Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * demand-loading started 01.12.91 - seems it is high on the list of
  10 * things wanted, and it should be easy to implement. - Linus
  11 */
  12
  13/*
  14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  15 * pages started 02.12.91, seems to work. - Linus.
  16 *
  17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  18 * would have taken more than the 6M I have free, but it worked well as
  19 * far as I could see.
  20 *
  21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  22 */
  23
  24/*
  25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  26 * thought has to go into this. Oh, well..
  27 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  28 *		Found it. Everything seems to work now.
  29 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  30 */
  31
  32/*
  33 * 05.04.94  -  Multi-page memory management added for v1.1.
  34 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  35 *
  36 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  37 *		(Gerhard.Wichert@pdb.siemens.de)
  38 *
  39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  40 */
  41
  42#include <linux/kernel_stat.h>
  43#include <linux/mm.h>
  44#include <linux/mm_inline.h>
  45#include <linux/sched/mm.h>
  46#include <linux/sched/coredump.h>
  47#include <linux/sched/numa_balancing.h>
  48#include <linux/sched/task.h>
  49#include <linux/hugetlb.h>
  50#include <linux/mman.h>
  51#include <linux/swap.h>
  52#include <linux/highmem.h>
  53#include <linux/pagemap.h>
  54#include <linux/memremap.h>
  55#include <linux/kmsan.h>
  56#include <linux/ksm.h>
  57#include <linux/rmap.h>
  58#include <linux/export.h>
  59#include <linux/delayacct.h>
  60#include <linux/init.h>
  61#include <linux/pfn_t.h>
  62#include <linux/writeback.h>
  63#include <linux/memcontrol.h>
  64#include <linux/mmu_notifier.h>
 
  65#include <linux/swapops.h>
  66#include <linux/elf.h>
  67#include <linux/gfp.h>
  68#include <linux/migrate.h>
  69#include <linux/string.h>
  70#include <linux/memory-tiers.h>
  71#include <linux/debugfs.h>
  72#include <linux/userfaultfd_k.h>
  73#include <linux/dax.h>
  74#include <linux/oom.h>
  75#include <linux/numa.h>
  76#include <linux/perf_event.h>
  77#include <linux/ptrace.h>
  78#include <linux/vmalloc.h>
  79#include <linux/sched/sysctl.h>
  80
  81#include <trace/events/kmem.h>
  82
  83#include <asm/io.h>
  84#include <asm/mmu_context.h>
  85#include <asm/pgalloc.h>
  86#include <linux/uaccess.h>
  87#include <asm/tlb.h>
  88#include <asm/tlbflush.h>
 
  89
  90#include "pgalloc-track.h"
  91#include "internal.h"
  92#include "swap.h"
  93
  94#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  95#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  96#endif
  97
  98#ifndef CONFIG_NUMA
 
  99unsigned long max_mapnr;
 100EXPORT_SYMBOL(max_mapnr);
 101
 102struct page *mem_map;
 
 
 103EXPORT_SYMBOL(mem_map);
 104#endif
 105
 106static vm_fault_t do_fault(struct vm_fault *vmf);
 107
 108/*
 109 * A number of key systems in x86 including ioremap() rely on the assumption
 110 * that high_memory defines the upper bound on direct map memory, then end
 111 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 113 * and ZONE_HIGHMEM.
 114 */
 115void *high_memory;
 
 
 116EXPORT_SYMBOL(high_memory);
 117
 118/*
 119 * Randomize the address space (stacks, mmaps, brk, etc.).
 120 *
 121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 122 *   as ancient (libc5 based) binaries can segfault. )
 123 */
 124int randomize_va_space __read_mostly =
 125#ifdef CONFIG_COMPAT_BRK
 126					1;
 127#else
 128					2;
 129#endif
 130
 131#ifndef arch_wants_old_prefaulted_pte
 132static inline bool arch_wants_old_prefaulted_pte(void)
 133{
 134	/*
 135	 * Transitioning a PTE from 'old' to 'young' can be expensive on
 136	 * some architectures, even if it's performed in hardware. By
 137	 * default, "false" means prefaulted entries will be 'young'.
 138	 */
 139	return false;
 140}
 141#endif
 142
 143static int __init disable_randmaps(char *s)
 144{
 145	randomize_va_space = 0;
 146	return 1;
 147}
 148__setup("norandmaps", disable_randmaps);
 149
 150unsigned long zero_pfn __read_mostly;
 151EXPORT_SYMBOL(zero_pfn);
 152
 153unsigned long highest_memmap_pfn __read_mostly;
 154
 155/*
 156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 157 */
 158static int __init init_zero_pfn(void)
 159{
 160	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 161	return 0;
 162}
 163early_initcall(init_zero_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164
 165void mm_trace_rss_stat(struct mm_struct *mm, int member)
 166{
 167	trace_rss_stat(mm, member);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168}
 169
 170/*
 171 * Note: this doesn't free the actual pages themselves. That
 172 * has been handled earlier when unmapping all the memory regions.
 173 */
 174static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 175			   unsigned long addr)
 176{
 177	pgtable_t token = pmd_pgtable(*pmd);
 178	pmd_clear(pmd);
 179	pte_free_tlb(tlb, token, addr);
 180	mm_dec_nr_ptes(tlb->mm);
 181}
 182
 183static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 184				unsigned long addr, unsigned long end,
 185				unsigned long floor, unsigned long ceiling)
 186{
 187	pmd_t *pmd;
 188	unsigned long next;
 189	unsigned long start;
 190
 191	start = addr;
 192	pmd = pmd_offset(pud, addr);
 193	do {
 194		next = pmd_addr_end(addr, end);
 195		if (pmd_none_or_clear_bad(pmd))
 196			continue;
 197		free_pte_range(tlb, pmd, addr);
 198	} while (pmd++, addr = next, addr != end);
 199
 200	start &= PUD_MASK;
 201	if (start < floor)
 202		return;
 203	if (ceiling) {
 204		ceiling &= PUD_MASK;
 205		if (!ceiling)
 206			return;
 207	}
 208	if (end - 1 > ceiling - 1)
 209		return;
 210
 211	pmd = pmd_offset(pud, start);
 212	pud_clear(pud);
 213	pmd_free_tlb(tlb, pmd, start);
 214	mm_dec_nr_pmds(tlb->mm);
 215}
 216
 217static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 218				unsigned long addr, unsigned long end,
 219				unsigned long floor, unsigned long ceiling)
 220{
 221	pud_t *pud;
 222	unsigned long next;
 223	unsigned long start;
 224
 225	start = addr;
 226	pud = pud_offset(p4d, addr);
 227	do {
 228		next = pud_addr_end(addr, end);
 229		if (pud_none_or_clear_bad(pud))
 230			continue;
 231		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 232	} while (pud++, addr = next, addr != end);
 233
 234	start &= P4D_MASK;
 235	if (start < floor)
 236		return;
 237	if (ceiling) {
 238		ceiling &= P4D_MASK;
 239		if (!ceiling)
 240			return;
 241	}
 242	if (end - 1 > ceiling - 1)
 243		return;
 244
 245	pud = pud_offset(p4d, start);
 246	p4d_clear(p4d);
 247	pud_free_tlb(tlb, pud, start);
 248	mm_dec_nr_puds(tlb->mm);
 249}
 250
 251static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 252				unsigned long addr, unsigned long end,
 253				unsigned long floor, unsigned long ceiling)
 254{
 255	p4d_t *p4d;
 256	unsigned long next;
 257	unsigned long start;
 258
 259	start = addr;
 260	p4d = p4d_offset(pgd, addr);
 261	do {
 262		next = p4d_addr_end(addr, end);
 263		if (p4d_none_or_clear_bad(p4d))
 264			continue;
 265		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 266	} while (p4d++, addr = next, addr != end);
 267
 268	start &= PGDIR_MASK;
 269	if (start < floor)
 270		return;
 271	if (ceiling) {
 272		ceiling &= PGDIR_MASK;
 273		if (!ceiling)
 274			return;
 275	}
 276	if (end - 1 > ceiling - 1)
 277		return;
 278
 279	p4d = p4d_offset(pgd, start);
 280	pgd_clear(pgd);
 281	p4d_free_tlb(tlb, p4d, start);
 282}
 283
 284/*
 285 * This function frees user-level page tables of a process.
 
 
 286 */
 287void free_pgd_range(struct mmu_gather *tlb,
 288			unsigned long addr, unsigned long end,
 289			unsigned long floor, unsigned long ceiling)
 290{
 291	pgd_t *pgd;
 292	unsigned long next;
 293
 294	/*
 295	 * The next few lines have given us lots of grief...
 296	 *
 297	 * Why are we testing PMD* at this top level?  Because often
 298	 * there will be no work to do at all, and we'd prefer not to
 299	 * go all the way down to the bottom just to discover that.
 300	 *
 301	 * Why all these "- 1"s?  Because 0 represents both the bottom
 302	 * of the address space and the top of it (using -1 for the
 303	 * top wouldn't help much: the masks would do the wrong thing).
 304	 * The rule is that addr 0 and floor 0 refer to the bottom of
 305	 * the address space, but end 0 and ceiling 0 refer to the top
 306	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 307	 * that end 0 case should be mythical).
 308	 *
 309	 * Wherever addr is brought up or ceiling brought down, we must
 310	 * be careful to reject "the opposite 0" before it confuses the
 311	 * subsequent tests.  But what about where end is brought down
 312	 * by PMD_SIZE below? no, end can't go down to 0 there.
 313	 *
 314	 * Whereas we round start (addr) and ceiling down, by different
 315	 * masks at different levels, in order to test whether a table
 316	 * now has no other vmas using it, so can be freed, we don't
 317	 * bother to round floor or end up - the tests don't need that.
 318	 */
 319
 320	addr &= PMD_MASK;
 321	if (addr < floor) {
 322		addr += PMD_SIZE;
 323		if (!addr)
 324			return;
 325	}
 326	if (ceiling) {
 327		ceiling &= PMD_MASK;
 328		if (!ceiling)
 329			return;
 330	}
 331	if (end - 1 > ceiling - 1)
 332		end -= PMD_SIZE;
 333	if (addr > end - 1)
 334		return;
 335	/*
 336	 * We add page table cache pages with PAGE_SIZE,
 337	 * (see pte_free_tlb()), flush the tlb if we need
 338	 */
 339	tlb_change_page_size(tlb, PAGE_SIZE);
 340	pgd = pgd_offset(tlb->mm, addr);
 341	do {
 342		next = pgd_addr_end(addr, end);
 343		if (pgd_none_or_clear_bad(pgd))
 344			continue;
 345		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 346	} while (pgd++, addr = next, addr != end);
 347}
 348
 349void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
 350		   struct vm_area_struct *vma, unsigned long floor,
 351		   unsigned long ceiling)
 352{
 353	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
 354
 355	do {
 356		unsigned long addr = vma->vm_start;
 357		struct vm_area_struct *next;
 358
 359		/*
 360		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
 361		 * be 0.  This will underflow and is okay.
 362		 */
 363		next = mas_find(&mas, ceiling - 1);
 364
 365		/*
 366		 * Hide vma from rmap and truncate_pagecache before freeing
 367		 * pgtables
 368		 */
 369		unlink_anon_vmas(vma);
 370		unlink_file_vma(vma);
 371
 372		if (is_vm_hugetlb_page(vma)) {
 373			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 374				floor, next ? next->vm_start : ceiling);
 375		} else {
 376			/*
 377			 * Optimization: gather nearby vmas into one call down
 378			 */
 379			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 380			       && !is_vm_hugetlb_page(next)) {
 381				vma = next;
 382				next = mas_find(&mas, ceiling - 1);
 383				unlink_anon_vmas(vma);
 384				unlink_file_vma(vma);
 385			}
 386			free_pgd_range(tlb, addr, vma->vm_end,
 387				floor, next ? next->vm_start : ceiling);
 388		}
 389		vma = next;
 390	} while (vma);
 391}
 392
 393void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
 394{
 395	spinlock_t *ptl = pmd_lock(mm, pmd);
 396
 397	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 398		mm_inc_nr_ptes(mm);
 399		/*
 400		 * Ensure all pte setup (eg. pte page lock and page clearing) are
 401		 * visible before the pte is made visible to other CPUs by being
 402		 * put into page tables.
 403		 *
 404		 * The other side of the story is the pointer chasing in the page
 405		 * table walking code (when walking the page table without locking;
 406		 * ie. most of the time). Fortunately, these data accesses consist
 407		 * of a chain of data-dependent loads, meaning most CPUs (alpha
 408		 * being the notable exception) will already guarantee loads are
 409		 * seen in-order. See the alpha page table accessors for the
 410		 * smp_rmb() barriers in page table walking code.
 411		 */
 412		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 413		pmd_populate(mm, pmd, *pte);
 414		*pte = NULL;
 415	}
 416	spin_unlock(ptl);
 417}
 418
 419int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 
 420{
 421	pgtable_t new = pte_alloc_one(mm);
 
 422	if (!new)
 423		return -ENOMEM;
 424
 425	pmd_install(mm, pmd, &new);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426	if (new)
 427		pte_free(mm, new);
 
 
 428	return 0;
 429}
 430
 431int __pte_alloc_kernel(pmd_t *pmd)
 432{
 433	pte_t *new = pte_alloc_one_kernel(&init_mm);
 434	if (!new)
 435		return -ENOMEM;
 436
 
 
 437	spin_lock(&init_mm.page_table_lock);
 438	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 439		smp_wmb(); /* See comment in pmd_install() */
 440		pmd_populate_kernel(&init_mm, pmd, new);
 441		new = NULL;
 442	}
 
 443	spin_unlock(&init_mm.page_table_lock);
 444	if (new)
 445		pte_free_kernel(&init_mm, new);
 446	return 0;
 447}
 448
 449static inline void init_rss_vec(int *rss)
 450{
 451	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 452}
 453
 454static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 455{
 456	int i;
 457
 458	if (current->mm == mm)
 459		sync_mm_rss(mm);
 460	for (i = 0; i < NR_MM_COUNTERS; i++)
 461		if (rss[i])
 462			add_mm_counter(mm, i, rss[i]);
 463}
 464
 465/*
 466 * This function is called to print an error when a bad pte
 467 * is found. For example, we might have a PFN-mapped pte in
 468 * a region that doesn't allow it.
 469 *
 470 * The calling function must still handle the error.
 471 */
 472static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 473			  pte_t pte, struct page *page)
 474{
 475	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 476	p4d_t *p4d = p4d_offset(pgd, addr);
 477	pud_t *pud = pud_offset(p4d, addr);
 478	pmd_t *pmd = pmd_offset(pud, addr);
 479	struct address_space *mapping;
 480	pgoff_t index;
 481	static unsigned long resume;
 482	static unsigned long nr_shown;
 483	static unsigned long nr_unshown;
 484
 485	/*
 486	 * Allow a burst of 60 reports, then keep quiet for that minute;
 487	 * or allow a steady drip of one report per second.
 488	 */
 489	if (nr_shown == 60) {
 490		if (time_before(jiffies, resume)) {
 491			nr_unshown++;
 492			return;
 493		}
 494		if (nr_unshown) {
 495			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 496				 nr_unshown);
 
 497			nr_unshown = 0;
 498		}
 499		nr_shown = 0;
 500	}
 501	if (nr_shown++ == 0)
 502		resume = jiffies + 60 * HZ;
 503
 504	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 505	index = linear_page_index(vma, addr);
 506
 507	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 508		 current->comm,
 509		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 
 510	if (page)
 511		dump_page(page, "bad pte");
 512	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
 513		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 514	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
 515		 vma->vm_file,
 516		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 517		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 518		 mapping ? mapping->a_ops->read_folio : NULL);
 
 
 
 
 
 519	dump_stack();
 520	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 
 
 
 
 
 521}
 522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523/*
 524 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 525 *
 526 * "Special" mappings do not wish to be associated with a "struct page" (either
 527 * it doesn't exist, or it exists but they don't want to touch it). In this
 528 * case, NULL is returned here. "Normal" mappings do have a struct page.
 529 *
 530 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 531 * pte bit, in which case this function is trivial. Secondly, an architecture
 532 * may not have a spare pte bit, which requires a more complicated scheme,
 533 * described below.
 534 *
 535 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 536 * special mapping (even if there are underlying and valid "struct pages").
 537 * COWed pages of a VM_PFNMAP are always normal.
 538 *
 539 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 540 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 541 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 542 * mapping will always honor the rule
 543 *
 544 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 545 *
 546 * And for normal mappings this is false.
 547 *
 548 * This restricts such mappings to be a linear translation from virtual address
 549 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 550 * as the vma is not a COW mapping; in that case, we know that all ptes are
 551 * special (because none can have been COWed).
 552 *
 553 *
 554 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 555 *
 556 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 557 * page" backing, however the difference is that _all_ pages with a struct
 558 * page (that is, those where pfn_valid is true) are refcounted and considered
 559 * normal pages by the VM. The disadvantage is that pages are refcounted
 560 * (which can be slower and simply not an option for some PFNMAP users). The
 561 * advantage is that we don't have to follow the strict linearity rule of
 562 * PFNMAP mappings in order to support COWable mappings.
 563 *
 564 */
 
 
 
 
 
 565struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 566			    pte_t pte)
 567{
 568	unsigned long pfn = pte_pfn(pte);
 569
 570	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 571		if (likely(!pte_special(pte)))
 572			goto check_pfn;
 573		if (vma->vm_ops && vma->vm_ops->find_special_page)
 574			return vma->vm_ops->find_special_page(vma, addr);
 575		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 576			return NULL;
 577		if (is_zero_pfn(pfn))
 578			return NULL;
 579		if (pte_devmap(pte))
 580		/*
 581		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
 582		 * and will have refcounts incremented on their struct pages
 583		 * when they are inserted into PTEs, thus they are safe to
 584		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
 585		 * do not have refcounts. Example of legacy ZONE_DEVICE is
 586		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
 587		 */
 588			return NULL;
 589
 590		print_bad_pte(vma, addr, pte, NULL);
 591		return NULL;
 592	}
 593
 594	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 595
 596	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 597		if (vma->vm_flags & VM_MIXEDMAP) {
 598			if (!pfn_valid(pfn))
 599				return NULL;
 600			goto out;
 601		} else {
 602			unsigned long off;
 603			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 604			if (pfn == vma->vm_pgoff + off)
 605				return NULL;
 606			if (!is_cow_mapping(vma->vm_flags))
 607				return NULL;
 608		}
 609	}
 610
 611	if (is_zero_pfn(pfn))
 612		return NULL;
 613
 614check_pfn:
 615	if (unlikely(pfn > highest_memmap_pfn)) {
 616		print_bad_pte(vma, addr, pte, NULL);
 617		return NULL;
 618	}
 619
 620	/*
 621	 * NOTE! We still have PageReserved() pages in the page tables.
 622	 * eg. VDSO mappings can cause them to exist.
 623	 */
 624out:
 625	return pfn_to_page(pfn);
 626}
 627
 628#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 629struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 630				pmd_t pmd)
 631{
 632	unsigned long pfn = pmd_pfn(pmd);
 633
 634	/*
 635	 * There is no pmd_special() but there may be special pmds, e.g.
 636	 * in a direct-access (dax) mapping, so let's just replicate the
 637	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 638	 */
 639	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 640		if (vma->vm_flags & VM_MIXEDMAP) {
 641			if (!pfn_valid(pfn))
 642				return NULL;
 643			goto out;
 644		} else {
 645			unsigned long off;
 646			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 647			if (pfn == vma->vm_pgoff + off)
 648				return NULL;
 649			if (!is_cow_mapping(vma->vm_flags))
 650				return NULL;
 651		}
 652	}
 653
 654	if (pmd_devmap(pmd))
 655		return NULL;
 656	if (is_huge_zero_pmd(pmd))
 657		return NULL;
 658	if (unlikely(pfn > highest_memmap_pfn))
 659		return NULL;
 660
 661	/*
 662	 * NOTE! We still have PageReserved() pages in the page tables.
 663	 * eg. VDSO mappings can cause them to exist.
 664	 */
 665out:
 666	return pfn_to_page(pfn);
 667}
 668#endif
 669
 670static void restore_exclusive_pte(struct vm_area_struct *vma,
 671				  struct page *page, unsigned long address,
 672				  pte_t *ptep)
 673{
 674	pte_t pte;
 675	swp_entry_t entry;
 676
 677	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
 678	if (pte_swp_soft_dirty(*ptep))
 679		pte = pte_mksoft_dirty(pte);
 680
 681	entry = pte_to_swp_entry(*ptep);
 682	if (pte_swp_uffd_wp(*ptep))
 683		pte = pte_mkuffd_wp(pte);
 684	else if (is_writable_device_exclusive_entry(entry))
 685		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
 686
 687	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
 688
 689	/*
 690	 * No need to take a page reference as one was already
 691	 * created when the swap entry was made.
 692	 */
 693	if (PageAnon(page))
 694		page_add_anon_rmap(page, vma, address, RMAP_NONE);
 695	else
 696		/*
 697		 * Currently device exclusive access only supports anonymous
 698		 * memory so the entry shouldn't point to a filebacked page.
 699		 */
 700		WARN_ON_ONCE(1);
 701
 702	set_pte_at(vma->vm_mm, address, ptep, pte);
 703
 704	/*
 705	 * No need to invalidate - it was non-present before. However
 706	 * secondary CPUs may have mappings that need invalidating.
 707	 */
 708	update_mmu_cache(vma, address, ptep);
 709}
 710
 711/*
 712 * Tries to restore an exclusive pte if the page lock can be acquired without
 713 * sleeping.
 714 */
 715static int
 716try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
 717			unsigned long addr)
 718{
 719	swp_entry_t entry = pte_to_swp_entry(*src_pte);
 720	struct page *page = pfn_swap_entry_to_page(entry);
 721
 722	if (trylock_page(page)) {
 723		restore_exclusive_pte(vma, page, addr, src_pte);
 724		unlock_page(page);
 725		return 0;
 726	}
 727
 728	return -EBUSY;
 729}
 730
 731/*
 732 * copy one vm_area from one task to the other. Assumes the page tables
 733 * already present in the new task to be cleared in the whole range
 734 * covered by this vma.
 735 */
 736
 737static unsigned long
 738copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 739		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
 740		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
 741{
 742	unsigned long vm_flags = dst_vma->vm_flags;
 743	pte_t pte = *src_pte;
 744	struct page *page;
 745	swp_entry_t entry = pte_to_swp_entry(pte);
 746
 747	if (likely(!non_swap_entry(entry))) {
 748		if (swap_duplicate(entry) < 0)
 749			return -EIO;
 750
 751		/* make sure dst_mm is on swapoff's mmlist. */
 752		if (unlikely(list_empty(&dst_mm->mmlist))) {
 753			spin_lock(&mmlist_lock);
 754			if (list_empty(&dst_mm->mmlist))
 755				list_add(&dst_mm->mmlist,
 756						&src_mm->mmlist);
 757			spin_unlock(&mmlist_lock);
 758		}
 759		/* Mark the swap entry as shared. */
 760		if (pte_swp_exclusive(*src_pte)) {
 761			pte = pte_swp_clear_exclusive(*src_pte);
 762			set_pte_at(src_mm, addr, src_pte, pte);
 763		}
 764		rss[MM_SWAPENTS]++;
 765	} else if (is_migration_entry(entry)) {
 766		page = pfn_swap_entry_to_page(entry);
 767
 768		rss[mm_counter(page)]++;
 769
 770		if (!is_readable_migration_entry(entry) &&
 771				is_cow_mapping(vm_flags)) {
 772			/*
 773			 * COW mappings require pages in both parent and child
 774			 * to be set to read. A previously exclusive entry is
 775			 * now shared.
 776			 */
 777			entry = make_readable_migration_entry(
 778							swp_offset(entry));
 779			pte = swp_entry_to_pte(entry);
 780			if (pte_swp_soft_dirty(*src_pte))
 781				pte = pte_swp_mksoft_dirty(pte);
 782			if (pte_swp_uffd_wp(*src_pte))
 783				pte = pte_swp_mkuffd_wp(pte);
 784			set_pte_at(src_mm, addr, src_pte, pte);
 785		}
 786	} else if (is_device_private_entry(entry)) {
 787		page = pfn_swap_entry_to_page(entry);
 788
 789		/*
 790		 * Update rss count even for unaddressable pages, as
 791		 * they should treated just like normal pages in this
 792		 * respect.
 793		 *
 794		 * We will likely want to have some new rss counters
 795		 * for unaddressable pages, at some point. But for now
 796		 * keep things as they are.
 797		 */
 798		get_page(page);
 799		rss[mm_counter(page)]++;
 800		/* Cannot fail as these pages cannot get pinned. */
 801		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
 802
 803		/*
 804		 * We do not preserve soft-dirty information, because so
 805		 * far, checkpoint/restore is the only feature that
 806		 * requires that. And checkpoint/restore does not work
 807		 * when a device driver is involved (you cannot easily
 808		 * save and restore device driver state).
 809		 */
 810		if (is_writable_device_private_entry(entry) &&
 811		    is_cow_mapping(vm_flags)) {
 812			entry = make_readable_device_private_entry(
 813							swp_offset(entry));
 814			pte = swp_entry_to_pte(entry);
 815			if (pte_swp_uffd_wp(*src_pte))
 816				pte = pte_swp_mkuffd_wp(pte);
 817			set_pte_at(src_mm, addr, src_pte, pte);
 818		}
 819	} else if (is_device_exclusive_entry(entry)) {
 820		/*
 821		 * Make device exclusive entries present by restoring the
 822		 * original entry then copying as for a present pte. Device
 823		 * exclusive entries currently only support private writable
 824		 * (ie. COW) mappings.
 825		 */
 826		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
 827		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
 828			return -EBUSY;
 829		return -ENOENT;
 830	} else if (is_pte_marker_entry(entry)) {
 831		if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
 832			set_pte_at(dst_mm, addr, dst_pte, pte);
 833		return 0;
 834	}
 835	if (!userfaultfd_wp(dst_vma))
 836		pte = pte_swp_clear_uffd_wp(pte);
 837	set_pte_at(dst_mm, addr, dst_pte, pte);
 838	return 0;
 839}
 840
 841/*
 842 * Copy a present and normal page.
 843 *
 844 * NOTE! The usual case is that this isn't required;
 845 * instead, the caller can just increase the page refcount
 846 * and re-use the pte the traditional way.
 847 *
 848 * And if we need a pre-allocated page but don't yet have
 849 * one, return a negative error to let the preallocation
 850 * code know so that it can do so outside the page table
 851 * lock.
 852 */
 853static inline int
 854copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
 855		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
 856		  struct page **prealloc, struct page *page)
 857{
 858	struct page *new_page;
 859	pte_t pte;
 860
 861	new_page = *prealloc;
 862	if (!new_page)
 863		return -EAGAIN;
 864
 865	/*
 866	 * We have a prealloc page, all good!  Take it
 867	 * over and copy the page & arm it.
 868	 */
 869	*prealloc = NULL;
 870	copy_user_highpage(new_page, page, addr, src_vma);
 871	__SetPageUptodate(new_page);
 872	page_add_new_anon_rmap(new_page, dst_vma, addr);
 873	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
 874	rss[mm_counter(new_page)]++;
 875
 876	/* All done, just insert the new page copy in the child */
 877	pte = mk_pte(new_page, dst_vma->vm_page_prot);
 878	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
 879	if (userfaultfd_pte_wp(dst_vma, *src_pte))
 880		/* Uffd-wp needs to be delivered to dest pte as well */
 881		pte = pte_wrprotect(pte_mkuffd_wp(pte));
 882	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
 883	return 0;
 884}
 885
 886/*
 887 * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
 888 * is required to copy this pte.
 889 */
 890static inline int
 891copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
 892		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
 893		 struct page **prealloc)
 894{
 895	struct mm_struct *src_mm = src_vma->vm_mm;
 896	unsigned long vm_flags = src_vma->vm_flags;
 897	pte_t pte = *src_pte;
 898	struct page *page;
 899
 900	page = vm_normal_page(src_vma, addr, pte);
 901	if (page && PageAnon(page)) {
 902		/*
 903		 * If this page may have been pinned by the parent process,
 904		 * copy the page immediately for the child so that we'll always
 905		 * guarantee the pinned page won't be randomly replaced in the
 906		 * future.
 907		 */
 908		get_page(page);
 909		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
 910			/* Page maybe pinned, we have to copy. */
 911			put_page(page);
 912			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
 913						 addr, rss, prealloc, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914		}
 915		rss[mm_counter(page)]++;
 916	} else if (page) {
 917		get_page(page);
 918		page_dup_file_rmap(page, false);
 919		rss[mm_counter(page)]++;
 920	}
 921
 922	/*
 923	 * If it's a COW mapping, write protect it both
 924	 * in the parent and the child
 925	 */
 926	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
 927		ptep_set_wrprotect(src_mm, addr, src_pte);
 928		pte = pte_wrprotect(pte);
 929	}
 930	VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
 931
 932	/*
 933	 * If it's a shared mapping, mark it clean in
 934	 * the child
 935	 */
 936	if (vm_flags & VM_SHARED)
 937		pte = pte_mkclean(pte);
 938	pte = pte_mkold(pte);
 939
 940	if (!userfaultfd_wp(dst_vma))
 941		pte = pte_clear_uffd_wp(pte);
 942
 943	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
 944	return 0;
 945}
 946
 947static inline struct page *
 948page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
 949		   unsigned long addr)
 950{
 951	struct page *new_page;
 952
 953	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
 954	if (!new_page)
 955		return NULL;
 956
 957	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
 958		put_page(new_page);
 959		return NULL;
 960	}
 961	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
 962
 963	return new_page;
 
 
 964}
 965
 966static int
 967copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
 968	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 969	       unsigned long end)
 970{
 971	struct mm_struct *dst_mm = dst_vma->vm_mm;
 972	struct mm_struct *src_mm = src_vma->vm_mm;
 973	pte_t *orig_src_pte, *orig_dst_pte;
 974	pte_t *src_pte, *dst_pte;
 975	spinlock_t *src_ptl, *dst_ptl;
 976	int progress, ret = 0;
 977	int rss[NR_MM_COUNTERS];
 978	swp_entry_t entry = (swp_entry_t){0};
 979	struct page *prealloc = NULL;
 980
 981again:
 982	progress = 0;
 983	init_rss_vec(rss);
 984
 985	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 986	if (!dst_pte) {
 987		ret = -ENOMEM;
 988		goto out;
 989	}
 990	src_pte = pte_offset_map(src_pmd, addr);
 991	src_ptl = pte_lockptr(src_mm, src_pmd);
 992	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 993	orig_src_pte = src_pte;
 994	orig_dst_pte = dst_pte;
 995	arch_enter_lazy_mmu_mode();
 996
 997	do {
 998		/*
 999		 * We are holding two locks at this point - either of them
1000		 * could generate latencies in another task on another CPU.
1001		 */
1002		if (progress >= 32) {
1003			progress = 0;
1004			if (need_resched() ||
1005			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1006				break;
1007		}
1008		if (pte_none(*src_pte)) {
1009			progress++;
1010			continue;
1011		}
1012		if (unlikely(!pte_present(*src_pte))) {
1013			ret = copy_nonpresent_pte(dst_mm, src_mm,
1014						  dst_pte, src_pte,
1015						  dst_vma, src_vma,
1016						  addr, rss);
1017			if (ret == -EIO) {
1018				entry = pte_to_swp_entry(*src_pte);
1019				break;
1020			} else if (ret == -EBUSY) {
1021				break;
1022			} else if (!ret) {
1023				progress += 8;
1024				continue;
1025			}
1026
1027			/*
1028			 * Device exclusive entry restored, continue by copying
1029			 * the now present pte.
1030			 */
1031			WARN_ON_ONCE(ret != -ENOENT);
1032		}
1033		/* copy_present_pte() will clear `*prealloc' if consumed */
1034		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1035				       addr, rss, &prealloc);
1036		/*
1037		 * If we need a pre-allocated page for this pte, drop the
1038		 * locks, allocate, and try again.
1039		 */
1040		if (unlikely(ret == -EAGAIN))
1041			break;
1042		if (unlikely(prealloc)) {
1043			/*
1044			 * pre-alloc page cannot be reused by next time so as
1045			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1046			 * will allocate page according to address).  This
1047			 * could only happen if one pinned pte changed.
1048			 */
1049			put_page(prealloc);
1050			prealloc = NULL;
1051		}
1052		progress += 8;
1053	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1054
1055	arch_leave_lazy_mmu_mode();
1056	spin_unlock(src_ptl);
1057	pte_unmap(orig_src_pte);
1058	add_mm_rss_vec(dst_mm, rss);
1059	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1060	cond_resched();
1061
1062	if (ret == -EIO) {
1063		VM_WARN_ON_ONCE(!entry.val);
1064		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1065			ret = -ENOMEM;
1066			goto out;
1067		}
1068		entry.val = 0;
1069	} else if (ret == -EBUSY) {
1070		goto out;
1071	} else if (ret ==  -EAGAIN) {
1072		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1073		if (!prealloc)
1074			return -ENOMEM;
1075	} else if (ret) {
1076		VM_WARN_ON_ONCE(1);
1077	}
1078
1079	/* We've captured and resolved the error. Reset, try again. */
1080	ret = 0;
1081
1082	if (addr != end)
1083		goto again;
1084out:
1085	if (unlikely(prealloc))
1086		put_page(prealloc);
1087	return ret;
1088}
1089
1090static inline int
1091copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1092	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1093	       unsigned long end)
1094{
1095	struct mm_struct *dst_mm = dst_vma->vm_mm;
1096	struct mm_struct *src_mm = src_vma->vm_mm;
1097	pmd_t *src_pmd, *dst_pmd;
1098	unsigned long next;
1099
1100	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1101	if (!dst_pmd)
1102		return -ENOMEM;
1103	src_pmd = pmd_offset(src_pud, addr);
1104	do {
1105		next = pmd_addr_end(addr, end);
1106		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1107			|| pmd_devmap(*src_pmd)) {
1108			int err;
1109			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1110			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1111					    addr, dst_vma, src_vma);
1112			if (err == -ENOMEM)
1113				return -ENOMEM;
1114			if (!err)
1115				continue;
1116			/* fall through */
1117		}
1118		if (pmd_none_or_clear_bad(src_pmd))
1119			continue;
1120		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1121				   addr, next))
1122			return -ENOMEM;
1123	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1124	return 0;
1125}
1126
1127static inline int
1128copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1129	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1130	       unsigned long end)
1131{
1132	struct mm_struct *dst_mm = dst_vma->vm_mm;
1133	struct mm_struct *src_mm = src_vma->vm_mm;
1134	pud_t *src_pud, *dst_pud;
1135	unsigned long next;
1136
1137	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1138	if (!dst_pud)
1139		return -ENOMEM;
1140	src_pud = pud_offset(src_p4d, addr);
1141	do {
1142		next = pud_addr_end(addr, end);
1143		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1144			int err;
1145
1146			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1147			err = copy_huge_pud(dst_mm, src_mm,
1148					    dst_pud, src_pud, addr, src_vma);
1149			if (err == -ENOMEM)
1150				return -ENOMEM;
1151			if (!err)
1152				continue;
1153			/* fall through */
1154		}
1155		if (pud_none_or_clear_bad(src_pud))
1156			continue;
1157		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1158				   addr, next))
1159			return -ENOMEM;
1160	} while (dst_pud++, src_pud++, addr = next, addr != end);
1161	return 0;
1162}
1163
1164static inline int
1165copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1166	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1167	       unsigned long end)
1168{
1169	struct mm_struct *dst_mm = dst_vma->vm_mm;
1170	p4d_t *src_p4d, *dst_p4d;
1171	unsigned long next;
1172
1173	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1174	if (!dst_p4d)
1175		return -ENOMEM;
1176	src_p4d = p4d_offset(src_pgd, addr);
1177	do {
1178		next = p4d_addr_end(addr, end);
1179		if (p4d_none_or_clear_bad(src_p4d))
1180			continue;
1181		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1182				   addr, next))
1183			return -ENOMEM;
1184	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1185	return 0;
1186}
1187
1188/*
1189 * Return true if the vma needs to copy the pgtable during this fork().  Return
1190 * false when we can speed up fork() by allowing lazy page faults later until
1191 * when the child accesses the memory range.
1192 */
1193static bool
1194vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1195{
1196	/*
1197	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1198	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1199	 * contains uffd-wp protection information, that's something we can't
1200	 * retrieve from page cache, and skip copying will lose those info.
1201	 */
1202	if (userfaultfd_wp(dst_vma))
1203		return true;
1204
1205	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1206		return true;
1207
1208	if (src_vma->anon_vma)
1209		return true;
1210
1211	/*
1212	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1213	 * becomes much lighter when there are big shared or private readonly
1214	 * mappings. The tradeoff is that copy_page_range is more efficient
1215	 * than faulting.
1216	 */
1217	return false;
1218}
1219
1220int
1221copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1222{
1223	pgd_t *src_pgd, *dst_pgd;
1224	unsigned long next;
1225	unsigned long addr = src_vma->vm_start;
1226	unsigned long end = src_vma->vm_end;
1227	struct mm_struct *dst_mm = dst_vma->vm_mm;
1228	struct mm_struct *src_mm = src_vma->vm_mm;
1229	struct mmu_notifier_range range;
1230	bool is_cow;
1231	int ret;
1232
1233	if (!vma_needs_copy(dst_vma, src_vma))
1234		return 0;
 
 
 
 
 
 
 
 
1235
1236	if (is_vm_hugetlb_page(src_vma))
1237		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1238
1239	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1240		/*
1241		 * We do not free on error cases below as remove_vma
1242		 * gets called on error from higher level routine
1243		 */
1244		ret = track_pfn_copy(src_vma);
1245		if (ret)
1246			return ret;
1247	}
1248
1249	/*
1250	 * We need to invalidate the secondary MMU mappings only when
1251	 * there could be a permission downgrade on the ptes of the
1252	 * parent mm. And a permission downgrade will only happen if
1253	 * is_cow_mapping() returns true.
1254	 */
1255	is_cow = is_cow_mapping(src_vma->vm_flags);
1256
1257	if (is_cow) {
1258		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1259					0, src_vma, src_mm, addr, end);
1260		mmu_notifier_invalidate_range_start(&range);
1261		/*
1262		 * Disabling preemption is not needed for the write side, as
1263		 * the read side doesn't spin, but goes to the mmap_lock.
1264		 *
1265		 * Use the raw variant of the seqcount_t write API to avoid
1266		 * lockdep complaining about preemptibility.
1267		 */
1268		mmap_assert_write_locked(src_mm);
1269		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1270	}
1271
1272	ret = 0;
1273	dst_pgd = pgd_offset(dst_mm, addr);
1274	src_pgd = pgd_offset(src_mm, addr);
1275	do {
1276		next = pgd_addr_end(addr, end);
1277		if (pgd_none_or_clear_bad(src_pgd))
1278			continue;
1279		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1280					    addr, next))) {
1281			ret = -ENOMEM;
1282			break;
1283		}
1284	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1285
1286	if (is_cow) {
1287		raw_write_seqcount_end(&src_mm->write_protect_seq);
1288		mmu_notifier_invalidate_range_end(&range);
1289	}
1290	return ret;
1291}
1292
1293/* Whether we should zap all COWed (private) pages too */
1294static inline bool should_zap_cows(struct zap_details *details)
1295{
1296	/* By default, zap all pages */
1297	if (!details)
1298		return true;
1299
1300	/* Or, we zap COWed pages only if the caller wants to */
1301	return details->even_cows;
1302}
1303
1304/* Decides whether we should zap this page with the page pointer specified */
1305static inline bool should_zap_page(struct zap_details *details, struct page *page)
1306{
1307	/* If we can make a decision without *page.. */
1308	if (should_zap_cows(details))
1309		return true;
1310
1311	/* E.g. the caller passes NULL for the case of a zero page */
1312	if (!page)
1313		return true;
1314
1315	/* Otherwise we should only zap non-anon pages */
1316	return !PageAnon(page);
1317}
1318
1319static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1320{
1321	if (!details)
1322		return false;
1323
1324	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1325}
1326
1327/*
1328 * This function makes sure that we'll replace the none pte with an uffd-wp
1329 * swap special pte marker when necessary. Must be with the pgtable lock held.
1330 */
1331static inline void
1332zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1333			      unsigned long addr, pte_t *pte,
1334			      struct zap_details *details, pte_t pteval)
1335{
1336	if (zap_drop_file_uffd_wp(details))
1337		return;
1338
1339	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1340}
1341
1342static unsigned long zap_pte_range(struct mmu_gather *tlb,
1343				struct vm_area_struct *vma, pmd_t *pmd,
1344				unsigned long addr, unsigned long end,
1345				struct zap_details *details)
1346{
1347	struct mm_struct *mm = tlb->mm;
1348	int force_flush = 0;
1349	int rss[NR_MM_COUNTERS];
1350	spinlock_t *ptl;
1351	pte_t *start_pte;
1352	pte_t *pte;
1353	swp_entry_t entry;
1354
1355	tlb_change_page_size(tlb, PAGE_SIZE);
1356again:
1357	init_rss_vec(rss);
1358	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1359	pte = start_pte;
1360	flush_tlb_batched_pending(mm);
1361	arch_enter_lazy_mmu_mode();
1362	do {
1363		pte_t ptent = *pte;
1364		struct page *page;
1365
1366		if (pte_none(ptent))
1367			continue;
1368
1369		if (need_resched())
1370			break;
1371
1372		if (pte_present(ptent)) {
1373			unsigned int delay_rmap;
1374
1375			page = vm_normal_page(vma, addr, ptent);
1376			if (unlikely(!should_zap_page(details, page)))
1377				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378			ptent = ptep_get_and_clear_full(mm, addr, pte,
1379							tlb->fullmm);
1380			tlb_remove_tlb_entry(tlb, pte, addr);
1381			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1382						      ptent);
1383			if (unlikely(!page))
1384				continue;
1385
1386			delay_rmap = 0;
1387			if (!PageAnon(page)) {
1388				if (pte_dirty(ptent)) {
 
 
 
 
 
1389					set_page_dirty(page);
1390					if (tlb_delay_rmap(tlb)) {
1391						delay_rmap = 1;
1392						force_flush = 1;
1393					}
1394				}
1395				if (pte_young(ptent) &&
1396				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1397					mark_page_accessed(page);
 
1398			}
1399			rss[mm_counter(page)]--;
1400			if (!delay_rmap) {
1401				page_remove_rmap(page, vma, false);
1402				if (unlikely(page_mapcount(page) < 0))
1403					print_bad_pte(vma, addr, ptent, page);
1404			}
1405			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1406				force_flush = 1;
1407				addr += PAGE_SIZE;
1408				break;
1409			}
1410			continue;
1411		}
 
 
 
 
 
 
 
 
 
 
 
1412
1413		entry = pte_to_swp_entry(ptent);
1414		if (is_device_private_entry(entry) ||
1415		    is_device_exclusive_entry(entry)) {
1416			page = pfn_swap_entry_to_page(entry);
1417			if (unlikely(!should_zap_page(details, page)))
1418				continue;
1419			/*
1420			 * Both device private/exclusive mappings should only
1421			 * work with anonymous page so far, so we don't need to
1422			 * consider uffd-wp bit when zap. For more information,
1423			 * see zap_install_uffd_wp_if_needed().
1424			 */
1425			WARN_ON_ONCE(!vma_is_anonymous(vma));
1426			rss[mm_counter(page)]--;
1427			if (is_device_private_entry(entry))
1428				page_remove_rmap(page, vma, false);
1429			put_page(page);
1430		} else if (!non_swap_entry(entry)) {
1431			/* Genuine swap entry, hence a private anon page */
1432			if (!should_zap_cows(details))
1433				continue;
1434			rss[MM_SWAPENTS]--;
1435			if (unlikely(!free_swap_and_cache(entry)))
1436				print_bad_pte(vma, addr, ptent, NULL);
1437		} else if (is_migration_entry(entry)) {
1438			page = pfn_swap_entry_to_page(entry);
1439			if (!should_zap_page(details, page))
1440				continue;
1441			rss[mm_counter(page)]--;
1442		} else if (pte_marker_entry_uffd_wp(entry)) {
1443			/* Only drop the uffd-wp marker if explicitly requested */
1444			if (!zap_drop_file_uffd_wp(details))
1445				continue;
1446		} else if (is_hwpoison_entry(entry) ||
1447			   is_swapin_error_entry(entry)) {
1448			if (!should_zap_cows(details))
1449				continue;
1450		} else {
1451			/* We should have covered all the swap entry types */
1452			WARN_ON_ONCE(1);
1453		}
1454		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1455		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1456	} while (pte++, addr += PAGE_SIZE, addr != end);
1457
1458	add_mm_rss_vec(mm, rss);
1459	arch_leave_lazy_mmu_mode();
1460
1461	/* Do the actual TLB flush before dropping ptl */
1462	if (force_flush) {
1463		tlb_flush_mmu_tlbonly(tlb);
1464		tlb_flush_rmaps(tlb, vma);
1465	}
1466	pte_unmap_unlock(start_pte, ptl);
1467
1468	/*
1469	 * If we forced a TLB flush (either due to running out of
1470	 * batch buffers or because we needed to flush dirty TLB
1471	 * entries before releasing the ptl), free the batched
1472	 * memory too. Restart if we didn't do everything.
1473	 */
1474	if (force_flush) {
1475		force_flush = 0;
1476		tlb_flush_mmu(tlb);
1477	}
1478
1479	if (addr != end) {
1480		cond_resched();
1481		goto again;
1482	}
1483
1484	return addr;
1485}
1486
1487static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1488				struct vm_area_struct *vma, pud_t *pud,
1489				unsigned long addr, unsigned long end,
1490				struct zap_details *details)
1491{
1492	pmd_t *pmd;
1493	unsigned long next;
1494
1495	pmd = pmd_offset(pud, addr);
1496	do {
1497		next = pmd_addr_end(addr, end);
1498		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1499			if (next - addr != HPAGE_PMD_SIZE)
1500				__split_huge_pmd(vma, pmd, addr, false, NULL);
1501			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1502				goto next;
 
1503			/* fall through */
1504		} else if (details && details->single_folio &&
1505			   folio_test_pmd_mappable(details->single_folio) &&
1506			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1507			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1508			/*
1509			 * Take and drop THP pmd lock so that we cannot return
1510			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1511			 * but not yet decremented compound_mapcount().
1512			 */
1513			spin_unlock(ptl);
1514		}
1515
1516		/*
1517		 * Here there can be other concurrent MADV_DONTNEED or
1518		 * trans huge page faults running, and if the pmd is
1519		 * none or trans huge it can change under us. This is
1520		 * because MADV_DONTNEED holds the mmap_lock in read
1521		 * mode.
1522		 */
1523		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1524			goto next;
1525		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1526next:
1527		cond_resched();
1528	} while (pmd++, addr = next, addr != end);
1529
1530	return addr;
1531}
1532
1533static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1534				struct vm_area_struct *vma, p4d_t *p4d,
1535				unsigned long addr, unsigned long end,
1536				struct zap_details *details)
1537{
1538	pud_t *pud;
1539	unsigned long next;
1540
1541	pud = pud_offset(p4d, addr);
1542	do {
1543		next = pud_addr_end(addr, end);
1544		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1545			if (next - addr != HPAGE_PUD_SIZE) {
1546				mmap_assert_locked(tlb->mm);
1547				split_huge_pud(vma, pud, addr);
1548			} else if (zap_huge_pud(tlb, vma, pud, addr))
1549				goto next;
1550			/* fall through */
1551		}
1552		if (pud_none_or_clear_bad(pud))
1553			continue;
1554		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1555next:
1556		cond_resched();
1557	} while (pud++, addr = next, addr != end);
1558
1559	return addr;
1560}
1561
1562static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1563				struct vm_area_struct *vma, pgd_t *pgd,
1564				unsigned long addr, unsigned long end,
1565				struct zap_details *details)
1566{
1567	p4d_t *p4d;
1568	unsigned long next;
1569
1570	p4d = p4d_offset(pgd, addr);
1571	do {
1572		next = p4d_addr_end(addr, end);
1573		if (p4d_none_or_clear_bad(p4d))
1574			continue;
1575		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1576	} while (p4d++, addr = next, addr != end);
1577
1578	return addr;
1579}
1580
1581void unmap_page_range(struct mmu_gather *tlb,
1582			     struct vm_area_struct *vma,
1583			     unsigned long addr, unsigned long end,
1584			     struct zap_details *details)
1585{
1586	pgd_t *pgd;
1587	unsigned long next;
1588
 
 
 
1589	BUG_ON(addr >= end);
 
1590	tlb_start_vma(tlb, vma);
1591	pgd = pgd_offset(vma->vm_mm, addr);
1592	do {
1593		next = pgd_addr_end(addr, end);
1594		if (pgd_none_or_clear_bad(pgd))
1595			continue;
1596		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1597	} while (pgd++, addr = next, addr != end);
1598	tlb_end_vma(tlb, vma);
1599}
1600
1601
1602static void unmap_single_vma(struct mmu_gather *tlb,
1603		struct vm_area_struct *vma, unsigned long start_addr,
1604		unsigned long end_addr,
1605		struct zap_details *details)
1606{
1607	unsigned long start = max(vma->vm_start, start_addr);
1608	unsigned long end;
1609
1610	if (start >= vma->vm_end)
1611		return;
1612	end = min(vma->vm_end, end_addr);
1613	if (end <= vma->vm_start)
1614		return;
1615
1616	if (vma->vm_file)
1617		uprobe_munmap(vma, start, end);
1618
1619	if (unlikely(vma->vm_flags & VM_PFNMAP))
1620		untrack_pfn(vma, 0, 0);
1621
1622	if (start != end) {
1623		if (unlikely(is_vm_hugetlb_page(vma))) {
1624			/*
1625			 * It is undesirable to test vma->vm_file as it
1626			 * should be non-null for valid hugetlb area.
1627			 * However, vm_file will be NULL in the error
1628			 * cleanup path of mmap_region. When
1629			 * hugetlbfs ->mmap method fails,
1630			 * mmap_region() nullifies vma->vm_file
1631			 * before calling this function to clean up.
1632			 * Since no pte has actually been setup, it is
1633			 * safe to do nothing in this case.
1634			 */
1635			if (vma->vm_file) {
1636				zap_flags_t zap_flags = details ?
1637				    details->zap_flags : 0;
1638				__unmap_hugepage_range_final(tlb, vma, start, end,
1639							     NULL, zap_flags);
1640			}
1641		} else
1642			unmap_page_range(tlb, vma, start, end, details);
1643	}
1644}
1645
1646/**
1647 * unmap_vmas - unmap a range of memory covered by a list of vma's
1648 * @tlb: address of the caller's struct mmu_gather
1649 * @mt: the maple tree
1650 * @vma: the starting vma
1651 * @start_addr: virtual address at which to start unmapping
1652 * @end_addr: virtual address at which to end unmapping
 
 
 
 
1653 *
1654 * Unmap all pages in the vma list.
1655 *
1656 * Only addresses between `start' and `end' will be unmapped.
1657 *
1658 * The VMA list must be sorted in ascending virtual address order.
1659 *
1660 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1661 * range after unmap_vmas() returns.  So the only responsibility here is to
1662 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1663 * drops the lock and schedules.
1664 */
1665void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1666		struct vm_area_struct *vma, unsigned long start_addr,
1667		unsigned long end_addr)
 
1668{
1669	struct mmu_notifier_range range;
1670	struct zap_details details = {
1671		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1672		/* Careful - we need to zap private pages too! */
1673		.even_cows = true,
1674	};
1675	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1676
1677	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1678				start_addr, end_addr);
1679	mmu_notifier_invalidate_range_start(&range);
1680	do {
1681		unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1682	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1683	mmu_notifier_invalidate_range_end(&range);
1684}
1685
1686/**
1687 * zap_page_range - remove user pages in a given range
1688 * @vma: vm_area_struct holding the applicable pages
1689 * @start: starting address of pages to zap
1690 * @size: number of bytes to zap
1691 *
1692 * Caller must protect the VMA list
1693 */
1694void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1695		unsigned long size)
1696{
1697	struct maple_tree *mt = &vma->vm_mm->mm_mt;
1698	unsigned long end = start + size;
1699	struct mmu_notifier_range range;
1700	struct mmu_gather tlb;
1701	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1702
1703	lru_add_drain();
1704	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1705				start, start + size);
1706	tlb_gather_mmu(&tlb, vma->vm_mm);
1707	update_hiwater_rss(vma->vm_mm);
1708	mmu_notifier_invalidate_range_start(&range);
1709	do {
1710		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1711	} while ((vma = mas_find(&mas, end - 1)) != NULL);
1712	mmu_notifier_invalidate_range_end(&range);
1713	tlb_finish_mmu(&tlb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714}
1715
1716/**
1717 * zap_page_range_single - remove user pages in a given range
1718 * @vma: vm_area_struct holding the applicable pages
1719 * @address: starting address of pages to zap
1720 * @size: number of bytes to zap
1721 * @details: details of shared cache invalidation
1722 *
1723 * The range must fit into one VMA.
1724 */
1725void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1726		unsigned long size, struct zap_details *details)
1727{
1728	const unsigned long end = address + size;
1729	struct mmu_notifier_range range;
1730	struct mmu_gather tlb;
 
 
1731
1732	lru_add_drain();
1733	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1734				address, end);
1735	if (is_vm_hugetlb_page(vma))
1736		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1737						     &range.end);
1738	tlb_gather_mmu(&tlb, vma->vm_mm);
1739	update_hiwater_rss(vma->vm_mm);
1740	mmu_notifier_invalidate_range_start(&range);
1741	/*
1742	 * unmap 'address-end' not 'range.start-range.end' as range
1743	 * could have been expanded for hugetlb pmd sharing.
1744	 */
1745	unmap_single_vma(&tlb, vma, address, end, details);
1746	mmu_notifier_invalidate_range_end(&range);
1747	tlb_finish_mmu(&tlb);
1748}
1749
1750/**
1751 * zap_vma_ptes - remove ptes mapping the vma
1752 * @vma: vm_area_struct holding ptes to be zapped
1753 * @address: starting address of pages to zap
1754 * @size: number of bytes to zap
1755 *
1756 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1757 *
1758 * The entire address range must be fully contained within the vma.
1759 *
 
1760 */
1761void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1762		unsigned long size)
1763{
1764	if (!range_in_vma(vma, address, address + size) ||
1765	    		!(vma->vm_flags & VM_PFNMAP))
1766		return;
1767
1768	zap_page_range_single(vma, address, size, NULL);
1769}
1770EXPORT_SYMBOL_GPL(zap_vma_ptes);
1771
1772static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
1773{
1774	pgd_t *pgd;
1775	p4d_t *p4d;
1776	pud_t *pud;
1777	pmd_t *pmd;
 
 
 
 
1778
1779	pgd = pgd_offset(mm, addr);
1780	p4d = p4d_alloc(mm, pgd, addr);
1781	if (!p4d)
1782		return NULL;
1783	pud = pud_alloc(mm, p4d, addr);
1784	if (!pud)
1785		return NULL;
1786	pmd = pmd_alloc(mm, pud, addr);
1787	if (!pmd)
1788		return NULL;
1789
1790	VM_BUG_ON(pmd_trans_huge(*pmd));
1791	return pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1792}
1793
1794pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1795			spinlock_t **ptl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796{
1797	pmd_t *pmd = walk_to_pmd(mm, addr);
1798
1799	if (!pmd)
1800		return NULL;
1801	return pte_alloc_map_lock(mm, pmd, addr, ptl);
 
 
 
 
 
 
1802}
 
1803
1804static int validate_page_before_insert(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805{
1806	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1807		return -EINVAL;
1808	flush_dcache_page(page);
1809	return 0;
 
 
 
 
 
1810}
 
1811
1812static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1813			unsigned long addr, struct page *page, pgprot_t prot)
1814{
1815	if (!pte_none(*pte))
1816		return -EBUSY;
1817	/* Ok, finally just insert the thing.. */
1818	get_page(page);
1819	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1820	page_add_file_rmap(page, vma, false);
1821	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1822	return 0;
 
 
1823}
1824
1825/*
1826 * This is the old fallback for page remapping.
1827 *
1828 * For historical reasons, it only allows reserved pages. Only
1829 * old drivers should use this, and they needed to mark their
1830 * pages reserved for the old functions anyway.
1831 */
1832static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1833			struct page *page, pgprot_t prot)
1834{
 
1835	int retval;
1836	pte_t *pte;
1837	spinlock_t *ptl;
1838
1839	retval = validate_page_before_insert(page);
1840	if (retval)
1841		goto out;
1842	retval = -ENOMEM;
1843	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
 
1844	if (!pte)
1845		goto out;
1846	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1847	pte_unmap_unlock(pte, ptl);
1848out:
1849	return retval;
1850}
1851
1852#ifdef pte_index
1853static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1854			unsigned long addr, struct page *page, pgprot_t prot)
1855{
1856	int err;
1857
1858	if (!page_count(page))
1859		return -EINVAL;
1860	err = validate_page_before_insert(page);
1861	if (err)
1862		return err;
1863	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1864}
1865
1866/* insert_pages() amortizes the cost of spinlock operations
1867 * when inserting pages in a loop. Arch *must* define pte_index.
1868 */
1869static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1870			struct page **pages, unsigned long *num, pgprot_t prot)
1871{
1872	pmd_t *pmd = NULL;
1873	pte_t *start_pte, *pte;
1874	spinlock_t *pte_lock;
1875	struct mm_struct *const mm = vma->vm_mm;
1876	unsigned long curr_page_idx = 0;
1877	unsigned long remaining_pages_total = *num;
1878	unsigned long pages_to_write_in_pmd;
1879	int ret;
1880more:
1881	ret = -EFAULT;
1882	pmd = walk_to_pmd(mm, addr);
1883	if (!pmd)
1884		goto out;
1885
1886	pages_to_write_in_pmd = min_t(unsigned long,
1887		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1888
1889	/* Allocate the PTE if necessary; takes PMD lock once only. */
1890	ret = -ENOMEM;
1891	if (pte_alloc(mm, pmd))
1892		goto out;
 
1893
1894	while (pages_to_write_in_pmd) {
1895		int pte_idx = 0;
1896		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1897
1898		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1899		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1900			int err = insert_page_in_batch_locked(vma, pte,
1901				addr, pages[curr_page_idx], prot);
1902			if (unlikely(err)) {
1903				pte_unmap_unlock(start_pte, pte_lock);
1904				ret = err;
1905				remaining_pages_total -= pte_idx;
1906				goto out;
1907			}
1908			addr += PAGE_SIZE;
1909			++curr_page_idx;
1910		}
1911		pte_unmap_unlock(start_pte, pte_lock);
1912		pages_to_write_in_pmd -= batch_size;
1913		remaining_pages_total -= batch_size;
1914	}
1915	if (remaining_pages_total)
1916		goto more;
1917	ret = 0;
1918out:
1919	*num = remaining_pages_total;
1920	return ret;
1921}
1922#endif  /* ifdef pte_index */
1923
1924/**
1925 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1926 * @vma: user vma to map to
1927 * @addr: target start user address of these pages
1928 * @pages: source kernel pages
1929 * @num: in: number of pages to map. out: number of pages that were *not*
1930 * mapped. (0 means all pages were successfully mapped).
1931 *
1932 * Preferred over vm_insert_page() when inserting multiple pages.
1933 *
1934 * In case of error, we may have mapped a subset of the provided
1935 * pages. It is the caller's responsibility to account for this case.
1936 *
1937 * The same restrictions apply as in vm_insert_page().
1938 */
1939int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1940			struct page **pages, unsigned long *num)
1941{
1942#ifdef pte_index
1943	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1944
1945	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1946		return -EFAULT;
1947	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1948		BUG_ON(mmap_read_trylock(vma->vm_mm));
1949		BUG_ON(vma->vm_flags & VM_PFNMAP);
1950		vma->vm_flags |= VM_MIXEDMAP;
1951	}
1952	/* Defer page refcount checking till we're about to map that page. */
1953	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1954#else
1955	unsigned long idx = 0, pgcount = *num;
1956	int err = -EINVAL;
1957
1958	for (; idx < pgcount; ++idx) {
1959		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1960		if (err)
1961			break;
1962	}
1963	*num = pgcount - idx;
1964	return err;
1965#endif  /* ifdef pte_index */
1966}
1967EXPORT_SYMBOL(vm_insert_pages);
1968
1969/**
1970 * vm_insert_page - insert single page into user vma
1971 * @vma: user vma to map to
1972 * @addr: target user address of this page
1973 * @page: source kernel page
1974 *
1975 * This allows drivers to insert individual pages they've allocated
1976 * into a user vma.
1977 *
1978 * The page has to be a nice clean _individual_ kernel allocation.
1979 * If you allocate a compound page, you need to have marked it as
1980 * such (__GFP_COMP), or manually just split the page up yourself
1981 * (see split_page()).
1982 *
1983 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1984 * took an arbitrary page protection parameter. This doesn't allow
1985 * that. Your vma protection will have to be set up correctly, which
1986 * means that if you want a shared writable mapping, you'd better
1987 * ask for a shared writable mapping!
1988 *
1989 * The page does not need to be reserved.
1990 *
1991 * Usually this function is called from f_op->mmap() handler
1992 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1993 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1994 * function from other places, for example from page-fault handler.
1995 *
1996 * Return: %0 on success, negative error code otherwise.
1997 */
1998int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1999			struct page *page)
2000{
2001	if (addr < vma->vm_start || addr >= vma->vm_end)
2002		return -EFAULT;
2003	if (!page_count(page))
2004		return -EINVAL;
2005	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2006		BUG_ON(mmap_read_trylock(vma->vm_mm));
2007		BUG_ON(vma->vm_flags & VM_PFNMAP);
2008		vma->vm_flags |= VM_MIXEDMAP;
2009	}
2010	return insert_page(vma, addr, page, vma->vm_page_prot);
2011}
2012EXPORT_SYMBOL(vm_insert_page);
2013
2014/*
2015 * __vm_map_pages - maps range of kernel pages into user vma
2016 * @vma: user vma to map to
2017 * @pages: pointer to array of source kernel pages
2018 * @num: number of pages in page array
2019 * @offset: user's requested vm_pgoff
2020 *
2021 * This allows drivers to map range of kernel pages into a user vma.
2022 *
2023 * Return: 0 on success and error code otherwise.
2024 */
2025static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2026				unsigned long num, unsigned long offset)
2027{
2028	unsigned long count = vma_pages(vma);
2029	unsigned long uaddr = vma->vm_start;
2030	int ret, i;
2031
2032	/* Fail if the user requested offset is beyond the end of the object */
2033	if (offset >= num)
2034		return -ENXIO;
2035
2036	/* Fail if the user requested size exceeds available object size */
2037	if (count > num - offset)
2038		return -ENXIO;
2039
2040	for (i = 0; i < count; i++) {
2041		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2042		if (ret < 0)
2043			return ret;
2044		uaddr += PAGE_SIZE;
2045	}
2046
2047	return 0;
2048}
2049
2050/**
2051 * vm_map_pages - maps range of kernel pages starts with non zero offset
2052 * @vma: user vma to map to
2053 * @pages: pointer to array of source kernel pages
2054 * @num: number of pages in page array
2055 *
2056 * Maps an object consisting of @num pages, catering for the user's
2057 * requested vm_pgoff
2058 *
2059 * If we fail to insert any page into the vma, the function will return
2060 * immediately leaving any previously inserted pages present.  Callers
2061 * from the mmap handler may immediately return the error as their caller
2062 * will destroy the vma, removing any successfully inserted pages. Other
2063 * callers should make their own arrangements for calling unmap_region().
2064 *
2065 * Context: Process context. Called by mmap handlers.
2066 * Return: 0 on success and error code otherwise.
2067 */
2068int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2069				unsigned long num)
2070{
2071	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2072}
2073EXPORT_SYMBOL(vm_map_pages);
2074
2075/**
2076 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2077 * @vma: user vma to map to
2078 * @pages: pointer to array of source kernel pages
2079 * @num: number of pages in page array
2080 *
2081 * Similar to vm_map_pages(), except that it explicitly sets the offset
2082 * to 0. This function is intended for the drivers that did not consider
2083 * vm_pgoff.
2084 *
2085 * Context: Process context. Called by mmap handlers.
2086 * Return: 0 on success and error code otherwise.
2087 */
2088int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2089				unsigned long num)
2090{
2091	return __vm_map_pages(vma, pages, num, 0);
2092}
2093EXPORT_SYMBOL(vm_map_pages_zero);
2094
2095static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2096			pfn_t pfn, pgprot_t prot, bool mkwrite)
2097{
2098	struct mm_struct *mm = vma->vm_mm;
 
2099	pte_t *pte, entry;
2100	spinlock_t *ptl;
2101
 
2102	pte = get_locked_pte(mm, addr, &ptl);
2103	if (!pte)
2104		return VM_FAULT_OOM;
2105	if (!pte_none(*pte)) {
2106		if (mkwrite) {
2107			/*
2108			 * For read faults on private mappings the PFN passed
2109			 * in may not match the PFN we have mapped if the
2110			 * mapped PFN is a writeable COW page.  In the mkwrite
2111			 * case we are creating a writable PTE for a shared
2112			 * mapping and we expect the PFNs to match. If they
2113			 * don't match, we are likely racing with block
2114			 * allocation and mapping invalidation so just skip the
2115			 * update.
2116			 */
2117			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2118				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2119				goto out_unlock;
2120			}
2121			entry = pte_mkyoung(*pte);
2122			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2123			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2124				update_mmu_cache(vma, addr, pte);
2125		}
2126		goto out_unlock;
2127	}
2128
2129	/* Ok, finally just insert the thing.. */
2130	if (pfn_t_devmap(pfn))
2131		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2132	else
2133		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2134
2135	if (mkwrite) {
2136		entry = pte_mkyoung(entry);
2137		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2138	}
2139
2140	set_pte_at(mm, addr, pte, entry);
2141	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2142
 
2143out_unlock:
2144	pte_unmap_unlock(pte, ptl);
2145	return VM_FAULT_NOPAGE;
 
2146}
2147
2148/**
2149 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2150 * @vma: user vma to map to
2151 * @addr: target user address of this page
2152 * @pfn: source kernel pfn
2153 * @pgprot: pgprot flags for the inserted page
2154 *
2155 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2156 * to override pgprot on a per-page basis.
2157 *
2158 * This only makes sense for IO mappings, and it makes no sense for
2159 * COW mappings.  In general, using multiple vmas is preferable;
2160 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2161 * impractical.
2162 *
2163 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2164 * a value of @pgprot different from that of @vma->vm_page_prot.
2165 *
2166 * Context: Process context.  May allocate using %GFP_KERNEL.
2167 * Return: vm_fault_t value.
2168 */
2169vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2170			unsigned long pfn, pgprot_t pgprot)
2171{
 
 
2172	/*
2173	 * Technically, architectures with pte_special can avoid all these
2174	 * restrictions (same for remap_pfn_range).  However we would like
2175	 * consistency in testing and feature parity among all, so we should
2176	 * try to keep these invariants in place for everybody.
2177	 */
2178	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2179	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2180						(VM_PFNMAP|VM_MIXEDMAP));
2181	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2182	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2183
2184	if (addr < vma->vm_start || addr >= vma->vm_end)
2185		return VM_FAULT_SIGBUS;
 
 
2186
2187	if (!pfn_modify_allowed(pfn, pgprot))
2188		return VM_FAULT_SIGBUS;
2189
2190	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
 
2191
2192	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2193			false);
2194}
2195EXPORT_SYMBOL(vmf_insert_pfn_prot);
2196
2197/**
2198 * vmf_insert_pfn - insert single pfn into user vma
2199 * @vma: user vma to map to
2200 * @addr: target user address of this page
2201 * @pfn: source kernel pfn
2202 *
2203 * Similar to vm_insert_page, this allows drivers to insert individual pages
2204 * they've allocated into a user vma. Same comments apply.
2205 *
2206 * This function should only be called from a vm_ops->fault handler, and
2207 * in that case the handler should return the result of this function.
2208 *
2209 * vma cannot be a COW mapping.
2210 *
2211 * As this is called only for pages that do not currently exist, we
2212 * do not need to flush old virtual caches or the TLB.
2213 *
2214 * Context: Process context.  May allocate using %GFP_KERNEL.
2215 * Return: vm_fault_t value.
2216 */
2217vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2218			unsigned long pfn)
2219{
2220	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2221}
2222EXPORT_SYMBOL(vmf_insert_pfn);
2223
2224static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2225{
2226	/* these checks mirror the abort conditions in vm_normal_page */
2227	if (vma->vm_flags & VM_MIXEDMAP)
2228		return true;
2229	if (pfn_t_devmap(pfn))
2230		return true;
2231	if (pfn_t_special(pfn))
2232		return true;
2233	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2234		return true;
2235	return false;
2236}
2237
2238static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2239		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2240		bool mkwrite)
2241{
2242	int err;
2243
2244	BUG_ON(!vm_mixed_ok(vma, pfn));
2245
2246	if (addr < vma->vm_start || addr >= vma->vm_end)
2247		return VM_FAULT_SIGBUS;
2248
2249	track_pfn_insert(vma, &pgprot, pfn);
2250
2251	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2252		return VM_FAULT_SIGBUS;
2253
2254	/*
2255	 * If we don't have pte special, then we have to use the pfn_valid()
2256	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2257	 * refcount the page if pfn_valid is true (hence insert_page rather
2258	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2259	 * without pte special, it would there be refcounted as a normal page.
2260	 */
2261	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2262	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2263		struct page *page;
2264
2265		/*
2266		 * At this point we are committed to insert_page()
2267		 * regardless of whether the caller specified flags that
2268		 * result in pfn_t_has_page() == false.
2269		 */
2270		page = pfn_to_page(pfn_t_to_pfn(pfn));
2271		err = insert_page(vma, addr, page, pgprot);
2272	} else {
2273		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2274	}
2275
2276	if (err == -ENOMEM)
2277		return VM_FAULT_OOM;
2278	if (err < 0 && err != -EBUSY)
2279		return VM_FAULT_SIGBUS;
2280
2281	return VM_FAULT_NOPAGE;
2282}
2283
2284/**
2285 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2286 * @vma: user vma to map to
2287 * @addr: target user address of this page
2288 * @pfn: source kernel pfn
2289 * @pgprot: pgprot flags for the inserted page
2290 *
2291 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2292 * to override pgprot on a per-page basis.
2293 *
2294 * Typically this function should be used by drivers to set caching- and
2295 * encryption bits different than those of @vma->vm_page_prot, because
2296 * the caching- or encryption mode may not be known at mmap() time.
2297 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2298 * to set caching and encryption bits for those vmas (except for COW pages).
2299 * This is ensured by core vm only modifying these page table entries using
2300 * functions that don't touch caching- or encryption bits, using pte_modify()
2301 * if needed. (See for example mprotect()).
2302 * Also when new page-table entries are created, this is only done using the
2303 * fault() callback, and never using the value of vma->vm_page_prot,
2304 * except for page-table entries that point to anonymous pages as the result
2305 * of COW.
2306 *
2307 * Context: Process context.  May allocate using %GFP_KERNEL.
2308 * Return: vm_fault_t value.
2309 */
2310vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2311				 pfn_t pfn, pgprot_t pgprot)
2312{
2313	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2314}
2315EXPORT_SYMBOL(vmf_insert_mixed_prot);
2316
2317vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2318		pfn_t pfn)
2319{
2320	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2321}
2322EXPORT_SYMBOL(vmf_insert_mixed);
2323
2324/*
2325 *  If the insertion of PTE failed because someone else already added a
2326 *  different entry in the mean time, we treat that as success as we assume
2327 *  the same entry was actually inserted.
2328 */
2329vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2330		unsigned long addr, pfn_t pfn)
2331{
2332	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2333}
2334EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2335
2336/*
2337 * maps a range of physical memory into the requested pages. the old
2338 * mappings are removed. any references to nonexistent pages results
2339 * in null mappings (currently treated as "copy-on-access")
2340 */
2341static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2342			unsigned long addr, unsigned long end,
2343			unsigned long pfn, pgprot_t prot)
2344{
2345	pte_t *pte, *mapped_pte;
2346	spinlock_t *ptl;
2347	int err = 0;
2348
2349	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2350	if (!pte)
2351		return -ENOMEM;
2352	arch_enter_lazy_mmu_mode();
2353	do {
2354		BUG_ON(!pte_none(*pte));
2355		if (!pfn_modify_allowed(pfn, prot)) {
2356			err = -EACCES;
2357			break;
2358		}
2359		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2360		pfn++;
2361	} while (pte++, addr += PAGE_SIZE, addr != end);
2362	arch_leave_lazy_mmu_mode();
2363	pte_unmap_unlock(mapped_pte, ptl);
2364	return err;
2365}
2366
2367static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2368			unsigned long addr, unsigned long end,
2369			unsigned long pfn, pgprot_t prot)
2370{
2371	pmd_t *pmd;
2372	unsigned long next;
2373	int err;
2374
2375	pfn -= addr >> PAGE_SHIFT;
2376	pmd = pmd_alloc(mm, pud, addr);
2377	if (!pmd)
2378		return -ENOMEM;
2379	VM_BUG_ON(pmd_trans_huge(*pmd));
2380	do {
2381		next = pmd_addr_end(addr, end);
2382		err = remap_pte_range(mm, pmd, addr, next,
2383				pfn + (addr >> PAGE_SHIFT), prot);
2384		if (err)
2385			return err;
2386	} while (pmd++, addr = next, addr != end);
2387	return 0;
2388}
2389
2390static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2391			unsigned long addr, unsigned long end,
2392			unsigned long pfn, pgprot_t prot)
2393{
2394	pud_t *pud;
2395	unsigned long next;
2396	int err;
2397
2398	pfn -= addr >> PAGE_SHIFT;
2399	pud = pud_alloc(mm, p4d, addr);
2400	if (!pud)
2401		return -ENOMEM;
2402	do {
2403		next = pud_addr_end(addr, end);
2404		err = remap_pmd_range(mm, pud, addr, next,
2405				pfn + (addr >> PAGE_SHIFT), prot);
2406		if (err)
2407			return err;
2408	} while (pud++, addr = next, addr != end);
2409	return 0;
2410}
2411
2412static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2413			unsigned long addr, unsigned long end,
2414			unsigned long pfn, pgprot_t prot)
2415{
2416	p4d_t *p4d;
2417	unsigned long next;
2418	int err;
2419
2420	pfn -= addr >> PAGE_SHIFT;
2421	p4d = p4d_alloc(mm, pgd, addr);
2422	if (!p4d)
2423		return -ENOMEM;
2424	do {
2425		next = p4d_addr_end(addr, end);
2426		err = remap_pud_range(mm, p4d, addr, next,
2427				pfn + (addr >> PAGE_SHIFT), prot);
2428		if (err)
2429			return err;
2430	} while (p4d++, addr = next, addr != end);
2431	return 0;
2432}
2433
2434/*
2435 * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2436 * must have pre-validated the caching bits of the pgprot_t.
2437 */
2438int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2439		unsigned long pfn, unsigned long size, pgprot_t prot)
2440{
2441	pgd_t *pgd;
2442	unsigned long next;
2443	unsigned long end = addr + PAGE_ALIGN(size);
2444	struct mm_struct *mm = vma->vm_mm;
2445	int err;
2446
2447	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2448		return -EINVAL;
2449
2450	/*
2451	 * Physically remapped pages are special. Tell the
2452	 * rest of the world about it:
2453	 *   VM_IO tells people not to look at these pages
2454	 *	(accesses can have side effects).
 
 
 
 
 
2455	 *   VM_PFNMAP tells the core MM that the base pages are just
2456	 *	raw PFN mappings, and do not have a "struct page" associated
2457	 *	with them.
2458	 *   VM_DONTEXPAND
2459	 *      Disable vma merging and expanding with mremap().
2460	 *   VM_DONTDUMP
2461	 *      Omit vma from core dump, even when VM_IO turned off.
2462	 *
2463	 * There's a horrible special case to handle copy-on-write
2464	 * behaviour that some programs depend on. We mark the "original"
2465	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2466	 * See vm_normal_page() for details.
2467	 */
2468	if (is_cow_mapping(vma->vm_flags)) {
2469		if (addr != vma->vm_start || end != vma->vm_end)
2470			return -EINVAL;
2471		vma->vm_pgoff = pfn;
2472	}
 
 
2473
2474	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
 
 
 
 
 
 
 
 
 
 
 
2475
2476	BUG_ON(addr >= end);
2477	pfn -= addr >> PAGE_SHIFT;
2478	pgd = pgd_offset(mm, addr);
2479	flush_cache_range(vma, addr, end);
2480	do {
2481		next = pgd_addr_end(addr, end);
2482		err = remap_p4d_range(mm, pgd, addr, next,
2483				pfn + (addr >> PAGE_SHIFT), prot);
2484		if (err)
2485			return err;
2486	} while (pgd++, addr = next, addr != end);
2487
2488	return 0;
2489}
2490
2491/**
2492 * remap_pfn_range - remap kernel memory to userspace
2493 * @vma: user vma to map to
2494 * @addr: target page aligned user address to start at
2495 * @pfn: page frame number of kernel physical memory address
2496 * @size: size of mapping area
2497 * @prot: page protection flags for this mapping
2498 *
2499 * Note: this is only safe if the mm semaphore is held when called.
2500 *
2501 * Return: %0 on success, negative error code otherwise.
2502 */
2503int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2504		    unsigned long pfn, unsigned long size, pgprot_t prot)
2505{
2506	int err;
2507
2508	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2509	if (err)
2510		return -EINVAL;
2511
2512	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2513	if (err)
2514		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2515	return err;
2516}
2517EXPORT_SYMBOL(remap_pfn_range);
2518
2519/**
2520 * vm_iomap_memory - remap memory to userspace
2521 * @vma: user vma to map to
2522 * @start: start of the physical memory to be mapped
2523 * @len: size of area
2524 *
2525 * This is a simplified io_remap_pfn_range() for common driver use. The
2526 * driver just needs to give us the physical memory range to be mapped,
2527 * we'll figure out the rest from the vma information.
2528 *
2529 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2530 * whatever write-combining details or similar.
2531 *
2532 * Return: %0 on success, negative error code otherwise.
2533 */
2534int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2535{
2536	unsigned long vm_len, pfn, pages;
2537
2538	/* Check that the physical memory area passed in looks valid */
2539	if (start + len < start)
2540		return -EINVAL;
2541	/*
2542	 * You *really* shouldn't map things that aren't page-aligned,
2543	 * but we've historically allowed it because IO memory might
2544	 * just have smaller alignment.
2545	 */
2546	len += start & ~PAGE_MASK;
2547	pfn = start >> PAGE_SHIFT;
2548	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2549	if (pfn + pages < pfn)
2550		return -EINVAL;
2551
2552	/* We start the mapping 'vm_pgoff' pages into the area */
2553	if (vma->vm_pgoff > pages)
2554		return -EINVAL;
2555	pfn += vma->vm_pgoff;
2556	pages -= vma->vm_pgoff;
2557
2558	/* Can we fit all of the mapping? */
2559	vm_len = vma->vm_end - vma->vm_start;
2560	if (vm_len >> PAGE_SHIFT > pages)
2561		return -EINVAL;
2562
2563	/* Ok, let it rip */
2564	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2565}
2566EXPORT_SYMBOL(vm_iomap_memory);
2567
2568static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2569				     unsigned long addr, unsigned long end,
2570				     pte_fn_t fn, void *data, bool create,
2571				     pgtbl_mod_mask *mask)
2572{
2573	pte_t *pte, *mapped_pte;
2574	int err = 0;
2575	spinlock_t *ptl;
 
2576
2577	if (create) {
2578		mapped_pte = pte = (mm == &init_mm) ?
2579			pte_alloc_kernel_track(pmd, addr, mask) :
2580			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2581		if (!pte)
2582			return -ENOMEM;
2583	} else {
2584		mapped_pte = pte = (mm == &init_mm) ?
2585			pte_offset_kernel(pmd, addr) :
2586			pte_offset_map_lock(mm, pmd, addr, &ptl);
2587	}
2588
2589	BUG_ON(pmd_huge(*pmd));
2590
2591	arch_enter_lazy_mmu_mode();
2592
2593	if (fn) {
2594		do {
2595			if (create || !pte_none(*pte)) {
2596				err = fn(pte++, addr, data);
2597				if (err)
2598					break;
2599			}
2600		} while (addr += PAGE_SIZE, addr != end);
2601	}
2602	*mask |= PGTBL_PTE_MODIFIED;
2603
2604	arch_leave_lazy_mmu_mode();
2605
2606	if (mm != &init_mm)
2607		pte_unmap_unlock(mapped_pte, ptl);
2608	return err;
2609}
2610
2611static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2612				     unsigned long addr, unsigned long end,
2613				     pte_fn_t fn, void *data, bool create,
2614				     pgtbl_mod_mask *mask)
2615{
2616	pmd_t *pmd;
2617	unsigned long next;
2618	int err = 0;
2619
2620	BUG_ON(pud_huge(*pud));
2621
2622	if (create) {
2623		pmd = pmd_alloc_track(mm, pud, addr, mask);
2624		if (!pmd)
2625			return -ENOMEM;
2626	} else {
2627		pmd = pmd_offset(pud, addr);
2628	}
2629	do {
2630		next = pmd_addr_end(addr, end);
2631		if (pmd_none(*pmd) && !create)
2632			continue;
2633		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2634			return -EINVAL;
2635		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2636			if (!create)
2637				continue;
2638			pmd_clear_bad(pmd);
2639		}
2640		err = apply_to_pte_range(mm, pmd, addr, next,
2641					 fn, data, create, mask);
2642		if (err)
2643			break;
2644	} while (pmd++, addr = next, addr != end);
2645
2646	return err;
2647}
2648
2649static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2650				     unsigned long addr, unsigned long end,
2651				     pte_fn_t fn, void *data, bool create,
2652				     pgtbl_mod_mask *mask)
2653{
2654	pud_t *pud;
2655	unsigned long next;
2656	int err = 0;
2657
2658	if (create) {
2659		pud = pud_alloc_track(mm, p4d, addr, mask);
2660		if (!pud)
2661			return -ENOMEM;
2662	} else {
2663		pud = pud_offset(p4d, addr);
2664	}
2665	do {
2666		next = pud_addr_end(addr, end);
2667		if (pud_none(*pud) && !create)
2668			continue;
2669		if (WARN_ON_ONCE(pud_leaf(*pud)))
2670			return -EINVAL;
2671		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2672			if (!create)
2673				continue;
2674			pud_clear_bad(pud);
2675		}
2676		err = apply_to_pmd_range(mm, pud, addr, next,
2677					 fn, data, create, mask);
2678		if (err)
2679			break;
2680	} while (pud++, addr = next, addr != end);
2681
2682	return err;
2683}
2684
2685static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2686				     unsigned long addr, unsigned long end,
2687				     pte_fn_t fn, void *data, bool create,
2688				     pgtbl_mod_mask *mask)
2689{
2690	p4d_t *p4d;
2691	unsigned long next;
2692	int err = 0;
2693
2694	if (create) {
2695		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2696		if (!p4d)
2697			return -ENOMEM;
2698	} else {
2699		p4d = p4d_offset(pgd, addr);
2700	}
2701	do {
2702		next = p4d_addr_end(addr, end);
2703		if (p4d_none(*p4d) && !create)
2704			continue;
2705		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2706			return -EINVAL;
2707		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2708			if (!create)
2709				continue;
2710			p4d_clear_bad(p4d);
2711		}
2712		err = apply_to_pud_range(mm, p4d, addr, next,
2713					 fn, data, create, mask);
2714		if (err)
2715			break;
2716	} while (p4d++, addr = next, addr != end);
2717
2718	return err;
2719}
2720
2721static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2722				 unsigned long size, pte_fn_t fn,
2723				 void *data, bool create)
2724{
2725	pgd_t *pgd;
2726	unsigned long start = addr, next;
2727	unsigned long end = addr + size;
2728	pgtbl_mod_mask mask = 0;
2729	int err = 0;
2730
2731	if (WARN_ON(addr >= end))
2732		return -EINVAL;
2733
 
2734	pgd = pgd_offset(mm, addr);
2735	do {
2736		next = pgd_addr_end(addr, end);
2737		if (pgd_none(*pgd) && !create)
2738			continue;
2739		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2740			return -EINVAL;
2741		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2742			if (!create)
2743				continue;
2744			pgd_clear_bad(pgd);
2745		}
2746		err = apply_to_p4d_range(mm, pgd, addr, next,
2747					 fn, data, create, &mask);
2748		if (err)
2749			break;
2750	} while (pgd++, addr = next, addr != end);
2751
2752	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2753		arch_sync_kernel_mappings(start, start + size);
2754
2755	return err;
2756}
2757
2758/*
2759 * Scan a region of virtual memory, filling in page tables as necessary
2760 * and calling a provided function on each leaf page table.
2761 */
2762int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2763			unsigned long size, pte_fn_t fn, void *data)
2764{
2765	return __apply_to_page_range(mm, addr, size, fn, data, true);
2766}
2767EXPORT_SYMBOL_GPL(apply_to_page_range);
2768
2769/*
2770 * Scan a region of virtual memory, calling a provided function on
2771 * each leaf page table where it exists.
2772 *
2773 * Unlike apply_to_page_range, this does _not_ fill in page tables
2774 * where they are absent.
2775 */
2776int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2777				 unsigned long size, pte_fn_t fn, void *data)
2778{
2779	return __apply_to_page_range(mm, addr, size, fn, data, false);
2780}
2781EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2782
2783/*
2784 * handle_pte_fault chooses page fault handler according to an entry which was
2785 * read non-atomically.  Before making any commitment, on those architectures
2786 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2787 * parts, do_swap_page must check under lock before unmapping the pte and
2788 * proceeding (but do_wp_page is only called after already making such a check;
2789 * and do_anonymous_page can safely check later on).
2790 */
2791static inline int pte_unmap_same(struct vm_fault *vmf)
 
2792{
2793	int same = 1;
2794#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2795	if (sizeof(pte_t) > sizeof(unsigned long)) {
2796		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2797		spin_lock(ptl);
2798		same = pte_same(*vmf->pte, vmf->orig_pte);
2799		spin_unlock(ptl);
2800	}
2801#endif
2802	pte_unmap(vmf->pte);
2803	vmf->pte = NULL;
2804	return same;
2805}
2806
2807/*
2808 * Return:
2809 *	0:		copied succeeded
2810 *	-EHWPOISON:	copy failed due to hwpoison in source page
2811 *	-EAGAIN:	copied failed (some other reason)
2812 */
2813static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2814				      struct vm_fault *vmf)
2815{
2816	int ret;
2817	void *kaddr;
2818	void __user *uaddr;
2819	bool locked = false;
2820	struct vm_area_struct *vma = vmf->vma;
2821	struct mm_struct *mm = vma->vm_mm;
2822	unsigned long addr = vmf->address;
2823
2824	if (likely(src)) {
2825		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2826			memory_failure_queue(page_to_pfn(src), 0);
2827			return -EHWPOISON;
2828		}
2829		return 0;
2830	}
2831
2832	/*
2833	 * If the source page was a PFN mapping, we don't have
2834	 * a "struct page" for it. We do a best-effort copy by
2835	 * just copying from the original user address. If that
2836	 * fails, we just zero-fill it. Live with it.
2837	 */
2838	kaddr = kmap_atomic(dst);
2839	uaddr = (void __user *)(addr & PAGE_MASK);
2840
2841	/*
2842	 * On architectures with software "accessed" bits, we would
2843	 * take a double page fault, so mark it accessed here.
2844	 */
2845	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2846		pte_t entry;
2847
2848		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2849		locked = true;
2850		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2851			/*
2852			 * Other thread has already handled the fault
2853			 * and update local tlb only
2854			 */
2855			update_mmu_tlb(vma, addr, vmf->pte);
2856			ret = -EAGAIN;
2857			goto pte_unlock;
2858		}
2859
2860		entry = pte_mkyoung(vmf->orig_pte);
2861		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2862			update_mmu_cache(vma, addr, vmf->pte);
2863	}
2864
2865	/*
2866	 * This really shouldn't fail, because the page is there
2867	 * in the page tables. But it might just be unreadable,
2868	 * in which case we just give up and fill the result with
2869	 * zeroes.
2870	 */
2871	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2872		if (locked)
2873			goto warn;
2874
2875		/* Re-validate under PTL if the page is still mapped */
2876		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2877		locked = true;
2878		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2879			/* The PTE changed under us, update local tlb */
2880			update_mmu_tlb(vma, addr, vmf->pte);
2881			ret = -EAGAIN;
2882			goto pte_unlock;
2883		}
2884
2885		/*
2886		 * The same page can be mapped back since last copy attempt.
2887		 * Try to copy again under PTL.
 
 
2888		 */
2889		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2890			/*
2891			 * Give a warn in case there can be some obscure
2892			 * use-case
2893			 */
2894warn:
2895			WARN_ON_ONCE(1);
2896			clear_page(kaddr);
2897		}
2898	}
2899
2900	ret = 0;
2901
2902pte_unlock:
2903	if (locked)
2904		pte_unmap_unlock(vmf->pte, vmf->ptl);
2905	kunmap_atomic(kaddr);
2906	flush_dcache_page(dst);
2907
2908	return ret;
2909}
2910
2911static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2912{
2913	struct file *vm_file = vma->vm_file;
 
 
 
 
2914
2915	if (vm_file)
2916		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
 
 
 
 
 
 
 
 
 
 
 
 
2917
2918	/*
2919	 * Special mappings (e.g. VDSO) do not have any file so fake
2920	 * a default GFP_KERNEL for them.
2921	 */
2922	return GFP_KERNEL;
2923}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2924
2925/*
2926 * Notify the address space that the page is about to become writable so that
2927 * it can prohibit this or wait for the page to get into an appropriate state.
2928 *
2929 * We do this without the lock held, so that it can sleep if it needs to.
2930 */
2931static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2932{
2933	vm_fault_t ret;
2934	struct page *page = vmf->page;
2935	unsigned int old_flags = vmf->flags;
2936
2937	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2938
2939	if (vmf->vma->vm_file &&
2940	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2941		return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
2942
2943	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2944	/* Restore original flags so that caller is not surprised */
2945	vmf->flags = old_flags;
2946	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2947		return ret;
2948	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2949		lock_page(page);
2950		if (!page->mapping) {
2951			unlock_page(page);
2952			return 0; /* retry */
2953		}
2954		ret |= VM_FAULT_LOCKED;
2955	} else
2956		VM_BUG_ON_PAGE(!PageLocked(page), page);
2957	return ret;
2958}
2959
2960/*
2961 * Handle dirtying of a page in shared file mapping on a write fault.
2962 *
2963 * The function expects the page to be locked and unlocks it.
2964 */
2965static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2966{
2967	struct vm_area_struct *vma = vmf->vma;
2968	struct address_space *mapping;
2969	struct page *page = vmf->page;
2970	bool dirtied;
2971	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2972
2973	dirtied = set_page_dirty(page);
2974	VM_BUG_ON_PAGE(PageAnon(page), page);
2975	/*
2976	 * Take a local copy of the address_space - page.mapping may be zeroed
2977	 * by truncate after unlock_page().   The address_space itself remains
2978	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2979	 * release semantics to prevent the compiler from undoing this copying.
2980	 */
2981	mapping = page_rmapping(page);
2982	unlock_page(page);
2983
2984	if (!page_mkwrite)
2985		file_update_time(vma->vm_file);
2986
2987	/*
2988	 * Throttle page dirtying rate down to writeback speed.
2989	 *
2990	 * mapping may be NULL here because some device drivers do not
2991	 * set page.mapping but still dirty their pages
2992	 *
2993	 * Drop the mmap_lock before waiting on IO, if we can. The file
2994	 * is pinning the mapping, as per above.
2995	 */
2996	if ((dirtied || page_mkwrite) && mapping) {
2997		struct file *fpin;
2998
2999		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3000		balance_dirty_pages_ratelimited(mapping);
3001		if (fpin) {
3002			fput(fpin);
3003			return VM_FAULT_COMPLETED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3004		}
3005	}
3006
3007	return 0;
3008}
 
3009
3010/*
3011 * Handle write page faults for pages that can be reused in the current vma
3012 *
3013 * This can happen either due to the mapping being with the VM_SHARED flag,
3014 * or due to us being the last reference standing to the page. In either
3015 * case, all we need to do here is to mark the page as writable and update
3016 * any related book-keeping.
3017 */
3018static inline void wp_page_reuse(struct vm_fault *vmf)
3019	__releases(vmf->ptl)
3020{
3021	struct vm_area_struct *vma = vmf->vma;
3022	struct page *page = vmf->page;
3023	pte_t entry;
3024
3025	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3026	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3027
3028	/*
3029	 * Clear the pages cpupid information as the existing
3030	 * information potentially belongs to a now completely
3031	 * unrelated process.
3032	 */
3033	if (page)
3034		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3035
3036	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3037	entry = pte_mkyoung(vmf->orig_pte);
3038	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3039	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3040		update_mmu_cache(vma, vmf->address, vmf->pte);
3041	pte_unmap_unlock(vmf->pte, vmf->ptl);
3042	count_vm_event(PGREUSE);
3043}
3044
3045/*
3046 * Handle the case of a page which we actually need to copy to a new page,
3047 * either due to COW or unsharing.
3048 *
3049 * Called with mmap_lock locked and the old page referenced, but
3050 * without the ptl held.
3051 *
3052 * High level logic flow:
3053 *
3054 * - Allocate a page, copy the content of the old page to the new one.
3055 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3056 * - Take the PTL. If the pte changed, bail out and release the allocated page
3057 * - If the pte is still the way we remember it, update the page table and all
3058 *   relevant references. This includes dropping the reference the page-table
3059 *   held to the old page, as well as updating the rmap.
3060 * - In any case, unlock the PTL and drop the reference we took to the old page.
3061 */
3062static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3063{
3064	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3065	struct vm_area_struct *vma = vmf->vma;
3066	struct mm_struct *mm = vma->vm_mm;
3067	struct page *old_page = vmf->page;
3068	struct page *new_page = NULL;
3069	pte_t entry;
3070	int page_copied = 0;
3071	struct mmu_notifier_range range;
3072	int ret;
3073
3074	delayacct_wpcopy_start();
3075
3076	if (unlikely(anon_vma_prepare(vma)))
3077		goto oom;
3078
3079	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3080		new_page = alloc_zeroed_user_highpage_movable(vma,
3081							      vmf->address);
3082		if (!new_page)
3083			goto oom;
3084	} else {
3085		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3086				vmf->address);
3087		if (!new_page)
3088			goto oom;
3089
3090		ret = __wp_page_copy_user(new_page, old_page, vmf);
3091		if (ret) {
3092			/*
3093			 * COW failed, if the fault was solved by other,
3094			 * it's fine. If not, userspace would re-fault on
3095			 * the same address and we will handle the fault
3096			 * from the second attempt.
3097			 * The -EHWPOISON case will not be retried.
3098			 */
3099			put_page(new_page);
3100			if (old_page)
3101				put_page(old_page);
3102
3103			delayacct_wpcopy_end();
3104			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3105		}
3106		kmsan_copy_page_meta(new_page, old_page);
3107	}
3108
3109	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3110		goto oom_free_new;
3111	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3112
3113	__SetPageUptodate(new_page);
3114
3115	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3116				vmf->address & PAGE_MASK,
3117				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3118	mmu_notifier_invalidate_range_start(&range);
3119
3120	/*
3121	 * Re-check the pte - we dropped the lock
3122	 */
3123	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3124	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3125		if (old_page) {
3126			if (!PageAnon(old_page)) {
3127				dec_mm_counter(mm, mm_counter_file(old_page));
3128				inc_mm_counter(mm, MM_ANONPAGES);
3129			}
3130		} else {
3131			inc_mm_counter(mm, MM_ANONPAGES);
3132		}
3133		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3134		entry = mk_pte(new_page, vma->vm_page_prot);
3135		entry = pte_sw_mkyoung(entry);
3136		if (unlikely(unshare)) {
3137			if (pte_soft_dirty(vmf->orig_pte))
3138				entry = pte_mksoft_dirty(entry);
3139			if (pte_uffd_wp(vmf->orig_pte))
3140				entry = pte_mkuffd_wp(entry);
3141		} else {
3142			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3143		}
3144
3145		/*
3146		 * Clear the pte entry and flush it first, before updating the
3147		 * pte with the new entry, to keep TLBs on different CPUs in
3148		 * sync. This code used to set the new PTE then flush TLBs, but
3149		 * that left a window where the new PTE could be loaded into
3150		 * some TLBs while the old PTE remains in others.
3151		 */
3152		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3153		page_add_new_anon_rmap(new_page, vma, vmf->address);
3154		lru_cache_add_inactive_or_unevictable(new_page, vma);
3155		/*
3156		 * We call the notify macro here because, when using secondary
3157		 * mmu page tables (such as kvm shadow page tables), we want the
3158		 * new page to be mapped directly into the secondary page table.
3159		 */
3160		BUG_ON(unshare && pte_write(entry));
3161		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3162		update_mmu_cache(vma, vmf->address, vmf->pte);
3163		if (old_page) {
3164			/*
3165			 * Only after switching the pte to the new page may
3166			 * we remove the mapcount here. Otherwise another
3167			 * process may come and find the rmap count decremented
3168			 * before the pte is switched to the new page, and
3169			 * "reuse" the old page writing into it while our pte
3170			 * here still points into it and can be read by other
3171			 * threads.
3172			 *
3173			 * The critical issue is to order this
3174			 * page_remove_rmap with the ptp_clear_flush above.
3175			 * Those stores are ordered by (if nothing else,)
3176			 * the barrier present in the atomic_add_negative
3177			 * in page_remove_rmap.
3178			 *
3179			 * Then the TLB flush in ptep_clear_flush ensures that
3180			 * no process can access the old page before the
3181			 * decremented mapcount is visible. And the old page
3182			 * cannot be reused until after the decremented
3183			 * mapcount is visible. So transitively, TLBs to
3184			 * old page will be flushed before it can be reused.
3185			 */
3186			page_remove_rmap(old_page, vma, false);
3187		}
3188
3189		/* Free the old page.. */
3190		new_page = old_page;
3191		page_copied = 1;
3192	} else {
3193		update_mmu_tlb(vma, vmf->address, vmf->pte);
3194	}
3195
3196	if (new_page)
3197		put_page(new_page);
3198
3199	pte_unmap_unlock(vmf->pte, vmf->ptl);
3200	/*
3201	 * No need to double call mmu_notifier->invalidate_range() callback as
3202	 * the above ptep_clear_flush_notify() did already call it.
3203	 */
3204	mmu_notifier_invalidate_range_only_end(&range);
3205	if (old_page) {
3206		if (page_copied)
3207			free_swap_cache(old_page);
3208		put_page(old_page);
 
 
 
 
 
 
 
3209	}
3210
3211	delayacct_wpcopy_end();
3212	return 0;
3213oom_free_new:
3214	put_page(new_page);
3215oom:
3216	if (old_page)
3217		put_page(old_page);
3218
3219	delayacct_wpcopy_end();
3220	return VM_FAULT_OOM;
3221}
3222
3223/**
3224 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3225 *			  writeable once the page is prepared
3226 *
3227 * @vmf: structure describing the fault
3228 *
3229 * This function handles all that is needed to finish a write page fault in a
3230 * shared mapping due to PTE being read-only once the mapped page is prepared.
3231 * It handles locking of PTE and modifying it.
3232 *
3233 * The function expects the page to be locked or other protection against
3234 * concurrent faults / writeback (such as DAX radix tree locks).
3235 *
3236 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3237 * we acquired PTE lock.
3238 */
3239vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3240{
3241	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3242	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3243				       &vmf->ptl);
3244	/*
3245	 * We might have raced with another page fault while we released the
3246	 * pte_offset_map_lock.
3247	 */
3248	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3249		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3250		pte_unmap_unlock(vmf->pte, vmf->ptl);
3251		return VM_FAULT_NOPAGE;
3252	}
3253	wp_page_reuse(vmf);
3254	return 0;
3255}
3256
3257/*
3258 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3259 * mapping
3260 */
3261static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3262{
3263	struct vm_area_struct *vma = vmf->vma;
3264
3265	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3266		vm_fault_t ret;
3267
3268		pte_unmap_unlock(vmf->pte, vmf->ptl);
3269		vmf->flags |= FAULT_FLAG_MKWRITE;
3270		ret = vma->vm_ops->pfn_mkwrite(vmf);
3271		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3272			return ret;
3273		return finish_mkwrite_fault(vmf);
3274	}
3275	wp_page_reuse(vmf);
3276	return 0;
3277}
3278
3279static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3280	__releases(vmf->ptl)
3281{
3282	struct vm_area_struct *vma = vmf->vma;
3283	vm_fault_t ret = 0;
3284
3285	get_page(vmf->page);
3286
3287	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3288		vm_fault_t tmp;
3289
3290		pte_unmap_unlock(vmf->pte, vmf->ptl);
3291		tmp = do_page_mkwrite(vmf);
3292		if (unlikely(!tmp || (tmp &
3293				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3294			put_page(vmf->page);
3295			return tmp;
3296		}
3297		tmp = finish_mkwrite_fault(vmf);
3298		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3299			unlock_page(vmf->page);
3300			put_page(vmf->page);
3301			return tmp;
3302		}
3303	} else {
3304		wp_page_reuse(vmf);
3305		lock_page(vmf->page);
3306	}
3307	ret |= fault_dirty_shared_page(vmf);
3308	put_page(vmf->page);
3309
 
 
3310	return ret;
3311}
3312
3313/*
3314 * This routine handles present pages, when
3315 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3316 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3317 *   (FAULT_FLAG_UNSHARE)
3318 *
3319 * It is done by copying the page to a new address and decrementing the
3320 * shared-page counter for the old page.
3321 *
3322 * Note that this routine assumes that the protection checks have been
3323 * done by the caller (the low-level page fault routine in most cases).
3324 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3325 * done any necessary COW.
3326 *
3327 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3328 * though the page will change only once the write actually happens. This
3329 * avoids a few races, and potentially makes it more efficient.
3330 *
3331 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3332 * but allow concurrent faults), with pte both mapped and locked.
3333 * We return with mmap_lock still held, but pte unmapped and unlocked.
3334 */
3335static vm_fault_t do_wp_page(struct vm_fault *vmf)
3336	__releases(vmf->ptl)
3337{
3338	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3339	struct vm_area_struct *vma = vmf->vma;
3340	struct folio *folio = NULL;
3341
3342	if (likely(!unshare)) {
3343		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3344			pte_unmap_unlock(vmf->pte, vmf->ptl);
3345			return handle_userfault(vmf, VM_UFFD_WP);
3346		}
3347
3348		/*
3349		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3350		 * is flushed in this case before copying.
3351		 */
3352		if (unlikely(userfaultfd_wp(vmf->vma) &&
3353			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3354			flush_tlb_page(vmf->vma, vmf->address);
3355	}
3356
3357	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3358
3359	/*
3360	 * Shared mapping: we are guaranteed to have VM_WRITE and
3361	 * FAULT_FLAG_WRITE set at this point.
3362	 */
3363	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3364		/*
3365		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3366		 * VM_PFNMAP VMA.
3367		 *
3368		 * We should not cow pages in a shared writeable mapping.
3369		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3370		 */
3371		if (!vmf->page)
3372			return wp_pfn_shared(vmf);
3373		return wp_page_shared(vmf);
3374	}
3375
3376	if (vmf->page)
3377		folio = page_folio(vmf->page);
3378
3379	/*
3380	 * Private mapping: create an exclusive anonymous page copy if reuse
3381	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3382	 */
3383	if (folio && folio_test_anon(folio)) {
3384		/*
3385		 * If the page is exclusive to this process we must reuse the
3386		 * page without further checks.
3387		 */
3388		if (PageAnonExclusive(vmf->page))
3389			goto reuse;
3390
3391		/*
3392		 * We have to verify under folio lock: these early checks are
3393		 * just an optimization to avoid locking the folio and freeing
3394		 * the swapcache if there is little hope that we can reuse.
3395		 *
3396		 * KSM doesn't necessarily raise the folio refcount.
3397		 */
3398		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3399			goto copy;
3400		if (!folio_test_lru(folio))
3401			/*
3402			 * Note: We cannot easily detect+handle references from
3403			 * remote LRU pagevecs or references to LRU folios.
3404			 */
3405			lru_add_drain();
3406		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3407			goto copy;
3408		if (!folio_trylock(folio))
3409			goto copy;
3410		if (folio_test_swapcache(folio))
3411			folio_free_swap(folio);
3412		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3413			folio_unlock(folio);
3414			goto copy;
3415		}
3416		/*
3417		 * Ok, we've got the only folio reference from our mapping
3418		 * and the folio is locked, it's dark out, and we're wearing
3419		 * sunglasses. Hit it.
3420		 */
3421		page_move_anon_rmap(vmf->page, vma);
3422		folio_unlock(folio);
3423reuse:
3424		if (unlikely(unshare)) {
3425			pte_unmap_unlock(vmf->pte, vmf->ptl);
3426			return 0;
3427		}
3428		wp_page_reuse(vmf);
3429		return 0;
3430	}
3431copy:
3432	/*
3433	 * Ok, we need to copy. Oh, well..
3434	 */
3435	if (folio)
3436		folio_get(folio);
3437
3438	pte_unmap_unlock(vmf->pte, vmf->ptl);
3439#ifdef CONFIG_KSM
3440	if (folio && folio_test_ksm(folio))
3441		count_vm_event(COW_KSM);
3442#endif
3443	return wp_page_copy(vmf);
3444}
3445
3446static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3447		unsigned long start_addr, unsigned long end_addr,
3448		struct zap_details *details)
3449{
3450	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3451}
3452
3453static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3454					    pgoff_t first_index,
3455					    pgoff_t last_index,
3456					    struct zap_details *details)
3457{
3458	struct vm_area_struct *vma;
 
3459	pgoff_t vba, vea, zba, zea;
3460
3461	vma_interval_tree_foreach(vma, root, first_index, last_index) {
 
 
3462		vba = vma->vm_pgoff;
3463		vea = vba + vma_pages(vma) - 1;
3464		zba = max(first_index, vba);
3465		zea = min(last_index, vea);
 
 
 
 
 
3466
3467		unmap_mapping_range_vma(vma,
3468			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3469			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3470				details);
3471	}
3472}
3473
3474/**
3475 * unmap_mapping_folio() - Unmap single folio from processes.
3476 * @folio: The locked folio to be unmapped.
3477 *
3478 * Unmap this folio from any userspace process which still has it mmaped.
3479 * Typically, for efficiency, the range of nearby pages has already been
3480 * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3481 * truncation or invalidation holds the lock on a folio, it may find that
3482 * the page has been remapped again: and then uses unmap_mapping_folio()
3483 * to unmap it finally.
3484 */
3485void unmap_mapping_folio(struct folio *folio)
3486{
3487	struct address_space *mapping = folio->mapping;
3488	struct zap_details details = { };
3489	pgoff_t	first_index;
3490	pgoff_t	last_index;
3491
3492	VM_BUG_ON(!folio_test_locked(folio));
3493
3494	first_index = folio->index;
3495	last_index = folio->index + folio_nr_pages(folio) - 1;
3496
3497	details.even_cows = false;
3498	details.single_folio = folio;
3499	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3500
3501	i_mmap_lock_read(mapping);
3502	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3503		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3504					 last_index, &details);
3505	i_mmap_unlock_read(mapping);
3506}
3507
3508/**
3509 * unmap_mapping_pages() - Unmap pages from processes.
3510 * @mapping: The address space containing pages to be unmapped.
3511 * @start: Index of first page to be unmapped.
3512 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3513 * @even_cows: Whether to unmap even private COWed pages.
3514 *
3515 * Unmap the pages in this address space from any userspace process which
3516 * has them mmaped.  Generally, you want to remove COWed pages as well when
3517 * a file is being truncated, but not when invalidating pages from the page
3518 * cache.
3519 */
3520void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3521		pgoff_t nr, bool even_cows)
3522{
3523	struct zap_details details = { };
3524	pgoff_t	first_index = start;
3525	pgoff_t	last_index = start + nr - 1;
3526
3527	details.even_cows = even_cows;
3528	if (last_index < first_index)
3529		last_index = ULONG_MAX;
3530
3531	i_mmap_lock_read(mapping);
3532	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3533		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3534					 last_index, &details);
3535	i_mmap_unlock_read(mapping);
3536}
3537EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3538
3539/**
3540 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3541 * address_space corresponding to the specified byte range in the underlying
3542 * file.
3543 *
3544 * @mapping: the address space containing mmaps to be unmapped.
3545 * @holebegin: byte in first page to unmap, relative to the start of
3546 * the underlying file.  This will be rounded down to a PAGE_SIZE
3547 * boundary.  Note that this is different from truncate_pagecache(), which
3548 * must keep the partial page.  In contrast, we must get rid of
3549 * partial pages.
3550 * @holelen: size of prospective hole in bytes.  This will be rounded
3551 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3552 * end of the file.
3553 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3554 * but 0 when invalidating pagecache, don't throw away private data.
3555 */
3556void unmap_mapping_range(struct address_space *mapping,
3557		loff_t const holebegin, loff_t const holelen, int even_cows)
3558{
 
3559	pgoff_t hba = holebegin >> PAGE_SHIFT;
3560	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3561
3562	/* Check for overflow. */
3563	if (sizeof(holelen) > sizeof(hlen)) {
3564		long long holeend =
3565			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3566		if (holeend & ~(long long)ULONG_MAX)
3567			hlen = ULONG_MAX - hba + 1;
3568	}
3569
3570	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3571}
3572EXPORT_SYMBOL(unmap_mapping_range);
3573
3574/*
3575 * Restore a potential device exclusive pte to a working pte entry
3576 */
3577static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3578{
3579	struct folio *folio = page_folio(vmf->page);
3580	struct vm_area_struct *vma = vmf->vma;
3581	struct mmu_notifier_range range;
3582
3583	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3584		return VM_FAULT_RETRY;
3585	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3586				vma->vm_mm, vmf->address & PAGE_MASK,
3587				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3588	mmu_notifier_invalidate_range_start(&range);
3589
3590	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3591				&vmf->ptl);
3592	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3593		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3594
3595	pte_unmap_unlock(vmf->pte, vmf->ptl);
3596	folio_unlock(folio);
3597
3598	mmu_notifier_invalidate_range_end(&range);
3599	return 0;
3600}
3601
3602static inline bool should_try_to_free_swap(struct folio *folio,
3603					   struct vm_area_struct *vma,
3604					   unsigned int fault_flags)
3605{
3606	if (!folio_test_swapcache(folio))
3607		return false;
3608	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3609	    folio_test_mlocked(folio))
3610		return true;
3611	/*
3612	 * If we want to map a page that's in the swapcache writable, we
3613	 * have to detect via the refcount if we're really the exclusive
3614	 * user. Try freeing the swapcache to get rid of the swapcache
3615	 * reference only in case it's likely that we'll be the exlusive user.
3616	 */
3617	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3618		folio_ref_count(folio) == 2;
3619}
3620
3621static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3622{
3623	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3624				       vmf->address, &vmf->ptl);
3625	/*
3626	 * Be careful so that we will only recover a special uffd-wp pte into a
3627	 * none pte.  Otherwise it means the pte could have changed, so retry.
3628	 *
3629	 * This should also cover the case where e.g. the pte changed
3630	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3631	 * So is_pte_marker() check is not enough to safely drop the pte.
3632	 */
3633	if (pte_same(vmf->orig_pte, *vmf->pte))
3634		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3635	pte_unmap_unlock(vmf->pte, vmf->ptl);
3636	return 0;
3637}
3638
3639/*
3640 * This is actually a page-missing access, but with uffd-wp special pte
3641 * installed.  It means this pte was wr-protected before being unmapped.
3642 */
3643static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3644{
3645	/*
3646	 * Just in case there're leftover special ptes even after the region
3647	 * got unregistered - we can simply clear them.  We can also do that
3648	 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3649	 * ranges, but it should be more efficient to be done lazily here.
3650	 */
3651	if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3652		return pte_marker_clear(vmf);
3653
3654	/* do_fault() can handle pte markers too like none pte */
3655	return do_fault(vmf);
3656}
3657
3658static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3659{
3660	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3661	unsigned long marker = pte_marker_get(entry);
3662
3663	/*
3664	 * PTE markers should never be empty.  If anything weird happened,
3665	 * the best thing to do is to kill the process along with its mm.
3666	 */
3667	if (WARN_ON_ONCE(!marker))
3668		return VM_FAULT_SIGBUS;
3669
3670	/* Higher priority than uffd-wp when data corrupted */
3671	if (marker & PTE_MARKER_SWAPIN_ERROR)
3672		return VM_FAULT_SIGBUS;
3673
3674	if (pte_marker_entry_uffd_wp(entry))
3675		return pte_marker_handle_uffd_wp(vmf);
3676
3677	/* This is an unknown pte marker */
3678	return VM_FAULT_SIGBUS;
3679}
 
3680
3681/*
3682 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3683 * but allow concurrent faults), and pte mapped but not yet locked.
3684 * We return with pte unmapped and unlocked.
3685 *
3686 * We return with the mmap_lock locked or unlocked in the same cases
3687 * as does filemap_fault().
3688 */
3689vm_fault_t do_swap_page(struct vm_fault *vmf)
 
 
3690{
3691	struct vm_area_struct *vma = vmf->vma;
3692	struct folio *swapcache, *folio = NULL;
3693	struct page *page;
3694	struct swap_info_struct *si = NULL;
3695	rmap_t rmap_flags = RMAP_NONE;
3696	bool exclusive = false;
3697	swp_entry_t entry;
3698	pte_t pte;
3699	int locked;
3700	vm_fault_t ret = 0;
3701	void *shadow = NULL;
 
3702
3703	if (!pte_unmap_same(vmf))
3704		goto out;
3705
3706	entry = pte_to_swp_entry(vmf->orig_pte);
3707	if (unlikely(non_swap_entry(entry))) {
3708		if (is_migration_entry(entry)) {
3709			migration_entry_wait(vma->vm_mm, vmf->pmd,
3710					     vmf->address);
3711		} else if (is_device_exclusive_entry(entry)) {
3712			vmf->page = pfn_swap_entry_to_page(entry);
3713			ret = remove_device_exclusive_entry(vmf);
3714		} else if (is_device_private_entry(entry)) {
3715			vmf->page = pfn_swap_entry_to_page(entry);
3716			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3717					vmf->address, &vmf->ptl);
3718			if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3719				spin_unlock(vmf->ptl);
3720				goto out;
3721			}
3722
3723			/*
3724			 * Get a page reference while we know the page can't be
3725			 * freed.
3726			 */
3727			get_page(vmf->page);
3728			pte_unmap_unlock(vmf->pte, vmf->ptl);
3729			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3730			put_page(vmf->page);
3731		} else if (is_hwpoison_entry(entry)) {
3732			ret = VM_FAULT_HWPOISON;
3733		} else if (is_pte_marker_entry(entry)) {
3734			ret = handle_pte_marker(vmf);
3735		} else {
3736			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3737			ret = VM_FAULT_SIGBUS;
3738		}
3739		goto out;
3740	}
3741
3742	/* Prevent swapoff from happening to us. */
3743	si = get_swap_device(entry);
3744	if (unlikely(!si))
3745		goto out;
3746
3747	folio = swap_cache_get_folio(entry, vma, vmf->address);
3748	if (folio)
3749		page = folio_file_page(folio, swp_offset(entry));
3750	swapcache = folio;
3751
3752	if (!folio) {
3753		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3754		    __swap_count(entry) == 1) {
3755			/* skip swapcache */
3756			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3757						vma, vmf->address, false);
3758			page = &folio->page;
3759			if (folio) {
3760				__folio_set_locked(folio);
3761				__folio_set_swapbacked(folio);
3762
3763				if (mem_cgroup_swapin_charge_folio(folio,
3764							vma->vm_mm, GFP_KERNEL,
3765							entry)) {
3766					ret = VM_FAULT_OOM;
3767					goto out_page;
3768				}
3769				mem_cgroup_swapin_uncharge_swap(entry);
3770
3771				shadow = get_shadow_from_swap_cache(entry);
3772				if (shadow)
3773					workingset_refault(folio, shadow);
3774
3775				folio_add_lru(folio);
3776
3777				/* To provide entry to swap_readpage() */
3778				folio_set_swap_entry(folio, entry);
3779				swap_readpage(page, true, NULL);
3780				folio->private = NULL;
3781			}
3782		} else {
3783			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3784						vmf);
3785			if (page)
3786				folio = page_folio(page);
3787			swapcache = folio;
3788		}
3789
3790		if (!folio) {
3791			/*
3792			 * Back out if somebody else faulted in this pte
3793			 * while we released the pte lock.
3794			 */
3795			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3796					vmf->address, &vmf->ptl);
3797			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3798				ret = VM_FAULT_OOM;
 
3799			goto unlock;
3800		}
3801
3802		/* Had to read the page from swap area: Major fault */
3803		ret = VM_FAULT_MAJOR;
3804		count_vm_event(PGMAJFAULT);
3805		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3806	} else if (PageHWPoison(page)) {
3807		/*
3808		 * hwpoisoned dirty swapcache pages are kept for killing
3809		 * owner processes (which may be unknown at hwpoison time)
3810		 */
3811		ret = VM_FAULT_HWPOISON;
 
3812		goto out_release;
3813	}
3814
3815	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3816
3817	if (!locked) {
3818		ret |= VM_FAULT_RETRY;
3819		goto out_release;
3820	}
3821
3822	if (swapcache) {
3823		/*
3824		 * Make sure folio_free_swap() or swapoff did not release the
3825		 * swapcache from under us.  The page pin, and pte_same test
3826		 * below, are not enough to exclude that.  Even if it is still
3827		 * swapcache, we need to check that the page's swap has not
3828		 * changed.
3829		 */
3830		if (unlikely(!folio_test_swapcache(folio) ||
3831			     page_private(page) != entry.val))
3832			goto out_page;
 
3833
3834		/*
3835		 * KSM sometimes has to copy on read faults, for example, if
3836		 * page->index of !PageKSM() pages would be nonlinear inside the
3837		 * anon VMA -- PageKSM() is lost on actual swapout.
3838		 */
3839		page = ksm_might_need_to_copy(page, vma, vmf->address);
3840		if (unlikely(!page)) {
3841			ret = VM_FAULT_OOM;
3842			goto out_page;
3843		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3844			ret = VM_FAULT_HWPOISON;
3845			goto out_page;
3846		}
3847		folio = page_folio(page);
3848
3849		/*
3850		 * If we want to map a page that's in the swapcache writable, we
3851		 * have to detect via the refcount if we're really the exclusive
3852		 * owner. Try removing the extra reference from the local LRU
3853		 * pagevecs if required.
3854		 */
3855		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3856		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3857			lru_add_drain();
3858	}
3859
3860	cgroup_throttle_swaprate(page, GFP_KERNEL);
 
 
 
3861
3862	/*
3863	 * Back out if somebody else already faulted in this pte.
3864	 */
3865	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3866			&vmf->ptl);
3867	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3868		goto out_nomap;
3869
3870	if (unlikely(!folio_test_uptodate(folio))) {
3871		ret = VM_FAULT_SIGBUS;
3872		goto out_nomap;
3873	}
3874
3875	/*
3876	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3877	 * must never point at an anonymous page in the swapcache that is
3878	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3879	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3880	 * check after taking the PT lock and making sure that nobody
3881	 * concurrently faulted in this page and set PG_anon_exclusive.
3882	 */
3883	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3884	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3885
3886	/*
3887	 * Check under PT lock (to protect against concurrent fork() sharing
3888	 * the swap entry concurrently) for certainly exclusive pages.
3889	 */
3890	if (!folio_test_ksm(folio)) {
3891		/*
3892		 * Note that pte_swp_exclusive() == false for architectures
3893		 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3894		 */
3895		exclusive = pte_swp_exclusive(vmf->orig_pte);
3896		if (folio != swapcache) {
3897			/*
3898			 * We have a fresh page that is not exposed to the
3899			 * swapcache -> certainly exclusive.
3900			 */
3901			exclusive = true;
3902		} else if (exclusive && folio_test_writeback(folio) &&
3903			  data_race(si->flags & SWP_STABLE_WRITES)) {
3904			/*
3905			 * This is tricky: not all swap backends support
3906			 * concurrent page modifications while under writeback.
3907			 *
3908			 * So if we stumble over such a page in the swapcache
3909			 * we must not set the page exclusive, otherwise we can
3910			 * map it writable without further checks and modify it
3911			 * while still under writeback.
3912			 *
3913			 * For these problematic swap backends, simply drop the
3914			 * exclusive marker: this is perfectly fine as we start
3915			 * writeback only if we fully unmapped the page and
3916			 * there are no unexpected references on the page after
3917			 * unmapping succeeded. After fully unmapped, no
3918			 * further GUP references (FOLL_GET and FOLL_PIN) can
3919			 * appear, so dropping the exclusive marker and mapping
3920			 * it only R/O is fine.
3921			 */
3922			exclusive = false;
3923		}
3924	}
3925
3926	/*
3927	 * Remove the swap entry and conditionally try to free up the swapcache.
3928	 * We're already holding a reference on the page but haven't mapped it
3929	 * yet.
3930	 */
3931	swap_free(entry);
3932	if (should_try_to_free_swap(folio, vma, vmf->flags))
3933		folio_free_swap(folio);
3934
3935	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3936	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3937	pte = mk_pte(page, vma->vm_page_prot);
3938
3939	/*
3940	 * Same logic as in do_wp_page(); however, optimize for pages that are
3941	 * certainly not shared either because we just allocated them without
3942	 * exposing them to the swapcache or because the swap entry indicates
3943	 * exclusivity.
3944	 */
3945	if (!folio_test_ksm(folio) &&
3946	    (exclusive || folio_ref_count(folio) == 1)) {
3947		if (vmf->flags & FAULT_FLAG_WRITE) {
3948			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3949			vmf->flags &= ~FAULT_FLAG_WRITE;
3950		}
3951		rmap_flags |= RMAP_EXCLUSIVE;
3952	}
3953	flush_icache_page(vma, page);
3954	if (pte_swp_soft_dirty(vmf->orig_pte))
3955		pte = pte_mksoft_dirty(pte);
3956	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3957		pte = pte_mkuffd_wp(pte);
3958		pte = pte_wrprotect(pte);
3959	}
3960	vmf->orig_pte = pte;
3961
3962	/* ksm created a completely new copy */
3963	if (unlikely(folio != swapcache && swapcache)) {
3964		page_add_new_anon_rmap(page, vma, vmf->address);
3965		folio_add_lru_vma(folio, vma);
3966	} else {
3967		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3968	}
3969
3970	VM_BUG_ON(!folio_test_anon(folio) ||
3971			(pte_write(pte) && !PageAnonExclusive(page)));
3972	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3973	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3974
3975	folio_unlock(folio);
3976	if (folio != swapcache && swapcache) {
3977		/*
3978		 * Hold the lock to avoid the swap entry to be reused
3979		 * until we take the PT lock for the pte_same() check
3980		 * (to avoid false positives from pte_same). For
3981		 * further safety release the lock after the swap_free
3982		 * so that the swap count won't change under a
3983		 * parallel locked swapcache.
3984		 */
3985		folio_unlock(swapcache);
3986		folio_put(swapcache);
3987	}
3988
3989	if (vmf->flags & FAULT_FLAG_WRITE) {
3990		ret |= do_wp_page(vmf);
3991		if (ret & VM_FAULT_ERROR)
3992			ret &= VM_FAULT_ERROR;
3993		goto out;
3994	}
3995
3996	/* No need to invalidate - it was non-present before */
3997	update_mmu_cache(vma, vmf->address, vmf->pte);
3998unlock:
3999	pte_unmap_unlock(vmf->pte, vmf->ptl);
4000out:
4001	if (si)
4002		put_swap_device(si);
4003	return ret;
4004out_nomap:
4005	pte_unmap_unlock(vmf->pte, vmf->ptl);
 
4006out_page:
4007	folio_unlock(folio);
4008out_release:
4009	folio_put(folio);
4010	if (folio != swapcache && swapcache) {
4011		folio_unlock(swapcache);
4012		folio_put(swapcache);
4013	}
4014	if (si)
4015		put_swap_device(si);
4016	return ret;
4017}
4018
4019/*
4020 * We enter with non-exclusive mmap_lock (to exclude vma changes,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4021 * but allow concurrent faults), and pte mapped but not yet locked.
4022 * We return with mmap_lock still held, but pte unmapped and unlocked.
4023 */
4024static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
 
 
4025{
4026	struct vm_area_struct *vma = vmf->vma;
4027	struct page *page;
4028	vm_fault_t ret = 0;
4029	pte_t entry;
4030
4031	/* File mapping without ->vm_ops ? */
4032	if (vma->vm_flags & VM_SHARED)
4033		return VM_FAULT_SIGBUS;
4034
4035	/*
4036	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4037	 * pte_offset_map() on pmds where a huge pmd might be created
4038	 * from a different thread.
4039	 *
4040	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4041	 * parallel threads are excluded by other means.
4042	 *
4043	 * Here we only have mmap_read_lock(mm).
4044	 */
4045	if (pte_alloc(vma->vm_mm, vmf->pmd))
4046		return VM_FAULT_OOM;
4047
4048	/* See comment in handle_pte_fault() */
4049	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4050		return 0;
4051
4052	/* Use the zero-page for reads */
4053	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4054			!mm_forbids_zeropage(vma->vm_mm)) {
4055		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4056						vma->vm_page_prot));
4057		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4058				vmf->address, &vmf->ptl);
4059		if (!pte_none(*vmf->pte)) {
4060			update_mmu_tlb(vma, vmf->address, vmf->pte);
4061			goto unlock;
4062		}
4063		ret = check_stable_address_space(vma->vm_mm);
4064		if (ret)
4065			goto unlock;
4066		/* Deliver the page fault to userland, check inside PT lock */
4067		if (userfaultfd_missing(vma)) {
4068			pte_unmap_unlock(vmf->pte, vmf->ptl);
4069			return handle_userfault(vmf, VM_UFFD_MISSING);
4070		}
4071		goto setpte;
4072	}
4073
4074	/* Allocate our own private page. */
4075	if (unlikely(anon_vma_prepare(vma)))
4076		goto oom;
4077	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4078	if (!page)
4079		goto oom;
 
4080
4081	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4082		goto oom_free_page;
4083	cgroup_throttle_swaprate(page, GFP_KERNEL);
4084
4085	/*
4086	 * The memory barrier inside __SetPageUptodate makes sure that
4087	 * preceding stores to the page contents become visible before
4088	 * the set_pte_at() write.
4089	 */
4090	__SetPageUptodate(page);
4091
4092	entry = mk_pte(page, vma->vm_page_prot);
4093	entry = pte_sw_mkyoung(entry);
4094	if (vma->vm_flags & VM_WRITE)
4095		entry = pte_mkwrite(pte_mkdirty(entry));
4096
4097	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4098			&vmf->ptl);
4099	if (!pte_none(*vmf->pte)) {
4100		update_mmu_tlb(vma, vmf->address, vmf->pte);
4101		goto release;
4102	}
4103
4104	ret = check_stable_address_space(vma->vm_mm);
4105	if (ret)
4106		goto release;
4107
4108	/* Deliver the page fault to userland, check inside PT lock */
4109	if (userfaultfd_missing(vma)) {
4110		pte_unmap_unlock(vmf->pte, vmf->ptl);
4111		put_page(page);
4112		return handle_userfault(vmf, VM_UFFD_MISSING);
4113	}
4114
4115	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4116	page_add_new_anon_rmap(page, vma, vmf->address);
4117	lru_cache_add_inactive_or_unevictable(page, vma);
4118setpte:
4119	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4120
4121	/* No need to invalidate - it was non-present before */
4122	update_mmu_cache(vma, vmf->address, vmf->pte);
4123unlock:
4124	pte_unmap_unlock(vmf->pte, vmf->ptl);
4125	return ret;
4126release:
4127	put_page(page);
 
4128	goto unlock;
4129oom_free_page:
4130	put_page(page);
4131oom:
4132	return VM_FAULT_OOM;
4133}
4134
4135/*
4136 * The mmap_lock must have been held on entry, and may have been
4137 * released depending on flags and vma->vm_ops->fault() return value.
4138 * See filemap_fault() and __lock_page_retry().
4139 */
4140static vm_fault_t __do_fault(struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
4141{
4142	struct vm_area_struct *vma = vmf->vma;
4143	vm_fault_t ret;
 
 
 
 
 
 
 
 
4144
4145	/*
4146	 * Preallocate pte before we take page_lock because this might lead to
4147	 * deadlocks for memcg reclaim which waits for pages under writeback:
4148	 *				lock_page(A)
4149	 *				SetPageWriteback(A)
4150	 *				unlock_page(A)
4151	 * lock_page(B)
4152	 *				lock_page(B)
4153	 * pte_alloc_one
4154	 *   shrink_page_list
4155	 *     wait_on_page_writeback(A)
4156	 *				SetPageWriteback(B)
4157	 *				unlock_page(B)
4158	 *				# flush A, B to clear the writeback
4159	 */
4160	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4161		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4162		if (!vmf->prealloc_pte)
4163			return VM_FAULT_OOM;
4164	}
4165
4166	ret = vma->vm_ops->fault(vmf);
4167	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4168			    VM_FAULT_DONE_COW)))
4169		return ret;
4170
4171	if (unlikely(PageHWPoison(vmf->page))) {
4172		struct page *page = vmf->page;
4173		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4174		if (ret & VM_FAULT_LOCKED) {
4175			if (page_mapped(page))
4176				unmap_mapping_pages(page_mapping(page),
4177						    page->index, 1, false);
4178			/* Retry if a clean page was removed from the cache. */
4179			if (invalidate_inode_page(page))
4180				poisonret = VM_FAULT_NOPAGE;
4181			unlock_page(page);
4182		}
4183		put_page(page);
4184		vmf->page = NULL;
4185		return poisonret;
4186	}
4187
4188	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4189		lock_page(vmf->page);
4190	else
4191		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4192
4193	return ret;
4194}
4195
4196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4197static void deposit_prealloc_pte(struct vm_fault *vmf)
4198{
4199	struct vm_area_struct *vma = vmf->vma;
4200
4201	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4202	/*
4203	 * We are going to consume the prealloc table,
4204	 * count that as nr_ptes.
4205	 */
4206	mm_inc_nr_ptes(vma->vm_mm);
4207	vmf->prealloc_pte = NULL;
4208}
4209
4210vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4211{
4212	struct vm_area_struct *vma = vmf->vma;
4213	bool write = vmf->flags & FAULT_FLAG_WRITE;
4214	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4215	pmd_t entry;
4216	int i;
4217	vm_fault_t ret = VM_FAULT_FALLBACK;
4218
4219	if (!transhuge_vma_suitable(vma, haddr))
4220		return ret;
 
 
4221
4222	page = compound_head(page);
4223	if (compound_order(page) != HPAGE_PMD_ORDER)
4224		return ret;
4225
4226	/*
4227	 * Just backoff if any subpage of a THP is corrupted otherwise
4228	 * the corrupted page may mapped by PMD silently to escape the
4229	 * check.  This kind of THP just can be PTE mapped.  Access to
4230	 * the corrupted subpage should trigger SIGBUS as expected.
4231	 */
4232	if (unlikely(PageHasHWPoisoned(page)))
4233		return ret;
4234
4235	/*
4236	 * Archs like ppc64 need additional space to store information
4237	 * related to pte entry. Use the preallocated table for that.
4238	 */
4239	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4240		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4241		if (!vmf->prealloc_pte)
4242			return VM_FAULT_OOM;
4243	}
4244
4245	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4246	if (unlikely(!pmd_none(*vmf->pmd)))
4247		goto out;
4248
4249	for (i = 0; i < HPAGE_PMD_NR; i++)
4250		flush_icache_page(vma, page + i);
4251
4252	entry = mk_huge_pmd(page, vma->vm_page_prot);
4253	if (write)
4254		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4255
4256	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4257	page_add_file_rmap(page, vma, true);
4258
4259	/*
4260	 * deposit and withdraw with pmd lock held
 
4261	 */
4262	if (arch_needs_pgtable_deposit())
4263		deposit_prealloc_pte(vmf);
4264
4265	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4266
4267	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4268
4269	/* fault is handled */
4270	ret = 0;
4271	count_vm_event(THP_FILE_MAPPED);
4272out:
4273	spin_unlock(vmf->ptl);
4274	return ret;
4275}
4276#else
4277vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4278{
4279	return VM_FAULT_FALLBACK;
4280}
4281#endif
4282
4283void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4284{
4285	struct vm_area_struct *vma = vmf->vma;
4286	bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4287	bool write = vmf->flags & FAULT_FLAG_WRITE;
4288	bool prefault = vmf->address != addr;
4289	pte_t entry;
4290
4291	flush_icache_page(vma, page);
4292	entry = mk_pte(page, vma->vm_page_prot);
4293
4294	if (prefault && arch_wants_old_prefaulted_pte())
4295		entry = pte_mkold(entry);
4296	else
4297		entry = pte_sw_mkyoung(entry);
4298
4299	if (write)
4300		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4301	if (unlikely(uffd_wp))
4302		entry = pte_mkuffd_wp(pte_wrprotect(entry));
4303	/* copy-on-write page */
4304	if (write && !(vma->vm_flags & VM_SHARED)) {
4305		inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4306		page_add_new_anon_rmap(page, vma, addr);
4307		lru_cache_add_inactive_or_unevictable(page, vma);
4308	} else {
4309		inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4310		page_add_file_rmap(page, vma, false);
4311	}
4312	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4313}
4314
4315static bool vmf_pte_changed(struct vm_fault *vmf)
4316{
4317	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4318		return !pte_same(*vmf->pte, vmf->orig_pte);
4319
4320	return !pte_none(*vmf->pte);
4321}
4322
4323/**
4324 * finish_fault - finish page fault once we have prepared the page to fault
4325 *
4326 * @vmf: structure describing the fault
4327 *
4328 * This function handles all that is needed to finish a page fault once the
4329 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4330 * given page, adds reverse page mapping, handles memcg charges and LRU
4331 * addition.
4332 *
4333 * The function expects the page to be locked and on success it consumes a
4334 * reference of a page being mapped (for the PTE which maps it).
4335 *
4336 * Return: %0 on success, %VM_FAULT_ code in case of error.
4337 */
4338vm_fault_t finish_fault(struct vm_fault *vmf)
4339{
4340	struct vm_area_struct *vma = vmf->vma;
4341	struct page *page;
4342	vm_fault_t ret;
4343
4344	/* Did we COW the page? */
4345	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4346		page = vmf->cow_page;
4347	else
4348		page = vmf->page;
4349
4350	/*
4351	 * check even for read faults because we might have lost our CoWed
4352	 * page
4353	 */
4354	if (!(vma->vm_flags & VM_SHARED)) {
4355		ret = check_stable_address_space(vma->vm_mm);
4356		if (ret)
4357			return ret;
4358	}
 
 
 
 
 
 
 
 
 
 
4359
4360	if (pmd_none(*vmf->pmd)) {
4361		if (PageTransCompound(page)) {
4362			ret = do_set_pmd(vmf, page);
4363			if (ret != VM_FAULT_FALLBACK)
4364				return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4365		}
4366
4367		if (vmf->prealloc_pte)
4368			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4369		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4370			return VM_FAULT_OOM;
4371	}
4372
4373	/*
4374	 * See comment in handle_pte_fault() for how this scenario happens, we
4375	 * need to return NOPAGE so that we drop this page.
4376	 */
4377	if (pmd_devmap_trans_unstable(vmf->pmd))
4378		return VM_FAULT_NOPAGE;
4379
4380	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4381				      vmf->address, &vmf->ptl);
4382
4383	/* Re-check under ptl */
4384	if (likely(!vmf_pte_changed(vmf))) {
4385		do_set_pte(vmf, page, vmf->address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4386
4387		/* no need to invalidate: a not-present page won't be cached */
4388		update_mmu_cache(vma, vmf->address, vmf->pte);
4389
4390		ret = 0;
4391	} else {
4392		update_mmu_tlb(vma, vmf->address, vmf->pte);
4393		ret = VM_FAULT_NOPAGE;
4394	}
4395
4396	pte_unmap_unlock(vmf->pte, vmf->ptl);
4397	return ret;
4398}
4399
4400static unsigned long fault_around_bytes __read_mostly =
4401	rounddown_pow_of_two(65536);
4402
4403#ifdef CONFIG_DEBUG_FS
4404static int fault_around_bytes_get(void *data, u64 *val)
4405{
4406	*val = fault_around_bytes;
4407	return 0;
4408}
4409
4410/*
4411 * fault_around_bytes must be rounded down to the nearest page order as it's
4412 * what do_fault_around() expects to see.
4413 */
4414static int fault_around_bytes_set(void *data, u64 val)
4415{
4416	if (val / PAGE_SIZE > PTRS_PER_PTE)
4417		return -EINVAL;
4418	if (val > PAGE_SIZE)
4419		fault_around_bytes = rounddown_pow_of_two(val);
4420	else
4421		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4422	return 0;
4423}
4424DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4425		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4426
4427static int __init fault_around_debugfs(void)
4428{
4429	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4430				   &fault_around_bytes_fops);
4431	return 0;
4432}
4433late_initcall(fault_around_debugfs);
4434#endif
4435
4436/*
4437 * do_fault_around() tries to map few pages around the fault address. The hope
4438 * is that the pages will be needed soon and this will lower the number of
4439 * faults to handle.
4440 *
4441 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4442 * not ready to be mapped: not up-to-date, locked, etc.
4443 *
4444 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4445 * only once.
4446 *
4447 * fault_around_bytes defines how many bytes we'll try to map.
4448 * do_fault_around() expects it to be set to a power of two less than or equal
4449 * to PTRS_PER_PTE.
4450 *
4451 * The virtual address of the area that we map is naturally aligned to
4452 * fault_around_bytes rounded down to the machine page size
4453 * (and therefore to page order).  This way it's easier to guarantee
4454 * that we don't cross page table boundaries.
4455 */
4456static vm_fault_t do_fault_around(struct vm_fault *vmf)
4457{
4458	unsigned long address = vmf->address, nr_pages, mask;
4459	pgoff_t start_pgoff = vmf->pgoff;
4460	pgoff_t end_pgoff;
4461	int off;
4462
4463	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4464	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4465
4466	address = max(address & mask, vmf->vma->vm_start);
4467	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4468	start_pgoff -= off;
4469
4470	/*
4471	 *  end_pgoff is either the end of the page table, the end of
4472	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4473	 */
4474	end_pgoff = start_pgoff -
4475		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4476		PTRS_PER_PTE - 1;
4477	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4478			start_pgoff + nr_pages - 1);
4479
4480	if (pmd_none(*vmf->pmd)) {
4481		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4482		if (!vmf->prealloc_pte)
4483			return VM_FAULT_OOM;
4484	}
4485
4486	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4487}
4488
4489/* Return true if we should do read fault-around, false otherwise */
4490static inline bool should_fault_around(struct vm_fault *vmf)
4491{
4492	/* No ->map_pages?  No way to fault around... */
4493	if (!vmf->vma->vm_ops->map_pages)
4494		return false;
4495
4496	if (uffd_disable_fault_around(vmf->vma))
4497		return false;
4498
4499	return fault_around_bytes >> PAGE_SHIFT > 1;
4500}
4501
4502static vm_fault_t do_read_fault(struct vm_fault *vmf)
4503{
4504	vm_fault_t ret = 0;
 
 
 
 
 
4505
4506	/*
4507	 * Let's call ->map_pages() first and use ->fault() as fallback
4508	 * if page by the offset is not ready to be mapped (cold cache or
4509	 * something).
4510	 */
4511	if (should_fault_around(vmf)) {
4512		ret = do_fault_around(vmf);
4513		if (ret)
4514			return ret;
4515	}
4516
4517	ret = __do_fault(vmf);
4518	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4519		return ret;
4520
4521	ret |= finish_fault(vmf);
4522	unlock_page(vmf->page);
4523	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4524		put_page(vmf->page);
4525	return ret;
4526}
4527
4528static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4529{
4530	struct vm_area_struct *vma = vmf->vma;
4531	vm_fault_t ret;
4532
4533	if (unlikely(anon_vma_prepare(vma)))
4534		return VM_FAULT_OOM;
4535
4536	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4537	if (!vmf->cow_page)
4538		return VM_FAULT_OOM;
4539
4540	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4541				GFP_KERNEL)) {
4542		put_page(vmf->cow_page);
4543		return VM_FAULT_OOM;
4544	}
4545	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4546
4547	ret = __do_fault(vmf);
4548	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4549		goto uncharge_out;
4550	if (ret & VM_FAULT_DONE_COW)
4551		return ret;
4552
4553	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4554	__SetPageUptodate(vmf->cow_page);
4555
4556	ret |= finish_fault(vmf);
4557	unlock_page(vmf->page);
4558	put_page(vmf->page);
4559	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4560		goto uncharge_out;
4561	return ret;
4562uncharge_out:
4563	put_page(vmf->cow_page);
4564	return ret;
4565}
4566
4567static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4568{
4569	struct vm_area_struct *vma = vmf->vma;
4570	vm_fault_t ret, tmp;
4571
4572	ret = __do_fault(vmf);
4573	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4574		return ret;
4575
4576	/*
4577	 * Check if the backing address space wants to know that the page is
4578	 * about to become writable
4579	 */
4580	if (vma->vm_ops->page_mkwrite) {
4581		unlock_page(vmf->page);
4582		tmp = do_page_mkwrite(vmf);
4583		if (unlikely(!tmp ||
4584				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4585			put_page(vmf->page);
4586			return tmp;
4587		}
4588	}
4589
4590	ret |= finish_fault(vmf);
4591	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4592					VM_FAULT_RETRY))) {
4593		unlock_page(vmf->page);
4594		put_page(vmf->page);
4595		return ret;
4596	}
4597
4598	ret |= fault_dirty_shared_page(vmf);
4599	return ret;
4600}
4601
4602/*
4603 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4604 * but allow concurrent faults).
4605 * The mmap_lock may have been released depending on flags and our
4606 * return value.  See filemap_fault() and __folio_lock_or_retry().
4607 * If mmap_lock is released, vma may become invalid (for example
4608 * by other thread calling munmap()).
4609 */
4610static vm_fault_t do_fault(struct vm_fault *vmf)
4611{
4612	struct vm_area_struct *vma = vmf->vma;
4613	struct mm_struct *vm_mm = vma->vm_mm;
4614	vm_fault_t ret;
4615
4616	/*
4617	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4618	 */
4619	if (!vma->vm_ops->fault) {
4620		/*
4621		 * If we find a migration pmd entry or a none pmd entry, which
4622		 * should never happen, return SIGBUS
4623		 */
4624		if (unlikely(!pmd_present(*vmf->pmd)))
4625			ret = VM_FAULT_SIGBUS;
4626		else {
4627			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4628						       vmf->pmd,
4629						       vmf->address,
4630						       &vmf->ptl);
4631			/*
4632			 * Make sure this is not a temporary clearing of pte
4633			 * by holding ptl and checking again. A R/M/W update
4634			 * of pte involves: take ptl, clearing the pte so that
4635			 * we don't have concurrent modification by hardware
4636			 * followed by an update.
4637			 */
4638			if (unlikely(pte_none(*vmf->pte)))
4639				ret = VM_FAULT_SIGBUS;
4640			else
4641				ret = VM_FAULT_NOPAGE;
4642
4643			pte_unmap_unlock(vmf->pte, vmf->ptl);
4644		}
4645	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4646		ret = do_read_fault(vmf);
4647	else if (!(vma->vm_flags & VM_SHARED))
4648		ret = do_cow_fault(vmf);
4649	else
4650		ret = do_shared_fault(vmf);
4651
4652	/* preallocated pagetable is unused: free it */
4653	if (vmf->prealloc_pte) {
4654		pte_free(vm_mm, vmf->prealloc_pte);
4655		vmf->prealloc_pte = NULL;
4656	}
4657	return ret;
4658}
4659
4660int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4661		      unsigned long addr, int page_nid, int *flags)
4662{
4663	get_page(page);
4664
4665	count_vm_numa_event(NUMA_HINT_FAULTS);
4666	if (page_nid == numa_node_id()) {
4667		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4668		*flags |= TNF_FAULT_LOCAL;
4669	}
4670
4671	return mpol_misplaced(page, vma, addr);
 
4672}
4673
4674static vm_fault_t do_numa_page(struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
 
4675{
4676	struct vm_area_struct *vma = vmf->vma;
4677	struct page *page = NULL;
4678	int page_nid = NUMA_NO_NODE;
4679	bool writable = false;
4680	int last_cpupid;
4681	int target_nid;
4682	pte_t pte, old_pte;
4683	int flags = 0;
4684
4685	/*
4686	 * The "pte" at this point cannot be used safely without
4687	 * validation through pte_unmap_same(). It's of NUMA type but
4688	 * the pfn may be screwed if the read is non atomic.
4689	 */
4690	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4691	spin_lock(vmf->ptl);
4692	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4693		pte_unmap_unlock(vmf->pte, vmf->ptl);
4694		goto out;
4695	}
4696
4697	/* Get the normal PTE  */
4698	old_pte = ptep_get(vmf->pte);
4699	pte = pte_modify(old_pte, vma->vm_page_prot);
4700
4701	/*
4702	 * Detect now whether the PTE could be writable; this information
4703	 * is only valid while holding the PT lock.
4704	 */
4705	writable = pte_write(pte);
4706	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4707	    can_change_pte_writable(vma, vmf->address, pte))
4708		writable = true;
4709
4710	page = vm_normal_page(vma, vmf->address, pte);
4711	if (!page || is_zone_device_page(page))
4712		goto out_map;
4713
4714	/* TODO: handle PTE-mapped THP */
4715	if (PageCompound(page))
4716		goto out_map;
4717
4718	/*
4719	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4720	 * much anyway since they can be in shared cache state. This misses
4721	 * the case where a mapping is writable but the process never writes
4722	 * to it but pte_write gets cleared during protection updates and
4723	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4724	 * background writeback, dirty balancing and application behaviour.
4725	 */
4726	if (!writable)
4727		flags |= TNF_NO_GROUP;
4728
4729	/*
4730	 * Flag if the page is shared between multiple address spaces. This
4731	 * is later used when determining whether to group tasks together
4732	 */
4733	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4734		flags |= TNF_SHARED;
4735
4736	page_nid = page_to_nid(page);
4737	/*
4738	 * For memory tiering mode, cpupid of slow memory page is used
4739	 * to record page access time.  So use default value.
4740	 */
4741	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4742	    !node_is_toptier(page_nid))
4743		last_cpupid = (-1 & LAST_CPUPID_MASK);
4744	else
4745		last_cpupid = page_cpupid_last(page);
4746	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4747			&flags);
4748	if (target_nid == NUMA_NO_NODE) {
4749		put_page(page);
4750		goto out_map;
4751	}
4752	pte_unmap_unlock(vmf->pte, vmf->ptl);
4753	writable = false;
4754
4755	/* Migrate to the requested node */
4756	if (migrate_misplaced_page(page, vma, target_nid)) {
4757		page_nid = target_nid;
4758		flags |= TNF_MIGRATED;
4759	} else {
4760		flags |= TNF_MIGRATE_FAIL;
4761		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4762		spin_lock(vmf->ptl);
4763		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4764			pte_unmap_unlock(vmf->pte, vmf->ptl);
4765			goto out;
4766		}
4767		goto out_map;
4768	}
4769
4770out:
4771	if (page_nid != NUMA_NO_NODE)
4772		task_numa_fault(last_cpupid, page_nid, 1, flags);
4773	return 0;
4774out_map:
4775	/*
4776	 * Make it present again, depending on how arch implements
4777	 * non-accessible ptes, some can allow access by kernel mode.
4778	 */
4779	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4780	pte = pte_modify(old_pte, vma->vm_page_prot);
4781	pte = pte_mkyoung(pte);
4782	if (writable)
4783		pte = pte_mkwrite(pte);
4784	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4785	update_mmu_cache(vma, vmf->address, vmf->pte);
4786	pte_unmap_unlock(vmf->pte, vmf->ptl);
4787	goto out;
4788}
4789
4790static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4791{
4792	if (vma_is_anonymous(vmf->vma))
4793		return do_huge_pmd_anonymous_page(vmf);
4794	if (vmf->vma->vm_ops->huge_fault)
4795		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4796	return VM_FAULT_FALLBACK;
4797}
4798
4799/* `inline' is required to avoid gcc 4.1.2 build error */
4800static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4801{
4802	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4803	vm_fault_t ret;
4804
4805	if (vma_is_anonymous(vmf->vma)) {
4806		if (likely(!unshare) &&
4807		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4808			return handle_userfault(vmf, VM_UFFD_WP);
4809		return do_huge_pmd_wp_page(vmf);
4810	}
4811
4812	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4813		if (vmf->vma->vm_ops->huge_fault) {
4814			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4815			if (!(ret & VM_FAULT_FALLBACK))
4816				return ret;
4817		}
4818	}
4819
4820	/* COW or write-notify handled on pte level: split pmd. */
4821	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4822
4823	return VM_FAULT_FALLBACK;
4824}
4825
4826static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4827{
4828#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4829	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4830	/* No support for anonymous transparent PUD pages yet */
4831	if (vma_is_anonymous(vmf->vma))
4832		return VM_FAULT_FALLBACK;
4833	if (vmf->vma->vm_ops->huge_fault)
4834		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4835#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4836	return VM_FAULT_FALLBACK;
4837}
4838
4839static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4840{
4841#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4842	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4843	vm_fault_t ret;
4844
4845	/* No support for anonymous transparent PUD pages yet */
4846	if (vma_is_anonymous(vmf->vma))
4847		goto split;
4848	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4849		if (vmf->vma->vm_ops->huge_fault) {
4850			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4851			if (!(ret & VM_FAULT_FALLBACK))
4852				return ret;
4853		}
4854	}
4855split:
4856	/* COW or write-notify not handled on PUD level: split pud.*/
4857	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4858#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4859	return VM_FAULT_FALLBACK;
4860}
4861
4862/*
4863 * These routines also need to handle stuff like marking pages dirty
4864 * and/or accessed for architectures that don't do it in hardware (most
4865 * RISC architectures).  The early dirtying is also good on the i386.
4866 *
4867 * There is also a hook called "update_mmu_cache()" that architectures
4868 * with external mmu caches can use to update those (ie the Sparc or
4869 * PowerPC hashed page tables that act as extended TLBs).
4870 *
4871 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4872 * concurrent faults).
4873 *
4874 * The mmap_lock may have been released depending on flags and our return value.
4875 * See filemap_fault() and __folio_lock_or_retry().
4876 */
4877static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
 
 
4878{
4879	pte_t entry;
 
4880
4881	if (unlikely(pmd_none(*vmf->pmd))) {
4882		/*
4883		 * Leave __pte_alloc() until later: because vm_ops->fault may
4884		 * want to allocate huge page, and if we expose page table
4885		 * for an instant, it will be difficult to retract from
4886		 * concurrent faults and from rmap lookups.
4887		 */
4888		vmf->pte = NULL;
4889		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4890	} else {
4891		/*
4892		 * If a huge pmd materialized under us just retry later.  Use
4893		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4894		 * of pmd_trans_huge() to ensure the pmd didn't become
4895		 * pmd_trans_huge under us and then back to pmd_none, as a
4896		 * result of MADV_DONTNEED running immediately after a huge pmd
4897		 * fault in a different thread of this mm, in turn leading to a
4898		 * misleading pmd_trans_huge() retval. All we have to ensure is
4899		 * that it is a regular pmd that we can walk with
4900		 * pte_offset_map() and we can do that through an atomic read
4901		 * in C, which is what pmd_trans_unstable() provides.
4902		 */
4903		if (pmd_devmap_trans_unstable(vmf->pmd))
4904			return 0;
4905		/*
4906		 * A regular pmd is established and it can't morph into a huge
4907		 * pmd from under us anymore at this point because we hold the
4908		 * mmap_lock read mode and khugepaged takes it in write mode.
4909		 * So now it's safe to run pte_offset_map().
4910		 */
4911		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4912		vmf->orig_pte = *vmf->pte;
4913		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4914
4915		/*
4916		 * some architectures can have larger ptes than wordsize,
4917		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4918		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4919		 * accesses.  The code below just needs a consistent view
4920		 * for the ifs and we later double check anyway with the
4921		 * ptl lock held. So here a barrier will do.
4922		 */
4923		barrier();
4924		if (pte_none(vmf->orig_pte)) {
4925			pte_unmap(vmf->pte);
4926			vmf->pte = NULL;
4927		}
 
 
 
 
 
4928	}
4929
4930	if (!vmf->pte) {
4931		if (vma_is_anonymous(vmf->vma))
4932			return do_anonymous_page(vmf);
4933		else
4934			return do_fault(vmf);
4935	}
4936
4937	if (!pte_present(vmf->orig_pte))
4938		return do_swap_page(vmf);
4939
4940	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4941		return do_numa_page(vmf);
4942
4943	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4944	spin_lock(vmf->ptl);
4945	entry = vmf->orig_pte;
4946	if (unlikely(!pte_same(*vmf->pte, entry))) {
4947		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4948		goto unlock;
4949	}
4950	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4951		if (!pte_write(entry))
4952			return do_wp_page(vmf);
4953		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4954			entry = pte_mkdirty(entry);
4955	}
4956	entry = pte_mkyoung(entry);
4957	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4958				vmf->flags & FAULT_FLAG_WRITE)) {
4959		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4960	} else {
4961		/* Skip spurious TLB flush for retried page fault */
4962		if (vmf->flags & FAULT_FLAG_TRIED)
4963			goto unlock;
4964		/*
4965		 * This is needed only for protection faults but the arch code
4966		 * is not yet telling us if this is a protection fault or not.
4967		 * This still avoids useless tlb flushes for .text page faults
4968		 * with threads.
4969		 */
4970		if (vmf->flags & FAULT_FLAG_WRITE)
4971			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4972	}
4973unlock:
4974	pte_unmap_unlock(vmf->pte, vmf->ptl);
4975	return 0;
4976}
4977
4978/*
4979 * By the time we get here, we already hold the mm semaphore
4980 *
4981 * The mmap_lock may have been released depending on flags and our
4982 * return value.  See filemap_fault() and __folio_lock_or_retry().
4983 */
4984static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4985		unsigned long address, unsigned int flags)
4986{
4987	struct vm_fault vmf = {
4988		.vma = vma,
4989		.address = address & PAGE_MASK,
4990		.real_address = address,
4991		.flags = flags,
4992		.pgoff = linear_page_index(vma, address),
4993		.gfp_mask = __get_fault_gfp_mask(vma),
4994	};
4995	struct mm_struct *mm = vma->vm_mm;
4996	unsigned long vm_flags = vma->vm_flags;
4997	pgd_t *pgd;
4998	p4d_t *p4d;
4999	vm_fault_t ret;
 
5000
5001	pgd = pgd_offset(mm, address);
5002	p4d = p4d_alloc(mm, pgd, address);
5003	if (!p4d)
5004		return VM_FAULT_OOM;
5005
5006	vmf.pud = pud_alloc(mm, p4d, address);
5007	if (!vmf.pud)
5008		return VM_FAULT_OOM;
5009retry_pud:
5010	if (pud_none(*vmf.pud) &&
5011	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5012		ret = create_huge_pud(&vmf);
5013		if (!(ret & VM_FAULT_FALLBACK))
5014			return ret;
5015	} else {
5016		pud_t orig_pud = *vmf.pud;
5017
5018		barrier();
5019		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5020
5021			/*
5022			 * TODO once we support anonymous PUDs: NUMA case and
5023			 * FAULT_FLAG_UNSHARE handling.
5024			 */
5025			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5026				ret = wp_huge_pud(&vmf, orig_pud);
5027				if (!(ret & VM_FAULT_FALLBACK))
5028					return ret;
5029			} else {
5030				huge_pud_set_accessed(&vmf, orig_pud);
5031				return 0;
5032			}
5033		}
5034	}
5035
5036	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5037	if (!vmf.pmd)
 
5038		return VM_FAULT_OOM;
5039
5040	/* Huge pud page fault raced with pmd_alloc? */
5041	if (pud_trans_unstable(vmf.pud))
5042		goto retry_pud;
5043
5044	if (pmd_none(*vmf.pmd) &&
5045	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5046		ret = create_huge_pmd(&vmf);
5047		if (!(ret & VM_FAULT_FALLBACK))
5048			return ret;
5049	} else {
5050		vmf.orig_pmd = *vmf.pmd;
5051
5052		barrier();
5053		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5054			VM_BUG_ON(thp_migration_supported() &&
5055					  !is_pmd_migration_entry(vmf.orig_pmd));
5056			if (is_pmd_migration_entry(vmf.orig_pmd))
5057				pmd_migration_entry_wait(mm, vmf.pmd);
 
5058			return 0;
5059		}
5060		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5061			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5062				return do_huge_pmd_numa_page(&vmf);
5063
5064			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5065			    !pmd_write(vmf.orig_pmd)) {
5066				ret = wp_huge_pmd(&vmf);
5067				if (!(ret & VM_FAULT_FALLBACK))
5068					return ret;
5069			} else {
5070				huge_pmd_set_accessed(&vmf);
5071				return 0;
5072			}
5073		}
5074	}
5075
5076	return handle_pte_fault(&vmf);
5077}
5078
5079/**
5080 * mm_account_fault - Do page fault accounting
5081 *
5082 * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5083 *        of perf event counters, but we'll still do the per-task accounting to
5084 *        the task who triggered this page fault.
5085 * @address: the faulted address.
5086 * @flags: the fault flags.
5087 * @ret: the fault retcode.
5088 *
5089 * This will take care of most of the page fault accounting.  Meanwhile, it
5090 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5091 * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5092 * still be in per-arch page fault handlers at the entry of page fault.
5093 */
5094static inline void mm_account_fault(struct pt_regs *regs,
5095				    unsigned long address, unsigned int flags,
5096				    vm_fault_t ret)
5097{
5098	bool major;
5099
5100	/*
5101	 * We don't do accounting for some specific faults:
5102	 *
5103	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5104	 *   includes arch_vma_access_permitted() failing before reaching here.
5105	 *   So this is not a "this many hardware page faults" counter.  We
5106	 *   should use the hw profiling for that.
5107	 *
5108	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5109	 *   once they're completed.
5110	 */
5111	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5112		return;
5113
5114	/*
5115	 * We define the fault as a major fault when the final successful fault
5116	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5117	 * handle it immediately previously).
5118	 */
5119	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5120
5121	if (major)
5122		current->maj_flt++;
5123	else
5124		current->min_flt++;
5125
5126	/*
5127	 * If the fault is done for GUP, regs will be NULL.  We only do the
5128	 * accounting for the per thread fault counters who triggered the
5129	 * fault, and we skip the perf event updates.
5130	 */
5131	if (!regs)
5132		return;
5133
5134	if (major)
5135		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5136	else
5137		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5138}
5139
5140#ifdef CONFIG_LRU_GEN
5141static void lru_gen_enter_fault(struct vm_area_struct *vma)
5142{
5143	/* the LRU algorithm doesn't apply to sequential or random reads */
5144	current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5145}
5146
5147static void lru_gen_exit_fault(void)
5148{
5149	current->in_lru_fault = false;
5150}
5151#else
5152static void lru_gen_enter_fault(struct vm_area_struct *vma)
5153{
5154}
5155
5156static void lru_gen_exit_fault(void)
5157{
5158}
5159#endif /* CONFIG_LRU_GEN */
5160
5161static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5162				       unsigned int *flags)
5163{
5164	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5165		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5166			return VM_FAULT_SIGSEGV;
5167		/*
5168		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5169		 * just treat it like an ordinary read-fault otherwise.
5170		 */
5171		if (!is_cow_mapping(vma->vm_flags))
5172			*flags &= ~FAULT_FLAG_UNSHARE;
5173	} else if (*flags & FAULT_FLAG_WRITE) {
5174		/* Write faults on read-only mappings are impossible ... */
5175		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5176			return VM_FAULT_SIGSEGV;
5177		/* ... and FOLL_FORCE only applies to COW mappings. */
5178		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5179				 !is_cow_mapping(vma->vm_flags)))
5180			return VM_FAULT_SIGSEGV;
5181	}
5182	return 0;
5183}
5184
5185/*
5186 * By the time we get here, we already hold the mm semaphore
5187 *
5188 * The mmap_lock may have been released depending on flags and our
5189 * return value.  See filemap_fault() and __folio_lock_or_retry().
5190 */
5191vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5192			   unsigned int flags, struct pt_regs *regs)
5193{
5194	vm_fault_t ret;
5195
5196	__set_current_state(TASK_RUNNING);
5197
5198	count_vm_event(PGFAULT);
5199	count_memcg_event_mm(vma->vm_mm, PGFAULT);
5200
5201	ret = sanitize_fault_flags(vma, &flags);
5202	if (ret)
5203		return ret;
5204
5205	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5206					    flags & FAULT_FLAG_INSTRUCTION,
5207					    flags & FAULT_FLAG_REMOTE))
5208		return VM_FAULT_SIGSEGV;
5209
5210	/*
5211	 * Enable the memcg OOM handling for faults triggered in user
5212	 * space.  Kernel faults are handled more gracefully.
 
 
5213	 */
5214	if (flags & FAULT_FLAG_USER)
5215		mem_cgroup_enter_user_fault();
5216
5217	lru_gen_enter_fault(vma);
5218
5219	if (unlikely(is_vm_hugetlb_page(vma)))
5220		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5221	else
5222		ret = __handle_mm_fault(vma, address, flags);
5223
5224	lru_gen_exit_fault();
5225
5226	if (flags & FAULT_FLAG_USER) {
5227		mem_cgroup_exit_user_fault();
5228		/*
5229		 * The task may have entered a memcg OOM situation but
5230		 * if the allocation error was handled gracefully (no
5231		 * VM_FAULT_OOM), there is no need to kill anything.
5232		 * Just clean up the OOM state peacefully.
5233		 */
5234		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5235			mem_cgroup_oom_synchronize(false);
5236	}
5237
5238	mm_account_fault(regs, address, flags, ret);
5239
5240	return ret;
5241}
5242EXPORT_SYMBOL_GPL(handle_mm_fault);
5243
5244#ifndef __PAGETABLE_P4D_FOLDED
5245/*
5246 * Allocate p4d page table.
5247 * We've already handled the fast-path in-line.
5248 */
5249int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5250{
5251	p4d_t *new = p4d_alloc_one(mm, address);
5252	if (!new)
5253		return -ENOMEM;
5254
5255	spin_lock(&mm->page_table_lock);
5256	if (pgd_present(*pgd)) {	/* Another has populated it */
5257		p4d_free(mm, new);
5258	} else {
5259		smp_wmb(); /* See comment in pmd_install() */
5260		pgd_populate(mm, pgd, new);
5261	}
5262	spin_unlock(&mm->page_table_lock);
5263	return 0;
5264}
5265#endif /* __PAGETABLE_P4D_FOLDED */
5266
5267#ifndef __PAGETABLE_PUD_FOLDED
5268/*
5269 * Allocate page upper directory.
5270 * We've already handled the fast-path in-line.
5271 */
5272int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5273{
5274	pud_t *new = pud_alloc_one(mm, address);
5275	if (!new)
5276		return -ENOMEM;
5277
 
 
5278	spin_lock(&mm->page_table_lock);
5279	if (!p4d_present(*p4d)) {
5280		mm_inc_nr_puds(mm);
5281		smp_wmb(); /* See comment in pmd_install() */
5282		p4d_populate(mm, p4d, new);
5283	} else	/* Another has populated it */
5284		pud_free(mm, new);
 
 
5285	spin_unlock(&mm->page_table_lock);
5286	return 0;
5287}
5288#endif /* __PAGETABLE_PUD_FOLDED */
5289
5290#ifndef __PAGETABLE_PMD_FOLDED
5291/*
5292 * Allocate page middle directory.
5293 * We've already handled the fast-path in-line.
5294 */
5295int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5296{
5297	spinlock_t *ptl;
5298	pmd_t *new = pmd_alloc_one(mm, address);
5299	if (!new)
5300		return -ENOMEM;
5301
5302	ptl = pud_lock(mm, pud);
5303	if (!pud_present(*pud)) {
5304		mm_inc_nr_pmds(mm);
5305		smp_wmb(); /* See comment in pmd_install() */
 
 
 
5306		pud_populate(mm, pud, new);
5307	} else {	/* Another has populated it */
 
5308		pmd_free(mm, new);
5309	}
5310	spin_unlock(ptl);
 
 
5311	return 0;
5312}
5313#endif /* __PAGETABLE_PMD_FOLDED */
5314
5315/**
5316 * follow_pte - look up PTE at a user virtual address
5317 * @mm: the mm_struct of the target address space
5318 * @address: user virtual address
5319 * @ptepp: location to store found PTE
5320 * @ptlp: location to store the lock for the PTE
5321 *
5322 * On a successful return, the pointer to the PTE is stored in @ptepp;
5323 * the corresponding lock is taken and its location is stored in @ptlp.
5324 * The contents of the PTE are only stable until @ptlp is released;
5325 * any further use, if any, must be protected against invalidation
5326 * with MMU notifiers.
5327 *
5328 * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5329 * should be taken for read.
5330 *
5331 * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5332 * it is not a good general-purpose API.
5333 *
5334 * Return: zero on success, -ve otherwise.
5335 */
5336int follow_pte(struct mm_struct *mm, unsigned long address,
5337	       pte_t **ptepp, spinlock_t **ptlp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5338{
5339	pgd_t *pgd;
5340	p4d_t *p4d;
5341	pud_t *pud;
5342	pmd_t *pmd;
5343	pte_t *ptep;
5344
5345	pgd = pgd_offset(mm, address);
5346	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5347		goto out;
5348
5349	p4d = p4d_offset(pgd, address);
5350	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5351		goto out;
5352
5353	pud = pud_offset(p4d, address);
5354	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5355		goto out;
5356
5357	pmd = pmd_offset(pud, address);
5358	VM_BUG_ON(pmd_trans_huge(*pmd));
5359
5360	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5361		goto out;
5362
 
 
 
 
5363	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
 
 
5364	if (!pte_present(*ptep))
5365		goto unlock;
5366	*ptepp = ptep;
5367	return 0;
5368unlock:
5369	pte_unmap_unlock(ptep, *ptlp);
5370out:
5371	return -EINVAL;
5372}
5373EXPORT_SYMBOL_GPL(follow_pte);
 
 
 
 
 
 
 
 
 
 
5374
5375/**
5376 * follow_pfn - look up PFN at a user virtual address
5377 * @vma: memory mapping
5378 * @address: user virtual address
5379 * @pfn: location to store found PFN
5380 *
5381 * Only IO mappings and raw PFN mappings are allowed.
5382 *
5383 * This function does not allow the caller to read the permissions
5384 * of the PTE.  Do not use it.
5385 *
5386 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5387 */
5388int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5389	unsigned long *pfn)
5390{
5391	int ret = -EINVAL;
5392	spinlock_t *ptl;
5393	pte_t *ptep;
5394
5395	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5396		return ret;
5397
5398	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5399	if (ret)
5400		return ret;
5401	*pfn = pte_pfn(*ptep);
5402	pte_unmap_unlock(ptep, ptl);
5403	return 0;
5404}
5405EXPORT_SYMBOL(follow_pfn);
5406
5407#ifdef CONFIG_HAVE_IOREMAP_PROT
5408int follow_phys(struct vm_area_struct *vma,
5409		unsigned long address, unsigned int flags,
5410		unsigned long *prot, resource_size_t *phys)
5411{
5412	int ret = -EINVAL;
5413	pte_t *ptep, pte;
5414	spinlock_t *ptl;
5415
5416	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5417		goto out;
5418
5419	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5420		goto out;
5421	pte = *ptep;
5422
5423	if ((flags & FOLL_WRITE) && !pte_write(pte))
5424		goto unlock;
5425
5426	*prot = pgprot_val(pte_pgprot(pte));
5427	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5428
5429	ret = 0;
5430unlock:
5431	pte_unmap_unlock(ptep, ptl);
5432out:
5433	return ret;
5434}
5435
5436/**
5437 * generic_access_phys - generic implementation for iomem mmap access
5438 * @vma: the vma to access
5439 * @addr: userspace address, not relative offset within @vma
5440 * @buf: buffer to read/write
5441 * @len: length of transfer
5442 * @write: set to FOLL_WRITE when writing, otherwise reading
5443 *
5444 * This is a generic implementation for &vm_operations_struct.access for an
5445 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5446 * not page based.
5447 */
5448int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5449			void *buf, int len, int write)
5450{
5451	resource_size_t phys_addr;
5452	unsigned long prot = 0;
5453	void __iomem *maddr;
5454	pte_t *ptep, pte;
5455	spinlock_t *ptl;
5456	int offset = offset_in_page(addr);
5457	int ret = -EINVAL;
5458
5459	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5460		return -EINVAL;
5461
5462retry:
5463	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5464		return -EINVAL;
5465	pte = *ptep;
5466	pte_unmap_unlock(ptep, ptl);
5467
5468	prot = pgprot_val(pte_pgprot(pte));
5469	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5470
5471	if ((write & FOLL_WRITE) && !pte_write(pte))
5472		return -EINVAL;
5473
5474	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5475	if (!maddr)
5476		return -ENOMEM;
5477
5478	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5479		goto out_unmap;
5480
5481	if (!pte_same(pte, *ptep)) {
5482		pte_unmap_unlock(ptep, ptl);
5483		iounmap(maddr);
5484
5485		goto retry;
5486	}
5487
5488	if (write)
5489		memcpy_toio(maddr + offset, buf, len);
5490	else
5491		memcpy_fromio(buf, maddr + offset, len);
5492	ret = len;
5493	pte_unmap_unlock(ptep, ptl);
5494out_unmap:
5495	iounmap(maddr);
5496
5497	return ret;
5498}
5499EXPORT_SYMBOL_GPL(generic_access_phys);
5500#endif
5501
5502/*
5503 * Access another process' address space as given in mm.
 
5504 */
5505int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5506		       int len, unsigned int gup_flags)
5507{
5508	struct vm_area_struct *vma;
5509	void *old_buf = buf;
5510	int write = gup_flags & FOLL_WRITE;
5511
5512	if (mmap_read_lock_killable(mm))
5513		return 0;
5514
 
5515	/* ignore errors, just check how much was successfully transferred */
5516	while (len) {
5517		int bytes, ret, offset;
5518		void *maddr;
5519		struct page *page = NULL;
5520
5521		ret = get_user_pages_remote(mm, addr, 1,
5522				gup_flags, &page, &vma, NULL);
5523		if (ret <= 0) {
5524#ifndef CONFIG_HAVE_IOREMAP_PROT
5525			break;
5526#else
5527			/*
5528			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5529			 * we can access using slightly different code.
5530			 */
5531			vma = vma_lookup(mm, addr);
5532			if (!vma)
 
5533				break;
5534			if (vma->vm_ops && vma->vm_ops->access)
5535				ret = vma->vm_ops->access(vma, addr, buf,
5536							  len, write);
5537			if (ret <= 0)
 
5538				break;
5539			bytes = ret;
5540#endif
5541		} else {
5542			bytes = len;
5543			offset = addr & (PAGE_SIZE-1);
5544			if (bytes > PAGE_SIZE-offset)
5545				bytes = PAGE_SIZE-offset;
5546
5547			maddr = kmap(page);
5548			if (write) {
5549				copy_to_user_page(vma, page, addr,
5550						  maddr + offset, buf, bytes);
5551				set_page_dirty_lock(page);
5552			} else {
5553				copy_from_user_page(vma, page, addr,
5554						    buf, maddr + offset, bytes);
5555			}
5556			kunmap(page);
5557			put_page(page);
5558		}
5559		len -= bytes;
5560		buf += bytes;
5561		addr += bytes;
5562	}
5563	mmap_read_unlock(mm);
5564
5565	return buf - old_buf;
5566}
5567
5568/**
5569 * access_remote_vm - access another process' address space
5570 * @mm:		the mm_struct of the target address space
5571 * @addr:	start address to access
5572 * @buf:	source or destination buffer
5573 * @len:	number of bytes to transfer
5574 * @gup_flags:	flags modifying lookup behaviour
5575 *
5576 * The caller must hold a reference on @mm.
5577 *
5578 * Return: number of bytes copied from source to destination.
5579 */
5580int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5581		void *buf, int len, unsigned int gup_flags)
5582{
5583	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5584}
5585
5586/*
5587 * Access another process' address space.
5588 * Source/target buffer must be kernel space,
5589 * Do not walk the page table directly, use get_user_pages
5590 */
5591int access_process_vm(struct task_struct *tsk, unsigned long addr,
5592		void *buf, int len, unsigned int gup_flags)
5593{
5594	struct mm_struct *mm;
5595	int ret;
5596
5597	mm = get_task_mm(tsk);
5598	if (!mm)
5599		return 0;
5600
5601	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5602
5603	mmput(mm);
5604
5605	return ret;
5606}
5607EXPORT_SYMBOL_GPL(access_process_vm);
5608
5609/*
5610 * Print the name of a VMA.
5611 */
5612void print_vma_addr(char *prefix, unsigned long ip)
5613{
5614	struct mm_struct *mm = current->mm;
5615	struct vm_area_struct *vma;
5616
5617	/*
5618	 * we might be running from an atomic context so we cannot sleep
 
5619	 */
5620	if (!mmap_read_trylock(mm))
5621		return;
5622
 
5623	vma = find_vma(mm, ip);
5624	if (vma && vma->vm_file) {
5625		struct file *f = vma->vm_file;
5626		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5627		if (buf) {
5628			char *p;
5629
5630			p = file_path(f, buf, PAGE_SIZE);
5631			if (IS_ERR(p))
5632				p = "?";
5633			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
 
 
 
5634					vma->vm_start,
5635					vma->vm_end - vma->vm_start);
5636			free_page((unsigned long)buf);
5637		}
5638	}
5639	mmap_read_unlock(mm);
5640}
5641
5642#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5643void __might_fault(const char *file, int line)
5644{
5645	if (pagefault_disabled())
 
 
 
 
 
 
5646		return;
5647	__might_sleep(file, line);
5648#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5649	if (current->mm)
5650		might_lock_read(&current->mm->mmap_lock);
5651#endif
5652}
5653EXPORT_SYMBOL(__might_fault);
5654#endif
5655
5656#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5657/*
5658 * Process all subpages of the specified huge page with the specified
5659 * operation.  The target subpage will be processed last to keep its
5660 * cache lines hot.
5661 */
5662static inline void process_huge_page(
5663	unsigned long addr_hint, unsigned int pages_per_huge_page,
5664	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5665	void *arg)
5666{
5667	int i, n, base, l;
5668	unsigned long addr = addr_hint &
5669		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5670
5671	/* Process target subpage last to keep its cache lines hot */
5672	might_sleep();
5673	n = (addr_hint - addr) / PAGE_SIZE;
5674	if (2 * n <= pages_per_huge_page) {
5675		/* If target subpage in first half of huge page */
5676		base = 0;
5677		l = n;
5678		/* Process subpages at the end of huge page */
5679		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5680			cond_resched();
5681			process_subpage(addr + i * PAGE_SIZE, i, arg);
5682		}
5683	} else {
5684		/* If target subpage in second half of huge page */
5685		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5686		l = pages_per_huge_page - n;
5687		/* Process subpages at the begin of huge page */
5688		for (i = 0; i < base; i++) {
5689			cond_resched();
5690			process_subpage(addr + i * PAGE_SIZE, i, arg);
5691		}
5692	}
5693	/*
5694	 * Process remaining subpages in left-right-left-right pattern
5695	 * towards the target subpage
 
5696	 */
5697	for (i = 0; i < l; i++) {
5698		int left_idx = base + i;
5699		int right_idx = base + 2 * l - 1 - i;
5700
5701		cond_resched();
5702		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5703		cond_resched();
5704		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5705	}
5706}
 
 
5707
 
5708static void clear_gigantic_page(struct page *page,
5709				unsigned long addr,
5710				unsigned int pages_per_huge_page)
5711{
5712	int i;
5713	struct page *p;
5714
5715	might_sleep();
5716	for (i = 0; i < pages_per_huge_page; i++) {
5717		p = nth_page(page, i);
5718		cond_resched();
5719		clear_user_highpage(p, addr + i * PAGE_SIZE);
5720	}
5721}
5722
5723static void clear_subpage(unsigned long addr, int idx, void *arg)
5724{
5725	struct page *page = arg;
5726
5727	clear_user_highpage(page + idx, addr);
5728}
5729
5730void clear_huge_page(struct page *page,
5731		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5732{
5733	unsigned long addr = addr_hint &
5734		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5735
5736	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5737		clear_gigantic_page(page, addr, pages_per_huge_page);
5738		return;
5739	}
5740
5741	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
 
 
 
 
5742}
5743
5744static void copy_user_gigantic_page(struct page *dst, struct page *src,
5745				    unsigned long addr,
5746				    struct vm_area_struct *vma,
5747				    unsigned int pages_per_huge_page)
5748{
5749	int i;
5750	struct page *dst_base = dst;
5751	struct page *src_base = src;
5752
5753	for (i = 0; i < pages_per_huge_page; i++) {
5754		dst = nth_page(dst_base, i);
5755		src = nth_page(src_base, i);
5756
5757		cond_resched();
5758		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5759	}
5760}
5761
5762struct copy_subpage_arg {
5763	struct page *dst;
5764	struct page *src;
5765	struct vm_area_struct *vma;
5766};
5767
5768static void copy_subpage(unsigned long addr, int idx, void *arg)
5769{
5770	struct copy_subpage_arg *copy_arg = arg;
5771
5772	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5773			   addr, copy_arg->vma);
5774}
5775
5776void copy_user_huge_page(struct page *dst, struct page *src,
5777			 unsigned long addr_hint, struct vm_area_struct *vma,
5778			 unsigned int pages_per_huge_page)
5779{
5780	unsigned long addr = addr_hint &
5781		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5782	struct copy_subpage_arg arg = {
5783		.dst = dst,
5784		.src = src,
5785		.vma = vma,
5786	};
5787
5788	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5789		copy_user_gigantic_page(dst, src, addr, vma,
5790					pages_per_huge_page);
5791		return;
5792	}
5793
5794	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5795}
5796
5797long copy_huge_page_from_user(struct page *dst_page,
5798				const void __user *usr_src,
5799				unsigned int pages_per_huge_page,
5800				bool allow_pagefault)
5801{
5802	void *page_kaddr;
5803	unsigned long i, rc = 0;
5804	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5805	struct page *subpage;
5806
5807	for (i = 0; i < pages_per_huge_page; i++) {
5808		subpage = nth_page(dst_page, i);
5809		if (allow_pagefault)
5810			page_kaddr = kmap(subpage);
5811		else
5812			page_kaddr = kmap_atomic(subpage);
5813		rc = copy_from_user(page_kaddr,
5814				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5815		if (allow_pagefault)
5816			kunmap(subpage);
5817		else
5818			kunmap_atomic(page_kaddr);
5819
5820		ret_val -= (PAGE_SIZE - rc);
5821		if (rc)
5822			break;
5823
5824		flush_dcache_page(subpage);
5825
5826		cond_resched();
 
5827	}
5828	return ret_val;
5829}
5830#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5831
5832#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5833
5834static struct kmem_cache *page_ptl_cachep;
5835
5836void __init ptlock_cache_init(void)
5837{
5838	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5839			SLAB_PANIC, NULL);
5840}
5841
5842bool ptlock_alloc(struct page *page)
5843{
5844	spinlock_t *ptl;
5845
5846	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5847	if (!ptl)
5848		return false;
5849	page->ptl = ptl;
5850	return true;
5851}
5852
5853void ptlock_free(struct page *page)
5854{
5855	kmem_cache_free(page_ptl_cachep, page->ptl);
5856}
5857#endif
v3.1
 
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
 
 
 
 
 
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
 
 
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/module.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
 
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59#include <linux/gfp.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61#include <asm/io.h>
 
  62#include <asm/pgalloc.h>
  63#include <asm/uaccess.h>
  64#include <asm/tlb.h>
  65#include <asm/tlbflush.h>
  66#include <asm/pgtable.h>
  67
 
  68#include "internal.h"
 
 
 
 
 
  69
  70#ifndef CONFIG_NEED_MULTIPLE_NODES
  71/* use the per-pgdat data instead for discontigmem - mbligh */
  72unsigned long max_mapnr;
 
 
  73struct page *mem_map;
  74
  75EXPORT_SYMBOL(max_mapnr);
  76EXPORT_SYMBOL(mem_map);
  77#endif
  78
  79unsigned long num_physpages;
 
  80/*
  81 * A number of key systems in x86 including ioremap() rely on the assumption
  82 * that high_memory defines the upper bound on direct map memory, then end
  83 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  85 * and ZONE_HIGHMEM.
  86 */
  87void * high_memory;
  88
  89EXPORT_SYMBOL(num_physpages);
  90EXPORT_SYMBOL(high_memory);
  91
  92/*
  93 * Randomize the address space (stacks, mmaps, brk, etc.).
  94 *
  95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  96 *   as ancient (libc5 based) binaries can segfault. )
  97 */
  98int randomize_va_space __read_mostly =
  99#ifdef CONFIG_COMPAT_BRK
 100					1;
 101#else
 102					2;
 103#endif
 104
 
 
 
 
 
 
 
 
 
 
 
 
 105static int __init disable_randmaps(char *s)
 106{
 107	randomize_va_space = 0;
 108	return 1;
 109}
 110__setup("norandmaps", disable_randmaps);
 111
 112unsigned long zero_pfn __read_mostly;
 
 
 113unsigned long highest_memmap_pfn __read_mostly;
 114
 115/*
 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 117 */
 118static int __init init_zero_pfn(void)
 119{
 120	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 121	return 0;
 122}
 123core_initcall(init_zero_pfn);
 124
 125
 126#if defined(SPLIT_RSS_COUNTING)
 127
 128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
 129{
 130	int i;
 131
 132	for (i = 0; i < NR_MM_COUNTERS; i++) {
 133		if (task->rss_stat.count[i]) {
 134			add_mm_counter(mm, i, task->rss_stat.count[i]);
 135			task->rss_stat.count[i] = 0;
 136		}
 137	}
 138	task->rss_stat.events = 0;
 139}
 140
 141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 142{
 143	struct task_struct *task = current;
 144
 145	if (likely(task->mm == mm))
 146		task->rss_stat.count[member] += val;
 147	else
 148		add_mm_counter(mm, member, val);
 149}
 150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 152
 153/* sync counter once per 64 page faults */
 154#define TASK_RSS_EVENTS_THRESH	(64)
 155static void check_sync_rss_stat(struct task_struct *task)
 156{
 157	if (unlikely(task != current))
 158		return;
 159	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 160		__sync_task_rss_stat(task, task->mm);
 161}
 162
 163unsigned long get_mm_counter(struct mm_struct *mm, int member)
 164{
 165	long val = 0;
 166
 167	/*
 168	 * Don't use task->mm here...for avoiding to use task_get_mm()..
 169	 * The caller must guarantee task->mm is not invalid.
 170	 */
 171	val = atomic_long_read(&mm->rss_stat.count[member]);
 172	/*
 173	 * counter is updated in asynchronous manner and may go to minus.
 174	 * But it's never be expected number for users.
 175	 */
 176	if (val < 0)
 177		return 0;
 178	return (unsigned long)val;
 179}
 180
 181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
 182{
 183	__sync_task_rss_stat(task, mm);
 184}
 185#else /* SPLIT_RSS_COUNTING */
 186
 187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 189
 190static void check_sync_rss_stat(struct task_struct *task)
 191{
 192}
 193
 194#endif /* SPLIT_RSS_COUNTING */
 195
 196#ifdef HAVE_GENERIC_MMU_GATHER
 197
 198static int tlb_next_batch(struct mmu_gather *tlb)
 199{
 200	struct mmu_gather_batch *batch;
 201
 202	batch = tlb->active;
 203	if (batch->next) {
 204		tlb->active = batch->next;
 205		return 1;
 206	}
 207
 208	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 209	if (!batch)
 210		return 0;
 211
 212	batch->next = NULL;
 213	batch->nr   = 0;
 214	batch->max  = MAX_GATHER_BATCH;
 215
 216	tlb->active->next = batch;
 217	tlb->active = batch;
 218
 219	return 1;
 220}
 221
 222/* tlb_gather_mmu
 223 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 224 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 225 *	users and we're going to destroy the full address space (exit/execve).
 226 */
 227void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
 228{
 229	tlb->mm = mm;
 230
 231	tlb->fullmm     = fullmm;
 232	tlb->need_flush = 0;
 233	tlb->fast_mode  = (num_possible_cpus() == 1);
 234	tlb->local.next = NULL;
 235	tlb->local.nr   = 0;
 236	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 237	tlb->active     = &tlb->local;
 238
 239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 240	tlb->batch = NULL;
 241#endif
 242}
 243
 244void tlb_flush_mmu(struct mmu_gather *tlb)
 245{
 246	struct mmu_gather_batch *batch;
 247
 248	if (!tlb->need_flush)
 249		return;
 250	tlb->need_flush = 0;
 251	tlb_flush(tlb);
 252#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 253	tlb_table_flush(tlb);
 254#endif
 255
 256	if (tlb_fast_mode(tlb))
 257		return;
 258
 259	for (batch = &tlb->local; batch; batch = batch->next) {
 260		free_pages_and_swap_cache(batch->pages, batch->nr);
 261		batch->nr = 0;
 262	}
 263	tlb->active = &tlb->local;
 264}
 265
 266/* tlb_finish_mmu
 267 *	Called at the end of the shootdown operation to free up any resources
 268 *	that were required.
 269 */
 270void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 271{
 272	struct mmu_gather_batch *batch, *next;
 273
 274	tlb_flush_mmu(tlb);
 275
 276	/* keep the page table cache within bounds */
 277	check_pgt_cache();
 278
 279	for (batch = tlb->local.next; batch; batch = next) {
 280		next = batch->next;
 281		free_pages((unsigned long)batch, 0);
 282	}
 283	tlb->local.next = NULL;
 284}
 285
 286/* __tlb_remove_page
 287 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 288 *	handling the additional races in SMP caused by other CPUs caching valid
 289 *	mappings in their TLBs. Returns the number of free page slots left.
 290 *	When out of page slots we must call tlb_flush_mmu().
 291 */
 292int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 293{
 294	struct mmu_gather_batch *batch;
 295
 296	tlb->need_flush = 1;
 297
 298	if (tlb_fast_mode(tlb)) {
 299		free_page_and_swap_cache(page);
 300		return 1; /* avoid calling tlb_flush_mmu() */
 301	}
 302
 303	batch = tlb->active;
 304	batch->pages[batch->nr++] = page;
 305	if (batch->nr == batch->max) {
 306		if (!tlb_next_batch(tlb))
 307			return 0;
 308		batch = tlb->active;
 309	}
 310	VM_BUG_ON(batch->nr > batch->max);
 311
 312	return batch->max - batch->nr;
 313}
 314
 315#endif /* HAVE_GENERIC_MMU_GATHER */
 316
 317#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 318
 319/*
 320 * See the comment near struct mmu_table_batch.
 321 */
 322
 323static void tlb_remove_table_smp_sync(void *arg)
 324{
 325	/* Simply deliver the interrupt */
 326}
 327
 328static void tlb_remove_table_one(void *table)
 329{
 330	/*
 331	 * This isn't an RCU grace period and hence the page-tables cannot be
 332	 * assumed to be actually RCU-freed.
 333	 *
 334	 * It is however sufficient for software page-table walkers that rely on
 335	 * IRQ disabling. See the comment near struct mmu_table_batch.
 336	 */
 337	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 338	__tlb_remove_table(table);
 339}
 340
 341static void tlb_remove_table_rcu(struct rcu_head *head)
 342{
 343	struct mmu_table_batch *batch;
 344	int i;
 345
 346	batch = container_of(head, struct mmu_table_batch, rcu);
 347
 348	for (i = 0; i < batch->nr; i++)
 349		__tlb_remove_table(batch->tables[i]);
 350
 351	free_page((unsigned long)batch);
 352}
 353
 354void tlb_table_flush(struct mmu_gather *tlb)
 355{
 356	struct mmu_table_batch **batch = &tlb->batch;
 357
 358	if (*batch) {
 359		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 360		*batch = NULL;
 361	}
 362}
 363
 364void tlb_remove_table(struct mmu_gather *tlb, void *table)
 365{
 366	struct mmu_table_batch **batch = &tlb->batch;
 367
 368	tlb->need_flush = 1;
 369
 370	/*
 371	 * When there's less then two users of this mm there cannot be a
 372	 * concurrent page-table walk.
 373	 */
 374	if (atomic_read(&tlb->mm->mm_users) < 2) {
 375		__tlb_remove_table(table);
 376		return;
 377	}
 378
 379	if (*batch == NULL) {
 380		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 381		if (*batch == NULL) {
 382			tlb_remove_table_one(table);
 383			return;
 384		}
 385		(*batch)->nr = 0;
 386	}
 387	(*batch)->tables[(*batch)->nr++] = table;
 388	if ((*batch)->nr == MAX_TABLE_BATCH)
 389		tlb_table_flush(tlb);
 390}
 391
 392#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 393
 394/*
 395 * If a p?d_bad entry is found while walking page tables, report
 396 * the error, before resetting entry to p?d_none.  Usually (but
 397 * very seldom) called out from the p?d_none_or_clear_bad macros.
 398 */
 399
 400void pgd_clear_bad(pgd_t *pgd)
 401{
 402	pgd_ERROR(*pgd);
 403	pgd_clear(pgd);
 404}
 405
 406void pud_clear_bad(pud_t *pud)
 407{
 408	pud_ERROR(*pud);
 409	pud_clear(pud);
 410}
 411
 412void pmd_clear_bad(pmd_t *pmd)
 413{
 414	pmd_ERROR(*pmd);
 415	pmd_clear(pmd);
 416}
 417
 418/*
 419 * Note: this doesn't free the actual pages themselves. That
 420 * has been handled earlier when unmapping all the memory regions.
 421 */
 422static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 423			   unsigned long addr)
 424{
 425	pgtable_t token = pmd_pgtable(*pmd);
 426	pmd_clear(pmd);
 427	pte_free_tlb(tlb, token, addr);
 428	tlb->mm->nr_ptes--;
 429}
 430
 431static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 432				unsigned long addr, unsigned long end,
 433				unsigned long floor, unsigned long ceiling)
 434{
 435	pmd_t *pmd;
 436	unsigned long next;
 437	unsigned long start;
 438
 439	start = addr;
 440	pmd = pmd_offset(pud, addr);
 441	do {
 442		next = pmd_addr_end(addr, end);
 443		if (pmd_none_or_clear_bad(pmd))
 444			continue;
 445		free_pte_range(tlb, pmd, addr);
 446	} while (pmd++, addr = next, addr != end);
 447
 448	start &= PUD_MASK;
 449	if (start < floor)
 450		return;
 451	if (ceiling) {
 452		ceiling &= PUD_MASK;
 453		if (!ceiling)
 454			return;
 455	}
 456	if (end - 1 > ceiling - 1)
 457		return;
 458
 459	pmd = pmd_offset(pud, start);
 460	pud_clear(pud);
 461	pmd_free_tlb(tlb, pmd, start);
 
 462}
 463
 464static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 465				unsigned long addr, unsigned long end,
 466				unsigned long floor, unsigned long ceiling)
 467{
 468	pud_t *pud;
 469	unsigned long next;
 470	unsigned long start;
 471
 472	start = addr;
 473	pud = pud_offset(pgd, addr);
 474	do {
 475		next = pud_addr_end(addr, end);
 476		if (pud_none_or_clear_bad(pud))
 477			continue;
 478		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 479	} while (pud++, addr = next, addr != end);
 480
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481	start &= PGDIR_MASK;
 482	if (start < floor)
 483		return;
 484	if (ceiling) {
 485		ceiling &= PGDIR_MASK;
 486		if (!ceiling)
 487			return;
 488	}
 489	if (end - 1 > ceiling - 1)
 490		return;
 491
 492	pud = pud_offset(pgd, start);
 493	pgd_clear(pgd);
 494	pud_free_tlb(tlb, pud, start);
 495}
 496
 497/*
 498 * This function frees user-level page tables of a process.
 499 *
 500 * Must be called with pagetable lock held.
 501 */
 502void free_pgd_range(struct mmu_gather *tlb,
 503			unsigned long addr, unsigned long end,
 504			unsigned long floor, unsigned long ceiling)
 505{
 506	pgd_t *pgd;
 507	unsigned long next;
 508
 509	/*
 510	 * The next few lines have given us lots of grief...
 511	 *
 512	 * Why are we testing PMD* at this top level?  Because often
 513	 * there will be no work to do at all, and we'd prefer not to
 514	 * go all the way down to the bottom just to discover that.
 515	 *
 516	 * Why all these "- 1"s?  Because 0 represents both the bottom
 517	 * of the address space and the top of it (using -1 for the
 518	 * top wouldn't help much: the masks would do the wrong thing).
 519	 * The rule is that addr 0 and floor 0 refer to the bottom of
 520	 * the address space, but end 0 and ceiling 0 refer to the top
 521	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 522	 * that end 0 case should be mythical).
 523	 *
 524	 * Wherever addr is brought up or ceiling brought down, we must
 525	 * be careful to reject "the opposite 0" before it confuses the
 526	 * subsequent tests.  But what about where end is brought down
 527	 * by PMD_SIZE below? no, end can't go down to 0 there.
 528	 *
 529	 * Whereas we round start (addr) and ceiling down, by different
 530	 * masks at different levels, in order to test whether a table
 531	 * now has no other vmas using it, so can be freed, we don't
 532	 * bother to round floor or end up - the tests don't need that.
 533	 */
 534
 535	addr &= PMD_MASK;
 536	if (addr < floor) {
 537		addr += PMD_SIZE;
 538		if (!addr)
 539			return;
 540	}
 541	if (ceiling) {
 542		ceiling &= PMD_MASK;
 543		if (!ceiling)
 544			return;
 545	}
 546	if (end - 1 > ceiling - 1)
 547		end -= PMD_SIZE;
 548	if (addr > end - 1)
 549		return;
 550
 
 
 
 
 551	pgd = pgd_offset(tlb->mm, addr);
 552	do {
 553		next = pgd_addr_end(addr, end);
 554		if (pgd_none_or_clear_bad(pgd))
 555			continue;
 556		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 557	} while (pgd++, addr = next, addr != end);
 558}
 559
 560void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 561		unsigned long floor, unsigned long ceiling)
 
 562{
 563	while (vma) {
 564		struct vm_area_struct *next = vma->vm_next;
 
 565		unsigned long addr = vma->vm_start;
 
 
 
 
 
 
 
 566
 567		/*
 568		 * Hide vma from rmap and truncate_pagecache before freeing
 569		 * pgtables
 570		 */
 571		unlink_anon_vmas(vma);
 572		unlink_file_vma(vma);
 573
 574		if (is_vm_hugetlb_page(vma)) {
 575			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 576				floor, next? next->vm_start: ceiling);
 577		} else {
 578			/*
 579			 * Optimization: gather nearby vmas into one call down
 580			 */
 581			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 582			       && !is_vm_hugetlb_page(next)) {
 583				vma = next;
 584				next = vma->vm_next;
 585				unlink_anon_vmas(vma);
 586				unlink_file_vma(vma);
 587			}
 588			free_pgd_range(tlb, addr, vma->vm_end,
 589				floor, next? next->vm_start: ceiling);
 590		}
 591		vma = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592	}
 
 593}
 594
 595int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 596		pmd_t *pmd, unsigned long address)
 597{
 598	pgtable_t new = pte_alloc_one(mm, address);
 599	int wait_split_huge_page;
 600	if (!new)
 601		return -ENOMEM;
 602
 603	/*
 604	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 605	 * visible before the pte is made visible to other CPUs by being
 606	 * put into page tables.
 607	 *
 608	 * The other side of the story is the pointer chasing in the page
 609	 * table walking code (when walking the page table without locking;
 610	 * ie. most of the time). Fortunately, these data accesses consist
 611	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 612	 * being the notable exception) will already guarantee loads are
 613	 * seen in-order. See the alpha page table accessors for the
 614	 * smp_read_barrier_depends() barriers in page table walking code.
 615	 */
 616	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 617
 618	spin_lock(&mm->page_table_lock);
 619	wait_split_huge_page = 0;
 620	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 621		mm->nr_ptes++;
 622		pmd_populate(mm, pmd, new);
 623		new = NULL;
 624	} else if (unlikely(pmd_trans_splitting(*pmd)))
 625		wait_split_huge_page = 1;
 626	spin_unlock(&mm->page_table_lock);
 627	if (new)
 628		pte_free(mm, new);
 629	if (wait_split_huge_page)
 630		wait_split_huge_page(vma->anon_vma, pmd);
 631	return 0;
 632}
 633
 634int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 635{
 636	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 637	if (!new)
 638		return -ENOMEM;
 639
 640	smp_wmb(); /* See comment in __pte_alloc */
 641
 642	spin_lock(&init_mm.page_table_lock);
 643	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 
 644		pmd_populate_kernel(&init_mm, pmd, new);
 645		new = NULL;
 646	} else
 647		VM_BUG_ON(pmd_trans_splitting(*pmd));
 648	spin_unlock(&init_mm.page_table_lock);
 649	if (new)
 650		pte_free_kernel(&init_mm, new);
 651	return 0;
 652}
 653
 654static inline void init_rss_vec(int *rss)
 655{
 656	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 657}
 658
 659static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 660{
 661	int i;
 662
 663	if (current->mm == mm)
 664		sync_mm_rss(current, mm);
 665	for (i = 0; i < NR_MM_COUNTERS; i++)
 666		if (rss[i])
 667			add_mm_counter(mm, i, rss[i]);
 668}
 669
 670/*
 671 * This function is called to print an error when a bad pte
 672 * is found. For example, we might have a PFN-mapped pte in
 673 * a region that doesn't allow it.
 674 *
 675 * The calling function must still handle the error.
 676 */
 677static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 678			  pte_t pte, struct page *page)
 679{
 680	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 681	pud_t *pud = pud_offset(pgd, addr);
 
 682	pmd_t *pmd = pmd_offset(pud, addr);
 683	struct address_space *mapping;
 684	pgoff_t index;
 685	static unsigned long resume;
 686	static unsigned long nr_shown;
 687	static unsigned long nr_unshown;
 688
 689	/*
 690	 * Allow a burst of 60 reports, then keep quiet for that minute;
 691	 * or allow a steady drip of one report per second.
 692	 */
 693	if (nr_shown == 60) {
 694		if (time_before(jiffies, resume)) {
 695			nr_unshown++;
 696			return;
 697		}
 698		if (nr_unshown) {
 699			printk(KERN_ALERT
 700				"BUG: Bad page map: %lu messages suppressed\n",
 701				nr_unshown);
 702			nr_unshown = 0;
 703		}
 704		nr_shown = 0;
 705	}
 706	if (nr_shown++ == 0)
 707		resume = jiffies + 60 * HZ;
 708
 709	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 710	index = linear_page_index(vma, addr);
 711
 712	printk(KERN_ALERT
 713		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 714		current->comm,
 715		(long long)pte_val(pte), (long long)pmd_val(*pmd));
 716	if (page)
 717		dump_page(page);
 718	printk(KERN_ALERT
 719		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 720		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 721	/*
 722	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 723	 */
 724	if (vma->vm_ops)
 725		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
 726				(unsigned long)vma->vm_ops->fault);
 727	if (vma->vm_file && vma->vm_file->f_op)
 728		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
 729				(unsigned long)vma->vm_file->f_op->mmap);
 730	dump_stack();
 731	add_taint(TAINT_BAD_PAGE);
 732}
 733
 734static inline int is_cow_mapping(vm_flags_t flags)
 735{
 736	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 737}
 738
 739#ifndef is_zero_pfn
 740static inline int is_zero_pfn(unsigned long pfn)
 741{
 742	return pfn == zero_pfn;
 743}
 744#endif
 745
 746#ifndef my_zero_pfn
 747static inline unsigned long my_zero_pfn(unsigned long addr)
 748{
 749	return zero_pfn;
 750}
 751#endif
 752
 753/*
 754 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 755 *
 756 * "Special" mappings do not wish to be associated with a "struct page" (either
 757 * it doesn't exist, or it exists but they don't want to touch it). In this
 758 * case, NULL is returned here. "Normal" mappings do have a struct page.
 759 *
 760 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 761 * pte bit, in which case this function is trivial. Secondly, an architecture
 762 * may not have a spare pte bit, which requires a more complicated scheme,
 763 * described below.
 764 *
 765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 766 * special mapping (even if there are underlying and valid "struct pages").
 767 * COWed pages of a VM_PFNMAP are always normal.
 768 *
 769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 772 * mapping will always honor the rule
 773 *
 774 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 775 *
 776 * And for normal mappings this is false.
 777 *
 778 * This restricts such mappings to be a linear translation from virtual address
 779 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 780 * as the vma is not a COW mapping; in that case, we know that all ptes are
 781 * special (because none can have been COWed).
 782 *
 783 *
 784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 785 *
 786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 787 * page" backing, however the difference is that _all_ pages with a struct
 788 * page (that is, those where pfn_valid is true) are refcounted and considered
 789 * normal pages by the VM. The disadvantage is that pages are refcounted
 790 * (which can be slower and simply not an option for some PFNMAP users). The
 791 * advantage is that we don't have to follow the strict linearity rule of
 792 * PFNMAP mappings in order to support COWable mappings.
 793 *
 794 */
 795#ifdef __HAVE_ARCH_PTE_SPECIAL
 796# define HAVE_PTE_SPECIAL 1
 797#else
 798# define HAVE_PTE_SPECIAL 0
 799#endif
 800struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 801				pte_t pte)
 802{
 803	unsigned long pfn = pte_pfn(pte);
 804
 805	if (HAVE_PTE_SPECIAL) {
 806		if (likely(!pte_special(pte)))
 807			goto check_pfn;
 
 
 808		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 809			return NULL;
 810		if (!is_zero_pfn(pfn))
 811			print_bad_pte(vma, addr, pte, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 812		return NULL;
 813	}
 814
 815	/* !HAVE_PTE_SPECIAL case follows: */
 816
 817	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 818		if (vma->vm_flags & VM_MIXEDMAP) {
 819			if (!pfn_valid(pfn))
 820				return NULL;
 821			goto out;
 822		} else {
 823			unsigned long off;
 824			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 825			if (pfn == vma->vm_pgoff + off)
 826				return NULL;
 827			if (!is_cow_mapping(vma->vm_flags))
 828				return NULL;
 829		}
 830	}
 831
 832	if (is_zero_pfn(pfn))
 833		return NULL;
 
 834check_pfn:
 835	if (unlikely(pfn > highest_memmap_pfn)) {
 836		print_bad_pte(vma, addr, pte, NULL);
 837		return NULL;
 838	}
 839
 840	/*
 841	 * NOTE! We still have PageReserved() pages in the page tables.
 842	 * eg. VDSO mappings can cause them to exist.
 843	 */
 844out:
 845	return pfn_to_page(pfn);
 846}
 847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848/*
 849 * copy one vm_area from one task to the other. Assumes the page tables
 850 * already present in the new task to be cleared in the whole range
 851 * covered by this vma.
 852 */
 853
 854static inline unsigned long
 855copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 856		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 857		unsigned long addr, int *rss)
 858{
 859	unsigned long vm_flags = vma->vm_flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860	pte_t pte = *src_pte;
 861	struct page *page;
 862
 863	/* pte contains position in swap or file, so copy. */
 864	if (unlikely(!pte_present(pte))) {
 865		if (!pte_file(pte)) {
 866			swp_entry_t entry = pte_to_swp_entry(pte);
 867
 868			if (swap_duplicate(entry) < 0)
 869				return entry.val;
 870
 871			/* make sure dst_mm is on swapoff's mmlist. */
 872			if (unlikely(list_empty(&dst_mm->mmlist))) {
 873				spin_lock(&mmlist_lock);
 874				if (list_empty(&dst_mm->mmlist))
 875					list_add(&dst_mm->mmlist,
 876						 &src_mm->mmlist);
 877				spin_unlock(&mmlist_lock);
 878			}
 879			if (likely(!non_swap_entry(entry)))
 880				rss[MM_SWAPENTS]++;
 881			else if (is_write_migration_entry(entry) &&
 882					is_cow_mapping(vm_flags)) {
 883				/*
 884				 * COW mappings require pages in both parent
 885				 * and child to be set to read.
 886				 */
 887				make_migration_entry_read(&entry);
 888				pte = swp_entry_to_pte(entry);
 889				set_pte_at(src_mm, addr, src_pte, pte);
 890			}
 891		}
 892		goto out_set_pte;
 
 
 
 
 893	}
 894
 895	/*
 896	 * If it's a COW mapping, write protect it both
 897	 * in the parent and the child
 898	 */
 899	if (is_cow_mapping(vm_flags)) {
 900		ptep_set_wrprotect(src_mm, addr, src_pte);
 901		pte = pte_wrprotect(pte);
 902	}
 
 903
 904	/*
 905	 * If it's a shared mapping, mark it clean in
 906	 * the child
 907	 */
 908	if (vm_flags & VM_SHARED)
 909		pte = pte_mkclean(pte);
 910	pte = pte_mkold(pte);
 911
 912	page = vm_normal_page(vma, addr, pte);
 913	if (page) {
 914		get_page(page);
 915		page_dup_rmap(page);
 916		if (PageAnon(page))
 917			rss[MM_ANONPAGES]++;
 918		else
 919			rss[MM_FILEPAGES]++;
 
 
 
 
 
 
 
 
 
 
 
 
 920	}
 
 921
 922out_set_pte:
 923	set_pte_at(dst_mm, addr, dst_pte, pte);
 924	return 0;
 925}
 926
 927int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 928		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 929		   unsigned long addr, unsigned long end)
 
 930{
 
 
 931	pte_t *orig_src_pte, *orig_dst_pte;
 932	pte_t *src_pte, *dst_pte;
 933	spinlock_t *src_ptl, *dst_ptl;
 934	int progress = 0;
 935	int rss[NR_MM_COUNTERS];
 936	swp_entry_t entry = (swp_entry_t){0};
 
 937
 938again:
 
 939	init_rss_vec(rss);
 940
 941	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 942	if (!dst_pte)
 943		return -ENOMEM;
 
 
 944	src_pte = pte_offset_map(src_pmd, addr);
 945	src_ptl = pte_lockptr(src_mm, src_pmd);
 946	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 947	orig_src_pte = src_pte;
 948	orig_dst_pte = dst_pte;
 949	arch_enter_lazy_mmu_mode();
 950
 951	do {
 952		/*
 953		 * We are holding two locks at this point - either of them
 954		 * could generate latencies in another task on another CPU.
 955		 */
 956		if (progress >= 32) {
 957			progress = 0;
 958			if (need_resched() ||
 959			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 960				break;
 961		}
 962		if (pte_none(*src_pte)) {
 963			progress++;
 964			continue;
 965		}
 966		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 967							vma, addr, rss);
 968		if (entry.val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969			break;
 
 
 
 
 
 
 
 
 
 
 970		progress += 8;
 971	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 972
 973	arch_leave_lazy_mmu_mode();
 974	spin_unlock(src_ptl);
 975	pte_unmap(orig_src_pte);
 976	add_mm_rss_vec(dst_mm, rss);
 977	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 978	cond_resched();
 979
 980	if (entry.val) {
 981		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 
 
 
 
 
 
 
 
 
 
 982			return -ENOMEM;
 983		progress = 0;
 
 984	}
 
 
 
 
 985	if (addr != end)
 986		goto again;
 987	return 0;
 
 
 
 988}
 989
 990static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 991		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 992		unsigned long addr, unsigned long end)
 
 993{
 
 
 994	pmd_t *src_pmd, *dst_pmd;
 995	unsigned long next;
 996
 997	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 998	if (!dst_pmd)
 999		return -ENOMEM;
1000	src_pmd = pmd_offset(src_pud, addr);
1001	do {
1002		next = pmd_addr_end(addr, end);
1003		if (pmd_trans_huge(*src_pmd)) {
 
1004			int err;
1005			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1006			err = copy_huge_pmd(dst_mm, src_mm,
1007					    dst_pmd, src_pmd, addr, vma);
1008			if (err == -ENOMEM)
1009				return -ENOMEM;
1010			if (!err)
1011				continue;
1012			/* fall through */
1013		}
1014		if (pmd_none_or_clear_bad(src_pmd))
1015			continue;
1016		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1017						vma, addr, next))
1018			return -ENOMEM;
1019	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1020	return 0;
1021}
1022
1023static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1025		unsigned long addr, unsigned long end)
 
1026{
 
 
1027	pud_t *src_pud, *dst_pud;
1028	unsigned long next;
1029
1030	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1031	if (!dst_pud)
1032		return -ENOMEM;
1033	src_pud = pud_offset(src_pgd, addr);
1034	do {
1035		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
 
 
 
 
 
1036		if (pud_none_or_clear_bad(src_pud))
1037			continue;
1038		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1039						vma, addr, next))
1040			return -ENOMEM;
1041	} while (dst_pud++, src_pud++, addr = next, addr != end);
1042	return 0;
1043}
1044
1045int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046		struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047{
1048	pgd_t *src_pgd, *dst_pgd;
1049	unsigned long next;
1050	unsigned long addr = vma->vm_start;
1051	unsigned long end = vma->vm_end;
 
 
 
 
1052	int ret;
1053
1054	/*
1055	 * Don't copy ptes where a page fault will fill them correctly.
1056	 * Fork becomes much lighter when there are big shared or private
1057	 * readonly mappings. The tradeoff is that copy_page_range is more
1058	 * efficient than faulting.
1059	 */
1060	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1061		if (!vma->anon_vma)
1062			return 0;
1063	}
1064
1065	if (is_vm_hugetlb_page(vma))
1066		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1067
1068	if (unlikely(is_pfn_mapping(vma))) {
1069		/*
1070		 * We do not free on error cases below as remove_vma
1071		 * gets called on error from higher level routine
1072		 */
1073		ret = track_pfn_vma_copy(vma);
1074		if (ret)
1075			return ret;
1076	}
1077
1078	/*
1079	 * We need to invalidate the secondary MMU mappings only when
1080	 * there could be a permission downgrade on the ptes of the
1081	 * parent mm. And a permission downgrade will only happen if
1082	 * is_cow_mapping() returns true.
1083	 */
1084	if (is_cow_mapping(vma->vm_flags))
1085		mmu_notifier_invalidate_range_start(src_mm, addr, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086
1087	ret = 0;
1088	dst_pgd = pgd_offset(dst_mm, addr);
1089	src_pgd = pgd_offset(src_mm, addr);
1090	do {
1091		next = pgd_addr_end(addr, end);
1092		if (pgd_none_or_clear_bad(src_pgd))
1093			continue;
1094		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1095					    vma, addr, next))) {
1096			ret = -ENOMEM;
1097			break;
1098		}
1099	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1100
1101	if (is_cow_mapping(vma->vm_flags))
1102		mmu_notifier_invalidate_range_end(src_mm,
1103						  vma->vm_start, end);
 
1104	return ret;
1105}
1106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107static unsigned long zap_pte_range(struct mmu_gather *tlb,
1108				struct vm_area_struct *vma, pmd_t *pmd,
1109				unsigned long addr, unsigned long end,
1110				struct zap_details *details)
1111{
1112	struct mm_struct *mm = tlb->mm;
1113	int force_flush = 0;
1114	int rss[NR_MM_COUNTERS];
1115	spinlock_t *ptl;
1116	pte_t *start_pte;
1117	pte_t *pte;
 
1118
 
1119again:
1120	init_rss_vec(rss);
1121	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1122	pte = start_pte;
 
1123	arch_enter_lazy_mmu_mode();
1124	do {
1125		pte_t ptent = *pte;
1126		if (pte_none(ptent)) {
 
 
1127			continue;
1128		}
 
 
1129
1130		if (pte_present(ptent)) {
1131			struct page *page;
1132
1133			page = vm_normal_page(vma, addr, ptent);
1134			if (unlikely(details) && page) {
1135				/*
1136				 * unmap_shared_mapping_pages() wants to
1137				 * invalidate cache without truncating:
1138				 * unmap shared but keep private pages.
1139				 */
1140				if (details->check_mapping &&
1141				    details->check_mapping != page->mapping)
1142					continue;
1143				/*
1144				 * Each page->index must be checked when
1145				 * invalidating or truncating nonlinear.
1146				 */
1147				if (details->nonlinear_vma &&
1148				    (page->index < details->first_index ||
1149				     page->index > details->last_index))
1150					continue;
1151			}
1152			ptent = ptep_get_and_clear_full(mm, addr, pte,
1153							tlb->fullmm);
1154			tlb_remove_tlb_entry(tlb, pte, addr);
 
 
1155			if (unlikely(!page))
1156				continue;
1157			if (unlikely(details) && details->nonlinear_vma
1158			    && linear_page_index(details->nonlinear_vma,
1159						addr) != page->index)
1160				set_pte_at(mm, addr, pte,
1161					   pgoff_to_pte(page->index));
1162			if (PageAnon(page))
1163				rss[MM_ANONPAGES]--;
1164			else {
1165				if (pte_dirty(ptent))
1166					set_page_dirty(page);
 
 
 
 
 
1167				if (pte_young(ptent) &&
1168				    likely(!VM_SequentialReadHint(vma)))
1169					mark_page_accessed(page);
1170				rss[MM_FILEPAGES]--;
1171			}
1172			page_remove_rmap(page);
1173			if (unlikely(page_mapcount(page) < 0))
1174				print_bad_pte(vma, addr, ptent, page);
1175			force_flush = !__tlb_remove_page(tlb, page);
1176			if (force_flush)
 
 
 
 
1177				break;
 
1178			continue;
1179		}
1180		/*
1181		 * If details->check_mapping, we leave swap entries;
1182		 * if details->nonlinear_vma, we leave file entries.
1183		 */
1184		if (unlikely(details))
1185			continue;
1186		if (pte_file(ptent)) {
1187			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1188				print_bad_pte(vma, addr, ptent, NULL);
1189		} else {
1190			swp_entry_t entry = pte_to_swp_entry(ptent);
1191
1192			if (!non_swap_entry(entry))
1193				rss[MM_SWAPENTS]--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194			if (unlikely(!free_swap_and_cache(entry)))
1195				print_bad_pte(vma, addr, ptent, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196		}
1197		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
 
1198	} while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200	add_mm_rss_vec(mm, rss);
1201	arch_leave_lazy_mmu_mode();
 
 
 
 
 
 
1202	pte_unmap_unlock(start_pte, ptl);
1203
1204	/*
1205	 * mmu_gather ran out of room to batch pages, we break out of
1206	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207	 * and page-free while holding it.
 
1208	 */
1209	if (force_flush) {
1210		force_flush = 0;
1211		tlb_flush_mmu(tlb);
1212		if (addr != end)
1213			goto again;
 
 
 
1214	}
1215
1216	return addr;
1217}
1218
1219static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220				struct vm_area_struct *vma, pud_t *pud,
1221				unsigned long addr, unsigned long end,
1222				struct zap_details *details)
1223{
1224	pmd_t *pmd;
1225	unsigned long next;
1226
1227	pmd = pmd_offset(pud, addr);
1228	do {
1229		next = pmd_addr_end(addr, end);
1230		if (pmd_trans_huge(*pmd)) {
1231			if (next-addr != HPAGE_PMD_SIZE) {
1232				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1233				split_huge_page_pmd(vma->vm_mm, pmd);
1234			} else if (zap_huge_pmd(tlb, vma, pmd))
1235				continue;
1236			/* fall through */
 
 
 
 
 
 
 
 
 
 
1237		}
1238		if (pmd_none_or_clear_bad(pmd))
1239			continue;
 
 
 
 
 
 
 
 
1240		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
 
1241		cond_resched();
1242	} while (pmd++, addr = next, addr != end);
1243
1244	return addr;
1245}
1246
1247static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1248				struct vm_area_struct *vma, pgd_t *pgd,
1249				unsigned long addr, unsigned long end,
1250				struct zap_details *details)
1251{
1252	pud_t *pud;
1253	unsigned long next;
1254
1255	pud = pud_offset(pgd, addr);
1256	do {
1257		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
 
1258		if (pud_none_or_clear_bad(pud))
1259			continue;
1260		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
 
 
1261	} while (pud++, addr = next, addr != end);
1262
1263	return addr;
1264}
1265
1266static unsigned long unmap_page_range(struct mmu_gather *tlb,
1267				struct vm_area_struct *vma,
1268				unsigned long addr, unsigned long end,
1269				struct zap_details *details)
1270{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271	pgd_t *pgd;
1272	unsigned long next;
1273
1274	if (details && !details->check_mapping && !details->nonlinear_vma)
1275		details = NULL;
1276
1277	BUG_ON(addr >= end);
1278	mem_cgroup_uncharge_start();
1279	tlb_start_vma(tlb, vma);
1280	pgd = pgd_offset(vma->vm_mm, addr);
1281	do {
1282		next = pgd_addr_end(addr, end);
1283		if (pgd_none_or_clear_bad(pgd))
1284			continue;
1285		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1286	} while (pgd++, addr = next, addr != end);
1287	tlb_end_vma(tlb, vma);
1288	mem_cgroup_uncharge_end();
1289
1290	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1291}
1292
1293/**
1294 * unmap_vmas - unmap a range of memory covered by a list of vma's
1295 * @tlb: address of the caller's struct mmu_gather
 
1296 * @vma: the starting vma
1297 * @start_addr: virtual address at which to start unmapping
1298 * @end_addr: virtual address at which to end unmapping
1299 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1300 * @details: details of nonlinear truncation or shared cache invalidation
1301 *
1302 * Returns the end address of the unmapping (restart addr if interrupted).
1303 *
1304 * Unmap all pages in the vma list.
1305 *
1306 * Only addresses between `start' and `end' will be unmapped.
1307 *
1308 * The VMA list must be sorted in ascending virtual address order.
1309 *
1310 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1311 * range after unmap_vmas() returns.  So the only responsibility here is to
1312 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1313 * drops the lock and schedules.
1314 */
1315unsigned long unmap_vmas(struct mmu_gather *tlb,
1316		struct vm_area_struct *vma, unsigned long start_addr,
1317		unsigned long end_addr, unsigned long *nr_accounted,
1318		struct zap_details *details)
1319{
1320	unsigned long start = start_addr;
1321	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322
1323	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1324	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1325		unsigned long end;
 
 
 
 
 
 
 
 
 
 
 
 
 
1326
1327		start = max(vma->vm_start, start_addr);
1328		if (start >= vma->vm_end)
1329			continue;
1330		end = min(vma->vm_end, end_addr);
1331		if (end <= vma->vm_start)
1332			continue;
1333
1334		if (vma->vm_flags & VM_ACCOUNT)
1335			*nr_accounted += (end - start) >> PAGE_SHIFT;
1336
1337		if (unlikely(is_pfn_mapping(vma)))
1338			untrack_pfn_vma(vma, 0, 0);
1339
1340		while (start != end) {
1341			if (unlikely(is_vm_hugetlb_page(vma))) {
1342				/*
1343				 * It is undesirable to test vma->vm_file as it
1344				 * should be non-null for valid hugetlb area.
1345				 * However, vm_file will be NULL in the error
1346				 * cleanup path of do_mmap_pgoff. When
1347				 * hugetlbfs ->mmap method fails,
1348				 * do_mmap_pgoff() nullifies vma->vm_file
1349				 * before calling this function to clean up.
1350				 * Since no pte has actually been setup, it is
1351				 * safe to do nothing in this case.
1352				 */
1353				if (vma->vm_file)
1354					unmap_hugepage_range(vma, start, end, NULL);
1355
1356				start = end;
1357			} else
1358				start = unmap_page_range(tlb, vma, start, end, details);
1359		}
1360	}
1361
1362	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1363	return start;	/* which is now the end (or restart) address */
1364}
1365
1366/**
1367 * zap_page_range - remove user pages in a given range
1368 * @vma: vm_area_struct holding the applicable pages
1369 * @address: starting address of pages to zap
1370 * @size: number of bytes to zap
1371 * @details: details of nonlinear truncation or shared cache invalidation
 
 
1372 */
1373unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1374		unsigned long size, struct zap_details *details)
1375{
1376	struct mm_struct *mm = vma->vm_mm;
 
1377	struct mmu_gather tlb;
1378	unsigned long end = address + size;
1379	unsigned long nr_accounted = 0;
1380
1381	lru_add_drain();
1382	tlb_gather_mmu(&tlb, mm, 0);
1383	update_hiwater_rss(mm);
1384	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1385	tlb_finish_mmu(&tlb, address, end);
1386	return end;
 
 
 
 
 
 
 
 
 
 
1387}
1388
1389/**
1390 * zap_vma_ptes - remove ptes mapping the vma
1391 * @vma: vm_area_struct holding ptes to be zapped
1392 * @address: starting address of pages to zap
1393 * @size: number of bytes to zap
1394 *
1395 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1396 *
1397 * The entire address range must be fully contained within the vma.
1398 *
1399 * Returns 0 if successful.
1400 */
1401int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1402		unsigned long size)
1403{
1404	if (address < vma->vm_start || address + size > vma->vm_end ||
1405	    		!(vma->vm_flags & VM_PFNMAP))
1406		return -1;
1407	zap_page_range(vma, address, size, NULL);
1408	return 0;
1409}
1410EXPORT_SYMBOL_GPL(zap_vma_ptes);
1411
1412/**
1413 * follow_page - look up a page descriptor from a user-virtual address
1414 * @vma: vm_area_struct mapping @address
1415 * @address: virtual address to look up
1416 * @flags: flags modifying lookup behaviour
1417 *
1418 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1419 *
1420 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1421 * an error pointer if there is a mapping to something not represented
1422 * by a page descriptor (see also vm_normal_page()).
1423 */
1424struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1425			unsigned int flags)
1426{
1427	pgd_t *pgd;
 
1428	pud_t *pud;
1429	pmd_t *pmd;
1430	pte_t *ptep, pte;
1431	spinlock_t *ptl;
1432	struct page *page;
1433	struct mm_struct *mm = vma->vm_mm;
1434
1435	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1436	if (!IS_ERR(page)) {
1437		BUG_ON(flags & FOLL_GET);
1438		goto out;
1439	}
 
 
 
 
 
1440
1441	page = NULL;
1442	pgd = pgd_offset(mm, address);
1443	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1444		goto no_page_table;
1445
1446	pud = pud_offset(pgd, address);
1447	if (pud_none(*pud))
1448		goto no_page_table;
1449	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1450		BUG_ON(flags & FOLL_GET);
1451		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1452		goto out;
1453	}
1454	if (unlikely(pud_bad(*pud)))
1455		goto no_page_table;
1456
1457	pmd = pmd_offset(pud, address);
1458	if (pmd_none(*pmd))
1459		goto no_page_table;
1460	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1461		BUG_ON(flags & FOLL_GET);
1462		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1463		goto out;
1464	}
1465	if (pmd_trans_huge(*pmd)) {
1466		if (flags & FOLL_SPLIT) {
1467			split_huge_page_pmd(mm, pmd);
1468			goto split_fallthrough;
1469		}
1470		spin_lock(&mm->page_table_lock);
1471		if (likely(pmd_trans_huge(*pmd))) {
1472			if (unlikely(pmd_trans_splitting(*pmd))) {
1473				spin_unlock(&mm->page_table_lock);
1474				wait_split_huge_page(vma->anon_vma, pmd);
1475			} else {
1476				page = follow_trans_huge_pmd(mm, address,
1477							     pmd, flags);
1478				spin_unlock(&mm->page_table_lock);
1479				goto out;
1480			}
1481		} else
1482			spin_unlock(&mm->page_table_lock);
1483		/* fall through */
1484	}
1485split_fallthrough:
1486	if (unlikely(pmd_bad(*pmd)))
1487		goto no_page_table;
1488
1489	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1490
1491	pte = *ptep;
1492	if (!pte_present(pte))
1493		goto no_page;
1494	if ((flags & FOLL_WRITE) && !pte_write(pte))
1495		goto unlock;
1496
1497	page = vm_normal_page(vma, address, pte);
1498	if (unlikely(!page)) {
1499		if ((flags & FOLL_DUMP) ||
1500		    !is_zero_pfn(pte_pfn(pte)))
1501			goto bad_page;
1502		page = pte_page(pte);
1503	}
1504
1505	if (flags & FOLL_GET)
1506		get_page(page);
1507	if (flags & FOLL_TOUCH) {
1508		if ((flags & FOLL_WRITE) &&
1509		    !pte_dirty(pte) && !PageDirty(page))
1510			set_page_dirty(page);
1511		/*
1512		 * pte_mkyoung() would be more correct here, but atomic care
1513		 * is needed to avoid losing the dirty bit: it is easier to use
1514		 * mark_page_accessed().
1515		 */
1516		mark_page_accessed(page);
1517	}
1518	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1519		/*
1520		 * The preliminary mapping check is mainly to avoid the
1521		 * pointless overhead of lock_page on the ZERO_PAGE
1522		 * which might bounce very badly if there is contention.
1523		 *
1524		 * If the page is already locked, we don't need to
1525		 * handle it now - vmscan will handle it later if and
1526		 * when it attempts to reclaim the page.
1527		 */
1528		if (page->mapping && trylock_page(page)) {
1529			lru_add_drain();  /* push cached pages to LRU */
1530			/*
1531			 * Because we lock page here and migration is
1532			 * blocked by the pte's page reference, we need
1533			 * only check for file-cache page truncation.
1534			 */
1535			if (page->mapping)
1536				mlock_vma_page(page);
1537			unlock_page(page);
1538		}
1539	}
1540unlock:
1541	pte_unmap_unlock(ptep, ptl);
1542out:
1543	return page;
1544
1545bad_page:
1546	pte_unmap_unlock(ptep, ptl);
1547	return ERR_PTR(-EFAULT);
1548
1549no_page:
1550	pte_unmap_unlock(ptep, ptl);
1551	if (!pte_none(pte))
1552		return page;
1553
1554no_page_table:
1555	/*
1556	 * When core dumping an enormous anonymous area that nobody
1557	 * has touched so far, we don't want to allocate unnecessary pages or
1558	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1559	 * then get_dump_page() will return NULL to leave a hole in the dump.
1560	 * But we can only make this optimization where a hole would surely
1561	 * be zero-filled if handle_mm_fault() actually did handle it.
1562	 */
1563	if ((flags & FOLL_DUMP) &&
1564	    (!vma->vm_ops || !vma->vm_ops->fault))
1565		return ERR_PTR(-EFAULT);
1566	return page;
1567}
1568
1569static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1570{
1571	return stack_guard_page_start(vma, addr) ||
1572	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1573}
1574
1575/**
1576 * __get_user_pages() - pin user pages in memory
1577 * @tsk:	task_struct of target task
1578 * @mm:		mm_struct of target mm
1579 * @start:	starting user address
1580 * @nr_pages:	number of pages from start to pin
1581 * @gup_flags:	flags modifying pin behaviour
1582 * @pages:	array that receives pointers to the pages pinned.
1583 *		Should be at least nr_pages long. Or NULL, if caller
1584 *		only intends to ensure the pages are faulted in.
1585 * @vmas:	array of pointers to vmas corresponding to each page.
1586 *		Or NULL if the caller does not require them.
1587 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1588 *
1589 * Returns number of pages pinned. This may be fewer than the number
1590 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1591 * were pinned, returns -errno. Each page returned must be released
1592 * with a put_page() call when it is finished with. vmas will only
1593 * remain valid while mmap_sem is held.
1594 *
1595 * Must be called with mmap_sem held for read or write.
1596 *
1597 * __get_user_pages walks a process's page tables and takes a reference to
1598 * each struct page that each user address corresponds to at a given
1599 * instant. That is, it takes the page that would be accessed if a user
1600 * thread accesses the given user virtual address at that instant.
1601 *
1602 * This does not guarantee that the page exists in the user mappings when
1603 * __get_user_pages returns, and there may even be a completely different
1604 * page there in some cases (eg. if mmapped pagecache has been invalidated
1605 * and subsequently re faulted). However it does guarantee that the page
1606 * won't be freed completely. And mostly callers simply care that the page
1607 * contains data that was valid *at some point in time*. Typically, an IO
1608 * or similar operation cannot guarantee anything stronger anyway because
1609 * locks can't be held over the syscall boundary.
1610 *
1611 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1612 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1613 * appropriate) must be called after the page is finished with, and
1614 * before put_page is called.
1615 *
1616 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1617 * or mmap_sem contention, and if waiting is needed to pin all pages,
1618 * *@nonblocking will be set to 0.
1619 *
1620 * In most cases, get_user_pages or get_user_pages_fast should be used
1621 * instead of __get_user_pages. __get_user_pages should be used only if
1622 * you need some special @gup_flags.
1623 */
1624int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1625		     unsigned long start, int nr_pages, unsigned int gup_flags,
1626		     struct page **pages, struct vm_area_struct **vmas,
1627		     int *nonblocking)
1628{
1629	int i;
1630	unsigned long vm_flags;
1631
1632	if (nr_pages <= 0)
1633		return 0;
1634
1635	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1636
1637	/* 
1638	 * Require read or write permissions.
1639	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1640	 */
1641	vm_flags  = (gup_flags & FOLL_WRITE) ?
1642			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1643	vm_flags &= (gup_flags & FOLL_FORCE) ?
1644			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1645	i = 0;
1646
1647	do {
1648		struct vm_area_struct *vma;
1649
1650		vma = find_extend_vma(mm, start);
1651		if (!vma && in_gate_area(mm, start)) {
1652			unsigned long pg = start & PAGE_MASK;
1653			pgd_t *pgd;
1654			pud_t *pud;
1655			pmd_t *pmd;
1656			pte_t *pte;
1657
1658			/* user gate pages are read-only */
1659			if (gup_flags & FOLL_WRITE)
1660				return i ? : -EFAULT;
1661			if (pg > TASK_SIZE)
1662				pgd = pgd_offset_k(pg);
1663			else
1664				pgd = pgd_offset_gate(mm, pg);
1665			BUG_ON(pgd_none(*pgd));
1666			pud = pud_offset(pgd, pg);
1667			BUG_ON(pud_none(*pud));
1668			pmd = pmd_offset(pud, pg);
1669			if (pmd_none(*pmd))
1670				return i ? : -EFAULT;
1671			VM_BUG_ON(pmd_trans_huge(*pmd));
1672			pte = pte_offset_map(pmd, pg);
1673			if (pte_none(*pte)) {
1674				pte_unmap(pte);
1675				return i ? : -EFAULT;
1676			}
1677			vma = get_gate_vma(mm);
1678			if (pages) {
1679				struct page *page;
1680
1681				page = vm_normal_page(vma, start, *pte);
1682				if (!page) {
1683					if (!(gup_flags & FOLL_DUMP) &&
1684					     is_zero_pfn(pte_pfn(*pte)))
1685						page = pte_page(*pte);
1686					else {
1687						pte_unmap(pte);
1688						return i ? : -EFAULT;
1689					}
1690				}
1691				pages[i] = page;
1692				get_page(page);
1693			}
1694			pte_unmap(pte);
1695			goto next_page;
1696		}
1697
1698		if (!vma ||
1699		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1700		    !(vm_flags & vma->vm_flags))
1701			return i ? : -EFAULT;
1702
1703		if (is_vm_hugetlb_page(vma)) {
1704			i = follow_hugetlb_page(mm, vma, pages, vmas,
1705					&start, &nr_pages, i, gup_flags);
1706			continue;
1707		}
1708
1709		do {
1710			struct page *page;
1711			unsigned int foll_flags = gup_flags;
1712
1713			/*
1714			 * If we have a pending SIGKILL, don't keep faulting
1715			 * pages and potentially allocating memory.
1716			 */
1717			if (unlikely(fatal_signal_pending(current)))
1718				return i ? i : -ERESTARTSYS;
1719
1720			cond_resched();
1721			while (!(page = follow_page(vma, start, foll_flags))) {
1722				int ret;
1723				unsigned int fault_flags = 0;
1724
1725				/* For mlock, just skip the stack guard page. */
1726				if (foll_flags & FOLL_MLOCK) {
1727					if (stack_guard_page(vma, start))
1728						goto next_page;
1729				}
1730				if (foll_flags & FOLL_WRITE)
1731					fault_flags |= FAULT_FLAG_WRITE;
1732				if (nonblocking)
1733					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1734				if (foll_flags & FOLL_NOWAIT)
1735					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1736
1737				ret = handle_mm_fault(mm, vma, start,
1738							fault_flags);
1739
1740				if (ret & VM_FAULT_ERROR) {
1741					if (ret & VM_FAULT_OOM)
1742						return i ? i : -ENOMEM;
1743					if (ret & (VM_FAULT_HWPOISON |
1744						   VM_FAULT_HWPOISON_LARGE)) {
1745						if (i)
1746							return i;
1747						else if (gup_flags & FOLL_HWPOISON)
1748							return -EHWPOISON;
1749						else
1750							return -EFAULT;
1751					}
1752					if (ret & VM_FAULT_SIGBUS)
1753						return i ? i : -EFAULT;
1754					BUG();
1755				}
1756
1757				if (tsk) {
1758					if (ret & VM_FAULT_MAJOR)
1759						tsk->maj_flt++;
1760					else
1761						tsk->min_flt++;
1762				}
1763
1764				if (ret & VM_FAULT_RETRY) {
1765					if (nonblocking)
1766						*nonblocking = 0;
1767					return i;
1768				}
1769
1770				/*
1771				 * The VM_FAULT_WRITE bit tells us that
1772				 * do_wp_page has broken COW when necessary,
1773				 * even if maybe_mkwrite decided not to set
1774				 * pte_write. We can thus safely do subsequent
1775				 * page lookups as if they were reads. But only
1776				 * do so when looping for pte_write is futile:
1777				 * in some cases userspace may also be wanting
1778				 * to write to the gotten user page, which a
1779				 * read fault here might prevent (a readonly
1780				 * page might get reCOWed by userspace write).
1781				 */
1782				if ((ret & VM_FAULT_WRITE) &&
1783				    !(vma->vm_flags & VM_WRITE))
1784					foll_flags &= ~FOLL_WRITE;
1785
1786				cond_resched();
1787			}
1788			if (IS_ERR(page))
1789				return i ? i : PTR_ERR(page);
1790			if (pages) {
1791				pages[i] = page;
1792
1793				flush_anon_page(vma, page, start);
1794				flush_dcache_page(page);
1795			}
1796next_page:
1797			if (vmas)
1798				vmas[i] = vma;
1799			i++;
1800			start += PAGE_SIZE;
1801			nr_pages--;
1802		} while (nr_pages && start < vma->vm_end);
1803	} while (nr_pages);
1804	return i;
1805}
1806EXPORT_SYMBOL(__get_user_pages);
1807
1808/*
1809 * fixup_user_fault() - manually resolve a user page fault
1810 * @tsk:	the task_struct to use for page fault accounting, or
1811 *		NULL if faults are not to be recorded.
1812 * @mm:		mm_struct of target mm
1813 * @address:	user address
1814 * @fault_flags:flags to pass down to handle_mm_fault()
1815 *
1816 * This is meant to be called in the specific scenario where for locking reasons
1817 * we try to access user memory in atomic context (within a pagefault_disable()
1818 * section), this returns -EFAULT, and we want to resolve the user fault before
1819 * trying again.
1820 *
1821 * Typically this is meant to be used by the futex code.
1822 *
1823 * The main difference with get_user_pages() is that this function will
1824 * unconditionally call handle_mm_fault() which will in turn perform all the
1825 * necessary SW fixup of the dirty and young bits in the PTE, while
1826 * handle_mm_fault() only guarantees to update these in the struct page.
1827 *
1828 * This is important for some architectures where those bits also gate the
1829 * access permission to the page because they are maintained in software.  On
1830 * such architectures, gup() will not be enough to make a subsequent access
1831 * succeed.
1832 *
1833 * This should be called with the mm_sem held for read.
1834 */
1835int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1836		     unsigned long address, unsigned int fault_flags)
1837{
1838	struct vm_area_struct *vma;
1839	int ret;
1840
1841	vma = find_extend_vma(mm, address);
1842	if (!vma || address < vma->vm_start)
1843		return -EFAULT;
1844
1845	ret = handle_mm_fault(mm, vma, address, fault_flags);
1846	if (ret & VM_FAULT_ERROR) {
1847		if (ret & VM_FAULT_OOM)
1848			return -ENOMEM;
1849		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1850			return -EHWPOISON;
1851		if (ret & VM_FAULT_SIGBUS)
1852			return -EFAULT;
1853		BUG();
1854	}
1855	if (tsk) {
1856		if (ret & VM_FAULT_MAJOR)
1857			tsk->maj_flt++;
1858		else
1859			tsk->min_flt++;
1860	}
1861	return 0;
1862}
1863
1864/*
1865 * get_user_pages() - pin user pages in memory
1866 * @tsk:	the task_struct to use for page fault accounting, or
1867 *		NULL if faults are not to be recorded.
1868 * @mm:		mm_struct of target mm
1869 * @start:	starting user address
1870 * @nr_pages:	number of pages from start to pin
1871 * @write:	whether pages will be written to by the caller
1872 * @force:	whether to force write access even if user mapping is
1873 *		readonly. This will result in the page being COWed even
1874 *		in MAP_SHARED mappings. You do not want this.
1875 * @pages:	array that receives pointers to the pages pinned.
1876 *		Should be at least nr_pages long. Or NULL, if caller
1877 *		only intends to ensure the pages are faulted in.
1878 * @vmas:	array of pointers to vmas corresponding to each page.
1879 *		Or NULL if the caller does not require them.
1880 *
1881 * Returns number of pages pinned. This may be fewer than the number
1882 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1883 * were pinned, returns -errno. Each page returned must be released
1884 * with a put_page() call when it is finished with. vmas will only
1885 * remain valid while mmap_sem is held.
1886 *
1887 * Must be called with mmap_sem held for read or write.
1888 *
1889 * get_user_pages walks a process's page tables and takes a reference to
1890 * each struct page that each user address corresponds to at a given
1891 * instant. That is, it takes the page that would be accessed if a user
1892 * thread accesses the given user virtual address at that instant.
1893 *
1894 * This does not guarantee that the page exists in the user mappings when
1895 * get_user_pages returns, and there may even be a completely different
1896 * page there in some cases (eg. if mmapped pagecache has been invalidated
1897 * and subsequently re faulted). However it does guarantee that the page
1898 * won't be freed completely. And mostly callers simply care that the page
1899 * contains data that was valid *at some point in time*. Typically, an IO
1900 * or similar operation cannot guarantee anything stronger anyway because
1901 * locks can't be held over the syscall boundary.
1902 *
1903 * If write=0, the page must not be written to. If the page is written to,
1904 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1905 * after the page is finished with, and before put_page is called.
1906 *
1907 * get_user_pages is typically used for fewer-copy IO operations, to get a
1908 * handle on the memory by some means other than accesses via the user virtual
1909 * addresses. The pages may be submitted for DMA to devices or accessed via
1910 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1911 * use the correct cache flushing APIs.
1912 *
1913 * See also get_user_pages_fast, for performance critical applications.
1914 */
1915int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1916		unsigned long start, int nr_pages, int write, int force,
1917		struct page **pages, struct vm_area_struct **vmas)
1918{
1919	int flags = FOLL_TOUCH;
1920
1921	if (pages)
1922		flags |= FOLL_GET;
1923	if (write)
1924		flags |= FOLL_WRITE;
1925	if (force)
1926		flags |= FOLL_FORCE;
1927
1928	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1929				NULL);
1930}
1931EXPORT_SYMBOL(get_user_pages);
1932
1933/**
1934 * get_dump_page() - pin user page in memory while writing it to core dump
1935 * @addr: user address
1936 *
1937 * Returns struct page pointer of user page pinned for dump,
1938 * to be freed afterwards by page_cache_release() or put_page().
1939 *
1940 * Returns NULL on any kind of failure - a hole must then be inserted into
1941 * the corefile, to preserve alignment with its headers; and also returns
1942 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1943 * allowing a hole to be left in the corefile to save diskspace.
1944 *
1945 * Called without mmap_sem, but after all other threads have been killed.
1946 */
1947#ifdef CONFIG_ELF_CORE
1948struct page *get_dump_page(unsigned long addr)
1949{
1950	struct vm_area_struct *vma;
1951	struct page *page;
1952
1953	if (__get_user_pages(current, current->mm, addr, 1,
1954			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1955			     NULL) < 1)
1956		return NULL;
1957	flush_cache_page(vma, addr, page_to_pfn(page));
1958	return page;
1959}
1960#endif /* CONFIG_ELF_CORE */
1961
1962pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1963			spinlock_t **ptl)
1964{
1965	pgd_t * pgd = pgd_offset(mm, addr);
1966	pud_t * pud = pud_alloc(mm, pgd, addr);
1967	if (pud) {
1968		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1969		if (pmd) {
1970			VM_BUG_ON(pmd_trans_huge(*pmd));
1971			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1972		}
1973	}
1974	return NULL;
1975}
1976
1977/*
1978 * This is the old fallback for page remapping.
1979 *
1980 * For historical reasons, it only allows reserved pages. Only
1981 * old drivers should use this, and they needed to mark their
1982 * pages reserved for the old functions anyway.
1983 */
1984static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1985			struct page *page, pgprot_t prot)
1986{
1987	struct mm_struct *mm = vma->vm_mm;
1988	int retval;
1989	pte_t *pte;
1990	spinlock_t *ptl;
1991
1992	retval = -EINVAL;
1993	if (PageAnon(page))
1994		goto out;
1995	retval = -ENOMEM;
1996	flush_dcache_page(page);
1997	pte = get_locked_pte(mm, addr, &ptl);
1998	if (!pte)
1999		goto out;
2000	retval = -EBUSY;
2001	if (!pte_none(*pte))
2002		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2003
2004	/* Ok, finally just insert the thing.. */
2005	get_page(page);
2006	inc_mm_counter_fast(mm, MM_FILEPAGES);
2007	page_add_file_rmap(page);
2008	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2009
2010	retval = 0;
2011	pte_unmap_unlock(pte, ptl);
2012	return retval;
2013out_unlock:
2014	pte_unmap_unlock(pte, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2015out:
2016	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017}
 
2018
2019/**
2020 * vm_insert_page - insert single page into user vma
2021 * @vma: user vma to map to
2022 * @addr: target user address of this page
2023 * @page: source kernel page
2024 *
2025 * This allows drivers to insert individual pages they've allocated
2026 * into a user vma.
2027 *
2028 * The page has to be a nice clean _individual_ kernel allocation.
2029 * If you allocate a compound page, you need to have marked it as
2030 * such (__GFP_COMP), or manually just split the page up yourself
2031 * (see split_page()).
2032 *
2033 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2034 * took an arbitrary page protection parameter. This doesn't allow
2035 * that. Your vma protection will have to be set up correctly, which
2036 * means that if you want a shared writable mapping, you'd better
2037 * ask for a shared writable mapping!
2038 *
2039 * The page does not need to be reserved.
 
 
 
 
 
 
 
2040 */
2041int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2042			struct page *page)
2043{
2044	if (addr < vma->vm_start || addr >= vma->vm_end)
2045		return -EFAULT;
2046	if (!page_count(page))
2047		return -EINVAL;
2048	vma->vm_flags |= VM_INSERTPAGE;
 
 
 
 
2049	return insert_page(vma, addr, page, vma->vm_page_prot);
2050}
2051EXPORT_SYMBOL(vm_insert_page);
2052
2053static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2054			unsigned long pfn, pgprot_t prot)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2055{
2056	struct mm_struct *mm = vma->vm_mm;
2057	int retval;
2058	pte_t *pte, entry;
2059	spinlock_t *ptl;
2060
2061	retval = -ENOMEM;
2062	pte = get_locked_pte(mm, addr, &ptl);
2063	if (!pte)
2064		goto out;
2065	retval = -EBUSY;
2066	if (!pte_none(*pte))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2067		goto out_unlock;
 
2068
2069	/* Ok, finally just insert the thing.. */
2070	entry = pte_mkspecial(pfn_pte(pfn, prot));
 
 
 
 
 
 
 
 
 
2071	set_pte_at(mm, addr, pte, entry);
2072	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2073
2074	retval = 0;
2075out_unlock:
2076	pte_unmap_unlock(pte, ptl);
2077out:
2078	return retval;
2079}
2080
2081/**
2082 * vm_insert_pfn - insert single pfn into user vma
2083 * @vma: user vma to map to
2084 * @addr: target user address of this page
2085 * @pfn: source kernel pfn
 
2086 *
2087 * Similar to vm_inert_page, this allows drivers to insert individual pages
2088 * they've allocated into a user vma. Same comments apply.
2089 *
2090 * This function should only be called from a vm_ops->fault handler, and
2091 * in that case the handler should return NULL.
 
 
2092 *
2093 * vma cannot be a COW mapping.
 
2094 *
2095 * As this is called only for pages that do not currently exist, we
2096 * do not need to flush old virtual caches or the TLB.
2097 */
2098int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2099			unsigned long pfn)
2100{
2101	int ret;
2102	pgprot_t pgprot = vma->vm_page_prot;
2103	/*
2104	 * Technically, architectures with pte_special can avoid all these
2105	 * restrictions (same for remap_pfn_range).  However we would like
2106	 * consistency in testing and feature parity among all, so we should
2107	 * try to keep these invariants in place for everybody.
2108	 */
2109	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2110	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2111						(VM_PFNMAP|VM_MIXEDMAP));
2112	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2113	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2114
2115	if (addr < vma->vm_start || addr >= vma->vm_end)
2116		return -EFAULT;
2117	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2118		return -EINVAL;
2119
2120	ret = insert_pfn(vma, addr, pfn, pgprot);
 
2121
2122	if (ret)
2123		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2124
2125	return ret;
 
2126}
2127EXPORT_SYMBOL(vm_insert_pfn);
2128
2129int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2130			unsigned long pfn)
2131{
2132	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133
2134	if (addr < vma->vm_start || addr >= vma->vm_end)
2135		return -EFAULT;
 
 
 
 
 
2136
2137	/*
2138	 * If we don't have pte special, then we have to use the pfn_valid()
2139	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2140	 * refcount the page if pfn_valid is true (hence insert_page rather
2141	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2142	 * without pte special, it would there be refcounted as a normal page.
2143	 */
2144	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
 
2145		struct page *page;
2146
2147		page = pfn_to_page(pfn);
2148		return insert_page(vma, addr, page, vma->vm_page_prot);
 
 
 
 
 
 
 
2149	}
2150	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151}
2152EXPORT_SYMBOL(vm_insert_mixed);
2153
2154/*
2155 * maps a range of physical memory into the requested pages. the old
2156 * mappings are removed. any references to nonexistent pages results
2157 * in null mappings (currently treated as "copy-on-access")
2158 */
2159static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2160			unsigned long addr, unsigned long end,
2161			unsigned long pfn, pgprot_t prot)
2162{
2163	pte_t *pte;
2164	spinlock_t *ptl;
 
2165
2166	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2167	if (!pte)
2168		return -ENOMEM;
2169	arch_enter_lazy_mmu_mode();
2170	do {
2171		BUG_ON(!pte_none(*pte));
 
 
 
 
2172		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2173		pfn++;
2174	} while (pte++, addr += PAGE_SIZE, addr != end);
2175	arch_leave_lazy_mmu_mode();
2176	pte_unmap_unlock(pte - 1, ptl);
2177	return 0;
2178}
2179
2180static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2181			unsigned long addr, unsigned long end,
2182			unsigned long pfn, pgprot_t prot)
2183{
2184	pmd_t *pmd;
2185	unsigned long next;
 
2186
2187	pfn -= addr >> PAGE_SHIFT;
2188	pmd = pmd_alloc(mm, pud, addr);
2189	if (!pmd)
2190		return -ENOMEM;
2191	VM_BUG_ON(pmd_trans_huge(*pmd));
2192	do {
2193		next = pmd_addr_end(addr, end);
2194		if (remap_pte_range(mm, pmd, addr, next,
2195				pfn + (addr >> PAGE_SHIFT), prot))
2196			return -ENOMEM;
 
2197	} while (pmd++, addr = next, addr != end);
2198	return 0;
2199}
2200
2201static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2202			unsigned long addr, unsigned long end,
2203			unsigned long pfn, pgprot_t prot)
2204{
2205	pud_t *pud;
2206	unsigned long next;
 
2207
2208	pfn -= addr >> PAGE_SHIFT;
2209	pud = pud_alloc(mm, pgd, addr);
2210	if (!pud)
2211		return -ENOMEM;
2212	do {
2213		next = pud_addr_end(addr, end);
2214		if (remap_pmd_range(mm, pud, addr, next,
2215				pfn + (addr >> PAGE_SHIFT), prot))
2216			return -ENOMEM;
 
2217	} while (pud++, addr = next, addr != end);
2218	return 0;
2219}
2220
2221/**
2222 * remap_pfn_range - remap kernel memory to userspace
2223 * @vma: user vma to map to
2224 * @addr: target user address to start at
2225 * @pfn: physical address of kernel memory
2226 * @size: size of map area
2227 * @prot: page protection flags for this mapping
2228 *
2229 *  Note: this is only safe if the mm semaphore is held when called.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230 */
2231int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2232		    unsigned long pfn, unsigned long size, pgprot_t prot)
2233{
2234	pgd_t *pgd;
2235	unsigned long next;
2236	unsigned long end = addr + PAGE_ALIGN(size);
2237	struct mm_struct *mm = vma->vm_mm;
2238	int err;
2239
 
 
 
2240	/*
2241	 * Physically remapped pages are special. Tell the
2242	 * rest of the world about it:
2243	 *   VM_IO tells people not to look at these pages
2244	 *	(accesses can have side effects).
2245	 *   VM_RESERVED is specified all over the place, because
2246	 *	in 2.4 it kept swapout's vma scan off this vma; but
2247	 *	in 2.6 the LRU scan won't even find its pages, so this
2248	 *	flag means no more than count its pages in reserved_vm,
2249	 * 	and omit it from core dump, even when VM_IO turned off.
2250	 *   VM_PFNMAP tells the core MM that the base pages are just
2251	 *	raw PFN mappings, and do not have a "struct page" associated
2252	 *	with them.
 
 
 
 
2253	 *
2254	 * There's a horrible special case to handle copy-on-write
2255	 * behaviour that some programs depend on. We mark the "original"
2256	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
 
2257	 */
2258	if (addr == vma->vm_start && end == vma->vm_end) {
 
 
2259		vma->vm_pgoff = pfn;
2260		vma->vm_flags |= VM_PFN_AT_MMAP;
2261	} else if (is_cow_mapping(vma->vm_flags))
2262		return -EINVAL;
2263
2264	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2265
2266	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2267	if (err) {
2268		/*
2269		 * To indicate that track_pfn related cleanup is not
2270		 * needed from higher level routine calling unmap_vmas
2271		 */
2272		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2273		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2274		return -EINVAL;
2275	}
2276
2277	BUG_ON(addr >= end);
2278	pfn -= addr >> PAGE_SHIFT;
2279	pgd = pgd_offset(mm, addr);
2280	flush_cache_range(vma, addr, end);
2281	do {
2282		next = pgd_addr_end(addr, end);
2283		err = remap_pud_range(mm, pgd, addr, next,
2284				pfn + (addr >> PAGE_SHIFT), prot);
2285		if (err)
2286			break;
2287	} while (pgd++, addr = next, addr != end);
2288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2289	if (err)
2290		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2291
 
 
 
2292	return err;
2293}
2294EXPORT_SYMBOL(remap_pfn_range);
2295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2296static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2297				     unsigned long addr, unsigned long end,
2298				     pte_fn_t fn, void *data)
 
2299{
2300	pte_t *pte;
2301	int err;
2302	pgtable_t token;
2303	spinlock_t *uninitialized_var(ptl);
2304
2305	pte = (mm == &init_mm) ?
2306		pte_alloc_kernel(pmd, addr) :
2307		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2308	if (!pte)
2309		return -ENOMEM;
 
 
 
 
 
 
2310
2311	BUG_ON(pmd_huge(*pmd));
2312
2313	arch_enter_lazy_mmu_mode();
2314
2315	token = pmd_pgtable(*pmd);
2316
2317	do {
2318		err = fn(pte++, token, addr, data);
2319		if (err)
2320			break;
2321	} while (addr += PAGE_SIZE, addr != end);
 
 
 
2322
2323	arch_leave_lazy_mmu_mode();
2324
2325	if (mm != &init_mm)
2326		pte_unmap_unlock(pte-1, ptl);
2327	return err;
2328}
2329
2330static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2331				     unsigned long addr, unsigned long end,
2332				     pte_fn_t fn, void *data)
 
2333{
2334	pmd_t *pmd;
2335	unsigned long next;
2336	int err;
2337
2338	BUG_ON(pud_huge(*pud));
2339
2340	pmd = pmd_alloc(mm, pud, addr);
2341	if (!pmd)
2342		return -ENOMEM;
 
 
 
 
2343	do {
2344		next = pmd_addr_end(addr, end);
2345		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
 
 
 
 
 
 
 
 
 
 
2346		if (err)
2347			break;
2348	} while (pmd++, addr = next, addr != end);
 
2349	return err;
2350}
2351
2352static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2353				     unsigned long addr, unsigned long end,
2354				     pte_fn_t fn, void *data)
 
2355{
2356	pud_t *pud;
2357	unsigned long next;
2358	int err;
2359
2360	pud = pud_alloc(mm, pgd, addr);
2361	if (!pud)
2362		return -ENOMEM;
 
 
 
 
2363	do {
2364		next = pud_addr_end(addr, end);
2365		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
 
 
 
 
 
 
 
 
 
 
2366		if (err)
2367			break;
2368	} while (pud++, addr = next, addr != end);
 
2369	return err;
2370}
2371
2372/*
2373 * Scan a region of virtual memory, filling in page tables as necessary
2374 * and calling a provided function on each leaf page table.
2375 */
2376int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2377			unsigned long size, pte_fn_t fn, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2378{
2379	pgd_t *pgd;
2380	unsigned long next;
2381	unsigned long end = addr + size;
2382	int err;
 
 
 
 
2383
2384	BUG_ON(addr >= end);
2385	pgd = pgd_offset(mm, addr);
2386	do {
2387		next = pgd_addr_end(addr, end);
2388		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
 
 
 
 
 
 
 
 
 
 
2389		if (err)
2390			break;
2391	} while (pgd++, addr = next, addr != end);
2392
 
 
 
2393	return err;
2394}
 
 
 
 
 
 
 
 
 
 
2395EXPORT_SYMBOL_GPL(apply_to_page_range);
2396
2397/*
2398 * handle_pte_fault chooses page fault handler according to an entry
2399 * which was read non-atomically.  Before making any commitment, on
2400 * those architectures or configurations (e.g. i386 with PAE) which
2401 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2402 * must check under lock before unmapping the pte and proceeding
2403 * (but do_wp_page is only called after already making such a check;
 
 
 
 
 
 
 
 
 
 
 
 
 
2404 * and do_anonymous_page can safely check later on).
2405 */
2406static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2407				pte_t *page_table, pte_t orig_pte)
2408{
2409	int same = 1;
2410#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2411	if (sizeof(pte_t) > sizeof(unsigned long)) {
2412		spinlock_t *ptl = pte_lockptr(mm, pmd);
2413		spin_lock(ptl);
2414		same = pte_same(*page_table, orig_pte);
2415		spin_unlock(ptl);
2416	}
2417#endif
2418	pte_unmap(page_table);
 
2419	return same;
2420}
2421
2422static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
 
 
 
 
 
 
 
2423{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424	/*
2425	 * If the source page was a PFN mapping, we don't have
2426	 * a "struct page" for it. We do a best-effort copy by
2427	 * just copying from the original user address. If that
2428	 * fails, we just zero-fill it. Live with it.
2429	 */
2430	if (unlikely(!src)) {
2431		void *kaddr = kmap_atomic(dst, KM_USER0);
2432		void __user *uaddr = (void __user *)(va & PAGE_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2433
2434		/*
2435		 * This really shouldn't fail, because the page is there
2436		 * in the page tables. But it might just be unreadable,
2437		 * in which case we just give up and fill the result with
2438		 * zeroes.
2439		 */
2440		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
 
 
 
 
 
 
2441			clear_page(kaddr);
2442		kunmap_atomic(kaddr, KM_USER0);
2443		flush_dcache_page(dst);
2444	} else
2445		copy_user_highpage(dst, src, va, vma);
 
 
 
 
 
 
 
 
2446}
2447
2448/*
2449 * This routine handles present pages, when users try to write
2450 * to a shared page. It is done by copying the page to a new address
2451 * and decrementing the shared-page counter for the old page.
2452 *
2453 * Note that this routine assumes that the protection checks have been
2454 * done by the caller (the low-level page fault routine in most cases).
2455 * Thus we can safely just mark it writable once we've done any necessary
2456 * COW.
2457 *
2458 * We also mark the page dirty at this point even though the page will
2459 * change only once the write actually happens. This avoids a few races,
2460 * and potentially makes it more efficient.
2461 *
2462 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2463 * but allow concurrent faults), with pte both mapped and locked.
2464 * We return with mmap_sem still held, but pte unmapped and unlocked.
2465 */
2466static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2467		unsigned long address, pte_t *page_table, pmd_t *pmd,
2468		spinlock_t *ptl, pte_t orig_pte)
2469	__releases(ptl)
2470{
2471	struct page *old_page, *new_page;
2472	pte_t entry;
2473	int ret = 0;
2474	int page_mkwrite = 0;
2475	struct page *dirty_page = NULL;
2476
2477	old_page = vm_normal_page(vma, address, orig_pte);
2478	if (!old_page) {
2479		/*
2480		 * VM_MIXEDMAP !pfn_valid() case
2481		 *
2482		 * We should not cow pages in a shared writeable mapping.
2483		 * Just mark the pages writable as we can't do any dirty
2484		 * accounting on raw pfn maps.
2485		 */
2486		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2487				     (VM_WRITE|VM_SHARED))
2488			goto reuse;
2489		goto gotten;
2490	}
2491
2492	/*
2493	 * Take out anonymous pages first, anonymous shared vmas are
2494	 * not dirty accountable.
2495	 */
2496	if (PageAnon(old_page) && !PageKsm(old_page)) {
2497		if (!trylock_page(old_page)) {
2498			page_cache_get(old_page);
2499			pte_unmap_unlock(page_table, ptl);
2500			lock_page(old_page);
2501			page_table = pte_offset_map_lock(mm, pmd, address,
2502							 &ptl);
2503			if (!pte_same(*page_table, orig_pte)) {
2504				unlock_page(old_page);
2505				goto unlock;
2506			}
2507			page_cache_release(old_page);
2508		}
2509		if (reuse_swap_page(old_page)) {
2510			/*
2511			 * The page is all ours.  Move it to our anon_vma so
2512			 * the rmap code will not search our parent or siblings.
2513			 * Protected against the rmap code by the page lock.
2514			 */
2515			page_move_anon_rmap(old_page, vma, address);
2516			unlock_page(old_page);
2517			goto reuse;
2518		}
2519		unlock_page(old_page);
2520	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2521					(VM_WRITE|VM_SHARED))) {
2522		/*
2523		 * Only catch write-faults on shared writable pages,
2524		 * read-only shared pages can get COWed by
2525		 * get_user_pages(.write=1, .force=1).
2526		 */
2527		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2528			struct vm_fault vmf;
2529			int tmp;
2530
2531			vmf.virtual_address = (void __user *)(address &
2532								PAGE_MASK);
2533			vmf.pgoff = old_page->index;
2534			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2535			vmf.page = old_page;
2536
2537			/*
2538			 * Notify the address space that the page is about to
2539			 * become writable so that it can prohibit this or wait
2540			 * for the page to get into an appropriate state.
2541			 *
2542			 * We do this without the lock held, so that it can
2543			 * sleep if it needs to.
2544			 */
2545			page_cache_get(old_page);
2546			pte_unmap_unlock(page_table, ptl);
 
2547
2548			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2549			if (unlikely(tmp &
2550					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2551				ret = tmp;
2552				goto unwritable_page;
2553			}
2554			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2555				lock_page(old_page);
2556				if (!old_page->mapping) {
2557					ret = 0; /* retry the fault */
2558					unlock_page(old_page);
2559					goto unwritable_page;
2560				}
2561			} else
2562				VM_BUG_ON(!PageLocked(old_page));
2563
2564			/*
2565			 * Since we dropped the lock we need to revalidate
2566			 * the PTE as someone else may have changed it.  If
2567			 * they did, we just return, as we can count on the
2568			 * MMU to tell us if they didn't also make it writable.
2569			 */
2570			page_table = pte_offset_map_lock(mm, pmd, address,
2571							 &ptl);
2572			if (!pte_same(*page_table, orig_pte)) {
2573				unlock_page(old_page);
2574				goto unlock;
2575			}
2576
2577			page_mkwrite = 1;
 
 
 
 
 
 
 
 
 
2578		}
2579		dirty_page = old_page;
2580		get_page(dirty_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2581
2582reuse:
2583		flush_cache_page(vma, address, pte_pfn(orig_pte));
2584		entry = pte_mkyoung(orig_pte);
2585		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2586		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2587			update_mmu_cache(vma, address, page_table);
2588		pte_unmap_unlock(page_table, ptl);
2589		ret |= VM_FAULT_WRITE;
 
 
 
 
 
2590
2591		if (!dirty_page)
2592			return ret;
 
 
 
 
 
 
 
 
 
2593
2594		/*
2595		 * Yes, Virginia, this is actually required to prevent a race
2596		 * with clear_page_dirty_for_io() from clearing the page dirty
2597		 * bit after it clear all dirty ptes, but before a racing
2598		 * do_wp_page installs a dirty pte.
2599		 *
2600		 * __do_fault is protected similarly.
2601		 */
2602		if (!page_mkwrite) {
2603			wait_on_page_locked(dirty_page);
2604			set_page_dirty_balance(dirty_page, page_mkwrite);
2605		}
2606		put_page(dirty_page);
2607		if (page_mkwrite) {
2608			struct address_space *mapping = dirty_page->mapping;
2609
2610			set_page_dirty(dirty_page);
2611			unlock_page(dirty_page);
2612			page_cache_release(dirty_page);
2613			if (mapping)	{
2614				/*
2615				 * Some device drivers do not set page.mapping
2616				 * but still dirty their pages
2617				 */
2618				balance_dirty_pages_ratelimited(mapping);
2619			}
2620		}
 
2621
2622		/* file_update_time outside page_lock */
2623		if (vma->vm_file)
2624			file_update_time(vma->vm_file);
2625
2626		return ret;
2627	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2628
2629	/*
2630	 * Ok, we need to copy. Oh, well..
 
 
2631	 */
2632	page_cache_get(old_page);
2633gotten:
2634	pte_unmap_unlock(page_table, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2635
2636	if (unlikely(anon_vma_prepare(vma)))
2637		goto oom;
2638
2639	if (is_zero_pfn(pte_pfn(orig_pte))) {
2640		new_page = alloc_zeroed_user_highpage_movable(vma, address);
 
2641		if (!new_page)
2642			goto oom;
2643	} else {
2644		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
2645		if (!new_page)
2646			goto oom;
2647		cow_user_page(new_page, old_page, address, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2648	}
 
 
 
 
 
2649	__SetPageUptodate(new_page);
2650
2651	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2652		goto oom_free_new;
 
 
2653
2654	/*
2655	 * Re-check the pte - we dropped the lock
2656	 */
2657	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2658	if (likely(pte_same(*page_table, orig_pte))) {
2659		if (old_page) {
2660			if (!PageAnon(old_page)) {
2661				dec_mm_counter_fast(mm, MM_FILEPAGES);
2662				inc_mm_counter_fast(mm, MM_ANONPAGES);
2663			}
2664		} else
2665			inc_mm_counter_fast(mm, MM_ANONPAGES);
2666		flush_cache_page(vma, address, pte_pfn(orig_pte));
 
2667		entry = mk_pte(new_page, vma->vm_page_prot);
2668		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 
 
 
 
 
 
 
 
 
2669		/*
2670		 * Clear the pte entry and flush it first, before updating the
2671		 * pte with the new entry. This will avoid a race condition
2672		 * seen in the presence of one thread doing SMC and another
2673		 * thread doing COW.
 
2674		 */
2675		ptep_clear_flush(vma, address, page_table);
2676		page_add_new_anon_rmap(new_page, vma, address);
 
2677		/*
2678		 * We call the notify macro here because, when using secondary
2679		 * mmu page tables (such as kvm shadow page tables), we want the
2680		 * new page to be mapped directly into the secondary page table.
2681		 */
2682		set_pte_at_notify(mm, address, page_table, entry);
2683		update_mmu_cache(vma, address, page_table);
 
2684		if (old_page) {
2685			/*
2686			 * Only after switching the pte to the new page may
2687			 * we remove the mapcount here. Otherwise another
2688			 * process may come and find the rmap count decremented
2689			 * before the pte is switched to the new page, and
2690			 * "reuse" the old page writing into it while our pte
2691			 * here still points into it and can be read by other
2692			 * threads.
2693			 *
2694			 * The critical issue is to order this
2695			 * page_remove_rmap with the ptp_clear_flush above.
2696			 * Those stores are ordered by (if nothing else,)
2697			 * the barrier present in the atomic_add_negative
2698			 * in page_remove_rmap.
2699			 *
2700			 * Then the TLB flush in ptep_clear_flush ensures that
2701			 * no process can access the old page before the
2702			 * decremented mapcount is visible. And the old page
2703			 * cannot be reused until after the decremented
2704			 * mapcount is visible. So transitively, TLBs to
2705			 * old page will be flushed before it can be reused.
2706			 */
2707			page_remove_rmap(old_page);
2708		}
2709
2710		/* Free the old page.. */
2711		new_page = old_page;
2712		ret |= VM_FAULT_WRITE;
2713	} else
2714		mem_cgroup_uncharge_page(new_page);
 
2715
2716	if (new_page)
2717		page_cache_release(new_page);
2718unlock:
2719	pte_unmap_unlock(page_table, ptl);
 
 
 
 
 
2720	if (old_page) {
2721		/*
2722		 * Don't let another task, with possibly unlocked vma,
2723		 * keep the mlocked page.
2724		 */
2725		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2726			lock_page(old_page);	/* LRU manipulation */
2727			munlock_vma_page(old_page);
2728			unlock_page(old_page);
2729		}
2730		page_cache_release(old_page);
2731	}
2732	return ret;
 
 
2733oom_free_new:
2734	page_cache_release(new_page);
2735oom:
2736	if (old_page) {
2737		if (page_mkwrite) {
2738			unlock_page(old_page);
2739			page_cache_release(old_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2740		}
2741		page_cache_release(old_page);
 
 
2742	}
2743	return VM_FAULT_OOM;
 
2744
2745unwritable_page:
2746	page_cache_release(old_page);
2747	return ret;
2748}
2749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2750static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2751		unsigned long start_addr, unsigned long end_addr,
2752		struct zap_details *details)
2753{
2754	zap_page_range(vma, start_addr, end_addr - start_addr, details);
2755}
2756
2757static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
 
 
2758					    struct zap_details *details)
2759{
2760	struct vm_area_struct *vma;
2761	struct prio_tree_iter iter;
2762	pgoff_t vba, vea, zba, zea;
2763
2764	vma_prio_tree_foreach(vma, &iter, root,
2765			details->first_index, details->last_index) {
2766
2767		vba = vma->vm_pgoff;
2768		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2769		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2770		zba = details->first_index;
2771		if (zba < vba)
2772			zba = vba;
2773		zea = details->last_index;
2774		if (zea > vea)
2775			zea = vea;
2776
2777		unmap_mapping_range_vma(vma,
2778			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2779			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2780				details);
2781	}
2782}
2783
2784static inline void unmap_mapping_range_list(struct list_head *head,
2785					    struct zap_details *details)
2786{
2787	struct vm_area_struct *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2788
2789	/*
2790	 * In nonlinear VMAs there is no correspondence between virtual address
2791	 * offset and file offset.  So we must perform an exhaustive search
2792	 * across *all* the pages in each nonlinear VMA, not just the pages
2793	 * whose virtual address lies outside the file truncation point.
2794	 */
2795	list_for_each_entry(vma, head, shared.vm_set.list) {
2796		details->nonlinear_vma = vma;
2797		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2798	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799}
 
2800
2801/**
2802 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
 
 
 
2803 * @mapping: the address space containing mmaps to be unmapped.
2804 * @holebegin: byte in first page to unmap, relative to the start of
2805 * the underlying file.  This will be rounded down to a PAGE_SIZE
2806 * boundary.  Note that this is different from truncate_pagecache(), which
2807 * must keep the partial page.  In contrast, we must get rid of
2808 * partial pages.
2809 * @holelen: size of prospective hole in bytes.  This will be rounded
2810 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2811 * end of the file.
2812 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2813 * but 0 when invalidating pagecache, don't throw away private data.
2814 */
2815void unmap_mapping_range(struct address_space *mapping,
2816		loff_t const holebegin, loff_t const holelen, int even_cows)
2817{
2818	struct zap_details details;
2819	pgoff_t hba = holebegin >> PAGE_SHIFT;
2820	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2821
2822	/* Check for overflow. */
2823	if (sizeof(holelen) > sizeof(hlen)) {
2824		long long holeend =
2825			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2826		if (holeend & ~(long long)ULONG_MAX)
2827			hlen = ULONG_MAX - hba + 1;
2828	}
2829
2830	details.check_mapping = even_cows? NULL: mapping;
2831	details.nonlinear_vma = NULL;
2832	details.first_index = hba;
2833	details.last_index = hba + hlen - 1;
2834	if (details.last_index < details.first_index)
2835		details.last_index = ULONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2836
 
 
 
2837
2838	mutex_lock(&mapping->i_mmap_mutex);
2839	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2840		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2841	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2842		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2843	mutex_unlock(&mapping->i_mmap_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2844}
2845EXPORT_SYMBOL(unmap_mapping_range);
2846
2847/*
2848 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2849 * but allow concurrent faults), and pte mapped but not yet locked.
2850 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
 
2851 */
2852static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2853		unsigned long address, pte_t *page_table, pmd_t *pmd,
2854		unsigned int flags, pte_t orig_pte)
2855{
2856	spinlock_t *ptl;
2857	struct page *page, *swapcache = NULL;
 
 
 
 
2858	swp_entry_t entry;
2859	pte_t pte;
2860	int locked;
2861	struct mem_cgroup *ptr;
2862	int exclusive = 0;
2863	int ret = 0;
2864
2865	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2866		goto out;
2867
2868	entry = pte_to_swp_entry(orig_pte);
2869	if (unlikely(non_swap_entry(entry))) {
2870		if (is_migration_entry(entry)) {
2871			migration_entry_wait(mm, pmd, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2872		} else if (is_hwpoison_entry(entry)) {
2873			ret = VM_FAULT_HWPOISON;
 
 
2874		} else {
2875			print_bad_pte(vma, address, orig_pte, NULL);
2876			ret = VM_FAULT_SIGBUS;
2877		}
2878		goto out;
2879	}
2880	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2881	page = lookup_swap_cache(entry);
2882	if (!page) {
2883		grab_swap_token(mm); /* Contend for token _before_ read-in */
2884		page = swapin_readahead(entry,
2885					GFP_HIGHUSER_MOVABLE, vma, address);
2886		if (!page) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2887			/*
2888			 * Back out if somebody else faulted in this pte
2889			 * while we released the pte lock.
2890			 */
2891			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2892			if (likely(pte_same(*page_table, orig_pte)))
 
2893				ret = VM_FAULT_OOM;
2894			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2895			goto unlock;
2896		}
2897
2898		/* Had to read the page from swap area: Major fault */
2899		ret = VM_FAULT_MAJOR;
2900		count_vm_event(PGMAJFAULT);
2901		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2902	} else if (PageHWPoison(page)) {
2903		/*
2904		 * hwpoisoned dirty swapcache pages are kept for killing
2905		 * owner processes (which may be unknown at hwpoison time)
2906		 */
2907		ret = VM_FAULT_HWPOISON;
2908		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2909		goto out_release;
2910	}
2911
2912	locked = lock_page_or_retry(page, mm, flags);
2913	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2914	if (!locked) {
2915		ret |= VM_FAULT_RETRY;
2916		goto out_release;
2917	}
2918
2919	/*
2920	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2921	 * release the swapcache from under us.  The page pin, and pte_same
2922	 * test below, are not enough to exclude that.  Even if it is still
2923	 * swapcache, we need to check that the page's swap has not changed.
2924	 */
2925	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2926		goto out_page;
2927
2928	if (ksm_might_need_to_copy(page, vma, address)) {
2929		swapcache = page;
2930		page = ksm_does_need_to_copy(page, vma, address);
2931
 
 
 
 
 
 
2932		if (unlikely(!page)) {
2933			ret = VM_FAULT_OOM;
2934			page = swapcache;
2935			swapcache = NULL;
 
2936			goto out_page;
2937		}
 
 
 
 
 
 
 
 
 
 
 
2938	}
2939
2940	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2941		ret = VM_FAULT_OOM;
2942		goto out_page;
2943	}
2944
2945	/*
2946	 * Back out if somebody else already faulted in this pte.
2947	 */
2948	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2949	if (unlikely(!pte_same(*page_table, orig_pte)))
 
2950		goto out_nomap;
2951
2952	if (unlikely(!PageUptodate(page))) {
2953		ret = VM_FAULT_SIGBUS;
2954		goto out_nomap;
2955	}
2956
2957	/*
2958	 * The page isn't present yet, go ahead with the fault.
2959	 *
2960	 * Be careful about the sequence of operations here.
2961	 * To get its accounting right, reuse_swap_page() must be called
2962	 * while the page is counted on swap but not yet in mapcount i.e.
2963	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2964	 * must be called after the swap_free(), or it will never succeed.
2965	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2966	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2967	 * in page->private. In this case, a record in swap_cgroup  is silently
2968	 * discarded at swap_free().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2969	 */
 
 
 
2970
2971	inc_mm_counter_fast(mm, MM_ANONPAGES);
2972	dec_mm_counter_fast(mm, MM_SWAPENTS);
2973	pte = mk_pte(page, vma->vm_page_prot);
2974	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2975		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2976		flags &= ~FAULT_FLAG_WRITE;
2977		ret |= VM_FAULT_WRITE;
2978		exclusive = 1;
 
 
 
 
 
 
 
 
 
2979	}
2980	flush_icache_page(vma, page);
2981	set_pte_at(mm, address, page_table, pte);
2982	do_page_add_anon_rmap(page, vma, address, exclusive);
2983	/* It's better to call commit-charge after rmap is established */
2984	mem_cgroup_commit_charge_swapin(page, ptr);
 
 
 
2985
2986	swap_free(entry);
2987	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2988		try_to_free_swap(page);
2989	unlock_page(page);
2990	if (swapcache) {
 
 
 
 
 
 
 
 
 
 
2991		/*
2992		 * Hold the lock to avoid the swap entry to be reused
2993		 * until we take the PT lock for the pte_same() check
2994		 * (to avoid false positives from pte_same). For
2995		 * further safety release the lock after the swap_free
2996		 * so that the swap count won't change under a
2997		 * parallel locked swapcache.
2998		 */
2999		unlock_page(swapcache);
3000		page_cache_release(swapcache);
3001	}
3002
3003	if (flags & FAULT_FLAG_WRITE) {
3004		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3005		if (ret & VM_FAULT_ERROR)
3006			ret &= VM_FAULT_ERROR;
3007		goto out;
3008	}
3009
3010	/* No need to invalidate - it was non-present before */
3011	update_mmu_cache(vma, address, page_table);
3012unlock:
3013	pte_unmap_unlock(page_table, ptl);
3014out:
 
 
3015	return ret;
3016out_nomap:
3017	mem_cgroup_cancel_charge_swapin(ptr);
3018	pte_unmap_unlock(page_table, ptl);
3019out_page:
3020	unlock_page(page);
3021out_release:
3022	page_cache_release(page);
3023	if (swapcache) {
3024		unlock_page(swapcache);
3025		page_cache_release(swapcache);
3026	}
 
 
3027	return ret;
3028}
3029
3030/*
3031 * This is like a special single-page "expand_{down|up}wards()",
3032 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3033 * doesn't hit another vma.
3034 */
3035static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3036{
3037	address &= PAGE_MASK;
3038	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3039		struct vm_area_struct *prev = vma->vm_prev;
3040
3041		/*
3042		 * Is there a mapping abutting this one below?
3043		 *
3044		 * That's only ok if it's the same stack mapping
3045		 * that has gotten split..
3046		 */
3047		if (prev && prev->vm_end == address)
3048			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3049
3050		expand_downwards(vma, address - PAGE_SIZE);
3051	}
3052	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3053		struct vm_area_struct *next = vma->vm_next;
3054
3055		/* As VM_GROWSDOWN but s/below/above/ */
3056		if (next && next->vm_start == address + PAGE_SIZE)
3057			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3058
3059		expand_upwards(vma, address + PAGE_SIZE);
3060	}
3061	return 0;
3062}
3063
3064/*
3065 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3066 * but allow concurrent faults), and pte mapped but not yet locked.
3067 * We return with mmap_sem still held, but pte unmapped and unlocked.
3068 */
3069static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3070		unsigned long address, pte_t *page_table, pmd_t *pmd,
3071		unsigned int flags)
3072{
 
3073	struct page *page;
3074	spinlock_t *ptl;
3075	pte_t entry;
3076
3077	pte_unmap(page_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3078
3079	/* Check if we need to add a guard page to the stack */
3080	if (check_stack_guard_page(vma, address) < 0)
3081		return VM_FAULT_SIGBUS;
3082
3083	/* Use the zero-page for reads */
3084	if (!(flags & FAULT_FLAG_WRITE)) {
3085		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
 
3086						vma->vm_page_prot));
3087		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3088		if (!pte_none(*page_table))
 
 
 
 
 
 
3089			goto unlock;
 
 
 
 
 
3090		goto setpte;
3091	}
3092
3093	/* Allocate our own private page. */
3094	if (unlikely(anon_vma_prepare(vma)))
3095		goto oom;
3096	page = alloc_zeroed_user_highpage_movable(vma, address);
3097	if (!page)
3098		goto oom;
3099	__SetPageUptodate(page);
3100
3101	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3102		goto oom_free_page;
 
 
 
 
 
 
 
 
3103
3104	entry = mk_pte(page, vma->vm_page_prot);
 
3105	if (vma->vm_flags & VM_WRITE)
3106		entry = pte_mkwrite(pte_mkdirty(entry));
3107
3108	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3109	if (!pte_none(*page_table))
 
 
 
 
 
 
 
3110		goto release;
3111
3112	inc_mm_counter_fast(mm, MM_ANONPAGES);
3113	page_add_new_anon_rmap(page, vma, address);
 
 
 
 
 
 
 
 
3114setpte:
3115	set_pte_at(mm, address, page_table, entry);
3116
3117	/* No need to invalidate - it was non-present before */
3118	update_mmu_cache(vma, address, page_table);
3119unlock:
3120	pte_unmap_unlock(page_table, ptl);
3121	return 0;
3122release:
3123	mem_cgroup_uncharge_page(page);
3124	page_cache_release(page);
3125	goto unlock;
3126oom_free_page:
3127	page_cache_release(page);
3128oom:
3129	return VM_FAULT_OOM;
3130}
3131
3132/*
3133 * __do_fault() tries to create a new page mapping. It aggressively
3134 * tries to share with existing pages, but makes a separate copy if
3135 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3136 * the next page fault.
3137 *
3138 * As this is called only for pages that do not currently exist, we
3139 * do not need to flush old virtual caches or the TLB.
3140 *
3141 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3142 * but allow concurrent faults), and pte neither mapped nor locked.
3143 * We return with mmap_sem still held, but pte unmapped and unlocked.
3144 */
3145static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3146		unsigned long address, pmd_t *pmd,
3147		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3148{
3149	pte_t *page_table;
3150	spinlock_t *ptl;
3151	struct page *page;
3152	struct page *cow_page;
3153	pte_t entry;
3154	int anon = 0;
3155	struct page *dirty_page = NULL;
3156	struct vm_fault vmf;
3157	int ret;
3158	int page_mkwrite = 0;
3159
3160	/*
3161	 * If we do COW later, allocate page befor taking lock_page()
3162	 * on the file cache page. This will reduce lock holding time.
 
 
 
 
 
 
 
 
 
 
 
3163	 */
3164	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3165
3166		if (unlikely(anon_vma_prepare(vma)))
3167			return VM_FAULT_OOM;
 
3168
3169		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3170		if (!cow_page)
3171			return VM_FAULT_OOM;
 
3172
3173		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3174			page_cache_release(cow_page);
3175			return VM_FAULT_OOM;
 
 
 
 
 
 
 
 
3176		}
3177	} else
3178		cow_page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3179
3180	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3181	vmf.pgoff = pgoff;
3182	vmf.flags = flags;
3183	vmf.page = NULL;
3184
3185	ret = vma->vm_ops->fault(vma, &vmf);
3186	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3187			    VM_FAULT_RETRY)))
3188		goto uncharge_out;
 
 
 
 
 
 
 
 
3189
3190	if (unlikely(PageHWPoison(vmf.page))) {
3191		if (ret & VM_FAULT_LOCKED)
3192			unlock_page(vmf.page);
3193		ret = VM_FAULT_HWPOISON;
3194		goto uncharge_out;
 
 
 
3195	}
3196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3197	/*
3198	 * For consistency in subsequent calls, make the faulted page always
3199	 * locked.
3200	 */
3201	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3202		lock_page(vmf.page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3203	else
3204		VM_BUG_ON(!PageLocked(vmf.page));
3205
3206	/*
3207	 * Should we do an early C-O-W break?
 
3208	 */
3209	page = vmf.page;
3210	if (flags & FAULT_FLAG_WRITE) {
3211		if (!(vma->vm_flags & VM_SHARED)) {
3212			page = cow_page;
3213			anon = 1;
3214			copy_user_highpage(page, vmf.page, address, vma);
3215			__SetPageUptodate(page);
3216		} else {
3217			/*
3218			 * If the page will be shareable, see if the backing
3219			 * address space wants to know that the page is about
3220			 * to become writable
3221			 */
3222			if (vma->vm_ops->page_mkwrite) {
3223				int tmp;
3224
3225				unlock_page(page);
3226				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3227				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3228				if (unlikely(tmp &
3229					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3230					ret = tmp;
3231					goto unwritable_page;
3232				}
3233				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3234					lock_page(page);
3235					if (!page->mapping) {
3236						ret = 0; /* retry the fault */
3237						unlock_page(page);
3238						goto unwritable_page;
3239					}
3240				} else
3241					VM_BUG_ON(!PageLocked(page));
3242				page_mkwrite = 1;
3243			}
3244		}
3245
 
 
 
 
3246	}
3247
3248	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
 
 
 
 
 
 
 
 
3249
3250	/*
3251	 * This silly early PAGE_DIRTY setting removes a race
3252	 * due to the bad i386 page protection. But it's valid
3253	 * for other architectures too.
3254	 *
3255	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3256	 * an exclusive copy of the page, or this is a shared mapping,
3257	 * so we can make it writable and dirty to avoid having to
3258	 * handle that later.
3259	 */
3260	/* Only go through if we didn't race with anybody else... */
3261	if (likely(pte_same(*page_table, orig_pte))) {
3262		flush_icache_page(vma, page);
3263		entry = mk_pte(page, vma->vm_page_prot);
3264		if (flags & FAULT_FLAG_WRITE)
3265			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3266		if (anon) {
3267			inc_mm_counter_fast(mm, MM_ANONPAGES);
3268			page_add_new_anon_rmap(page, vma, address);
3269		} else {
3270			inc_mm_counter_fast(mm, MM_FILEPAGES);
3271			page_add_file_rmap(page);
3272			if (flags & FAULT_FLAG_WRITE) {
3273				dirty_page = page;
3274				get_page(dirty_page);
3275			}
3276		}
3277		set_pte_at(mm, address, page_table, entry);
3278
3279		/* no need to invalidate: a not-present page won't be cached */
3280		update_mmu_cache(vma, address, page_table);
 
 
3281	} else {
3282		if (cow_page)
3283			mem_cgroup_uncharge_page(cow_page);
3284		if (anon)
3285			page_cache_release(page);
3286		else
3287			anon = 1; /* no anon but release faulted_page */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3288	}
3289
3290	pte_unmap_unlock(page_table, ptl);
 
 
 
 
 
 
 
 
3291
3292	if (dirty_page) {
3293		struct address_space *mapping = page->mapping;
3294
3295		if (set_page_dirty(dirty_page))
3296			page_mkwrite = 1;
3297		unlock_page(dirty_page);
3298		put_page(dirty_page);
3299		if (page_mkwrite && mapping) {
3300			/*
3301			 * Some device drivers do not set page.mapping but still
3302			 * dirty their pages
3303			 */
3304			balance_dirty_pages_ratelimited(mapping);
3305		}
3306
3307		/* file_update_time outside page_lock */
3308		if (vma->vm_file)
3309			file_update_time(vma->vm_file);
3310	} else {
3311		unlock_page(vmf.page);
3312		if (anon)
3313			page_cache_release(vmf.page);
 
 
3314	}
3315
 
 
 
 
 
 
 
 
3316	return ret;
 
 
 
 
 
 
 
 
 
3317
3318unwritable_page:
3319	page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3320	return ret;
3321uncharge_out:
3322	/* fs's fault handler get error */
3323	if (cow_page) {
3324		mem_cgroup_uncharge_page(cow_page);
3325		page_cache_release(cow_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3326	}
 
 
3327	return ret;
3328}
3329
3330static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3331		unsigned long address, pte_t *page_table, pmd_t *pmd,
3332		unsigned int flags, pte_t orig_pte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3333{
3334	pgoff_t pgoff = (((address & PAGE_MASK)
3335			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
 
 
 
 
 
3336
3337	pte_unmap(page_table);
3338	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3339}
3340
3341/*
3342 * Fault of a previously existing named mapping. Repopulate the pte
3343 * from the encoded file_pte if possible. This enables swappable
3344 * nonlinear vmas.
3345 *
3346 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3347 * but allow concurrent faults), and pte mapped but not yet locked.
3348 * We return with mmap_sem still held, but pte unmapped and unlocked.
3349 */
3350static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3351		unsigned long address, pte_t *page_table, pmd_t *pmd,
3352		unsigned int flags, pte_t orig_pte)
3353{
3354	pgoff_t pgoff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3355
3356	flags |= FAULT_FLAG_NONLINEAR;
 
 
 
 
 
3357
3358	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3359		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3360
3361	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3362		/*
3363		 * Page table corrupted: show pte and kill process.
3364		 */
3365		print_bad_pte(vma, address, orig_pte, NULL);
3366		return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3367	}
3368
3369	pgoff = pte_to_pgoff(orig_pte);
3370	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371}
3372
3373/*
3374 * These routines also need to handle stuff like marking pages dirty
3375 * and/or accessed for architectures that don't do it in hardware (most
3376 * RISC architectures).  The early dirtying is also good on the i386.
3377 *
3378 * There is also a hook called "update_mmu_cache()" that architectures
3379 * with external mmu caches can use to update those (ie the Sparc or
3380 * PowerPC hashed page tables that act as extended TLBs).
3381 *
3382 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3383 * but allow concurrent faults), and pte mapped but not yet locked.
3384 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
3385 */
3386int handle_pte_fault(struct mm_struct *mm,
3387		     struct vm_area_struct *vma, unsigned long address,
3388		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3389{
3390	pte_t entry;
3391	spinlock_t *ptl;
3392
3393	entry = *pte;
3394	if (!pte_present(entry)) {
3395		if (pte_none(entry)) {
3396			if (vma->vm_ops) {
3397				if (likely(vma->vm_ops->fault))
3398					return do_linear_fault(mm, vma, address,
3399						pte, pmd, flags, entry);
3400			}
3401			return do_anonymous_page(mm, vma, address,
3402						 pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403		}
3404		if (pte_file(entry))
3405			return do_nonlinear_fault(mm, vma, address,
3406					pte, pmd, flags, entry);
3407		return do_swap_page(mm, vma, address,
3408					pte, pmd, flags, entry);
3409	}
3410
3411	ptl = pte_lockptr(mm, pmd);
3412	spin_lock(ptl);
3413	if (unlikely(!pte_same(*pte, entry)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3414		goto unlock;
3415	if (flags & FAULT_FLAG_WRITE) {
 
3416		if (!pte_write(entry))
3417			return do_wp_page(mm, vma, address,
3418					pte, pmd, ptl, entry);
3419		entry = pte_mkdirty(entry);
3420	}
3421	entry = pte_mkyoung(entry);
3422	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3423		update_mmu_cache(vma, address, pte);
 
3424	} else {
 
 
 
3425		/*
3426		 * This is needed only for protection faults but the arch code
3427		 * is not yet telling us if this is a protection fault or not.
3428		 * This still avoids useless tlb flushes for .text page faults
3429		 * with threads.
3430		 */
3431		if (flags & FAULT_FLAG_WRITE)
3432			flush_tlb_fix_spurious_fault(vma, address);
3433	}
3434unlock:
3435	pte_unmap_unlock(pte, ptl);
3436	return 0;
3437}
3438
3439/*
3440 * By the time we get here, we already hold the mm semaphore
 
 
 
3441 */
3442int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3443		unsigned long address, unsigned int flags)
3444{
 
 
 
 
 
 
 
 
 
 
3445	pgd_t *pgd;
3446	pud_t *pud;
3447	pmd_t *pmd;
3448	pte_t *pte;
3449
3450	__set_current_state(TASK_RUNNING);
 
 
 
3451
3452	count_vm_event(PGFAULT);
3453	mem_cgroup_count_vm_event(mm, PGFAULT);
 
 
 
 
 
 
 
 
 
3454
3455	/* do counter updates before entering really critical section. */
3456	check_sync_rss_stat(current);
3457
3458	if (unlikely(is_vm_hugetlb_page(vma)))
3459		return hugetlb_fault(mm, vma, address, flags);
 
 
 
 
 
 
 
 
 
 
 
 
3460
3461	pgd = pgd_offset(mm, address);
3462	pud = pud_alloc(mm, pgd, address);
3463	if (!pud)
3464		return VM_FAULT_OOM;
3465	pmd = pmd_alloc(mm, pud, address);
3466	if (!pmd)
3467		return VM_FAULT_OOM;
3468	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3469		if (!vma->vm_ops)
3470			return do_huge_pmd_anonymous_page(mm, vma, address,
3471							  pmd, flags);
 
 
 
3472	} else {
3473		pmd_t orig_pmd = *pmd;
 
3474		barrier();
3475		if (pmd_trans_huge(orig_pmd)) {
3476			if (flags & FAULT_FLAG_WRITE &&
3477			    !pmd_write(orig_pmd) &&
3478			    !pmd_trans_splitting(orig_pmd))
3479				return do_huge_pmd_wp_page(mm, vma, address,
3480							   pmd, orig_pmd);
3481			return 0;
3482		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3483	}
3484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3485	/*
3486	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3487	 * run pte_offset_map on the pmd, if an huge pmd could
3488	 * materialize from under us from a different thread.
 
 
 
 
 
 
3489	 */
3490	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3491		return VM_FAULT_OOM;
3492	/* if an huge pmd materialized from under us just retry later */
3493	if (unlikely(pmd_trans_huge(*pmd)))
3494		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3495	/*
3496	 * A regular pmd is established and it can't morph into a huge pmd
3497	 * from under us anymore at this point because we hold the mmap_sem
3498	 * read mode and khugepaged takes it in write mode. So now it's
3499	 * safe to run pte_offset_map().
3500	 */
3501	pte = pte_offset_map(pmd, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3502
3503	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 
 
 
 
 
 
 
 
3504}
 
3505
3506#ifndef __PAGETABLE_PUD_FOLDED
3507/*
3508 * Allocate page upper directory.
3509 * We've already handled the fast-path in-line.
3510 */
3511int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3512{
3513	pud_t *new = pud_alloc_one(mm, address);
3514	if (!new)
3515		return -ENOMEM;
3516
3517	smp_wmb(); /* See comment in __pte_alloc */
3518
3519	spin_lock(&mm->page_table_lock);
3520	if (pgd_present(*pgd))		/* Another has populated it */
 
 
 
 
3521		pud_free(mm, new);
3522	else
3523		pgd_populate(mm, pgd, new);
3524	spin_unlock(&mm->page_table_lock);
3525	return 0;
3526}
3527#endif /* __PAGETABLE_PUD_FOLDED */
3528
3529#ifndef __PAGETABLE_PMD_FOLDED
3530/*
3531 * Allocate page middle directory.
3532 * We've already handled the fast-path in-line.
3533 */
3534int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3535{
 
3536	pmd_t *new = pmd_alloc_one(mm, address);
3537	if (!new)
3538		return -ENOMEM;
3539
3540	smp_wmb(); /* See comment in __pte_alloc */
3541
3542	spin_lock(&mm->page_table_lock);
3543#ifndef __ARCH_HAS_4LEVEL_HACK
3544	if (pud_present(*pud))		/* Another has populated it */
3545		pmd_free(mm, new);
3546	else
3547		pud_populate(mm, pud, new);
3548#else
3549	if (pgd_present(*pud))		/* Another has populated it */
3550		pmd_free(mm, new);
3551	else
3552		pgd_populate(mm, pud, new);
3553#endif /* __ARCH_HAS_4LEVEL_HACK */
3554	spin_unlock(&mm->page_table_lock);
3555	return 0;
3556}
3557#endif /* __PAGETABLE_PMD_FOLDED */
3558
3559int make_pages_present(unsigned long addr, unsigned long end)
3560{
3561	int ret, len, write;
3562	struct vm_area_struct * vma;
3563
3564	vma = find_vma(current->mm, addr);
3565	if (!vma)
3566		return -ENOMEM;
3567	/*
3568	 * We want to touch writable mappings with a write fault in order
3569	 * to break COW, except for shared mappings because these don't COW
3570	 * and we would not want to dirty them for nothing.
3571	 */
3572	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3573	BUG_ON(addr >= end);
3574	BUG_ON(end > vma->vm_end);
3575	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3576	ret = get_user_pages(current, current->mm, addr,
3577			len, write, 0, NULL, NULL);
3578	if (ret < 0)
3579		return ret;
3580	return ret == len ? 0 : -EFAULT;
3581}
3582
3583#if !defined(__HAVE_ARCH_GATE_AREA)
3584
3585#if defined(AT_SYSINFO_EHDR)
3586static struct vm_area_struct gate_vma;
3587
3588static int __init gate_vma_init(void)
3589{
3590	gate_vma.vm_mm = NULL;
3591	gate_vma.vm_start = FIXADDR_USER_START;
3592	gate_vma.vm_end = FIXADDR_USER_END;
3593	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3594	gate_vma.vm_page_prot = __P101;
3595	/*
3596	 * Make sure the vDSO gets into every core dump.
3597	 * Dumping its contents makes post-mortem fully interpretable later
3598	 * without matching up the same kernel and hardware config to see
3599	 * what PC values meant.
3600	 */
3601	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3602	return 0;
3603}
3604__initcall(gate_vma_init);
3605#endif
3606
3607struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3608{
3609#ifdef AT_SYSINFO_EHDR
3610	return &gate_vma;
3611#else
3612	return NULL;
3613#endif
3614}
3615
3616int in_gate_area_no_mm(unsigned long addr)
3617{
3618#ifdef AT_SYSINFO_EHDR
3619	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3620		return 1;
3621#endif
3622	return 0;
3623}
3624
3625#endif	/* __HAVE_ARCH_GATE_AREA */
3626
3627static int __follow_pte(struct mm_struct *mm, unsigned long address,
3628		pte_t **ptepp, spinlock_t **ptlp)
3629{
3630	pgd_t *pgd;
 
3631	pud_t *pud;
3632	pmd_t *pmd;
3633	pte_t *ptep;
3634
3635	pgd = pgd_offset(mm, address);
3636	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3637		goto out;
3638
3639	pud = pud_offset(pgd, address);
 
 
 
 
3640	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3641		goto out;
3642
3643	pmd = pmd_offset(pud, address);
3644	VM_BUG_ON(pmd_trans_huge(*pmd));
 
3645	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3646		goto out;
3647
3648	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3649	if (pmd_huge(*pmd))
3650		goto out;
3651
3652	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3653	if (!ptep)
3654		goto out;
3655	if (!pte_present(*ptep))
3656		goto unlock;
3657	*ptepp = ptep;
3658	return 0;
3659unlock:
3660	pte_unmap_unlock(ptep, *ptlp);
3661out:
3662	return -EINVAL;
3663}
3664
3665static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3666			     pte_t **ptepp, spinlock_t **ptlp)
3667{
3668	int res;
3669
3670	/* (void) is needed to make gcc happy */
3671	(void) __cond_lock(*ptlp,
3672			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3673	return res;
3674}
3675
3676/**
3677 * follow_pfn - look up PFN at a user virtual address
3678 * @vma: memory mapping
3679 * @address: user virtual address
3680 * @pfn: location to store found PFN
3681 *
3682 * Only IO mappings and raw PFN mappings are allowed.
3683 *
3684 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 
 
 
3685 */
3686int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3687	unsigned long *pfn)
3688{
3689	int ret = -EINVAL;
3690	spinlock_t *ptl;
3691	pte_t *ptep;
3692
3693	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3694		return ret;
3695
3696	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3697	if (ret)
3698		return ret;
3699	*pfn = pte_pfn(*ptep);
3700	pte_unmap_unlock(ptep, ptl);
3701	return 0;
3702}
3703EXPORT_SYMBOL(follow_pfn);
3704
3705#ifdef CONFIG_HAVE_IOREMAP_PROT
3706int follow_phys(struct vm_area_struct *vma,
3707		unsigned long address, unsigned int flags,
3708		unsigned long *prot, resource_size_t *phys)
3709{
3710	int ret = -EINVAL;
3711	pte_t *ptep, pte;
3712	spinlock_t *ptl;
3713
3714	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3715		goto out;
3716
3717	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3718		goto out;
3719	pte = *ptep;
3720
3721	if ((flags & FOLL_WRITE) && !pte_write(pte))
3722		goto unlock;
3723
3724	*prot = pgprot_val(pte_pgprot(pte));
3725	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3726
3727	ret = 0;
3728unlock:
3729	pte_unmap_unlock(ptep, ptl);
3730out:
3731	return ret;
3732}
3733
 
 
 
 
 
 
 
 
 
 
 
 
3734int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3735			void *buf, int len, int write)
3736{
3737	resource_size_t phys_addr;
3738	unsigned long prot = 0;
3739	void __iomem *maddr;
3740	int offset = addr & (PAGE_SIZE-1);
 
 
 
3741
3742	if (follow_phys(vma, addr, write, &prot, &phys_addr))
 
 
 
 
 
 
 
 
 
 
 
 
3743		return -EINVAL;
3744
3745	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
3746	if (write)
3747		memcpy_toio(maddr + offset, buf, len);
3748	else
3749		memcpy_fromio(buf, maddr + offset, len);
 
 
 
3750	iounmap(maddr);
3751
3752	return len;
3753}
 
3754#endif
3755
3756/*
3757 * Access another process' address space as given in mm.  If non-NULL, use the
3758 * given task for page fault accounting.
3759 */
3760static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3761		unsigned long addr, void *buf, int len, int write)
3762{
3763	struct vm_area_struct *vma;
3764	void *old_buf = buf;
 
 
 
 
3765
3766	down_read(&mm->mmap_sem);
3767	/* ignore errors, just check how much was successfully transferred */
3768	while (len) {
3769		int bytes, ret, offset;
3770		void *maddr;
3771		struct page *page = NULL;
3772
3773		ret = get_user_pages(tsk, mm, addr, 1,
3774				write, 1, &page, &vma);
3775		if (ret <= 0) {
 
 
 
3776			/*
3777			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3778			 * we can access using slightly different code.
3779			 */
3780#ifdef CONFIG_HAVE_IOREMAP_PROT
3781			vma = find_vma(mm, addr);
3782			if (!vma || vma->vm_start > addr)
3783				break;
3784			if (vma->vm_ops && vma->vm_ops->access)
3785				ret = vma->vm_ops->access(vma, addr, buf,
3786							  len, write);
3787			if (ret <= 0)
3788#endif
3789				break;
3790			bytes = ret;
 
3791		} else {
3792			bytes = len;
3793			offset = addr & (PAGE_SIZE-1);
3794			if (bytes > PAGE_SIZE-offset)
3795				bytes = PAGE_SIZE-offset;
3796
3797			maddr = kmap(page);
3798			if (write) {
3799				copy_to_user_page(vma, page, addr,
3800						  maddr + offset, buf, bytes);
3801				set_page_dirty_lock(page);
3802			} else {
3803				copy_from_user_page(vma, page, addr,
3804						    buf, maddr + offset, bytes);
3805			}
3806			kunmap(page);
3807			page_cache_release(page);
3808		}
3809		len -= bytes;
3810		buf += bytes;
3811		addr += bytes;
3812	}
3813	up_read(&mm->mmap_sem);
3814
3815	return buf - old_buf;
3816}
3817
3818/**
3819 * access_remote_vm - access another process' address space
3820 * @mm:		the mm_struct of the target address space
3821 * @addr:	start address to access
3822 * @buf:	source or destination buffer
3823 * @len:	number of bytes to transfer
3824 * @write:	whether the access is a write
3825 *
3826 * The caller must hold a reference on @mm.
 
 
3827 */
3828int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3829		void *buf, int len, int write)
3830{
3831	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3832}
3833
3834/*
3835 * Access another process' address space.
3836 * Source/target buffer must be kernel space,
3837 * Do not walk the page table directly, use get_user_pages
3838 */
3839int access_process_vm(struct task_struct *tsk, unsigned long addr,
3840		void *buf, int len, int write)
3841{
3842	struct mm_struct *mm;
3843	int ret;
3844
3845	mm = get_task_mm(tsk);
3846	if (!mm)
3847		return 0;
3848
3849	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
 
3850	mmput(mm);
3851
3852	return ret;
3853}
 
3854
3855/*
3856 * Print the name of a VMA.
3857 */
3858void print_vma_addr(char *prefix, unsigned long ip)
3859{
3860	struct mm_struct *mm = current->mm;
3861	struct vm_area_struct *vma;
3862
3863	/*
3864	 * Do not print if we are in atomic
3865	 * contexts (in exception stacks, etc.):
3866	 */
3867	if (preempt_count())
3868		return;
3869
3870	down_read(&mm->mmap_sem);
3871	vma = find_vma(mm, ip);
3872	if (vma && vma->vm_file) {
3873		struct file *f = vma->vm_file;
3874		char *buf = (char *)__get_free_page(GFP_KERNEL);
3875		if (buf) {
3876			char *p, *s;
3877
3878			p = d_path(&f->f_path, buf, PAGE_SIZE);
3879			if (IS_ERR(p))
3880				p = "?";
3881			s = strrchr(p, '/');
3882			if (s)
3883				p = s+1;
3884			printk("%s%s[%lx+%lx]", prefix, p,
3885					vma->vm_start,
3886					vma->vm_end - vma->vm_start);
3887			free_page((unsigned long)buf);
3888		}
3889	}
3890	up_read(&current->mm->mmap_sem);
3891}
3892
3893#ifdef CONFIG_PROVE_LOCKING
3894void might_fault(void)
3895{
3896	/*
3897	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3898	 * holding the mmap_sem, this is safe because kernel memory doesn't
3899	 * get paged out, therefore we'll never actually fault, and the
3900	 * below annotations will generate false positives.
3901	 */
3902	if (segment_eq(get_fs(), KERNEL_DS))
3903		return;
 
 
 
 
 
 
 
 
3904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3905	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3906	/*
3907	 * it would be nicer only to annotate paths which are not under
3908	 * pagefault_disable, however that requires a larger audit and
3909	 * providing helpers like get_user_atomic.
3910	 */
3911	if (!in_atomic() && current->mm)
3912		might_lock_read(&current->mm->mmap_sem);
 
 
 
 
 
 
 
3913}
3914EXPORT_SYMBOL(might_fault);
3915#endif
3916
3917#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3918static void clear_gigantic_page(struct page *page,
3919				unsigned long addr,
3920				unsigned int pages_per_huge_page)
3921{
3922	int i;
3923	struct page *p = page;
3924
3925	might_sleep();
3926	for (i = 0; i < pages_per_huge_page;
3927	     i++, p = mem_map_next(p, page, i)) {
3928		cond_resched();
3929		clear_user_highpage(p, addr + i * PAGE_SIZE);
3930	}
3931}
 
 
 
 
 
 
 
 
3932void clear_huge_page(struct page *page,
3933		     unsigned long addr, unsigned int pages_per_huge_page)
3934{
3935	int i;
 
3936
3937	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3938		clear_gigantic_page(page, addr, pages_per_huge_page);
3939		return;
3940	}
3941
3942	might_sleep();
3943	for (i = 0; i < pages_per_huge_page; i++) {
3944		cond_resched();
3945		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3946	}
3947}
3948
3949static void copy_user_gigantic_page(struct page *dst, struct page *src,
3950				    unsigned long addr,
3951				    struct vm_area_struct *vma,
3952				    unsigned int pages_per_huge_page)
3953{
3954	int i;
3955	struct page *dst_base = dst;
3956	struct page *src_base = src;
3957
3958	for (i = 0; i < pages_per_huge_page; ) {
 
 
 
3959		cond_resched();
3960		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
 
 
3961
3962		i++;
3963		dst = mem_map_next(dst, dst_base, i);
3964		src = mem_map_next(src, src_base, i);
3965	}
 
 
 
 
 
 
 
 
3966}
3967
3968void copy_user_huge_page(struct page *dst, struct page *src,
3969			 unsigned long addr, struct vm_area_struct *vma,
3970			 unsigned int pages_per_huge_page)
3971{
3972	int i;
 
 
 
 
 
 
3973
3974	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3975		copy_user_gigantic_page(dst, src, addr, vma,
3976					pages_per_huge_page);
3977		return;
3978	}
3979
3980	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
 
3981	for (i = 0; i < pages_per_huge_page; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3982		cond_resched();
3983		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3984	}
 
3985}
3986#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */