Linux Audio

Check our new training course

Loading...
v6.2
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * This file contains NUMA specific variables and functions which are used on
  7 * NUMA machines with contiguous memory.
 
  8 * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
  9 * Populate cpu entries in sysfs for non-numa systems as well
 10 *  	Intel Corporation - Ashok Raj
 11 * 02/27/2006 Zhang, Yanmin
 12 *	Populate cpu cache entries in sysfs for cpu cache info
 13 */
 14
 15#include <linux/cpu.h>
 16#include <linux/kernel.h>
 17#include <linux/mm.h>
 18#include <linux/node.h>
 19#include <linux/slab.h>
 20#include <linux/init.h>
 21#include <linux/memblock.h>
 22#include <linux/nodemask.h>
 23#include <linux/notifier.h>
 24#include <linux/export.h>
 25#include <asm/mmzone.h>
 26#include <asm/numa.h>
 27#include <asm/cpu.h>
 28
 29static struct ia64_cpu *sysfs_cpus;
 30
 31void arch_fix_phys_package_id(int num, u32 slot)
 32{
 33#ifdef CONFIG_SMP
 34	if (cpu_data(num)->socket_id == -1)
 35		cpu_data(num)->socket_id = slot;
 36#endif
 37}
 38EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
 39
 40
 41#ifdef CONFIG_HOTPLUG_CPU
 42int __ref arch_register_cpu(int num)
 43{
 
 44	/*
 45	 * If CPEI can be re-targeted or if this is not
 46	 * CPEI target, then it is hotpluggable
 47	 */
 48	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
 49		sysfs_cpus[num].cpu.hotpluggable = 1;
 50	map_cpu_to_node(num, node_cpuid[num].nid);
 
 51	return register_cpu(&sysfs_cpus[num].cpu, num);
 52}
 53EXPORT_SYMBOL(arch_register_cpu);
 54
 55void __ref arch_unregister_cpu(int num)
 56{
 57	unregister_cpu(&sysfs_cpus[num].cpu);
 
 58	unmap_cpu_from_node(num, cpu_to_node(num));
 
 59}
 60EXPORT_SYMBOL(arch_unregister_cpu);
 61#else
 62static int __init arch_register_cpu(int num)
 63{
 64	return register_cpu(&sysfs_cpus[num].cpu, num);
 65}
 66#endif /*CONFIG_HOTPLUG_CPU*/
 67
 68
 69static int __init topology_init(void)
 70{
 71	int i, err = 0;
 72
 73	sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 74	if (!sysfs_cpus)
 75		panic("kzalloc in topology_init failed - NR_CPUS too big?");
 76
 77	for_each_present_cpu(i) {
 78		if((err = arch_register_cpu(i)))
 79			goto out;
 80	}
 81out:
 82	return err;
 83}
 84
 85subsys_initcall(topology_init);
 86
 87
 88/*
 89 * Export cpu cache information through sysfs
 90 */
 91
 92/*
 93 *  A bunch of string array to get pretty printing
 94 */
 95static const char *cache_types[] = {
 96	"",			/* not used */
 97	"Instruction",
 98	"Data",
 99	"Unified"	/* unified */
100};
101
102static const char *cache_mattrib[]={
103	"WriteThrough",
104	"WriteBack",
105	"",		/* reserved */
106	""		/* reserved */
107};
108
109struct cache_info {
110	pal_cache_config_info_t	cci;
111	cpumask_t shared_cpu_map;
112	int level;
113	int type;
114	struct kobject kobj;
115};
116
117struct cpu_cache_info {
118	struct cache_info *cache_leaves;
119	int	num_cache_leaves;
120	struct kobject kobj;
121};
122
123static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS];
124#define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
125
126#ifdef CONFIG_SMP
127static void cache_shared_cpu_map_setup(unsigned int cpu,
128		struct cache_info * this_leaf)
129{
130	pal_cache_shared_info_t	csi;
131	int num_shared, i = 0;
132	unsigned int j;
133
134	if (cpu_data(cpu)->threads_per_core <= 1 &&
135		cpu_data(cpu)->cores_per_socket <= 1) {
136		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
137		return;
138	}
139
140	if (ia64_pal_cache_shared_info(this_leaf->level,
141					this_leaf->type,
142					0,
143					&csi) != PAL_STATUS_SUCCESS)
144		return;
145
146	num_shared = (int) csi.num_shared;
147	do {
148		for_each_possible_cpu(j)
149			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
150				&& cpu_data(j)->core_id == csi.log1_cid
151				&& cpu_data(j)->thread_id == csi.log1_tid)
152				cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
153
154		i++;
155	} while (i < num_shared &&
156		ia64_pal_cache_shared_info(this_leaf->level,
157				this_leaf->type,
158				i,
159				&csi) == PAL_STATUS_SUCCESS);
160}
161#else
162static void cache_shared_cpu_map_setup(unsigned int cpu,
163		struct cache_info * this_leaf)
164{
165	cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
166	return;
167}
168#endif
169
170static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
171					char *buf)
172{
173	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
174}
175
176static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
177					char *buf)
178{
179	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
180}
181
182static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
183{
184	return sprintf(buf,
185			"%s\n",
186			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
187}
188
189static ssize_t show_size(struct cache_info *this_leaf, char *buf)
190{
191	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
192}
193
194static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
195{
196	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
197	number_of_sets /= this_leaf->cci.pcci_assoc;
198	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
199
200	return sprintf(buf, "%u\n", number_of_sets);
201}
202
203static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
204{
 
205	cpumask_t shared_cpu_map;
206
207	cpumask_and(&shared_cpu_map,
208				&this_leaf->shared_cpu_map, cpu_online_mask);
209	return scnprintf(buf, PAGE_SIZE, "%*pb\n",
210			 cpumask_pr_args(&shared_cpu_map));
211}
212
213static ssize_t show_type(struct cache_info *this_leaf, char *buf)
214{
215	int type = this_leaf->type + this_leaf->cci.pcci_unified;
216	return sprintf(buf, "%s\n", cache_types[type]);
217}
218
219static ssize_t show_level(struct cache_info *this_leaf, char *buf)
220{
221	return sprintf(buf, "%u\n", this_leaf->level);
222}
223
224struct cache_attr {
225	struct attribute attr;
226	ssize_t (*show)(struct cache_info *, char *);
227	ssize_t (*store)(struct cache_info *, const char *, size_t count);
228};
229
230#ifdef define_one_ro
231	#undef define_one_ro
232#endif
233#define define_one_ro(_name) \
234	static struct cache_attr _name = \
235__ATTR(_name, 0444, show_##_name, NULL)
236
237define_one_ro(level);
238define_one_ro(type);
239define_one_ro(coherency_line_size);
240define_one_ro(ways_of_associativity);
241define_one_ro(size);
242define_one_ro(number_of_sets);
243define_one_ro(shared_cpu_map);
244define_one_ro(attributes);
245
246static struct attribute * cache_default_attrs[] = {
247	&type.attr,
248	&level.attr,
249	&coherency_line_size.attr,
250	&ways_of_associativity.attr,
251	&attributes.attr,
252	&size.attr,
253	&number_of_sets.attr,
254	&shared_cpu_map.attr,
255	NULL
256};
257ATTRIBUTE_GROUPS(cache_default);
258
259#define to_object(k) container_of(k, struct cache_info, kobj)
260#define to_attr(a) container_of(a, struct cache_attr, attr)
261
262static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
263{
264	struct cache_attr *fattr = to_attr(attr);
265	struct cache_info *this_leaf = to_object(kobj);
266	ssize_t ret;
267
268	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
269	return ret;
270}
271
272static const struct sysfs_ops cache_sysfs_ops = {
273	.show   = ia64_cache_show
274};
275
276static struct kobj_type cache_ktype = {
277	.sysfs_ops	= &cache_sysfs_ops,
278	.default_groups	= cache_default_groups,
279};
280
281static struct kobj_type cache_ktype_percpu_entry = {
282	.sysfs_ops	= &cache_sysfs_ops,
283};
284
285static void cpu_cache_sysfs_exit(unsigned int cpu)
286{
287	kfree(all_cpu_cache_info[cpu].cache_leaves);
288	all_cpu_cache_info[cpu].cache_leaves = NULL;
289	all_cpu_cache_info[cpu].num_cache_leaves = 0;
290	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
291	return;
292}
293
294static int cpu_cache_sysfs_init(unsigned int cpu)
295{
296	unsigned long i, levels, unique_caches;
297	pal_cache_config_info_t cci;
298	int j;
299	long status;
300	struct cache_info *this_cache;
301	int num_cache_leaves = 0;
302
303	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
304		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
305		return -1;
306	}
307
308	this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
309			   GFP_KERNEL);
310	if (this_cache == NULL)
311		return -ENOMEM;
312
313	for (i=0; i < levels; i++) {
314		for (j=2; j >0 ; j--) {
315			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
316					PAL_STATUS_SUCCESS)
317				continue;
318
319			this_cache[num_cache_leaves].cci = cci;
320			this_cache[num_cache_leaves].level = i + 1;
321			this_cache[num_cache_leaves].type = j;
322
323			cache_shared_cpu_map_setup(cpu,
324					&this_cache[num_cache_leaves]);
325			num_cache_leaves ++;
326		}
327	}
328
329	all_cpu_cache_info[cpu].cache_leaves = this_cache;
330	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
331
332	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
333
334	return 0;
335}
336
337/* Add cache interface for CPU device */
338static int cache_add_dev(unsigned int cpu)
339{
340	struct device *sys_dev = get_cpu_device(cpu);
341	unsigned long i, j;
342	struct cache_info *this_object;
343	int retval = 0;
 
344
345	if (all_cpu_cache_info[cpu].kobj.parent)
346		return 0;
347
 
 
 
 
348
349	retval = cpu_cache_sysfs_init(cpu);
 
350	if (unlikely(retval < 0))
351		return retval;
352
353	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
354				      &cache_ktype_percpu_entry, &sys_dev->kobj,
355				      "%s", "cache");
356	if (unlikely(retval < 0)) {
357		cpu_cache_sysfs_exit(cpu);
358		return retval;
359	}
360
361	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
362		this_object = LEAF_KOBJECT_PTR(cpu,i);
363		retval = kobject_init_and_add(&(this_object->kobj),
364					      &cache_ktype,
365					      &all_cpu_cache_info[cpu].kobj,
366					      "index%1lu", i);
367		if (unlikely(retval)) {
368			for (j = 0; j < i; j++) {
369				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
370			}
371			kobject_put(&all_cpu_cache_info[cpu].kobj);
372			cpu_cache_sysfs_exit(cpu);
373			return retval;
374		}
375		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
376	}
377	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
378	return retval;
379}
380
381/* Remove cache interface for CPU device */
382static int cache_remove_dev(unsigned int cpu)
383{
 
384	unsigned long i;
385
386	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
387		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
388
389	if (all_cpu_cache_info[cpu].kobj.parent) {
390		kobject_put(&all_cpu_cache_info[cpu].kobj);
391		memset(&all_cpu_cache_info[cpu].kobj,
392			0,
393			sizeof(struct kobject));
394	}
395
396	cpu_cache_sysfs_exit(cpu);
397
398	return 0;
399}
400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401static int __init cache_sysfs_init(void)
402{
403	int ret;
 
 
 
 
 
 
 
404
405	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
406				cache_add_dev, cache_remove_dev);
407	WARN_ON(ret < 0);
408	return 0;
409}
 
410device_initcall(cache_sysfs_init);
v3.1
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * This file contains NUMA specific variables and functions which can
  7 * be split away from DISCONTIGMEM and are used on NUMA machines with
  8 * contiguous memory.
  9 * 		2002/08/07 Erich Focht <efocht@ess.nec.de>
 10 * Populate cpu entries in sysfs for non-numa systems as well
 11 *  	Intel Corporation - Ashok Raj
 12 * 02/27/2006 Zhang, Yanmin
 13 *	Populate cpu cache entries in sysfs for cpu cache info
 14 */
 15
 16#include <linux/cpu.h>
 17#include <linux/kernel.h>
 18#include <linux/mm.h>
 19#include <linux/node.h>
 20#include <linux/slab.h>
 21#include <linux/init.h>
 22#include <linux/bootmem.h>
 23#include <linux/nodemask.h>
 24#include <linux/notifier.h>
 
 25#include <asm/mmzone.h>
 26#include <asm/numa.h>
 27#include <asm/cpu.h>
 28
 29static struct ia64_cpu *sysfs_cpus;
 30
 31void arch_fix_phys_package_id(int num, u32 slot)
 32{
 33#ifdef CONFIG_SMP
 34	if (cpu_data(num)->socket_id == -1)
 35		cpu_data(num)->socket_id = slot;
 36#endif
 37}
 38EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
 39
 40
 41#ifdef CONFIG_HOTPLUG_CPU
 42int __ref arch_register_cpu(int num)
 43{
 44#ifdef CONFIG_ACPI
 45	/*
 46	 * If CPEI can be re-targeted or if this is not
 47	 * CPEI target, then it is hotpluggable
 48	 */
 49	if (can_cpei_retarget() || !is_cpu_cpei_target(num))
 50		sysfs_cpus[num].cpu.hotpluggable = 1;
 51	map_cpu_to_node(num, node_cpuid[num].nid);
 52#endif
 53	return register_cpu(&sysfs_cpus[num].cpu, num);
 54}
 55EXPORT_SYMBOL(arch_register_cpu);
 56
 57void __ref arch_unregister_cpu(int num)
 58{
 59	unregister_cpu(&sysfs_cpus[num].cpu);
 60#ifdef CONFIG_ACPI
 61	unmap_cpu_from_node(num, cpu_to_node(num));
 62#endif
 63}
 64EXPORT_SYMBOL(arch_unregister_cpu);
 65#else
 66static int __init arch_register_cpu(int num)
 67{
 68	return register_cpu(&sysfs_cpus[num].cpu, num);
 69}
 70#endif /*CONFIG_HOTPLUG_CPU*/
 71
 72
 73static int __init topology_init(void)
 74{
 75	int i, err = 0;
 76
 77#ifdef CONFIG_NUMA
 78	/*
 79	 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
 80	 */
 81	for_each_online_node(i) {
 82		if ((err = register_one_node(i)))
 83			goto out;
 84	}
 85#endif
 86
 87	sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
 88	if (!sysfs_cpus)
 89		panic("kzalloc in topology_init failed - NR_CPUS too big?");
 90
 91	for_each_present_cpu(i) {
 92		if((err = arch_register_cpu(i)))
 93			goto out;
 94	}
 95out:
 96	return err;
 97}
 98
 99subsys_initcall(topology_init);
100
101
102/*
103 * Export cpu cache information through sysfs
104 */
105
106/*
107 *  A bunch of string array to get pretty printing
108 */
109static const char *cache_types[] = {
110	"",			/* not used */
111	"Instruction",
112	"Data",
113	"Unified"	/* unified */
114};
115
116static const char *cache_mattrib[]={
117	"WriteThrough",
118	"WriteBack",
119	"",		/* reserved */
120	""		/* reserved */
121};
122
123struct cache_info {
124	pal_cache_config_info_t	cci;
125	cpumask_t shared_cpu_map;
126	int level;
127	int type;
128	struct kobject kobj;
129};
130
131struct cpu_cache_info {
132	struct cache_info *cache_leaves;
133	int	num_cache_leaves;
134	struct kobject kobj;
135};
136
137static struct cpu_cache_info	all_cpu_cache_info[NR_CPUS] __cpuinitdata;
138#define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
139
140#ifdef CONFIG_SMP
141static void __cpuinit cache_shared_cpu_map_setup( unsigned int cpu,
142		struct cache_info * this_leaf)
143{
144	pal_cache_shared_info_t	csi;
145	int num_shared, i = 0;
146	unsigned int j;
147
148	if (cpu_data(cpu)->threads_per_core <= 1 &&
149		cpu_data(cpu)->cores_per_socket <= 1) {
150		cpu_set(cpu, this_leaf->shared_cpu_map);
151		return;
152	}
153
154	if (ia64_pal_cache_shared_info(this_leaf->level,
155					this_leaf->type,
156					0,
157					&csi) != PAL_STATUS_SUCCESS)
158		return;
159
160	num_shared = (int) csi.num_shared;
161	do {
162		for_each_possible_cpu(j)
163			if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
164				&& cpu_data(j)->core_id == csi.log1_cid
165				&& cpu_data(j)->thread_id == csi.log1_tid)
166				cpu_set(j, this_leaf->shared_cpu_map);
167
168		i++;
169	} while (i < num_shared &&
170		ia64_pal_cache_shared_info(this_leaf->level,
171				this_leaf->type,
172				i,
173				&csi) == PAL_STATUS_SUCCESS);
174}
175#else
176static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu,
177		struct cache_info * this_leaf)
178{
179	cpu_set(cpu, this_leaf->shared_cpu_map);
180	return;
181}
182#endif
183
184static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
185					char *buf)
186{
187	return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
188}
189
190static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
191					char *buf)
192{
193	return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
194}
195
196static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
197{
198	return sprintf(buf,
199			"%s\n",
200			cache_mattrib[this_leaf->cci.pcci_cache_attr]);
201}
202
203static ssize_t show_size(struct cache_info *this_leaf, char *buf)
204{
205	return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
206}
207
208static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
209{
210	unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
211	number_of_sets /= this_leaf->cci.pcci_assoc;
212	number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
213
214	return sprintf(buf, "%u\n", number_of_sets);
215}
216
217static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
218{
219	ssize_t	len;
220	cpumask_t shared_cpu_map;
221
222	cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
223	len = cpumask_scnprintf(buf, NR_CPUS+1, &shared_cpu_map);
224	len += sprintf(buf+len, "\n");
225	return len;
226}
227
228static ssize_t show_type(struct cache_info *this_leaf, char *buf)
229{
230	int type = this_leaf->type + this_leaf->cci.pcci_unified;
231	return sprintf(buf, "%s\n", cache_types[type]);
232}
233
234static ssize_t show_level(struct cache_info *this_leaf, char *buf)
235{
236	return sprintf(buf, "%u\n", this_leaf->level);
237}
238
239struct cache_attr {
240	struct attribute attr;
241	ssize_t (*show)(struct cache_info *, char *);
242	ssize_t (*store)(struct cache_info *, const char *, size_t count);
243};
244
245#ifdef define_one_ro
246	#undef define_one_ro
247#endif
248#define define_one_ro(_name) \
249	static struct cache_attr _name = \
250__ATTR(_name, 0444, show_##_name, NULL)
251
252define_one_ro(level);
253define_one_ro(type);
254define_one_ro(coherency_line_size);
255define_one_ro(ways_of_associativity);
256define_one_ro(size);
257define_one_ro(number_of_sets);
258define_one_ro(shared_cpu_map);
259define_one_ro(attributes);
260
261static struct attribute * cache_default_attrs[] = {
262	&type.attr,
263	&level.attr,
264	&coherency_line_size.attr,
265	&ways_of_associativity.attr,
266	&attributes.attr,
267	&size.attr,
268	&number_of_sets.attr,
269	&shared_cpu_map.attr,
270	NULL
271};
 
272
273#define to_object(k) container_of(k, struct cache_info, kobj)
274#define to_attr(a) container_of(a, struct cache_attr, attr)
275
276static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
277{
278	struct cache_attr *fattr = to_attr(attr);
279	struct cache_info *this_leaf = to_object(kobj);
280	ssize_t ret;
281
282	ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
283	return ret;
284}
285
286static const struct sysfs_ops cache_sysfs_ops = {
287	.show   = cache_show
288};
289
290static struct kobj_type cache_ktype = {
291	.sysfs_ops	= &cache_sysfs_ops,
292	.default_attrs	= cache_default_attrs,
293};
294
295static struct kobj_type cache_ktype_percpu_entry = {
296	.sysfs_ops	= &cache_sysfs_ops,
297};
298
299static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
300{
301	kfree(all_cpu_cache_info[cpu].cache_leaves);
302	all_cpu_cache_info[cpu].cache_leaves = NULL;
303	all_cpu_cache_info[cpu].num_cache_leaves = 0;
304	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
305	return;
306}
307
308static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
309{
310	unsigned long i, levels, unique_caches;
311	pal_cache_config_info_t cci;
312	int j;
313	long status;
314	struct cache_info *this_cache;
315	int num_cache_leaves = 0;
316
317	if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
318		printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
319		return -1;
320	}
321
322	this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
323			GFP_KERNEL);
324	if (this_cache == NULL)
325		return -ENOMEM;
326
327	for (i=0; i < levels; i++) {
328		for (j=2; j >0 ; j--) {
329			if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
330					PAL_STATUS_SUCCESS)
331				continue;
332
333			this_cache[num_cache_leaves].cci = cci;
334			this_cache[num_cache_leaves].level = i + 1;
335			this_cache[num_cache_leaves].type = j;
336
337			cache_shared_cpu_map_setup(cpu,
338					&this_cache[num_cache_leaves]);
339			num_cache_leaves ++;
340		}
341	}
342
343	all_cpu_cache_info[cpu].cache_leaves = this_cache;
344	all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
345
346	memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
347
348	return 0;
349}
350
351/* Add cache interface for CPU device */
352static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
353{
354	unsigned int cpu = sys_dev->id;
355	unsigned long i, j;
356	struct cache_info *this_object;
357	int retval = 0;
358	cpumask_t oldmask;
359
360	if (all_cpu_cache_info[cpu].kobj.parent)
361		return 0;
362
363	oldmask = current->cpus_allowed;
364	retval = set_cpus_allowed_ptr(current, cpumask_of(cpu));
365	if (unlikely(retval))
366		return retval;
367
368	retval = cpu_cache_sysfs_init(cpu);
369	set_cpus_allowed_ptr(current, &oldmask);
370	if (unlikely(retval < 0))
371		return retval;
372
373	retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
374				      &cache_ktype_percpu_entry, &sys_dev->kobj,
375				      "%s", "cache");
376	if (unlikely(retval < 0)) {
377		cpu_cache_sysfs_exit(cpu);
378		return retval;
379	}
380
381	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
382		this_object = LEAF_KOBJECT_PTR(cpu,i);
383		retval = kobject_init_and_add(&(this_object->kobj),
384					      &cache_ktype,
385					      &all_cpu_cache_info[cpu].kobj,
386					      "index%1lu", i);
387		if (unlikely(retval)) {
388			for (j = 0; j < i; j++) {
389				kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
390			}
391			kobject_put(&all_cpu_cache_info[cpu].kobj);
392			cpu_cache_sysfs_exit(cpu);
393			return retval;
394		}
395		kobject_uevent(&(this_object->kobj), KOBJ_ADD);
396	}
397	kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
398	return retval;
399}
400
401/* Remove cache interface for CPU device */
402static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
403{
404	unsigned int cpu = sys_dev->id;
405	unsigned long i;
406
407	for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
408		kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
409
410	if (all_cpu_cache_info[cpu].kobj.parent) {
411		kobject_put(&all_cpu_cache_info[cpu].kobj);
412		memset(&all_cpu_cache_info[cpu].kobj,
413			0,
414			sizeof(struct kobject));
415	}
416
417	cpu_cache_sysfs_exit(cpu);
418
419	return 0;
420}
421
422/*
423 * When a cpu is hot-plugged, do a check and initiate
424 * cache kobject if necessary
425 */
426static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
427		unsigned long action, void *hcpu)
428{
429	unsigned int cpu = (unsigned long)hcpu;
430	struct sys_device *sys_dev;
431
432	sys_dev = get_cpu_sysdev(cpu);
433	switch (action) {
434	case CPU_ONLINE:
435	case CPU_ONLINE_FROZEN:
436		cache_add_dev(sys_dev);
437		break;
438	case CPU_DEAD:
439	case CPU_DEAD_FROZEN:
440		cache_remove_dev(sys_dev);
441		break;
442	}
443	return NOTIFY_OK;
444}
445
446static struct notifier_block __cpuinitdata cache_cpu_notifier =
447{
448	.notifier_call = cache_cpu_callback
449};
450
451static int __init cache_sysfs_init(void)
452{
453	int i;
454
455	for_each_online_cpu(i) {
456		struct sys_device *sys_dev = get_cpu_sysdev((unsigned int)i);
457		cache_add_dev(sys_dev);
458	}
459
460	register_hotcpu_notifier(&cache_cpu_notifier);
461
 
 
 
462	return 0;
463}
464
465device_initcall(cache_sysfs_init);
466