Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/**
3 * inode.c - NTFS kernel inode handling.
4 *
5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6 */
7
8#include <linux/buffer_head.h>
9#include <linux/fs.h>
10#include <linux/mm.h>
11#include <linux/mount.h>
12#include <linux/mutex.h>
13#include <linux/pagemap.h>
14#include <linux/quotaops.h>
15#include <linux/slab.h>
16#include <linux/log2.h>
17
18#include "aops.h"
19#include "attrib.h"
20#include "bitmap.h"
21#include "dir.h"
22#include "debug.h"
23#include "inode.h"
24#include "lcnalloc.h"
25#include "malloc.h"
26#include "mft.h"
27#include "time.h"
28#include "ntfs.h"
29
30/**
31 * ntfs_test_inode - compare two (possibly fake) inodes for equality
32 * @vi: vfs inode which to test
33 * @data: data which is being tested with
34 *
35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
36 * inode @vi for equality with the ntfs attribute @data.
37 *
38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
39 * @na->name and @na->name_len are then ignored.
40 *
41 * Return 1 if the attributes match and 0 if not.
42 *
43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
44 * allowed to sleep.
45 */
46int ntfs_test_inode(struct inode *vi, void *data)
47{
48 ntfs_attr *na = (ntfs_attr *)data;
49 ntfs_inode *ni;
50
51 if (vi->i_ino != na->mft_no)
52 return 0;
53 ni = NTFS_I(vi);
54 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
55 if (likely(!NInoAttr(ni))) {
56 /* If not looking for a normal inode this is a mismatch. */
57 if (unlikely(na->type != AT_UNUSED))
58 return 0;
59 } else {
60 /* A fake inode describing an attribute. */
61 if (ni->type != na->type)
62 return 0;
63 if (ni->name_len != na->name_len)
64 return 0;
65 if (na->name_len && memcmp(ni->name, na->name,
66 na->name_len * sizeof(ntfschar)))
67 return 0;
68 }
69 /* Match! */
70 return 1;
71}
72
73/**
74 * ntfs_init_locked_inode - initialize an inode
75 * @vi: vfs inode to initialize
76 * @data: data which to initialize @vi to
77 *
78 * Initialize the vfs inode @vi with the values from the ntfs attribute @data in
79 * order to enable ntfs_test_inode() to do its work.
80 *
81 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
82 * In that case, @na->name and @na->name_len should be set to NULL and 0,
83 * respectively. Although that is not strictly necessary as
84 * ntfs_read_locked_inode() will fill them in later.
85 *
86 * Return 0 on success and -errno on error.
87 *
88 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
89 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
90 */
91static int ntfs_init_locked_inode(struct inode *vi, void *data)
92{
93 ntfs_attr *na = (ntfs_attr *)data;
94 ntfs_inode *ni = NTFS_I(vi);
95
96 vi->i_ino = na->mft_no;
97
98 ni->type = na->type;
99 if (na->type == AT_INDEX_ALLOCATION)
100 NInoSetMstProtected(ni);
101
102 ni->name = na->name;
103 ni->name_len = na->name_len;
104
105 /* If initializing a normal inode, we are done. */
106 if (likely(na->type == AT_UNUSED)) {
107 BUG_ON(na->name);
108 BUG_ON(na->name_len);
109 return 0;
110 }
111
112 /* It is a fake inode. */
113 NInoSetAttr(ni);
114
115 /*
116 * We have I30 global constant as an optimization as it is the name
117 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
118 * allocation but that is ok. And most attributes are unnamed anyway,
119 * thus the fraction of named attributes with name != I30 is actually
120 * absolutely tiny.
121 */
122 if (na->name_len && na->name != I30) {
123 unsigned int i;
124
125 BUG_ON(!na->name);
126 i = na->name_len * sizeof(ntfschar);
127 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
128 if (!ni->name)
129 return -ENOMEM;
130 memcpy(ni->name, na->name, i);
131 ni->name[na->name_len] = 0;
132 }
133 return 0;
134}
135
136static int ntfs_read_locked_inode(struct inode *vi);
137static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
138static int ntfs_read_locked_index_inode(struct inode *base_vi,
139 struct inode *vi);
140
141/**
142 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
143 * @sb: super block of mounted volume
144 * @mft_no: mft record number / inode number to obtain
145 *
146 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
147 * file or directory).
148 *
149 * If the inode is in the cache, it is just returned with an increased
150 * reference count. Otherwise, a new struct inode is allocated and initialized,
151 * and finally ntfs_read_locked_inode() is called to read in the inode and
152 * fill in the remainder of the inode structure.
153 *
154 * Return the struct inode on success. Check the return value with IS_ERR() and
155 * if true, the function failed and the error code is obtained from PTR_ERR().
156 */
157struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
158{
159 struct inode *vi;
160 int err;
161 ntfs_attr na;
162
163 na.mft_no = mft_no;
164 na.type = AT_UNUSED;
165 na.name = NULL;
166 na.name_len = 0;
167
168 vi = iget5_locked(sb, mft_no, ntfs_test_inode,
169 ntfs_init_locked_inode, &na);
170 if (unlikely(!vi))
171 return ERR_PTR(-ENOMEM);
172
173 err = 0;
174
175 /* If this is a freshly allocated inode, need to read it now. */
176 if (vi->i_state & I_NEW) {
177 err = ntfs_read_locked_inode(vi);
178 unlock_new_inode(vi);
179 }
180 /*
181 * There is no point in keeping bad inodes around if the failure was
182 * due to ENOMEM. We want to be able to retry again later.
183 */
184 if (unlikely(err == -ENOMEM)) {
185 iput(vi);
186 vi = ERR_PTR(err);
187 }
188 return vi;
189}
190
191/**
192 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
193 * @base_vi: vfs base inode containing the attribute
194 * @type: attribute type
195 * @name: Unicode name of the attribute (NULL if unnamed)
196 * @name_len: length of @name in Unicode characters (0 if unnamed)
197 *
198 * Obtain the (fake) struct inode corresponding to the attribute specified by
199 * @type, @name, and @name_len, which is present in the base mft record
200 * specified by the vfs inode @base_vi.
201 *
202 * If the attribute inode is in the cache, it is just returned with an
203 * increased reference count. Otherwise, a new struct inode is allocated and
204 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
205 * attribute and fill in the inode structure.
206 *
207 * Note, for index allocation attributes, you need to use ntfs_index_iget()
208 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
209 *
210 * Return the struct inode of the attribute inode on success. Check the return
211 * value with IS_ERR() and if true, the function failed and the error code is
212 * obtained from PTR_ERR().
213 */
214struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
215 ntfschar *name, u32 name_len)
216{
217 struct inode *vi;
218 int err;
219 ntfs_attr na;
220
221 /* Make sure no one calls ntfs_attr_iget() for indices. */
222 BUG_ON(type == AT_INDEX_ALLOCATION);
223
224 na.mft_no = base_vi->i_ino;
225 na.type = type;
226 na.name = name;
227 na.name_len = name_len;
228
229 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
230 ntfs_init_locked_inode, &na);
231 if (unlikely(!vi))
232 return ERR_PTR(-ENOMEM);
233
234 err = 0;
235
236 /* If this is a freshly allocated inode, need to read it now. */
237 if (vi->i_state & I_NEW) {
238 err = ntfs_read_locked_attr_inode(base_vi, vi);
239 unlock_new_inode(vi);
240 }
241 /*
242 * There is no point in keeping bad attribute inodes around. This also
243 * simplifies things in that we never need to check for bad attribute
244 * inodes elsewhere.
245 */
246 if (unlikely(err)) {
247 iput(vi);
248 vi = ERR_PTR(err);
249 }
250 return vi;
251}
252
253/**
254 * ntfs_index_iget - obtain a struct inode corresponding to an index
255 * @base_vi: vfs base inode containing the index related attributes
256 * @name: Unicode name of the index
257 * @name_len: length of @name in Unicode characters
258 *
259 * Obtain the (fake) struct inode corresponding to the index specified by @name
260 * and @name_len, which is present in the base mft record specified by the vfs
261 * inode @base_vi.
262 *
263 * If the index inode is in the cache, it is just returned with an increased
264 * reference count. Otherwise, a new struct inode is allocated and
265 * initialized, and finally ntfs_read_locked_index_inode() is called to read
266 * the index related attributes and fill in the inode structure.
267 *
268 * Return the struct inode of the index inode on success. Check the return
269 * value with IS_ERR() and if true, the function failed and the error code is
270 * obtained from PTR_ERR().
271 */
272struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
273 u32 name_len)
274{
275 struct inode *vi;
276 int err;
277 ntfs_attr na;
278
279 na.mft_no = base_vi->i_ino;
280 na.type = AT_INDEX_ALLOCATION;
281 na.name = name;
282 na.name_len = name_len;
283
284 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
285 ntfs_init_locked_inode, &na);
286 if (unlikely(!vi))
287 return ERR_PTR(-ENOMEM);
288
289 err = 0;
290
291 /* If this is a freshly allocated inode, need to read it now. */
292 if (vi->i_state & I_NEW) {
293 err = ntfs_read_locked_index_inode(base_vi, vi);
294 unlock_new_inode(vi);
295 }
296 /*
297 * There is no point in keeping bad index inodes around. This also
298 * simplifies things in that we never need to check for bad index
299 * inodes elsewhere.
300 */
301 if (unlikely(err)) {
302 iput(vi);
303 vi = ERR_PTR(err);
304 }
305 return vi;
306}
307
308struct inode *ntfs_alloc_big_inode(struct super_block *sb)
309{
310 ntfs_inode *ni;
311
312 ntfs_debug("Entering.");
313 ni = alloc_inode_sb(sb, ntfs_big_inode_cache, GFP_NOFS);
314 if (likely(ni != NULL)) {
315 ni->state = 0;
316 return VFS_I(ni);
317 }
318 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
319 return NULL;
320}
321
322void ntfs_free_big_inode(struct inode *inode)
323{
324 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
325}
326
327static inline ntfs_inode *ntfs_alloc_extent_inode(void)
328{
329 ntfs_inode *ni;
330
331 ntfs_debug("Entering.");
332 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
333 if (likely(ni != NULL)) {
334 ni->state = 0;
335 return ni;
336 }
337 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
338 return NULL;
339}
340
341static void ntfs_destroy_extent_inode(ntfs_inode *ni)
342{
343 ntfs_debug("Entering.");
344 BUG_ON(ni->page);
345 if (!atomic_dec_and_test(&ni->count))
346 BUG();
347 kmem_cache_free(ntfs_inode_cache, ni);
348}
349
350/*
351 * The attribute runlist lock has separate locking rules from the
352 * normal runlist lock, so split the two lock-classes:
353 */
354static struct lock_class_key attr_list_rl_lock_class;
355
356/**
357 * __ntfs_init_inode - initialize ntfs specific part of an inode
358 * @sb: super block of mounted volume
359 * @ni: freshly allocated ntfs inode which to initialize
360 *
361 * Initialize an ntfs inode to defaults.
362 *
363 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
364 * untouched. Make sure to initialize them elsewhere.
365 *
366 * Return zero on success and -ENOMEM on error.
367 */
368void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
369{
370 ntfs_debug("Entering.");
371 rwlock_init(&ni->size_lock);
372 ni->initialized_size = ni->allocated_size = 0;
373 ni->seq_no = 0;
374 atomic_set(&ni->count, 1);
375 ni->vol = NTFS_SB(sb);
376 ntfs_init_runlist(&ni->runlist);
377 mutex_init(&ni->mrec_lock);
378 ni->page = NULL;
379 ni->page_ofs = 0;
380 ni->attr_list_size = 0;
381 ni->attr_list = NULL;
382 ntfs_init_runlist(&ni->attr_list_rl);
383 lockdep_set_class(&ni->attr_list_rl.lock,
384 &attr_list_rl_lock_class);
385 ni->itype.index.block_size = 0;
386 ni->itype.index.vcn_size = 0;
387 ni->itype.index.collation_rule = 0;
388 ni->itype.index.block_size_bits = 0;
389 ni->itype.index.vcn_size_bits = 0;
390 mutex_init(&ni->extent_lock);
391 ni->nr_extents = 0;
392 ni->ext.base_ntfs_ino = NULL;
393}
394
395/*
396 * Extent inodes get MFT-mapped in a nested way, while the base inode
397 * is still mapped. Teach this nesting to the lock validator by creating
398 * a separate class for nested inode's mrec_lock's:
399 */
400static struct lock_class_key extent_inode_mrec_lock_key;
401
402inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
403 unsigned long mft_no)
404{
405 ntfs_inode *ni = ntfs_alloc_extent_inode();
406
407 ntfs_debug("Entering.");
408 if (likely(ni != NULL)) {
409 __ntfs_init_inode(sb, ni);
410 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
411 ni->mft_no = mft_no;
412 ni->type = AT_UNUSED;
413 ni->name = NULL;
414 ni->name_len = 0;
415 }
416 return ni;
417}
418
419/**
420 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
421 * @ctx: initialized attribute search context
422 *
423 * Search all file name attributes in the inode described by the attribute
424 * search context @ctx and check if any of the names are in the $Extend system
425 * directory.
426 *
427 * Return values:
428 * 1: file is in $Extend directory
429 * 0: file is not in $Extend directory
430 * -errno: failed to determine if the file is in the $Extend directory
431 */
432static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
433{
434 int nr_links, err;
435
436 /* Restart search. */
437 ntfs_attr_reinit_search_ctx(ctx);
438
439 /* Get number of hard links. */
440 nr_links = le16_to_cpu(ctx->mrec->link_count);
441
442 /* Loop through all hard links. */
443 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
444 ctx))) {
445 FILE_NAME_ATTR *file_name_attr;
446 ATTR_RECORD *attr = ctx->attr;
447 u8 *p, *p2;
448
449 nr_links--;
450 /*
451 * Maximum sanity checking as we are called on an inode that
452 * we suspect might be corrupt.
453 */
454 p = (u8*)attr + le32_to_cpu(attr->length);
455 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
456 le32_to_cpu(ctx->mrec->bytes_in_use)) {
457err_corrupt_attr:
458 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
459 "attribute. You should run chkdsk.");
460 return -EIO;
461 }
462 if (attr->non_resident) {
463 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
464 "name. You should run chkdsk.");
465 return -EIO;
466 }
467 if (attr->flags) {
468 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
469 "invalid flags. You should run "
470 "chkdsk.");
471 return -EIO;
472 }
473 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
474 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
475 "name. You should run chkdsk.");
476 return -EIO;
477 }
478 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
479 le16_to_cpu(attr->data.resident.value_offset));
480 p2 = (u8 *)file_name_attr + le32_to_cpu(attr->data.resident.value_length);
481 if (p2 < (u8*)attr || p2 > p)
482 goto err_corrupt_attr;
483 /* This attribute is ok, but is it in the $Extend directory? */
484 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
485 return 1; /* YES, it's an extended system file. */
486 }
487 if (unlikely(err != -ENOENT))
488 return err;
489 if (unlikely(nr_links)) {
490 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
491 "doesn't match number of name attributes. You "
492 "should run chkdsk.");
493 return -EIO;
494 }
495 return 0; /* NO, it is not an extended system file. */
496}
497
498/**
499 * ntfs_read_locked_inode - read an inode from its device
500 * @vi: inode to read
501 *
502 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
503 * described by @vi into memory from the device.
504 *
505 * The only fields in @vi that we need to/can look at when the function is
506 * called are i_sb, pointing to the mounted device's super block, and i_ino,
507 * the number of the inode to load.
508 *
509 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
510 * for reading and sets up the necessary @vi fields as well as initializing
511 * the ntfs inode.
512 *
513 * Q: What locks are held when the function is called?
514 * A: i_state has I_NEW set, hence the inode is locked, also
515 * i_count is set to 1, so it is not going to go away
516 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
517 * is allowed to write to them. We should of course be honouring them but
518 * we need to do that using the IS_* macros defined in include/linux/fs.h.
519 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
520 *
521 * Return 0 on success and -errno on error. In the error case, the inode will
522 * have had make_bad_inode() executed on it.
523 */
524static int ntfs_read_locked_inode(struct inode *vi)
525{
526 ntfs_volume *vol = NTFS_SB(vi->i_sb);
527 ntfs_inode *ni;
528 struct inode *bvi;
529 MFT_RECORD *m;
530 ATTR_RECORD *a;
531 STANDARD_INFORMATION *si;
532 ntfs_attr_search_ctx *ctx;
533 int err = 0;
534
535 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
536
537 /* Setup the generic vfs inode parts now. */
538 vi->i_uid = vol->uid;
539 vi->i_gid = vol->gid;
540 vi->i_mode = 0;
541
542 /*
543 * Initialize the ntfs specific part of @vi special casing
544 * FILE_MFT which we need to do at mount time.
545 */
546 if (vi->i_ino != FILE_MFT)
547 ntfs_init_big_inode(vi);
548 ni = NTFS_I(vi);
549
550 m = map_mft_record(ni);
551 if (IS_ERR(m)) {
552 err = PTR_ERR(m);
553 goto err_out;
554 }
555 ctx = ntfs_attr_get_search_ctx(ni, m);
556 if (!ctx) {
557 err = -ENOMEM;
558 goto unm_err_out;
559 }
560
561 if (!(m->flags & MFT_RECORD_IN_USE)) {
562 ntfs_error(vi->i_sb, "Inode is not in use!");
563 goto unm_err_out;
564 }
565 if (m->base_mft_record) {
566 ntfs_error(vi->i_sb, "Inode is an extent inode!");
567 goto unm_err_out;
568 }
569
570 /* Transfer information from mft record into vfs and ntfs inodes. */
571 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
572
573 /*
574 * FIXME: Keep in mind that link_count is two for files which have both
575 * a long file name and a short file name as separate entries, so if
576 * we are hiding short file names this will be too high. Either we need
577 * to account for the short file names by subtracting them or we need
578 * to make sure we delete files even though i_nlink is not zero which
579 * might be tricky due to vfs interactions. Need to think about this
580 * some more when implementing the unlink command.
581 */
582 set_nlink(vi, le16_to_cpu(m->link_count));
583 /*
584 * FIXME: Reparse points can have the directory bit set even though
585 * they would be S_IFLNK. Need to deal with this further below when we
586 * implement reparse points / symbolic links but it will do for now.
587 * Also if not a directory, it could be something else, rather than
588 * a regular file. But again, will do for now.
589 */
590 /* Everyone gets all permissions. */
591 vi->i_mode |= S_IRWXUGO;
592 /* If read-only, no one gets write permissions. */
593 if (IS_RDONLY(vi))
594 vi->i_mode &= ~S_IWUGO;
595 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
596 vi->i_mode |= S_IFDIR;
597 /*
598 * Apply the directory permissions mask set in the mount
599 * options.
600 */
601 vi->i_mode &= ~vol->dmask;
602 /* Things break without this kludge! */
603 if (vi->i_nlink > 1)
604 set_nlink(vi, 1);
605 } else {
606 vi->i_mode |= S_IFREG;
607 /* Apply the file permissions mask set in the mount options. */
608 vi->i_mode &= ~vol->fmask;
609 }
610 /*
611 * Find the standard information attribute in the mft record. At this
612 * stage we haven't setup the attribute list stuff yet, so this could
613 * in fact fail if the standard information is in an extent record, but
614 * I don't think this actually ever happens.
615 */
616 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
617 ctx);
618 if (unlikely(err)) {
619 if (err == -ENOENT) {
620 /*
621 * TODO: We should be performing a hot fix here (if the
622 * recover mount option is set) by creating a new
623 * attribute.
624 */
625 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
626 "is missing.");
627 }
628 goto unm_err_out;
629 }
630 a = ctx->attr;
631 /* Get the standard information attribute value. */
632 if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset)
633 + le32_to_cpu(a->data.resident.value_length) >
634 (u8 *)ctx->mrec + vol->mft_record_size) {
635 ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode.");
636 goto unm_err_out;
637 }
638 si = (STANDARD_INFORMATION*)((u8*)a +
639 le16_to_cpu(a->data.resident.value_offset));
640
641 /* Transfer information from the standard information into vi. */
642 /*
643 * Note: The i_?times do not quite map perfectly onto the NTFS times,
644 * but they are close enough, and in the end it doesn't really matter
645 * that much...
646 */
647 /*
648 * mtime is the last change of the data within the file. Not changed
649 * when only metadata is changed, e.g. a rename doesn't affect mtime.
650 */
651 vi->i_mtime = ntfs2utc(si->last_data_change_time);
652 /*
653 * ctime is the last change of the metadata of the file. This obviously
654 * always changes, when mtime is changed. ctime can be changed on its
655 * own, mtime is then not changed, e.g. when a file is renamed.
656 */
657 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
658 /*
659 * Last access to the data within the file. Not changed during a rename
660 * for example but changed whenever the file is written to.
661 */
662 vi->i_atime = ntfs2utc(si->last_access_time);
663
664 /* Find the attribute list attribute if present. */
665 ntfs_attr_reinit_search_ctx(ctx);
666 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
667 if (err) {
668 if (unlikely(err != -ENOENT)) {
669 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
670 "attribute.");
671 goto unm_err_out;
672 }
673 } else /* if (!err) */ {
674 if (vi->i_ino == FILE_MFT)
675 goto skip_attr_list_load;
676 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
677 NInoSetAttrList(ni);
678 a = ctx->attr;
679 if (a->flags & ATTR_COMPRESSION_MASK) {
680 ntfs_error(vi->i_sb, "Attribute list attribute is "
681 "compressed.");
682 goto unm_err_out;
683 }
684 if (a->flags & ATTR_IS_ENCRYPTED ||
685 a->flags & ATTR_IS_SPARSE) {
686 if (a->non_resident) {
687 ntfs_error(vi->i_sb, "Non-resident attribute "
688 "list attribute is encrypted/"
689 "sparse.");
690 goto unm_err_out;
691 }
692 ntfs_warning(vi->i_sb, "Resident attribute list "
693 "attribute in inode 0x%lx is marked "
694 "encrypted/sparse which is not true. "
695 "However, Windows allows this and "
696 "chkdsk does not detect or correct it "
697 "so we will just ignore the invalid "
698 "flags and pretend they are not set.",
699 vi->i_ino);
700 }
701 /* Now allocate memory for the attribute list. */
702 ni->attr_list_size = (u32)ntfs_attr_size(a);
703 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
704 if (!ni->attr_list) {
705 ntfs_error(vi->i_sb, "Not enough memory to allocate "
706 "buffer for attribute list.");
707 err = -ENOMEM;
708 goto unm_err_out;
709 }
710 if (a->non_resident) {
711 NInoSetAttrListNonResident(ni);
712 if (a->data.non_resident.lowest_vcn) {
713 ntfs_error(vi->i_sb, "Attribute list has non "
714 "zero lowest_vcn.");
715 goto unm_err_out;
716 }
717 /*
718 * Setup the runlist. No need for locking as we have
719 * exclusive access to the inode at this time.
720 */
721 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
722 a, NULL);
723 if (IS_ERR(ni->attr_list_rl.rl)) {
724 err = PTR_ERR(ni->attr_list_rl.rl);
725 ni->attr_list_rl.rl = NULL;
726 ntfs_error(vi->i_sb, "Mapping pairs "
727 "decompression failed.");
728 goto unm_err_out;
729 }
730 /* Now load the attribute list. */
731 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
732 ni->attr_list, ni->attr_list_size,
733 sle64_to_cpu(a->data.non_resident.
734 initialized_size)))) {
735 ntfs_error(vi->i_sb, "Failed to load "
736 "attribute list attribute.");
737 goto unm_err_out;
738 }
739 } else /* if (!a->non_resident) */ {
740 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
741 + le32_to_cpu(
742 a->data.resident.value_length) >
743 (u8*)ctx->mrec + vol->mft_record_size) {
744 ntfs_error(vi->i_sb, "Corrupt attribute list "
745 "in inode.");
746 goto unm_err_out;
747 }
748 /* Now copy the attribute list. */
749 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
750 a->data.resident.value_offset),
751 le32_to_cpu(
752 a->data.resident.value_length));
753 }
754 }
755skip_attr_list_load:
756 /*
757 * If an attribute list is present we now have the attribute list value
758 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
759 */
760 if (S_ISDIR(vi->i_mode)) {
761 loff_t bvi_size;
762 ntfs_inode *bni;
763 INDEX_ROOT *ir;
764 u8 *ir_end, *index_end;
765
766 /* It is a directory, find index root attribute. */
767 ntfs_attr_reinit_search_ctx(ctx);
768 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
769 0, NULL, 0, ctx);
770 if (unlikely(err)) {
771 if (err == -ENOENT) {
772 // FIXME: File is corrupt! Hot-fix with empty
773 // index root attribute if recovery option is
774 // set.
775 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
776 "is missing.");
777 }
778 goto unm_err_out;
779 }
780 a = ctx->attr;
781 /* Set up the state. */
782 if (unlikely(a->non_resident)) {
783 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
784 "resident.");
785 goto unm_err_out;
786 }
787 /* Ensure the attribute name is placed before the value. */
788 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
789 le16_to_cpu(a->data.resident.value_offset)))) {
790 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
791 "placed after the attribute value.");
792 goto unm_err_out;
793 }
794 /*
795 * Compressed/encrypted index root just means that the newly
796 * created files in that directory should be created compressed/
797 * encrypted. However index root cannot be both compressed and
798 * encrypted.
799 */
800 if (a->flags & ATTR_COMPRESSION_MASK)
801 NInoSetCompressed(ni);
802 if (a->flags & ATTR_IS_ENCRYPTED) {
803 if (a->flags & ATTR_COMPRESSION_MASK) {
804 ntfs_error(vi->i_sb, "Found encrypted and "
805 "compressed attribute.");
806 goto unm_err_out;
807 }
808 NInoSetEncrypted(ni);
809 }
810 if (a->flags & ATTR_IS_SPARSE)
811 NInoSetSparse(ni);
812 ir = (INDEX_ROOT*)((u8*)a +
813 le16_to_cpu(a->data.resident.value_offset));
814 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
815 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
816 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
817 "corrupt.");
818 goto unm_err_out;
819 }
820 index_end = (u8*)&ir->index +
821 le32_to_cpu(ir->index.index_length);
822 if (index_end > ir_end) {
823 ntfs_error(vi->i_sb, "Directory index is corrupt.");
824 goto unm_err_out;
825 }
826 if (ir->type != AT_FILE_NAME) {
827 ntfs_error(vi->i_sb, "Indexed attribute is not "
828 "$FILE_NAME.");
829 goto unm_err_out;
830 }
831 if (ir->collation_rule != COLLATION_FILE_NAME) {
832 ntfs_error(vi->i_sb, "Index collation rule is not "
833 "COLLATION_FILE_NAME.");
834 goto unm_err_out;
835 }
836 ni->itype.index.collation_rule = ir->collation_rule;
837 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
838 if (ni->itype.index.block_size &
839 (ni->itype.index.block_size - 1)) {
840 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
841 "power of two.",
842 ni->itype.index.block_size);
843 goto unm_err_out;
844 }
845 if (ni->itype.index.block_size > PAGE_SIZE) {
846 ntfs_error(vi->i_sb, "Index block size (%u) > "
847 "PAGE_SIZE (%ld) is not "
848 "supported. Sorry.",
849 ni->itype.index.block_size,
850 PAGE_SIZE);
851 err = -EOPNOTSUPP;
852 goto unm_err_out;
853 }
854 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
855 ntfs_error(vi->i_sb, "Index block size (%u) < "
856 "NTFS_BLOCK_SIZE (%i) is not "
857 "supported. Sorry.",
858 ni->itype.index.block_size,
859 NTFS_BLOCK_SIZE);
860 err = -EOPNOTSUPP;
861 goto unm_err_out;
862 }
863 ni->itype.index.block_size_bits =
864 ffs(ni->itype.index.block_size) - 1;
865 /* Determine the size of a vcn in the directory index. */
866 if (vol->cluster_size <= ni->itype.index.block_size) {
867 ni->itype.index.vcn_size = vol->cluster_size;
868 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
869 } else {
870 ni->itype.index.vcn_size = vol->sector_size;
871 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
872 }
873
874 /* Setup the index allocation attribute, even if not present. */
875 NInoSetMstProtected(ni);
876 ni->type = AT_INDEX_ALLOCATION;
877 ni->name = I30;
878 ni->name_len = 4;
879
880 if (!(ir->index.flags & LARGE_INDEX)) {
881 /* No index allocation. */
882 vi->i_size = ni->initialized_size =
883 ni->allocated_size = 0;
884 /* We are done with the mft record, so we release it. */
885 ntfs_attr_put_search_ctx(ctx);
886 unmap_mft_record(ni);
887 m = NULL;
888 ctx = NULL;
889 goto skip_large_dir_stuff;
890 } /* LARGE_INDEX: Index allocation present. Setup state. */
891 NInoSetIndexAllocPresent(ni);
892 /* Find index allocation attribute. */
893 ntfs_attr_reinit_search_ctx(ctx);
894 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
895 CASE_SENSITIVE, 0, NULL, 0, ctx);
896 if (unlikely(err)) {
897 if (err == -ENOENT)
898 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
899 "attribute is not present but "
900 "$INDEX_ROOT indicated it is.");
901 else
902 ntfs_error(vi->i_sb, "Failed to lookup "
903 "$INDEX_ALLOCATION "
904 "attribute.");
905 goto unm_err_out;
906 }
907 a = ctx->attr;
908 if (!a->non_resident) {
909 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
910 "is resident.");
911 goto unm_err_out;
912 }
913 /*
914 * Ensure the attribute name is placed before the mapping pairs
915 * array.
916 */
917 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
918 le16_to_cpu(
919 a->data.non_resident.mapping_pairs_offset)))) {
920 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
921 "is placed after the mapping pairs "
922 "array.");
923 goto unm_err_out;
924 }
925 if (a->flags & ATTR_IS_ENCRYPTED) {
926 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
927 "is encrypted.");
928 goto unm_err_out;
929 }
930 if (a->flags & ATTR_IS_SPARSE) {
931 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
932 "is sparse.");
933 goto unm_err_out;
934 }
935 if (a->flags & ATTR_COMPRESSION_MASK) {
936 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
937 "is compressed.");
938 goto unm_err_out;
939 }
940 if (a->data.non_resident.lowest_vcn) {
941 ntfs_error(vi->i_sb, "First extent of "
942 "$INDEX_ALLOCATION attribute has non "
943 "zero lowest_vcn.");
944 goto unm_err_out;
945 }
946 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
947 ni->initialized_size = sle64_to_cpu(
948 a->data.non_resident.initialized_size);
949 ni->allocated_size = sle64_to_cpu(
950 a->data.non_resident.allocated_size);
951 /*
952 * We are done with the mft record, so we release it. Otherwise
953 * we would deadlock in ntfs_attr_iget().
954 */
955 ntfs_attr_put_search_ctx(ctx);
956 unmap_mft_record(ni);
957 m = NULL;
958 ctx = NULL;
959 /* Get the index bitmap attribute inode. */
960 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
961 if (IS_ERR(bvi)) {
962 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
963 err = PTR_ERR(bvi);
964 goto unm_err_out;
965 }
966 bni = NTFS_I(bvi);
967 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
968 NInoSparse(bni)) {
969 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
970 "and/or encrypted and/or sparse.");
971 goto iput_unm_err_out;
972 }
973 /* Consistency check bitmap size vs. index allocation size. */
974 bvi_size = i_size_read(bvi);
975 if ((bvi_size << 3) < (vi->i_size >>
976 ni->itype.index.block_size_bits)) {
977 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
978 "for index allocation (0x%llx).",
979 bvi_size << 3, vi->i_size);
980 goto iput_unm_err_out;
981 }
982 /* No longer need the bitmap attribute inode. */
983 iput(bvi);
984skip_large_dir_stuff:
985 /* Setup the operations for this inode. */
986 vi->i_op = &ntfs_dir_inode_ops;
987 vi->i_fop = &ntfs_dir_ops;
988 vi->i_mapping->a_ops = &ntfs_mst_aops;
989 } else {
990 /* It is a file. */
991 ntfs_attr_reinit_search_ctx(ctx);
992
993 /* Setup the data attribute, even if not present. */
994 ni->type = AT_DATA;
995 ni->name = NULL;
996 ni->name_len = 0;
997
998 /* Find first extent of the unnamed data attribute. */
999 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1000 if (unlikely(err)) {
1001 vi->i_size = ni->initialized_size =
1002 ni->allocated_size = 0;
1003 if (err != -ENOENT) {
1004 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1005 "attribute.");
1006 goto unm_err_out;
1007 }
1008 /*
1009 * FILE_Secure does not have an unnamed $DATA
1010 * attribute, so we special case it here.
1011 */
1012 if (vi->i_ino == FILE_Secure)
1013 goto no_data_attr_special_case;
1014 /*
1015 * Most if not all the system files in the $Extend
1016 * system directory do not have unnamed data
1017 * attributes so we need to check if the parent
1018 * directory of the file is FILE_Extend and if it is
1019 * ignore this error. To do this we need to get the
1020 * name of this inode from the mft record as the name
1021 * contains the back reference to the parent directory.
1022 */
1023 if (ntfs_is_extended_system_file(ctx) > 0)
1024 goto no_data_attr_special_case;
1025 // FIXME: File is corrupt! Hot-fix with empty data
1026 // attribute if recovery option is set.
1027 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1028 goto unm_err_out;
1029 }
1030 a = ctx->attr;
1031 /* Setup the state. */
1032 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1033 if (a->flags & ATTR_COMPRESSION_MASK) {
1034 NInoSetCompressed(ni);
1035 if (vol->cluster_size > 4096) {
1036 ntfs_error(vi->i_sb, "Found "
1037 "compressed data but "
1038 "compression is "
1039 "disabled due to "
1040 "cluster size (%i) > "
1041 "4kiB.",
1042 vol->cluster_size);
1043 goto unm_err_out;
1044 }
1045 if ((a->flags & ATTR_COMPRESSION_MASK)
1046 != ATTR_IS_COMPRESSED) {
1047 ntfs_error(vi->i_sb, "Found unknown "
1048 "compression method "
1049 "or corrupt file.");
1050 goto unm_err_out;
1051 }
1052 }
1053 if (a->flags & ATTR_IS_SPARSE)
1054 NInoSetSparse(ni);
1055 }
1056 if (a->flags & ATTR_IS_ENCRYPTED) {
1057 if (NInoCompressed(ni)) {
1058 ntfs_error(vi->i_sb, "Found encrypted and "
1059 "compressed data.");
1060 goto unm_err_out;
1061 }
1062 NInoSetEncrypted(ni);
1063 }
1064 if (a->non_resident) {
1065 NInoSetNonResident(ni);
1066 if (NInoCompressed(ni) || NInoSparse(ni)) {
1067 if (NInoCompressed(ni) && a->data.non_resident.
1068 compression_unit != 4) {
1069 ntfs_error(vi->i_sb, "Found "
1070 "non-standard "
1071 "compression unit (%u "
1072 "instead of 4). "
1073 "Cannot handle this.",
1074 a->data.non_resident.
1075 compression_unit);
1076 err = -EOPNOTSUPP;
1077 goto unm_err_out;
1078 }
1079 if (a->data.non_resident.compression_unit) {
1080 ni->itype.compressed.block_size = 1U <<
1081 (a->data.non_resident.
1082 compression_unit +
1083 vol->cluster_size_bits);
1084 ni->itype.compressed.block_size_bits =
1085 ffs(ni->itype.
1086 compressed.
1087 block_size) - 1;
1088 ni->itype.compressed.block_clusters =
1089 1U << a->data.
1090 non_resident.
1091 compression_unit;
1092 } else {
1093 ni->itype.compressed.block_size = 0;
1094 ni->itype.compressed.block_size_bits =
1095 0;
1096 ni->itype.compressed.block_clusters =
1097 0;
1098 }
1099 ni->itype.compressed.size = sle64_to_cpu(
1100 a->data.non_resident.
1101 compressed_size);
1102 }
1103 if (a->data.non_resident.lowest_vcn) {
1104 ntfs_error(vi->i_sb, "First extent of $DATA "
1105 "attribute has non zero "
1106 "lowest_vcn.");
1107 goto unm_err_out;
1108 }
1109 vi->i_size = sle64_to_cpu(
1110 a->data.non_resident.data_size);
1111 ni->initialized_size = sle64_to_cpu(
1112 a->data.non_resident.initialized_size);
1113 ni->allocated_size = sle64_to_cpu(
1114 a->data.non_resident.allocated_size);
1115 } else { /* Resident attribute. */
1116 vi->i_size = ni->initialized_size = le32_to_cpu(
1117 a->data.resident.value_length);
1118 ni->allocated_size = le32_to_cpu(a->length) -
1119 le16_to_cpu(
1120 a->data.resident.value_offset);
1121 if (vi->i_size > ni->allocated_size) {
1122 ntfs_error(vi->i_sb, "Resident data attribute "
1123 "is corrupt (size exceeds "
1124 "allocation).");
1125 goto unm_err_out;
1126 }
1127 }
1128no_data_attr_special_case:
1129 /* We are done with the mft record, so we release it. */
1130 ntfs_attr_put_search_ctx(ctx);
1131 unmap_mft_record(ni);
1132 m = NULL;
1133 ctx = NULL;
1134 /* Setup the operations for this inode. */
1135 vi->i_op = &ntfs_file_inode_ops;
1136 vi->i_fop = &ntfs_file_ops;
1137 vi->i_mapping->a_ops = &ntfs_normal_aops;
1138 if (NInoMstProtected(ni))
1139 vi->i_mapping->a_ops = &ntfs_mst_aops;
1140 else if (NInoCompressed(ni))
1141 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1142 }
1143 /*
1144 * The number of 512-byte blocks used on disk (for stat). This is in so
1145 * far inaccurate as it doesn't account for any named streams or other
1146 * special non-resident attributes, but that is how Windows works, too,
1147 * so we are at least consistent with Windows, if not entirely
1148 * consistent with the Linux Way. Doing it the Linux Way would cause a
1149 * significant slowdown as it would involve iterating over all
1150 * attributes in the mft record and adding the allocated/compressed
1151 * sizes of all non-resident attributes present to give us the Linux
1152 * correct size that should go into i_blocks (after division by 512).
1153 */
1154 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1155 vi->i_blocks = ni->itype.compressed.size >> 9;
1156 else
1157 vi->i_blocks = ni->allocated_size >> 9;
1158 ntfs_debug("Done.");
1159 return 0;
1160iput_unm_err_out:
1161 iput(bvi);
1162unm_err_out:
1163 if (!err)
1164 err = -EIO;
1165 if (ctx)
1166 ntfs_attr_put_search_ctx(ctx);
1167 if (m)
1168 unmap_mft_record(ni);
1169err_out:
1170 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1171 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1172 make_bad_inode(vi);
1173 if (err != -EOPNOTSUPP && err != -ENOMEM)
1174 NVolSetErrors(vol);
1175 return err;
1176}
1177
1178/**
1179 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1180 * @base_vi: base inode
1181 * @vi: attribute inode to read
1182 *
1183 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1184 * attribute inode described by @vi into memory from the base mft record
1185 * described by @base_ni.
1186 *
1187 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1188 * reading and looks up the attribute described by @vi before setting up the
1189 * necessary fields in @vi as well as initializing the ntfs inode.
1190 *
1191 * Q: What locks are held when the function is called?
1192 * A: i_state has I_NEW set, hence the inode is locked, also
1193 * i_count is set to 1, so it is not going to go away
1194 *
1195 * Return 0 on success and -errno on error. In the error case, the inode will
1196 * have had make_bad_inode() executed on it.
1197 *
1198 * Note this cannot be called for AT_INDEX_ALLOCATION.
1199 */
1200static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1201{
1202 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1203 ntfs_inode *ni, *base_ni;
1204 MFT_RECORD *m;
1205 ATTR_RECORD *a;
1206 ntfs_attr_search_ctx *ctx;
1207 int err = 0;
1208
1209 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1210
1211 ntfs_init_big_inode(vi);
1212
1213 ni = NTFS_I(vi);
1214 base_ni = NTFS_I(base_vi);
1215
1216 /* Just mirror the values from the base inode. */
1217 vi->i_uid = base_vi->i_uid;
1218 vi->i_gid = base_vi->i_gid;
1219 set_nlink(vi, base_vi->i_nlink);
1220 vi->i_mtime = base_vi->i_mtime;
1221 vi->i_ctime = base_vi->i_ctime;
1222 vi->i_atime = base_vi->i_atime;
1223 vi->i_generation = ni->seq_no = base_ni->seq_no;
1224
1225 /* Set inode type to zero but preserve permissions. */
1226 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1227
1228 m = map_mft_record(base_ni);
1229 if (IS_ERR(m)) {
1230 err = PTR_ERR(m);
1231 goto err_out;
1232 }
1233 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1234 if (!ctx) {
1235 err = -ENOMEM;
1236 goto unm_err_out;
1237 }
1238 /* Find the attribute. */
1239 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1240 CASE_SENSITIVE, 0, NULL, 0, ctx);
1241 if (unlikely(err))
1242 goto unm_err_out;
1243 a = ctx->attr;
1244 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1245 if (a->flags & ATTR_COMPRESSION_MASK) {
1246 NInoSetCompressed(ni);
1247 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1248 ni->name_len)) {
1249 ntfs_error(vi->i_sb, "Found compressed "
1250 "non-data or named data "
1251 "attribute. Please report "
1252 "you saw this message to "
1253 "linux-ntfs-dev@lists."
1254 "sourceforge.net");
1255 goto unm_err_out;
1256 }
1257 if (vol->cluster_size > 4096) {
1258 ntfs_error(vi->i_sb, "Found compressed "
1259 "attribute but compression is "
1260 "disabled due to cluster size "
1261 "(%i) > 4kiB.",
1262 vol->cluster_size);
1263 goto unm_err_out;
1264 }
1265 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1266 ATTR_IS_COMPRESSED) {
1267 ntfs_error(vi->i_sb, "Found unknown "
1268 "compression method.");
1269 goto unm_err_out;
1270 }
1271 }
1272 /*
1273 * The compressed/sparse flag set in an index root just means
1274 * to compress all files.
1275 */
1276 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1277 ntfs_error(vi->i_sb, "Found mst protected attribute "
1278 "but the attribute is %s. Please "
1279 "report you saw this message to "
1280 "linux-ntfs-dev@lists.sourceforge.net",
1281 NInoCompressed(ni) ? "compressed" :
1282 "sparse");
1283 goto unm_err_out;
1284 }
1285 if (a->flags & ATTR_IS_SPARSE)
1286 NInoSetSparse(ni);
1287 }
1288 if (a->flags & ATTR_IS_ENCRYPTED) {
1289 if (NInoCompressed(ni)) {
1290 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1291 "data.");
1292 goto unm_err_out;
1293 }
1294 /*
1295 * The encryption flag set in an index root just means to
1296 * encrypt all files.
1297 */
1298 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1299 ntfs_error(vi->i_sb, "Found mst protected attribute "
1300 "but the attribute is encrypted. "
1301 "Please report you saw this message "
1302 "to linux-ntfs-dev@lists.sourceforge."
1303 "net");
1304 goto unm_err_out;
1305 }
1306 if (ni->type != AT_DATA) {
1307 ntfs_error(vi->i_sb, "Found encrypted non-data "
1308 "attribute.");
1309 goto unm_err_out;
1310 }
1311 NInoSetEncrypted(ni);
1312 }
1313 if (!a->non_resident) {
1314 /* Ensure the attribute name is placed before the value. */
1315 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1316 le16_to_cpu(a->data.resident.value_offset)))) {
1317 ntfs_error(vol->sb, "Attribute name is placed after "
1318 "the attribute value.");
1319 goto unm_err_out;
1320 }
1321 if (NInoMstProtected(ni)) {
1322 ntfs_error(vi->i_sb, "Found mst protected attribute "
1323 "but the attribute is resident. "
1324 "Please report you saw this message to "
1325 "linux-ntfs-dev@lists.sourceforge.net");
1326 goto unm_err_out;
1327 }
1328 vi->i_size = ni->initialized_size = le32_to_cpu(
1329 a->data.resident.value_length);
1330 ni->allocated_size = le32_to_cpu(a->length) -
1331 le16_to_cpu(a->data.resident.value_offset);
1332 if (vi->i_size > ni->allocated_size) {
1333 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1334 "(size exceeds allocation).");
1335 goto unm_err_out;
1336 }
1337 } else {
1338 NInoSetNonResident(ni);
1339 /*
1340 * Ensure the attribute name is placed before the mapping pairs
1341 * array.
1342 */
1343 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1344 le16_to_cpu(
1345 a->data.non_resident.mapping_pairs_offset)))) {
1346 ntfs_error(vol->sb, "Attribute name is placed after "
1347 "the mapping pairs array.");
1348 goto unm_err_out;
1349 }
1350 if (NInoCompressed(ni) || NInoSparse(ni)) {
1351 if (NInoCompressed(ni) && a->data.non_resident.
1352 compression_unit != 4) {
1353 ntfs_error(vi->i_sb, "Found non-standard "
1354 "compression unit (%u instead "
1355 "of 4). Cannot handle this.",
1356 a->data.non_resident.
1357 compression_unit);
1358 err = -EOPNOTSUPP;
1359 goto unm_err_out;
1360 }
1361 if (a->data.non_resident.compression_unit) {
1362 ni->itype.compressed.block_size = 1U <<
1363 (a->data.non_resident.
1364 compression_unit +
1365 vol->cluster_size_bits);
1366 ni->itype.compressed.block_size_bits =
1367 ffs(ni->itype.compressed.
1368 block_size) - 1;
1369 ni->itype.compressed.block_clusters = 1U <<
1370 a->data.non_resident.
1371 compression_unit;
1372 } else {
1373 ni->itype.compressed.block_size = 0;
1374 ni->itype.compressed.block_size_bits = 0;
1375 ni->itype.compressed.block_clusters = 0;
1376 }
1377 ni->itype.compressed.size = sle64_to_cpu(
1378 a->data.non_resident.compressed_size);
1379 }
1380 if (a->data.non_resident.lowest_vcn) {
1381 ntfs_error(vi->i_sb, "First extent of attribute has "
1382 "non-zero lowest_vcn.");
1383 goto unm_err_out;
1384 }
1385 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1386 ni->initialized_size = sle64_to_cpu(
1387 a->data.non_resident.initialized_size);
1388 ni->allocated_size = sle64_to_cpu(
1389 a->data.non_resident.allocated_size);
1390 }
1391 vi->i_mapping->a_ops = &ntfs_normal_aops;
1392 if (NInoMstProtected(ni))
1393 vi->i_mapping->a_ops = &ntfs_mst_aops;
1394 else if (NInoCompressed(ni))
1395 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1396 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1397 vi->i_blocks = ni->itype.compressed.size >> 9;
1398 else
1399 vi->i_blocks = ni->allocated_size >> 9;
1400 /*
1401 * Make sure the base inode does not go away and attach it to the
1402 * attribute inode.
1403 */
1404 igrab(base_vi);
1405 ni->ext.base_ntfs_ino = base_ni;
1406 ni->nr_extents = -1;
1407
1408 ntfs_attr_put_search_ctx(ctx);
1409 unmap_mft_record(base_ni);
1410
1411 ntfs_debug("Done.");
1412 return 0;
1413
1414unm_err_out:
1415 if (!err)
1416 err = -EIO;
1417 if (ctx)
1418 ntfs_attr_put_search_ctx(ctx);
1419 unmap_mft_record(base_ni);
1420err_out:
1421 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1422 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1423 "Marking corrupt inode and base inode 0x%lx as bad. "
1424 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1425 base_vi->i_ino);
1426 make_bad_inode(vi);
1427 if (err != -ENOMEM)
1428 NVolSetErrors(vol);
1429 return err;
1430}
1431
1432/**
1433 * ntfs_read_locked_index_inode - read an index inode from its base inode
1434 * @base_vi: base inode
1435 * @vi: index inode to read
1436 *
1437 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1438 * index inode described by @vi into memory from the base mft record described
1439 * by @base_ni.
1440 *
1441 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1442 * reading and looks up the attributes relating to the index described by @vi
1443 * before setting up the necessary fields in @vi as well as initializing the
1444 * ntfs inode.
1445 *
1446 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1447 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1448 * are setup like directory inodes since directories are a special case of
1449 * indices ao they need to be treated in much the same way. Most importantly,
1450 * for small indices the index allocation attribute might not actually exist.
1451 * However, the index root attribute always exists but this does not need to
1452 * have an inode associated with it and this is why we define a new inode type
1453 * index. Also, like for directories, we need to have an attribute inode for
1454 * the bitmap attribute corresponding to the index allocation attribute and we
1455 * can store this in the appropriate field of the inode, just like we do for
1456 * normal directory inodes.
1457 *
1458 * Q: What locks are held when the function is called?
1459 * A: i_state has I_NEW set, hence the inode is locked, also
1460 * i_count is set to 1, so it is not going to go away
1461 *
1462 * Return 0 on success and -errno on error. In the error case, the inode will
1463 * have had make_bad_inode() executed on it.
1464 */
1465static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1466{
1467 loff_t bvi_size;
1468 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1469 ntfs_inode *ni, *base_ni, *bni;
1470 struct inode *bvi;
1471 MFT_RECORD *m;
1472 ATTR_RECORD *a;
1473 ntfs_attr_search_ctx *ctx;
1474 INDEX_ROOT *ir;
1475 u8 *ir_end, *index_end;
1476 int err = 0;
1477
1478 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1479 ntfs_init_big_inode(vi);
1480 ni = NTFS_I(vi);
1481 base_ni = NTFS_I(base_vi);
1482 /* Just mirror the values from the base inode. */
1483 vi->i_uid = base_vi->i_uid;
1484 vi->i_gid = base_vi->i_gid;
1485 set_nlink(vi, base_vi->i_nlink);
1486 vi->i_mtime = base_vi->i_mtime;
1487 vi->i_ctime = base_vi->i_ctime;
1488 vi->i_atime = base_vi->i_atime;
1489 vi->i_generation = ni->seq_no = base_ni->seq_no;
1490 /* Set inode type to zero but preserve permissions. */
1491 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1492 /* Map the mft record for the base inode. */
1493 m = map_mft_record(base_ni);
1494 if (IS_ERR(m)) {
1495 err = PTR_ERR(m);
1496 goto err_out;
1497 }
1498 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1499 if (!ctx) {
1500 err = -ENOMEM;
1501 goto unm_err_out;
1502 }
1503 /* Find the index root attribute. */
1504 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1505 CASE_SENSITIVE, 0, NULL, 0, ctx);
1506 if (unlikely(err)) {
1507 if (err == -ENOENT)
1508 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1509 "missing.");
1510 goto unm_err_out;
1511 }
1512 a = ctx->attr;
1513 /* Set up the state. */
1514 if (unlikely(a->non_resident)) {
1515 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1516 goto unm_err_out;
1517 }
1518 /* Ensure the attribute name is placed before the value. */
1519 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1520 le16_to_cpu(a->data.resident.value_offset)))) {
1521 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1522 "after the attribute value.");
1523 goto unm_err_out;
1524 }
1525 /*
1526 * Compressed/encrypted/sparse index root is not allowed, except for
1527 * directories of course but those are not dealt with here.
1528 */
1529 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1530 ATTR_IS_SPARSE)) {
1531 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1532 "root attribute.");
1533 goto unm_err_out;
1534 }
1535 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1536 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1537 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1538 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1539 goto unm_err_out;
1540 }
1541 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1542 if (index_end > ir_end) {
1543 ntfs_error(vi->i_sb, "Index is corrupt.");
1544 goto unm_err_out;
1545 }
1546 if (ir->type) {
1547 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1548 le32_to_cpu(ir->type));
1549 goto unm_err_out;
1550 }
1551 ni->itype.index.collation_rule = ir->collation_rule;
1552 ntfs_debug("Index collation rule is 0x%x.",
1553 le32_to_cpu(ir->collation_rule));
1554 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1555 if (!is_power_of_2(ni->itype.index.block_size)) {
1556 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1557 "two.", ni->itype.index.block_size);
1558 goto unm_err_out;
1559 }
1560 if (ni->itype.index.block_size > PAGE_SIZE) {
1561 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1562 "(%ld) is not supported. Sorry.",
1563 ni->itype.index.block_size, PAGE_SIZE);
1564 err = -EOPNOTSUPP;
1565 goto unm_err_out;
1566 }
1567 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1568 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1569 "(%i) is not supported. Sorry.",
1570 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1571 err = -EOPNOTSUPP;
1572 goto unm_err_out;
1573 }
1574 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1575 /* Determine the size of a vcn in the index. */
1576 if (vol->cluster_size <= ni->itype.index.block_size) {
1577 ni->itype.index.vcn_size = vol->cluster_size;
1578 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1579 } else {
1580 ni->itype.index.vcn_size = vol->sector_size;
1581 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1582 }
1583 /* Check for presence of index allocation attribute. */
1584 if (!(ir->index.flags & LARGE_INDEX)) {
1585 /* No index allocation. */
1586 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1587 /* We are done with the mft record, so we release it. */
1588 ntfs_attr_put_search_ctx(ctx);
1589 unmap_mft_record(base_ni);
1590 m = NULL;
1591 ctx = NULL;
1592 goto skip_large_index_stuff;
1593 } /* LARGE_INDEX: Index allocation present. Setup state. */
1594 NInoSetIndexAllocPresent(ni);
1595 /* Find index allocation attribute. */
1596 ntfs_attr_reinit_search_ctx(ctx);
1597 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1598 CASE_SENSITIVE, 0, NULL, 0, ctx);
1599 if (unlikely(err)) {
1600 if (err == -ENOENT)
1601 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1602 "not present but $INDEX_ROOT "
1603 "indicated it is.");
1604 else
1605 ntfs_error(vi->i_sb, "Failed to lookup "
1606 "$INDEX_ALLOCATION attribute.");
1607 goto unm_err_out;
1608 }
1609 a = ctx->attr;
1610 if (!a->non_resident) {
1611 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1612 "resident.");
1613 goto unm_err_out;
1614 }
1615 /*
1616 * Ensure the attribute name is placed before the mapping pairs array.
1617 */
1618 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1619 le16_to_cpu(
1620 a->data.non_resident.mapping_pairs_offset)))) {
1621 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1622 "placed after the mapping pairs array.");
1623 goto unm_err_out;
1624 }
1625 if (a->flags & ATTR_IS_ENCRYPTED) {
1626 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1627 "encrypted.");
1628 goto unm_err_out;
1629 }
1630 if (a->flags & ATTR_IS_SPARSE) {
1631 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1632 goto unm_err_out;
1633 }
1634 if (a->flags & ATTR_COMPRESSION_MASK) {
1635 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1636 "compressed.");
1637 goto unm_err_out;
1638 }
1639 if (a->data.non_resident.lowest_vcn) {
1640 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1641 "attribute has non zero lowest_vcn.");
1642 goto unm_err_out;
1643 }
1644 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1645 ni->initialized_size = sle64_to_cpu(
1646 a->data.non_resident.initialized_size);
1647 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1648 /*
1649 * We are done with the mft record, so we release it. Otherwise
1650 * we would deadlock in ntfs_attr_iget().
1651 */
1652 ntfs_attr_put_search_ctx(ctx);
1653 unmap_mft_record(base_ni);
1654 m = NULL;
1655 ctx = NULL;
1656 /* Get the index bitmap attribute inode. */
1657 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1658 if (IS_ERR(bvi)) {
1659 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1660 err = PTR_ERR(bvi);
1661 goto unm_err_out;
1662 }
1663 bni = NTFS_I(bvi);
1664 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1665 NInoSparse(bni)) {
1666 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1667 "encrypted and/or sparse.");
1668 goto iput_unm_err_out;
1669 }
1670 /* Consistency check bitmap size vs. index allocation size. */
1671 bvi_size = i_size_read(bvi);
1672 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1673 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1674 "index allocation (0x%llx).", bvi_size << 3,
1675 vi->i_size);
1676 goto iput_unm_err_out;
1677 }
1678 iput(bvi);
1679skip_large_index_stuff:
1680 /* Setup the operations for this index inode. */
1681 vi->i_mapping->a_ops = &ntfs_mst_aops;
1682 vi->i_blocks = ni->allocated_size >> 9;
1683 /*
1684 * Make sure the base inode doesn't go away and attach it to the
1685 * index inode.
1686 */
1687 igrab(base_vi);
1688 ni->ext.base_ntfs_ino = base_ni;
1689 ni->nr_extents = -1;
1690
1691 ntfs_debug("Done.");
1692 return 0;
1693iput_unm_err_out:
1694 iput(bvi);
1695unm_err_out:
1696 if (!err)
1697 err = -EIO;
1698 if (ctx)
1699 ntfs_attr_put_search_ctx(ctx);
1700 if (m)
1701 unmap_mft_record(base_ni);
1702err_out:
1703 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1704 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1705 ni->name_len);
1706 make_bad_inode(vi);
1707 if (err != -EOPNOTSUPP && err != -ENOMEM)
1708 NVolSetErrors(vol);
1709 return err;
1710}
1711
1712/*
1713 * The MFT inode has special locking, so teach the lock validator
1714 * about this by splitting off the locking rules of the MFT from
1715 * the locking rules of other inodes. The MFT inode can never be
1716 * accessed from the VFS side (or even internally), only by the
1717 * map_mft functions.
1718 */
1719static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1720
1721/**
1722 * ntfs_read_inode_mount - special read_inode for mount time use only
1723 * @vi: inode to read
1724 *
1725 * Read inode FILE_MFT at mount time, only called with super_block lock
1726 * held from within the read_super() code path.
1727 *
1728 * This function exists because when it is called the page cache for $MFT/$DATA
1729 * is not initialized and hence we cannot get at the contents of mft records
1730 * by calling map_mft_record*().
1731 *
1732 * Further it needs to cope with the circular references problem, i.e. cannot
1733 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1734 * we do not know where the other extent mft records are yet and again, because
1735 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1736 * attribute list is actually present in $MFT inode.
1737 *
1738 * We solve these problems by starting with the $DATA attribute before anything
1739 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1740 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1741 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1742 * sufficient information for the next step to complete.
1743 *
1744 * This should work but there are two possible pit falls (see inline comments
1745 * below), but only time will tell if they are real pits or just smoke...
1746 */
1747int ntfs_read_inode_mount(struct inode *vi)
1748{
1749 VCN next_vcn, last_vcn, highest_vcn;
1750 s64 block;
1751 struct super_block *sb = vi->i_sb;
1752 ntfs_volume *vol = NTFS_SB(sb);
1753 struct buffer_head *bh;
1754 ntfs_inode *ni;
1755 MFT_RECORD *m = NULL;
1756 ATTR_RECORD *a;
1757 ntfs_attr_search_ctx *ctx;
1758 unsigned int i, nr_blocks;
1759 int err;
1760
1761 ntfs_debug("Entering.");
1762
1763 /* Initialize the ntfs specific part of @vi. */
1764 ntfs_init_big_inode(vi);
1765
1766 ni = NTFS_I(vi);
1767
1768 /* Setup the data attribute. It is special as it is mst protected. */
1769 NInoSetNonResident(ni);
1770 NInoSetMstProtected(ni);
1771 NInoSetSparseDisabled(ni);
1772 ni->type = AT_DATA;
1773 ni->name = NULL;
1774 ni->name_len = 0;
1775 /*
1776 * This sets up our little cheat allowing us to reuse the async read io
1777 * completion handler for directories.
1778 */
1779 ni->itype.index.block_size = vol->mft_record_size;
1780 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1781
1782 /* Very important! Needed to be able to call map_mft_record*(). */
1783 vol->mft_ino = vi;
1784
1785 /* Allocate enough memory to read the first mft record. */
1786 if (vol->mft_record_size > 64 * 1024) {
1787 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1788 vol->mft_record_size);
1789 goto err_out;
1790 }
1791 i = vol->mft_record_size;
1792 if (i < sb->s_blocksize)
1793 i = sb->s_blocksize;
1794 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1795 if (!m) {
1796 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1797 goto err_out;
1798 }
1799
1800 /* Determine the first block of the $MFT/$DATA attribute. */
1801 block = vol->mft_lcn << vol->cluster_size_bits >>
1802 sb->s_blocksize_bits;
1803 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1804 if (!nr_blocks)
1805 nr_blocks = 1;
1806
1807 /* Load $MFT/$DATA's first mft record. */
1808 for (i = 0; i < nr_blocks; i++) {
1809 bh = sb_bread(sb, block++);
1810 if (!bh) {
1811 ntfs_error(sb, "Device read failed.");
1812 goto err_out;
1813 }
1814 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1815 sb->s_blocksize);
1816 brelse(bh);
1817 }
1818
1819 if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
1820 ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
1821 le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
1822 goto err_out;
1823 }
1824
1825 /* Apply the mst fixups. */
1826 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1827 /* FIXME: Try to use the $MFTMirr now. */
1828 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1829 goto err_out;
1830 }
1831
1832 /* Sanity check offset to the first attribute */
1833 if (le16_to_cpu(m->attrs_offset) >= le32_to_cpu(m->bytes_allocated)) {
1834 ntfs_error(sb, "Incorrect mft offset to the first attribute %u in superblock.",
1835 le16_to_cpu(m->attrs_offset));
1836 goto err_out;
1837 }
1838
1839 /* Need this to sanity check attribute list references to $MFT. */
1840 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1841
1842 /* Provides read_folio() for map_mft_record(). */
1843 vi->i_mapping->a_ops = &ntfs_mst_aops;
1844
1845 ctx = ntfs_attr_get_search_ctx(ni, m);
1846 if (!ctx) {
1847 err = -ENOMEM;
1848 goto err_out;
1849 }
1850
1851 /* Find the attribute list attribute if present. */
1852 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1853 if (err) {
1854 if (unlikely(err != -ENOENT)) {
1855 ntfs_error(sb, "Failed to lookup attribute list "
1856 "attribute. You should run chkdsk.");
1857 goto put_err_out;
1858 }
1859 } else /* if (!err) */ {
1860 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1861 u8 *al_end;
1862 static const char *es = " Not allowed. $MFT is corrupt. "
1863 "You should run chkdsk.";
1864
1865 ntfs_debug("Attribute list attribute found in $MFT.");
1866 NInoSetAttrList(ni);
1867 a = ctx->attr;
1868 if (a->flags & ATTR_COMPRESSION_MASK) {
1869 ntfs_error(sb, "Attribute list attribute is "
1870 "compressed.%s", es);
1871 goto put_err_out;
1872 }
1873 if (a->flags & ATTR_IS_ENCRYPTED ||
1874 a->flags & ATTR_IS_SPARSE) {
1875 if (a->non_resident) {
1876 ntfs_error(sb, "Non-resident attribute list "
1877 "attribute is encrypted/"
1878 "sparse.%s", es);
1879 goto put_err_out;
1880 }
1881 ntfs_warning(sb, "Resident attribute list attribute "
1882 "in $MFT system file is marked "
1883 "encrypted/sparse which is not true. "
1884 "However, Windows allows this and "
1885 "chkdsk does not detect or correct it "
1886 "so we will just ignore the invalid "
1887 "flags and pretend they are not set.");
1888 }
1889 /* Now allocate memory for the attribute list. */
1890 ni->attr_list_size = (u32)ntfs_attr_size(a);
1891 if (!ni->attr_list_size) {
1892 ntfs_error(sb, "Attr_list_size is zero");
1893 goto put_err_out;
1894 }
1895 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1896 if (!ni->attr_list) {
1897 ntfs_error(sb, "Not enough memory to allocate buffer "
1898 "for attribute list.");
1899 goto put_err_out;
1900 }
1901 if (a->non_resident) {
1902 NInoSetAttrListNonResident(ni);
1903 if (a->data.non_resident.lowest_vcn) {
1904 ntfs_error(sb, "Attribute list has non zero "
1905 "lowest_vcn. $MFT is corrupt. "
1906 "You should run chkdsk.");
1907 goto put_err_out;
1908 }
1909 /* Setup the runlist. */
1910 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1911 a, NULL);
1912 if (IS_ERR(ni->attr_list_rl.rl)) {
1913 err = PTR_ERR(ni->attr_list_rl.rl);
1914 ni->attr_list_rl.rl = NULL;
1915 ntfs_error(sb, "Mapping pairs decompression "
1916 "failed with error code %i.",
1917 -err);
1918 goto put_err_out;
1919 }
1920 /* Now load the attribute list. */
1921 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1922 ni->attr_list, ni->attr_list_size,
1923 sle64_to_cpu(a->data.
1924 non_resident.initialized_size)))) {
1925 ntfs_error(sb, "Failed to load attribute list "
1926 "attribute with error code %i.",
1927 -err);
1928 goto put_err_out;
1929 }
1930 } else /* if (!ctx.attr->non_resident) */ {
1931 if ((u8*)a + le16_to_cpu(
1932 a->data.resident.value_offset) +
1933 le32_to_cpu(
1934 a->data.resident.value_length) >
1935 (u8*)ctx->mrec + vol->mft_record_size) {
1936 ntfs_error(sb, "Corrupt attribute list "
1937 "attribute.");
1938 goto put_err_out;
1939 }
1940 /* Now copy the attribute list. */
1941 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1942 a->data.resident.value_offset),
1943 le32_to_cpu(
1944 a->data.resident.value_length));
1945 }
1946 /* The attribute list is now setup in memory. */
1947 /*
1948 * FIXME: I don't know if this case is actually possible.
1949 * According to logic it is not possible but I have seen too
1950 * many weird things in MS software to rely on logic... Thus we
1951 * perform a manual search and make sure the first $MFT/$DATA
1952 * extent is in the base inode. If it is not we abort with an
1953 * error and if we ever see a report of this error we will need
1954 * to do some magic in order to have the necessary mft record
1955 * loaded and in the right place in the page cache. But
1956 * hopefully logic will prevail and this never happens...
1957 */
1958 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1959 al_end = (u8*)al_entry + ni->attr_list_size;
1960 for (;; al_entry = next_al_entry) {
1961 /* Out of bounds check. */
1962 if ((u8*)al_entry < ni->attr_list ||
1963 (u8*)al_entry > al_end)
1964 goto em_put_err_out;
1965 /* Catch the end of the attribute list. */
1966 if ((u8*)al_entry == al_end)
1967 goto em_put_err_out;
1968 if (!al_entry->length)
1969 goto em_put_err_out;
1970 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1971 le16_to_cpu(al_entry->length) > al_end)
1972 goto em_put_err_out;
1973 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1974 le16_to_cpu(al_entry->length));
1975 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1976 goto em_put_err_out;
1977 if (AT_DATA != al_entry->type)
1978 continue;
1979 /* We want an unnamed attribute. */
1980 if (al_entry->name_length)
1981 goto em_put_err_out;
1982 /* Want the first entry, i.e. lowest_vcn == 0. */
1983 if (al_entry->lowest_vcn)
1984 goto em_put_err_out;
1985 /* First entry has to be in the base mft record. */
1986 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1987 /* MFT references do not match, logic fails. */
1988 ntfs_error(sb, "BUG: The first $DATA extent "
1989 "of $MFT is not in the base "
1990 "mft record. Please report "
1991 "you saw this message to "
1992 "linux-ntfs-dev@lists."
1993 "sourceforge.net");
1994 goto put_err_out;
1995 } else {
1996 /* Sequence numbers must match. */
1997 if (MSEQNO_LE(al_entry->mft_reference) !=
1998 ni->seq_no)
1999 goto em_put_err_out;
2000 /* Got it. All is ok. We can stop now. */
2001 break;
2002 }
2003 }
2004 }
2005
2006 ntfs_attr_reinit_search_ctx(ctx);
2007
2008 /* Now load all attribute extents. */
2009 a = NULL;
2010 next_vcn = last_vcn = highest_vcn = 0;
2011 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2012 ctx))) {
2013 runlist_element *nrl;
2014
2015 /* Cache the current attribute. */
2016 a = ctx->attr;
2017 /* $MFT must be non-resident. */
2018 if (!a->non_resident) {
2019 ntfs_error(sb, "$MFT must be non-resident but a "
2020 "resident extent was found. $MFT is "
2021 "corrupt. Run chkdsk.");
2022 goto put_err_out;
2023 }
2024 /* $MFT must be uncompressed and unencrypted. */
2025 if (a->flags & ATTR_COMPRESSION_MASK ||
2026 a->flags & ATTR_IS_ENCRYPTED ||
2027 a->flags & ATTR_IS_SPARSE) {
2028 ntfs_error(sb, "$MFT must be uncompressed, "
2029 "non-sparse, and unencrypted but a "
2030 "compressed/sparse/encrypted extent "
2031 "was found. $MFT is corrupt. Run "
2032 "chkdsk.");
2033 goto put_err_out;
2034 }
2035 /*
2036 * Decompress the mapping pairs array of this extent and merge
2037 * the result into the existing runlist. No need for locking
2038 * as we have exclusive access to the inode at this time and we
2039 * are a mount in progress task, too.
2040 */
2041 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2042 if (IS_ERR(nrl)) {
2043 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2044 "failed with error code %ld. $MFT is "
2045 "corrupt.", PTR_ERR(nrl));
2046 goto put_err_out;
2047 }
2048 ni->runlist.rl = nrl;
2049
2050 /* Are we in the first extent? */
2051 if (!next_vcn) {
2052 if (a->data.non_resident.lowest_vcn) {
2053 ntfs_error(sb, "First extent of $DATA "
2054 "attribute has non zero "
2055 "lowest_vcn. $MFT is corrupt. "
2056 "You should run chkdsk.");
2057 goto put_err_out;
2058 }
2059 /* Get the last vcn in the $DATA attribute. */
2060 last_vcn = sle64_to_cpu(
2061 a->data.non_resident.allocated_size)
2062 >> vol->cluster_size_bits;
2063 /* Fill in the inode size. */
2064 vi->i_size = sle64_to_cpu(
2065 a->data.non_resident.data_size);
2066 ni->initialized_size = sle64_to_cpu(
2067 a->data.non_resident.initialized_size);
2068 ni->allocated_size = sle64_to_cpu(
2069 a->data.non_resident.allocated_size);
2070 /*
2071 * Verify the number of mft records does not exceed
2072 * 2^32 - 1.
2073 */
2074 if ((vi->i_size >> vol->mft_record_size_bits) >=
2075 (1ULL << 32)) {
2076 ntfs_error(sb, "$MFT is too big! Aborting.");
2077 goto put_err_out;
2078 }
2079 /*
2080 * We have got the first extent of the runlist for
2081 * $MFT which means it is now relatively safe to call
2082 * the normal ntfs_read_inode() function.
2083 * Complete reading the inode, this will actually
2084 * re-read the mft record for $MFT, this time entering
2085 * it into the page cache with which we complete the
2086 * kick start of the volume. It should be safe to do
2087 * this now as the first extent of $MFT/$DATA is
2088 * already known and we would hope that we don't need
2089 * further extents in order to find the other
2090 * attributes belonging to $MFT. Only time will tell if
2091 * this is really the case. If not we will have to play
2092 * magic at this point, possibly duplicating a lot of
2093 * ntfs_read_inode() at this point. We will need to
2094 * ensure we do enough of its work to be able to call
2095 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2096 * hope this never happens...
2097 */
2098 ntfs_read_locked_inode(vi);
2099 if (is_bad_inode(vi)) {
2100 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2101 "failed. BUG or corrupt $MFT. "
2102 "Run chkdsk and if no errors "
2103 "are found, please report you "
2104 "saw this message to "
2105 "linux-ntfs-dev@lists."
2106 "sourceforge.net");
2107 ntfs_attr_put_search_ctx(ctx);
2108 /* Revert to the safe super operations. */
2109 ntfs_free(m);
2110 return -1;
2111 }
2112 /*
2113 * Re-initialize some specifics about $MFT's inode as
2114 * ntfs_read_inode() will have set up the default ones.
2115 */
2116 /* Set uid and gid to root. */
2117 vi->i_uid = GLOBAL_ROOT_UID;
2118 vi->i_gid = GLOBAL_ROOT_GID;
2119 /* Regular file. No access for anyone. */
2120 vi->i_mode = S_IFREG;
2121 /* No VFS initiated operations allowed for $MFT. */
2122 vi->i_op = &ntfs_empty_inode_ops;
2123 vi->i_fop = &ntfs_empty_file_ops;
2124 }
2125
2126 /* Get the lowest vcn for the next extent. */
2127 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2128 next_vcn = highest_vcn + 1;
2129
2130 /* Only one extent or error, which we catch below. */
2131 if (next_vcn <= 0)
2132 break;
2133
2134 /* Avoid endless loops due to corruption. */
2135 if (next_vcn < sle64_to_cpu(
2136 a->data.non_resident.lowest_vcn)) {
2137 ntfs_error(sb, "$MFT has corrupt attribute list "
2138 "attribute. Run chkdsk.");
2139 goto put_err_out;
2140 }
2141 }
2142 if (err != -ENOENT) {
2143 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2144 "$MFT is corrupt. Run chkdsk.");
2145 goto put_err_out;
2146 }
2147 if (!a) {
2148 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2149 "corrupt. Run chkdsk.");
2150 goto put_err_out;
2151 }
2152 if (highest_vcn && highest_vcn != last_vcn - 1) {
2153 ntfs_error(sb, "Failed to load the complete runlist for "
2154 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2155 "Run chkdsk.");
2156 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2157 (unsigned long long)highest_vcn,
2158 (unsigned long long)last_vcn - 1);
2159 goto put_err_out;
2160 }
2161 ntfs_attr_put_search_ctx(ctx);
2162 ntfs_debug("Done.");
2163 ntfs_free(m);
2164
2165 /*
2166 * Split the locking rules of the MFT inode from the
2167 * locking rules of other inodes:
2168 */
2169 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2170 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2171
2172 return 0;
2173
2174em_put_err_out:
2175 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2176 "attribute list. $MFT is corrupt. Run chkdsk.");
2177put_err_out:
2178 ntfs_attr_put_search_ctx(ctx);
2179err_out:
2180 ntfs_error(sb, "Failed. Marking inode as bad.");
2181 make_bad_inode(vi);
2182 ntfs_free(m);
2183 return -1;
2184}
2185
2186static void __ntfs_clear_inode(ntfs_inode *ni)
2187{
2188 /* Free all alocated memory. */
2189 down_write(&ni->runlist.lock);
2190 if (ni->runlist.rl) {
2191 ntfs_free(ni->runlist.rl);
2192 ni->runlist.rl = NULL;
2193 }
2194 up_write(&ni->runlist.lock);
2195
2196 if (ni->attr_list) {
2197 ntfs_free(ni->attr_list);
2198 ni->attr_list = NULL;
2199 }
2200
2201 down_write(&ni->attr_list_rl.lock);
2202 if (ni->attr_list_rl.rl) {
2203 ntfs_free(ni->attr_list_rl.rl);
2204 ni->attr_list_rl.rl = NULL;
2205 }
2206 up_write(&ni->attr_list_rl.lock);
2207
2208 if (ni->name_len && ni->name != I30) {
2209 /* Catch bugs... */
2210 BUG_ON(!ni->name);
2211 kfree(ni->name);
2212 }
2213}
2214
2215void ntfs_clear_extent_inode(ntfs_inode *ni)
2216{
2217 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2218
2219 BUG_ON(NInoAttr(ni));
2220 BUG_ON(ni->nr_extents != -1);
2221
2222#ifdef NTFS_RW
2223 if (NInoDirty(ni)) {
2224 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2225 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2226 "Losing data! This is a BUG!!!");
2227 // FIXME: Do something!!!
2228 }
2229#endif /* NTFS_RW */
2230
2231 __ntfs_clear_inode(ni);
2232
2233 /* Bye, bye... */
2234 ntfs_destroy_extent_inode(ni);
2235}
2236
2237/**
2238 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2239 * @vi: vfs inode pending annihilation
2240 *
2241 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2242 * is called, which deallocates all memory belonging to the NTFS specific part
2243 * of the inode and returns.
2244 *
2245 * If the MFT record is dirty, we commit it before doing anything else.
2246 */
2247void ntfs_evict_big_inode(struct inode *vi)
2248{
2249 ntfs_inode *ni = NTFS_I(vi);
2250
2251 truncate_inode_pages_final(&vi->i_data);
2252 clear_inode(vi);
2253
2254#ifdef NTFS_RW
2255 if (NInoDirty(ni)) {
2256 bool was_bad = (is_bad_inode(vi));
2257
2258 /* Committing the inode also commits all extent inodes. */
2259 ntfs_commit_inode(vi);
2260
2261 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2262 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2263 "0x%lx. Losing data!", vi->i_ino);
2264 // FIXME: Do something!!!
2265 }
2266 }
2267#endif /* NTFS_RW */
2268
2269 /* No need to lock at this stage as no one else has a reference. */
2270 if (ni->nr_extents > 0) {
2271 int i;
2272
2273 for (i = 0; i < ni->nr_extents; i++)
2274 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2275 kfree(ni->ext.extent_ntfs_inos);
2276 }
2277
2278 __ntfs_clear_inode(ni);
2279
2280 if (NInoAttr(ni)) {
2281 /* Release the base inode if we are holding it. */
2282 if (ni->nr_extents == -1) {
2283 iput(VFS_I(ni->ext.base_ntfs_ino));
2284 ni->nr_extents = 0;
2285 ni->ext.base_ntfs_ino = NULL;
2286 }
2287 }
2288 BUG_ON(ni->page);
2289 if (!atomic_dec_and_test(&ni->count))
2290 BUG();
2291 return;
2292}
2293
2294/**
2295 * ntfs_show_options - show mount options in /proc/mounts
2296 * @sf: seq_file in which to write our mount options
2297 * @root: root of the mounted tree whose mount options to display
2298 *
2299 * Called by the VFS once for each mounted ntfs volume when someone reads
2300 * /proc/mounts in order to display the NTFS specific mount options of each
2301 * mount. The mount options of fs specified by @root are written to the seq file
2302 * @sf and success is returned.
2303 */
2304int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2305{
2306 ntfs_volume *vol = NTFS_SB(root->d_sb);
2307 int i;
2308
2309 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2310 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2311 if (vol->fmask == vol->dmask)
2312 seq_printf(sf, ",umask=0%o", vol->fmask);
2313 else {
2314 seq_printf(sf, ",fmask=0%o", vol->fmask);
2315 seq_printf(sf, ",dmask=0%o", vol->dmask);
2316 }
2317 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2318 if (NVolCaseSensitive(vol))
2319 seq_printf(sf, ",case_sensitive");
2320 if (NVolShowSystemFiles(vol))
2321 seq_printf(sf, ",show_sys_files");
2322 if (!NVolSparseEnabled(vol))
2323 seq_printf(sf, ",disable_sparse");
2324 for (i = 0; on_errors_arr[i].val; i++) {
2325 if (on_errors_arr[i].val & vol->on_errors)
2326 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2327 }
2328 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2329 return 0;
2330}
2331
2332#ifdef NTFS_RW
2333
2334static const char *es = " Leaving inconsistent metadata. Unmount and run "
2335 "chkdsk.";
2336
2337/**
2338 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2339 * @vi: inode for which the i_size was changed
2340 *
2341 * We only support i_size changes for normal files at present, i.e. not
2342 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2343 * below.
2344 *
2345 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2346 * that the change is allowed.
2347 *
2348 * This implies for us that @vi is a file inode rather than a directory, index,
2349 * or attribute inode as well as that @vi is a base inode.
2350 *
2351 * Returns 0 on success or -errno on error.
2352 *
2353 * Called with ->i_mutex held.
2354 */
2355int ntfs_truncate(struct inode *vi)
2356{
2357 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2358 VCN highest_vcn;
2359 unsigned long flags;
2360 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2361 ntfs_volume *vol = ni->vol;
2362 ntfs_attr_search_ctx *ctx;
2363 MFT_RECORD *m;
2364 ATTR_RECORD *a;
2365 const char *te = " Leaving file length out of sync with i_size.";
2366 int err, mp_size, size_change, alloc_change;
2367
2368 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2369 BUG_ON(NInoAttr(ni));
2370 BUG_ON(S_ISDIR(vi->i_mode));
2371 BUG_ON(NInoMstProtected(ni));
2372 BUG_ON(ni->nr_extents < 0);
2373retry_truncate:
2374 /*
2375 * Lock the runlist for writing and map the mft record to ensure it is
2376 * safe to mess with the attribute runlist and sizes.
2377 */
2378 down_write(&ni->runlist.lock);
2379 if (!NInoAttr(ni))
2380 base_ni = ni;
2381 else
2382 base_ni = ni->ext.base_ntfs_ino;
2383 m = map_mft_record(base_ni);
2384 if (IS_ERR(m)) {
2385 err = PTR_ERR(m);
2386 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2387 "(error code %d).%s", vi->i_ino, err, te);
2388 ctx = NULL;
2389 m = NULL;
2390 goto old_bad_out;
2391 }
2392 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2393 if (unlikely(!ctx)) {
2394 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2395 "inode 0x%lx (not enough memory).%s",
2396 vi->i_ino, te);
2397 err = -ENOMEM;
2398 goto old_bad_out;
2399 }
2400 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2401 CASE_SENSITIVE, 0, NULL, 0, ctx);
2402 if (unlikely(err)) {
2403 if (err == -ENOENT) {
2404 ntfs_error(vi->i_sb, "Open attribute is missing from "
2405 "mft record. Inode 0x%lx is corrupt. "
2406 "Run chkdsk.%s", vi->i_ino, te);
2407 err = -EIO;
2408 } else
2409 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2410 "inode 0x%lx (error code %d).%s",
2411 vi->i_ino, err, te);
2412 goto old_bad_out;
2413 }
2414 m = ctx->mrec;
2415 a = ctx->attr;
2416 /*
2417 * The i_size of the vfs inode is the new size for the attribute value.
2418 */
2419 new_size = i_size_read(vi);
2420 /* The current size of the attribute value is the old size. */
2421 old_size = ntfs_attr_size(a);
2422 /* Calculate the new allocated size. */
2423 if (NInoNonResident(ni))
2424 new_alloc_size = (new_size + vol->cluster_size - 1) &
2425 ~(s64)vol->cluster_size_mask;
2426 else
2427 new_alloc_size = (new_size + 7) & ~7;
2428 /* The current allocated size is the old allocated size. */
2429 read_lock_irqsave(&ni->size_lock, flags);
2430 old_alloc_size = ni->allocated_size;
2431 read_unlock_irqrestore(&ni->size_lock, flags);
2432 /*
2433 * The change in the file size. This will be 0 if no change, >0 if the
2434 * size is growing, and <0 if the size is shrinking.
2435 */
2436 size_change = -1;
2437 if (new_size - old_size >= 0) {
2438 size_change = 1;
2439 if (new_size == old_size)
2440 size_change = 0;
2441 }
2442 /* As above for the allocated size. */
2443 alloc_change = -1;
2444 if (new_alloc_size - old_alloc_size >= 0) {
2445 alloc_change = 1;
2446 if (new_alloc_size == old_alloc_size)
2447 alloc_change = 0;
2448 }
2449 /*
2450 * If neither the size nor the allocation are being changed there is
2451 * nothing to do.
2452 */
2453 if (!size_change && !alloc_change)
2454 goto unm_done;
2455 /* If the size is changing, check if new size is allowed in $AttrDef. */
2456 if (size_change) {
2457 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2458 if (unlikely(err)) {
2459 if (err == -ERANGE) {
2460 ntfs_error(vol->sb, "Truncate would cause the "
2461 "inode 0x%lx to %simum size "
2462 "for its attribute type "
2463 "(0x%x). Aborting truncate.",
2464 vi->i_ino,
2465 new_size > old_size ? "exceed "
2466 "the max" : "go under the min",
2467 le32_to_cpu(ni->type));
2468 err = -EFBIG;
2469 } else {
2470 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2471 "attribute type 0x%x. "
2472 "Aborting truncate.",
2473 vi->i_ino,
2474 le32_to_cpu(ni->type));
2475 err = -EIO;
2476 }
2477 /* Reset the vfs inode size to the old size. */
2478 i_size_write(vi, old_size);
2479 goto err_out;
2480 }
2481 }
2482 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2483 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2484 "supported yet for %s files, ignoring.",
2485 NInoCompressed(ni) ? "compressed" :
2486 "encrypted");
2487 err = -EOPNOTSUPP;
2488 goto bad_out;
2489 }
2490 if (a->non_resident)
2491 goto do_non_resident_truncate;
2492 BUG_ON(NInoNonResident(ni));
2493 /* Resize the attribute record to best fit the new attribute size. */
2494 if (new_size < vol->mft_record_size &&
2495 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2496 /* The resize succeeded! */
2497 flush_dcache_mft_record_page(ctx->ntfs_ino);
2498 mark_mft_record_dirty(ctx->ntfs_ino);
2499 write_lock_irqsave(&ni->size_lock, flags);
2500 /* Update the sizes in the ntfs inode and all is done. */
2501 ni->allocated_size = le32_to_cpu(a->length) -
2502 le16_to_cpu(a->data.resident.value_offset);
2503 /*
2504 * Note ntfs_resident_attr_value_resize() has already done any
2505 * necessary data clearing in the attribute record. When the
2506 * file is being shrunk vmtruncate() will already have cleared
2507 * the top part of the last partial page, i.e. since this is
2508 * the resident case this is the page with index 0. However,
2509 * when the file is being expanded, the page cache page data
2510 * between the old data_size, i.e. old_size, and the new_size
2511 * has not been zeroed. Fortunately, we do not need to zero it
2512 * either since on one hand it will either already be zero due
2513 * to both read_folio and writepage clearing partial page data
2514 * beyond i_size in which case there is nothing to do or in the
2515 * case of the file being mmap()ped at the same time, POSIX
2516 * specifies that the behaviour is unspecified thus we do not
2517 * have to do anything. This means that in our implementation
2518 * in the rare case that the file is mmap()ped and a write
2519 * occurred into the mmap()ped region just beyond the file size
2520 * and writepage has not yet been called to write out the page
2521 * (which would clear the area beyond the file size) and we now
2522 * extend the file size to incorporate this dirty region
2523 * outside the file size, a write of the page would result in
2524 * this data being written to disk instead of being cleared.
2525 * Given both POSIX and the Linux mmap(2) man page specify that
2526 * this corner case is undefined, we choose to leave it like
2527 * that as this is much simpler for us as we cannot lock the
2528 * relevant page now since we are holding too many ntfs locks
2529 * which would result in a lock reversal deadlock.
2530 */
2531 ni->initialized_size = new_size;
2532 write_unlock_irqrestore(&ni->size_lock, flags);
2533 goto unm_done;
2534 }
2535 /* If the above resize failed, this must be an attribute extension. */
2536 BUG_ON(size_change < 0);
2537 /*
2538 * We have to drop all the locks so we can call
2539 * ntfs_attr_make_non_resident(). This could be optimised by try-
2540 * locking the first page cache page and only if that fails dropping
2541 * the locks, locking the page, and redoing all the locking and
2542 * lookups. While this would be a huge optimisation, it is not worth
2543 * it as this is definitely a slow code path as it only ever can happen
2544 * once for any given file.
2545 */
2546 ntfs_attr_put_search_ctx(ctx);
2547 unmap_mft_record(base_ni);
2548 up_write(&ni->runlist.lock);
2549 /*
2550 * Not enough space in the mft record, try to make the attribute
2551 * non-resident and if successful restart the truncation process.
2552 */
2553 err = ntfs_attr_make_non_resident(ni, old_size);
2554 if (likely(!err))
2555 goto retry_truncate;
2556 /*
2557 * Could not make non-resident. If this is due to this not being
2558 * permitted for this attribute type or there not being enough space,
2559 * try to make other attributes non-resident. Otherwise fail.
2560 */
2561 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2562 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2563 "type 0x%x, because the conversion from "
2564 "resident to non-resident attribute failed "
2565 "with error code %i.", vi->i_ino,
2566 (unsigned)le32_to_cpu(ni->type), err);
2567 if (err != -ENOMEM)
2568 err = -EIO;
2569 goto conv_err_out;
2570 }
2571 /* TODO: Not implemented from here, abort. */
2572 if (err == -ENOSPC)
2573 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2574 "disk for the non-resident attribute value. "
2575 "This case is not implemented yet.");
2576 else /* if (err == -EPERM) */
2577 ntfs_error(vol->sb, "This attribute type may not be "
2578 "non-resident. This case is not implemented "
2579 "yet.");
2580 err = -EOPNOTSUPP;
2581 goto conv_err_out;
2582#if 0
2583 // TODO: Attempt to make other attributes non-resident.
2584 if (!err)
2585 goto do_resident_extend;
2586 /*
2587 * Both the attribute list attribute and the standard information
2588 * attribute must remain in the base inode. Thus, if this is one of
2589 * these attributes, we have to try to move other attributes out into
2590 * extent mft records instead.
2591 */
2592 if (ni->type == AT_ATTRIBUTE_LIST ||
2593 ni->type == AT_STANDARD_INFORMATION) {
2594 // TODO: Attempt to move other attributes into extent mft
2595 // records.
2596 err = -EOPNOTSUPP;
2597 if (!err)
2598 goto do_resident_extend;
2599 goto err_out;
2600 }
2601 // TODO: Attempt to move this attribute to an extent mft record, but
2602 // only if it is not already the only attribute in an mft record in
2603 // which case there would be nothing to gain.
2604 err = -EOPNOTSUPP;
2605 if (!err)
2606 goto do_resident_extend;
2607 /* There is nothing we can do to make enough space. )-: */
2608 goto err_out;
2609#endif
2610do_non_resident_truncate:
2611 BUG_ON(!NInoNonResident(ni));
2612 if (alloc_change < 0) {
2613 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2614 if (highest_vcn > 0 &&
2615 old_alloc_size >> vol->cluster_size_bits >
2616 highest_vcn + 1) {
2617 /*
2618 * This attribute has multiple extents. Not yet
2619 * supported.
2620 */
2621 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2622 "attribute type 0x%x, because the "
2623 "attribute is highly fragmented (it "
2624 "consists of multiple extents) and "
2625 "this case is not implemented yet.",
2626 vi->i_ino,
2627 (unsigned)le32_to_cpu(ni->type));
2628 err = -EOPNOTSUPP;
2629 goto bad_out;
2630 }
2631 }
2632 /*
2633 * If the size is shrinking, need to reduce the initialized_size and
2634 * the data_size before reducing the allocation.
2635 */
2636 if (size_change < 0) {
2637 /*
2638 * Make the valid size smaller (i_size is already up-to-date).
2639 */
2640 write_lock_irqsave(&ni->size_lock, flags);
2641 if (new_size < ni->initialized_size) {
2642 ni->initialized_size = new_size;
2643 a->data.non_resident.initialized_size =
2644 cpu_to_sle64(new_size);
2645 }
2646 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2647 write_unlock_irqrestore(&ni->size_lock, flags);
2648 flush_dcache_mft_record_page(ctx->ntfs_ino);
2649 mark_mft_record_dirty(ctx->ntfs_ino);
2650 /* If the allocated size is not changing, we are done. */
2651 if (!alloc_change)
2652 goto unm_done;
2653 /*
2654 * If the size is shrinking it makes no sense for the
2655 * allocation to be growing.
2656 */
2657 BUG_ON(alloc_change > 0);
2658 } else /* if (size_change >= 0) */ {
2659 /*
2660 * The file size is growing or staying the same but the
2661 * allocation can be shrinking, growing or staying the same.
2662 */
2663 if (alloc_change > 0) {
2664 /*
2665 * We need to extend the allocation and possibly update
2666 * the data size. If we are updating the data size,
2667 * since we are not touching the initialized_size we do
2668 * not need to worry about the actual data on disk.
2669 * And as far as the page cache is concerned, there
2670 * will be no pages beyond the old data size and any
2671 * partial region in the last page between the old and
2672 * new data size (or the end of the page if the new
2673 * data size is outside the page) does not need to be
2674 * modified as explained above for the resident
2675 * attribute truncate case. To do this, we simply drop
2676 * the locks we hold and leave all the work to our
2677 * friendly helper ntfs_attr_extend_allocation().
2678 */
2679 ntfs_attr_put_search_ctx(ctx);
2680 unmap_mft_record(base_ni);
2681 up_write(&ni->runlist.lock);
2682 err = ntfs_attr_extend_allocation(ni, new_size,
2683 size_change > 0 ? new_size : -1, -1);
2684 /*
2685 * ntfs_attr_extend_allocation() will have done error
2686 * output already.
2687 */
2688 goto done;
2689 }
2690 if (!alloc_change)
2691 goto alloc_done;
2692 }
2693 /* alloc_change < 0 */
2694 /* Free the clusters. */
2695 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2696 vol->cluster_size_bits, -1, ctx);
2697 m = ctx->mrec;
2698 a = ctx->attr;
2699 if (unlikely(nr_freed < 0)) {
2700 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2701 "%lli). Unmount and run chkdsk to recover "
2702 "the lost cluster(s).", (long long)nr_freed);
2703 NVolSetErrors(vol);
2704 nr_freed = 0;
2705 }
2706 /* Truncate the runlist. */
2707 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2708 new_alloc_size >> vol->cluster_size_bits);
2709 /*
2710 * If the runlist truncation failed and/or the search context is no
2711 * longer valid, we cannot resize the attribute record or build the
2712 * mapping pairs array thus we mark the inode bad so that no access to
2713 * the freed clusters can happen.
2714 */
2715 if (unlikely(err || IS_ERR(m))) {
2716 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2717 IS_ERR(m) ?
2718 "restore attribute search context" :
2719 "truncate attribute runlist",
2720 IS_ERR(m) ? PTR_ERR(m) : err, es);
2721 err = -EIO;
2722 goto bad_out;
2723 }
2724 /* Get the size for the shrunk mapping pairs array for the runlist. */
2725 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2726 if (unlikely(mp_size <= 0)) {
2727 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2728 "attribute type 0x%x, because determining the "
2729 "size for the mapping pairs failed with error "
2730 "code %i.%s", vi->i_ino,
2731 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2732 err = -EIO;
2733 goto bad_out;
2734 }
2735 /*
2736 * Shrink the attribute record for the new mapping pairs array. Note,
2737 * this cannot fail since we are making the attribute smaller thus by
2738 * definition there is enough space to do so.
2739 */
2740 err = ntfs_attr_record_resize(m, a, mp_size +
2741 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2742 BUG_ON(err);
2743 /*
2744 * Generate the mapping pairs array directly into the attribute record.
2745 */
2746 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2747 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2748 mp_size, ni->runlist.rl, 0, -1, NULL);
2749 if (unlikely(err)) {
2750 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2751 "attribute type 0x%x, because building the "
2752 "mapping pairs failed with error code %i.%s",
2753 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2754 err, es);
2755 err = -EIO;
2756 goto bad_out;
2757 }
2758 /* Update the allocated/compressed size as well as the highest vcn. */
2759 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2760 vol->cluster_size_bits) - 1);
2761 write_lock_irqsave(&ni->size_lock, flags);
2762 ni->allocated_size = new_alloc_size;
2763 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2764 if (NInoSparse(ni) || NInoCompressed(ni)) {
2765 if (nr_freed) {
2766 ni->itype.compressed.size -= nr_freed <<
2767 vol->cluster_size_bits;
2768 BUG_ON(ni->itype.compressed.size < 0);
2769 a->data.non_resident.compressed_size = cpu_to_sle64(
2770 ni->itype.compressed.size);
2771 vi->i_blocks = ni->itype.compressed.size >> 9;
2772 }
2773 } else
2774 vi->i_blocks = new_alloc_size >> 9;
2775 write_unlock_irqrestore(&ni->size_lock, flags);
2776 /*
2777 * We have shrunk the allocation. If this is a shrinking truncate we
2778 * have already dealt with the initialized_size and the data_size above
2779 * and we are done. If the truncate is only changing the allocation
2780 * and not the data_size, we are also done. If this is an extending
2781 * truncate, need to extend the data_size now which is ensured by the
2782 * fact that @size_change is positive.
2783 */
2784alloc_done:
2785 /*
2786 * If the size is growing, need to update it now. If it is shrinking,
2787 * we have already updated it above (before the allocation change).
2788 */
2789 if (size_change > 0)
2790 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2791 /* Ensure the modified mft record is written out. */
2792 flush_dcache_mft_record_page(ctx->ntfs_ino);
2793 mark_mft_record_dirty(ctx->ntfs_ino);
2794unm_done:
2795 ntfs_attr_put_search_ctx(ctx);
2796 unmap_mft_record(base_ni);
2797 up_write(&ni->runlist.lock);
2798done:
2799 /* Update the mtime and ctime on the base inode. */
2800 /* normally ->truncate shouldn't update ctime or mtime,
2801 * but ntfs did before so it got a copy & paste version
2802 * of file_update_time. one day someone should fix this
2803 * for real.
2804 */
2805 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2806 struct timespec64 now = current_time(VFS_I(base_ni));
2807 int sync_it = 0;
2808
2809 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2810 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2811 sync_it = 1;
2812 VFS_I(base_ni)->i_mtime = now;
2813 VFS_I(base_ni)->i_ctime = now;
2814
2815 if (sync_it)
2816 mark_inode_dirty_sync(VFS_I(base_ni));
2817 }
2818
2819 if (likely(!err)) {
2820 NInoClearTruncateFailed(ni);
2821 ntfs_debug("Done.");
2822 }
2823 return err;
2824old_bad_out:
2825 old_size = -1;
2826bad_out:
2827 if (err != -ENOMEM && err != -EOPNOTSUPP)
2828 NVolSetErrors(vol);
2829 if (err != -EOPNOTSUPP)
2830 NInoSetTruncateFailed(ni);
2831 else if (old_size >= 0)
2832 i_size_write(vi, old_size);
2833err_out:
2834 if (ctx)
2835 ntfs_attr_put_search_ctx(ctx);
2836 if (m)
2837 unmap_mft_record(base_ni);
2838 up_write(&ni->runlist.lock);
2839out:
2840 ntfs_debug("Failed. Returning error code %i.", err);
2841 return err;
2842conv_err_out:
2843 if (err != -ENOMEM && err != -EOPNOTSUPP)
2844 NVolSetErrors(vol);
2845 if (err != -EOPNOTSUPP)
2846 NInoSetTruncateFailed(ni);
2847 else
2848 i_size_write(vi, old_size);
2849 goto out;
2850}
2851
2852/**
2853 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2854 * @vi: inode for which the i_size was changed
2855 *
2856 * Wrapper for ntfs_truncate() that has no return value.
2857 *
2858 * See ntfs_truncate() description above for details.
2859 */
2860#ifdef NTFS_RW
2861void ntfs_truncate_vfs(struct inode *vi) {
2862 ntfs_truncate(vi);
2863}
2864#endif
2865
2866/**
2867 * ntfs_setattr - called from notify_change() when an attribute is being changed
2868 * @mnt_userns: user namespace of the mount the inode was found from
2869 * @dentry: dentry whose attributes to change
2870 * @attr: structure describing the attributes and the changes
2871 *
2872 * We have to trap VFS attempts to truncate the file described by @dentry as
2873 * soon as possible, because we do not implement changes in i_size yet. So we
2874 * abort all i_size changes here.
2875 *
2876 * We also abort all changes of user, group, and mode as we do not implement
2877 * the NTFS ACLs yet.
2878 *
2879 * Called with ->i_mutex held.
2880 */
2881int ntfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
2882 struct iattr *attr)
2883{
2884 struct inode *vi = d_inode(dentry);
2885 int err;
2886 unsigned int ia_valid = attr->ia_valid;
2887
2888 err = setattr_prepare(&init_user_ns, dentry, attr);
2889 if (err)
2890 goto out;
2891 /* We do not support NTFS ACLs yet. */
2892 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2893 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2894 "supported yet, ignoring.");
2895 err = -EOPNOTSUPP;
2896 goto out;
2897 }
2898 if (ia_valid & ATTR_SIZE) {
2899 if (attr->ia_size != i_size_read(vi)) {
2900 ntfs_inode *ni = NTFS_I(vi);
2901 /*
2902 * FIXME: For now we do not support resizing of
2903 * compressed or encrypted files yet.
2904 */
2905 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2906 ntfs_warning(vi->i_sb, "Changes in inode size "
2907 "are not supported yet for "
2908 "%s files, ignoring.",
2909 NInoCompressed(ni) ?
2910 "compressed" : "encrypted");
2911 err = -EOPNOTSUPP;
2912 } else {
2913 truncate_setsize(vi, attr->ia_size);
2914 ntfs_truncate_vfs(vi);
2915 }
2916 if (err || ia_valid == ATTR_SIZE)
2917 goto out;
2918 } else {
2919 /*
2920 * We skipped the truncate but must still update
2921 * timestamps.
2922 */
2923 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2924 }
2925 }
2926 if (ia_valid & ATTR_ATIME)
2927 vi->i_atime = attr->ia_atime;
2928 if (ia_valid & ATTR_MTIME)
2929 vi->i_mtime = attr->ia_mtime;
2930 if (ia_valid & ATTR_CTIME)
2931 vi->i_ctime = attr->ia_ctime;
2932 mark_inode_dirty(vi);
2933out:
2934 return err;
2935}
2936
2937/**
2938 * ntfs_write_inode - write out a dirty inode
2939 * @vi: inode to write out
2940 * @sync: if true, write out synchronously
2941 *
2942 * Write out a dirty inode to disk including any extent inodes if present.
2943 *
2944 * If @sync is true, commit the inode to disk and wait for io completion. This
2945 * is done using write_mft_record().
2946 *
2947 * If @sync is false, just schedule the write to happen but do not wait for i/o
2948 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2949 * marking the page (and in this case mft record) dirty but we do not implement
2950 * this yet as write_mft_record() largely ignores the @sync parameter and
2951 * always performs synchronous writes.
2952 *
2953 * Return 0 on success and -errno on error.
2954 */
2955int __ntfs_write_inode(struct inode *vi, int sync)
2956{
2957 sle64 nt;
2958 ntfs_inode *ni = NTFS_I(vi);
2959 ntfs_attr_search_ctx *ctx;
2960 MFT_RECORD *m;
2961 STANDARD_INFORMATION *si;
2962 int err = 0;
2963 bool modified = false;
2964
2965 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2966 vi->i_ino);
2967 /*
2968 * Dirty attribute inodes are written via their real inodes so just
2969 * clean them here. Access time updates are taken care off when the
2970 * real inode is written.
2971 */
2972 if (NInoAttr(ni)) {
2973 NInoClearDirty(ni);
2974 ntfs_debug("Done.");
2975 return 0;
2976 }
2977 /* Map, pin, and lock the mft record belonging to the inode. */
2978 m = map_mft_record(ni);
2979 if (IS_ERR(m)) {
2980 err = PTR_ERR(m);
2981 goto err_out;
2982 }
2983 /* Update the access times in the standard information attribute. */
2984 ctx = ntfs_attr_get_search_ctx(ni, m);
2985 if (unlikely(!ctx)) {
2986 err = -ENOMEM;
2987 goto unm_err_out;
2988 }
2989 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2990 CASE_SENSITIVE, 0, NULL, 0, ctx);
2991 if (unlikely(err)) {
2992 ntfs_attr_put_search_ctx(ctx);
2993 goto unm_err_out;
2994 }
2995 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2996 le16_to_cpu(ctx->attr->data.resident.value_offset));
2997 /* Update the access times if they have changed. */
2998 nt = utc2ntfs(vi->i_mtime);
2999 if (si->last_data_change_time != nt) {
3000 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3001 "new = 0x%llx", vi->i_ino, (long long)
3002 sle64_to_cpu(si->last_data_change_time),
3003 (long long)sle64_to_cpu(nt));
3004 si->last_data_change_time = nt;
3005 modified = true;
3006 }
3007 nt = utc2ntfs(vi->i_ctime);
3008 if (si->last_mft_change_time != nt) {
3009 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3010 "new = 0x%llx", vi->i_ino, (long long)
3011 sle64_to_cpu(si->last_mft_change_time),
3012 (long long)sle64_to_cpu(nt));
3013 si->last_mft_change_time = nt;
3014 modified = true;
3015 }
3016 nt = utc2ntfs(vi->i_atime);
3017 if (si->last_access_time != nt) {
3018 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3019 "new = 0x%llx", vi->i_ino,
3020 (long long)sle64_to_cpu(si->last_access_time),
3021 (long long)sle64_to_cpu(nt));
3022 si->last_access_time = nt;
3023 modified = true;
3024 }
3025 /*
3026 * If we just modified the standard information attribute we need to
3027 * mark the mft record it is in dirty. We do this manually so that
3028 * mark_inode_dirty() is not called which would redirty the inode and
3029 * hence result in an infinite loop of trying to write the inode.
3030 * There is no need to mark the base inode nor the base mft record
3031 * dirty, since we are going to write this mft record below in any case
3032 * and the base mft record may actually not have been modified so it
3033 * might not need to be written out.
3034 * NOTE: It is not a problem when the inode for $MFT itself is being
3035 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3036 * on the $MFT inode and hence ntfs_write_inode() will not be
3037 * re-invoked because of it which in turn is ok since the dirtied mft
3038 * record will be cleaned and written out to disk below, i.e. before
3039 * this function returns.
3040 */
3041 if (modified) {
3042 flush_dcache_mft_record_page(ctx->ntfs_ino);
3043 if (!NInoTestSetDirty(ctx->ntfs_ino))
3044 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3045 ctx->ntfs_ino->page_ofs);
3046 }
3047 ntfs_attr_put_search_ctx(ctx);
3048 /* Now the access times are updated, write the base mft record. */
3049 if (NInoDirty(ni))
3050 err = write_mft_record(ni, m, sync);
3051 /* Write all attached extent mft records. */
3052 mutex_lock(&ni->extent_lock);
3053 if (ni->nr_extents > 0) {
3054 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3055 int i;
3056
3057 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3058 for (i = 0; i < ni->nr_extents; i++) {
3059 ntfs_inode *tni = extent_nis[i];
3060
3061 if (NInoDirty(tni)) {
3062 MFT_RECORD *tm = map_mft_record(tni);
3063 int ret;
3064
3065 if (IS_ERR(tm)) {
3066 if (!err || err == -ENOMEM)
3067 err = PTR_ERR(tm);
3068 continue;
3069 }
3070 ret = write_mft_record(tni, tm, sync);
3071 unmap_mft_record(tni);
3072 if (unlikely(ret)) {
3073 if (!err || err == -ENOMEM)
3074 err = ret;
3075 }
3076 }
3077 }
3078 }
3079 mutex_unlock(&ni->extent_lock);
3080 unmap_mft_record(ni);
3081 if (unlikely(err))
3082 goto err_out;
3083 ntfs_debug("Done.");
3084 return 0;
3085unm_err_out:
3086 unmap_mft_record(ni);
3087err_out:
3088 if (err == -ENOMEM) {
3089 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3090 "Marking the inode dirty again, so the VFS "
3091 "retries later.");
3092 mark_inode_dirty(vi);
3093 } else {
3094 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3095 NVolSetErrors(ni->vol);
3096 }
3097 return err;
3098}
3099
3100#endif /* NTFS_RW */
1/**
2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
3 *
4 * Copyright (c) 2001-2007 Anton Altaparmakov
5 *
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22#include <linux/buffer_head.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/mount.h>
26#include <linux/mutex.h>
27#include <linux/pagemap.h>
28#include <linux/quotaops.h>
29#include <linux/slab.h>
30#include <linux/log2.h>
31
32#include "aops.h"
33#include "attrib.h"
34#include "bitmap.h"
35#include "dir.h"
36#include "debug.h"
37#include "inode.h"
38#include "lcnalloc.h"
39#include "malloc.h"
40#include "mft.h"
41#include "time.h"
42#include "ntfs.h"
43
44/**
45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
46 * @vi: vfs inode which to test
47 * @na: ntfs attribute which is being tested with
48 *
49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
50 * inode @vi for equality with the ntfs attribute @na.
51 *
52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
53 * @na->name and @na->name_len are then ignored.
54 *
55 * Return 1 if the attributes match and 0 if not.
56 *
57 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
58 * allowed to sleep.
59 */
60int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
61{
62 ntfs_inode *ni;
63
64 if (vi->i_ino != na->mft_no)
65 return 0;
66 ni = NTFS_I(vi);
67 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
68 if (likely(!NInoAttr(ni))) {
69 /* If not looking for a normal inode this is a mismatch. */
70 if (unlikely(na->type != AT_UNUSED))
71 return 0;
72 } else {
73 /* A fake inode describing an attribute. */
74 if (ni->type != na->type)
75 return 0;
76 if (ni->name_len != na->name_len)
77 return 0;
78 if (na->name_len && memcmp(ni->name, na->name,
79 na->name_len * sizeof(ntfschar)))
80 return 0;
81 }
82 /* Match! */
83 return 1;
84}
85
86/**
87 * ntfs_init_locked_inode - initialize an inode
88 * @vi: vfs inode to initialize
89 * @na: ntfs attribute which to initialize @vi to
90 *
91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
92 * order to enable ntfs_test_inode() to do its work.
93 *
94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
96 * respectively. Although that is not strictly necessary as
97 * ntfs_read_locked_inode() will fill them in later.
98 *
99 * Return 0 on success and -errno on error.
100 *
101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
103 */
104static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
105{
106 ntfs_inode *ni = NTFS_I(vi);
107
108 vi->i_ino = na->mft_no;
109
110 ni->type = na->type;
111 if (na->type == AT_INDEX_ALLOCATION)
112 NInoSetMstProtected(ni);
113
114 ni->name = na->name;
115 ni->name_len = na->name_len;
116
117 /* If initializing a normal inode, we are done. */
118 if (likely(na->type == AT_UNUSED)) {
119 BUG_ON(na->name);
120 BUG_ON(na->name_len);
121 return 0;
122 }
123
124 /* It is a fake inode. */
125 NInoSetAttr(ni);
126
127 /*
128 * We have I30 global constant as an optimization as it is the name
129 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
130 * allocation but that is ok. And most attributes are unnamed anyway,
131 * thus the fraction of named attributes with name != I30 is actually
132 * absolutely tiny.
133 */
134 if (na->name_len && na->name != I30) {
135 unsigned int i;
136
137 BUG_ON(!na->name);
138 i = na->name_len * sizeof(ntfschar);
139 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
140 if (!ni->name)
141 return -ENOMEM;
142 memcpy(ni->name, na->name, i);
143 ni->name[na->name_len] = 0;
144 }
145 return 0;
146}
147
148typedef int (*set_t)(struct inode *, void *);
149static int ntfs_read_locked_inode(struct inode *vi);
150static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
151static int ntfs_read_locked_index_inode(struct inode *base_vi,
152 struct inode *vi);
153
154/**
155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
156 * @sb: super block of mounted volume
157 * @mft_no: mft record number / inode number to obtain
158 *
159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
160 * file or directory).
161 *
162 * If the inode is in the cache, it is just returned with an increased
163 * reference count. Otherwise, a new struct inode is allocated and initialized,
164 * and finally ntfs_read_locked_inode() is called to read in the inode and
165 * fill in the remainder of the inode structure.
166 *
167 * Return the struct inode on success. Check the return value with IS_ERR() and
168 * if true, the function failed and the error code is obtained from PTR_ERR().
169 */
170struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
171{
172 struct inode *vi;
173 int err;
174 ntfs_attr na;
175
176 na.mft_no = mft_no;
177 na.type = AT_UNUSED;
178 na.name = NULL;
179 na.name_len = 0;
180
181 vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
182 (set_t)ntfs_init_locked_inode, &na);
183 if (unlikely(!vi))
184 return ERR_PTR(-ENOMEM);
185
186 err = 0;
187
188 /* If this is a freshly allocated inode, need to read it now. */
189 if (vi->i_state & I_NEW) {
190 err = ntfs_read_locked_inode(vi);
191 unlock_new_inode(vi);
192 }
193 /*
194 * There is no point in keeping bad inodes around if the failure was
195 * due to ENOMEM. We want to be able to retry again later.
196 */
197 if (unlikely(err == -ENOMEM)) {
198 iput(vi);
199 vi = ERR_PTR(err);
200 }
201 return vi;
202}
203
204/**
205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
206 * @base_vi: vfs base inode containing the attribute
207 * @type: attribute type
208 * @name: Unicode name of the attribute (NULL if unnamed)
209 * @name_len: length of @name in Unicode characters (0 if unnamed)
210 *
211 * Obtain the (fake) struct inode corresponding to the attribute specified by
212 * @type, @name, and @name_len, which is present in the base mft record
213 * specified by the vfs inode @base_vi.
214 *
215 * If the attribute inode is in the cache, it is just returned with an
216 * increased reference count. Otherwise, a new struct inode is allocated and
217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
218 * attribute and fill in the inode structure.
219 *
220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
222 *
223 * Return the struct inode of the attribute inode on success. Check the return
224 * value with IS_ERR() and if true, the function failed and the error code is
225 * obtained from PTR_ERR().
226 */
227struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
228 ntfschar *name, u32 name_len)
229{
230 struct inode *vi;
231 int err;
232 ntfs_attr na;
233
234 /* Make sure no one calls ntfs_attr_iget() for indices. */
235 BUG_ON(type == AT_INDEX_ALLOCATION);
236
237 na.mft_no = base_vi->i_ino;
238 na.type = type;
239 na.name = name;
240 na.name_len = name_len;
241
242 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
243 (set_t)ntfs_init_locked_inode, &na);
244 if (unlikely(!vi))
245 return ERR_PTR(-ENOMEM);
246
247 err = 0;
248
249 /* If this is a freshly allocated inode, need to read it now. */
250 if (vi->i_state & I_NEW) {
251 err = ntfs_read_locked_attr_inode(base_vi, vi);
252 unlock_new_inode(vi);
253 }
254 /*
255 * There is no point in keeping bad attribute inodes around. This also
256 * simplifies things in that we never need to check for bad attribute
257 * inodes elsewhere.
258 */
259 if (unlikely(err)) {
260 iput(vi);
261 vi = ERR_PTR(err);
262 }
263 return vi;
264}
265
266/**
267 * ntfs_index_iget - obtain a struct inode corresponding to an index
268 * @base_vi: vfs base inode containing the index related attributes
269 * @name: Unicode name of the index
270 * @name_len: length of @name in Unicode characters
271 *
272 * Obtain the (fake) struct inode corresponding to the index specified by @name
273 * and @name_len, which is present in the base mft record specified by the vfs
274 * inode @base_vi.
275 *
276 * If the index inode is in the cache, it is just returned with an increased
277 * reference count. Otherwise, a new struct inode is allocated and
278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
279 * the index related attributes and fill in the inode structure.
280 *
281 * Return the struct inode of the index inode on success. Check the return
282 * value with IS_ERR() and if true, the function failed and the error code is
283 * obtained from PTR_ERR().
284 */
285struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
286 u32 name_len)
287{
288 struct inode *vi;
289 int err;
290 ntfs_attr na;
291
292 na.mft_no = base_vi->i_ino;
293 na.type = AT_INDEX_ALLOCATION;
294 na.name = name;
295 na.name_len = name_len;
296
297 vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
298 (set_t)ntfs_init_locked_inode, &na);
299 if (unlikely(!vi))
300 return ERR_PTR(-ENOMEM);
301
302 err = 0;
303
304 /* If this is a freshly allocated inode, need to read it now. */
305 if (vi->i_state & I_NEW) {
306 err = ntfs_read_locked_index_inode(base_vi, vi);
307 unlock_new_inode(vi);
308 }
309 /*
310 * There is no point in keeping bad index inodes around. This also
311 * simplifies things in that we never need to check for bad index
312 * inodes elsewhere.
313 */
314 if (unlikely(err)) {
315 iput(vi);
316 vi = ERR_PTR(err);
317 }
318 return vi;
319}
320
321struct inode *ntfs_alloc_big_inode(struct super_block *sb)
322{
323 ntfs_inode *ni;
324
325 ntfs_debug("Entering.");
326 ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
327 if (likely(ni != NULL)) {
328 ni->state = 0;
329 return VFS_I(ni);
330 }
331 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
332 return NULL;
333}
334
335static void ntfs_i_callback(struct rcu_head *head)
336{
337 struct inode *inode = container_of(head, struct inode, i_rcu);
338 INIT_LIST_HEAD(&inode->i_dentry);
339 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
340}
341
342void ntfs_destroy_big_inode(struct inode *inode)
343{
344 ntfs_inode *ni = NTFS_I(inode);
345
346 ntfs_debug("Entering.");
347 BUG_ON(ni->page);
348 if (!atomic_dec_and_test(&ni->count))
349 BUG();
350 call_rcu(&inode->i_rcu, ntfs_i_callback);
351}
352
353static inline ntfs_inode *ntfs_alloc_extent_inode(void)
354{
355 ntfs_inode *ni;
356
357 ntfs_debug("Entering.");
358 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
359 if (likely(ni != NULL)) {
360 ni->state = 0;
361 return ni;
362 }
363 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
364 return NULL;
365}
366
367static void ntfs_destroy_extent_inode(ntfs_inode *ni)
368{
369 ntfs_debug("Entering.");
370 BUG_ON(ni->page);
371 if (!atomic_dec_and_test(&ni->count))
372 BUG();
373 kmem_cache_free(ntfs_inode_cache, ni);
374}
375
376/*
377 * The attribute runlist lock has separate locking rules from the
378 * normal runlist lock, so split the two lock-classes:
379 */
380static struct lock_class_key attr_list_rl_lock_class;
381
382/**
383 * __ntfs_init_inode - initialize ntfs specific part of an inode
384 * @sb: super block of mounted volume
385 * @ni: freshly allocated ntfs inode which to initialize
386 *
387 * Initialize an ntfs inode to defaults.
388 *
389 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
390 * untouched. Make sure to initialize them elsewhere.
391 *
392 * Return zero on success and -ENOMEM on error.
393 */
394void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
395{
396 ntfs_debug("Entering.");
397 rwlock_init(&ni->size_lock);
398 ni->initialized_size = ni->allocated_size = 0;
399 ni->seq_no = 0;
400 atomic_set(&ni->count, 1);
401 ni->vol = NTFS_SB(sb);
402 ntfs_init_runlist(&ni->runlist);
403 mutex_init(&ni->mrec_lock);
404 ni->page = NULL;
405 ni->page_ofs = 0;
406 ni->attr_list_size = 0;
407 ni->attr_list = NULL;
408 ntfs_init_runlist(&ni->attr_list_rl);
409 lockdep_set_class(&ni->attr_list_rl.lock,
410 &attr_list_rl_lock_class);
411 ni->itype.index.block_size = 0;
412 ni->itype.index.vcn_size = 0;
413 ni->itype.index.collation_rule = 0;
414 ni->itype.index.block_size_bits = 0;
415 ni->itype.index.vcn_size_bits = 0;
416 mutex_init(&ni->extent_lock);
417 ni->nr_extents = 0;
418 ni->ext.base_ntfs_ino = NULL;
419}
420
421/*
422 * Extent inodes get MFT-mapped in a nested way, while the base inode
423 * is still mapped. Teach this nesting to the lock validator by creating
424 * a separate class for nested inode's mrec_lock's:
425 */
426static struct lock_class_key extent_inode_mrec_lock_key;
427
428inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
429 unsigned long mft_no)
430{
431 ntfs_inode *ni = ntfs_alloc_extent_inode();
432
433 ntfs_debug("Entering.");
434 if (likely(ni != NULL)) {
435 __ntfs_init_inode(sb, ni);
436 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
437 ni->mft_no = mft_no;
438 ni->type = AT_UNUSED;
439 ni->name = NULL;
440 ni->name_len = 0;
441 }
442 return ni;
443}
444
445/**
446 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
447 * @ctx: initialized attribute search context
448 *
449 * Search all file name attributes in the inode described by the attribute
450 * search context @ctx and check if any of the names are in the $Extend system
451 * directory.
452 *
453 * Return values:
454 * 1: file is in $Extend directory
455 * 0: file is not in $Extend directory
456 * -errno: failed to determine if the file is in the $Extend directory
457 */
458static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
459{
460 int nr_links, err;
461
462 /* Restart search. */
463 ntfs_attr_reinit_search_ctx(ctx);
464
465 /* Get number of hard links. */
466 nr_links = le16_to_cpu(ctx->mrec->link_count);
467
468 /* Loop through all hard links. */
469 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
470 ctx))) {
471 FILE_NAME_ATTR *file_name_attr;
472 ATTR_RECORD *attr = ctx->attr;
473 u8 *p, *p2;
474
475 nr_links--;
476 /*
477 * Maximum sanity checking as we are called on an inode that
478 * we suspect might be corrupt.
479 */
480 p = (u8*)attr + le32_to_cpu(attr->length);
481 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
482 le32_to_cpu(ctx->mrec->bytes_in_use)) {
483err_corrupt_attr:
484 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
485 "attribute. You should run chkdsk.");
486 return -EIO;
487 }
488 if (attr->non_resident) {
489 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
490 "name. You should run chkdsk.");
491 return -EIO;
492 }
493 if (attr->flags) {
494 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
495 "invalid flags. You should run "
496 "chkdsk.");
497 return -EIO;
498 }
499 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
500 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
501 "name. You should run chkdsk.");
502 return -EIO;
503 }
504 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
505 le16_to_cpu(attr->data.resident.value_offset));
506 p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
507 if (p2 < (u8*)attr || p2 > p)
508 goto err_corrupt_attr;
509 /* This attribute is ok, but is it in the $Extend directory? */
510 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
511 return 1; /* YES, it's an extended system file. */
512 }
513 if (unlikely(err != -ENOENT))
514 return err;
515 if (unlikely(nr_links)) {
516 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
517 "doesn't match number of name attributes. You "
518 "should run chkdsk.");
519 return -EIO;
520 }
521 return 0; /* NO, it is not an extended system file. */
522}
523
524/**
525 * ntfs_read_locked_inode - read an inode from its device
526 * @vi: inode to read
527 *
528 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
529 * described by @vi into memory from the device.
530 *
531 * The only fields in @vi that we need to/can look at when the function is
532 * called are i_sb, pointing to the mounted device's super block, and i_ino,
533 * the number of the inode to load.
534 *
535 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
536 * for reading and sets up the necessary @vi fields as well as initializing
537 * the ntfs inode.
538 *
539 * Q: What locks are held when the function is called?
540 * A: i_state has I_NEW set, hence the inode is locked, also
541 * i_count is set to 1, so it is not going to go away
542 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
543 * is allowed to write to them. We should of course be honouring them but
544 * we need to do that using the IS_* macros defined in include/linux/fs.h.
545 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
546 *
547 * Return 0 on success and -errno on error. In the error case, the inode will
548 * have had make_bad_inode() executed on it.
549 */
550static int ntfs_read_locked_inode(struct inode *vi)
551{
552 ntfs_volume *vol = NTFS_SB(vi->i_sb);
553 ntfs_inode *ni;
554 struct inode *bvi;
555 MFT_RECORD *m;
556 ATTR_RECORD *a;
557 STANDARD_INFORMATION *si;
558 ntfs_attr_search_ctx *ctx;
559 int err = 0;
560
561 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
562
563 /* Setup the generic vfs inode parts now. */
564
565 /*
566 * This is for checking whether an inode has changed w.r.t. a file so
567 * that the file can be updated if necessary (compare with f_version).
568 */
569 vi->i_version = 1;
570
571 vi->i_uid = vol->uid;
572 vi->i_gid = vol->gid;
573 vi->i_mode = 0;
574
575 /*
576 * Initialize the ntfs specific part of @vi special casing
577 * FILE_MFT which we need to do at mount time.
578 */
579 if (vi->i_ino != FILE_MFT)
580 ntfs_init_big_inode(vi);
581 ni = NTFS_I(vi);
582
583 m = map_mft_record(ni);
584 if (IS_ERR(m)) {
585 err = PTR_ERR(m);
586 goto err_out;
587 }
588 ctx = ntfs_attr_get_search_ctx(ni, m);
589 if (!ctx) {
590 err = -ENOMEM;
591 goto unm_err_out;
592 }
593
594 if (!(m->flags & MFT_RECORD_IN_USE)) {
595 ntfs_error(vi->i_sb, "Inode is not in use!");
596 goto unm_err_out;
597 }
598 if (m->base_mft_record) {
599 ntfs_error(vi->i_sb, "Inode is an extent inode!");
600 goto unm_err_out;
601 }
602
603 /* Transfer information from mft record into vfs and ntfs inodes. */
604 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
605
606 /*
607 * FIXME: Keep in mind that link_count is two for files which have both
608 * a long file name and a short file name as separate entries, so if
609 * we are hiding short file names this will be too high. Either we need
610 * to account for the short file names by subtracting them or we need
611 * to make sure we delete files even though i_nlink is not zero which
612 * might be tricky due to vfs interactions. Need to think about this
613 * some more when implementing the unlink command.
614 */
615 vi->i_nlink = le16_to_cpu(m->link_count);
616 /*
617 * FIXME: Reparse points can have the directory bit set even though
618 * they would be S_IFLNK. Need to deal with this further below when we
619 * implement reparse points / symbolic links but it will do for now.
620 * Also if not a directory, it could be something else, rather than
621 * a regular file. But again, will do for now.
622 */
623 /* Everyone gets all permissions. */
624 vi->i_mode |= S_IRWXUGO;
625 /* If read-only, no one gets write permissions. */
626 if (IS_RDONLY(vi))
627 vi->i_mode &= ~S_IWUGO;
628 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
629 vi->i_mode |= S_IFDIR;
630 /*
631 * Apply the directory permissions mask set in the mount
632 * options.
633 */
634 vi->i_mode &= ~vol->dmask;
635 /* Things break without this kludge! */
636 if (vi->i_nlink > 1)
637 vi->i_nlink = 1;
638 } else {
639 vi->i_mode |= S_IFREG;
640 /* Apply the file permissions mask set in the mount options. */
641 vi->i_mode &= ~vol->fmask;
642 }
643 /*
644 * Find the standard information attribute in the mft record. At this
645 * stage we haven't setup the attribute list stuff yet, so this could
646 * in fact fail if the standard information is in an extent record, but
647 * I don't think this actually ever happens.
648 */
649 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
650 ctx);
651 if (unlikely(err)) {
652 if (err == -ENOENT) {
653 /*
654 * TODO: We should be performing a hot fix here (if the
655 * recover mount option is set) by creating a new
656 * attribute.
657 */
658 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
659 "is missing.");
660 }
661 goto unm_err_out;
662 }
663 a = ctx->attr;
664 /* Get the standard information attribute value. */
665 si = (STANDARD_INFORMATION*)((u8*)a +
666 le16_to_cpu(a->data.resident.value_offset));
667
668 /* Transfer information from the standard information into vi. */
669 /*
670 * Note: The i_?times do not quite map perfectly onto the NTFS times,
671 * but they are close enough, and in the end it doesn't really matter
672 * that much...
673 */
674 /*
675 * mtime is the last change of the data within the file. Not changed
676 * when only metadata is changed, e.g. a rename doesn't affect mtime.
677 */
678 vi->i_mtime = ntfs2utc(si->last_data_change_time);
679 /*
680 * ctime is the last change of the metadata of the file. This obviously
681 * always changes, when mtime is changed. ctime can be changed on its
682 * own, mtime is then not changed, e.g. when a file is renamed.
683 */
684 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
685 /*
686 * Last access to the data within the file. Not changed during a rename
687 * for example but changed whenever the file is written to.
688 */
689 vi->i_atime = ntfs2utc(si->last_access_time);
690
691 /* Find the attribute list attribute if present. */
692 ntfs_attr_reinit_search_ctx(ctx);
693 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
694 if (err) {
695 if (unlikely(err != -ENOENT)) {
696 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
697 "attribute.");
698 goto unm_err_out;
699 }
700 } else /* if (!err) */ {
701 if (vi->i_ino == FILE_MFT)
702 goto skip_attr_list_load;
703 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
704 NInoSetAttrList(ni);
705 a = ctx->attr;
706 if (a->flags & ATTR_COMPRESSION_MASK) {
707 ntfs_error(vi->i_sb, "Attribute list attribute is "
708 "compressed.");
709 goto unm_err_out;
710 }
711 if (a->flags & ATTR_IS_ENCRYPTED ||
712 a->flags & ATTR_IS_SPARSE) {
713 if (a->non_resident) {
714 ntfs_error(vi->i_sb, "Non-resident attribute "
715 "list attribute is encrypted/"
716 "sparse.");
717 goto unm_err_out;
718 }
719 ntfs_warning(vi->i_sb, "Resident attribute list "
720 "attribute in inode 0x%lx is marked "
721 "encrypted/sparse which is not true. "
722 "However, Windows allows this and "
723 "chkdsk does not detect or correct it "
724 "so we will just ignore the invalid "
725 "flags and pretend they are not set.",
726 vi->i_ino);
727 }
728 /* Now allocate memory for the attribute list. */
729 ni->attr_list_size = (u32)ntfs_attr_size(a);
730 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
731 if (!ni->attr_list) {
732 ntfs_error(vi->i_sb, "Not enough memory to allocate "
733 "buffer for attribute list.");
734 err = -ENOMEM;
735 goto unm_err_out;
736 }
737 if (a->non_resident) {
738 NInoSetAttrListNonResident(ni);
739 if (a->data.non_resident.lowest_vcn) {
740 ntfs_error(vi->i_sb, "Attribute list has non "
741 "zero lowest_vcn.");
742 goto unm_err_out;
743 }
744 /*
745 * Setup the runlist. No need for locking as we have
746 * exclusive access to the inode at this time.
747 */
748 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
749 a, NULL);
750 if (IS_ERR(ni->attr_list_rl.rl)) {
751 err = PTR_ERR(ni->attr_list_rl.rl);
752 ni->attr_list_rl.rl = NULL;
753 ntfs_error(vi->i_sb, "Mapping pairs "
754 "decompression failed.");
755 goto unm_err_out;
756 }
757 /* Now load the attribute list. */
758 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
759 ni->attr_list, ni->attr_list_size,
760 sle64_to_cpu(a->data.non_resident.
761 initialized_size)))) {
762 ntfs_error(vi->i_sb, "Failed to load "
763 "attribute list attribute.");
764 goto unm_err_out;
765 }
766 } else /* if (!a->non_resident) */ {
767 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
768 + le32_to_cpu(
769 a->data.resident.value_length) >
770 (u8*)ctx->mrec + vol->mft_record_size) {
771 ntfs_error(vi->i_sb, "Corrupt attribute list "
772 "in inode.");
773 goto unm_err_out;
774 }
775 /* Now copy the attribute list. */
776 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
777 a->data.resident.value_offset),
778 le32_to_cpu(
779 a->data.resident.value_length));
780 }
781 }
782skip_attr_list_load:
783 /*
784 * If an attribute list is present we now have the attribute list value
785 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
786 */
787 if (S_ISDIR(vi->i_mode)) {
788 loff_t bvi_size;
789 ntfs_inode *bni;
790 INDEX_ROOT *ir;
791 u8 *ir_end, *index_end;
792
793 /* It is a directory, find index root attribute. */
794 ntfs_attr_reinit_search_ctx(ctx);
795 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
796 0, NULL, 0, ctx);
797 if (unlikely(err)) {
798 if (err == -ENOENT) {
799 // FIXME: File is corrupt! Hot-fix with empty
800 // index root attribute if recovery option is
801 // set.
802 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
803 "is missing.");
804 }
805 goto unm_err_out;
806 }
807 a = ctx->attr;
808 /* Set up the state. */
809 if (unlikely(a->non_resident)) {
810 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
811 "resident.");
812 goto unm_err_out;
813 }
814 /* Ensure the attribute name is placed before the value. */
815 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
816 le16_to_cpu(a->data.resident.value_offset)))) {
817 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
818 "placed after the attribute value.");
819 goto unm_err_out;
820 }
821 /*
822 * Compressed/encrypted index root just means that the newly
823 * created files in that directory should be created compressed/
824 * encrypted. However index root cannot be both compressed and
825 * encrypted.
826 */
827 if (a->flags & ATTR_COMPRESSION_MASK)
828 NInoSetCompressed(ni);
829 if (a->flags & ATTR_IS_ENCRYPTED) {
830 if (a->flags & ATTR_COMPRESSION_MASK) {
831 ntfs_error(vi->i_sb, "Found encrypted and "
832 "compressed attribute.");
833 goto unm_err_out;
834 }
835 NInoSetEncrypted(ni);
836 }
837 if (a->flags & ATTR_IS_SPARSE)
838 NInoSetSparse(ni);
839 ir = (INDEX_ROOT*)((u8*)a +
840 le16_to_cpu(a->data.resident.value_offset));
841 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
842 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
843 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
844 "corrupt.");
845 goto unm_err_out;
846 }
847 index_end = (u8*)&ir->index +
848 le32_to_cpu(ir->index.index_length);
849 if (index_end > ir_end) {
850 ntfs_error(vi->i_sb, "Directory index is corrupt.");
851 goto unm_err_out;
852 }
853 if (ir->type != AT_FILE_NAME) {
854 ntfs_error(vi->i_sb, "Indexed attribute is not "
855 "$FILE_NAME.");
856 goto unm_err_out;
857 }
858 if (ir->collation_rule != COLLATION_FILE_NAME) {
859 ntfs_error(vi->i_sb, "Index collation rule is not "
860 "COLLATION_FILE_NAME.");
861 goto unm_err_out;
862 }
863 ni->itype.index.collation_rule = ir->collation_rule;
864 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
865 if (ni->itype.index.block_size &
866 (ni->itype.index.block_size - 1)) {
867 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
868 "power of two.",
869 ni->itype.index.block_size);
870 goto unm_err_out;
871 }
872 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
873 ntfs_error(vi->i_sb, "Index block size (%u) > "
874 "PAGE_CACHE_SIZE (%ld) is not "
875 "supported. Sorry.",
876 ni->itype.index.block_size,
877 PAGE_CACHE_SIZE);
878 err = -EOPNOTSUPP;
879 goto unm_err_out;
880 }
881 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
882 ntfs_error(vi->i_sb, "Index block size (%u) < "
883 "NTFS_BLOCK_SIZE (%i) is not "
884 "supported. Sorry.",
885 ni->itype.index.block_size,
886 NTFS_BLOCK_SIZE);
887 err = -EOPNOTSUPP;
888 goto unm_err_out;
889 }
890 ni->itype.index.block_size_bits =
891 ffs(ni->itype.index.block_size) - 1;
892 /* Determine the size of a vcn in the directory index. */
893 if (vol->cluster_size <= ni->itype.index.block_size) {
894 ni->itype.index.vcn_size = vol->cluster_size;
895 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
896 } else {
897 ni->itype.index.vcn_size = vol->sector_size;
898 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
899 }
900
901 /* Setup the index allocation attribute, even if not present. */
902 NInoSetMstProtected(ni);
903 ni->type = AT_INDEX_ALLOCATION;
904 ni->name = I30;
905 ni->name_len = 4;
906
907 if (!(ir->index.flags & LARGE_INDEX)) {
908 /* No index allocation. */
909 vi->i_size = ni->initialized_size =
910 ni->allocated_size = 0;
911 /* We are done with the mft record, so we release it. */
912 ntfs_attr_put_search_ctx(ctx);
913 unmap_mft_record(ni);
914 m = NULL;
915 ctx = NULL;
916 goto skip_large_dir_stuff;
917 } /* LARGE_INDEX: Index allocation present. Setup state. */
918 NInoSetIndexAllocPresent(ni);
919 /* Find index allocation attribute. */
920 ntfs_attr_reinit_search_ctx(ctx);
921 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
922 CASE_SENSITIVE, 0, NULL, 0, ctx);
923 if (unlikely(err)) {
924 if (err == -ENOENT)
925 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
926 "attribute is not present but "
927 "$INDEX_ROOT indicated it is.");
928 else
929 ntfs_error(vi->i_sb, "Failed to lookup "
930 "$INDEX_ALLOCATION "
931 "attribute.");
932 goto unm_err_out;
933 }
934 a = ctx->attr;
935 if (!a->non_resident) {
936 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
937 "is resident.");
938 goto unm_err_out;
939 }
940 /*
941 * Ensure the attribute name is placed before the mapping pairs
942 * array.
943 */
944 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
945 le16_to_cpu(
946 a->data.non_resident.mapping_pairs_offset)))) {
947 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
948 "is placed after the mapping pairs "
949 "array.");
950 goto unm_err_out;
951 }
952 if (a->flags & ATTR_IS_ENCRYPTED) {
953 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
954 "is encrypted.");
955 goto unm_err_out;
956 }
957 if (a->flags & ATTR_IS_SPARSE) {
958 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
959 "is sparse.");
960 goto unm_err_out;
961 }
962 if (a->flags & ATTR_COMPRESSION_MASK) {
963 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
964 "is compressed.");
965 goto unm_err_out;
966 }
967 if (a->data.non_resident.lowest_vcn) {
968 ntfs_error(vi->i_sb, "First extent of "
969 "$INDEX_ALLOCATION attribute has non "
970 "zero lowest_vcn.");
971 goto unm_err_out;
972 }
973 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
974 ni->initialized_size = sle64_to_cpu(
975 a->data.non_resident.initialized_size);
976 ni->allocated_size = sle64_to_cpu(
977 a->data.non_resident.allocated_size);
978 /*
979 * We are done with the mft record, so we release it. Otherwise
980 * we would deadlock in ntfs_attr_iget().
981 */
982 ntfs_attr_put_search_ctx(ctx);
983 unmap_mft_record(ni);
984 m = NULL;
985 ctx = NULL;
986 /* Get the index bitmap attribute inode. */
987 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
988 if (IS_ERR(bvi)) {
989 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
990 err = PTR_ERR(bvi);
991 goto unm_err_out;
992 }
993 bni = NTFS_I(bvi);
994 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
995 NInoSparse(bni)) {
996 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
997 "and/or encrypted and/or sparse.");
998 goto iput_unm_err_out;
999 }
1000 /* Consistency check bitmap size vs. index allocation size. */
1001 bvi_size = i_size_read(bvi);
1002 if ((bvi_size << 3) < (vi->i_size >>
1003 ni->itype.index.block_size_bits)) {
1004 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
1005 "for index allocation (0x%llx).",
1006 bvi_size << 3, vi->i_size);
1007 goto iput_unm_err_out;
1008 }
1009 /* No longer need the bitmap attribute inode. */
1010 iput(bvi);
1011skip_large_dir_stuff:
1012 /* Setup the operations for this inode. */
1013 vi->i_op = &ntfs_dir_inode_ops;
1014 vi->i_fop = &ntfs_dir_ops;
1015 } else {
1016 /* It is a file. */
1017 ntfs_attr_reinit_search_ctx(ctx);
1018
1019 /* Setup the data attribute, even if not present. */
1020 ni->type = AT_DATA;
1021 ni->name = NULL;
1022 ni->name_len = 0;
1023
1024 /* Find first extent of the unnamed data attribute. */
1025 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1026 if (unlikely(err)) {
1027 vi->i_size = ni->initialized_size =
1028 ni->allocated_size = 0;
1029 if (err != -ENOENT) {
1030 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1031 "attribute.");
1032 goto unm_err_out;
1033 }
1034 /*
1035 * FILE_Secure does not have an unnamed $DATA
1036 * attribute, so we special case it here.
1037 */
1038 if (vi->i_ino == FILE_Secure)
1039 goto no_data_attr_special_case;
1040 /*
1041 * Most if not all the system files in the $Extend
1042 * system directory do not have unnamed data
1043 * attributes so we need to check if the parent
1044 * directory of the file is FILE_Extend and if it is
1045 * ignore this error. To do this we need to get the
1046 * name of this inode from the mft record as the name
1047 * contains the back reference to the parent directory.
1048 */
1049 if (ntfs_is_extended_system_file(ctx) > 0)
1050 goto no_data_attr_special_case;
1051 // FIXME: File is corrupt! Hot-fix with empty data
1052 // attribute if recovery option is set.
1053 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1054 goto unm_err_out;
1055 }
1056 a = ctx->attr;
1057 /* Setup the state. */
1058 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1059 if (a->flags & ATTR_COMPRESSION_MASK) {
1060 NInoSetCompressed(ni);
1061 if (vol->cluster_size > 4096) {
1062 ntfs_error(vi->i_sb, "Found "
1063 "compressed data but "
1064 "compression is "
1065 "disabled due to "
1066 "cluster size (%i) > "
1067 "4kiB.",
1068 vol->cluster_size);
1069 goto unm_err_out;
1070 }
1071 if ((a->flags & ATTR_COMPRESSION_MASK)
1072 != ATTR_IS_COMPRESSED) {
1073 ntfs_error(vi->i_sb, "Found unknown "
1074 "compression method "
1075 "or corrupt file.");
1076 goto unm_err_out;
1077 }
1078 }
1079 if (a->flags & ATTR_IS_SPARSE)
1080 NInoSetSparse(ni);
1081 }
1082 if (a->flags & ATTR_IS_ENCRYPTED) {
1083 if (NInoCompressed(ni)) {
1084 ntfs_error(vi->i_sb, "Found encrypted and "
1085 "compressed data.");
1086 goto unm_err_out;
1087 }
1088 NInoSetEncrypted(ni);
1089 }
1090 if (a->non_resident) {
1091 NInoSetNonResident(ni);
1092 if (NInoCompressed(ni) || NInoSparse(ni)) {
1093 if (NInoCompressed(ni) && a->data.non_resident.
1094 compression_unit != 4) {
1095 ntfs_error(vi->i_sb, "Found "
1096 "non-standard "
1097 "compression unit (%u "
1098 "instead of 4). "
1099 "Cannot handle this.",
1100 a->data.non_resident.
1101 compression_unit);
1102 err = -EOPNOTSUPP;
1103 goto unm_err_out;
1104 }
1105 if (a->data.non_resident.compression_unit) {
1106 ni->itype.compressed.block_size = 1U <<
1107 (a->data.non_resident.
1108 compression_unit +
1109 vol->cluster_size_bits);
1110 ni->itype.compressed.block_size_bits =
1111 ffs(ni->itype.
1112 compressed.
1113 block_size) - 1;
1114 ni->itype.compressed.block_clusters =
1115 1U << a->data.
1116 non_resident.
1117 compression_unit;
1118 } else {
1119 ni->itype.compressed.block_size = 0;
1120 ni->itype.compressed.block_size_bits =
1121 0;
1122 ni->itype.compressed.block_clusters =
1123 0;
1124 }
1125 ni->itype.compressed.size = sle64_to_cpu(
1126 a->data.non_resident.
1127 compressed_size);
1128 }
1129 if (a->data.non_resident.lowest_vcn) {
1130 ntfs_error(vi->i_sb, "First extent of $DATA "
1131 "attribute has non zero "
1132 "lowest_vcn.");
1133 goto unm_err_out;
1134 }
1135 vi->i_size = sle64_to_cpu(
1136 a->data.non_resident.data_size);
1137 ni->initialized_size = sle64_to_cpu(
1138 a->data.non_resident.initialized_size);
1139 ni->allocated_size = sle64_to_cpu(
1140 a->data.non_resident.allocated_size);
1141 } else { /* Resident attribute. */
1142 vi->i_size = ni->initialized_size = le32_to_cpu(
1143 a->data.resident.value_length);
1144 ni->allocated_size = le32_to_cpu(a->length) -
1145 le16_to_cpu(
1146 a->data.resident.value_offset);
1147 if (vi->i_size > ni->allocated_size) {
1148 ntfs_error(vi->i_sb, "Resident data attribute "
1149 "is corrupt (size exceeds "
1150 "allocation).");
1151 goto unm_err_out;
1152 }
1153 }
1154no_data_attr_special_case:
1155 /* We are done with the mft record, so we release it. */
1156 ntfs_attr_put_search_ctx(ctx);
1157 unmap_mft_record(ni);
1158 m = NULL;
1159 ctx = NULL;
1160 /* Setup the operations for this inode. */
1161 vi->i_op = &ntfs_file_inode_ops;
1162 vi->i_fop = &ntfs_file_ops;
1163 }
1164 if (NInoMstProtected(ni))
1165 vi->i_mapping->a_ops = &ntfs_mst_aops;
1166 else
1167 vi->i_mapping->a_ops = &ntfs_aops;
1168 /*
1169 * The number of 512-byte blocks used on disk (for stat). This is in so
1170 * far inaccurate as it doesn't account for any named streams or other
1171 * special non-resident attributes, but that is how Windows works, too,
1172 * so we are at least consistent with Windows, if not entirely
1173 * consistent with the Linux Way. Doing it the Linux Way would cause a
1174 * significant slowdown as it would involve iterating over all
1175 * attributes in the mft record and adding the allocated/compressed
1176 * sizes of all non-resident attributes present to give us the Linux
1177 * correct size that should go into i_blocks (after division by 512).
1178 */
1179 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1180 vi->i_blocks = ni->itype.compressed.size >> 9;
1181 else
1182 vi->i_blocks = ni->allocated_size >> 9;
1183 ntfs_debug("Done.");
1184 return 0;
1185iput_unm_err_out:
1186 iput(bvi);
1187unm_err_out:
1188 if (!err)
1189 err = -EIO;
1190 if (ctx)
1191 ntfs_attr_put_search_ctx(ctx);
1192 if (m)
1193 unmap_mft_record(ni);
1194err_out:
1195 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1196 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1197 make_bad_inode(vi);
1198 if (err != -EOPNOTSUPP && err != -ENOMEM)
1199 NVolSetErrors(vol);
1200 return err;
1201}
1202
1203/**
1204 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1205 * @base_vi: base inode
1206 * @vi: attribute inode to read
1207 *
1208 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1209 * attribute inode described by @vi into memory from the base mft record
1210 * described by @base_ni.
1211 *
1212 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1213 * reading and looks up the attribute described by @vi before setting up the
1214 * necessary fields in @vi as well as initializing the ntfs inode.
1215 *
1216 * Q: What locks are held when the function is called?
1217 * A: i_state has I_NEW set, hence the inode is locked, also
1218 * i_count is set to 1, so it is not going to go away
1219 *
1220 * Return 0 on success and -errno on error. In the error case, the inode will
1221 * have had make_bad_inode() executed on it.
1222 *
1223 * Note this cannot be called for AT_INDEX_ALLOCATION.
1224 */
1225static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1226{
1227 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1228 ntfs_inode *ni, *base_ni;
1229 MFT_RECORD *m;
1230 ATTR_RECORD *a;
1231 ntfs_attr_search_ctx *ctx;
1232 int err = 0;
1233
1234 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1235
1236 ntfs_init_big_inode(vi);
1237
1238 ni = NTFS_I(vi);
1239 base_ni = NTFS_I(base_vi);
1240
1241 /* Just mirror the values from the base inode. */
1242 vi->i_version = base_vi->i_version;
1243 vi->i_uid = base_vi->i_uid;
1244 vi->i_gid = base_vi->i_gid;
1245 vi->i_nlink = base_vi->i_nlink;
1246 vi->i_mtime = base_vi->i_mtime;
1247 vi->i_ctime = base_vi->i_ctime;
1248 vi->i_atime = base_vi->i_atime;
1249 vi->i_generation = ni->seq_no = base_ni->seq_no;
1250
1251 /* Set inode type to zero but preserve permissions. */
1252 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1253
1254 m = map_mft_record(base_ni);
1255 if (IS_ERR(m)) {
1256 err = PTR_ERR(m);
1257 goto err_out;
1258 }
1259 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1260 if (!ctx) {
1261 err = -ENOMEM;
1262 goto unm_err_out;
1263 }
1264 /* Find the attribute. */
1265 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1266 CASE_SENSITIVE, 0, NULL, 0, ctx);
1267 if (unlikely(err))
1268 goto unm_err_out;
1269 a = ctx->attr;
1270 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1271 if (a->flags & ATTR_COMPRESSION_MASK) {
1272 NInoSetCompressed(ni);
1273 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1274 ni->name_len)) {
1275 ntfs_error(vi->i_sb, "Found compressed "
1276 "non-data or named data "
1277 "attribute. Please report "
1278 "you saw this message to "
1279 "linux-ntfs-dev@lists."
1280 "sourceforge.net");
1281 goto unm_err_out;
1282 }
1283 if (vol->cluster_size > 4096) {
1284 ntfs_error(vi->i_sb, "Found compressed "
1285 "attribute but compression is "
1286 "disabled due to cluster size "
1287 "(%i) > 4kiB.",
1288 vol->cluster_size);
1289 goto unm_err_out;
1290 }
1291 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1292 ATTR_IS_COMPRESSED) {
1293 ntfs_error(vi->i_sb, "Found unknown "
1294 "compression method.");
1295 goto unm_err_out;
1296 }
1297 }
1298 /*
1299 * The compressed/sparse flag set in an index root just means
1300 * to compress all files.
1301 */
1302 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1303 ntfs_error(vi->i_sb, "Found mst protected attribute "
1304 "but the attribute is %s. Please "
1305 "report you saw this message to "
1306 "linux-ntfs-dev@lists.sourceforge.net",
1307 NInoCompressed(ni) ? "compressed" :
1308 "sparse");
1309 goto unm_err_out;
1310 }
1311 if (a->flags & ATTR_IS_SPARSE)
1312 NInoSetSparse(ni);
1313 }
1314 if (a->flags & ATTR_IS_ENCRYPTED) {
1315 if (NInoCompressed(ni)) {
1316 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1317 "data.");
1318 goto unm_err_out;
1319 }
1320 /*
1321 * The encryption flag set in an index root just means to
1322 * encrypt all files.
1323 */
1324 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1325 ntfs_error(vi->i_sb, "Found mst protected attribute "
1326 "but the attribute is encrypted. "
1327 "Please report you saw this message "
1328 "to linux-ntfs-dev@lists.sourceforge."
1329 "net");
1330 goto unm_err_out;
1331 }
1332 if (ni->type != AT_DATA) {
1333 ntfs_error(vi->i_sb, "Found encrypted non-data "
1334 "attribute.");
1335 goto unm_err_out;
1336 }
1337 NInoSetEncrypted(ni);
1338 }
1339 if (!a->non_resident) {
1340 /* Ensure the attribute name is placed before the value. */
1341 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1342 le16_to_cpu(a->data.resident.value_offset)))) {
1343 ntfs_error(vol->sb, "Attribute name is placed after "
1344 "the attribute value.");
1345 goto unm_err_out;
1346 }
1347 if (NInoMstProtected(ni)) {
1348 ntfs_error(vi->i_sb, "Found mst protected attribute "
1349 "but the attribute is resident. "
1350 "Please report you saw this message to "
1351 "linux-ntfs-dev@lists.sourceforge.net");
1352 goto unm_err_out;
1353 }
1354 vi->i_size = ni->initialized_size = le32_to_cpu(
1355 a->data.resident.value_length);
1356 ni->allocated_size = le32_to_cpu(a->length) -
1357 le16_to_cpu(a->data.resident.value_offset);
1358 if (vi->i_size > ni->allocated_size) {
1359 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1360 "(size exceeds allocation).");
1361 goto unm_err_out;
1362 }
1363 } else {
1364 NInoSetNonResident(ni);
1365 /*
1366 * Ensure the attribute name is placed before the mapping pairs
1367 * array.
1368 */
1369 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1370 le16_to_cpu(
1371 a->data.non_resident.mapping_pairs_offset)))) {
1372 ntfs_error(vol->sb, "Attribute name is placed after "
1373 "the mapping pairs array.");
1374 goto unm_err_out;
1375 }
1376 if (NInoCompressed(ni) || NInoSparse(ni)) {
1377 if (NInoCompressed(ni) && a->data.non_resident.
1378 compression_unit != 4) {
1379 ntfs_error(vi->i_sb, "Found non-standard "
1380 "compression unit (%u instead "
1381 "of 4). Cannot handle this.",
1382 a->data.non_resident.
1383 compression_unit);
1384 err = -EOPNOTSUPP;
1385 goto unm_err_out;
1386 }
1387 if (a->data.non_resident.compression_unit) {
1388 ni->itype.compressed.block_size = 1U <<
1389 (a->data.non_resident.
1390 compression_unit +
1391 vol->cluster_size_bits);
1392 ni->itype.compressed.block_size_bits =
1393 ffs(ni->itype.compressed.
1394 block_size) - 1;
1395 ni->itype.compressed.block_clusters = 1U <<
1396 a->data.non_resident.
1397 compression_unit;
1398 } else {
1399 ni->itype.compressed.block_size = 0;
1400 ni->itype.compressed.block_size_bits = 0;
1401 ni->itype.compressed.block_clusters = 0;
1402 }
1403 ni->itype.compressed.size = sle64_to_cpu(
1404 a->data.non_resident.compressed_size);
1405 }
1406 if (a->data.non_resident.lowest_vcn) {
1407 ntfs_error(vi->i_sb, "First extent of attribute has "
1408 "non-zero lowest_vcn.");
1409 goto unm_err_out;
1410 }
1411 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1412 ni->initialized_size = sle64_to_cpu(
1413 a->data.non_resident.initialized_size);
1414 ni->allocated_size = sle64_to_cpu(
1415 a->data.non_resident.allocated_size);
1416 }
1417 if (NInoMstProtected(ni))
1418 vi->i_mapping->a_ops = &ntfs_mst_aops;
1419 else
1420 vi->i_mapping->a_ops = &ntfs_aops;
1421 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1422 vi->i_blocks = ni->itype.compressed.size >> 9;
1423 else
1424 vi->i_blocks = ni->allocated_size >> 9;
1425 /*
1426 * Make sure the base inode does not go away and attach it to the
1427 * attribute inode.
1428 */
1429 igrab(base_vi);
1430 ni->ext.base_ntfs_ino = base_ni;
1431 ni->nr_extents = -1;
1432
1433 ntfs_attr_put_search_ctx(ctx);
1434 unmap_mft_record(base_ni);
1435
1436 ntfs_debug("Done.");
1437 return 0;
1438
1439unm_err_out:
1440 if (!err)
1441 err = -EIO;
1442 if (ctx)
1443 ntfs_attr_put_search_ctx(ctx);
1444 unmap_mft_record(base_ni);
1445err_out:
1446 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1447 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1448 "Marking corrupt inode and base inode 0x%lx as bad. "
1449 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1450 base_vi->i_ino);
1451 make_bad_inode(vi);
1452 if (err != -ENOMEM)
1453 NVolSetErrors(vol);
1454 return err;
1455}
1456
1457/**
1458 * ntfs_read_locked_index_inode - read an index inode from its base inode
1459 * @base_vi: base inode
1460 * @vi: index inode to read
1461 *
1462 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1463 * index inode described by @vi into memory from the base mft record described
1464 * by @base_ni.
1465 *
1466 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1467 * reading and looks up the attributes relating to the index described by @vi
1468 * before setting up the necessary fields in @vi as well as initializing the
1469 * ntfs inode.
1470 *
1471 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1472 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1473 * are setup like directory inodes since directories are a special case of
1474 * indices ao they need to be treated in much the same way. Most importantly,
1475 * for small indices the index allocation attribute might not actually exist.
1476 * However, the index root attribute always exists but this does not need to
1477 * have an inode associated with it and this is why we define a new inode type
1478 * index. Also, like for directories, we need to have an attribute inode for
1479 * the bitmap attribute corresponding to the index allocation attribute and we
1480 * can store this in the appropriate field of the inode, just like we do for
1481 * normal directory inodes.
1482 *
1483 * Q: What locks are held when the function is called?
1484 * A: i_state has I_NEW set, hence the inode is locked, also
1485 * i_count is set to 1, so it is not going to go away
1486 *
1487 * Return 0 on success and -errno on error. In the error case, the inode will
1488 * have had make_bad_inode() executed on it.
1489 */
1490static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1491{
1492 loff_t bvi_size;
1493 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1494 ntfs_inode *ni, *base_ni, *bni;
1495 struct inode *bvi;
1496 MFT_RECORD *m;
1497 ATTR_RECORD *a;
1498 ntfs_attr_search_ctx *ctx;
1499 INDEX_ROOT *ir;
1500 u8 *ir_end, *index_end;
1501 int err = 0;
1502
1503 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1504 ntfs_init_big_inode(vi);
1505 ni = NTFS_I(vi);
1506 base_ni = NTFS_I(base_vi);
1507 /* Just mirror the values from the base inode. */
1508 vi->i_version = base_vi->i_version;
1509 vi->i_uid = base_vi->i_uid;
1510 vi->i_gid = base_vi->i_gid;
1511 vi->i_nlink = base_vi->i_nlink;
1512 vi->i_mtime = base_vi->i_mtime;
1513 vi->i_ctime = base_vi->i_ctime;
1514 vi->i_atime = base_vi->i_atime;
1515 vi->i_generation = ni->seq_no = base_ni->seq_no;
1516 /* Set inode type to zero but preserve permissions. */
1517 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1518 /* Map the mft record for the base inode. */
1519 m = map_mft_record(base_ni);
1520 if (IS_ERR(m)) {
1521 err = PTR_ERR(m);
1522 goto err_out;
1523 }
1524 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1525 if (!ctx) {
1526 err = -ENOMEM;
1527 goto unm_err_out;
1528 }
1529 /* Find the index root attribute. */
1530 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1531 CASE_SENSITIVE, 0, NULL, 0, ctx);
1532 if (unlikely(err)) {
1533 if (err == -ENOENT)
1534 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1535 "missing.");
1536 goto unm_err_out;
1537 }
1538 a = ctx->attr;
1539 /* Set up the state. */
1540 if (unlikely(a->non_resident)) {
1541 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1542 goto unm_err_out;
1543 }
1544 /* Ensure the attribute name is placed before the value. */
1545 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1546 le16_to_cpu(a->data.resident.value_offset)))) {
1547 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1548 "after the attribute value.");
1549 goto unm_err_out;
1550 }
1551 /*
1552 * Compressed/encrypted/sparse index root is not allowed, except for
1553 * directories of course but those are not dealt with here.
1554 */
1555 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1556 ATTR_IS_SPARSE)) {
1557 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1558 "root attribute.");
1559 goto unm_err_out;
1560 }
1561 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1562 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1563 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1564 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1565 goto unm_err_out;
1566 }
1567 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1568 if (index_end > ir_end) {
1569 ntfs_error(vi->i_sb, "Index is corrupt.");
1570 goto unm_err_out;
1571 }
1572 if (ir->type) {
1573 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1574 le32_to_cpu(ir->type));
1575 goto unm_err_out;
1576 }
1577 ni->itype.index.collation_rule = ir->collation_rule;
1578 ntfs_debug("Index collation rule is 0x%x.",
1579 le32_to_cpu(ir->collation_rule));
1580 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1581 if (!is_power_of_2(ni->itype.index.block_size)) {
1582 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1583 "two.", ni->itype.index.block_size);
1584 goto unm_err_out;
1585 }
1586 if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
1587 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
1588 "(%ld) is not supported. Sorry.",
1589 ni->itype.index.block_size, PAGE_CACHE_SIZE);
1590 err = -EOPNOTSUPP;
1591 goto unm_err_out;
1592 }
1593 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1594 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1595 "(%i) is not supported. Sorry.",
1596 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1597 err = -EOPNOTSUPP;
1598 goto unm_err_out;
1599 }
1600 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1601 /* Determine the size of a vcn in the index. */
1602 if (vol->cluster_size <= ni->itype.index.block_size) {
1603 ni->itype.index.vcn_size = vol->cluster_size;
1604 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1605 } else {
1606 ni->itype.index.vcn_size = vol->sector_size;
1607 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1608 }
1609 /* Check for presence of index allocation attribute. */
1610 if (!(ir->index.flags & LARGE_INDEX)) {
1611 /* No index allocation. */
1612 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1613 /* We are done with the mft record, so we release it. */
1614 ntfs_attr_put_search_ctx(ctx);
1615 unmap_mft_record(base_ni);
1616 m = NULL;
1617 ctx = NULL;
1618 goto skip_large_index_stuff;
1619 } /* LARGE_INDEX: Index allocation present. Setup state. */
1620 NInoSetIndexAllocPresent(ni);
1621 /* Find index allocation attribute. */
1622 ntfs_attr_reinit_search_ctx(ctx);
1623 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1624 CASE_SENSITIVE, 0, NULL, 0, ctx);
1625 if (unlikely(err)) {
1626 if (err == -ENOENT)
1627 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1628 "not present but $INDEX_ROOT "
1629 "indicated it is.");
1630 else
1631 ntfs_error(vi->i_sb, "Failed to lookup "
1632 "$INDEX_ALLOCATION attribute.");
1633 goto unm_err_out;
1634 }
1635 a = ctx->attr;
1636 if (!a->non_resident) {
1637 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1638 "resident.");
1639 goto unm_err_out;
1640 }
1641 /*
1642 * Ensure the attribute name is placed before the mapping pairs array.
1643 */
1644 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1645 le16_to_cpu(
1646 a->data.non_resident.mapping_pairs_offset)))) {
1647 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1648 "placed after the mapping pairs array.");
1649 goto unm_err_out;
1650 }
1651 if (a->flags & ATTR_IS_ENCRYPTED) {
1652 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1653 "encrypted.");
1654 goto unm_err_out;
1655 }
1656 if (a->flags & ATTR_IS_SPARSE) {
1657 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1658 goto unm_err_out;
1659 }
1660 if (a->flags & ATTR_COMPRESSION_MASK) {
1661 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1662 "compressed.");
1663 goto unm_err_out;
1664 }
1665 if (a->data.non_resident.lowest_vcn) {
1666 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1667 "attribute has non zero lowest_vcn.");
1668 goto unm_err_out;
1669 }
1670 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1671 ni->initialized_size = sle64_to_cpu(
1672 a->data.non_resident.initialized_size);
1673 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1674 /*
1675 * We are done with the mft record, so we release it. Otherwise
1676 * we would deadlock in ntfs_attr_iget().
1677 */
1678 ntfs_attr_put_search_ctx(ctx);
1679 unmap_mft_record(base_ni);
1680 m = NULL;
1681 ctx = NULL;
1682 /* Get the index bitmap attribute inode. */
1683 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1684 if (IS_ERR(bvi)) {
1685 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1686 err = PTR_ERR(bvi);
1687 goto unm_err_out;
1688 }
1689 bni = NTFS_I(bvi);
1690 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1691 NInoSparse(bni)) {
1692 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1693 "encrypted and/or sparse.");
1694 goto iput_unm_err_out;
1695 }
1696 /* Consistency check bitmap size vs. index allocation size. */
1697 bvi_size = i_size_read(bvi);
1698 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1699 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1700 "index allocation (0x%llx).", bvi_size << 3,
1701 vi->i_size);
1702 goto iput_unm_err_out;
1703 }
1704 iput(bvi);
1705skip_large_index_stuff:
1706 /* Setup the operations for this index inode. */
1707 vi->i_op = NULL;
1708 vi->i_fop = NULL;
1709 vi->i_mapping->a_ops = &ntfs_mst_aops;
1710 vi->i_blocks = ni->allocated_size >> 9;
1711 /*
1712 * Make sure the base inode doesn't go away and attach it to the
1713 * index inode.
1714 */
1715 igrab(base_vi);
1716 ni->ext.base_ntfs_ino = base_ni;
1717 ni->nr_extents = -1;
1718
1719 ntfs_debug("Done.");
1720 return 0;
1721iput_unm_err_out:
1722 iput(bvi);
1723unm_err_out:
1724 if (!err)
1725 err = -EIO;
1726 if (ctx)
1727 ntfs_attr_put_search_ctx(ctx);
1728 if (m)
1729 unmap_mft_record(base_ni);
1730err_out:
1731 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1732 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1733 ni->name_len);
1734 make_bad_inode(vi);
1735 if (err != -EOPNOTSUPP && err != -ENOMEM)
1736 NVolSetErrors(vol);
1737 return err;
1738}
1739
1740/*
1741 * The MFT inode has special locking, so teach the lock validator
1742 * about this by splitting off the locking rules of the MFT from
1743 * the locking rules of other inodes. The MFT inode can never be
1744 * accessed from the VFS side (or even internally), only by the
1745 * map_mft functions.
1746 */
1747static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1748
1749/**
1750 * ntfs_read_inode_mount - special read_inode for mount time use only
1751 * @vi: inode to read
1752 *
1753 * Read inode FILE_MFT at mount time, only called with super_block lock
1754 * held from within the read_super() code path.
1755 *
1756 * This function exists because when it is called the page cache for $MFT/$DATA
1757 * is not initialized and hence we cannot get at the contents of mft records
1758 * by calling map_mft_record*().
1759 *
1760 * Further it needs to cope with the circular references problem, i.e. cannot
1761 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1762 * we do not know where the other extent mft records are yet and again, because
1763 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1764 * attribute list is actually present in $MFT inode.
1765 *
1766 * We solve these problems by starting with the $DATA attribute before anything
1767 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1768 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1769 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1770 * sufficient information for the next step to complete.
1771 *
1772 * This should work but there are two possible pit falls (see inline comments
1773 * below), but only time will tell if they are real pits or just smoke...
1774 */
1775int ntfs_read_inode_mount(struct inode *vi)
1776{
1777 VCN next_vcn, last_vcn, highest_vcn;
1778 s64 block;
1779 struct super_block *sb = vi->i_sb;
1780 ntfs_volume *vol = NTFS_SB(sb);
1781 struct buffer_head *bh;
1782 ntfs_inode *ni;
1783 MFT_RECORD *m = NULL;
1784 ATTR_RECORD *a;
1785 ntfs_attr_search_ctx *ctx;
1786 unsigned int i, nr_blocks;
1787 int err;
1788
1789 ntfs_debug("Entering.");
1790
1791 /* Initialize the ntfs specific part of @vi. */
1792 ntfs_init_big_inode(vi);
1793
1794 ni = NTFS_I(vi);
1795
1796 /* Setup the data attribute. It is special as it is mst protected. */
1797 NInoSetNonResident(ni);
1798 NInoSetMstProtected(ni);
1799 NInoSetSparseDisabled(ni);
1800 ni->type = AT_DATA;
1801 ni->name = NULL;
1802 ni->name_len = 0;
1803 /*
1804 * This sets up our little cheat allowing us to reuse the async read io
1805 * completion handler for directories.
1806 */
1807 ni->itype.index.block_size = vol->mft_record_size;
1808 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1809
1810 /* Very important! Needed to be able to call map_mft_record*(). */
1811 vol->mft_ino = vi;
1812
1813 /* Allocate enough memory to read the first mft record. */
1814 if (vol->mft_record_size > 64 * 1024) {
1815 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1816 vol->mft_record_size);
1817 goto err_out;
1818 }
1819 i = vol->mft_record_size;
1820 if (i < sb->s_blocksize)
1821 i = sb->s_blocksize;
1822 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1823 if (!m) {
1824 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1825 goto err_out;
1826 }
1827
1828 /* Determine the first block of the $MFT/$DATA attribute. */
1829 block = vol->mft_lcn << vol->cluster_size_bits >>
1830 sb->s_blocksize_bits;
1831 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1832 if (!nr_blocks)
1833 nr_blocks = 1;
1834
1835 /* Load $MFT/$DATA's first mft record. */
1836 for (i = 0; i < nr_blocks; i++) {
1837 bh = sb_bread(sb, block++);
1838 if (!bh) {
1839 ntfs_error(sb, "Device read failed.");
1840 goto err_out;
1841 }
1842 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1843 sb->s_blocksize);
1844 brelse(bh);
1845 }
1846
1847 /* Apply the mst fixups. */
1848 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1849 /* FIXME: Try to use the $MFTMirr now. */
1850 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1851 goto err_out;
1852 }
1853
1854 /* Need this to sanity check attribute list references to $MFT. */
1855 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1856
1857 /* Provides readpage() and sync_page() for map_mft_record(). */
1858 vi->i_mapping->a_ops = &ntfs_mst_aops;
1859
1860 ctx = ntfs_attr_get_search_ctx(ni, m);
1861 if (!ctx) {
1862 err = -ENOMEM;
1863 goto err_out;
1864 }
1865
1866 /* Find the attribute list attribute if present. */
1867 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1868 if (err) {
1869 if (unlikely(err != -ENOENT)) {
1870 ntfs_error(sb, "Failed to lookup attribute list "
1871 "attribute. You should run chkdsk.");
1872 goto put_err_out;
1873 }
1874 } else /* if (!err) */ {
1875 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1876 u8 *al_end;
1877 static const char *es = " Not allowed. $MFT is corrupt. "
1878 "You should run chkdsk.";
1879
1880 ntfs_debug("Attribute list attribute found in $MFT.");
1881 NInoSetAttrList(ni);
1882 a = ctx->attr;
1883 if (a->flags & ATTR_COMPRESSION_MASK) {
1884 ntfs_error(sb, "Attribute list attribute is "
1885 "compressed.%s", es);
1886 goto put_err_out;
1887 }
1888 if (a->flags & ATTR_IS_ENCRYPTED ||
1889 a->flags & ATTR_IS_SPARSE) {
1890 if (a->non_resident) {
1891 ntfs_error(sb, "Non-resident attribute list "
1892 "attribute is encrypted/"
1893 "sparse.%s", es);
1894 goto put_err_out;
1895 }
1896 ntfs_warning(sb, "Resident attribute list attribute "
1897 "in $MFT system file is marked "
1898 "encrypted/sparse which is not true. "
1899 "However, Windows allows this and "
1900 "chkdsk does not detect or correct it "
1901 "so we will just ignore the invalid "
1902 "flags and pretend they are not set.");
1903 }
1904 /* Now allocate memory for the attribute list. */
1905 ni->attr_list_size = (u32)ntfs_attr_size(a);
1906 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1907 if (!ni->attr_list) {
1908 ntfs_error(sb, "Not enough memory to allocate buffer "
1909 "for attribute list.");
1910 goto put_err_out;
1911 }
1912 if (a->non_resident) {
1913 NInoSetAttrListNonResident(ni);
1914 if (a->data.non_resident.lowest_vcn) {
1915 ntfs_error(sb, "Attribute list has non zero "
1916 "lowest_vcn. $MFT is corrupt. "
1917 "You should run chkdsk.");
1918 goto put_err_out;
1919 }
1920 /* Setup the runlist. */
1921 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1922 a, NULL);
1923 if (IS_ERR(ni->attr_list_rl.rl)) {
1924 err = PTR_ERR(ni->attr_list_rl.rl);
1925 ni->attr_list_rl.rl = NULL;
1926 ntfs_error(sb, "Mapping pairs decompression "
1927 "failed with error code %i.",
1928 -err);
1929 goto put_err_out;
1930 }
1931 /* Now load the attribute list. */
1932 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1933 ni->attr_list, ni->attr_list_size,
1934 sle64_to_cpu(a->data.
1935 non_resident.initialized_size)))) {
1936 ntfs_error(sb, "Failed to load attribute list "
1937 "attribute with error code %i.",
1938 -err);
1939 goto put_err_out;
1940 }
1941 } else /* if (!ctx.attr->non_resident) */ {
1942 if ((u8*)a + le16_to_cpu(
1943 a->data.resident.value_offset) +
1944 le32_to_cpu(
1945 a->data.resident.value_length) >
1946 (u8*)ctx->mrec + vol->mft_record_size) {
1947 ntfs_error(sb, "Corrupt attribute list "
1948 "attribute.");
1949 goto put_err_out;
1950 }
1951 /* Now copy the attribute list. */
1952 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1953 a->data.resident.value_offset),
1954 le32_to_cpu(
1955 a->data.resident.value_length));
1956 }
1957 /* The attribute list is now setup in memory. */
1958 /*
1959 * FIXME: I don't know if this case is actually possible.
1960 * According to logic it is not possible but I have seen too
1961 * many weird things in MS software to rely on logic... Thus we
1962 * perform a manual search and make sure the first $MFT/$DATA
1963 * extent is in the base inode. If it is not we abort with an
1964 * error and if we ever see a report of this error we will need
1965 * to do some magic in order to have the necessary mft record
1966 * loaded and in the right place in the page cache. But
1967 * hopefully logic will prevail and this never happens...
1968 */
1969 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1970 al_end = (u8*)al_entry + ni->attr_list_size;
1971 for (;; al_entry = next_al_entry) {
1972 /* Out of bounds check. */
1973 if ((u8*)al_entry < ni->attr_list ||
1974 (u8*)al_entry > al_end)
1975 goto em_put_err_out;
1976 /* Catch the end of the attribute list. */
1977 if ((u8*)al_entry == al_end)
1978 goto em_put_err_out;
1979 if (!al_entry->length)
1980 goto em_put_err_out;
1981 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1982 le16_to_cpu(al_entry->length) > al_end)
1983 goto em_put_err_out;
1984 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1985 le16_to_cpu(al_entry->length));
1986 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1987 goto em_put_err_out;
1988 if (AT_DATA != al_entry->type)
1989 continue;
1990 /* We want an unnamed attribute. */
1991 if (al_entry->name_length)
1992 goto em_put_err_out;
1993 /* Want the first entry, i.e. lowest_vcn == 0. */
1994 if (al_entry->lowest_vcn)
1995 goto em_put_err_out;
1996 /* First entry has to be in the base mft record. */
1997 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1998 /* MFT references do not match, logic fails. */
1999 ntfs_error(sb, "BUG: The first $DATA extent "
2000 "of $MFT is not in the base "
2001 "mft record. Please report "
2002 "you saw this message to "
2003 "linux-ntfs-dev@lists."
2004 "sourceforge.net");
2005 goto put_err_out;
2006 } else {
2007 /* Sequence numbers must match. */
2008 if (MSEQNO_LE(al_entry->mft_reference) !=
2009 ni->seq_no)
2010 goto em_put_err_out;
2011 /* Got it. All is ok. We can stop now. */
2012 break;
2013 }
2014 }
2015 }
2016
2017 ntfs_attr_reinit_search_ctx(ctx);
2018
2019 /* Now load all attribute extents. */
2020 a = NULL;
2021 next_vcn = last_vcn = highest_vcn = 0;
2022 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2023 ctx))) {
2024 runlist_element *nrl;
2025
2026 /* Cache the current attribute. */
2027 a = ctx->attr;
2028 /* $MFT must be non-resident. */
2029 if (!a->non_resident) {
2030 ntfs_error(sb, "$MFT must be non-resident but a "
2031 "resident extent was found. $MFT is "
2032 "corrupt. Run chkdsk.");
2033 goto put_err_out;
2034 }
2035 /* $MFT must be uncompressed and unencrypted. */
2036 if (a->flags & ATTR_COMPRESSION_MASK ||
2037 a->flags & ATTR_IS_ENCRYPTED ||
2038 a->flags & ATTR_IS_SPARSE) {
2039 ntfs_error(sb, "$MFT must be uncompressed, "
2040 "non-sparse, and unencrypted but a "
2041 "compressed/sparse/encrypted extent "
2042 "was found. $MFT is corrupt. Run "
2043 "chkdsk.");
2044 goto put_err_out;
2045 }
2046 /*
2047 * Decompress the mapping pairs array of this extent and merge
2048 * the result into the existing runlist. No need for locking
2049 * as we have exclusive access to the inode at this time and we
2050 * are a mount in progress task, too.
2051 */
2052 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2053 if (IS_ERR(nrl)) {
2054 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2055 "failed with error code %ld. $MFT is "
2056 "corrupt.", PTR_ERR(nrl));
2057 goto put_err_out;
2058 }
2059 ni->runlist.rl = nrl;
2060
2061 /* Are we in the first extent? */
2062 if (!next_vcn) {
2063 if (a->data.non_resident.lowest_vcn) {
2064 ntfs_error(sb, "First extent of $DATA "
2065 "attribute has non zero "
2066 "lowest_vcn. $MFT is corrupt. "
2067 "You should run chkdsk.");
2068 goto put_err_out;
2069 }
2070 /* Get the last vcn in the $DATA attribute. */
2071 last_vcn = sle64_to_cpu(
2072 a->data.non_resident.allocated_size)
2073 >> vol->cluster_size_bits;
2074 /* Fill in the inode size. */
2075 vi->i_size = sle64_to_cpu(
2076 a->data.non_resident.data_size);
2077 ni->initialized_size = sle64_to_cpu(
2078 a->data.non_resident.initialized_size);
2079 ni->allocated_size = sle64_to_cpu(
2080 a->data.non_resident.allocated_size);
2081 /*
2082 * Verify the number of mft records does not exceed
2083 * 2^32 - 1.
2084 */
2085 if ((vi->i_size >> vol->mft_record_size_bits) >=
2086 (1ULL << 32)) {
2087 ntfs_error(sb, "$MFT is too big! Aborting.");
2088 goto put_err_out;
2089 }
2090 /*
2091 * We have got the first extent of the runlist for
2092 * $MFT which means it is now relatively safe to call
2093 * the normal ntfs_read_inode() function.
2094 * Complete reading the inode, this will actually
2095 * re-read the mft record for $MFT, this time entering
2096 * it into the page cache with which we complete the
2097 * kick start of the volume. It should be safe to do
2098 * this now as the first extent of $MFT/$DATA is
2099 * already known and we would hope that we don't need
2100 * further extents in order to find the other
2101 * attributes belonging to $MFT. Only time will tell if
2102 * this is really the case. If not we will have to play
2103 * magic at this point, possibly duplicating a lot of
2104 * ntfs_read_inode() at this point. We will need to
2105 * ensure we do enough of its work to be able to call
2106 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2107 * hope this never happens...
2108 */
2109 ntfs_read_locked_inode(vi);
2110 if (is_bad_inode(vi)) {
2111 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2112 "failed. BUG or corrupt $MFT. "
2113 "Run chkdsk and if no errors "
2114 "are found, please report you "
2115 "saw this message to "
2116 "linux-ntfs-dev@lists."
2117 "sourceforge.net");
2118 ntfs_attr_put_search_ctx(ctx);
2119 /* Revert to the safe super operations. */
2120 ntfs_free(m);
2121 return -1;
2122 }
2123 /*
2124 * Re-initialize some specifics about $MFT's inode as
2125 * ntfs_read_inode() will have set up the default ones.
2126 */
2127 /* Set uid and gid to root. */
2128 vi->i_uid = vi->i_gid = 0;
2129 /* Regular file. No access for anyone. */
2130 vi->i_mode = S_IFREG;
2131 /* No VFS initiated operations allowed for $MFT. */
2132 vi->i_op = &ntfs_empty_inode_ops;
2133 vi->i_fop = &ntfs_empty_file_ops;
2134 }
2135
2136 /* Get the lowest vcn for the next extent. */
2137 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2138 next_vcn = highest_vcn + 1;
2139
2140 /* Only one extent or error, which we catch below. */
2141 if (next_vcn <= 0)
2142 break;
2143
2144 /* Avoid endless loops due to corruption. */
2145 if (next_vcn < sle64_to_cpu(
2146 a->data.non_resident.lowest_vcn)) {
2147 ntfs_error(sb, "$MFT has corrupt attribute list "
2148 "attribute. Run chkdsk.");
2149 goto put_err_out;
2150 }
2151 }
2152 if (err != -ENOENT) {
2153 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2154 "$MFT is corrupt. Run chkdsk.");
2155 goto put_err_out;
2156 }
2157 if (!a) {
2158 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2159 "corrupt. Run chkdsk.");
2160 goto put_err_out;
2161 }
2162 if (highest_vcn && highest_vcn != last_vcn - 1) {
2163 ntfs_error(sb, "Failed to load the complete runlist for "
2164 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2165 "Run chkdsk.");
2166 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2167 (unsigned long long)highest_vcn,
2168 (unsigned long long)last_vcn - 1);
2169 goto put_err_out;
2170 }
2171 ntfs_attr_put_search_ctx(ctx);
2172 ntfs_debug("Done.");
2173 ntfs_free(m);
2174
2175 /*
2176 * Split the locking rules of the MFT inode from the
2177 * locking rules of other inodes:
2178 */
2179 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2180 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2181
2182 return 0;
2183
2184em_put_err_out:
2185 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2186 "attribute list. $MFT is corrupt. Run chkdsk.");
2187put_err_out:
2188 ntfs_attr_put_search_ctx(ctx);
2189err_out:
2190 ntfs_error(sb, "Failed. Marking inode as bad.");
2191 make_bad_inode(vi);
2192 ntfs_free(m);
2193 return -1;
2194}
2195
2196static void __ntfs_clear_inode(ntfs_inode *ni)
2197{
2198 /* Free all alocated memory. */
2199 down_write(&ni->runlist.lock);
2200 if (ni->runlist.rl) {
2201 ntfs_free(ni->runlist.rl);
2202 ni->runlist.rl = NULL;
2203 }
2204 up_write(&ni->runlist.lock);
2205
2206 if (ni->attr_list) {
2207 ntfs_free(ni->attr_list);
2208 ni->attr_list = NULL;
2209 }
2210
2211 down_write(&ni->attr_list_rl.lock);
2212 if (ni->attr_list_rl.rl) {
2213 ntfs_free(ni->attr_list_rl.rl);
2214 ni->attr_list_rl.rl = NULL;
2215 }
2216 up_write(&ni->attr_list_rl.lock);
2217
2218 if (ni->name_len && ni->name != I30) {
2219 /* Catch bugs... */
2220 BUG_ON(!ni->name);
2221 kfree(ni->name);
2222 }
2223}
2224
2225void ntfs_clear_extent_inode(ntfs_inode *ni)
2226{
2227 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2228
2229 BUG_ON(NInoAttr(ni));
2230 BUG_ON(ni->nr_extents != -1);
2231
2232#ifdef NTFS_RW
2233 if (NInoDirty(ni)) {
2234 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2235 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2236 "Losing data! This is a BUG!!!");
2237 // FIXME: Do something!!!
2238 }
2239#endif /* NTFS_RW */
2240
2241 __ntfs_clear_inode(ni);
2242
2243 /* Bye, bye... */
2244 ntfs_destroy_extent_inode(ni);
2245}
2246
2247/**
2248 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2249 * @vi: vfs inode pending annihilation
2250 *
2251 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2252 * is called, which deallocates all memory belonging to the NTFS specific part
2253 * of the inode and returns.
2254 *
2255 * If the MFT record is dirty, we commit it before doing anything else.
2256 */
2257void ntfs_evict_big_inode(struct inode *vi)
2258{
2259 ntfs_inode *ni = NTFS_I(vi);
2260
2261 truncate_inode_pages(&vi->i_data, 0);
2262 end_writeback(vi);
2263
2264#ifdef NTFS_RW
2265 if (NInoDirty(ni)) {
2266 bool was_bad = (is_bad_inode(vi));
2267
2268 /* Committing the inode also commits all extent inodes. */
2269 ntfs_commit_inode(vi);
2270
2271 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2272 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2273 "0x%lx. Losing data!", vi->i_ino);
2274 // FIXME: Do something!!!
2275 }
2276 }
2277#endif /* NTFS_RW */
2278
2279 /* No need to lock at this stage as no one else has a reference. */
2280 if (ni->nr_extents > 0) {
2281 int i;
2282
2283 for (i = 0; i < ni->nr_extents; i++)
2284 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2285 kfree(ni->ext.extent_ntfs_inos);
2286 }
2287
2288 __ntfs_clear_inode(ni);
2289
2290 if (NInoAttr(ni)) {
2291 /* Release the base inode if we are holding it. */
2292 if (ni->nr_extents == -1) {
2293 iput(VFS_I(ni->ext.base_ntfs_ino));
2294 ni->nr_extents = 0;
2295 ni->ext.base_ntfs_ino = NULL;
2296 }
2297 }
2298 return;
2299}
2300
2301/**
2302 * ntfs_show_options - show mount options in /proc/mounts
2303 * @sf: seq_file in which to write our mount options
2304 * @mnt: vfs mount whose mount options to display
2305 *
2306 * Called by the VFS once for each mounted ntfs volume when someone reads
2307 * /proc/mounts in order to display the NTFS specific mount options of each
2308 * mount. The mount options of the vfs mount @mnt are written to the seq file
2309 * @sf and success is returned.
2310 */
2311int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt)
2312{
2313 ntfs_volume *vol = NTFS_SB(mnt->mnt_sb);
2314 int i;
2315
2316 seq_printf(sf, ",uid=%i", vol->uid);
2317 seq_printf(sf, ",gid=%i", vol->gid);
2318 if (vol->fmask == vol->dmask)
2319 seq_printf(sf, ",umask=0%o", vol->fmask);
2320 else {
2321 seq_printf(sf, ",fmask=0%o", vol->fmask);
2322 seq_printf(sf, ",dmask=0%o", vol->dmask);
2323 }
2324 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2325 if (NVolCaseSensitive(vol))
2326 seq_printf(sf, ",case_sensitive");
2327 if (NVolShowSystemFiles(vol))
2328 seq_printf(sf, ",show_sys_files");
2329 if (!NVolSparseEnabled(vol))
2330 seq_printf(sf, ",disable_sparse");
2331 for (i = 0; on_errors_arr[i].val; i++) {
2332 if (on_errors_arr[i].val & vol->on_errors)
2333 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2334 }
2335 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2336 return 0;
2337}
2338
2339#ifdef NTFS_RW
2340
2341static const char *es = " Leaving inconsistent metadata. Unmount and run "
2342 "chkdsk.";
2343
2344/**
2345 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2346 * @vi: inode for which the i_size was changed
2347 *
2348 * We only support i_size changes for normal files at present, i.e. not
2349 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2350 * below.
2351 *
2352 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2353 * that the change is allowed.
2354 *
2355 * This implies for us that @vi is a file inode rather than a directory, index,
2356 * or attribute inode as well as that @vi is a base inode.
2357 *
2358 * Returns 0 on success or -errno on error.
2359 *
2360 * Called with ->i_mutex held.
2361 */
2362int ntfs_truncate(struct inode *vi)
2363{
2364 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2365 VCN highest_vcn;
2366 unsigned long flags;
2367 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2368 ntfs_volume *vol = ni->vol;
2369 ntfs_attr_search_ctx *ctx;
2370 MFT_RECORD *m;
2371 ATTR_RECORD *a;
2372 const char *te = " Leaving file length out of sync with i_size.";
2373 int err, mp_size, size_change, alloc_change;
2374 u32 attr_len;
2375
2376 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2377 BUG_ON(NInoAttr(ni));
2378 BUG_ON(S_ISDIR(vi->i_mode));
2379 BUG_ON(NInoMstProtected(ni));
2380 BUG_ON(ni->nr_extents < 0);
2381retry_truncate:
2382 /*
2383 * Lock the runlist for writing and map the mft record to ensure it is
2384 * safe to mess with the attribute runlist and sizes.
2385 */
2386 down_write(&ni->runlist.lock);
2387 if (!NInoAttr(ni))
2388 base_ni = ni;
2389 else
2390 base_ni = ni->ext.base_ntfs_ino;
2391 m = map_mft_record(base_ni);
2392 if (IS_ERR(m)) {
2393 err = PTR_ERR(m);
2394 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2395 "(error code %d).%s", vi->i_ino, err, te);
2396 ctx = NULL;
2397 m = NULL;
2398 goto old_bad_out;
2399 }
2400 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2401 if (unlikely(!ctx)) {
2402 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2403 "inode 0x%lx (not enough memory).%s",
2404 vi->i_ino, te);
2405 err = -ENOMEM;
2406 goto old_bad_out;
2407 }
2408 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2409 CASE_SENSITIVE, 0, NULL, 0, ctx);
2410 if (unlikely(err)) {
2411 if (err == -ENOENT) {
2412 ntfs_error(vi->i_sb, "Open attribute is missing from "
2413 "mft record. Inode 0x%lx is corrupt. "
2414 "Run chkdsk.%s", vi->i_ino, te);
2415 err = -EIO;
2416 } else
2417 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2418 "inode 0x%lx (error code %d).%s",
2419 vi->i_ino, err, te);
2420 goto old_bad_out;
2421 }
2422 m = ctx->mrec;
2423 a = ctx->attr;
2424 /*
2425 * The i_size of the vfs inode is the new size for the attribute value.
2426 */
2427 new_size = i_size_read(vi);
2428 /* The current size of the attribute value is the old size. */
2429 old_size = ntfs_attr_size(a);
2430 /* Calculate the new allocated size. */
2431 if (NInoNonResident(ni))
2432 new_alloc_size = (new_size + vol->cluster_size - 1) &
2433 ~(s64)vol->cluster_size_mask;
2434 else
2435 new_alloc_size = (new_size + 7) & ~7;
2436 /* The current allocated size is the old allocated size. */
2437 read_lock_irqsave(&ni->size_lock, flags);
2438 old_alloc_size = ni->allocated_size;
2439 read_unlock_irqrestore(&ni->size_lock, flags);
2440 /*
2441 * The change in the file size. This will be 0 if no change, >0 if the
2442 * size is growing, and <0 if the size is shrinking.
2443 */
2444 size_change = -1;
2445 if (new_size - old_size >= 0) {
2446 size_change = 1;
2447 if (new_size == old_size)
2448 size_change = 0;
2449 }
2450 /* As above for the allocated size. */
2451 alloc_change = -1;
2452 if (new_alloc_size - old_alloc_size >= 0) {
2453 alloc_change = 1;
2454 if (new_alloc_size == old_alloc_size)
2455 alloc_change = 0;
2456 }
2457 /*
2458 * If neither the size nor the allocation are being changed there is
2459 * nothing to do.
2460 */
2461 if (!size_change && !alloc_change)
2462 goto unm_done;
2463 /* If the size is changing, check if new size is allowed in $AttrDef. */
2464 if (size_change) {
2465 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2466 if (unlikely(err)) {
2467 if (err == -ERANGE) {
2468 ntfs_error(vol->sb, "Truncate would cause the "
2469 "inode 0x%lx to %simum size "
2470 "for its attribute type "
2471 "(0x%x). Aborting truncate.",
2472 vi->i_ino,
2473 new_size > old_size ? "exceed "
2474 "the max" : "go under the min",
2475 le32_to_cpu(ni->type));
2476 err = -EFBIG;
2477 } else {
2478 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2479 "attribute type 0x%x. "
2480 "Aborting truncate.",
2481 vi->i_ino,
2482 le32_to_cpu(ni->type));
2483 err = -EIO;
2484 }
2485 /* Reset the vfs inode size to the old size. */
2486 i_size_write(vi, old_size);
2487 goto err_out;
2488 }
2489 }
2490 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2491 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2492 "supported yet for %s files, ignoring.",
2493 NInoCompressed(ni) ? "compressed" :
2494 "encrypted");
2495 err = -EOPNOTSUPP;
2496 goto bad_out;
2497 }
2498 if (a->non_resident)
2499 goto do_non_resident_truncate;
2500 BUG_ON(NInoNonResident(ni));
2501 /* Resize the attribute record to best fit the new attribute size. */
2502 if (new_size < vol->mft_record_size &&
2503 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2504 /* The resize succeeded! */
2505 flush_dcache_mft_record_page(ctx->ntfs_ino);
2506 mark_mft_record_dirty(ctx->ntfs_ino);
2507 write_lock_irqsave(&ni->size_lock, flags);
2508 /* Update the sizes in the ntfs inode and all is done. */
2509 ni->allocated_size = le32_to_cpu(a->length) -
2510 le16_to_cpu(a->data.resident.value_offset);
2511 /*
2512 * Note ntfs_resident_attr_value_resize() has already done any
2513 * necessary data clearing in the attribute record. When the
2514 * file is being shrunk vmtruncate() will already have cleared
2515 * the top part of the last partial page, i.e. since this is
2516 * the resident case this is the page with index 0. However,
2517 * when the file is being expanded, the page cache page data
2518 * between the old data_size, i.e. old_size, and the new_size
2519 * has not been zeroed. Fortunately, we do not need to zero it
2520 * either since on one hand it will either already be zero due
2521 * to both readpage and writepage clearing partial page data
2522 * beyond i_size in which case there is nothing to do or in the
2523 * case of the file being mmap()ped at the same time, POSIX
2524 * specifies that the behaviour is unspecified thus we do not
2525 * have to do anything. This means that in our implementation
2526 * in the rare case that the file is mmap()ped and a write
2527 * occurred into the mmap()ped region just beyond the file size
2528 * and writepage has not yet been called to write out the page
2529 * (which would clear the area beyond the file size) and we now
2530 * extend the file size to incorporate this dirty region
2531 * outside the file size, a write of the page would result in
2532 * this data being written to disk instead of being cleared.
2533 * Given both POSIX and the Linux mmap(2) man page specify that
2534 * this corner case is undefined, we choose to leave it like
2535 * that as this is much simpler for us as we cannot lock the
2536 * relevant page now since we are holding too many ntfs locks
2537 * which would result in a lock reversal deadlock.
2538 */
2539 ni->initialized_size = new_size;
2540 write_unlock_irqrestore(&ni->size_lock, flags);
2541 goto unm_done;
2542 }
2543 /* If the above resize failed, this must be an attribute extension. */
2544 BUG_ON(size_change < 0);
2545 /*
2546 * We have to drop all the locks so we can call
2547 * ntfs_attr_make_non_resident(). This could be optimised by try-
2548 * locking the first page cache page and only if that fails dropping
2549 * the locks, locking the page, and redoing all the locking and
2550 * lookups. While this would be a huge optimisation, it is not worth
2551 * it as this is definitely a slow code path as it only ever can happen
2552 * once for any given file.
2553 */
2554 ntfs_attr_put_search_ctx(ctx);
2555 unmap_mft_record(base_ni);
2556 up_write(&ni->runlist.lock);
2557 /*
2558 * Not enough space in the mft record, try to make the attribute
2559 * non-resident and if successful restart the truncation process.
2560 */
2561 err = ntfs_attr_make_non_resident(ni, old_size);
2562 if (likely(!err))
2563 goto retry_truncate;
2564 /*
2565 * Could not make non-resident. If this is due to this not being
2566 * permitted for this attribute type or there not being enough space,
2567 * try to make other attributes non-resident. Otherwise fail.
2568 */
2569 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2570 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2571 "type 0x%x, because the conversion from "
2572 "resident to non-resident attribute failed "
2573 "with error code %i.", vi->i_ino,
2574 (unsigned)le32_to_cpu(ni->type), err);
2575 if (err != -ENOMEM)
2576 err = -EIO;
2577 goto conv_err_out;
2578 }
2579 /* TODO: Not implemented from here, abort. */
2580 if (err == -ENOSPC)
2581 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2582 "disk for the non-resident attribute value. "
2583 "This case is not implemented yet.");
2584 else /* if (err == -EPERM) */
2585 ntfs_error(vol->sb, "This attribute type may not be "
2586 "non-resident. This case is not implemented "
2587 "yet.");
2588 err = -EOPNOTSUPP;
2589 goto conv_err_out;
2590#if 0
2591 // TODO: Attempt to make other attributes non-resident.
2592 if (!err)
2593 goto do_resident_extend;
2594 /*
2595 * Both the attribute list attribute and the standard information
2596 * attribute must remain in the base inode. Thus, if this is one of
2597 * these attributes, we have to try to move other attributes out into
2598 * extent mft records instead.
2599 */
2600 if (ni->type == AT_ATTRIBUTE_LIST ||
2601 ni->type == AT_STANDARD_INFORMATION) {
2602 // TODO: Attempt to move other attributes into extent mft
2603 // records.
2604 err = -EOPNOTSUPP;
2605 if (!err)
2606 goto do_resident_extend;
2607 goto err_out;
2608 }
2609 // TODO: Attempt to move this attribute to an extent mft record, but
2610 // only if it is not already the only attribute in an mft record in
2611 // which case there would be nothing to gain.
2612 err = -EOPNOTSUPP;
2613 if (!err)
2614 goto do_resident_extend;
2615 /* There is nothing we can do to make enough space. )-: */
2616 goto err_out;
2617#endif
2618do_non_resident_truncate:
2619 BUG_ON(!NInoNonResident(ni));
2620 if (alloc_change < 0) {
2621 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2622 if (highest_vcn > 0 &&
2623 old_alloc_size >> vol->cluster_size_bits >
2624 highest_vcn + 1) {
2625 /*
2626 * This attribute has multiple extents. Not yet
2627 * supported.
2628 */
2629 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2630 "attribute type 0x%x, because the "
2631 "attribute is highly fragmented (it "
2632 "consists of multiple extents) and "
2633 "this case is not implemented yet.",
2634 vi->i_ino,
2635 (unsigned)le32_to_cpu(ni->type));
2636 err = -EOPNOTSUPP;
2637 goto bad_out;
2638 }
2639 }
2640 /*
2641 * If the size is shrinking, need to reduce the initialized_size and
2642 * the data_size before reducing the allocation.
2643 */
2644 if (size_change < 0) {
2645 /*
2646 * Make the valid size smaller (i_size is already up-to-date).
2647 */
2648 write_lock_irqsave(&ni->size_lock, flags);
2649 if (new_size < ni->initialized_size) {
2650 ni->initialized_size = new_size;
2651 a->data.non_resident.initialized_size =
2652 cpu_to_sle64(new_size);
2653 }
2654 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2655 write_unlock_irqrestore(&ni->size_lock, flags);
2656 flush_dcache_mft_record_page(ctx->ntfs_ino);
2657 mark_mft_record_dirty(ctx->ntfs_ino);
2658 /* If the allocated size is not changing, we are done. */
2659 if (!alloc_change)
2660 goto unm_done;
2661 /*
2662 * If the size is shrinking it makes no sense for the
2663 * allocation to be growing.
2664 */
2665 BUG_ON(alloc_change > 0);
2666 } else /* if (size_change >= 0) */ {
2667 /*
2668 * The file size is growing or staying the same but the
2669 * allocation can be shrinking, growing or staying the same.
2670 */
2671 if (alloc_change > 0) {
2672 /*
2673 * We need to extend the allocation and possibly update
2674 * the data size. If we are updating the data size,
2675 * since we are not touching the initialized_size we do
2676 * not need to worry about the actual data on disk.
2677 * And as far as the page cache is concerned, there
2678 * will be no pages beyond the old data size and any
2679 * partial region in the last page between the old and
2680 * new data size (or the end of the page if the new
2681 * data size is outside the page) does not need to be
2682 * modified as explained above for the resident
2683 * attribute truncate case. To do this, we simply drop
2684 * the locks we hold and leave all the work to our
2685 * friendly helper ntfs_attr_extend_allocation().
2686 */
2687 ntfs_attr_put_search_ctx(ctx);
2688 unmap_mft_record(base_ni);
2689 up_write(&ni->runlist.lock);
2690 err = ntfs_attr_extend_allocation(ni, new_size,
2691 size_change > 0 ? new_size : -1, -1);
2692 /*
2693 * ntfs_attr_extend_allocation() will have done error
2694 * output already.
2695 */
2696 goto done;
2697 }
2698 if (!alloc_change)
2699 goto alloc_done;
2700 }
2701 /* alloc_change < 0 */
2702 /* Free the clusters. */
2703 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2704 vol->cluster_size_bits, -1, ctx);
2705 m = ctx->mrec;
2706 a = ctx->attr;
2707 if (unlikely(nr_freed < 0)) {
2708 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2709 "%lli). Unmount and run chkdsk to recover "
2710 "the lost cluster(s).", (long long)nr_freed);
2711 NVolSetErrors(vol);
2712 nr_freed = 0;
2713 }
2714 /* Truncate the runlist. */
2715 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2716 new_alloc_size >> vol->cluster_size_bits);
2717 /*
2718 * If the runlist truncation failed and/or the search context is no
2719 * longer valid, we cannot resize the attribute record or build the
2720 * mapping pairs array thus we mark the inode bad so that no access to
2721 * the freed clusters can happen.
2722 */
2723 if (unlikely(err || IS_ERR(m))) {
2724 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2725 IS_ERR(m) ?
2726 "restore attribute search context" :
2727 "truncate attribute runlist",
2728 IS_ERR(m) ? PTR_ERR(m) : err, es);
2729 err = -EIO;
2730 goto bad_out;
2731 }
2732 /* Get the size for the shrunk mapping pairs array for the runlist. */
2733 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2734 if (unlikely(mp_size <= 0)) {
2735 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2736 "attribute type 0x%x, because determining the "
2737 "size for the mapping pairs failed with error "
2738 "code %i.%s", vi->i_ino,
2739 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2740 err = -EIO;
2741 goto bad_out;
2742 }
2743 /*
2744 * Shrink the attribute record for the new mapping pairs array. Note,
2745 * this cannot fail since we are making the attribute smaller thus by
2746 * definition there is enough space to do so.
2747 */
2748 attr_len = le32_to_cpu(a->length);
2749 err = ntfs_attr_record_resize(m, a, mp_size +
2750 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2751 BUG_ON(err);
2752 /*
2753 * Generate the mapping pairs array directly into the attribute record.
2754 */
2755 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2756 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2757 mp_size, ni->runlist.rl, 0, -1, NULL);
2758 if (unlikely(err)) {
2759 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2760 "attribute type 0x%x, because building the "
2761 "mapping pairs failed with error code %i.%s",
2762 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2763 err, es);
2764 err = -EIO;
2765 goto bad_out;
2766 }
2767 /* Update the allocated/compressed size as well as the highest vcn. */
2768 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2769 vol->cluster_size_bits) - 1);
2770 write_lock_irqsave(&ni->size_lock, flags);
2771 ni->allocated_size = new_alloc_size;
2772 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2773 if (NInoSparse(ni) || NInoCompressed(ni)) {
2774 if (nr_freed) {
2775 ni->itype.compressed.size -= nr_freed <<
2776 vol->cluster_size_bits;
2777 BUG_ON(ni->itype.compressed.size < 0);
2778 a->data.non_resident.compressed_size = cpu_to_sle64(
2779 ni->itype.compressed.size);
2780 vi->i_blocks = ni->itype.compressed.size >> 9;
2781 }
2782 } else
2783 vi->i_blocks = new_alloc_size >> 9;
2784 write_unlock_irqrestore(&ni->size_lock, flags);
2785 /*
2786 * We have shrunk the allocation. If this is a shrinking truncate we
2787 * have already dealt with the initialized_size and the data_size above
2788 * and we are done. If the truncate is only changing the allocation
2789 * and not the data_size, we are also done. If this is an extending
2790 * truncate, need to extend the data_size now which is ensured by the
2791 * fact that @size_change is positive.
2792 */
2793alloc_done:
2794 /*
2795 * If the size is growing, need to update it now. If it is shrinking,
2796 * we have already updated it above (before the allocation change).
2797 */
2798 if (size_change > 0)
2799 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2800 /* Ensure the modified mft record is written out. */
2801 flush_dcache_mft_record_page(ctx->ntfs_ino);
2802 mark_mft_record_dirty(ctx->ntfs_ino);
2803unm_done:
2804 ntfs_attr_put_search_ctx(ctx);
2805 unmap_mft_record(base_ni);
2806 up_write(&ni->runlist.lock);
2807done:
2808 /* Update the mtime and ctime on the base inode. */
2809 /* normally ->truncate shouldn't update ctime or mtime,
2810 * but ntfs did before so it got a copy & paste version
2811 * of file_update_time. one day someone should fix this
2812 * for real.
2813 */
2814 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2815 struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2816 int sync_it = 0;
2817
2818 if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2819 !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2820 sync_it = 1;
2821 VFS_I(base_ni)->i_mtime = now;
2822 VFS_I(base_ni)->i_ctime = now;
2823
2824 if (sync_it)
2825 mark_inode_dirty_sync(VFS_I(base_ni));
2826 }
2827
2828 if (likely(!err)) {
2829 NInoClearTruncateFailed(ni);
2830 ntfs_debug("Done.");
2831 }
2832 return err;
2833old_bad_out:
2834 old_size = -1;
2835bad_out:
2836 if (err != -ENOMEM && err != -EOPNOTSUPP)
2837 NVolSetErrors(vol);
2838 if (err != -EOPNOTSUPP)
2839 NInoSetTruncateFailed(ni);
2840 else if (old_size >= 0)
2841 i_size_write(vi, old_size);
2842err_out:
2843 if (ctx)
2844 ntfs_attr_put_search_ctx(ctx);
2845 if (m)
2846 unmap_mft_record(base_ni);
2847 up_write(&ni->runlist.lock);
2848out:
2849 ntfs_debug("Failed. Returning error code %i.", err);
2850 return err;
2851conv_err_out:
2852 if (err != -ENOMEM && err != -EOPNOTSUPP)
2853 NVolSetErrors(vol);
2854 if (err != -EOPNOTSUPP)
2855 NInoSetTruncateFailed(ni);
2856 else
2857 i_size_write(vi, old_size);
2858 goto out;
2859}
2860
2861/**
2862 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2863 * @vi: inode for which the i_size was changed
2864 *
2865 * Wrapper for ntfs_truncate() that has no return value.
2866 *
2867 * See ntfs_truncate() description above for details.
2868 */
2869void ntfs_truncate_vfs(struct inode *vi) {
2870 ntfs_truncate(vi);
2871}
2872
2873/**
2874 * ntfs_setattr - called from notify_change() when an attribute is being changed
2875 * @dentry: dentry whose attributes to change
2876 * @attr: structure describing the attributes and the changes
2877 *
2878 * We have to trap VFS attempts to truncate the file described by @dentry as
2879 * soon as possible, because we do not implement changes in i_size yet. So we
2880 * abort all i_size changes here.
2881 *
2882 * We also abort all changes of user, group, and mode as we do not implement
2883 * the NTFS ACLs yet.
2884 *
2885 * Called with ->i_mutex held.
2886 */
2887int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2888{
2889 struct inode *vi = dentry->d_inode;
2890 int err;
2891 unsigned int ia_valid = attr->ia_valid;
2892
2893 err = inode_change_ok(vi, attr);
2894 if (err)
2895 goto out;
2896 /* We do not support NTFS ACLs yet. */
2897 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2898 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2899 "supported yet, ignoring.");
2900 err = -EOPNOTSUPP;
2901 goto out;
2902 }
2903 if (ia_valid & ATTR_SIZE) {
2904 if (attr->ia_size != i_size_read(vi)) {
2905 ntfs_inode *ni = NTFS_I(vi);
2906 /*
2907 * FIXME: For now we do not support resizing of
2908 * compressed or encrypted files yet.
2909 */
2910 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2911 ntfs_warning(vi->i_sb, "Changes in inode size "
2912 "are not supported yet for "
2913 "%s files, ignoring.",
2914 NInoCompressed(ni) ?
2915 "compressed" : "encrypted");
2916 err = -EOPNOTSUPP;
2917 } else
2918 err = vmtruncate(vi, attr->ia_size);
2919 if (err || ia_valid == ATTR_SIZE)
2920 goto out;
2921 } else {
2922 /*
2923 * We skipped the truncate but must still update
2924 * timestamps.
2925 */
2926 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2927 }
2928 }
2929 if (ia_valid & ATTR_ATIME)
2930 vi->i_atime = timespec_trunc(attr->ia_atime,
2931 vi->i_sb->s_time_gran);
2932 if (ia_valid & ATTR_MTIME)
2933 vi->i_mtime = timespec_trunc(attr->ia_mtime,
2934 vi->i_sb->s_time_gran);
2935 if (ia_valid & ATTR_CTIME)
2936 vi->i_ctime = timespec_trunc(attr->ia_ctime,
2937 vi->i_sb->s_time_gran);
2938 mark_inode_dirty(vi);
2939out:
2940 return err;
2941}
2942
2943/**
2944 * ntfs_write_inode - write out a dirty inode
2945 * @vi: inode to write out
2946 * @sync: if true, write out synchronously
2947 *
2948 * Write out a dirty inode to disk including any extent inodes if present.
2949 *
2950 * If @sync is true, commit the inode to disk and wait for io completion. This
2951 * is done using write_mft_record().
2952 *
2953 * If @sync is false, just schedule the write to happen but do not wait for i/o
2954 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2955 * marking the page (and in this case mft record) dirty but we do not implement
2956 * this yet as write_mft_record() largely ignores the @sync parameter and
2957 * always performs synchronous writes.
2958 *
2959 * Return 0 on success and -errno on error.
2960 */
2961int __ntfs_write_inode(struct inode *vi, int sync)
2962{
2963 sle64 nt;
2964 ntfs_inode *ni = NTFS_I(vi);
2965 ntfs_attr_search_ctx *ctx;
2966 MFT_RECORD *m;
2967 STANDARD_INFORMATION *si;
2968 int err = 0;
2969 bool modified = false;
2970
2971 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2972 vi->i_ino);
2973 /*
2974 * Dirty attribute inodes are written via their real inodes so just
2975 * clean them here. Access time updates are taken care off when the
2976 * real inode is written.
2977 */
2978 if (NInoAttr(ni)) {
2979 NInoClearDirty(ni);
2980 ntfs_debug("Done.");
2981 return 0;
2982 }
2983 /* Map, pin, and lock the mft record belonging to the inode. */
2984 m = map_mft_record(ni);
2985 if (IS_ERR(m)) {
2986 err = PTR_ERR(m);
2987 goto err_out;
2988 }
2989 /* Update the access times in the standard information attribute. */
2990 ctx = ntfs_attr_get_search_ctx(ni, m);
2991 if (unlikely(!ctx)) {
2992 err = -ENOMEM;
2993 goto unm_err_out;
2994 }
2995 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2996 CASE_SENSITIVE, 0, NULL, 0, ctx);
2997 if (unlikely(err)) {
2998 ntfs_attr_put_search_ctx(ctx);
2999 goto unm_err_out;
3000 }
3001 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3002 le16_to_cpu(ctx->attr->data.resident.value_offset));
3003 /* Update the access times if they have changed. */
3004 nt = utc2ntfs(vi->i_mtime);
3005 if (si->last_data_change_time != nt) {
3006 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3007 "new = 0x%llx", vi->i_ino, (long long)
3008 sle64_to_cpu(si->last_data_change_time),
3009 (long long)sle64_to_cpu(nt));
3010 si->last_data_change_time = nt;
3011 modified = true;
3012 }
3013 nt = utc2ntfs(vi->i_ctime);
3014 if (si->last_mft_change_time != nt) {
3015 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3016 "new = 0x%llx", vi->i_ino, (long long)
3017 sle64_to_cpu(si->last_mft_change_time),
3018 (long long)sle64_to_cpu(nt));
3019 si->last_mft_change_time = nt;
3020 modified = true;
3021 }
3022 nt = utc2ntfs(vi->i_atime);
3023 if (si->last_access_time != nt) {
3024 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3025 "new = 0x%llx", vi->i_ino,
3026 (long long)sle64_to_cpu(si->last_access_time),
3027 (long long)sle64_to_cpu(nt));
3028 si->last_access_time = nt;
3029 modified = true;
3030 }
3031 /*
3032 * If we just modified the standard information attribute we need to
3033 * mark the mft record it is in dirty. We do this manually so that
3034 * mark_inode_dirty() is not called which would redirty the inode and
3035 * hence result in an infinite loop of trying to write the inode.
3036 * There is no need to mark the base inode nor the base mft record
3037 * dirty, since we are going to write this mft record below in any case
3038 * and the base mft record may actually not have been modified so it
3039 * might not need to be written out.
3040 * NOTE: It is not a problem when the inode for $MFT itself is being
3041 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3042 * on the $MFT inode and hence ntfs_write_inode() will not be
3043 * re-invoked because of it which in turn is ok since the dirtied mft
3044 * record will be cleaned and written out to disk below, i.e. before
3045 * this function returns.
3046 */
3047 if (modified) {
3048 flush_dcache_mft_record_page(ctx->ntfs_ino);
3049 if (!NInoTestSetDirty(ctx->ntfs_ino))
3050 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3051 ctx->ntfs_ino->page_ofs);
3052 }
3053 ntfs_attr_put_search_ctx(ctx);
3054 /* Now the access times are updated, write the base mft record. */
3055 if (NInoDirty(ni))
3056 err = write_mft_record(ni, m, sync);
3057 /* Write all attached extent mft records. */
3058 mutex_lock(&ni->extent_lock);
3059 if (ni->nr_extents > 0) {
3060 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3061 int i;
3062
3063 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3064 for (i = 0; i < ni->nr_extents; i++) {
3065 ntfs_inode *tni = extent_nis[i];
3066
3067 if (NInoDirty(tni)) {
3068 MFT_RECORD *tm = map_mft_record(tni);
3069 int ret;
3070
3071 if (IS_ERR(tm)) {
3072 if (!err || err == -ENOMEM)
3073 err = PTR_ERR(tm);
3074 continue;
3075 }
3076 ret = write_mft_record(tni, tm, sync);
3077 unmap_mft_record(tni);
3078 if (unlikely(ret)) {
3079 if (!err || err == -ENOMEM)
3080 err = ret;
3081 }
3082 }
3083 }
3084 }
3085 mutex_unlock(&ni->extent_lock);
3086 unmap_mft_record(ni);
3087 if (unlikely(err))
3088 goto err_out;
3089 ntfs_debug("Done.");
3090 return 0;
3091unm_err_out:
3092 unmap_mft_record(ni);
3093err_out:
3094 if (err == -ENOMEM) {
3095 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3096 "Marking the inode dirty again, so the VFS "
3097 "retries later.");
3098 mark_inode_dirty(vi);
3099 } else {
3100 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3101 NVolSetErrors(ni->vol);
3102 }
3103 return err;
3104}
3105
3106#endif /* NTFS_RW */