Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * ioport.c:  Simple io mapping allocator.
  4 *
  5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  6 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  7 *
  8 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
  9 *
 10 * 2000/01/29
 11 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 
 12 *	things are ok.
 13 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
 14 *	pointer into the big page mapping
 15 * <rth> zait: so what?
 16 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
 17 * <zaitcev> Hmm
 18 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
 19 *	So far so good.
 20 * <zaitcev> Now, driver calls pci_free_consistent(with result of
 21 *	remap_it_my_way()).
 22 * <zaitcev> How do you find the address to pass to free_pages()?
 23 * <rth> zait: walk the page tables?  It's only two or three level after all.
 24 * <rth> zait: you have to walk them anyway to remove the mapping.
 25 * <zaitcev> Hmm
 26 * <zaitcev> Sounds reasonable
 27 */
 28
 29#include <linux/module.h>
 30#include <linux/sched.h>
 31#include <linux/kernel.h>
 32#include <linux/errno.h>
 33#include <linux/types.h>
 34#include <linux/ioport.h>
 35#include <linux/mm.h>
 36#include <linux/slab.h>
 37#include <linux/pci.h>		/* struct pci_dev */
 38#include <linux/proc_fs.h>
 39#include <linux/seq_file.h>
 40#include <linux/scatterlist.h>
 41#include <linux/dma-map-ops.h>
 42#include <linux/of_device.h>
 43
 44#include <asm/io.h>
 45#include <asm/vaddrs.h>
 46#include <asm/oplib.h>
 47#include <asm/prom.h>
 48#include <asm/page.h>
 49#include <asm/pgalloc.h>
 50#include <asm/dma.h>
 51#include <asm/iommu.h>
 52#include <asm/io-unit.h>
 53#include <asm/leon.h>
 54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
 56static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
 57    unsigned long size, char *name);
 58static void _sparc_free_io(struct resource *res);
 59
 60static void register_proc_sparc_ioport(void);
 61
 62/* This points to the next to use virtual memory for DVMA mappings */
 63static struct resource _sparc_dvma = {
 64	.name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
 65};
 66/* This points to the start of I/O mappings, cluable from outside. */
 67/*ext*/ struct resource sparc_iomap = {
 68	.name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
 69};
 70
 71/*
 72 * Our mini-allocator...
 73 * Boy this is gross! We need it because we must map I/O for
 74 * timers and interrupt controller before the kmalloc is available.
 75 */
 76
 77#define XNMLN  15
 78#define XNRES  10	/* SS-10 uses 8 */
 79
 80struct xresource {
 81	struct resource xres;	/* Must be first */
 82	int xflag;		/* 1 == used */
 83	char xname[XNMLN+1];
 84};
 85
 86static struct xresource xresv[XNRES];
 87
 88static struct xresource *xres_alloc(void) {
 89	struct xresource *xrp;
 90	int n;
 91
 92	xrp = xresv;
 93	for (n = 0; n < XNRES; n++) {
 94		if (xrp->xflag == 0) {
 95			xrp->xflag = 1;
 96			return xrp;
 97		}
 98		xrp++;
 99	}
100	return NULL;
101}
102
103static void xres_free(struct xresource *xrp) {
104	xrp->xflag = 0;
105}
106
107/*
108 * These are typically used in PCI drivers
109 * which are trying to be cross-platform.
110 *
111 * Bus type is always zero on IIep.
112 */
113void __iomem *ioremap(phys_addr_t offset, size_t size)
114{
115	char name[14];
116
117	sprintf(name, "phys_%08x", (u32)offset);
118	return _sparc_alloc_io(0, (unsigned long)offset, size, name);
119}
120EXPORT_SYMBOL(ioremap);
121
122/*
123 * Complementary to ioremap().
124 */
125void iounmap(volatile void __iomem *virtual)
126{
127	unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
128	struct resource *res;
129
130	/*
131	 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
132	 * This probably warrants some sort of hashing.
133	*/
134	if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) {
135		printk("free_io/iounmap: cannot free %lx\n", vaddr);
136		return;
137	}
138	_sparc_free_io(res);
139
140	if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
141		xres_free((struct xresource *)res);
142	} else {
143		kfree(res);
144	}
145}
146EXPORT_SYMBOL(iounmap);
147
148void __iomem *of_ioremap(struct resource *res, unsigned long offset,
149			 unsigned long size, char *name)
150{
151	return _sparc_alloc_io(res->flags & 0xF,
152			       res->start + offset,
153			       size, name);
154}
155EXPORT_SYMBOL(of_ioremap);
156
157void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
158{
159	iounmap(base);
160}
161EXPORT_SYMBOL(of_iounmap);
162
163/*
164 * Meat of mapping
165 */
166static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
167    unsigned long size, char *name)
168{
169	static int printed_full;
170	struct xresource *xres;
171	struct resource *res;
172	char *tack;
173	int tlen;
174	void __iomem *va;	/* P3 diag */
175
176	if (name == NULL) name = "???";
177
178	if ((xres = xres_alloc()) != NULL) {
179		tack = xres->xname;
180		res = &xres->xres;
181	} else {
182		if (!printed_full) {
183			printk("ioremap: done with statics, switching to malloc\n");
184			printed_full = 1;
185		}
186		tlen = strlen(name);
187		tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
188		if (tack == NULL) return NULL;
189		memset(tack, 0, sizeof(struct resource));
190		res = (struct resource *) tack;
191		tack += sizeof (struct resource);
192	}
193
194	strlcpy(tack, name, XNMLN+1);
195	res->name = tack;
196
197	va = _sparc_ioremap(res, busno, phys, size);
198	/* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
199	return va;
200}
201
202/*
203 */
204static void __iomem *
205_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
206{
207	unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
208
209	if (allocate_resource(&sparc_iomap, res,
210	    (offset + sz + PAGE_SIZE-1) & PAGE_MASK,
211	    sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
212		/* Usually we cannot see printks in this case. */
213		prom_printf("alloc_io_res(%s): cannot occupy\n",
214		    (res->name != NULL)? res->name: "???");
215		prom_halt();
216	}
217
218	pa &= PAGE_MASK;
219	srmmu_mapiorange(bus, pa, res->start, resource_size(res));
220
221	return (void __iomem *)(unsigned long)(res->start + offset);
222}
223
224/*
225 * Complementary to _sparc_ioremap().
226 */
227static void _sparc_free_io(struct resource *res)
228{
229	unsigned long plen;
230
231	plen = resource_size(res);
232	BUG_ON((plen & (PAGE_SIZE-1)) != 0);
233	srmmu_unmapiorange(res->start, plen);
234	release_resource(res);
235}
236
237unsigned long sparc_dma_alloc_resource(struct device *dev, size_t len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238{
 
 
 
239	struct resource *res;
 
240
241	res = kzalloc(sizeof(*res), GFP_KERNEL);
242	if (!res)
243		return 0;
244	res->name = dev->of_node->full_name;
 
 
 
 
245
246	if (allocate_resource(&_sparc_dvma, res, len, _sparc_dvma.start,
247			      _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
248		printk("%s: cannot occupy 0x%zx", __func__, len);
249		kfree(res);
250		return 0;
 
 
 
 
 
 
251	}
252
253	return res->start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254}
255
256bool sparc_dma_free_resource(void *cpu_addr, size_t size)
 
257{
258	unsigned long addr = (unsigned long)cpu_addr;
259	struct resource *res;
 
260
261	res = lookup_resource(&_sparc_dvma, addr);
262	if (!res) {
263		printk("%s: cannot free %p\n", __func__, cpu_addr);
264		return false;
265	}
266
267	if ((addr & (PAGE_SIZE - 1)) != 0) {
268		printk("%s: unaligned va %p\n", __func__, cpu_addr);
269		return false;
270	}
271
272	size = PAGE_ALIGN(size);
273	if (resource_size(res) != size) {
274		printk("%s: region 0x%lx asked 0x%zx\n",
275			__func__, (long)resource_size(res), size);
276		return false;
277	}
278
279	release_resource(res);
280	kfree(res);
281	return true;
 
 
 
 
282}
283
284#ifdef CONFIG_SBUS
 
 
 
 
 
 
 
 
 
 
285
286void sbus_set_sbus64(struct device *dev, int x)
 
 
 
 
 
 
 
 
 
 
 
 
287{
288	printk("sbus_set_sbus64: unsupported\n");
289}
290EXPORT_SYMBOL(sbus_set_sbus64);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291
292static int __init sparc_register_ioport(void)
293{
294	register_proc_sparc_ioport();
295
296	return 0;
297}
298
299arch_initcall(sparc_register_ioport);
300
301#endif /* CONFIG_SBUS */
302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303/*
304 * IIep is write-through, not flushing on cpu to device transfer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305 *
306 * On LEON systems without cache snooping, the entire D-CACHE must be flushed to
307 * make DMA to cacheable memory coherent.
308 */
309void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
310		enum dma_data_direction dir)
 
311{
312	if (dir != DMA_TO_DEVICE &&
313	    sparc_cpu_model == sparc_leon &&
314	    !sparc_leon3_snooping_enabled())
315		leon_flush_dcache_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316}
317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318#ifdef CONFIG_PROC_FS
319
320static int sparc_io_proc_show(struct seq_file *m, void *v)
321{
322	struct resource *root = m->private, *r;
323	const char *nm;
324
325	for (r = root->child; r != NULL; r = r->sibling) {
326		if ((nm = r->name) == NULL) nm = "???";
327		seq_printf(m, "%016llx-%016llx: %s\n",
328				(unsigned long long)r->start,
329				(unsigned long long)r->end, nm);
330	}
331
332	return 0;
333}
 
 
 
 
 
 
 
 
 
 
 
 
 
334#endif /* CONFIG_PROC_FS */
335
336static void register_proc_sparc_ioport(void)
337{
338#ifdef CONFIG_PROC_FS
339	proc_create_single_data("io_map", 0, NULL, sparc_io_proc_show,
340			&sparc_iomap);
341	proc_create_single_data("dvma_map", 0, NULL, sparc_io_proc_show,
342			&_sparc_dvma);
343#endif
344}
v3.1
 
  1/*
  2 * ioport.c:  Simple io mapping allocator.
  3 *
  4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  5 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  6 *
  7 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
  8 *
  9 * 2000/01/29
 10 * <rth> zait: as long as pci_alloc_consistent produces something addressable, 
 11 *	things are ok.
 12 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
 13 *	pointer into the big page mapping
 14 * <rth> zait: so what?
 15 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
 16 * <zaitcev> Hmm
 17 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
 18 *	So far so good.
 19 * <zaitcev> Now, driver calls pci_free_consistent(with result of
 20 *	remap_it_my_way()).
 21 * <zaitcev> How do you find the address to pass to free_pages()?
 22 * <rth> zait: walk the page tables?  It's only two or three level after all.
 23 * <rth> zait: you have to walk them anyway to remove the mapping.
 24 * <zaitcev> Hmm
 25 * <zaitcev> Sounds reasonable
 26 */
 27
 28#include <linux/module.h>
 29#include <linux/sched.h>
 30#include <linux/kernel.h>
 31#include <linux/errno.h>
 32#include <linux/types.h>
 33#include <linux/ioport.h>
 34#include <linux/mm.h>
 35#include <linux/slab.h>
 36#include <linux/pci.h>		/* struct pci_dev */
 37#include <linux/proc_fs.h>
 38#include <linux/seq_file.h>
 39#include <linux/scatterlist.h>
 
 40#include <linux/of_device.h>
 41
 42#include <asm/io.h>
 43#include <asm/vaddrs.h>
 44#include <asm/oplib.h>
 45#include <asm/prom.h>
 46#include <asm/page.h>
 47#include <asm/pgalloc.h>
 48#include <asm/dma.h>
 49#include <asm/iommu.h>
 50#include <asm/io-unit.h>
 51#include <asm/leon.h>
 52
 53/* This function must make sure that caches and memory are coherent after DMA
 54 * On LEON systems without cache snooping it flushes the entire D-CACHE.
 55 */
 56#ifndef CONFIG_SPARC_LEON
 57static inline void dma_make_coherent(unsigned long pa, unsigned long len)
 58{
 59}
 60#else
 61static inline void dma_make_coherent(unsigned long pa, unsigned long len)
 62{
 63	if (!sparc_leon3_snooping_enabled())
 64		leon_flush_dcache_all();
 65}
 66#endif
 67
 68static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
 69static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
 70    unsigned long size, char *name);
 71static void _sparc_free_io(struct resource *res);
 72
 73static void register_proc_sparc_ioport(void);
 74
 75/* This points to the next to use virtual memory for DVMA mappings */
 76static struct resource _sparc_dvma = {
 77	.name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
 78};
 79/* This points to the start of I/O mappings, cluable from outside. */
 80/*ext*/ struct resource sparc_iomap = {
 81	.name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
 82};
 83
 84/*
 85 * Our mini-allocator...
 86 * Boy this is gross! We need it because we must map I/O for
 87 * timers and interrupt controller before the kmalloc is available.
 88 */
 89
 90#define XNMLN  15
 91#define XNRES  10	/* SS-10 uses 8 */
 92
 93struct xresource {
 94	struct resource xres;	/* Must be first */
 95	int xflag;		/* 1 == used */
 96	char xname[XNMLN+1];
 97};
 98
 99static struct xresource xresv[XNRES];
100
101static struct xresource *xres_alloc(void) {
102	struct xresource *xrp;
103	int n;
104
105	xrp = xresv;
106	for (n = 0; n < XNRES; n++) {
107		if (xrp->xflag == 0) {
108			xrp->xflag = 1;
109			return xrp;
110		}
111		xrp++;
112	}
113	return NULL;
114}
115
116static void xres_free(struct xresource *xrp) {
117	xrp->xflag = 0;
118}
119
120/*
121 * These are typically used in PCI drivers
122 * which are trying to be cross-platform.
123 *
124 * Bus type is always zero on IIep.
125 */
126void __iomem *ioremap(unsigned long offset, unsigned long size)
127{
128	char name[14];
129
130	sprintf(name, "phys_%08x", (u32)offset);
131	return _sparc_alloc_io(0, offset, size, name);
132}
133EXPORT_SYMBOL(ioremap);
134
135/*
136 * Comlimentary to ioremap().
137 */
138void iounmap(volatile void __iomem *virtual)
139{
140	unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
141	struct resource *res;
142
143	/*
144	 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
145	 * This probably warrants some sort of hashing.
146	*/
147	if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) {
148		printk("free_io/iounmap: cannot free %lx\n", vaddr);
149		return;
150	}
151	_sparc_free_io(res);
152
153	if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
154		xres_free((struct xresource *)res);
155	} else {
156		kfree(res);
157	}
158}
159EXPORT_SYMBOL(iounmap);
160
161void __iomem *of_ioremap(struct resource *res, unsigned long offset,
162			 unsigned long size, char *name)
163{
164	return _sparc_alloc_io(res->flags & 0xF,
165			       res->start + offset,
166			       size, name);
167}
168EXPORT_SYMBOL(of_ioremap);
169
170void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
171{
172	iounmap(base);
173}
174EXPORT_SYMBOL(of_iounmap);
175
176/*
177 * Meat of mapping
178 */
179static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
180    unsigned long size, char *name)
181{
182	static int printed_full;
183	struct xresource *xres;
184	struct resource *res;
185	char *tack;
186	int tlen;
187	void __iomem *va;	/* P3 diag */
188
189	if (name == NULL) name = "???";
190
191	if ((xres = xres_alloc()) != 0) {
192		tack = xres->xname;
193		res = &xres->xres;
194	} else {
195		if (!printed_full) {
196			printk("ioremap: done with statics, switching to malloc\n");
197			printed_full = 1;
198		}
199		tlen = strlen(name);
200		tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
201		if (tack == NULL) return NULL;
202		memset(tack, 0, sizeof(struct resource));
203		res = (struct resource *) tack;
204		tack += sizeof (struct resource);
205	}
206
207	strlcpy(tack, name, XNMLN+1);
208	res->name = tack;
209
210	va = _sparc_ioremap(res, busno, phys, size);
211	/* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
212	return va;
213}
214
215/*
216 */
217static void __iomem *
218_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
219{
220	unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
221
222	if (allocate_resource(&sparc_iomap, res,
223	    (offset + sz + PAGE_SIZE-1) & PAGE_MASK,
224	    sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
225		/* Usually we cannot see printks in this case. */
226		prom_printf("alloc_io_res(%s): cannot occupy\n",
227		    (res->name != NULL)? res->name: "???");
228		prom_halt();
229	}
230
231	pa &= PAGE_MASK;
232	sparc_mapiorange(bus, pa, res->start, resource_size(res));
233
234	return (void __iomem *)(unsigned long)(res->start + offset);
235}
236
237/*
238 * Comlimentary to _sparc_ioremap().
239 */
240static void _sparc_free_io(struct resource *res)
241{
242	unsigned long plen;
243
244	plen = resource_size(res);
245	BUG_ON((plen & (PAGE_SIZE-1)) != 0);
246	sparc_unmapiorange(res->start, plen);
247	release_resource(res);
248}
249
250#ifdef CONFIG_SBUS
251
252void sbus_set_sbus64(struct device *dev, int x)
253{
254	printk("sbus_set_sbus64: unsupported\n");
255}
256EXPORT_SYMBOL(sbus_set_sbus64);
257
258/*
259 * Allocate a chunk of memory suitable for DMA.
260 * Typically devices use them for control blocks.
261 * CPU may access them without any explicit flushing.
262 */
263static void *sbus_alloc_coherent(struct device *dev, size_t len,
264				 dma_addr_t *dma_addrp, gfp_t gfp)
265{
266	struct platform_device *op = to_platform_device(dev);
267	unsigned long len_total = PAGE_ALIGN(len);
268	unsigned long va;
269	struct resource *res;
270	int order;
271
272	/* XXX why are some lengths signed, others unsigned? */
273	if (len <= 0) {
274		return NULL;
275	}
276	/* XXX So what is maxphys for us and how do drivers know it? */
277	if (len > 256*1024) {			/* __get_free_pages() limit */
278		return NULL;
279	}
280
281	order = get_order(len_total);
282	if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0)
283		goto err_nopages;
284
285	if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
286		goto err_nomem;
287
288	if (allocate_resource(&_sparc_dvma, res, len_total,
289	    _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
290		printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
291		goto err_nova;
292	}
293
294	// XXX The mmu_map_dma_area does this for us below, see comments.
295	// sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
296	/*
297	 * XXX That's where sdev would be used. Currently we load
298	 * all iommu tables with the same translations.
299	 */
300	if (mmu_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
301		goto err_noiommu;
302
303	res->name = op->dev.of_node->name;
304
305	return (void *)(unsigned long)res->start;
306
307err_noiommu:
308	release_resource(res);
309err_nova:
310	kfree(res);
311err_nomem:
312	free_pages(va, order);
313err_nopages:
314	return NULL;
315}
316
317static void sbus_free_coherent(struct device *dev, size_t n, void *p,
318			       dma_addr_t ba)
319{
 
320	struct resource *res;
321	struct page *pgv;
322
323	if ((res = lookup_resource(&_sparc_dvma,
324	    (unsigned long)p)) == NULL) {
325		printk("sbus_free_consistent: cannot free %p\n", p);
326		return;
327	}
328
329	if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
330		printk("sbus_free_consistent: unaligned va %p\n", p);
331		return;
332	}
333
334	n = PAGE_ALIGN(n);
335	if (resource_size(res) != n) {
336		printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
337		    (long)resource_size(res), n);
338		return;
339	}
340
341	release_resource(res);
342	kfree(res);
343
344	pgv = virt_to_page(p);
345	mmu_unmap_dma_area(dev, ba, n);
346
347	__free_pages(pgv, get_order(n));
348}
349
350/*
351 * Map a chunk of memory so that devices can see it.
352 * CPU view of this memory may be inconsistent with
353 * a device view and explicit flushing is necessary.
354 */
355static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
356				unsigned long offset, size_t len,
357				enum dma_data_direction dir,
358				struct dma_attrs *attrs)
359{
360	void *va = page_address(page) + offset;
361
362	/* XXX why are some lengths signed, others unsigned? */
363	if (len <= 0) {
364		return 0;
365	}
366	/* XXX So what is maxphys for us and how do drivers know it? */
367	if (len > 256*1024) {			/* __get_free_pages() limit */
368		return 0;
369	}
370	return mmu_get_scsi_one(dev, va, len);
371}
372
373static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
374			    enum dma_data_direction dir, struct dma_attrs *attrs)
375{
376	mmu_release_scsi_one(dev, ba, n);
377}
378
379static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
380		       enum dma_data_direction dir, struct dma_attrs *attrs)
381{
382	mmu_get_scsi_sgl(dev, sg, n);
383
384	/*
385	 * XXX sparc64 can return a partial length here. sun4c should do this
386	 * but it currently panics if it can't fulfill the request - Anton
387	 */
388	return n;
389}
390
391static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
392			  enum dma_data_direction dir, struct dma_attrs *attrs)
393{
394	mmu_release_scsi_sgl(dev, sg, n);
395}
396
397static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
398				 int n,	enum dma_data_direction dir)
399{
400	BUG();
401}
402
403static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
404				    int n, enum dma_data_direction dir)
405{
406	BUG();
407}
408
409struct dma_map_ops sbus_dma_ops = {
410	.alloc_coherent		= sbus_alloc_coherent,
411	.free_coherent		= sbus_free_coherent,
412	.map_page		= sbus_map_page,
413	.unmap_page		= sbus_unmap_page,
414	.map_sg			= sbus_map_sg,
415	.unmap_sg		= sbus_unmap_sg,
416	.sync_sg_for_cpu	= sbus_sync_sg_for_cpu,
417	.sync_sg_for_device	= sbus_sync_sg_for_device,
418};
419
420static int __init sparc_register_ioport(void)
421{
422	register_proc_sparc_ioport();
423
424	return 0;
425}
426
427arch_initcall(sparc_register_ioport);
428
429#endif /* CONFIG_SBUS */
430
431
432/* LEON reuses PCI DMA ops */
433#if defined(CONFIG_PCI) || defined(CONFIG_SPARC_LEON)
434
435/* Allocate and map kernel buffer using consistent mode DMA for a device.
436 * hwdev should be valid struct pci_dev pointer for PCI devices.
437 */
438static void *pci32_alloc_coherent(struct device *dev, size_t len,
439				  dma_addr_t *pba, gfp_t gfp)
440{
441	unsigned long len_total = PAGE_ALIGN(len);
442	void *va;
443	struct resource *res;
444	int order;
445
446	if (len == 0) {
447		return NULL;
448	}
449	if (len > 256*1024) {			/* __get_free_pages() limit */
450		return NULL;
451	}
452
453	order = get_order(len_total);
454	va = (void *) __get_free_pages(GFP_KERNEL, order);
455	if (va == NULL) {
456		printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
457		goto err_nopages;
458	}
459
460	if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
461		printk("pci_alloc_consistent: no core\n");
462		goto err_nomem;
463	}
464
465	if (allocate_resource(&_sparc_dvma, res, len_total,
466	    _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
467		printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
468		goto err_nova;
469	}
470	sparc_mapiorange(0, virt_to_phys(va), res->start, len_total);
471
472	*pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
473	return (void *) res->start;
474
475err_nova:
476	kfree(res);
477err_nomem:
478	free_pages((unsigned long)va, order);
479err_nopages:
480	return NULL;
481}
482
483/* Free and unmap a consistent DMA buffer.
484 * cpu_addr is what was returned from pci_alloc_consistent,
485 * size must be the same as what as passed into pci_alloc_consistent,
486 * and likewise dma_addr must be the same as what *dma_addrp was set to.
487 *
488 * References to the memory and mappings associated with cpu_addr/dma_addr
489 * past this call are illegal.
490 */
491static void pci32_free_coherent(struct device *dev, size_t n, void *p,
492				dma_addr_t ba)
493{
494	struct resource *res;
495
496	if ((res = lookup_resource(&_sparc_dvma,
497	    (unsigned long)p)) == NULL) {
498		printk("pci_free_consistent: cannot free %p\n", p);
499		return;
500	}
501
502	if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
503		printk("pci_free_consistent: unaligned va %p\n", p);
504		return;
505	}
506
507	n = PAGE_ALIGN(n);
508	if (resource_size(res) != n) {
509		printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
510		    (long)resource_size(res), (long)n);
511		return;
512	}
513
514	dma_make_coherent(ba, n);
515	sparc_unmapiorange((unsigned long)p, n);
516
517	release_resource(res);
518	kfree(res);
519	free_pages((unsigned long)phys_to_virt(ba), get_order(n));
520}
521
522/*
523 * Same as pci_map_single, but with pages.
524 */
525static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
526				 unsigned long offset, size_t size,
527				 enum dma_data_direction dir,
528				 struct dma_attrs *attrs)
529{
530	/* IIep is write-through, not flushing. */
531	return page_to_phys(page) + offset;
532}
533
534static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
535			     enum dma_data_direction dir, struct dma_attrs *attrs)
536{
537	if (dir != PCI_DMA_TODEVICE)
538		dma_make_coherent(ba, PAGE_ALIGN(size));
539}
540
541/* Map a set of buffers described by scatterlist in streaming
542 * mode for DMA.  This is the scather-gather version of the
543 * above pci_map_single interface.  Here the scatter gather list
544 * elements are each tagged with the appropriate dma address
545 * and length.  They are obtained via sg_dma_{address,length}(SG).
546 *
547 * NOTE: An implementation may be able to use a smaller number of
548 *       DMA address/length pairs than there are SG table elements.
549 *       (for example via virtual mapping capabilities)
550 *       The routine returns the number of addr/length pairs actually
551 *       used, at most nents.
552 *
553 * Device ownership issues as mentioned above for pci_map_single are
554 * the same here.
555 */
556static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
557			int nents, enum dma_data_direction dir,
558			struct dma_attrs *attrs)
559{
560	struct scatterlist *sg;
561	int n;
562
563	/* IIep is write-through, not flushing. */
564	for_each_sg(sgl, sg, nents, n) {
565		sg->dma_address = sg_phys(sg);
566		sg->dma_length = sg->length;
567	}
568	return nents;
569}
570
571/* Unmap a set of streaming mode DMA translations.
572 * Again, cpu read rules concerning calls here are the same as for
573 * pci_unmap_single() above.
574 */
575static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
576			   int nents, enum dma_data_direction dir,
577			   struct dma_attrs *attrs)
578{
579	struct scatterlist *sg;
580	int n;
581
582	if (dir != PCI_DMA_TODEVICE) {
583		for_each_sg(sgl, sg, nents, n) {
584			dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
585		}
586	}
587}
588
589/* Make physical memory consistent for a single
590 * streaming mode DMA translation before or after a transfer.
591 *
592 * If you perform a pci_map_single() but wish to interrogate the
593 * buffer using the cpu, yet do not wish to teardown the PCI dma
594 * mapping, you must call this function before doing so.  At the
595 * next point you give the PCI dma address back to the card, you
596 * must first perform a pci_dma_sync_for_device, and then the
597 * device again owns the buffer.
598 */
599static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
600				      size_t size, enum dma_data_direction dir)
601{
602	if (dir != PCI_DMA_TODEVICE) {
603		dma_make_coherent(ba, PAGE_ALIGN(size));
604	}
605}
606
607static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
608					 size_t size, enum dma_data_direction dir)
609{
610	if (dir != PCI_DMA_TODEVICE) {
611		dma_make_coherent(ba, PAGE_ALIGN(size));
612	}
613}
614
615/* Make physical memory consistent for a set of streaming
616 * mode DMA translations after a transfer.
617 *
618 * The same as pci_dma_sync_single_* but for a scatter-gather list,
619 * same rules and usage.
620 */
621static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
622				  int nents, enum dma_data_direction dir)
623{
624	struct scatterlist *sg;
625	int n;
626
627	if (dir != PCI_DMA_TODEVICE) {
628		for_each_sg(sgl, sg, nents, n) {
629			dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
630		}
631	}
632}
633
634static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
635				     int nents, enum dma_data_direction dir)
636{
637	struct scatterlist *sg;
638	int n;
639
640	if (dir != PCI_DMA_TODEVICE) {
641		for_each_sg(sgl, sg, nents, n) {
642			dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
643		}
644	}
645}
646
647struct dma_map_ops pci32_dma_ops = {
648	.alloc_coherent		= pci32_alloc_coherent,
649	.free_coherent		= pci32_free_coherent,
650	.map_page		= pci32_map_page,
651	.unmap_page		= pci32_unmap_page,
652	.map_sg			= pci32_map_sg,
653	.unmap_sg		= pci32_unmap_sg,
654	.sync_single_for_cpu	= pci32_sync_single_for_cpu,
655	.sync_single_for_device	= pci32_sync_single_for_device,
656	.sync_sg_for_cpu	= pci32_sync_sg_for_cpu,
657	.sync_sg_for_device	= pci32_sync_sg_for_device,
658};
659EXPORT_SYMBOL(pci32_dma_ops);
660
661#endif /* CONFIG_PCI || CONFIG_SPARC_LEON */
662
663#ifdef CONFIG_SPARC_LEON
664struct dma_map_ops *dma_ops = &pci32_dma_ops;
665#elif defined(CONFIG_SBUS)
666struct dma_map_ops *dma_ops = &sbus_dma_ops;
667#endif
668
669EXPORT_SYMBOL(dma_ops);
670
671
672/*
673 * Return whether the given PCI device DMA address mask can be
674 * supported properly.  For example, if your device can only drive the
675 * low 24-bits during PCI bus mastering, then you would pass
676 * 0x00ffffff as the mask to this function.
677 */
678int dma_supported(struct device *dev, u64 mask)
679{
680#ifdef CONFIG_PCI
681	if (dev->bus == &pci_bus_type)
682		return 1;
683#endif
684	return 0;
685}
686EXPORT_SYMBOL(dma_supported);
687
688#ifdef CONFIG_PROC_FS
689
690static int sparc_io_proc_show(struct seq_file *m, void *v)
691{
692	struct resource *root = m->private, *r;
693	const char *nm;
694
695	for (r = root->child; r != NULL; r = r->sibling) {
696		if ((nm = r->name) == 0) nm = "???";
697		seq_printf(m, "%016llx-%016llx: %s\n",
698				(unsigned long long)r->start,
699				(unsigned long long)r->end, nm);
700	}
701
702	return 0;
703}
704
705static int sparc_io_proc_open(struct inode *inode, struct file *file)
706{
707	return single_open(file, sparc_io_proc_show, PDE(inode)->data);
708}
709
710static const struct file_operations sparc_io_proc_fops = {
711	.owner		= THIS_MODULE,
712	.open		= sparc_io_proc_open,
713	.read		= seq_read,
714	.llseek		= seq_lseek,
715	.release	= single_release,
716};
717#endif /* CONFIG_PROC_FS */
718
719static void register_proc_sparc_ioport(void)
720{
721#ifdef CONFIG_PROC_FS
722	proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
723	proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
 
 
724#endif
725}