned long) _text || vaddr > end)
314			set_pmd(pmd, __pmd(0));
315	}
316}
317
318static __ref void *alloc_low_page(unsigned long *phys)
319{
320	unsigned long pfn = pgt_buf_end++;
321	void *adr;
322
323	if (after_bootmem) {
324		adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
325		*phys = __pa(adr);
326
327		return adr;
328	}
329
330	if (pfn >= pgt_buf_top)
331		panic("alloc_low_page: ran out of memory");
332
333	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
334	clear_page(adr);
335	*phys  = pfn * PAGE_SIZE;
336	return adr;
337}
338
339static __ref void *map_low_page(void *virt)
340{
341	void *adr;
342	unsigned long phys, left;
343
344	if (after_bootmem)
345		return virt;
346
347	phys = __pa(virt);
348	left = phys & (PAGE_SIZE - 1);
349	adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
350	adr = (void *)(((unsigned long)adr) | left);
351
352	return adr;
353}
354
355static __ref void unmap_low_page(void *adr)
356{
357	if (after_bootmem)
358		return;
359
360	early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
361}
362
363static unsigned long __meminit
364phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
365	      pgprot_t prot)
366{
367	unsigned pages = 0;
368	unsigned long last_map_addr = end;
 
369	int i;
370
371	pte_t *pte = pte_page + pte_index(addr);
 
372
373	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
374
375		if (addr >= end) {
376			if (!after_bootmem) {
377				for(; i < PTRS_PER_PTE; i++, pte++)
378					set_pte(pte, __pte(0));
379			}
380			break;
 
 
381		}
382
383		/*
384		 * We will re-use the existing mapping.
385		 * Xen for example has some special requirements, like mapping
386		 * pagetable pages as RO. So assume someone who pre-setup
387		 * these mappings are more intelligent.
388		 */
389		if (pte_val(*pte)) {
390			pages++;
 
391			continue;
392		}
393
394		if (0)
395			printk("   pte=%p addr=%lx pte=%016lx\n",
396			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
397		pages++;
398		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
399		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
400	}
401
402	update_page_count(PG_LEVEL_4K, pages);
403
404	return last_map_addr;
405}
406
 
 
 
 
 
407static unsigned long __meminit
408phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
409	      unsigned long page_size_mask, pgprot_t prot)
410{
411	unsigned long pages = 0;
412	unsigned long last_map_addr = end;
413
414	int i = pmd_index(address);
415
416	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
417		unsigned long pte_phys;
418		pmd_t *pmd = pmd_page + pmd_index(address);
419		pte_t *pte;
420		pgprot_t new_prot = prot;
421
422		if (address >= end) {
423			if (!after_bootmem) {
424				for (; i < PTRS_PER_PMD; i++, pmd++)
425					set_pmd(pmd, __pmd(0));
426			}
427			break;
 
 
 
428		}
429
430		if (pmd_val(*pmd)) {
431			if (!pmd_large(*pmd)) {
432				spin_lock(&init_mm.page_table_lock);
433				pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
434				last_map_addr = phys_pte_init(pte, address,
435								end, prot);
436				unmap_low_page(pte);
437				spin_unlock(&init_mm.page_table_lock);
438				continue;
439			}
440			/*
441			 * If we are ok with PG_LEVEL_2M mapping, then we will
442			 * use the existing mapping,
443			 *
444			 * Otherwise, we will split the large page mapping but
445			 * use the same existing protection bits except for
446			 * large page, so that we don't violate Intel's TLB
447			 * Application note (317080) which says, while changing
448			 * the page sizes, new and old translations should
449			 * not differ with respect to page frame and
450			 * attributes.
451			 */
452			if (page_size_mask & (1 << PG_LEVEL_2M)) {
453				pages++;
 
 
454				continue;
455			}
456			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
457		}
458
459		if (page_size_mask & (1<<PG_LEVEL_2M)) {
460			pages++;
461			spin_lock(&init_mm.page_table_lock);
462			set_pte((pte_t *)pmd,
463				pfn_pte(address >> PAGE_SHIFT,
464					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
465			spin_unlock(&init_mm.page_table_lock);
466			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
467			continue;
468		}
469
470		pte = alloc_low_page(&pte_phys);
471		last_map_addr = phys_pte_init(pte, address, end, new_prot);
472		unmap_low_page(pte);
473
474		spin_lock(&init_mm.page_table_lock);
475		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
476		spin_unlock(&init_mm.page_table_lock);
477	}
478	update_page_count(PG_LEVEL_2M, pages);
479	return last_map_addr;
480}
481
 
 
 
 
 
 
482static unsigned long __meminit
483phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
484			 unsigned long page_size_mask)
485{
486	unsigned long pages = 0;
487	unsigned long last_map_addr = end;
488	int i = pud_index(addr);
489
490	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
491		unsigned long pmd_phys;
492		pud_t *pud = pud_page + pud_index(addr);
493		pmd_t *pmd;
494		pgprot_t prot = PAGE_KERNEL;
495
496		if (addr >= end)
497			break;
498
499		if (!after_bootmem &&
500				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
501			set_pud(pud, __pud(0));
 
 
 
 
 
 
 
 
502			continue;
503		}
504
505		if (pud_val(*pud)) {
506			if (!pud_large(*pud)) {
507				pmd = map_low_page(pmd_offset(pud, 0));
508				last_map_addr = phys_pmd_init(pmd, addr, end,
509							 page_size_mask, prot);
510				unmap_low_page(pmd);
511				__flush_tlb_all();
512				continue;
513			}
514			/*
515			 * If we are ok with PG_LEVEL_1G mapping, then we will
516			 * use the existing mapping.
517			 *
518			 * Otherwise, we will split the gbpage mapping but use
519			 * the same existing protection  bits except for large
520			 * page, so that we don't violate Intel's TLB
521			 * Application note (317080) which says, while changing
522			 * the page sizes, new and old translations should
523			 * not differ with respect to page frame and
524			 * attributes.
525			 */
526			if (page_size_mask & (1 << PG_LEVEL_1G)) {
527				pages++;
 
 
528				continue;
529			}
530			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
531		}
532
533		if (page_size_mask & (1<<PG_LEVEL_1G)) {
534			pages++;
535			spin_lock(&init_mm.page_table_lock);
536			set_pte((pte_t *)pud,
537				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
 
538			spin_unlock(&init_mm.page_table_lock);
539			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
540			continue;
541		}
542
543		pmd = alloc_low_page(&pmd_phys);
544		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
545					      prot);
546		unmap_low_page(pmd);
547
548		spin_lock(&init_mm.page_table_lock);
549		pud_populate(&init_mm, pud, __va(pmd_phys));
550		spin_unlock(&init_mm.page_table_lock);
551	}
552	__flush_tlb_all();
553
554	update_page_count(PG_LEVEL_1G, pages);
555
556	return last_map_addr;
557}
558
559unsigned long __meminit
560kernel_physical_mapping_init(unsigned long start,
561			     unsigned long end,
562			     unsigned long page_size_mask)
563{
564	bool pgd_changed = false;
565	unsigned long next, last_map_addr = end;
566	unsigned long addr;
 
 
567
568	start = (unsigned long)__va(start);
569	end = (unsigned long)__va(end);
570	addr = start;
571
572	for (; start < end; start = next) {
573		pgd_t *pgd = pgd_offset_k(start);
574		unsigned long pud_phys;
575		pud_t *pud;
576
577		next = (start + PGDIR_SIZE) & PGDIR_MASK;
578		if (next > end)
579			next = end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580
581		if (pgd_val(*pgd)) {
582			pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
583			last_map_addr = phys_pud_init(pud, __pa(start),
584						 __pa(end), page_size_mask);
585			unmap_low_page(pud);
 
586			continue;
587		}
588
589		pud = alloc_low_page(&pud_phys);
590		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
591						 page_size_mask);
592		unmap_low_page(pud);
593
594		spin_lock(&init_mm.page_table_lock);
595		pgd_populate(&init_mm, pgd, __va(pud_phys));
 
 
 
 
 
596		spin_unlock(&init_mm.page_table_lock);
597		pgd_changed = true;
598	}
599
600	if (pgd_changed)
601		sync_global_pgds(addr, end);
 
 
 
602
603	__flush_tlb_all();
604
605	return last_map_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
606}
607
608#ifndef CONFIG_NUMA
609void __init initmem_init(void)
610{
611	memblock_x86_register_active_regions(0, 0, max_pfn);
612}
613#endif
614
615void __init paging_init(void)
616{
617	unsigned long max_zone_pfns[MAX_NR_ZONES];
618
619	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
620#ifdef CONFIG_ZONE_DMA
621	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
622#endif
623	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
624	max_zone_pfns[ZONE_NORMAL] = max_pfn;
625
626	sparse_memory_present_with_active_regions(MAX_NUMNODES);
627	sparse_init();
628
629	/*
630	 * clear the default setting with node 0
631	 * note: don't use nodes_clear here, that is really clearing when
632	 *	 numa support is not compiled in, and later node_set_state
633	 *	 will not set it back.
634	 */
 
635	node_clear_state(0, N_NORMAL_MEMORY);
636
637	free_area_init_nodes(max_zone_pfns);
638}
639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640/*
641 * Memory hotplug specific functions
642 */
643#ifdef CONFIG_MEMORY_HOTPLUG
644/*
645 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
646 * updating.
647 */
648static void  update_end_of_memory_vars(u64 start, u64 size)
649{
650	unsigned long end_pfn = PFN_UP(start + size);
651
652	if (end_pfn > max_pfn) {
653		max_pfn = end_pfn;
654		max_low_pfn = end_pfn;
655		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
656	}
657}
658
659/*
660 * Memory is added always to NORMAL zone. This means you will never get
661 * additional DMA/DMA32 memory.
662 */
663int arch_add_memory(int nid, u64 start, u64 size)
664{
665	struct pglist_data *pgdat = NODE_DATA(nid);
666	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
667	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
668	unsigned long nr_pages = size >> PAGE_SHIFT;
669	int ret;
670
671	last_mapped_pfn = init_memory_mapping(start, start + size);
672	if (last_mapped_pfn > max_pfn_mapped)
673		max_pfn_mapped = last_mapped_pfn;
674
675	ret = __add_pages(nid, zone, start_pfn, nr_pages);
676	WARN_ON_ONCE(ret);
677
678	/* update max_pfn, max_low_pfn and high_memory */
679	update_end_of_memory_vars(start, size);
 
680
681	return ret;
682}
683EXPORT_SYMBOL_GPL(arch_add_memory);
684
685#endif /* CONFIG_MEMORY_HOTPLUG */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686
687static struct kcore_list kcore_vsyscall;
 
 
 
 
688
689void __init mem_init(void)
 
 
690{
691	long codesize, reservedpages, datasize, initsize;
692	unsigned long absent_pages;
 
693
694	pci_iommu_alloc();
 
 
695
696	/* clear_bss() already clear the empty_zero_page */
 
697
698	reservedpages = 0;
 
 
 
 
 
699
700	/* this will put all low memory onto the freelists */
701#ifdef CONFIG_NUMA
702	totalram_pages = numa_free_all_bootmem();
703#else
704	totalram_pages = free_all_bootmem();
 
 
 
 
 
 
 
 
705#endif
 
 
 
 
 
 
 
706
707	absent_pages = absent_pages_in_range(0, max_pfn);
708	reservedpages = max_pfn - totalram_pages - absent_pages;
709	after_bootmem = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710
711	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
712	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
713	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
 
714
715	/* Register memory areas for /proc/kcore */
716	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
717			 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
718
719	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
720			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
721		nr_free_pages() << (PAGE_SHIFT-10),
722		max_pfn << (PAGE_SHIFT-10),
723		codesize >> 10,
724		absent_pages << (PAGE_SHIFT-10),
725		reservedpages << (PAGE_SHIFT-10),
726		datasize >> 10,
727		initsize >> 10);
728}
729
730#ifdef CONFIG_DEBUG_RODATA
731const int rodata_test_data = 0xC3;
732EXPORT_SYMBOL_GPL(rodata_test_data);
733
734int kernel_set_to_readonly;
 
 
 
735
736void set_kernel_text_rw(void)
 
 
 
 
 
737{
738	unsigned long start = PFN_ALIGN(_text);
739	unsigned long end = PFN_ALIGN(__stop___ex_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
740
741	if (!kernel_set_to_readonly)
742		return;
743
744	pr_debug("Set kernel text: %lx - %lx for read write\n",
745		 start, end);
746
747	/*
748	 * Make the kernel identity mapping for text RW. Kernel text
749	 * mapping will always be RO. Refer to the comment in
750	 * static_protections() in pageattr.c
751	 */
752	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
753}
754
755void set_kernel_text_ro(void)
756{
757	unsigned long start = PFN_ALIGN(_text);
758	unsigned long end = PFN_ALIGN(__stop___ex_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
759
760	if (!kernel_set_to_readonly)
761		return;
 
762
763	pr_debug("Set kernel text: %lx - %lx for read only\n",
764		 start, end);
765
 
 
 
766	/*
767	 * Set the kernel identity mapping for text RO.
 
 
768	 */
769	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
770}
 
 
 
771
772void mark_rodata_ro(void)
773{
774	unsigned long start = PFN_ALIGN(_text);
775	unsigned long rodata_start =
776		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
777	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
778	unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
779	unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
780	unsigned long data_start = (unsigned long) &_sdata;
781
782	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
783	       (end - start) >> 10);
784	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
785
786	kernel_set_to_readonly = 1;
787
788	/*
789	 * The rodata section (but not the kernel text!) should also be
790	 * not-executable.
 
 
 
 
 
 
 
 
791	 */
792	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
 
793
794	rodata_test();
795
796#ifdef CONFIG_CPA_DEBUG
797	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
798	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
799
800	printk(KERN_INFO "Testing CPA: again\n");
801	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
802#endif
803
804	free_init_pages("unused kernel memory",
805			(unsigned long) page_address(virt_to_page(text_end)),
806			(unsigned long)
807				 page_address(virt_to_page(rodata_start)));
808	free_init_pages("unused kernel memory",
809			(unsigned long) page_address(virt_to_page(rodata_end)),
810			(unsigned long) page_address(virt_to_page(data_start)));
811}
812
813#endif
 
 
 
 
 
 
 
 
814
815int kern_addr_valid(unsigned long addr)
 
 
816{
817	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
818	pgd_t *pgd;
819	pud_t *pud;
820	pmd_t *pmd;
821	pte_t *pte;
822
823	if (above != 0 && above != -1UL)
824		return 0;
825
826	pgd = pgd_offset_k(addr);
827	if (pgd_none(*pgd))
828		return 0;
829
830	pud = pud_offset(pgd, addr);
831	if (pud_none(*pud))
832		return 0;
 
833
834	pmd = pmd_offset(pud, addr);
835	if (pmd_none(*pmd))
836		return 0;
 
 
 
 
 
 
 
837
838	if (pmd_large(*pmd))
839		return pfn_valid(pmd_pfn(*pmd));
 
 
 
 
 
 
840
841	pte = pte_offset_kernel(pmd, addr);
842	if (pte_none(*pte))
843		return 0;
 
 
 
 
844
845	return pfn_valid(pte_pfn(*pte));
846}
847
 
 
 
 
 
 
 
 
 
 
848/*
849 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
850 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
851 * not need special handling anymore:
852 */
853static struct vm_area_struct gate_vma = {
854	.vm_start	= VSYSCALL_START,
855	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
856	.vm_page_prot	= PAGE_READONLY_EXEC,
857	.vm_flags	= VM_READ | VM_EXEC
858};
859
860struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
 
861{
862#ifdef CONFIG_IA32_EMULATION
863	if (!mm || mm->context.ia32_compat)
864		return NULL;
865#endif
866	return &gate_vma;
867}
868
869int in_gate_area(struct mm_struct *mm, unsigned long addr)
870{
871	struct vm_area_struct *vma = get_gate_vma(mm);
 
 
 
 
 
 
 
 
 
 
872
873	if (!vma)
874		return 0;
875
876	return (addr >= vma->vm_start) && (addr < vma->vm_end);
 
 
877}
878
879/*
880 * Use this when you have no reliable mm, typically from interrupt
881 * context. It is less reliable than using a task's mm and may give
882 * false positives.
883 */
884int in_gate_area_no_mm(unsigned long addr)
885{
886	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
887}
 
 
 
 
888
889const char *arch_vma_name(struct vm_area_struct *vma)
890{
891	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
892		return "[vdso]";
893	if (vma == &gate_vma)
894		return "[vsyscall]";
895	return NULL;
896}
897
898#ifdef CONFIG_X86_UV
899unsigned long memory_block_size_bytes(void)
900{
901	if (is_uv_system()) {
902		printk(KERN_INFO "UV: memory block size 2GB\n");
903		return 2UL * 1024 * 1024 * 1024;
904	}
905	return MIN_MEMORY_BLOCK_SIZE;
906}
907#endif
908
909#ifdef CONFIG_SPARSEMEM_VMEMMAP
910/*
911 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
912 */
913static long __meminitdata addr_start, addr_end;
914static void __meminitdata *p_start, *p_end;
915static int __meminitdata node_start;
916
917int __meminit
918vmemmap_populate(struct page *start_page, unsigned long size, int node)
 
 
 
 
 
 
 
 
 
 
 
919{
920	unsigned long addr = (unsigned long)start_page;
921	unsigned long end = (unsigned long)(start_page + size);
922	unsigned long next;
923	pgd_t *pgd;
 
924	pud_t *pud;
925	pmd_t *pmd;
 
 
926
927	for (; addr < end; addr = next) {
928		void *p = NULL;
929
930		pgd = vmemmap_pgd_populate(addr, node);
931		if (!pgd)
932			return -ENOMEM;
 
 
 
933
934		pud = vmemmap_pud_populate(pgd, addr, node);
935		if (!pud)
936			return -ENOMEM;
 
 
 
937
938		if (!cpu_has_pse) {
 
939			next = (addr + PAGE_SIZE) & PAGE_MASK;
940			pmd = vmemmap_pmd_populate(pud, addr, node);
 
 
941
942			if (!pmd)
943				return -ENOMEM;
 
 
 
 
 
944
945			p = vmemmap_pte_populate(pmd, addr, node);
946
947			if (!p)
948				return -ENOMEM;
949
950			addr_end = addr + PAGE_SIZE;
951			p_end = p + PAGE_SIZE;
952		} else {
953			next = pmd_addr_end(addr, end);
954
955			pmd = pmd_offset(pud, addr);
956			if (pmd_none(*pmd)) {
957				pte_t entry;
958
959				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
960				if (!p)
961					return -ENOMEM;
962
963				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
964						PAGE_KERNEL_LARGE);
965				set_pmd(pmd, __pmd(pte_val(entry)));
966
967				/* check to see if we have contiguous blocks */
968				if (p_end != p || node_start != node) {
969					if (p_start)
970						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
971						       addr_start, addr_end-1, p_start, p_end-1, node_start);
972					addr_start = addr;
973					node_start = node;
974					p_start = p;
975				}
976
977				addr_end = addr + PMD_SIZE;
978				p_end = p + PMD_SIZE;
979			} else
980				vmemmap_verify((pte_t *)pmd, node, addr, next);
981		}
982
983	}
984	sync_global_pgds((unsigned long)start_page, end);
985	return 0;
986}
 
987
988void __meminit vmemmap_populate_print_last(void)
989{
990	if (p_start) {
991		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
992			addr_start, addr_end-1, p_start, p_end-1, node_start);
993		p_start = NULL;
994		p_end = NULL;
995		node_start = 0;
996	}
997}
998#endif