Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
  4 *
  5 * membarrier system call
  6 */
  7
  8/*
  9 * For documentation purposes, here are some membarrier ordering
 10 * scenarios to keep in mind:
 11 *
 12 * A) Userspace thread execution after IPI vs membarrier's memory
 13 *    barrier before sending the IPI
 14 *
 15 * Userspace variables:
 16 *
 17 * int x = 0, y = 0;
 18 *
 19 * The memory barrier at the start of membarrier() on CPU0 is necessary in
 20 * order to enforce the guarantee that any writes occurring on CPU0 before
 21 * the membarrier() is executed will be visible to any code executing on
 22 * CPU1 after the IPI-induced memory barrier:
 23 *
 24 *         CPU0                              CPU1
 25 *
 26 *         x = 1
 27 *         membarrier():
 28 *           a: smp_mb()
 29 *           b: send IPI                       IPI-induced mb
 30 *           c: smp_mb()
 31 *         r2 = y
 32 *                                           y = 1
 33 *                                           barrier()
 34 *                                           r1 = x
 35 *
 36 *                     BUG_ON(r1 == 0 && r2 == 0)
 37 *
 38 * The write to y and load from x by CPU1 are unordered by the hardware,
 39 * so it's possible to have "r1 = x" reordered before "y = 1" at any
 40 * point after (b).  If the memory barrier at (a) is omitted, then "x = 1"
 41 * can be reordered after (a) (although not after (c)), so we get r1 == 0
 42 * and r2 == 0.  This violates the guarantee that membarrier() is
 43 * supposed by provide.
 44 *
 45 * The timing of the memory barrier at (a) has to ensure that it executes
 46 * before the IPI-induced memory barrier on CPU1.
 47 *
 48 * B) Userspace thread execution before IPI vs membarrier's memory
 49 *    barrier after completing the IPI
 50 *
 51 * Userspace variables:
 52 *
 53 * int x = 0, y = 0;
 54 *
 55 * The memory barrier at the end of membarrier() on CPU0 is necessary in
 56 * order to enforce the guarantee that any writes occurring on CPU1 before
 57 * the membarrier() is executed will be visible to any code executing on
 58 * CPU0 after the membarrier():
 59 *
 60 *         CPU0                              CPU1
 61 *
 62 *                                           x = 1
 63 *                                           barrier()
 64 *                                           y = 1
 65 *         r2 = y
 66 *         membarrier():
 67 *           a: smp_mb()
 68 *           b: send IPI                       IPI-induced mb
 69 *           c: smp_mb()
 70 *         r1 = x
 71 *         BUG_ON(r1 == 0 && r2 == 1)
 72 *
 73 * The writes to x and y are unordered by the hardware, so it's possible to
 74 * have "r2 = 1" even though the write to x doesn't execute until (b).  If
 75 * the memory barrier at (c) is omitted then "r1 = x" can be reordered
 76 * before (b) (although not before (a)), so we get "r1 = 0".  This violates
 77 * the guarantee that membarrier() is supposed to provide.
 78 *
 79 * The timing of the memory barrier at (c) has to ensure that it executes
 80 * after the IPI-induced memory barrier on CPU1.
 81 *
 82 * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
 83 *
 84 *           CPU0                            CPU1
 85 *
 86 *           membarrier():
 87 *           a: smp_mb()
 88 *                                           d: switch to kthread (includes mb)
 89 *           b: read rq->curr->mm == NULL
 90 *                                           e: switch to user (includes mb)
 91 *           c: smp_mb()
 92 *
 93 * Using the scenario from (A), we can show that (a) needs to be paired
 94 * with (e). Using the scenario from (B), we can show that (c) needs to
 95 * be paired with (d).
 96 *
 97 * D) exit_mm vs membarrier
 98 *
 99 * Two thread groups are created, A and B.  Thread group B is created by
100 * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
101 * Let's assume we have a single thread within each thread group (Thread A
102 * and Thread B).  Thread A runs on CPU0, Thread B runs on CPU1.
103 *
104 *           CPU0                            CPU1
105 *
106 *           membarrier():
107 *             a: smp_mb()
108 *                                           exit_mm():
109 *                                             d: smp_mb()
110 *                                             e: current->mm = NULL
111 *             b: read rq->curr->mm == NULL
112 *             c: smp_mb()
113 *
114 * Using scenario (B), we can show that (c) needs to be paired with (d).
115 *
116 * E) kthread_{use,unuse}_mm vs membarrier
117 *
118 *           CPU0                            CPU1
119 *
120 *           membarrier():
121 *           a: smp_mb()
122 *                                           kthread_unuse_mm()
123 *                                             d: smp_mb()
124 *                                             e: current->mm = NULL
125 *           b: read rq->curr->mm == NULL
126 *                                           kthread_use_mm()
127 *                                             f: current->mm = mm
128 *                                             g: smp_mb()
129 *           c: smp_mb()
130 *
131 * Using the scenario from (A), we can show that (a) needs to be paired
132 * with (g). Using the scenario from (B), we can show that (c) needs to
133 * be paired with (d).
134 */
135
136/*
137 * Bitmask made from a "or" of all commands within enum membarrier_cmd,
138 * except MEMBARRIER_CMD_QUERY.
139 */
140#ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
141#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK			\
142	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE			\
143	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
144#else
145#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK	0
146#endif
147
148#ifdef CONFIG_RSEQ
149#define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK		\
150	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ			\
151	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ)
152#else
153#define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK	0
154#endif
155
156#define MEMBARRIER_CMD_BITMASK						\
157	(MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED	\
158	| MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED			\
159	| MEMBARRIER_CMD_PRIVATE_EXPEDITED				\
160	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED			\
161	| MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK		\
162	| MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK)
163
164static void ipi_mb(void *info)
165{
166	smp_mb();	/* IPIs should be serializing but paranoid. */
167}
168
169static void ipi_sync_core(void *info)
170{
171	/*
172	 * The smp_mb() in membarrier after all the IPIs is supposed to
173	 * ensure that memory on remote CPUs that occur before the IPI
174	 * become visible to membarrier()'s caller -- see scenario B in
175	 * the big comment at the top of this file.
176	 *
177	 * A sync_core() would provide this guarantee, but
178	 * sync_core_before_usermode() might end up being deferred until
179	 * after membarrier()'s smp_mb().
180	 */
181	smp_mb();	/* IPIs should be serializing but paranoid. */
182
183	sync_core_before_usermode();
184}
185
186static void ipi_rseq(void *info)
187{
188	/*
189	 * Ensure that all stores done by the calling thread are visible
190	 * to the current task before the current task resumes.  We could
191	 * probably optimize this away on most architectures, but by the
192	 * time we've already sent an IPI, the cost of the extra smp_mb()
193	 * is negligible.
194	 */
195	smp_mb();
196	rseq_preempt(current);
197}
198
199static void ipi_sync_rq_state(void *info)
200{
201	struct mm_struct *mm = (struct mm_struct *) info;
202
203	if (current->mm != mm)
204		return;
205	this_cpu_write(runqueues.membarrier_state,
206		       atomic_read(&mm->membarrier_state));
207	/*
208	 * Issue a memory barrier after setting
209	 * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
210	 * guarantee that no memory access following registration is reordered
211	 * before registration.
212	 */
213	smp_mb();
214}
215
216void membarrier_exec_mmap(struct mm_struct *mm)
217{
218	/*
219	 * Issue a memory barrier before clearing membarrier_state to
220	 * guarantee that no memory access prior to exec is reordered after
221	 * clearing this state.
222	 */
223	smp_mb();
224	atomic_set(&mm->membarrier_state, 0);
225	/*
226	 * Keep the runqueue membarrier_state in sync with this mm
227	 * membarrier_state.
228	 */
229	this_cpu_write(runqueues.membarrier_state, 0);
230}
231
232void membarrier_update_current_mm(struct mm_struct *next_mm)
233{
234	struct rq *rq = this_rq();
235	int membarrier_state = 0;
236
237	if (next_mm)
238		membarrier_state = atomic_read(&next_mm->membarrier_state);
239	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
240		return;
241	WRITE_ONCE(rq->membarrier_state, membarrier_state);
242}
243
244static int membarrier_global_expedited(void)
245{
246	int cpu;
247	cpumask_var_t tmpmask;
248
249	if (num_online_cpus() == 1)
250		return 0;
251
252	/*
253	 * Matches memory barriers around rq->curr modification in
254	 * scheduler.
255	 */
256	smp_mb();	/* system call entry is not a mb. */
257
258	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
259		return -ENOMEM;
260
261	cpus_read_lock();
262	rcu_read_lock();
263	for_each_online_cpu(cpu) {
264		struct task_struct *p;
265
266		/*
267		 * Skipping the current CPU is OK even through we can be
268		 * migrated at any point. The current CPU, at the point
269		 * where we read raw_smp_processor_id(), is ensured to
270		 * be in program order with respect to the caller
271		 * thread. Therefore, we can skip this CPU from the
272		 * iteration.
273		 */
274		if (cpu == raw_smp_processor_id())
275			continue;
276
277		if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
278		    MEMBARRIER_STATE_GLOBAL_EXPEDITED))
279			continue;
280
281		/*
282		 * Skip the CPU if it runs a kernel thread which is not using
283		 * a task mm.
284		 */
285		p = rcu_dereference(cpu_rq(cpu)->curr);
286		if (!p->mm)
287			continue;
288
289		__cpumask_set_cpu(cpu, tmpmask);
290	}
291	rcu_read_unlock();
292
293	preempt_disable();
294	smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
295	preempt_enable();
296
297	free_cpumask_var(tmpmask);
298	cpus_read_unlock();
299
300	/*
301	 * Memory barrier on the caller thread _after_ we finished
302	 * waiting for the last IPI. Matches memory barriers around
303	 * rq->curr modification in scheduler.
304	 */
305	smp_mb();	/* exit from system call is not a mb */
306	return 0;
307}
308
309static int membarrier_private_expedited(int flags, int cpu_id)
310{
311	cpumask_var_t tmpmask;
312	struct mm_struct *mm = current->mm;
313	smp_call_func_t ipi_func = ipi_mb;
314
315	if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
316		if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
317			return -EINVAL;
318		if (!(atomic_read(&mm->membarrier_state) &
319		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
320			return -EPERM;
321		ipi_func = ipi_sync_core;
322	} else if (flags == MEMBARRIER_FLAG_RSEQ) {
323		if (!IS_ENABLED(CONFIG_RSEQ))
324			return -EINVAL;
325		if (!(atomic_read(&mm->membarrier_state) &
326		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY))
327			return -EPERM;
328		ipi_func = ipi_rseq;
329	} else {
330		WARN_ON_ONCE(flags);
331		if (!(atomic_read(&mm->membarrier_state) &
332		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
333			return -EPERM;
334	}
335
336	if (flags != MEMBARRIER_FLAG_SYNC_CORE &&
337	    (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1))
338		return 0;
339
340	/*
341	 * Matches memory barriers around rq->curr modification in
342	 * scheduler.
343	 */
344	smp_mb();	/* system call entry is not a mb. */
345
346	if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
347		return -ENOMEM;
348
349	cpus_read_lock();
350
351	if (cpu_id >= 0) {
352		struct task_struct *p;
353
354		if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id))
355			goto out;
356		rcu_read_lock();
357		p = rcu_dereference(cpu_rq(cpu_id)->curr);
358		if (!p || p->mm != mm) {
359			rcu_read_unlock();
360			goto out;
361		}
362		rcu_read_unlock();
363	} else {
364		int cpu;
365
366		rcu_read_lock();
367		for_each_online_cpu(cpu) {
368			struct task_struct *p;
369
370			p = rcu_dereference(cpu_rq(cpu)->curr);
371			if (p && p->mm == mm)
372				__cpumask_set_cpu(cpu, tmpmask);
373		}
374		rcu_read_unlock();
375	}
376
377	if (cpu_id >= 0) {
378		/*
379		 * smp_call_function_single() will call ipi_func() if cpu_id
380		 * is the calling CPU.
381		 */
382		smp_call_function_single(cpu_id, ipi_func, NULL, 1);
383	} else {
384		/*
385		 * For regular membarrier, we can save a few cycles by
386		 * skipping the current cpu -- we're about to do smp_mb()
387		 * below, and if we migrate to a different cpu, this cpu
388		 * and the new cpu will execute a full barrier in the
389		 * scheduler.
390		 *
391		 * For SYNC_CORE, we do need a barrier on the current cpu --
392		 * otherwise, if we are migrated and replaced by a different
393		 * task in the same mm just before, during, or after
394		 * membarrier, we will end up with some thread in the mm
395		 * running without a core sync.
396		 *
397		 * For RSEQ, don't rseq_preempt() the caller.  User code
398		 * is not supposed to issue syscalls at all from inside an
399		 * rseq critical section.
400		 */
401		if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
402			preempt_disable();
403			smp_call_function_many(tmpmask, ipi_func, NULL, true);
404			preempt_enable();
405		} else {
406			on_each_cpu_mask(tmpmask, ipi_func, NULL, true);
407		}
408	}
409
410out:
411	if (cpu_id < 0)
412		free_cpumask_var(tmpmask);
413	cpus_read_unlock();
414
415	/*
416	 * Memory barrier on the caller thread _after_ we finished
417	 * waiting for the last IPI. Matches memory barriers around
418	 * rq->curr modification in scheduler.
419	 */
420	smp_mb();	/* exit from system call is not a mb */
421
422	return 0;
423}
424
425static int sync_runqueues_membarrier_state(struct mm_struct *mm)
426{
427	int membarrier_state = atomic_read(&mm->membarrier_state);
428	cpumask_var_t tmpmask;
429	int cpu;
430
431	if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
432		this_cpu_write(runqueues.membarrier_state, membarrier_state);
433
434		/*
435		 * For single mm user, we can simply issue a memory barrier
436		 * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
437		 * mm and in the current runqueue to guarantee that no memory
438		 * access following registration is reordered before
439		 * registration.
440		 */
441		smp_mb();
442		return 0;
443	}
444
445	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
446		return -ENOMEM;
447
448	/*
449	 * For mm with multiple users, we need to ensure all future
450	 * scheduler executions will observe @mm's new membarrier
451	 * state.
452	 */
453	synchronize_rcu();
454
455	/*
456	 * For each cpu runqueue, if the task's mm match @mm, ensure that all
457	 * @mm's membarrier state set bits are also set in the runqueue's
458	 * membarrier state. This ensures that a runqueue scheduling
459	 * between threads which are users of @mm has its membarrier state
460	 * updated.
461	 */
462	cpus_read_lock();
463	rcu_read_lock();
464	for_each_online_cpu(cpu) {
465		struct rq *rq = cpu_rq(cpu);
466		struct task_struct *p;
467
468		p = rcu_dereference(rq->curr);
469		if (p && p->mm == mm)
470			__cpumask_set_cpu(cpu, tmpmask);
471	}
472	rcu_read_unlock();
473
474	on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true);
475
476	free_cpumask_var(tmpmask);
477	cpus_read_unlock();
478
479	return 0;
480}
481
482static int membarrier_register_global_expedited(void)
483{
484	struct task_struct *p = current;
485	struct mm_struct *mm = p->mm;
486	int ret;
487
488	if (atomic_read(&mm->membarrier_state) &
489	    MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
490		return 0;
491	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
492	ret = sync_runqueues_membarrier_state(mm);
493	if (ret)
494		return ret;
495	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
496		  &mm->membarrier_state);
497
498	return 0;
499}
500
501static int membarrier_register_private_expedited(int flags)
502{
503	struct task_struct *p = current;
504	struct mm_struct *mm = p->mm;
505	int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
506	    set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
507	    ret;
508
509	if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
510		if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
511			return -EINVAL;
512		ready_state =
513			MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
514	} else if (flags == MEMBARRIER_FLAG_RSEQ) {
515		if (!IS_ENABLED(CONFIG_RSEQ))
516			return -EINVAL;
517		ready_state =
518			MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY;
519	} else {
520		WARN_ON_ONCE(flags);
521	}
522
523	/*
524	 * We need to consider threads belonging to different thread
525	 * groups, which use the same mm. (CLONE_VM but not
526	 * CLONE_THREAD).
527	 */
528	if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
529		return 0;
530	if (flags & MEMBARRIER_FLAG_SYNC_CORE)
531		set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
532	if (flags & MEMBARRIER_FLAG_RSEQ)
533		set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ;
534	atomic_or(set_state, &mm->membarrier_state);
535	ret = sync_runqueues_membarrier_state(mm);
536	if (ret)
537		return ret;
538	atomic_or(ready_state, &mm->membarrier_state);
539
540	return 0;
541}
542
543/**
544 * sys_membarrier - issue memory barriers on a set of threads
545 * @cmd:    Takes command values defined in enum membarrier_cmd.
546 * @flags:  Currently needs to be 0 for all commands other than
547 *          MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter
548 *          case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id
549 *          contains the CPU on which to interrupt (= restart)
550 *          the RSEQ critical section.
551 * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which
552 *          RSEQ CS should be interrupted (@cmd must be
553 *          MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).
554 *
555 * If this system call is not implemented, -ENOSYS is returned. If the
556 * command specified does not exist, not available on the running
557 * kernel, or if the command argument is invalid, this system call
558 * returns -EINVAL. For a given command, with flags argument set to 0,
559 * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
560 * always return the same value until reboot. In addition, it can return
561 * -ENOMEM if there is not enough memory available to perform the system
562 * call.
563 *
564 * All memory accesses performed in program order from each targeted thread
565 * is guaranteed to be ordered with respect to sys_membarrier(). If we use
566 * the semantic "barrier()" to represent a compiler barrier forcing memory
567 * accesses to be performed in program order across the barrier, and
568 * smp_mb() to represent explicit memory barriers forcing full memory
569 * ordering across the barrier, we have the following ordering table for
570 * each pair of barrier(), sys_membarrier() and smp_mb():
571 *
572 * The pair ordering is detailed as (O: ordered, X: not ordered):
573 *
574 *                        barrier()   smp_mb() sys_membarrier()
575 *        barrier()          X           X            O
576 *        smp_mb()           X           O            O
577 *        sys_membarrier()   O           O            O
578 */
579SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id)
580{
581	switch (cmd) {
582	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
583		if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU))
584			return -EINVAL;
585		break;
586	default:
587		if (unlikely(flags))
588			return -EINVAL;
589	}
590
591	if (!(flags & MEMBARRIER_CMD_FLAG_CPU))
592		cpu_id = -1;
593
594	switch (cmd) {
595	case MEMBARRIER_CMD_QUERY:
596	{
597		int cmd_mask = MEMBARRIER_CMD_BITMASK;
598
599		if (tick_nohz_full_enabled())
600			cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
601		return cmd_mask;
602	}
603	case MEMBARRIER_CMD_GLOBAL:
604		/* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
605		if (tick_nohz_full_enabled())
606			return -EINVAL;
607		if (num_online_cpus() > 1)
608			synchronize_rcu();
609		return 0;
610	case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
611		return membarrier_global_expedited();
612	case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
613		return membarrier_register_global_expedited();
614	case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
615		return membarrier_private_expedited(0, cpu_id);
616	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
617		return membarrier_register_private_expedited(0);
618	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
619		return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id);
620	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
621		return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
622	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
623		return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id);
624	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ:
625		return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ);
626	default:
627		return -EINVAL;
628	}
629}