Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Miscellaneous Mac68K-specific stuff
4 */
5
6#include <linux/types.h>
7#include <linux/errno.h>
8#include <linux/kernel.h>
9#include <linux/delay.h>
10#include <linux/sched.h>
11#include <linux/time.h>
12#include <linux/rtc.h>
13#include <linux/mm.h>
14
15#include <linux/adb.h>
16#include <linux/cuda.h>
17#include <linux/pmu.h>
18
19#include <linux/uaccess.h>
20#include <asm/io.h>
21#include <asm/setup.h>
22#include <asm/macintosh.h>
23#include <asm/mac_via.h>
24#include <asm/mac_oss.h>
25
26#include <asm/machdep.h>
27
28/*
29 * Offset between Unix time (1970-based) and Mac time (1904-based). Cuda and PMU
30 * times wrap in 2040. If we need to handle later times, the read_time functions
31 * need to be changed to interpret wrapped times as post-2040.
32 */
33
34#define RTC_OFFSET 2082844800
35
36static void (*rom_reset)(void);
37
38#if IS_ENABLED(CONFIG_NVRAM)
39#ifdef CONFIG_ADB_CUDA
40static unsigned char cuda_pram_read_byte(int offset)
41{
42 struct adb_request req;
43
44 if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM,
45 (offset >> 8) & 0xFF, offset & 0xFF) < 0)
46 return 0;
47 while (!req.complete)
48 cuda_poll();
49 return req.reply[3];
50}
51
52static void cuda_pram_write_byte(unsigned char data, int offset)
53{
54 struct adb_request req;
55
56 if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM,
57 (offset >> 8) & 0xFF, offset & 0xFF, data) < 0)
58 return;
59 while (!req.complete)
60 cuda_poll();
61}
62#endif /* CONFIG_ADB_CUDA */
63
64#ifdef CONFIG_ADB_PMU
65static unsigned char pmu_pram_read_byte(int offset)
66{
67 struct adb_request req;
68
69 if (pmu_request(&req, NULL, 3, PMU_READ_XPRAM,
70 offset & 0xFF, 1) < 0)
71 return 0;
72 pmu_wait_complete(&req);
73
74 return req.reply[0];
75}
76
77static void pmu_pram_write_byte(unsigned char data, int offset)
78{
79 struct adb_request req;
80
81 if (pmu_request(&req, NULL, 4, PMU_WRITE_XPRAM,
82 offset & 0xFF, 1, data) < 0)
83 return;
84 pmu_wait_complete(&req);
85}
86#endif /* CONFIG_ADB_PMU */
87#endif /* CONFIG_NVRAM */
88
89/*
90 * VIA PRAM/RTC access routines
91 *
92 * Must be called with interrupts disabled and
93 * the RTC should be enabled.
94 */
95
96static __u8 via_rtc_recv(void)
97{
98 int i, reg;
99 __u8 data;
100
101 reg = via1[vBufB] & ~VIA1B_vRTCClk;
102
103 /* Set the RTC data line to be an input. */
104
105 via1[vDirB] &= ~VIA1B_vRTCData;
106
107 /* The bits of the byte come out in MSB order */
108
109 data = 0;
110 for (i = 0 ; i < 8 ; i++) {
111 via1[vBufB] = reg;
112 via1[vBufB] = reg | VIA1B_vRTCClk;
113 data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData);
114 }
115
116 /* Return RTC data line to output state */
117
118 via1[vDirB] |= VIA1B_vRTCData;
119
120 return data;
121}
122
123static void via_rtc_send(__u8 data)
124{
125 int i, reg, bit;
126
127 reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData);
128
129 /* The bits of the byte go into the RTC in MSB order */
130
131 for (i = 0 ; i < 8 ; i++) {
132 bit = data & 0x80? 1 : 0;
133 data <<= 1;
134 via1[vBufB] = reg | bit;
135 via1[vBufB] = reg | bit | VIA1B_vRTCClk;
136 }
137}
138
139/*
140 * These values can be found in Inside Macintosh vol. III ch. 2
141 * which has a description of the RTC chip in the original Mac.
142 */
143
144#define RTC_FLG_READ BIT(7)
145#define RTC_FLG_WRITE_PROTECT BIT(7)
146#define RTC_CMD_READ(r) (RTC_FLG_READ | (r << 2))
147#define RTC_CMD_WRITE(r) (r << 2)
148#define RTC_REG_SECONDS_0 0
149#define RTC_REG_SECONDS_1 1
150#define RTC_REG_SECONDS_2 2
151#define RTC_REG_SECONDS_3 3
152#define RTC_REG_WRITE_PROTECT 13
153
154/*
155 * Inside Mac has no information about two-byte RTC commands but
156 * the MAME/MESS source code has the essentials.
157 */
158
159#define RTC_REG_XPRAM 14
160#define RTC_CMD_XPRAM_READ (RTC_CMD_READ(RTC_REG_XPRAM) << 8)
161#define RTC_CMD_XPRAM_WRITE (RTC_CMD_WRITE(RTC_REG_XPRAM) << 8)
162#define RTC_CMD_XPRAM_ARG(a) (((a & 0xE0) << 3) | ((a & 0x1F) << 2))
163
164/*
165 * Execute a VIA PRAM/RTC command. For read commands
166 * data should point to a one-byte buffer for the
167 * resulting data. For write commands it should point
168 * to the data byte to for the command.
169 *
170 * This function disables all interrupts while running.
171 */
172
173static void via_rtc_command(int command, __u8 *data)
174{
175 unsigned long flags;
176 int is_read;
177
178 local_irq_save(flags);
179
180 /* The least significant bits must be 0b01 according to Inside Mac */
181
182 command = (command & ~3) | 1;
183
184 /* Enable the RTC and make sure the strobe line is high */
185
186 via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb;
187
188 if (command & 0xFF00) { /* extended (two-byte) command */
189 via_rtc_send((command & 0xFF00) >> 8);
190 via_rtc_send(command & 0xFF);
191 is_read = command & (RTC_FLG_READ << 8);
192 } else { /* one-byte command */
193 via_rtc_send(command);
194 is_read = command & RTC_FLG_READ;
195 }
196 if (is_read) {
197 *data = via_rtc_recv();
198 } else {
199 via_rtc_send(*data);
200 }
201
202 /* All done, disable the RTC */
203
204 via1[vBufB] |= VIA1B_vRTCEnb;
205
206 local_irq_restore(flags);
207}
208
209#if IS_ENABLED(CONFIG_NVRAM)
210static unsigned char via_pram_read_byte(int offset)
211{
212 unsigned char temp;
213
214 via_rtc_command(RTC_CMD_XPRAM_READ | RTC_CMD_XPRAM_ARG(offset), &temp);
215
216 return temp;
217}
218
219static void via_pram_write_byte(unsigned char data, int offset)
220{
221 unsigned char temp;
222
223 temp = 0x55;
224 via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
225
226 temp = data;
227 via_rtc_command(RTC_CMD_XPRAM_WRITE | RTC_CMD_XPRAM_ARG(offset), &temp);
228
229 temp = 0x55 | RTC_FLG_WRITE_PROTECT;
230 via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
231}
232#endif /* CONFIG_NVRAM */
233
234/*
235 * Return the current time in seconds since January 1, 1904.
236 *
237 * This only works on machines with the VIA-based PRAM/RTC, which
238 * is basically any machine with Mac II-style ADB.
239 */
240
241static time64_t via_read_time(void)
242{
243 union {
244 __u8 cdata[4];
245 __u32 idata;
246 } result, last_result;
247 int count = 1;
248
249 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0), &last_result.cdata[3]);
250 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1), &last_result.cdata[2]);
251 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2), &last_result.cdata[1]);
252 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3), &last_result.cdata[0]);
253
254 /*
255 * The NetBSD guys say to loop until you get the same reading
256 * twice in a row.
257 */
258
259 while (1) {
260 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0),
261 &result.cdata[3]);
262 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1),
263 &result.cdata[2]);
264 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2),
265 &result.cdata[1]);
266 via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3),
267 &result.cdata[0]);
268
269 if (result.idata == last_result.idata)
270 return (time64_t)result.idata - RTC_OFFSET;
271
272 if (++count > 10)
273 break;
274
275 last_result.idata = result.idata;
276 }
277
278 pr_err("%s: failed to read a stable value; got 0x%08x then 0x%08x\n",
279 __func__, last_result.idata, result.idata);
280
281 return 0;
282}
283
284/*
285 * Set the current time to a number of seconds since January 1, 1904.
286 *
287 * This only works on machines with the VIA-based PRAM/RTC, which
288 * is basically any machine with Mac II-style ADB.
289 */
290
291static void via_set_rtc_time(struct rtc_time *tm)
292{
293 union {
294 __u8 cdata[4];
295 __u32 idata;
296 } data;
297 __u8 temp;
298 time64_t time;
299
300 time = mktime64(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
301 tm->tm_hour, tm->tm_min, tm->tm_sec);
302
303 /* Clear the write protect bit */
304
305 temp = 0x55;
306 via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
307
308 data.idata = lower_32_bits(time + RTC_OFFSET);
309 via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_0), &data.cdata[3]);
310 via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_1), &data.cdata[2]);
311 via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_2), &data.cdata[1]);
312 via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_3), &data.cdata[0]);
313
314 /* Set the write protect bit */
315
316 temp = 0x55 | RTC_FLG_WRITE_PROTECT;
317 via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp);
318}
319
320static void via_shutdown(void)
321{
322 if (rbv_present) {
323 via2[rBufB] &= ~0x04;
324 } else {
325 /* Direction of vDirB is output */
326 via2[vDirB] |= 0x04;
327 /* Send a value of 0 on that line */
328 via2[vBufB] &= ~0x04;
329 mdelay(1000);
330 }
331}
332
333static void oss_shutdown(void)
334{
335 oss->rom_ctrl = OSS_POWEROFF;
336}
337
338#ifdef CONFIG_ADB_CUDA
339static void cuda_restart(void)
340{
341 struct adb_request req;
342
343 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0)
344 return;
345 while (!req.complete)
346 cuda_poll();
347}
348
349static void cuda_shutdown(void)
350{
351 struct adb_request req;
352
353 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0)
354 return;
355
356 /* Avoid infinite polling loop when PSU is not under Cuda control */
357 switch (macintosh_config->ident) {
358 case MAC_MODEL_C660:
359 case MAC_MODEL_Q605:
360 case MAC_MODEL_Q605_ACC:
361 case MAC_MODEL_P475:
362 case MAC_MODEL_P475F:
363 return;
364 }
365
366 while (!req.complete)
367 cuda_poll();
368}
369#endif /* CONFIG_ADB_CUDA */
370
371/*
372 *-------------------------------------------------------------------
373 * Below this point are the generic routines; they'll dispatch to the
374 * correct routine for the hardware on which we're running.
375 *-------------------------------------------------------------------
376 */
377
378#if IS_ENABLED(CONFIG_NVRAM)
379unsigned char mac_pram_read_byte(int addr)
380{
381 switch (macintosh_config->adb_type) {
382 case MAC_ADB_IOP:
383 case MAC_ADB_II:
384 case MAC_ADB_PB1:
385 return via_pram_read_byte(addr);
386#ifdef CONFIG_ADB_CUDA
387 case MAC_ADB_EGRET:
388 case MAC_ADB_CUDA:
389 return cuda_pram_read_byte(addr);
390#endif
391#ifdef CONFIG_ADB_PMU
392 case MAC_ADB_PB2:
393 return pmu_pram_read_byte(addr);
394#endif
395 default:
396 return 0xFF;
397 }
398}
399
400void mac_pram_write_byte(unsigned char val, int addr)
401{
402 switch (macintosh_config->adb_type) {
403 case MAC_ADB_IOP:
404 case MAC_ADB_II:
405 case MAC_ADB_PB1:
406 via_pram_write_byte(val, addr);
407 break;
408#ifdef CONFIG_ADB_CUDA
409 case MAC_ADB_EGRET:
410 case MAC_ADB_CUDA:
411 cuda_pram_write_byte(val, addr);
412 break;
413#endif
414#ifdef CONFIG_ADB_PMU
415 case MAC_ADB_PB2:
416 pmu_pram_write_byte(val, addr);
417 break;
418#endif
419 default:
420 break;
421 }
422}
423
424ssize_t mac_pram_get_size(void)
425{
426 return 256;
427}
428#endif /* CONFIG_NVRAM */
429
430void mac_poweroff(void)
431{
432 if (oss_present) {
433 oss_shutdown();
434 } else if (macintosh_config->adb_type == MAC_ADB_II) {
435 via_shutdown();
436#ifdef CONFIG_ADB_CUDA
437 } else if (macintosh_config->adb_type == MAC_ADB_EGRET ||
438 macintosh_config->adb_type == MAC_ADB_CUDA) {
439 cuda_shutdown();
440#endif
441#ifdef CONFIG_ADB_PMU
442 } else if (macintosh_config->adb_type == MAC_ADB_PB2) {
443 pmu_shutdown();
444#endif
445 }
446
447 pr_crit("It is now safe to turn off your Macintosh.\n");
448 local_irq_disable();
449 while(1);
450}
451
452void mac_reset(void)
453{
454 if (macintosh_config->adb_type == MAC_ADB_II &&
455 macintosh_config->ident != MAC_MODEL_SE30) {
456 /* need ROMBASE in booter */
457 /* indeed, plus need to MAP THE ROM !! */
458
459 if (mac_bi_data.rombase == 0)
460 mac_bi_data.rombase = 0x40800000;
461
462 /* works on some */
463 rom_reset = (void *) (mac_bi_data.rombase + 0xa);
464
465 local_irq_disable();
466 rom_reset();
467#ifdef CONFIG_ADB_CUDA
468 } else if (macintosh_config->adb_type == MAC_ADB_EGRET ||
469 macintosh_config->adb_type == MAC_ADB_CUDA) {
470 cuda_restart();
471#endif
472#ifdef CONFIG_ADB_PMU
473 } else if (macintosh_config->adb_type == MAC_ADB_PB2) {
474 pmu_restart();
475#endif
476 } else if (CPU_IS_030) {
477
478 /* 030-specific reset routine. The idea is general, but the
479 * specific registers to reset are '030-specific. Until I
480 * have a non-030 machine, I can't test anything else.
481 * -- C. Scott Ananian <cananian@alumni.princeton.edu>
482 */
483
484 unsigned long rombase = 0x40000000;
485
486 /* make a 1-to-1 mapping, using the transparent tran. reg. */
487 unsigned long virt = (unsigned long) mac_reset;
488 unsigned long phys = virt_to_phys(mac_reset);
489 unsigned long addr = (phys&0xFF000000)|0x8777;
490 unsigned long offset = phys-virt;
491
492 local_irq_disable(); /* lets not screw this up, ok? */
493 __asm__ __volatile__(".chip 68030\n\t"
494 "pmove %0,%/tt0\n\t"
495 ".chip 68k"
496 : : "m" (addr));
497 /* Now jump to physical address so we can disable MMU */
498 __asm__ __volatile__(
499 ".chip 68030\n\t"
500 "lea %/pc@(1f),%/a0\n\t"
501 "addl %0,%/a0\n\t"/* fixup target address and stack ptr */
502 "addl %0,%/sp\n\t"
503 "pflusha\n\t"
504 "jmp %/a0@\n\t" /* jump into physical memory */
505 "0:.long 0\n\t" /* a constant zero. */
506 /* OK. Now reset everything and jump to reset vector. */
507 "1:\n\t"
508 "lea %/pc@(0b),%/a0\n\t"
509 "pmove %/a0@, %/tc\n\t" /* disable mmu */
510 "pmove %/a0@, %/tt0\n\t" /* disable tt0 */
511 "pmove %/a0@, %/tt1\n\t" /* disable tt1 */
512 "movel #0, %/a0\n\t"
513 "movec %/a0, %/vbr\n\t" /* clear vector base register */
514 "movec %/a0, %/cacr\n\t" /* disable caches */
515 "movel #0x0808,%/a0\n\t"
516 "movec %/a0, %/cacr\n\t" /* flush i&d caches */
517 "movew #0x2700,%/sr\n\t" /* set up status register */
518 "movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */
519 "movec %/a0, %/isp\n\t"
520 "movel %1@(0x4),%/a0\n\t" /* load reset vector */
521 "reset\n\t" /* reset external devices */
522 "jmp %/a0@\n\t" /* jump to the reset vector */
523 ".chip 68k"
524 : : "r" (offset), "a" (rombase) : "a0");
525 }
526
527 /* should never get here */
528 pr_crit("Restart failed. Please restart manually.\n");
529 local_irq_disable();
530 while(1);
531}
532
533/*
534 * This function translates seconds since 1970 into a proper date.
535 *
536 * Algorithm cribbed from glibc2.1, __offtime().
537 *
538 * This is roughly same as rtc_time64_to_tm(), which we should probably
539 * use here, but it's only available when CONFIG_RTC_LIB is enabled.
540 */
541#define SECS_PER_MINUTE (60)
542#define SECS_PER_HOUR (SECS_PER_MINUTE * 60)
543#define SECS_PER_DAY (SECS_PER_HOUR * 24)
544
545static void unmktime(time64_t time, long offset,
546 int *yearp, int *monp, int *dayp,
547 int *hourp, int *minp, int *secp)
548{
549 /* How many days come before each month (0-12). */
550 static const unsigned short int __mon_yday[2][13] =
551 {
552 /* Normal years. */
553 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
554 /* Leap years. */
555 { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
556 };
557 int days, rem, y, wday, yday;
558 const unsigned short int *ip;
559
560 days = div_u64_rem(time, SECS_PER_DAY, &rem);
561 rem += offset;
562 while (rem < 0) {
563 rem += SECS_PER_DAY;
564 --days;
565 }
566 while (rem >= SECS_PER_DAY) {
567 rem -= SECS_PER_DAY;
568 ++days;
569 }
570 *hourp = rem / SECS_PER_HOUR;
571 rem %= SECS_PER_HOUR;
572 *minp = rem / SECS_PER_MINUTE;
573 *secp = rem % SECS_PER_MINUTE;
574 /* January 1, 1970 was a Thursday. */
575 wday = (4 + days) % 7; /* Day in the week. Not currently used */
576 if (wday < 0) wday += 7;
577 y = 1970;
578
579#define DIV(a, b) ((a) / (b) - ((a) % (b) < 0))
580#define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400))
581#define __isleap(year) \
582 ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0))
583
584 while (days < 0 || days >= (__isleap (y) ? 366 : 365))
585 {
586 /* Guess a corrected year, assuming 365 days per year. */
587 long int yg = y + days / 365 - (days % 365 < 0);
588
589 /* Adjust DAYS and Y to match the guessed year. */
590 days -= (yg - y) * 365 +
591 LEAPS_THRU_END_OF(yg - 1) - LEAPS_THRU_END_OF(y - 1);
592 y = yg;
593 }
594 *yearp = y - 1900;
595 yday = days; /* day in the year. Not currently used. */
596 ip = __mon_yday[__isleap(y)];
597 for (y = 11; days < (long int) ip[y]; --y)
598 continue;
599 days -= ip[y];
600 *monp = y;
601 *dayp = days + 1; /* day in the month */
602 return;
603}
604
605/*
606 * Read/write the hardware clock.
607 */
608
609int mac_hwclk(int op, struct rtc_time *t)
610{
611 time64_t now;
612
613 if (!op) { /* read */
614 switch (macintosh_config->adb_type) {
615 case MAC_ADB_IOP:
616 case MAC_ADB_II:
617 case MAC_ADB_PB1:
618 now = via_read_time();
619 break;
620#ifdef CONFIG_ADB_CUDA
621 case MAC_ADB_EGRET:
622 case MAC_ADB_CUDA:
623 now = cuda_get_time();
624 break;
625#endif
626#ifdef CONFIG_ADB_PMU
627 case MAC_ADB_PB2:
628 now = pmu_get_time();
629 break;
630#endif
631 default:
632 now = 0;
633 }
634
635 t->tm_wday = 0;
636 unmktime(now, 0,
637 &t->tm_year, &t->tm_mon, &t->tm_mday,
638 &t->tm_hour, &t->tm_min, &t->tm_sec);
639 pr_debug("%s: read %ptR\n", __func__, t);
640 } else { /* write */
641 pr_debug("%s: tried to write %ptR\n", __func__, t);
642
643 switch (macintosh_config->adb_type) {
644 case MAC_ADB_IOP:
645 case MAC_ADB_II:
646 case MAC_ADB_PB1:
647 via_set_rtc_time(t);
648 break;
649#ifdef CONFIG_ADB_CUDA
650 case MAC_ADB_EGRET:
651 case MAC_ADB_CUDA:
652 cuda_set_rtc_time(t);
653 break;
654#endif
655#ifdef CONFIG_ADB_PMU
656 case MAC_ADB_PB2:
657 pmu_set_rtc_time(t);
658 break;
659#endif
660 default:
661 return -ENODEV;
662 }
663 }
664 return 0;
665}
1/*
2 * Miscellaneous Mac68K-specific stuff
3 */
4
5#include <linux/types.h>
6#include <linux/errno.h>
7#include <linux/miscdevice.h>
8#include <linux/kernel.h>
9#include <linux/delay.h>
10#include <linux/sched.h>
11#include <linux/time.h>
12#include <linux/rtc.h>
13#include <linux/mm.h>
14
15#include <linux/adb.h>
16#include <linux/cuda.h>
17#include <linux/pmu.h>
18
19#include <asm/uaccess.h>
20#include <asm/io.h>
21#include <asm/rtc.h>
22#include <asm/system.h>
23#include <asm/segment.h>
24#include <asm/setup.h>
25#include <asm/macintosh.h>
26#include <asm/mac_via.h>
27#include <asm/mac_oss.h>
28
29#define BOOTINFO_COMPAT_1_0
30#include <asm/bootinfo.h>
31#include <asm/machdep.h>
32
33/* Offset between Unix time (1970-based) and Mac time (1904-based) */
34
35#define RTC_OFFSET 2082844800
36
37static void (*rom_reset)(void);
38
39#ifdef CONFIG_ADB_CUDA
40static long cuda_read_time(void)
41{
42 struct adb_request req;
43 long time;
44
45 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_GET_TIME) < 0)
46 return 0;
47 while (!req.complete)
48 cuda_poll();
49
50 time = (req.reply[3] << 24) | (req.reply[4] << 16)
51 | (req.reply[5] << 8) | req.reply[6];
52 return time - RTC_OFFSET;
53}
54
55static void cuda_write_time(long data)
56{
57 struct adb_request req;
58 data += RTC_OFFSET;
59 if (cuda_request(&req, NULL, 6, CUDA_PACKET, CUDA_SET_TIME,
60 (data >> 24) & 0xFF, (data >> 16) & 0xFF,
61 (data >> 8) & 0xFF, data & 0xFF) < 0)
62 return;
63 while (!req.complete)
64 cuda_poll();
65}
66
67static __u8 cuda_read_pram(int offset)
68{
69 struct adb_request req;
70 if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM,
71 (offset >> 8) & 0xFF, offset & 0xFF) < 0)
72 return 0;
73 while (!req.complete)
74 cuda_poll();
75 return req.reply[3];
76}
77
78static void cuda_write_pram(int offset, __u8 data)
79{
80 struct adb_request req;
81 if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM,
82 (offset >> 8) & 0xFF, offset & 0xFF, data) < 0)
83 return;
84 while (!req.complete)
85 cuda_poll();
86}
87#else
88#define cuda_read_time() 0
89#define cuda_write_time(n)
90#define cuda_read_pram NULL
91#define cuda_write_pram NULL
92#endif
93
94#ifdef CONFIG_ADB_PMU68K
95static long pmu_read_time(void)
96{
97 struct adb_request req;
98 long time;
99
100 if (pmu_request(&req, NULL, 1, PMU_READ_RTC) < 0)
101 return 0;
102 while (!req.complete)
103 pmu_poll();
104
105 time = (req.reply[1] << 24) | (req.reply[2] << 16)
106 | (req.reply[3] << 8) | req.reply[4];
107 return time - RTC_OFFSET;
108}
109
110static void pmu_write_time(long data)
111{
112 struct adb_request req;
113 data += RTC_OFFSET;
114 if (pmu_request(&req, NULL, 5, PMU_SET_RTC,
115 (data >> 24) & 0xFF, (data >> 16) & 0xFF,
116 (data >> 8) & 0xFF, data & 0xFF) < 0)
117 return;
118 while (!req.complete)
119 pmu_poll();
120}
121
122static __u8 pmu_read_pram(int offset)
123{
124 struct adb_request req;
125 if (pmu_request(&req, NULL, 3, PMU_READ_NVRAM,
126 (offset >> 8) & 0xFF, offset & 0xFF) < 0)
127 return 0;
128 while (!req.complete)
129 pmu_poll();
130 return req.reply[3];
131}
132
133static void pmu_write_pram(int offset, __u8 data)
134{
135 struct adb_request req;
136 if (pmu_request(&req, NULL, 4, PMU_WRITE_NVRAM,
137 (offset >> 8) & 0xFF, offset & 0xFF, data) < 0)
138 return;
139 while (!req.complete)
140 pmu_poll();
141}
142#else
143#define pmu_read_time() 0
144#define pmu_write_time(n)
145#define pmu_read_pram NULL
146#define pmu_write_pram NULL
147#endif
148
149#if 0 /* def CONFIG_ADB_MACIISI */
150extern int maciisi_request(struct adb_request *req,
151 void (*done)(struct adb_request *), int nbytes, ...);
152
153static long maciisi_read_time(void)
154{
155 struct adb_request req;
156 long time;
157
158 if (maciisi_request(&req, NULL, 2, CUDA_PACKET, CUDA_GET_TIME))
159 return 0;
160
161 time = (req.reply[3] << 24) | (req.reply[4] << 16)
162 | (req.reply[5] << 8) | req.reply[6];
163 return time - RTC_OFFSET;
164}
165
166static void maciisi_write_time(long data)
167{
168 struct adb_request req;
169 data += RTC_OFFSET;
170 maciisi_request(&req, NULL, 6, CUDA_PACKET, CUDA_SET_TIME,
171 (data >> 24) & 0xFF, (data >> 16) & 0xFF,
172 (data >> 8) & 0xFF, data & 0xFF);
173}
174
175static __u8 maciisi_read_pram(int offset)
176{
177 struct adb_request req;
178 if (maciisi_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM,
179 (offset >> 8) & 0xFF, offset & 0xFF))
180 return 0;
181 return req.reply[3];
182}
183
184static void maciisi_write_pram(int offset, __u8 data)
185{
186 struct adb_request req;
187 maciisi_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM,
188 (offset >> 8) & 0xFF, offset & 0xFF, data);
189}
190#else
191#define maciisi_read_time() 0
192#define maciisi_write_time(n)
193#define maciisi_read_pram NULL
194#define maciisi_write_pram NULL
195#endif
196
197/*
198 * VIA PRAM/RTC access routines
199 *
200 * Must be called with interrupts disabled and
201 * the RTC should be enabled.
202 */
203
204static __u8 via_pram_readbyte(void)
205{
206 int i,reg;
207 __u8 data;
208
209 reg = via1[vBufB] & ~VIA1B_vRTCClk;
210
211 /* Set the RTC data line to be an input. */
212
213 via1[vDirB] &= ~VIA1B_vRTCData;
214
215 /* The bits of the byte come out in MSB order */
216
217 data = 0;
218 for (i = 0 ; i < 8 ; i++) {
219 via1[vBufB] = reg;
220 via1[vBufB] = reg | VIA1B_vRTCClk;
221 data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData);
222 }
223
224 /* Return RTC data line to output state */
225
226 via1[vDirB] |= VIA1B_vRTCData;
227
228 return data;
229}
230
231static void via_pram_writebyte(__u8 data)
232{
233 int i,reg,bit;
234
235 reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData);
236
237 /* The bits of the byte go in in MSB order */
238
239 for (i = 0 ; i < 8 ; i++) {
240 bit = data & 0x80? 1 : 0;
241 data <<= 1;
242 via1[vBufB] = reg | bit;
243 via1[vBufB] = reg | bit | VIA1B_vRTCClk;
244 }
245}
246
247/*
248 * Execute a VIA PRAM/RTC command. For read commands
249 * data should point to a one-byte buffer for the
250 * resulting data. For write commands it should point
251 * to the data byte to for the command.
252 *
253 * This function disables all interrupts while running.
254 */
255
256static void via_pram_command(int command, __u8 *data)
257{
258 unsigned long flags;
259 int is_read;
260
261 local_irq_save(flags);
262
263 /* Enable the RTC and make sure the strobe line is high */
264
265 via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb;
266
267 if (command & 0xFF00) { /* extended (two-byte) command */
268 via_pram_writebyte((command & 0xFF00) >> 8);
269 via_pram_writebyte(command & 0xFF);
270 is_read = command & 0x8000;
271 } else { /* one-byte command */
272 via_pram_writebyte(command);
273 is_read = command & 0x80;
274 }
275 if (is_read) {
276 *data = via_pram_readbyte();
277 } else {
278 via_pram_writebyte(*data);
279 }
280
281 /* All done, disable the RTC */
282
283 via1[vBufB] |= VIA1B_vRTCEnb;
284
285 local_irq_restore(flags);
286}
287
288static __u8 via_read_pram(int offset)
289{
290 return 0;
291}
292
293static void via_write_pram(int offset, __u8 data)
294{
295}
296
297/*
298 * Return the current time in seconds since January 1, 1904.
299 *
300 * This only works on machines with the VIA-based PRAM/RTC, which
301 * is basically any machine with Mac II-style ADB.
302 */
303
304static long via_read_time(void)
305{
306 union {
307 __u8 cdata[4];
308 long idata;
309 } result, last_result;
310 int ct;
311
312 /*
313 * The NetBSD guys say to loop until you get the same reading
314 * twice in a row.
315 */
316
317 ct = 0;
318 do {
319 if (++ct > 10) {
320 printk("via_read_time: couldn't get valid time, "
321 "last read = 0x%08lx and 0x%08lx\n",
322 last_result.idata, result.idata);
323 break;
324 }
325
326 last_result.idata = result.idata;
327 result.idata = 0;
328
329 via_pram_command(0x81, &result.cdata[3]);
330 via_pram_command(0x85, &result.cdata[2]);
331 via_pram_command(0x89, &result.cdata[1]);
332 via_pram_command(0x8D, &result.cdata[0]);
333 } while (result.idata != last_result.idata);
334
335 return result.idata - RTC_OFFSET;
336}
337
338/*
339 * Set the current time to a number of seconds since January 1, 1904.
340 *
341 * This only works on machines with the VIA-based PRAM/RTC, which
342 * is basically any machine with Mac II-style ADB.
343 */
344
345static void via_write_time(long time)
346{
347 union {
348 __u8 cdata[4];
349 long idata;
350 } data;
351 __u8 temp;
352
353 /* Clear the write protect bit */
354
355 temp = 0x55;
356 via_pram_command(0x35, &temp);
357
358 data.idata = time + RTC_OFFSET;
359 via_pram_command(0x01, &data.cdata[3]);
360 via_pram_command(0x05, &data.cdata[2]);
361 via_pram_command(0x09, &data.cdata[1]);
362 via_pram_command(0x0D, &data.cdata[0]);
363
364 /* Set the write protect bit */
365
366 temp = 0xD5;
367 via_pram_command(0x35, &temp);
368}
369
370static void via_shutdown(void)
371{
372 if (rbv_present) {
373 via2[rBufB] &= ~0x04;
374 } else {
375 /* Direction of vDirB is output */
376 via2[vDirB] |= 0x04;
377 /* Send a value of 0 on that line */
378 via2[vBufB] &= ~0x04;
379 mdelay(1000);
380 }
381}
382
383/*
384 * FIXME: not sure how this is supposed to work exactly...
385 */
386
387static void oss_shutdown(void)
388{
389 oss->rom_ctrl = OSS_POWEROFF;
390}
391
392#ifdef CONFIG_ADB_CUDA
393
394static void cuda_restart(void)
395{
396 struct adb_request req;
397 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0)
398 return;
399 while (!req.complete)
400 cuda_poll();
401}
402
403static void cuda_shutdown(void)
404{
405 struct adb_request req;
406 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0)
407 return;
408 while (!req.complete)
409 cuda_poll();
410}
411
412#endif /* CONFIG_ADB_CUDA */
413
414#ifdef CONFIG_ADB_PMU68K
415
416void pmu_restart(void)
417{
418 struct adb_request req;
419 if (pmu_request(&req, NULL,
420 2, PMU_SET_INTR_MASK, PMU_INT_ADB|PMU_INT_TICK) < 0)
421 return;
422 while (!req.complete)
423 pmu_poll();
424 if (pmu_request(&req, NULL, 1, PMU_RESET) < 0)
425 return;
426 while (!req.complete)
427 pmu_poll();
428}
429
430void pmu_shutdown(void)
431{
432 struct adb_request req;
433 if (pmu_request(&req, NULL,
434 2, PMU_SET_INTR_MASK, PMU_INT_ADB|PMU_INT_TICK) < 0)
435 return;
436 while (!req.complete)
437 pmu_poll();
438 if (pmu_request(&req, NULL, 5, PMU_SHUTDOWN, 'M', 'A', 'T', 'T') < 0)
439 return;
440 while (!req.complete)
441 pmu_poll();
442}
443
444#endif
445
446/*
447 *-------------------------------------------------------------------
448 * Below this point are the generic routines; they'll dispatch to the
449 * correct routine for the hardware on which we're running.
450 *-------------------------------------------------------------------
451 */
452
453void mac_pram_read(int offset, __u8 *buffer, int len)
454{
455 __u8 (*func)(int);
456 int i;
457
458 switch(macintosh_config->adb_type) {
459 case MAC_ADB_IISI:
460 func = maciisi_read_pram; break;
461 case MAC_ADB_PB1:
462 case MAC_ADB_PB2:
463 func = pmu_read_pram; break;
464 case MAC_ADB_CUDA:
465 func = cuda_read_pram; break;
466 default:
467 func = via_read_pram;
468 }
469 if (!func)
470 return;
471 for (i = 0 ; i < len ; i++) {
472 buffer[i] = (*func)(offset++);
473 }
474}
475
476void mac_pram_write(int offset, __u8 *buffer, int len)
477{
478 void (*func)(int, __u8);
479 int i;
480
481 switch(macintosh_config->adb_type) {
482 case MAC_ADB_IISI:
483 func = maciisi_write_pram; break;
484 case MAC_ADB_PB1:
485 case MAC_ADB_PB2:
486 func = pmu_write_pram; break;
487 case MAC_ADB_CUDA:
488 func = cuda_write_pram; break;
489 default:
490 func = via_write_pram;
491 }
492 if (!func)
493 return;
494 for (i = 0 ; i < len ; i++) {
495 (*func)(offset++, buffer[i]);
496 }
497}
498
499void mac_poweroff(void)
500{
501 /*
502 * MAC_ADB_IISI may need to be moved up here if it doesn't actually
503 * work using the ADB packet method. --David Kilzer
504 */
505
506 if (oss_present) {
507 oss_shutdown();
508 } else if (macintosh_config->adb_type == MAC_ADB_II) {
509 via_shutdown();
510#ifdef CONFIG_ADB_CUDA
511 } else if (macintosh_config->adb_type == MAC_ADB_CUDA) {
512 cuda_shutdown();
513#endif
514#ifdef CONFIG_ADB_PMU68K
515 } else if (macintosh_config->adb_type == MAC_ADB_PB1
516 || macintosh_config->adb_type == MAC_ADB_PB2) {
517 pmu_shutdown();
518#endif
519 }
520 local_irq_enable();
521 printk("It is now safe to turn off your Macintosh.\n");
522 while(1);
523}
524
525void mac_reset(void)
526{
527 if (macintosh_config->adb_type == MAC_ADB_II) {
528 unsigned long flags;
529
530 /* need ROMBASE in booter */
531 /* indeed, plus need to MAP THE ROM !! */
532
533 if (mac_bi_data.rombase == 0)
534 mac_bi_data.rombase = 0x40800000;
535
536 /* works on some */
537 rom_reset = (void *) (mac_bi_data.rombase + 0xa);
538
539 if (macintosh_config->ident == MAC_MODEL_SE30) {
540 /*
541 * MSch: Machines known to crash on ROM reset ...
542 */
543 } else {
544 local_irq_save(flags);
545
546 rom_reset();
547
548 local_irq_restore(flags);
549 }
550#ifdef CONFIG_ADB_CUDA
551 } else if (macintosh_config->adb_type == MAC_ADB_CUDA) {
552 cuda_restart();
553#endif
554#ifdef CONFIG_ADB_PMU68K
555 } else if (macintosh_config->adb_type == MAC_ADB_PB1
556 || macintosh_config->adb_type == MAC_ADB_PB2) {
557 pmu_restart();
558#endif
559 } else if (CPU_IS_030) {
560
561 /* 030-specific reset routine. The idea is general, but the
562 * specific registers to reset are '030-specific. Until I
563 * have a non-030 machine, I can't test anything else.
564 * -- C. Scott Ananian <cananian@alumni.princeton.edu>
565 */
566
567 unsigned long rombase = 0x40000000;
568
569 /* make a 1-to-1 mapping, using the transparent tran. reg. */
570 unsigned long virt = (unsigned long) mac_reset;
571 unsigned long phys = virt_to_phys(mac_reset);
572 unsigned long addr = (phys&0xFF000000)|0x8777;
573 unsigned long offset = phys-virt;
574 local_irq_disable(); /* lets not screw this up, ok? */
575 __asm__ __volatile__(".chip 68030\n\t"
576 "pmove %0,%/tt0\n\t"
577 ".chip 68k"
578 : : "m" (addr));
579 /* Now jump to physical address so we can disable MMU */
580 __asm__ __volatile__(
581 ".chip 68030\n\t"
582 "lea %/pc@(1f),%/a0\n\t"
583 "addl %0,%/a0\n\t"/* fixup target address and stack ptr */
584 "addl %0,%/sp\n\t"
585 "pflusha\n\t"
586 "jmp %/a0@\n\t" /* jump into physical memory */
587 "0:.long 0\n\t" /* a constant zero. */
588 /* OK. Now reset everything and jump to reset vector. */
589 "1:\n\t"
590 "lea %/pc@(0b),%/a0\n\t"
591 "pmove %/a0@, %/tc\n\t" /* disable mmu */
592 "pmove %/a0@, %/tt0\n\t" /* disable tt0 */
593 "pmove %/a0@, %/tt1\n\t" /* disable tt1 */
594 "movel #0, %/a0\n\t"
595 "movec %/a0, %/vbr\n\t" /* clear vector base register */
596 "movec %/a0, %/cacr\n\t" /* disable caches */
597 "movel #0x0808,%/a0\n\t"
598 "movec %/a0, %/cacr\n\t" /* flush i&d caches */
599 "movew #0x2700,%/sr\n\t" /* set up status register */
600 "movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */
601 "movec %/a0, %/isp\n\t"
602 "movel %1@(0x4),%/a0\n\t" /* load reset vector */
603 "reset\n\t" /* reset external devices */
604 "jmp %/a0@\n\t" /* jump to the reset vector */
605 ".chip 68k"
606 : : "r" (offset), "a" (rombase) : "a0");
607 }
608
609 /* should never get here */
610 local_irq_enable();
611 printk ("Restart failed. Please restart manually.\n");
612 while(1);
613}
614
615/*
616 * This function translates seconds since 1970 into a proper date.
617 *
618 * Algorithm cribbed from glibc2.1, __offtime().
619 */
620#define SECS_PER_MINUTE (60)
621#define SECS_PER_HOUR (SECS_PER_MINUTE * 60)
622#define SECS_PER_DAY (SECS_PER_HOUR * 24)
623
624static void unmktime(unsigned long time, long offset,
625 int *yearp, int *monp, int *dayp,
626 int *hourp, int *minp, int *secp)
627{
628 /* How many days come before each month (0-12). */
629 static const unsigned short int __mon_yday[2][13] =
630 {
631 /* Normal years. */
632 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
633 /* Leap years. */
634 { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
635 };
636 long int days, rem, y, wday, yday;
637 const unsigned short int *ip;
638
639 days = time / SECS_PER_DAY;
640 rem = time % SECS_PER_DAY;
641 rem += offset;
642 while (rem < 0) {
643 rem += SECS_PER_DAY;
644 --days;
645 }
646 while (rem >= SECS_PER_DAY) {
647 rem -= SECS_PER_DAY;
648 ++days;
649 }
650 *hourp = rem / SECS_PER_HOUR;
651 rem %= SECS_PER_HOUR;
652 *minp = rem / SECS_PER_MINUTE;
653 *secp = rem % SECS_PER_MINUTE;
654 /* January 1, 1970 was a Thursday. */
655 wday = (4 + days) % 7; /* Day in the week. Not currently used */
656 if (wday < 0) wday += 7;
657 y = 1970;
658
659#define DIV(a, b) ((a) / (b) - ((a) % (b) < 0))
660#define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400))
661#define __isleap(year) \
662 ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0))
663
664 while (days < 0 || days >= (__isleap (y) ? 366 : 365))
665 {
666 /* Guess a corrected year, assuming 365 days per year. */
667 long int yg = y + days / 365 - (days % 365 < 0);
668
669 /* Adjust DAYS and Y to match the guessed year. */
670 days -= ((yg - y) * 365
671 + LEAPS_THRU_END_OF (yg - 1)
672 - LEAPS_THRU_END_OF (y - 1));
673 y = yg;
674 }
675 *yearp = y - 1900;
676 yday = days; /* day in the year. Not currently used. */
677 ip = __mon_yday[__isleap(y)];
678 for (y = 11; days < (long int) ip[y]; --y)
679 continue;
680 days -= ip[y];
681 *monp = y;
682 *dayp = days + 1; /* day in the month */
683 return;
684}
685
686/*
687 * Read/write the hardware clock.
688 */
689
690int mac_hwclk(int op, struct rtc_time *t)
691{
692 unsigned long now;
693
694 if (!op) { /* read */
695 switch (macintosh_config->adb_type) {
696 case MAC_ADB_II:
697 case MAC_ADB_IOP:
698 now = via_read_time();
699 break;
700 case MAC_ADB_IISI:
701 now = maciisi_read_time();
702 break;
703 case MAC_ADB_PB1:
704 case MAC_ADB_PB2:
705 now = pmu_read_time();
706 break;
707 case MAC_ADB_CUDA:
708 now = cuda_read_time();
709 break;
710 default:
711 now = 0;
712 }
713
714 t->tm_wday = 0;
715 unmktime(now, 0,
716 &t->tm_year, &t->tm_mon, &t->tm_mday,
717 &t->tm_hour, &t->tm_min, &t->tm_sec);
718#if 0
719 printk("mac_hwclk: read %04d-%02d-%-2d %02d:%02d:%02d\n",
720 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
721 t->tm_hour, t->tm_min, t->tm_sec);
722#endif
723 } else { /* write */
724#if 0
725 printk("mac_hwclk: tried to write %04d-%02d-%-2d %02d:%02d:%02d\n",
726 t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
727 t->tm_hour, t->tm_min, t->tm_sec);
728#endif
729
730 now = mktime(t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
731 t->tm_hour, t->tm_min, t->tm_sec);
732
733 switch (macintosh_config->adb_type) {
734 case MAC_ADB_II:
735 case MAC_ADB_IOP:
736 via_write_time(now);
737 break;
738 case MAC_ADB_CUDA:
739 cuda_write_time(now);
740 break;
741 case MAC_ADB_PB1:
742 case MAC_ADB_PB2:
743 pmu_write_time(now);
744 break;
745 case MAC_ADB_IISI:
746 maciisi_write_time(now);
747 }
748 }
749 return 0;
750}
751
752/*
753 * Set minutes/seconds in the hardware clock
754 */
755
756int mac_set_clock_mmss (unsigned long nowtime)
757{
758 struct rtc_time now;
759
760 mac_hwclk(0, &now);
761 now.tm_sec = nowtime % 60;
762 now.tm_min = (nowtime / 60) % 60;
763 mac_hwclk(1, &now);
764
765 return 0;
766}