Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/kthread.h>
41#include <linux/raid/pq.h>
42#include <linux/async_tx.h>
43#include <linux/module.h>
44#include <linux/async.h>
45#include <linux/seq_file.h>
46#include <linux/cpu.h>
47#include <linux/slab.h>
48#include <linux/ratelimit.h>
49#include <linux/nodemask.h>
50
51#include <trace/events/block.h>
52#include <linux/list_sort.h>
53
54#include "md.h"
55#include "raid5.h"
56#include "raid0.h"
57#include "md-bitmap.h"
58#include "raid5-log.h"
59
60#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
61
62#define cpu_to_group(cpu) cpu_to_node(cpu)
63#define ANY_GROUP NUMA_NO_NODE
64
65#define RAID5_MAX_REQ_STRIPES 256
66
67static bool devices_handle_discard_safely = false;
68module_param(devices_handle_discard_safely, bool, 0644);
69MODULE_PARM_DESC(devices_handle_discard_safely,
70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71static struct workqueue_struct *raid5_wq;
72
73static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
74{
75 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
76 return &conf->stripe_hashtbl[hash];
77}
78
79static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
80{
81 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
82}
83
84static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
85 __acquires(&conf->device_lock)
86{
87 spin_lock_irq(conf->hash_locks + hash);
88 spin_lock(&conf->device_lock);
89}
90
91static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
92 __releases(&conf->device_lock)
93{
94 spin_unlock(&conf->device_lock);
95 spin_unlock_irq(conf->hash_locks + hash);
96}
97
98static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
99 __acquires(&conf->device_lock)
100{
101 int i;
102 spin_lock_irq(conf->hash_locks);
103 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
104 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
105 spin_lock(&conf->device_lock);
106}
107
108static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
109 __releases(&conf->device_lock)
110{
111 int i;
112 spin_unlock(&conf->device_lock);
113 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
114 spin_unlock(conf->hash_locks + i);
115 spin_unlock_irq(conf->hash_locks);
116}
117
118/* Find first data disk in a raid6 stripe */
119static inline int raid6_d0(struct stripe_head *sh)
120{
121 if (sh->ddf_layout)
122 /* ddf always start from first device */
123 return 0;
124 /* md starts just after Q block */
125 if (sh->qd_idx == sh->disks - 1)
126 return 0;
127 else
128 return sh->qd_idx + 1;
129}
130static inline int raid6_next_disk(int disk, int raid_disks)
131{
132 disk++;
133 return (disk < raid_disks) ? disk : 0;
134}
135
136/* When walking through the disks in a raid5, starting at raid6_d0,
137 * We need to map each disk to a 'slot', where the data disks are slot
138 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
139 * is raid_disks-1. This help does that mapping.
140 */
141static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
142 int *count, int syndrome_disks)
143{
144 int slot = *count;
145
146 if (sh->ddf_layout)
147 (*count)++;
148 if (idx == sh->pd_idx)
149 return syndrome_disks;
150 if (idx == sh->qd_idx)
151 return syndrome_disks + 1;
152 if (!sh->ddf_layout)
153 (*count)++;
154 return slot;
155}
156
157static void print_raid5_conf (struct r5conf *conf);
158
159static int stripe_operations_active(struct stripe_head *sh)
160{
161 return sh->check_state || sh->reconstruct_state ||
162 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
163 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
164}
165
166static bool stripe_is_lowprio(struct stripe_head *sh)
167{
168 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
169 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
170 !test_bit(STRIPE_R5C_CACHING, &sh->state);
171}
172
173static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
174 __must_hold(&sh->raid_conf->device_lock)
175{
176 struct r5conf *conf = sh->raid_conf;
177 struct r5worker_group *group;
178 int thread_cnt;
179 int i, cpu = sh->cpu;
180
181 if (!cpu_online(cpu)) {
182 cpu = cpumask_any(cpu_online_mask);
183 sh->cpu = cpu;
184 }
185
186 if (list_empty(&sh->lru)) {
187 struct r5worker_group *group;
188 group = conf->worker_groups + cpu_to_group(cpu);
189 if (stripe_is_lowprio(sh))
190 list_add_tail(&sh->lru, &group->loprio_list);
191 else
192 list_add_tail(&sh->lru, &group->handle_list);
193 group->stripes_cnt++;
194 sh->group = group;
195 }
196
197 if (conf->worker_cnt_per_group == 0) {
198 md_wakeup_thread(conf->mddev->thread);
199 return;
200 }
201
202 group = conf->worker_groups + cpu_to_group(sh->cpu);
203
204 group->workers[0].working = true;
205 /* at least one worker should run to avoid race */
206 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
207
208 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
209 /* wakeup more workers */
210 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
211 if (group->workers[i].working == false) {
212 group->workers[i].working = true;
213 queue_work_on(sh->cpu, raid5_wq,
214 &group->workers[i].work);
215 thread_cnt--;
216 }
217 }
218}
219
220static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
221 struct list_head *temp_inactive_list)
222 __must_hold(&conf->device_lock)
223{
224 int i;
225 int injournal = 0; /* number of date pages with R5_InJournal */
226
227 BUG_ON(!list_empty(&sh->lru));
228 BUG_ON(atomic_read(&conf->active_stripes)==0);
229
230 if (r5c_is_writeback(conf->log))
231 for (i = sh->disks; i--; )
232 if (test_bit(R5_InJournal, &sh->dev[i].flags))
233 injournal++;
234 /*
235 * In the following cases, the stripe cannot be released to cached
236 * lists. Therefore, we make the stripe write out and set
237 * STRIPE_HANDLE:
238 * 1. when quiesce in r5c write back;
239 * 2. when resync is requested fot the stripe.
240 */
241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 (conf->quiesce && r5c_is_writeback(conf->log) &&
243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 r5c_make_stripe_write_out(sh);
246 set_bit(STRIPE_HANDLE, &sh->state);
247 }
248
249 if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 if (test_bit(STRIPE_DELAYED, &sh->state) &&
251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252 list_add_tail(&sh->lru, &conf->delayed_list);
253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254 sh->bm_seq - conf->seq_write > 0)
255 list_add_tail(&sh->lru, &conf->bitmap_list);
256 else {
257 clear_bit(STRIPE_DELAYED, &sh->state);
258 clear_bit(STRIPE_BIT_DELAY, &sh->state);
259 if (conf->worker_cnt_per_group == 0) {
260 if (stripe_is_lowprio(sh))
261 list_add_tail(&sh->lru,
262 &conf->loprio_list);
263 else
264 list_add_tail(&sh->lru,
265 &conf->handle_list);
266 } else {
267 raid5_wakeup_stripe_thread(sh);
268 return;
269 }
270 }
271 md_wakeup_thread(conf->mddev->thread);
272 } else {
273 BUG_ON(stripe_operations_active(sh));
274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 if (atomic_dec_return(&conf->preread_active_stripes)
276 < IO_THRESHOLD)
277 md_wakeup_thread(conf->mddev->thread);
278 atomic_dec(&conf->active_stripes);
279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 if (!r5c_is_writeback(conf->log))
281 list_add_tail(&sh->lru, temp_inactive_list);
282 else {
283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284 if (injournal == 0)
285 list_add_tail(&sh->lru, temp_inactive_list);
286 else if (injournal == conf->raid_disks - conf->max_degraded) {
287 /* full stripe */
288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 atomic_inc(&conf->r5c_cached_full_stripes);
290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 atomic_dec(&conf->r5c_cached_partial_stripes);
292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293 r5c_check_cached_full_stripe(conf);
294 } else
295 /*
296 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 * r5c_try_caching_write(). No need to
298 * set it again.
299 */
300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
301 }
302 }
303 }
304}
305
306static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 struct list_head *temp_inactive_list)
308 __must_hold(&conf->device_lock)
309{
310 if (atomic_dec_and_test(&sh->count))
311 do_release_stripe(conf, sh, temp_inactive_list);
312}
313
314/*
315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
316 *
317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
318 * given time. Adding stripes only takes device lock, while deleting stripes
319 * only takes hash lock.
320 */
321static void release_inactive_stripe_list(struct r5conf *conf,
322 struct list_head *temp_inactive_list,
323 int hash)
324{
325 int size;
326 bool do_wakeup = false;
327 unsigned long flags;
328
329 if (hash == NR_STRIPE_HASH_LOCKS) {
330 size = NR_STRIPE_HASH_LOCKS;
331 hash = NR_STRIPE_HASH_LOCKS - 1;
332 } else
333 size = 1;
334 while (size) {
335 struct list_head *list = &temp_inactive_list[size - 1];
336
337 /*
338 * We don't hold any lock here yet, raid5_get_active_stripe() might
339 * remove stripes from the list
340 */
341 if (!list_empty_careful(list)) {
342 spin_lock_irqsave(conf->hash_locks + hash, flags);
343 if (list_empty(conf->inactive_list + hash) &&
344 !list_empty(list))
345 atomic_dec(&conf->empty_inactive_list_nr);
346 list_splice_tail_init(list, conf->inactive_list + hash);
347 do_wakeup = true;
348 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
349 }
350 size--;
351 hash--;
352 }
353
354 if (do_wakeup) {
355 wake_up(&conf->wait_for_stripe);
356 if (atomic_read(&conf->active_stripes) == 0)
357 wake_up(&conf->wait_for_quiescent);
358 if (conf->retry_read_aligned)
359 md_wakeup_thread(conf->mddev->thread);
360 }
361}
362
363static int release_stripe_list(struct r5conf *conf,
364 struct list_head *temp_inactive_list)
365 __must_hold(&conf->device_lock)
366{
367 struct stripe_head *sh, *t;
368 int count = 0;
369 struct llist_node *head;
370
371 head = llist_del_all(&conf->released_stripes);
372 head = llist_reverse_order(head);
373 llist_for_each_entry_safe(sh, t, head, release_list) {
374 int hash;
375
376 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
377 smp_mb();
378 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
379 /*
380 * Don't worry the bit is set here, because if the bit is set
381 * again, the count is always > 1. This is true for
382 * STRIPE_ON_UNPLUG_LIST bit too.
383 */
384 hash = sh->hash_lock_index;
385 __release_stripe(conf, sh, &temp_inactive_list[hash]);
386 count++;
387 }
388
389 return count;
390}
391
392void raid5_release_stripe(struct stripe_head *sh)
393{
394 struct r5conf *conf = sh->raid_conf;
395 unsigned long flags;
396 struct list_head list;
397 int hash;
398 bool wakeup;
399
400 /* Avoid release_list until the last reference.
401 */
402 if (atomic_add_unless(&sh->count, -1, 1))
403 return;
404
405 if (unlikely(!conf->mddev->thread) ||
406 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
407 goto slow_path;
408 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
409 if (wakeup)
410 md_wakeup_thread(conf->mddev->thread);
411 return;
412slow_path:
413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
414 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
415 INIT_LIST_HEAD(&list);
416 hash = sh->hash_lock_index;
417 do_release_stripe(conf, sh, &list);
418 spin_unlock_irqrestore(&conf->device_lock, flags);
419 release_inactive_stripe_list(conf, &list, hash);
420 }
421}
422
423static inline void remove_hash(struct stripe_head *sh)
424{
425 pr_debug("remove_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
427
428 hlist_del_init(&sh->hash);
429}
430
431static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
432{
433 struct hlist_head *hp = stripe_hash(conf, sh->sector);
434
435 pr_debug("insert_hash(), stripe %llu\n",
436 (unsigned long long)sh->sector);
437
438 hlist_add_head(&sh->hash, hp);
439}
440
441/* find an idle stripe, make sure it is unhashed, and return it. */
442static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
443{
444 struct stripe_head *sh = NULL;
445 struct list_head *first;
446
447 if (list_empty(conf->inactive_list + hash))
448 goto out;
449 first = (conf->inactive_list + hash)->next;
450 sh = list_entry(first, struct stripe_head, lru);
451 list_del_init(first);
452 remove_hash(sh);
453 atomic_inc(&conf->active_stripes);
454 BUG_ON(hash != sh->hash_lock_index);
455 if (list_empty(conf->inactive_list + hash))
456 atomic_inc(&conf->empty_inactive_list_nr);
457out:
458 return sh;
459}
460
461#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
462static void free_stripe_pages(struct stripe_head *sh)
463{
464 int i;
465 struct page *p;
466
467 /* Have not allocate page pool */
468 if (!sh->pages)
469 return;
470
471 for (i = 0; i < sh->nr_pages; i++) {
472 p = sh->pages[i];
473 if (p)
474 put_page(p);
475 sh->pages[i] = NULL;
476 }
477}
478
479static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
480{
481 int i;
482 struct page *p;
483
484 for (i = 0; i < sh->nr_pages; i++) {
485 /* The page have allocated. */
486 if (sh->pages[i])
487 continue;
488
489 p = alloc_page(gfp);
490 if (!p) {
491 free_stripe_pages(sh);
492 return -ENOMEM;
493 }
494 sh->pages[i] = p;
495 }
496 return 0;
497}
498
499static int
500init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
501{
502 int nr_pages, cnt;
503
504 if (sh->pages)
505 return 0;
506
507 /* Each of the sh->dev[i] need one conf->stripe_size */
508 cnt = PAGE_SIZE / conf->stripe_size;
509 nr_pages = (disks + cnt - 1) / cnt;
510
511 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
512 if (!sh->pages)
513 return -ENOMEM;
514 sh->nr_pages = nr_pages;
515 sh->stripes_per_page = cnt;
516 return 0;
517}
518#endif
519
520static void shrink_buffers(struct stripe_head *sh)
521{
522 int i;
523 int num = sh->raid_conf->pool_size;
524
525#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
526 for (i = 0; i < num ; i++) {
527 struct page *p;
528
529 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
530 p = sh->dev[i].page;
531 if (!p)
532 continue;
533 sh->dev[i].page = NULL;
534 put_page(p);
535 }
536#else
537 for (i = 0; i < num; i++)
538 sh->dev[i].page = NULL;
539 free_stripe_pages(sh); /* Free pages */
540#endif
541}
542
543static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
544{
545 int i;
546 int num = sh->raid_conf->pool_size;
547
548#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
549 for (i = 0; i < num; i++) {
550 struct page *page;
551
552 if (!(page = alloc_page(gfp))) {
553 return 1;
554 }
555 sh->dev[i].page = page;
556 sh->dev[i].orig_page = page;
557 sh->dev[i].offset = 0;
558 }
559#else
560 if (alloc_stripe_pages(sh, gfp))
561 return -ENOMEM;
562
563 for (i = 0; i < num; i++) {
564 sh->dev[i].page = raid5_get_dev_page(sh, i);
565 sh->dev[i].orig_page = sh->dev[i].page;
566 sh->dev[i].offset = raid5_get_page_offset(sh, i);
567 }
568#endif
569 return 0;
570}
571
572static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
573 struct stripe_head *sh);
574
575static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
576{
577 struct r5conf *conf = sh->raid_conf;
578 int i, seq;
579
580 BUG_ON(atomic_read(&sh->count) != 0);
581 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
582 BUG_ON(stripe_operations_active(sh));
583 BUG_ON(sh->batch_head);
584
585 pr_debug("init_stripe called, stripe %llu\n",
586 (unsigned long long)sector);
587retry:
588 seq = read_seqcount_begin(&conf->gen_lock);
589 sh->generation = conf->generation - previous;
590 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
591 sh->sector = sector;
592 stripe_set_idx(sector, conf, previous, sh);
593 sh->state = 0;
594
595 for (i = sh->disks; i--; ) {
596 struct r5dev *dev = &sh->dev[i];
597
598 if (dev->toread || dev->read || dev->towrite || dev->written ||
599 test_bit(R5_LOCKED, &dev->flags)) {
600 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
601 (unsigned long long)sh->sector, i, dev->toread,
602 dev->read, dev->towrite, dev->written,
603 test_bit(R5_LOCKED, &dev->flags));
604 WARN_ON(1);
605 }
606 dev->flags = 0;
607 dev->sector = raid5_compute_blocknr(sh, i, previous);
608 }
609 if (read_seqcount_retry(&conf->gen_lock, seq))
610 goto retry;
611 sh->overwrite_disks = 0;
612 insert_hash(conf, sh);
613 sh->cpu = smp_processor_id();
614 set_bit(STRIPE_BATCH_READY, &sh->state);
615}
616
617static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
618 short generation)
619{
620 struct stripe_head *sh;
621
622 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
623 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
624 if (sh->sector == sector && sh->generation == generation)
625 return sh;
626 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
627 return NULL;
628}
629
630static struct stripe_head *find_get_stripe(struct r5conf *conf,
631 sector_t sector, short generation, int hash)
632{
633 int inc_empty_inactive_list_flag;
634 struct stripe_head *sh;
635
636 sh = __find_stripe(conf, sector, generation);
637 if (!sh)
638 return NULL;
639
640 if (atomic_inc_not_zero(&sh->count))
641 return sh;
642
643 /*
644 * Slow path. The reference count is zero which means the stripe must
645 * be on a list (sh->lru). Must remove the stripe from the list that
646 * references it with the device_lock held.
647 */
648
649 spin_lock(&conf->device_lock);
650 if (!atomic_read(&sh->count)) {
651 if (!test_bit(STRIPE_HANDLE, &sh->state))
652 atomic_inc(&conf->active_stripes);
653 BUG_ON(list_empty(&sh->lru) &&
654 !test_bit(STRIPE_EXPANDING, &sh->state));
655 inc_empty_inactive_list_flag = 0;
656 if (!list_empty(conf->inactive_list + hash))
657 inc_empty_inactive_list_flag = 1;
658 list_del_init(&sh->lru);
659 if (list_empty(conf->inactive_list + hash) &&
660 inc_empty_inactive_list_flag)
661 atomic_inc(&conf->empty_inactive_list_nr);
662 if (sh->group) {
663 sh->group->stripes_cnt--;
664 sh->group = NULL;
665 }
666 }
667 atomic_inc(&sh->count);
668 spin_unlock(&conf->device_lock);
669
670 return sh;
671}
672
673/*
674 * Need to check if array has failed when deciding whether to:
675 * - start an array
676 * - remove non-faulty devices
677 * - add a spare
678 * - allow a reshape
679 * This determination is simple when no reshape is happening.
680 * However if there is a reshape, we need to carefully check
681 * both the before and after sections.
682 * This is because some failed devices may only affect one
683 * of the two sections, and some non-in_sync devices may
684 * be insync in the section most affected by failed devices.
685 *
686 * Most calls to this function hold &conf->device_lock. Calls
687 * in raid5_run() do not require the lock as no other threads
688 * have been started yet.
689 */
690int raid5_calc_degraded(struct r5conf *conf)
691{
692 int degraded, degraded2;
693 int i;
694
695 rcu_read_lock();
696 degraded = 0;
697 for (i = 0; i < conf->previous_raid_disks; i++) {
698 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
699 if (rdev && test_bit(Faulty, &rdev->flags))
700 rdev = rcu_dereference(conf->disks[i].replacement);
701 if (!rdev || test_bit(Faulty, &rdev->flags))
702 degraded++;
703 else if (test_bit(In_sync, &rdev->flags))
704 ;
705 else
706 /* not in-sync or faulty.
707 * If the reshape increases the number of devices,
708 * this is being recovered by the reshape, so
709 * this 'previous' section is not in_sync.
710 * If the number of devices is being reduced however,
711 * the device can only be part of the array if
712 * we are reverting a reshape, so this section will
713 * be in-sync.
714 */
715 if (conf->raid_disks >= conf->previous_raid_disks)
716 degraded++;
717 }
718 rcu_read_unlock();
719 if (conf->raid_disks == conf->previous_raid_disks)
720 return degraded;
721 rcu_read_lock();
722 degraded2 = 0;
723 for (i = 0; i < conf->raid_disks; i++) {
724 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
725 if (rdev && test_bit(Faulty, &rdev->flags))
726 rdev = rcu_dereference(conf->disks[i].replacement);
727 if (!rdev || test_bit(Faulty, &rdev->flags))
728 degraded2++;
729 else if (test_bit(In_sync, &rdev->flags))
730 ;
731 else
732 /* not in-sync or faulty.
733 * If reshape increases the number of devices, this
734 * section has already been recovered, else it
735 * almost certainly hasn't.
736 */
737 if (conf->raid_disks <= conf->previous_raid_disks)
738 degraded2++;
739 }
740 rcu_read_unlock();
741 if (degraded2 > degraded)
742 return degraded2;
743 return degraded;
744}
745
746static bool has_failed(struct r5conf *conf)
747{
748 int degraded = conf->mddev->degraded;
749
750 if (test_bit(MD_BROKEN, &conf->mddev->flags))
751 return true;
752
753 if (conf->mddev->reshape_position != MaxSector)
754 degraded = raid5_calc_degraded(conf);
755
756 return degraded > conf->max_degraded;
757}
758
759enum stripe_result {
760 STRIPE_SUCCESS = 0,
761 STRIPE_RETRY,
762 STRIPE_SCHEDULE_AND_RETRY,
763 STRIPE_FAIL,
764};
765
766struct stripe_request_ctx {
767 /* a reference to the last stripe_head for batching */
768 struct stripe_head *batch_last;
769
770 /* first sector in the request */
771 sector_t first_sector;
772
773 /* last sector in the request */
774 sector_t last_sector;
775
776 /*
777 * bitmap to track stripe sectors that have been added to stripes
778 * add one to account for unaligned requests
779 */
780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
781
782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
783 bool do_flush;
784};
785
786/*
787 * Block until another thread clears R5_INACTIVE_BLOCKED or
788 * there are fewer than 3/4 the maximum number of active stripes
789 * and there is an inactive stripe available.
790 */
791static bool is_inactive_blocked(struct r5conf *conf, int hash)
792{
793 if (list_empty(conf->inactive_list + hash))
794 return false;
795
796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
797 return true;
798
799 return (atomic_read(&conf->active_stripes) <
800 (conf->max_nr_stripes * 3 / 4));
801}
802
803struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
804 struct stripe_request_ctx *ctx, sector_t sector,
805 unsigned int flags)
806{
807 struct stripe_head *sh;
808 int hash = stripe_hash_locks_hash(conf, sector);
809 int previous = !!(flags & R5_GAS_PREVIOUS);
810
811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
812
813 spin_lock_irq(conf->hash_locks + hash);
814
815 for (;;) {
816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
817 /*
818 * Must release the reference to batch_last before
819 * waiting, on quiesce, otherwise the batch_last will
820 * hold a reference to a stripe and raid5_quiesce()
821 * will deadlock waiting for active_stripes to go to
822 * zero.
823 */
824 if (ctx && ctx->batch_last) {
825 raid5_release_stripe(ctx->batch_last);
826 ctx->batch_last = NULL;
827 }
828
829 wait_event_lock_irq(conf->wait_for_quiescent,
830 !conf->quiesce,
831 *(conf->hash_locks + hash));
832 }
833
834 sh = find_get_stripe(conf, sector, conf->generation - previous,
835 hash);
836 if (sh)
837 break;
838
839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840 sh = get_free_stripe(conf, hash);
841 if (sh) {
842 r5c_check_stripe_cache_usage(conf);
843 init_stripe(sh, sector, previous);
844 atomic_inc(&sh->count);
845 break;
846 }
847
848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849 set_bit(R5_ALLOC_MORE, &conf->cache_state);
850 }
851
852 if (flags & R5_GAS_NOBLOCK)
853 break;
854
855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856 r5l_wake_reclaim(conf->log, 0);
857 wait_event_lock_irq(conf->wait_for_stripe,
858 is_inactive_blocked(conf, hash),
859 *(conf->hash_locks + hash));
860 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
861 }
862
863 spin_unlock_irq(conf->hash_locks + hash);
864 return sh;
865}
866
867static bool is_full_stripe_write(struct stripe_head *sh)
868{
869 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
870 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
871}
872
873static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
874 __acquires(&sh1->stripe_lock)
875 __acquires(&sh2->stripe_lock)
876{
877 if (sh1 > sh2) {
878 spin_lock_irq(&sh2->stripe_lock);
879 spin_lock_nested(&sh1->stripe_lock, 1);
880 } else {
881 spin_lock_irq(&sh1->stripe_lock);
882 spin_lock_nested(&sh2->stripe_lock, 1);
883 }
884}
885
886static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
887 __releases(&sh1->stripe_lock)
888 __releases(&sh2->stripe_lock)
889{
890 spin_unlock(&sh1->stripe_lock);
891 spin_unlock_irq(&sh2->stripe_lock);
892}
893
894/* Only freshly new full stripe normal write stripe can be added to a batch list */
895static bool stripe_can_batch(struct stripe_head *sh)
896{
897 struct r5conf *conf = sh->raid_conf;
898
899 if (raid5_has_log(conf) || raid5_has_ppl(conf))
900 return false;
901 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
902 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
903 is_full_stripe_write(sh);
904}
905
906/* we only do back search */
907static void stripe_add_to_batch_list(struct r5conf *conf,
908 struct stripe_head *sh, struct stripe_head *last_sh)
909{
910 struct stripe_head *head;
911 sector_t head_sector, tmp_sec;
912 int hash;
913 int dd_idx;
914
915 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
916 tmp_sec = sh->sector;
917 if (!sector_div(tmp_sec, conf->chunk_sectors))
918 return;
919 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
920
921 if (last_sh && head_sector == last_sh->sector) {
922 head = last_sh;
923 atomic_inc(&head->count);
924 } else {
925 hash = stripe_hash_locks_hash(conf, head_sector);
926 spin_lock_irq(conf->hash_locks + hash);
927 head = find_get_stripe(conf, head_sector, conf->generation,
928 hash);
929 spin_unlock_irq(conf->hash_locks + hash);
930 if (!head)
931 return;
932 if (!stripe_can_batch(head))
933 goto out;
934 }
935
936 lock_two_stripes(head, sh);
937 /* clear_batch_ready clear the flag */
938 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
939 goto unlock_out;
940
941 if (sh->batch_head)
942 goto unlock_out;
943
944 dd_idx = 0;
945 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
946 dd_idx++;
947 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
948 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
949 goto unlock_out;
950
951 if (head->batch_head) {
952 spin_lock(&head->batch_head->batch_lock);
953 /* This batch list is already running */
954 if (!stripe_can_batch(head)) {
955 spin_unlock(&head->batch_head->batch_lock);
956 goto unlock_out;
957 }
958 /*
959 * We must assign batch_head of this stripe within the
960 * batch_lock, otherwise clear_batch_ready of batch head
961 * stripe could clear BATCH_READY bit of this stripe and
962 * this stripe->batch_head doesn't get assigned, which
963 * could confuse clear_batch_ready for this stripe
964 */
965 sh->batch_head = head->batch_head;
966
967 /*
968 * at this point, head's BATCH_READY could be cleared, but we
969 * can still add the stripe to batch list
970 */
971 list_add(&sh->batch_list, &head->batch_list);
972 spin_unlock(&head->batch_head->batch_lock);
973 } else {
974 head->batch_head = head;
975 sh->batch_head = head->batch_head;
976 spin_lock(&head->batch_lock);
977 list_add_tail(&sh->batch_list, &head->batch_list);
978 spin_unlock(&head->batch_lock);
979 }
980
981 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
982 if (atomic_dec_return(&conf->preread_active_stripes)
983 < IO_THRESHOLD)
984 md_wakeup_thread(conf->mddev->thread);
985
986 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
987 int seq = sh->bm_seq;
988 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
989 sh->batch_head->bm_seq > seq)
990 seq = sh->batch_head->bm_seq;
991 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
992 sh->batch_head->bm_seq = seq;
993 }
994
995 atomic_inc(&sh->count);
996unlock_out:
997 unlock_two_stripes(head, sh);
998out:
999 raid5_release_stripe(head);
1000}
1001
1002/* Determine if 'data_offset' or 'new_data_offset' should be used
1003 * in this stripe_head.
1004 */
1005static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1006{
1007 sector_t progress = conf->reshape_progress;
1008 /* Need a memory barrier to make sure we see the value
1009 * of conf->generation, or ->data_offset that was set before
1010 * reshape_progress was updated.
1011 */
1012 smp_rmb();
1013 if (progress == MaxSector)
1014 return 0;
1015 if (sh->generation == conf->generation - 1)
1016 return 0;
1017 /* We are in a reshape, and this is a new-generation stripe,
1018 * so use new_data_offset.
1019 */
1020 return 1;
1021}
1022
1023static void dispatch_bio_list(struct bio_list *tmp)
1024{
1025 struct bio *bio;
1026
1027 while ((bio = bio_list_pop(tmp)))
1028 submit_bio_noacct(bio);
1029}
1030
1031static int cmp_stripe(void *priv, const struct list_head *a,
1032 const struct list_head *b)
1033{
1034 const struct r5pending_data *da = list_entry(a,
1035 struct r5pending_data, sibling);
1036 const struct r5pending_data *db = list_entry(b,
1037 struct r5pending_data, sibling);
1038 if (da->sector > db->sector)
1039 return 1;
1040 if (da->sector < db->sector)
1041 return -1;
1042 return 0;
1043}
1044
1045static void dispatch_defer_bios(struct r5conf *conf, int target,
1046 struct bio_list *list)
1047{
1048 struct r5pending_data *data;
1049 struct list_head *first, *next = NULL;
1050 int cnt = 0;
1051
1052 if (conf->pending_data_cnt == 0)
1053 return;
1054
1055 list_sort(NULL, &conf->pending_list, cmp_stripe);
1056
1057 first = conf->pending_list.next;
1058
1059 /* temporarily move the head */
1060 if (conf->next_pending_data)
1061 list_move_tail(&conf->pending_list,
1062 &conf->next_pending_data->sibling);
1063
1064 while (!list_empty(&conf->pending_list)) {
1065 data = list_first_entry(&conf->pending_list,
1066 struct r5pending_data, sibling);
1067 if (&data->sibling == first)
1068 first = data->sibling.next;
1069 next = data->sibling.next;
1070
1071 bio_list_merge(list, &data->bios);
1072 list_move(&data->sibling, &conf->free_list);
1073 cnt++;
1074 if (cnt >= target)
1075 break;
1076 }
1077 conf->pending_data_cnt -= cnt;
1078 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1079
1080 if (next != &conf->pending_list)
1081 conf->next_pending_data = list_entry(next,
1082 struct r5pending_data, sibling);
1083 else
1084 conf->next_pending_data = NULL;
1085 /* list isn't empty */
1086 if (first != &conf->pending_list)
1087 list_move_tail(&conf->pending_list, first);
1088}
1089
1090static void flush_deferred_bios(struct r5conf *conf)
1091{
1092 struct bio_list tmp = BIO_EMPTY_LIST;
1093
1094 if (conf->pending_data_cnt == 0)
1095 return;
1096
1097 spin_lock(&conf->pending_bios_lock);
1098 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1099 BUG_ON(conf->pending_data_cnt != 0);
1100 spin_unlock(&conf->pending_bios_lock);
1101
1102 dispatch_bio_list(&tmp);
1103}
1104
1105static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1106 struct bio_list *bios)
1107{
1108 struct bio_list tmp = BIO_EMPTY_LIST;
1109 struct r5pending_data *ent;
1110
1111 spin_lock(&conf->pending_bios_lock);
1112 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1113 sibling);
1114 list_move_tail(&ent->sibling, &conf->pending_list);
1115 ent->sector = sector;
1116 bio_list_init(&ent->bios);
1117 bio_list_merge(&ent->bios, bios);
1118 conf->pending_data_cnt++;
1119 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1120 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1121
1122 spin_unlock(&conf->pending_bios_lock);
1123
1124 dispatch_bio_list(&tmp);
1125}
1126
1127static void
1128raid5_end_read_request(struct bio *bi);
1129static void
1130raid5_end_write_request(struct bio *bi);
1131
1132static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1133{
1134 struct r5conf *conf = sh->raid_conf;
1135 int i, disks = sh->disks;
1136 struct stripe_head *head_sh = sh;
1137 struct bio_list pending_bios = BIO_EMPTY_LIST;
1138 struct r5dev *dev;
1139 bool should_defer;
1140
1141 might_sleep();
1142
1143 if (log_stripe(sh, s) == 0)
1144 return;
1145
1146 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1147
1148 for (i = disks; i--; ) {
1149 enum req_op op;
1150 blk_opf_t op_flags = 0;
1151 int replace_only = 0;
1152 struct bio *bi, *rbi;
1153 struct md_rdev *rdev, *rrdev = NULL;
1154
1155 sh = head_sh;
1156 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1157 op = REQ_OP_WRITE;
1158 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1159 op_flags = REQ_FUA;
1160 if (test_bit(R5_Discard, &sh->dev[i].flags))
1161 op = REQ_OP_DISCARD;
1162 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1163 op = REQ_OP_READ;
1164 else if (test_and_clear_bit(R5_WantReplace,
1165 &sh->dev[i].flags)) {
1166 op = REQ_OP_WRITE;
1167 replace_only = 1;
1168 } else
1169 continue;
1170 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1171 op_flags |= REQ_SYNC;
1172
1173again:
1174 dev = &sh->dev[i];
1175 bi = &dev->req;
1176 rbi = &dev->rreq; /* For writing to replacement */
1177
1178 rcu_read_lock();
1179 rrdev = rcu_dereference(conf->disks[i].replacement);
1180 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1181 rdev = rcu_dereference(conf->disks[i].rdev);
1182 if (!rdev) {
1183 rdev = rrdev;
1184 rrdev = NULL;
1185 }
1186 if (op_is_write(op)) {
1187 if (replace_only)
1188 rdev = NULL;
1189 if (rdev == rrdev)
1190 /* We raced and saw duplicates */
1191 rrdev = NULL;
1192 } else {
1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1194 rdev = rrdev;
1195 rrdev = NULL;
1196 }
1197
1198 if (rdev && test_bit(Faulty, &rdev->flags))
1199 rdev = NULL;
1200 if (rdev)
1201 atomic_inc(&rdev->nr_pending);
1202 if (rrdev && test_bit(Faulty, &rrdev->flags))
1203 rrdev = NULL;
1204 if (rrdev)
1205 atomic_inc(&rrdev->nr_pending);
1206 rcu_read_unlock();
1207
1208 /* We have already checked bad blocks for reads. Now
1209 * need to check for writes. We never accept write errors
1210 * on the replacement, so we don't to check rrdev.
1211 */
1212 while (op_is_write(op) && rdev &&
1213 test_bit(WriteErrorSeen, &rdev->flags)) {
1214 sector_t first_bad;
1215 int bad_sectors;
1216 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1217 &first_bad, &bad_sectors);
1218 if (!bad)
1219 break;
1220
1221 if (bad < 0) {
1222 set_bit(BlockedBadBlocks, &rdev->flags);
1223 if (!conf->mddev->external &&
1224 conf->mddev->sb_flags) {
1225 /* It is very unlikely, but we might
1226 * still need to write out the
1227 * bad block log - better give it
1228 * a chance*/
1229 md_check_recovery(conf->mddev);
1230 }
1231 /*
1232 * Because md_wait_for_blocked_rdev
1233 * will dec nr_pending, we must
1234 * increment it first.
1235 */
1236 atomic_inc(&rdev->nr_pending);
1237 md_wait_for_blocked_rdev(rdev, conf->mddev);
1238 } else {
1239 /* Acknowledged bad block - skip the write */
1240 rdev_dec_pending(rdev, conf->mddev);
1241 rdev = NULL;
1242 }
1243 }
1244
1245 if (rdev) {
1246 if (s->syncing || s->expanding || s->expanded
1247 || s->replacing)
1248 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1249
1250 set_bit(STRIPE_IO_STARTED, &sh->state);
1251
1252 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1253 bi->bi_end_io = op_is_write(op)
1254 ? raid5_end_write_request
1255 : raid5_end_read_request;
1256 bi->bi_private = sh;
1257
1258 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1259 __func__, (unsigned long long)sh->sector,
1260 bi->bi_opf, i);
1261 atomic_inc(&sh->count);
1262 if (sh != head_sh)
1263 atomic_inc(&head_sh->count);
1264 if (use_new_offset(conf, sh))
1265 bi->bi_iter.bi_sector = (sh->sector
1266 + rdev->new_data_offset);
1267 else
1268 bi->bi_iter.bi_sector = (sh->sector
1269 + rdev->data_offset);
1270 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1271 bi->bi_opf |= REQ_NOMERGE;
1272
1273 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1274 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1275
1276 if (!op_is_write(op) &&
1277 test_bit(R5_InJournal, &sh->dev[i].flags))
1278 /*
1279 * issuing read for a page in journal, this
1280 * must be preparing for prexor in rmw; read
1281 * the data into orig_page
1282 */
1283 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1284 else
1285 sh->dev[i].vec.bv_page = sh->dev[i].page;
1286 bi->bi_vcnt = 1;
1287 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1288 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1289 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1290 /*
1291 * If this is discard request, set bi_vcnt 0. We don't
1292 * want to confuse SCSI because SCSI will replace payload
1293 */
1294 if (op == REQ_OP_DISCARD)
1295 bi->bi_vcnt = 0;
1296 if (rrdev)
1297 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1298
1299 if (conf->mddev->gendisk)
1300 trace_block_bio_remap(bi,
1301 disk_devt(conf->mddev->gendisk),
1302 sh->dev[i].sector);
1303 if (should_defer && op_is_write(op))
1304 bio_list_add(&pending_bios, bi);
1305 else
1306 submit_bio_noacct(bi);
1307 }
1308 if (rrdev) {
1309 if (s->syncing || s->expanding || s->expanded
1310 || s->replacing)
1311 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1312
1313 set_bit(STRIPE_IO_STARTED, &sh->state);
1314
1315 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1316 BUG_ON(!op_is_write(op));
1317 rbi->bi_end_io = raid5_end_write_request;
1318 rbi->bi_private = sh;
1319
1320 pr_debug("%s: for %llu schedule op %d on "
1321 "replacement disc %d\n",
1322 __func__, (unsigned long long)sh->sector,
1323 rbi->bi_opf, i);
1324 atomic_inc(&sh->count);
1325 if (sh != head_sh)
1326 atomic_inc(&head_sh->count);
1327 if (use_new_offset(conf, sh))
1328 rbi->bi_iter.bi_sector = (sh->sector
1329 + rrdev->new_data_offset);
1330 else
1331 rbi->bi_iter.bi_sector = (sh->sector
1332 + rrdev->data_offset);
1333 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1334 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1335 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1336 rbi->bi_vcnt = 1;
1337 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1338 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1339 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1340 /*
1341 * If this is discard request, set bi_vcnt 0. We don't
1342 * want to confuse SCSI because SCSI will replace payload
1343 */
1344 if (op == REQ_OP_DISCARD)
1345 rbi->bi_vcnt = 0;
1346 if (conf->mddev->gendisk)
1347 trace_block_bio_remap(rbi,
1348 disk_devt(conf->mddev->gendisk),
1349 sh->dev[i].sector);
1350 if (should_defer && op_is_write(op))
1351 bio_list_add(&pending_bios, rbi);
1352 else
1353 submit_bio_noacct(rbi);
1354 }
1355 if (!rdev && !rrdev) {
1356 if (op_is_write(op))
1357 set_bit(STRIPE_DEGRADED, &sh->state);
1358 pr_debug("skip op %d on disc %d for sector %llu\n",
1359 bi->bi_opf, i, (unsigned long long)sh->sector);
1360 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1361 set_bit(STRIPE_HANDLE, &sh->state);
1362 }
1363
1364 if (!head_sh->batch_head)
1365 continue;
1366 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1367 batch_list);
1368 if (sh != head_sh)
1369 goto again;
1370 }
1371
1372 if (should_defer && !bio_list_empty(&pending_bios))
1373 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1374}
1375
1376static struct dma_async_tx_descriptor *
1377async_copy_data(int frombio, struct bio *bio, struct page **page,
1378 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1379 struct stripe_head *sh, int no_skipcopy)
1380{
1381 struct bio_vec bvl;
1382 struct bvec_iter iter;
1383 struct page *bio_page;
1384 int page_offset;
1385 struct async_submit_ctl submit;
1386 enum async_tx_flags flags = 0;
1387 struct r5conf *conf = sh->raid_conf;
1388
1389 if (bio->bi_iter.bi_sector >= sector)
1390 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1391 else
1392 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1393
1394 if (frombio)
1395 flags |= ASYNC_TX_FENCE;
1396 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1397
1398 bio_for_each_segment(bvl, bio, iter) {
1399 int len = bvl.bv_len;
1400 int clen;
1401 int b_offset = 0;
1402
1403 if (page_offset < 0) {
1404 b_offset = -page_offset;
1405 page_offset += b_offset;
1406 len -= b_offset;
1407 }
1408
1409 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1410 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1411 else
1412 clen = len;
1413
1414 if (clen > 0) {
1415 b_offset += bvl.bv_offset;
1416 bio_page = bvl.bv_page;
1417 if (frombio) {
1418 if (conf->skip_copy &&
1419 b_offset == 0 && page_offset == 0 &&
1420 clen == RAID5_STRIPE_SIZE(conf) &&
1421 !no_skipcopy)
1422 *page = bio_page;
1423 else
1424 tx = async_memcpy(*page, bio_page, page_offset + poff,
1425 b_offset, clen, &submit);
1426 } else
1427 tx = async_memcpy(bio_page, *page, b_offset,
1428 page_offset + poff, clen, &submit);
1429 }
1430 /* chain the operations */
1431 submit.depend_tx = tx;
1432
1433 if (clen < len) /* hit end of page */
1434 break;
1435 page_offset += len;
1436 }
1437
1438 return tx;
1439}
1440
1441static void ops_complete_biofill(void *stripe_head_ref)
1442{
1443 struct stripe_head *sh = stripe_head_ref;
1444 int i;
1445 struct r5conf *conf = sh->raid_conf;
1446
1447 pr_debug("%s: stripe %llu\n", __func__,
1448 (unsigned long long)sh->sector);
1449
1450 /* clear completed biofills */
1451 for (i = sh->disks; i--; ) {
1452 struct r5dev *dev = &sh->dev[i];
1453
1454 /* acknowledge completion of a biofill operation */
1455 /* and check if we need to reply to a read request,
1456 * new R5_Wantfill requests are held off until
1457 * !STRIPE_BIOFILL_RUN
1458 */
1459 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1460 struct bio *rbi, *rbi2;
1461
1462 BUG_ON(!dev->read);
1463 rbi = dev->read;
1464 dev->read = NULL;
1465 while (rbi && rbi->bi_iter.bi_sector <
1466 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1467 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1468 bio_endio(rbi);
1469 rbi = rbi2;
1470 }
1471 }
1472 }
1473 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1474
1475 set_bit(STRIPE_HANDLE, &sh->state);
1476 raid5_release_stripe(sh);
1477}
1478
1479static void ops_run_biofill(struct stripe_head *sh)
1480{
1481 struct dma_async_tx_descriptor *tx = NULL;
1482 struct async_submit_ctl submit;
1483 int i;
1484 struct r5conf *conf = sh->raid_conf;
1485
1486 BUG_ON(sh->batch_head);
1487 pr_debug("%s: stripe %llu\n", __func__,
1488 (unsigned long long)sh->sector);
1489
1490 for (i = sh->disks; i--; ) {
1491 struct r5dev *dev = &sh->dev[i];
1492 if (test_bit(R5_Wantfill, &dev->flags)) {
1493 struct bio *rbi;
1494 spin_lock_irq(&sh->stripe_lock);
1495 dev->read = rbi = dev->toread;
1496 dev->toread = NULL;
1497 spin_unlock_irq(&sh->stripe_lock);
1498 while (rbi && rbi->bi_iter.bi_sector <
1499 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1500 tx = async_copy_data(0, rbi, &dev->page,
1501 dev->offset,
1502 dev->sector, tx, sh, 0);
1503 rbi = r5_next_bio(conf, rbi, dev->sector);
1504 }
1505 }
1506 }
1507
1508 atomic_inc(&sh->count);
1509 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1510 async_trigger_callback(&submit);
1511}
1512
1513static void mark_target_uptodate(struct stripe_head *sh, int target)
1514{
1515 struct r5dev *tgt;
1516
1517 if (target < 0)
1518 return;
1519
1520 tgt = &sh->dev[target];
1521 set_bit(R5_UPTODATE, &tgt->flags);
1522 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1523 clear_bit(R5_Wantcompute, &tgt->flags);
1524}
1525
1526static void ops_complete_compute(void *stripe_head_ref)
1527{
1528 struct stripe_head *sh = stripe_head_ref;
1529
1530 pr_debug("%s: stripe %llu\n", __func__,
1531 (unsigned long long)sh->sector);
1532
1533 /* mark the computed target(s) as uptodate */
1534 mark_target_uptodate(sh, sh->ops.target);
1535 mark_target_uptodate(sh, sh->ops.target2);
1536
1537 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1538 if (sh->check_state == check_state_compute_run)
1539 sh->check_state = check_state_compute_result;
1540 set_bit(STRIPE_HANDLE, &sh->state);
1541 raid5_release_stripe(sh);
1542}
1543
1544/* return a pointer to the address conversion region of the scribble buffer */
1545static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1546{
1547 return percpu->scribble + i * percpu->scribble_obj_size;
1548}
1549
1550/* return a pointer to the address conversion region of the scribble buffer */
1551static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1552 struct raid5_percpu *percpu, int i)
1553{
1554 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1555}
1556
1557/*
1558 * Return a pointer to record offset address.
1559 */
1560static unsigned int *
1561to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1562{
1563 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1564}
1565
1566static struct dma_async_tx_descriptor *
1567ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1568{
1569 int disks = sh->disks;
1570 struct page **xor_srcs = to_addr_page(percpu, 0);
1571 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1572 int target = sh->ops.target;
1573 struct r5dev *tgt = &sh->dev[target];
1574 struct page *xor_dest = tgt->page;
1575 unsigned int off_dest = tgt->offset;
1576 int count = 0;
1577 struct dma_async_tx_descriptor *tx;
1578 struct async_submit_ctl submit;
1579 int i;
1580
1581 BUG_ON(sh->batch_head);
1582
1583 pr_debug("%s: stripe %llu block: %d\n",
1584 __func__, (unsigned long long)sh->sector, target);
1585 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1586
1587 for (i = disks; i--; ) {
1588 if (i != target) {
1589 off_srcs[count] = sh->dev[i].offset;
1590 xor_srcs[count++] = sh->dev[i].page;
1591 }
1592 }
1593
1594 atomic_inc(&sh->count);
1595
1596 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1597 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1598 if (unlikely(count == 1))
1599 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1600 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1601 else
1602 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1603 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1604
1605 return tx;
1606}
1607
1608/* set_syndrome_sources - populate source buffers for gen_syndrome
1609 * @srcs - (struct page *) array of size sh->disks
1610 * @offs - (unsigned int) array of offset for each page
1611 * @sh - stripe_head to parse
1612 *
1613 * Populates srcs in proper layout order for the stripe and returns the
1614 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1615 * destination buffer is recorded in srcs[count] and the Q destination
1616 * is recorded in srcs[count+1]].
1617 */
1618static int set_syndrome_sources(struct page **srcs,
1619 unsigned int *offs,
1620 struct stripe_head *sh,
1621 int srctype)
1622{
1623 int disks = sh->disks;
1624 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1625 int d0_idx = raid6_d0(sh);
1626 int count;
1627 int i;
1628
1629 for (i = 0; i < disks; i++)
1630 srcs[i] = NULL;
1631
1632 count = 0;
1633 i = d0_idx;
1634 do {
1635 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1636 struct r5dev *dev = &sh->dev[i];
1637
1638 if (i == sh->qd_idx || i == sh->pd_idx ||
1639 (srctype == SYNDROME_SRC_ALL) ||
1640 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1641 (test_bit(R5_Wantdrain, &dev->flags) ||
1642 test_bit(R5_InJournal, &dev->flags))) ||
1643 (srctype == SYNDROME_SRC_WRITTEN &&
1644 (dev->written ||
1645 test_bit(R5_InJournal, &dev->flags)))) {
1646 if (test_bit(R5_InJournal, &dev->flags))
1647 srcs[slot] = sh->dev[i].orig_page;
1648 else
1649 srcs[slot] = sh->dev[i].page;
1650 /*
1651 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1652 * not shared page. In that case, dev[i].offset
1653 * is 0.
1654 */
1655 offs[slot] = sh->dev[i].offset;
1656 }
1657 i = raid6_next_disk(i, disks);
1658 } while (i != d0_idx);
1659
1660 return syndrome_disks;
1661}
1662
1663static struct dma_async_tx_descriptor *
1664ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1665{
1666 int disks = sh->disks;
1667 struct page **blocks = to_addr_page(percpu, 0);
1668 unsigned int *offs = to_addr_offs(sh, percpu);
1669 int target;
1670 int qd_idx = sh->qd_idx;
1671 struct dma_async_tx_descriptor *tx;
1672 struct async_submit_ctl submit;
1673 struct r5dev *tgt;
1674 struct page *dest;
1675 unsigned int dest_off;
1676 int i;
1677 int count;
1678
1679 BUG_ON(sh->batch_head);
1680 if (sh->ops.target < 0)
1681 target = sh->ops.target2;
1682 else if (sh->ops.target2 < 0)
1683 target = sh->ops.target;
1684 else
1685 /* we should only have one valid target */
1686 BUG();
1687 BUG_ON(target < 0);
1688 pr_debug("%s: stripe %llu block: %d\n",
1689 __func__, (unsigned long long)sh->sector, target);
1690
1691 tgt = &sh->dev[target];
1692 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1693 dest = tgt->page;
1694 dest_off = tgt->offset;
1695
1696 atomic_inc(&sh->count);
1697
1698 if (target == qd_idx) {
1699 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1700 blocks[count] = NULL; /* regenerating p is not necessary */
1701 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1702 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1703 ops_complete_compute, sh,
1704 to_addr_conv(sh, percpu, 0));
1705 tx = async_gen_syndrome(blocks, offs, count+2,
1706 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1707 } else {
1708 /* Compute any data- or p-drive using XOR */
1709 count = 0;
1710 for (i = disks; i-- ; ) {
1711 if (i == target || i == qd_idx)
1712 continue;
1713 offs[count] = sh->dev[i].offset;
1714 blocks[count++] = sh->dev[i].page;
1715 }
1716
1717 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1718 NULL, ops_complete_compute, sh,
1719 to_addr_conv(sh, percpu, 0));
1720 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1721 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1722 }
1723
1724 return tx;
1725}
1726
1727static struct dma_async_tx_descriptor *
1728ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1729{
1730 int i, count, disks = sh->disks;
1731 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1732 int d0_idx = raid6_d0(sh);
1733 int faila = -1, failb = -1;
1734 int target = sh->ops.target;
1735 int target2 = sh->ops.target2;
1736 struct r5dev *tgt = &sh->dev[target];
1737 struct r5dev *tgt2 = &sh->dev[target2];
1738 struct dma_async_tx_descriptor *tx;
1739 struct page **blocks = to_addr_page(percpu, 0);
1740 unsigned int *offs = to_addr_offs(sh, percpu);
1741 struct async_submit_ctl submit;
1742
1743 BUG_ON(sh->batch_head);
1744 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1745 __func__, (unsigned long long)sh->sector, target, target2);
1746 BUG_ON(target < 0 || target2 < 0);
1747 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1748 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1749
1750 /* we need to open-code set_syndrome_sources to handle the
1751 * slot number conversion for 'faila' and 'failb'
1752 */
1753 for (i = 0; i < disks ; i++) {
1754 offs[i] = 0;
1755 blocks[i] = NULL;
1756 }
1757 count = 0;
1758 i = d0_idx;
1759 do {
1760 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1761
1762 offs[slot] = sh->dev[i].offset;
1763 blocks[slot] = sh->dev[i].page;
1764
1765 if (i == target)
1766 faila = slot;
1767 if (i == target2)
1768 failb = slot;
1769 i = raid6_next_disk(i, disks);
1770 } while (i != d0_idx);
1771
1772 BUG_ON(faila == failb);
1773 if (failb < faila)
1774 swap(faila, failb);
1775 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1776 __func__, (unsigned long long)sh->sector, faila, failb);
1777
1778 atomic_inc(&sh->count);
1779
1780 if (failb == syndrome_disks+1) {
1781 /* Q disk is one of the missing disks */
1782 if (faila == syndrome_disks) {
1783 /* Missing P+Q, just recompute */
1784 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1785 ops_complete_compute, sh,
1786 to_addr_conv(sh, percpu, 0));
1787 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1788 RAID5_STRIPE_SIZE(sh->raid_conf),
1789 &submit);
1790 } else {
1791 struct page *dest;
1792 unsigned int dest_off;
1793 int data_target;
1794 int qd_idx = sh->qd_idx;
1795
1796 /* Missing D+Q: recompute D from P, then recompute Q */
1797 if (target == qd_idx)
1798 data_target = target2;
1799 else
1800 data_target = target;
1801
1802 count = 0;
1803 for (i = disks; i-- ; ) {
1804 if (i == data_target || i == qd_idx)
1805 continue;
1806 offs[count] = sh->dev[i].offset;
1807 blocks[count++] = sh->dev[i].page;
1808 }
1809 dest = sh->dev[data_target].page;
1810 dest_off = sh->dev[data_target].offset;
1811 init_async_submit(&submit,
1812 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1813 NULL, NULL, NULL,
1814 to_addr_conv(sh, percpu, 0));
1815 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1816 RAID5_STRIPE_SIZE(sh->raid_conf),
1817 &submit);
1818
1819 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1820 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1821 ops_complete_compute, sh,
1822 to_addr_conv(sh, percpu, 0));
1823 return async_gen_syndrome(blocks, offs, count+2,
1824 RAID5_STRIPE_SIZE(sh->raid_conf),
1825 &submit);
1826 }
1827 } else {
1828 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1829 ops_complete_compute, sh,
1830 to_addr_conv(sh, percpu, 0));
1831 if (failb == syndrome_disks) {
1832 /* We're missing D+P. */
1833 return async_raid6_datap_recov(syndrome_disks+2,
1834 RAID5_STRIPE_SIZE(sh->raid_conf),
1835 faila,
1836 blocks, offs, &submit);
1837 } else {
1838 /* We're missing D+D. */
1839 return async_raid6_2data_recov(syndrome_disks+2,
1840 RAID5_STRIPE_SIZE(sh->raid_conf),
1841 faila, failb,
1842 blocks, offs, &submit);
1843 }
1844 }
1845}
1846
1847static void ops_complete_prexor(void *stripe_head_ref)
1848{
1849 struct stripe_head *sh = stripe_head_ref;
1850
1851 pr_debug("%s: stripe %llu\n", __func__,
1852 (unsigned long long)sh->sector);
1853
1854 if (r5c_is_writeback(sh->raid_conf->log))
1855 /*
1856 * raid5-cache write back uses orig_page during prexor.
1857 * After prexor, it is time to free orig_page
1858 */
1859 r5c_release_extra_page(sh);
1860}
1861
1862static struct dma_async_tx_descriptor *
1863ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1864 struct dma_async_tx_descriptor *tx)
1865{
1866 int disks = sh->disks;
1867 struct page **xor_srcs = to_addr_page(percpu, 0);
1868 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1869 int count = 0, pd_idx = sh->pd_idx, i;
1870 struct async_submit_ctl submit;
1871
1872 /* existing parity data subtracted */
1873 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1874 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1875
1876 BUG_ON(sh->batch_head);
1877 pr_debug("%s: stripe %llu\n", __func__,
1878 (unsigned long long)sh->sector);
1879
1880 for (i = disks; i--; ) {
1881 struct r5dev *dev = &sh->dev[i];
1882 /* Only process blocks that are known to be uptodate */
1883 if (test_bit(R5_InJournal, &dev->flags)) {
1884 /*
1885 * For this case, PAGE_SIZE must be equal to 4KB and
1886 * page offset is zero.
1887 */
1888 off_srcs[count] = dev->offset;
1889 xor_srcs[count++] = dev->orig_page;
1890 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1891 off_srcs[count] = dev->offset;
1892 xor_srcs[count++] = dev->page;
1893 }
1894 }
1895
1896 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1897 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1898 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1899 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1900
1901 return tx;
1902}
1903
1904static struct dma_async_tx_descriptor *
1905ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1906 struct dma_async_tx_descriptor *tx)
1907{
1908 struct page **blocks = to_addr_page(percpu, 0);
1909 unsigned int *offs = to_addr_offs(sh, percpu);
1910 int count;
1911 struct async_submit_ctl submit;
1912
1913 pr_debug("%s: stripe %llu\n", __func__,
1914 (unsigned long long)sh->sector);
1915
1916 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1917
1918 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1919 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1920 tx = async_gen_syndrome(blocks, offs, count+2,
1921 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1922
1923 return tx;
1924}
1925
1926static struct dma_async_tx_descriptor *
1927ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1928{
1929 struct r5conf *conf = sh->raid_conf;
1930 int disks = sh->disks;
1931 int i;
1932 struct stripe_head *head_sh = sh;
1933
1934 pr_debug("%s: stripe %llu\n", __func__,
1935 (unsigned long long)sh->sector);
1936
1937 for (i = disks; i--; ) {
1938 struct r5dev *dev;
1939 struct bio *chosen;
1940
1941 sh = head_sh;
1942 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1943 struct bio *wbi;
1944
1945again:
1946 dev = &sh->dev[i];
1947 /*
1948 * clear R5_InJournal, so when rewriting a page in
1949 * journal, it is not skipped by r5l_log_stripe()
1950 */
1951 clear_bit(R5_InJournal, &dev->flags);
1952 spin_lock_irq(&sh->stripe_lock);
1953 chosen = dev->towrite;
1954 dev->towrite = NULL;
1955 sh->overwrite_disks = 0;
1956 BUG_ON(dev->written);
1957 wbi = dev->written = chosen;
1958 spin_unlock_irq(&sh->stripe_lock);
1959 WARN_ON(dev->page != dev->orig_page);
1960
1961 while (wbi && wbi->bi_iter.bi_sector <
1962 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1963 if (wbi->bi_opf & REQ_FUA)
1964 set_bit(R5_WantFUA, &dev->flags);
1965 if (wbi->bi_opf & REQ_SYNC)
1966 set_bit(R5_SyncIO, &dev->flags);
1967 if (bio_op(wbi) == REQ_OP_DISCARD)
1968 set_bit(R5_Discard, &dev->flags);
1969 else {
1970 tx = async_copy_data(1, wbi, &dev->page,
1971 dev->offset,
1972 dev->sector, tx, sh,
1973 r5c_is_writeback(conf->log));
1974 if (dev->page != dev->orig_page &&
1975 !r5c_is_writeback(conf->log)) {
1976 set_bit(R5_SkipCopy, &dev->flags);
1977 clear_bit(R5_UPTODATE, &dev->flags);
1978 clear_bit(R5_OVERWRITE, &dev->flags);
1979 }
1980 }
1981 wbi = r5_next_bio(conf, wbi, dev->sector);
1982 }
1983
1984 if (head_sh->batch_head) {
1985 sh = list_first_entry(&sh->batch_list,
1986 struct stripe_head,
1987 batch_list);
1988 if (sh == head_sh)
1989 continue;
1990 goto again;
1991 }
1992 }
1993 }
1994
1995 return tx;
1996}
1997
1998static void ops_complete_reconstruct(void *stripe_head_ref)
1999{
2000 struct stripe_head *sh = stripe_head_ref;
2001 int disks = sh->disks;
2002 int pd_idx = sh->pd_idx;
2003 int qd_idx = sh->qd_idx;
2004 int i;
2005 bool fua = false, sync = false, discard = false;
2006
2007 pr_debug("%s: stripe %llu\n", __func__,
2008 (unsigned long long)sh->sector);
2009
2010 for (i = disks; i--; ) {
2011 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2012 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2013 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2014 }
2015
2016 for (i = disks; i--; ) {
2017 struct r5dev *dev = &sh->dev[i];
2018
2019 if (dev->written || i == pd_idx || i == qd_idx) {
2020 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2021 set_bit(R5_UPTODATE, &dev->flags);
2022 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2023 set_bit(R5_Expanded, &dev->flags);
2024 }
2025 if (fua)
2026 set_bit(R5_WantFUA, &dev->flags);
2027 if (sync)
2028 set_bit(R5_SyncIO, &dev->flags);
2029 }
2030 }
2031
2032 if (sh->reconstruct_state == reconstruct_state_drain_run)
2033 sh->reconstruct_state = reconstruct_state_drain_result;
2034 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2035 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2036 else {
2037 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2038 sh->reconstruct_state = reconstruct_state_result;
2039 }
2040
2041 set_bit(STRIPE_HANDLE, &sh->state);
2042 raid5_release_stripe(sh);
2043}
2044
2045static void
2046ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2047 struct dma_async_tx_descriptor *tx)
2048{
2049 int disks = sh->disks;
2050 struct page **xor_srcs;
2051 unsigned int *off_srcs;
2052 struct async_submit_ctl submit;
2053 int count, pd_idx = sh->pd_idx, i;
2054 struct page *xor_dest;
2055 unsigned int off_dest;
2056 int prexor = 0;
2057 unsigned long flags;
2058 int j = 0;
2059 struct stripe_head *head_sh = sh;
2060 int last_stripe;
2061
2062 pr_debug("%s: stripe %llu\n", __func__,
2063 (unsigned long long)sh->sector);
2064
2065 for (i = 0; i < sh->disks; i++) {
2066 if (pd_idx == i)
2067 continue;
2068 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2069 break;
2070 }
2071 if (i >= sh->disks) {
2072 atomic_inc(&sh->count);
2073 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2074 ops_complete_reconstruct(sh);
2075 return;
2076 }
2077again:
2078 count = 0;
2079 xor_srcs = to_addr_page(percpu, j);
2080 off_srcs = to_addr_offs(sh, percpu);
2081 /* check if prexor is active which means only process blocks
2082 * that are part of a read-modify-write (written)
2083 */
2084 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2085 prexor = 1;
2086 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2087 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2088 for (i = disks; i--; ) {
2089 struct r5dev *dev = &sh->dev[i];
2090 if (head_sh->dev[i].written ||
2091 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2092 off_srcs[count] = dev->offset;
2093 xor_srcs[count++] = dev->page;
2094 }
2095 }
2096 } else {
2097 xor_dest = sh->dev[pd_idx].page;
2098 off_dest = sh->dev[pd_idx].offset;
2099 for (i = disks; i--; ) {
2100 struct r5dev *dev = &sh->dev[i];
2101 if (i != pd_idx) {
2102 off_srcs[count] = dev->offset;
2103 xor_srcs[count++] = dev->page;
2104 }
2105 }
2106 }
2107
2108 /* 1/ if we prexor'd then the dest is reused as a source
2109 * 2/ if we did not prexor then we are redoing the parity
2110 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2111 * for the synchronous xor case
2112 */
2113 last_stripe = !head_sh->batch_head ||
2114 list_first_entry(&sh->batch_list,
2115 struct stripe_head, batch_list) == head_sh;
2116 if (last_stripe) {
2117 flags = ASYNC_TX_ACK |
2118 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2119
2120 atomic_inc(&head_sh->count);
2121 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2122 to_addr_conv(sh, percpu, j));
2123 } else {
2124 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2125 init_async_submit(&submit, flags, tx, NULL, NULL,
2126 to_addr_conv(sh, percpu, j));
2127 }
2128
2129 if (unlikely(count == 1))
2130 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2131 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2132 else
2133 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2134 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2135 if (!last_stripe) {
2136 j++;
2137 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2138 batch_list);
2139 goto again;
2140 }
2141}
2142
2143static void
2144ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2145 struct dma_async_tx_descriptor *tx)
2146{
2147 struct async_submit_ctl submit;
2148 struct page **blocks;
2149 unsigned int *offs;
2150 int count, i, j = 0;
2151 struct stripe_head *head_sh = sh;
2152 int last_stripe;
2153 int synflags;
2154 unsigned long txflags;
2155
2156 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2157
2158 for (i = 0; i < sh->disks; i++) {
2159 if (sh->pd_idx == i || sh->qd_idx == i)
2160 continue;
2161 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2162 break;
2163 }
2164 if (i >= sh->disks) {
2165 atomic_inc(&sh->count);
2166 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2167 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2168 ops_complete_reconstruct(sh);
2169 return;
2170 }
2171
2172again:
2173 blocks = to_addr_page(percpu, j);
2174 offs = to_addr_offs(sh, percpu);
2175
2176 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2177 synflags = SYNDROME_SRC_WRITTEN;
2178 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2179 } else {
2180 synflags = SYNDROME_SRC_ALL;
2181 txflags = ASYNC_TX_ACK;
2182 }
2183
2184 count = set_syndrome_sources(blocks, offs, sh, synflags);
2185 last_stripe = !head_sh->batch_head ||
2186 list_first_entry(&sh->batch_list,
2187 struct stripe_head, batch_list) == head_sh;
2188
2189 if (last_stripe) {
2190 atomic_inc(&head_sh->count);
2191 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2192 head_sh, to_addr_conv(sh, percpu, j));
2193 } else
2194 init_async_submit(&submit, 0, tx, NULL, NULL,
2195 to_addr_conv(sh, percpu, j));
2196 tx = async_gen_syndrome(blocks, offs, count+2,
2197 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2198 if (!last_stripe) {
2199 j++;
2200 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2201 batch_list);
2202 goto again;
2203 }
2204}
2205
2206static void ops_complete_check(void *stripe_head_ref)
2207{
2208 struct stripe_head *sh = stripe_head_ref;
2209
2210 pr_debug("%s: stripe %llu\n", __func__,
2211 (unsigned long long)sh->sector);
2212
2213 sh->check_state = check_state_check_result;
2214 set_bit(STRIPE_HANDLE, &sh->state);
2215 raid5_release_stripe(sh);
2216}
2217
2218static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2219{
2220 int disks = sh->disks;
2221 int pd_idx = sh->pd_idx;
2222 int qd_idx = sh->qd_idx;
2223 struct page *xor_dest;
2224 unsigned int off_dest;
2225 struct page **xor_srcs = to_addr_page(percpu, 0);
2226 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2227 struct dma_async_tx_descriptor *tx;
2228 struct async_submit_ctl submit;
2229 int count;
2230 int i;
2231
2232 pr_debug("%s: stripe %llu\n", __func__,
2233 (unsigned long long)sh->sector);
2234
2235 BUG_ON(sh->batch_head);
2236 count = 0;
2237 xor_dest = sh->dev[pd_idx].page;
2238 off_dest = sh->dev[pd_idx].offset;
2239 off_srcs[count] = off_dest;
2240 xor_srcs[count++] = xor_dest;
2241 for (i = disks; i--; ) {
2242 if (i == pd_idx || i == qd_idx)
2243 continue;
2244 off_srcs[count] = sh->dev[i].offset;
2245 xor_srcs[count++] = sh->dev[i].page;
2246 }
2247
2248 init_async_submit(&submit, 0, NULL, NULL, NULL,
2249 to_addr_conv(sh, percpu, 0));
2250 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2251 RAID5_STRIPE_SIZE(sh->raid_conf),
2252 &sh->ops.zero_sum_result, &submit);
2253
2254 atomic_inc(&sh->count);
2255 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2256 tx = async_trigger_callback(&submit);
2257}
2258
2259static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2260{
2261 struct page **srcs = to_addr_page(percpu, 0);
2262 unsigned int *offs = to_addr_offs(sh, percpu);
2263 struct async_submit_ctl submit;
2264 int count;
2265
2266 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2267 (unsigned long long)sh->sector, checkp);
2268
2269 BUG_ON(sh->batch_head);
2270 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2271 if (!checkp)
2272 srcs[count] = NULL;
2273
2274 atomic_inc(&sh->count);
2275 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2276 sh, to_addr_conv(sh, percpu, 0));
2277 async_syndrome_val(srcs, offs, count+2,
2278 RAID5_STRIPE_SIZE(sh->raid_conf),
2279 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2280}
2281
2282static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2283{
2284 int overlap_clear = 0, i, disks = sh->disks;
2285 struct dma_async_tx_descriptor *tx = NULL;
2286 struct r5conf *conf = sh->raid_conf;
2287 int level = conf->level;
2288 struct raid5_percpu *percpu;
2289
2290 local_lock(&conf->percpu->lock);
2291 percpu = this_cpu_ptr(conf->percpu);
2292 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2293 ops_run_biofill(sh);
2294 overlap_clear++;
2295 }
2296
2297 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2298 if (level < 6)
2299 tx = ops_run_compute5(sh, percpu);
2300 else {
2301 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2302 tx = ops_run_compute6_1(sh, percpu);
2303 else
2304 tx = ops_run_compute6_2(sh, percpu);
2305 }
2306 /* terminate the chain if reconstruct is not set to be run */
2307 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2308 async_tx_ack(tx);
2309 }
2310
2311 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2312 if (level < 6)
2313 tx = ops_run_prexor5(sh, percpu, tx);
2314 else
2315 tx = ops_run_prexor6(sh, percpu, tx);
2316 }
2317
2318 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2319 tx = ops_run_partial_parity(sh, percpu, tx);
2320
2321 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2322 tx = ops_run_biodrain(sh, tx);
2323 overlap_clear++;
2324 }
2325
2326 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2327 if (level < 6)
2328 ops_run_reconstruct5(sh, percpu, tx);
2329 else
2330 ops_run_reconstruct6(sh, percpu, tx);
2331 }
2332
2333 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2334 if (sh->check_state == check_state_run)
2335 ops_run_check_p(sh, percpu);
2336 else if (sh->check_state == check_state_run_q)
2337 ops_run_check_pq(sh, percpu, 0);
2338 else if (sh->check_state == check_state_run_pq)
2339 ops_run_check_pq(sh, percpu, 1);
2340 else
2341 BUG();
2342 }
2343
2344 if (overlap_clear && !sh->batch_head) {
2345 for (i = disks; i--; ) {
2346 struct r5dev *dev = &sh->dev[i];
2347 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2348 wake_up(&sh->raid_conf->wait_for_overlap);
2349 }
2350 }
2351 local_unlock(&conf->percpu->lock);
2352}
2353
2354static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2355{
2356#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2357 kfree(sh->pages);
2358#endif
2359 if (sh->ppl_page)
2360 __free_page(sh->ppl_page);
2361 kmem_cache_free(sc, sh);
2362}
2363
2364static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2365 int disks, struct r5conf *conf)
2366{
2367 struct stripe_head *sh;
2368
2369 sh = kmem_cache_zalloc(sc, gfp);
2370 if (sh) {
2371 spin_lock_init(&sh->stripe_lock);
2372 spin_lock_init(&sh->batch_lock);
2373 INIT_LIST_HEAD(&sh->batch_list);
2374 INIT_LIST_HEAD(&sh->lru);
2375 INIT_LIST_HEAD(&sh->r5c);
2376 INIT_LIST_HEAD(&sh->log_list);
2377 atomic_set(&sh->count, 1);
2378 sh->raid_conf = conf;
2379 sh->log_start = MaxSector;
2380
2381 if (raid5_has_ppl(conf)) {
2382 sh->ppl_page = alloc_page(gfp);
2383 if (!sh->ppl_page) {
2384 free_stripe(sc, sh);
2385 return NULL;
2386 }
2387 }
2388#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2389 if (init_stripe_shared_pages(sh, conf, disks)) {
2390 free_stripe(sc, sh);
2391 return NULL;
2392 }
2393#endif
2394 }
2395 return sh;
2396}
2397static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2398{
2399 struct stripe_head *sh;
2400
2401 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2402 if (!sh)
2403 return 0;
2404
2405 if (grow_buffers(sh, gfp)) {
2406 shrink_buffers(sh);
2407 free_stripe(conf->slab_cache, sh);
2408 return 0;
2409 }
2410 sh->hash_lock_index =
2411 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2412 /* we just created an active stripe so... */
2413 atomic_inc(&conf->active_stripes);
2414
2415 raid5_release_stripe(sh);
2416 conf->max_nr_stripes++;
2417 return 1;
2418}
2419
2420static int grow_stripes(struct r5conf *conf, int num)
2421{
2422 struct kmem_cache *sc;
2423 size_t namelen = sizeof(conf->cache_name[0]);
2424 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2425
2426 if (conf->mddev->gendisk)
2427 snprintf(conf->cache_name[0], namelen,
2428 "raid%d-%s", conf->level, mdname(conf->mddev));
2429 else
2430 snprintf(conf->cache_name[0], namelen,
2431 "raid%d-%p", conf->level, conf->mddev);
2432 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2433
2434 conf->active_name = 0;
2435 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2436 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2437 0, 0, NULL);
2438 if (!sc)
2439 return 1;
2440 conf->slab_cache = sc;
2441 conf->pool_size = devs;
2442 while (num--)
2443 if (!grow_one_stripe(conf, GFP_KERNEL))
2444 return 1;
2445
2446 return 0;
2447}
2448
2449/**
2450 * scribble_alloc - allocate percpu scribble buffer for required size
2451 * of the scribble region
2452 * @percpu: from for_each_present_cpu() of the caller
2453 * @num: total number of disks in the array
2454 * @cnt: scribble objs count for required size of the scribble region
2455 *
2456 * The scribble buffer size must be enough to contain:
2457 * 1/ a struct page pointer for each device in the array +2
2458 * 2/ room to convert each entry in (1) to its corresponding dma
2459 * (dma_map_page()) or page (page_address()) address.
2460 *
2461 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2462 * calculate over all devices (not just the data blocks), using zeros in place
2463 * of the P and Q blocks.
2464 */
2465static int scribble_alloc(struct raid5_percpu *percpu,
2466 int num, int cnt)
2467{
2468 size_t obj_size =
2469 sizeof(struct page *) * (num + 2) +
2470 sizeof(addr_conv_t) * (num + 2) +
2471 sizeof(unsigned int) * (num + 2);
2472 void *scribble;
2473
2474 /*
2475 * If here is in raid array suspend context, it is in memalloc noio
2476 * context as well, there is no potential recursive memory reclaim
2477 * I/Os with the GFP_KERNEL flag.
2478 */
2479 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2480 if (!scribble)
2481 return -ENOMEM;
2482
2483 kvfree(percpu->scribble);
2484
2485 percpu->scribble = scribble;
2486 percpu->scribble_obj_size = obj_size;
2487 return 0;
2488}
2489
2490static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2491{
2492 unsigned long cpu;
2493 int err = 0;
2494
2495 /*
2496 * Never shrink. And mddev_suspend() could deadlock if this is called
2497 * from raid5d. In that case, scribble_disks and scribble_sectors
2498 * should equal to new_disks and new_sectors
2499 */
2500 if (conf->scribble_disks >= new_disks &&
2501 conf->scribble_sectors >= new_sectors)
2502 return 0;
2503 mddev_suspend(conf->mddev);
2504 cpus_read_lock();
2505
2506 for_each_present_cpu(cpu) {
2507 struct raid5_percpu *percpu;
2508
2509 percpu = per_cpu_ptr(conf->percpu, cpu);
2510 err = scribble_alloc(percpu, new_disks,
2511 new_sectors / RAID5_STRIPE_SECTORS(conf));
2512 if (err)
2513 break;
2514 }
2515
2516 cpus_read_unlock();
2517 mddev_resume(conf->mddev);
2518 if (!err) {
2519 conf->scribble_disks = new_disks;
2520 conf->scribble_sectors = new_sectors;
2521 }
2522 return err;
2523}
2524
2525static int resize_stripes(struct r5conf *conf, int newsize)
2526{
2527 /* Make all the stripes able to hold 'newsize' devices.
2528 * New slots in each stripe get 'page' set to a new page.
2529 *
2530 * This happens in stages:
2531 * 1/ create a new kmem_cache and allocate the required number of
2532 * stripe_heads.
2533 * 2/ gather all the old stripe_heads and transfer the pages across
2534 * to the new stripe_heads. This will have the side effect of
2535 * freezing the array as once all stripe_heads have been collected,
2536 * no IO will be possible. Old stripe heads are freed once their
2537 * pages have been transferred over, and the old kmem_cache is
2538 * freed when all stripes are done.
2539 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2540 * we simple return a failure status - no need to clean anything up.
2541 * 4/ allocate new pages for the new slots in the new stripe_heads.
2542 * If this fails, we don't bother trying the shrink the
2543 * stripe_heads down again, we just leave them as they are.
2544 * As each stripe_head is processed the new one is released into
2545 * active service.
2546 *
2547 * Once step2 is started, we cannot afford to wait for a write,
2548 * so we use GFP_NOIO allocations.
2549 */
2550 struct stripe_head *osh, *nsh;
2551 LIST_HEAD(newstripes);
2552 struct disk_info *ndisks;
2553 int err = 0;
2554 struct kmem_cache *sc;
2555 int i;
2556 int hash, cnt;
2557
2558 md_allow_write(conf->mddev);
2559
2560 /* Step 1 */
2561 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2562 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2563 0, 0, NULL);
2564 if (!sc)
2565 return -ENOMEM;
2566
2567 /* Need to ensure auto-resizing doesn't interfere */
2568 mutex_lock(&conf->cache_size_mutex);
2569
2570 for (i = conf->max_nr_stripes; i; i--) {
2571 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2572 if (!nsh)
2573 break;
2574
2575 list_add(&nsh->lru, &newstripes);
2576 }
2577 if (i) {
2578 /* didn't get enough, give up */
2579 while (!list_empty(&newstripes)) {
2580 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2581 list_del(&nsh->lru);
2582 free_stripe(sc, nsh);
2583 }
2584 kmem_cache_destroy(sc);
2585 mutex_unlock(&conf->cache_size_mutex);
2586 return -ENOMEM;
2587 }
2588 /* Step 2 - Must use GFP_NOIO now.
2589 * OK, we have enough stripes, start collecting inactive
2590 * stripes and copying them over
2591 */
2592 hash = 0;
2593 cnt = 0;
2594 list_for_each_entry(nsh, &newstripes, lru) {
2595 lock_device_hash_lock(conf, hash);
2596 wait_event_cmd(conf->wait_for_stripe,
2597 !list_empty(conf->inactive_list + hash),
2598 unlock_device_hash_lock(conf, hash),
2599 lock_device_hash_lock(conf, hash));
2600 osh = get_free_stripe(conf, hash);
2601 unlock_device_hash_lock(conf, hash);
2602
2603#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2604 for (i = 0; i < osh->nr_pages; i++) {
2605 nsh->pages[i] = osh->pages[i];
2606 osh->pages[i] = NULL;
2607 }
2608#endif
2609 for(i=0; i<conf->pool_size; i++) {
2610 nsh->dev[i].page = osh->dev[i].page;
2611 nsh->dev[i].orig_page = osh->dev[i].page;
2612 nsh->dev[i].offset = osh->dev[i].offset;
2613 }
2614 nsh->hash_lock_index = hash;
2615 free_stripe(conf->slab_cache, osh);
2616 cnt++;
2617 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2618 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2619 hash++;
2620 cnt = 0;
2621 }
2622 }
2623 kmem_cache_destroy(conf->slab_cache);
2624
2625 /* Step 3.
2626 * At this point, we are holding all the stripes so the array
2627 * is completely stalled, so now is a good time to resize
2628 * conf->disks and the scribble region
2629 */
2630 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2631 if (ndisks) {
2632 for (i = 0; i < conf->pool_size; i++)
2633 ndisks[i] = conf->disks[i];
2634
2635 for (i = conf->pool_size; i < newsize; i++) {
2636 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2637 if (!ndisks[i].extra_page)
2638 err = -ENOMEM;
2639 }
2640
2641 if (err) {
2642 for (i = conf->pool_size; i < newsize; i++)
2643 if (ndisks[i].extra_page)
2644 put_page(ndisks[i].extra_page);
2645 kfree(ndisks);
2646 } else {
2647 kfree(conf->disks);
2648 conf->disks = ndisks;
2649 }
2650 } else
2651 err = -ENOMEM;
2652
2653 conf->slab_cache = sc;
2654 conf->active_name = 1-conf->active_name;
2655
2656 /* Step 4, return new stripes to service */
2657 while(!list_empty(&newstripes)) {
2658 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2659 list_del_init(&nsh->lru);
2660
2661#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2662 for (i = 0; i < nsh->nr_pages; i++) {
2663 if (nsh->pages[i])
2664 continue;
2665 nsh->pages[i] = alloc_page(GFP_NOIO);
2666 if (!nsh->pages[i])
2667 err = -ENOMEM;
2668 }
2669
2670 for (i = conf->raid_disks; i < newsize; i++) {
2671 if (nsh->dev[i].page)
2672 continue;
2673 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2674 nsh->dev[i].orig_page = nsh->dev[i].page;
2675 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2676 }
2677#else
2678 for (i=conf->raid_disks; i < newsize; i++)
2679 if (nsh->dev[i].page == NULL) {
2680 struct page *p = alloc_page(GFP_NOIO);
2681 nsh->dev[i].page = p;
2682 nsh->dev[i].orig_page = p;
2683 nsh->dev[i].offset = 0;
2684 if (!p)
2685 err = -ENOMEM;
2686 }
2687#endif
2688 raid5_release_stripe(nsh);
2689 }
2690 /* critical section pass, GFP_NOIO no longer needed */
2691
2692 if (!err)
2693 conf->pool_size = newsize;
2694 mutex_unlock(&conf->cache_size_mutex);
2695
2696 return err;
2697}
2698
2699static int drop_one_stripe(struct r5conf *conf)
2700{
2701 struct stripe_head *sh;
2702 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2703
2704 spin_lock_irq(conf->hash_locks + hash);
2705 sh = get_free_stripe(conf, hash);
2706 spin_unlock_irq(conf->hash_locks + hash);
2707 if (!sh)
2708 return 0;
2709 BUG_ON(atomic_read(&sh->count));
2710 shrink_buffers(sh);
2711 free_stripe(conf->slab_cache, sh);
2712 atomic_dec(&conf->active_stripes);
2713 conf->max_nr_stripes--;
2714 return 1;
2715}
2716
2717static void shrink_stripes(struct r5conf *conf)
2718{
2719 while (conf->max_nr_stripes &&
2720 drop_one_stripe(conf))
2721 ;
2722
2723 kmem_cache_destroy(conf->slab_cache);
2724 conf->slab_cache = NULL;
2725}
2726
2727/*
2728 * This helper wraps rcu_dereference_protected() and can be used when
2729 * it is known that the nr_pending of the rdev is elevated.
2730 */
2731static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev)
2732{
2733 return rcu_dereference_protected(rdev,
2734 atomic_read(&rcu_access_pointer(rdev)->nr_pending));
2735}
2736
2737/*
2738 * This helper wraps rcu_dereference_protected() and should be used
2739 * when it is known that the mddev_lock() is held. This is safe
2740 * seeing raid5_remove_disk() has the same lock held.
2741 */
2742static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev,
2743 struct md_rdev __rcu *rdev)
2744{
2745 return rcu_dereference_protected(rdev,
2746 lockdep_is_held(&mddev->reconfig_mutex));
2747}
2748
2749static void raid5_end_read_request(struct bio * bi)
2750{
2751 struct stripe_head *sh = bi->bi_private;
2752 struct r5conf *conf = sh->raid_conf;
2753 int disks = sh->disks, i;
2754 struct md_rdev *rdev = NULL;
2755 sector_t s;
2756
2757 for (i=0 ; i<disks; i++)
2758 if (bi == &sh->dev[i].req)
2759 break;
2760
2761 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2762 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2763 bi->bi_status);
2764 if (i == disks) {
2765 BUG();
2766 return;
2767 }
2768 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2769 /* If replacement finished while this request was outstanding,
2770 * 'replacement' might be NULL already.
2771 * In that case it moved down to 'rdev'.
2772 * rdev is not removed until all requests are finished.
2773 */
2774 rdev = rdev_pend_deref(conf->disks[i].replacement);
2775 if (!rdev)
2776 rdev = rdev_pend_deref(conf->disks[i].rdev);
2777
2778 if (use_new_offset(conf, sh))
2779 s = sh->sector + rdev->new_data_offset;
2780 else
2781 s = sh->sector + rdev->data_offset;
2782 if (!bi->bi_status) {
2783 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2784 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2785 /* Note that this cannot happen on a
2786 * replacement device. We just fail those on
2787 * any error
2788 */
2789 pr_info_ratelimited(
2790 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2791 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2792 (unsigned long long)s,
2793 rdev->bdev);
2794 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2795 clear_bit(R5_ReadError, &sh->dev[i].flags);
2796 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2797 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2798 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2799
2800 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2801 /*
2802 * end read for a page in journal, this
2803 * must be preparing for prexor in rmw
2804 */
2805 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2806
2807 if (atomic_read(&rdev->read_errors))
2808 atomic_set(&rdev->read_errors, 0);
2809 } else {
2810 int retry = 0;
2811 int set_bad = 0;
2812
2813 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2814 if (!(bi->bi_status == BLK_STS_PROTECTION))
2815 atomic_inc(&rdev->read_errors);
2816 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2817 pr_warn_ratelimited(
2818 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2819 mdname(conf->mddev),
2820 (unsigned long long)s,
2821 rdev->bdev);
2822 else if (conf->mddev->degraded >= conf->max_degraded) {
2823 set_bad = 1;
2824 pr_warn_ratelimited(
2825 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2826 mdname(conf->mddev),
2827 (unsigned long long)s,
2828 rdev->bdev);
2829 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2830 /* Oh, no!!! */
2831 set_bad = 1;
2832 pr_warn_ratelimited(
2833 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2834 mdname(conf->mddev),
2835 (unsigned long long)s,
2836 rdev->bdev);
2837 } else if (atomic_read(&rdev->read_errors)
2838 > conf->max_nr_stripes) {
2839 if (!test_bit(Faulty, &rdev->flags)) {
2840 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2841 mdname(conf->mddev),
2842 atomic_read(&rdev->read_errors),
2843 conf->max_nr_stripes);
2844 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2845 mdname(conf->mddev), rdev->bdev);
2846 }
2847 } else
2848 retry = 1;
2849 if (set_bad && test_bit(In_sync, &rdev->flags)
2850 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2851 retry = 1;
2852 if (retry)
2853 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2854 set_bit(R5_ReadError, &sh->dev[i].flags);
2855 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2856 set_bit(R5_ReadError, &sh->dev[i].flags);
2857 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2858 } else
2859 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2860 else {
2861 clear_bit(R5_ReadError, &sh->dev[i].flags);
2862 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2863 if (!(set_bad
2864 && test_bit(In_sync, &rdev->flags)
2865 && rdev_set_badblocks(
2866 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2867 md_error(conf->mddev, rdev);
2868 }
2869 }
2870 rdev_dec_pending(rdev, conf->mddev);
2871 bio_uninit(bi);
2872 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2873 set_bit(STRIPE_HANDLE, &sh->state);
2874 raid5_release_stripe(sh);
2875}
2876
2877static void raid5_end_write_request(struct bio *bi)
2878{
2879 struct stripe_head *sh = bi->bi_private;
2880 struct r5conf *conf = sh->raid_conf;
2881 int disks = sh->disks, i;
2882 struct md_rdev *rdev;
2883 sector_t first_bad;
2884 int bad_sectors;
2885 int replacement = 0;
2886
2887 for (i = 0 ; i < disks; i++) {
2888 if (bi == &sh->dev[i].req) {
2889 rdev = rdev_pend_deref(conf->disks[i].rdev);
2890 break;
2891 }
2892 if (bi == &sh->dev[i].rreq) {
2893 rdev = rdev_pend_deref(conf->disks[i].replacement);
2894 if (rdev)
2895 replacement = 1;
2896 else
2897 /* rdev was removed and 'replacement'
2898 * replaced it. rdev is not removed
2899 * until all requests are finished.
2900 */
2901 rdev = rdev_pend_deref(conf->disks[i].rdev);
2902 break;
2903 }
2904 }
2905 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2906 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2907 bi->bi_status);
2908 if (i == disks) {
2909 BUG();
2910 return;
2911 }
2912
2913 if (replacement) {
2914 if (bi->bi_status)
2915 md_error(conf->mddev, rdev);
2916 else if (is_badblock(rdev, sh->sector,
2917 RAID5_STRIPE_SECTORS(conf),
2918 &first_bad, &bad_sectors))
2919 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2920 } else {
2921 if (bi->bi_status) {
2922 set_bit(STRIPE_DEGRADED, &sh->state);
2923 set_bit(WriteErrorSeen, &rdev->flags);
2924 set_bit(R5_WriteError, &sh->dev[i].flags);
2925 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2926 set_bit(MD_RECOVERY_NEEDED,
2927 &rdev->mddev->recovery);
2928 } else if (is_badblock(rdev, sh->sector,
2929 RAID5_STRIPE_SECTORS(conf),
2930 &first_bad, &bad_sectors)) {
2931 set_bit(R5_MadeGood, &sh->dev[i].flags);
2932 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2933 /* That was a successful write so make
2934 * sure it looks like we already did
2935 * a re-write.
2936 */
2937 set_bit(R5_ReWrite, &sh->dev[i].flags);
2938 }
2939 }
2940 rdev_dec_pending(rdev, conf->mddev);
2941
2942 if (sh->batch_head && bi->bi_status && !replacement)
2943 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2944
2945 bio_uninit(bi);
2946 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2947 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2948 set_bit(STRIPE_HANDLE, &sh->state);
2949
2950 if (sh->batch_head && sh != sh->batch_head)
2951 raid5_release_stripe(sh->batch_head);
2952 raid5_release_stripe(sh);
2953}
2954
2955static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2956{
2957 struct r5conf *conf = mddev->private;
2958 unsigned long flags;
2959 pr_debug("raid456: error called\n");
2960
2961 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2962 mdname(mddev), rdev->bdev);
2963
2964 spin_lock_irqsave(&conf->device_lock, flags);
2965 set_bit(Faulty, &rdev->flags);
2966 clear_bit(In_sync, &rdev->flags);
2967 mddev->degraded = raid5_calc_degraded(conf);
2968
2969 if (has_failed(conf)) {
2970 set_bit(MD_BROKEN, &conf->mddev->flags);
2971 conf->recovery_disabled = mddev->recovery_disabled;
2972
2973 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2974 mdname(mddev), mddev->degraded, conf->raid_disks);
2975 } else {
2976 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2977 mdname(mddev), conf->raid_disks - mddev->degraded);
2978 }
2979
2980 spin_unlock_irqrestore(&conf->device_lock, flags);
2981 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2982
2983 set_bit(Blocked, &rdev->flags);
2984 set_mask_bits(&mddev->sb_flags, 0,
2985 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2986 r5c_update_on_rdev_error(mddev, rdev);
2987}
2988
2989/*
2990 * Input: a 'big' sector number,
2991 * Output: index of the data and parity disk, and the sector # in them.
2992 */
2993sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2994 int previous, int *dd_idx,
2995 struct stripe_head *sh)
2996{
2997 sector_t stripe, stripe2;
2998 sector_t chunk_number;
2999 unsigned int chunk_offset;
3000 int pd_idx, qd_idx;
3001 int ddf_layout = 0;
3002 sector_t new_sector;
3003 int algorithm = previous ? conf->prev_algo
3004 : conf->algorithm;
3005 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3006 : conf->chunk_sectors;
3007 int raid_disks = previous ? conf->previous_raid_disks
3008 : conf->raid_disks;
3009 int data_disks = raid_disks - conf->max_degraded;
3010
3011 /* First compute the information on this sector */
3012
3013 /*
3014 * Compute the chunk number and the sector offset inside the chunk
3015 */
3016 chunk_offset = sector_div(r_sector, sectors_per_chunk);
3017 chunk_number = r_sector;
3018
3019 /*
3020 * Compute the stripe number
3021 */
3022 stripe = chunk_number;
3023 *dd_idx = sector_div(stripe, data_disks);
3024 stripe2 = stripe;
3025 /*
3026 * Select the parity disk based on the user selected algorithm.
3027 */
3028 pd_idx = qd_idx = -1;
3029 switch(conf->level) {
3030 case 4:
3031 pd_idx = data_disks;
3032 break;
3033 case 5:
3034 switch (algorithm) {
3035 case ALGORITHM_LEFT_ASYMMETRIC:
3036 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3037 if (*dd_idx >= pd_idx)
3038 (*dd_idx)++;
3039 break;
3040 case ALGORITHM_RIGHT_ASYMMETRIC:
3041 pd_idx = sector_div(stripe2, raid_disks);
3042 if (*dd_idx >= pd_idx)
3043 (*dd_idx)++;
3044 break;
3045 case ALGORITHM_LEFT_SYMMETRIC:
3046 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3047 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3048 break;
3049 case ALGORITHM_RIGHT_SYMMETRIC:
3050 pd_idx = sector_div(stripe2, raid_disks);
3051 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3052 break;
3053 case ALGORITHM_PARITY_0:
3054 pd_idx = 0;
3055 (*dd_idx)++;
3056 break;
3057 case ALGORITHM_PARITY_N:
3058 pd_idx = data_disks;
3059 break;
3060 default:
3061 BUG();
3062 }
3063 break;
3064 case 6:
3065
3066 switch (algorithm) {
3067 case ALGORITHM_LEFT_ASYMMETRIC:
3068 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3069 qd_idx = pd_idx + 1;
3070 if (pd_idx == raid_disks-1) {
3071 (*dd_idx)++; /* Q D D D P */
3072 qd_idx = 0;
3073 } else if (*dd_idx >= pd_idx)
3074 (*dd_idx) += 2; /* D D P Q D */
3075 break;
3076 case ALGORITHM_RIGHT_ASYMMETRIC:
3077 pd_idx = sector_div(stripe2, raid_disks);
3078 qd_idx = pd_idx + 1;
3079 if (pd_idx == raid_disks-1) {
3080 (*dd_idx)++; /* Q D D D P */
3081 qd_idx = 0;
3082 } else if (*dd_idx >= pd_idx)
3083 (*dd_idx) += 2; /* D D P Q D */
3084 break;
3085 case ALGORITHM_LEFT_SYMMETRIC:
3086 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3087 qd_idx = (pd_idx + 1) % raid_disks;
3088 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3089 break;
3090 case ALGORITHM_RIGHT_SYMMETRIC:
3091 pd_idx = sector_div(stripe2, raid_disks);
3092 qd_idx = (pd_idx + 1) % raid_disks;
3093 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3094 break;
3095
3096 case ALGORITHM_PARITY_0:
3097 pd_idx = 0;
3098 qd_idx = 1;
3099 (*dd_idx) += 2;
3100 break;
3101 case ALGORITHM_PARITY_N:
3102 pd_idx = data_disks;
3103 qd_idx = data_disks + 1;
3104 break;
3105
3106 case ALGORITHM_ROTATING_ZERO_RESTART:
3107 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3108 * of blocks for computing Q is different.
3109 */
3110 pd_idx = sector_div(stripe2, raid_disks);
3111 qd_idx = pd_idx + 1;
3112 if (pd_idx == raid_disks-1) {
3113 (*dd_idx)++; /* Q D D D P */
3114 qd_idx = 0;
3115 } else if (*dd_idx >= pd_idx)
3116 (*dd_idx) += 2; /* D D P Q D */
3117 ddf_layout = 1;
3118 break;
3119
3120 case ALGORITHM_ROTATING_N_RESTART:
3121 /* Same a left_asymmetric, by first stripe is
3122 * D D D P Q rather than
3123 * Q D D D P
3124 */
3125 stripe2 += 1;
3126 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3127 qd_idx = pd_idx + 1;
3128 if (pd_idx == raid_disks-1) {
3129 (*dd_idx)++; /* Q D D D P */
3130 qd_idx = 0;
3131 } else if (*dd_idx >= pd_idx)
3132 (*dd_idx) += 2; /* D D P Q D */
3133 ddf_layout = 1;
3134 break;
3135
3136 case ALGORITHM_ROTATING_N_CONTINUE:
3137 /* Same as left_symmetric but Q is before P */
3138 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3139 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3140 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3141 ddf_layout = 1;
3142 break;
3143
3144 case ALGORITHM_LEFT_ASYMMETRIC_6:
3145 /* RAID5 left_asymmetric, with Q on last device */
3146 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3147 if (*dd_idx >= pd_idx)
3148 (*dd_idx)++;
3149 qd_idx = raid_disks - 1;
3150 break;
3151
3152 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3153 pd_idx = sector_div(stripe2, raid_disks-1);
3154 if (*dd_idx >= pd_idx)
3155 (*dd_idx)++;
3156 qd_idx = raid_disks - 1;
3157 break;
3158
3159 case ALGORITHM_LEFT_SYMMETRIC_6:
3160 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3161 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3162 qd_idx = raid_disks - 1;
3163 break;
3164
3165 case ALGORITHM_RIGHT_SYMMETRIC_6:
3166 pd_idx = sector_div(stripe2, raid_disks-1);
3167 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3168 qd_idx = raid_disks - 1;
3169 break;
3170
3171 case ALGORITHM_PARITY_0_6:
3172 pd_idx = 0;
3173 (*dd_idx)++;
3174 qd_idx = raid_disks - 1;
3175 break;
3176
3177 default:
3178 BUG();
3179 }
3180 break;
3181 }
3182
3183 if (sh) {
3184 sh->pd_idx = pd_idx;
3185 sh->qd_idx = qd_idx;
3186 sh->ddf_layout = ddf_layout;
3187 }
3188 /*
3189 * Finally, compute the new sector number
3190 */
3191 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3192 return new_sector;
3193}
3194
3195sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3196{
3197 struct r5conf *conf = sh->raid_conf;
3198 int raid_disks = sh->disks;
3199 int data_disks = raid_disks - conf->max_degraded;
3200 sector_t new_sector = sh->sector, check;
3201 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3202 : conf->chunk_sectors;
3203 int algorithm = previous ? conf->prev_algo
3204 : conf->algorithm;
3205 sector_t stripe;
3206 int chunk_offset;
3207 sector_t chunk_number;
3208 int dummy1, dd_idx = i;
3209 sector_t r_sector;
3210 struct stripe_head sh2;
3211
3212 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3213 stripe = new_sector;
3214
3215 if (i == sh->pd_idx)
3216 return 0;
3217 switch(conf->level) {
3218 case 4: break;
3219 case 5:
3220 switch (algorithm) {
3221 case ALGORITHM_LEFT_ASYMMETRIC:
3222 case ALGORITHM_RIGHT_ASYMMETRIC:
3223 if (i > sh->pd_idx)
3224 i--;
3225 break;
3226 case ALGORITHM_LEFT_SYMMETRIC:
3227 case ALGORITHM_RIGHT_SYMMETRIC:
3228 if (i < sh->pd_idx)
3229 i += raid_disks;
3230 i -= (sh->pd_idx + 1);
3231 break;
3232 case ALGORITHM_PARITY_0:
3233 i -= 1;
3234 break;
3235 case ALGORITHM_PARITY_N:
3236 break;
3237 default:
3238 BUG();
3239 }
3240 break;
3241 case 6:
3242 if (i == sh->qd_idx)
3243 return 0; /* It is the Q disk */
3244 switch (algorithm) {
3245 case ALGORITHM_LEFT_ASYMMETRIC:
3246 case ALGORITHM_RIGHT_ASYMMETRIC:
3247 case ALGORITHM_ROTATING_ZERO_RESTART:
3248 case ALGORITHM_ROTATING_N_RESTART:
3249 if (sh->pd_idx == raid_disks-1)
3250 i--; /* Q D D D P */
3251 else if (i > sh->pd_idx)
3252 i -= 2; /* D D P Q D */
3253 break;
3254 case ALGORITHM_LEFT_SYMMETRIC:
3255 case ALGORITHM_RIGHT_SYMMETRIC:
3256 if (sh->pd_idx == raid_disks-1)
3257 i--; /* Q D D D P */
3258 else {
3259 /* D D P Q D */
3260 if (i < sh->pd_idx)
3261 i += raid_disks;
3262 i -= (sh->pd_idx + 2);
3263 }
3264 break;
3265 case ALGORITHM_PARITY_0:
3266 i -= 2;
3267 break;
3268 case ALGORITHM_PARITY_N:
3269 break;
3270 case ALGORITHM_ROTATING_N_CONTINUE:
3271 /* Like left_symmetric, but P is before Q */
3272 if (sh->pd_idx == 0)
3273 i--; /* P D D D Q */
3274 else {
3275 /* D D Q P D */
3276 if (i < sh->pd_idx)
3277 i += raid_disks;
3278 i -= (sh->pd_idx + 1);
3279 }
3280 break;
3281 case ALGORITHM_LEFT_ASYMMETRIC_6:
3282 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3283 if (i > sh->pd_idx)
3284 i--;
3285 break;
3286 case ALGORITHM_LEFT_SYMMETRIC_6:
3287 case ALGORITHM_RIGHT_SYMMETRIC_6:
3288 if (i < sh->pd_idx)
3289 i += data_disks + 1;
3290 i -= (sh->pd_idx + 1);
3291 break;
3292 case ALGORITHM_PARITY_0_6:
3293 i -= 1;
3294 break;
3295 default:
3296 BUG();
3297 }
3298 break;
3299 }
3300
3301 chunk_number = stripe * data_disks + i;
3302 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3303
3304 check = raid5_compute_sector(conf, r_sector,
3305 previous, &dummy1, &sh2);
3306 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3307 || sh2.qd_idx != sh->qd_idx) {
3308 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3309 mdname(conf->mddev));
3310 return 0;
3311 }
3312 return r_sector;
3313}
3314
3315/*
3316 * There are cases where we want handle_stripe_dirtying() and
3317 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3318 *
3319 * This function checks whether we want to delay the towrite. Specifically,
3320 * we delay the towrite when:
3321 *
3322 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3323 * stripe has data in journal (for other devices).
3324 *
3325 * In this case, when reading data for the non-overwrite dev, it is
3326 * necessary to handle complex rmw of write back cache (prexor with
3327 * orig_page, and xor with page). To keep read path simple, we would
3328 * like to flush data in journal to RAID disks first, so complex rmw
3329 * is handled in the write patch (handle_stripe_dirtying).
3330 *
3331 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3332 *
3333 * It is important to be able to flush all stripes in raid5-cache.
3334 * Therefore, we need reserve some space on the journal device for
3335 * these flushes. If flush operation includes pending writes to the
3336 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3337 * for the flush out. If we exclude these pending writes from flush
3338 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3339 * Therefore, excluding pending writes in these cases enables more
3340 * efficient use of the journal device.
3341 *
3342 * Note: To make sure the stripe makes progress, we only delay
3343 * towrite for stripes with data already in journal (injournal > 0).
3344 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3345 * no_space_stripes list.
3346 *
3347 * 3. during journal failure
3348 * In journal failure, we try to flush all cached data to raid disks
3349 * based on data in stripe cache. The array is read-only to upper
3350 * layers, so we would skip all pending writes.
3351 *
3352 */
3353static inline bool delay_towrite(struct r5conf *conf,
3354 struct r5dev *dev,
3355 struct stripe_head_state *s)
3356{
3357 /* case 1 above */
3358 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3359 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3360 return true;
3361 /* case 2 above */
3362 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3363 s->injournal > 0)
3364 return true;
3365 /* case 3 above */
3366 if (s->log_failed && s->injournal)
3367 return true;
3368 return false;
3369}
3370
3371static void
3372schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3373 int rcw, int expand)
3374{
3375 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3376 struct r5conf *conf = sh->raid_conf;
3377 int level = conf->level;
3378
3379 if (rcw) {
3380 /*
3381 * In some cases, handle_stripe_dirtying initially decided to
3382 * run rmw and allocates extra page for prexor. However, rcw is
3383 * cheaper later on. We need to free the extra page now,
3384 * because we won't be able to do that in ops_complete_prexor().
3385 */
3386 r5c_release_extra_page(sh);
3387
3388 for (i = disks; i--; ) {
3389 struct r5dev *dev = &sh->dev[i];
3390
3391 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3392 set_bit(R5_LOCKED, &dev->flags);
3393 set_bit(R5_Wantdrain, &dev->flags);
3394 if (!expand)
3395 clear_bit(R5_UPTODATE, &dev->flags);
3396 s->locked++;
3397 } else if (test_bit(R5_InJournal, &dev->flags)) {
3398 set_bit(R5_LOCKED, &dev->flags);
3399 s->locked++;
3400 }
3401 }
3402 /* if we are not expanding this is a proper write request, and
3403 * there will be bios with new data to be drained into the
3404 * stripe cache
3405 */
3406 if (!expand) {
3407 if (!s->locked)
3408 /* False alarm, nothing to do */
3409 return;
3410 sh->reconstruct_state = reconstruct_state_drain_run;
3411 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3412 } else
3413 sh->reconstruct_state = reconstruct_state_run;
3414
3415 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3416
3417 if (s->locked + conf->max_degraded == disks)
3418 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3419 atomic_inc(&conf->pending_full_writes);
3420 } else {
3421 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3422 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3423 BUG_ON(level == 6 &&
3424 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3425 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3426
3427 for (i = disks; i--; ) {
3428 struct r5dev *dev = &sh->dev[i];
3429 if (i == pd_idx || i == qd_idx)
3430 continue;
3431
3432 if (dev->towrite &&
3433 (test_bit(R5_UPTODATE, &dev->flags) ||
3434 test_bit(R5_Wantcompute, &dev->flags))) {
3435 set_bit(R5_Wantdrain, &dev->flags);
3436 set_bit(R5_LOCKED, &dev->flags);
3437 clear_bit(R5_UPTODATE, &dev->flags);
3438 s->locked++;
3439 } else if (test_bit(R5_InJournal, &dev->flags)) {
3440 set_bit(R5_LOCKED, &dev->flags);
3441 s->locked++;
3442 }
3443 }
3444 if (!s->locked)
3445 /* False alarm - nothing to do */
3446 return;
3447 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3448 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3449 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3450 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3451 }
3452
3453 /* keep the parity disk(s) locked while asynchronous operations
3454 * are in flight
3455 */
3456 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3457 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3458 s->locked++;
3459
3460 if (level == 6) {
3461 int qd_idx = sh->qd_idx;
3462 struct r5dev *dev = &sh->dev[qd_idx];
3463
3464 set_bit(R5_LOCKED, &dev->flags);
3465 clear_bit(R5_UPTODATE, &dev->flags);
3466 s->locked++;
3467 }
3468
3469 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3470 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3471 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3472 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3473 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3474
3475 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3476 __func__, (unsigned long long)sh->sector,
3477 s->locked, s->ops_request);
3478}
3479
3480static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3481 int dd_idx, int forwrite)
3482{
3483 struct r5conf *conf = sh->raid_conf;
3484 struct bio **bip;
3485
3486 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3487 bi->bi_iter.bi_sector, sh->sector);
3488
3489 /* Don't allow new IO added to stripes in batch list */
3490 if (sh->batch_head)
3491 return true;
3492
3493 if (forwrite)
3494 bip = &sh->dev[dd_idx].towrite;
3495 else
3496 bip = &sh->dev[dd_idx].toread;
3497
3498 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3499 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3500 return true;
3501 bip = &(*bip)->bi_next;
3502 }
3503
3504 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3505 return true;
3506
3507 if (forwrite && raid5_has_ppl(conf)) {
3508 /*
3509 * With PPL only writes to consecutive data chunks within a
3510 * stripe are allowed because for a single stripe_head we can
3511 * only have one PPL entry at a time, which describes one data
3512 * range. Not really an overlap, but wait_for_overlap can be
3513 * used to handle this.
3514 */
3515 sector_t sector;
3516 sector_t first = 0;
3517 sector_t last = 0;
3518 int count = 0;
3519 int i;
3520
3521 for (i = 0; i < sh->disks; i++) {
3522 if (i != sh->pd_idx &&
3523 (i == dd_idx || sh->dev[i].towrite)) {
3524 sector = sh->dev[i].sector;
3525 if (count == 0 || sector < first)
3526 first = sector;
3527 if (sector > last)
3528 last = sector;
3529 count++;
3530 }
3531 }
3532
3533 if (first + conf->chunk_sectors * (count - 1) != last)
3534 return true;
3535 }
3536
3537 return false;
3538}
3539
3540static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3541 int dd_idx, int forwrite, int previous)
3542{
3543 struct r5conf *conf = sh->raid_conf;
3544 struct bio **bip;
3545 int firstwrite = 0;
3546
3547 if (forwrite) {
3548 bip = &sh->dev[dd_idx].towrite;
3549 if (!*bip)
3550 firstwrite = 1;
3551 } else {
3552 bip = &sh->dev[dd_idx].toread;
3553 }
3554
3555 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3556 bip = &(*bip)->bi_next;
3557
3558 if (!forwrite || previous)
3559 clear_bit(STRIPE_BATCH_READY, &sh->state);
3560
3561 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3562 if (*bip)
3563 bi->bi_next = *bip;
3564 *bip = bi;
3565 bio_inc_remaining(bi);
3566 md_write_inc(conf->mddev, bi);
3567
3568 if (forwrite) {
3569 /* check if page is covered */
3570 sector_t sector = sh->dev[dd_idx].sector;
3571 for (bi=sh->dev[dd_idx].towrite;
3572 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3573 bi && bi->bi_iter.bi_sector <= sector;
3574 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3575 if (bio_end_sector(bi) >= sector)
3576 sector = bio_end_sector(bi);
3577 }
3578 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3579 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3580 sh->overwrite_disks++;
3581 }
3582
3583 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3584 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3585 sh->dev[dd_idx].sector);
3586
3587 if (conf->mddev->bitmap && firstwrite) {
3588 /* Cannot hold spinlock over bitmap_startwrite,
3589 * but must ensure this isn't added to a batch until
3590 * we have added to the bitmap and set bm_seq.
3591 * So set STRIPE_BITMAP_PENDING to prevent
3592 * batching.
3593 * If multiple __add_stripe_bio() calls race here they
3594 * much all set STRIPE_BITMAP_PENDING. So only the first one
3595 * to complete "bitmap_startwrite" gets to set
3596 * STRIPE_BIT_DELAY. This is important as once a stripe
3597 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3598 * any more.
3599 */
3600 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3601 spin_unlock_irq(&sh->stripe_lock);
3602 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3603 RAID5_STRIPE_SECTORS(conf), 0);
3604 spin_lock_irq(&sh->stripe_lock);
3605 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3606 if (!sh->batch_head) {
3607 sh->bm_seq = conf->seq_flush+1;
3608 set_bit(STRIPE_BIT_DELAY, &sh->state);
3609 }
3610 }
3611}
3612
3613/*
3614 * Each stripe/dev can have one or more bios attached.
3615 * toread/towrite point to the first in a chain.
3616 * The bi_next chain must be in order.
3617 */
3618static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3619 int dd_idx, int forwrite, int previous)
3620{
3621 spin_lock_irq(&sh->stripe_lock);
3622
3623 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3624 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3625 spin_unlock_irq(&sh->stripe_lock);
3626 return false;
3627 }
3628
3629 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3630 spin_unlock_irq(&sh->stripe_lock);
3631 return true;
3632}
3633
3634static void end_reshape(struct r5conf *conf);
3635
3636static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3637 struct stripe_head *sh)
3638{
3639 int sectors_per_chunk =
3640 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3641 int dd_idx;
3642 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3643 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3644
3645 raid5_compute_sector(conf,
3646 stripe * (disks - conf->max_degraded)
3647 *sectors_per_chunk + chunk_offset,
3648 previous,
3649 &dd_idx, sh);
3650}
3651
3652static void
3653handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3654 struct stripe_head_state *s, int disks)
3655{
3656 int i;
3657 BUG_ON(sh->batch_head);
3658 for (i = disks; i--; ) {
3659 struct bio *bi;
3660 int bitmap_end = 0;
3661
3662 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3663 struct md_rdev *rdev;
3664 rcu_read_lock();
3665 rdev = rcu_dereference(conf->disks[i].rdev);
3666 if (rdev && test_bit(In_sync, &rdev->flags) &&
3667 !test_bit(Faulty, &rdev->flags))
3668 atomic_inc(&rdev->nr_pending);
3669 else
3670 rdev = NULL;
3671 rcu_read_unlock();
3672 if (rdev) {
3673 if (!rdev_set_badblocks(
3674 rdev,
3675 sh->sector,
3676 RAID5_STRIPE_SECTORS(conf), 0))
3677 md_error(conf->mddev, rdev);
3678 rdev_dec_pending(rdev, conf->mddev);
3679 }
3680 }
3681 spin_lock_irq(&sh->stripe_lock);
3682 /* fail all writes first */
3683 bi = sh->dev[i].towrite;
3684 sh->dev[i].towrite = NULL;
3685 sh->overwrite_disks = 0;
3686 spin_unlock_irq(&sh->stripe_lock);
3687 if (bi)
3688 bitmap_end = 1;
3689
3690 log_stripe_write_finished(sh);
3691
3692 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3693 wake_up(&conf->wait_for_overlap);
3694
3695 while (bi && bi->bi_iter.bi_sector <
3696 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3697 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3698
3699 md_write_end(conf->mddev);
3700 bio_io_error(bi);
3701 bi = nextbi;
3702 }
3703 if (bitmap_end)
3704 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3705 RAID5_STRIPE_SECTORS(conf), 0, 0);
3706 bitmap_end = 0;
3707 /* and fail all 'written' */
3708 bi = sh->dev[i].written;
3709 sh->dev[i].written = NULL;
3710 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3711 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3712 sh->dev[i].page = sh->dev[i].orig_page;
3713 }
3714
3715 if (bi) bitmap_end = 1;
3716 while (bi && bi->bi_iter.bi_sector <
3717 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3718 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3719
3720 md_write_end(conf->mddev);
3721 bio_io_error(bi);
3722 bi = bi2;
3723 }
3724
3725 /* fail any reads if this device is non-operational and
3726 * the data has not reached the cache yet.
3727 */
3728 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3729 s->failed > conf->max_degraded &&
3730 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3731 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3732 spin_lock_irq(&sh->stripe_lock);
3733 bi = sh->dev[i].toread;
3734 sh->dev[i].toread = NULL;
3735 spin_unlock_irq(&sh->stripe_lock);
3736 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3737 wake_up(&conf->wait_for_overlap);
3738 if (bi)
3739 s->to_read--;
3740 while (bi && bi->bi_iter.bi_sector <
3741 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3742 struct bio *nextbi =
3743 r5_next_bio(conf, bi, sh->dev[i].sector);
3744
3745 bio_io_error(bi);
3746 bi = nextbi;
3747 }
3748 }
3749 if (bitmap_end)
3750 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3751 RAID5_STRIPE_SECTORS(conf), 0, 0);
3752 /* If we were in the middle of a write the parity block might
3753 * still be locked - so just clear all R5_LOCKED flags
3754 */
3755 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3756 }
3757 s->to_write = 0;
3758 s->written = 0;
3759
3760 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3761 if (atomic_dec_and_test(&conf->pending_full_writes))
3762 md_wakeup_thread(conf->mddev->thread);
3763}
3764
3765static void
3766handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3767 struct stripe_head_state *s)
3768{
3769 int abort = 0;
3770 int i;
3771
3772 BUG_ON(sh->batch_head);
3773 clear_bit(STRIPE_SYNCING, &sh->state);
3774 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3775 wake_up(&conf->wait_for_overlap);
3776 s->syncing = 0;
3777 s->replacing = 0;
3778 /* There is nothing more to do for sync/check/repair.
3779 * Don't even need to abort as that is handled elsewhere
3780 * if needed, and not always wanted e.g. if there is a known
3781 * bad block here.
3782 * For recover/replace we need to record a bad block on all
3783 * non-sync devices, or abort the recovery
3784 */
3785 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3786 /* During recovery devices cannot be removed, so
3787 * locking and refcounting of rdevs is not needed
3788 */
3789 rcu_read_lock();
3790 for (i = 0; i < conf->raid_disks; i++) {
3791 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3792 if (rdev
3793 && !test_bit(Faulty, &rdev->flags)
3794 && !test_bit(In_sync, &rdev->flags)
3795 && !rdev_set_badblocks(rdev, sh->sector,
3796 RAID5_STRIPE_SECTORS(conf), 0))
3797 abort = 1;
3798 rdev = rcu_dereference(conf->disks[i].replacement);
3799 if (rdev
3800 && !test_bit(Faulty, &rdev->flags)
3801 && !test_bit(In_sync, &rdev->flags)
3802 && !rdev_set_badblocks(rdev, sh->sector,
3803 RAID5_STRIPE_SECTORS(conf), 0))
3804 abort = 1;
3805 }
3806 rcu_read_unlock();
3807 if (abort)
3808 conf->recovery_disabled =
3809 conf->mddev->recovery_disabled;
3810 }
3811 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3812}
3813
3814static int want_replace(struct stripe_head *sh, int disk_idx)
3815{
3816 struct md_rdev *rdev;
3817 int rv = 0;
3818
3819 rcu_read_lock();
3820 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3821 if (rdev
3822 && !test_bit(Faulty, &rdev->flags)
3823 && !test_bit(In_sync, &rdev->flags)
3824 && (rdev->recovery_offset <= sh->sector
3825 || rdev->mddev->recovery_cp <= sh->sector))
3826 rv = 1;
3827 rcu_read_unlock();
3828 return rv;
3829}
3830
3831static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3832 int disk_idx, int disks)
3833{
3834 struct r5dev *dev = &sh->dev[disk_idx];
3835 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3836 &sh->dev[s->failed_num[1]] };
3837 int i;
3838 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3839
3840
3841 if (test_bit(R5_LOCKED, &dev->flags) ||
3842 test_bit(R5_UPTODATE, &dev->flags))
3843 /* No point reading this as we already have it or have
3844 * decided to get it.
3845 */
3846 return 0;
3847
3848 if (dev->toread ||
3849 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3850 /* We need this block to directly satisfy a request */
3851 return 1;
3852
3853 if (s->syncing || s->expanding ||
3854 (s->replacing && want_replace(sh, disk_idx)))
3855 /* When syncing, or expanding we read everything.
3856 * When replacing, we need the replaced block.
3857 */
3858 return 1;
3859
3860 if ((s->failed >= 1 && fdev[0]->toread) ||
3861 (s->failed >= 2 && fdev[1]->toread))
3862 /* If we want to read from a failed device, then
3863 * we need to actually read every other device.
3864 */
3865 return 1;
3866
3867 /* Sometimes neither read-modify-write nor reconstruct-write
3868 * cycles can work. In those cases we read every block we
3869 * can. Then the parity-update is certain to have enough to
3870 * work with.
3871 * This can only be a problem when we need to write something,
3872 * and some device has failed. If either of those tests
3873 * fail we need look no further.
3874 */
3875 if (!s->failed || !s->to_write)
3876 return 0;
3877
3878 if (test_bit(R5_Insync, &dev->flags) &&
3879 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3880 /* Pre-reads at not permitted until after short delay
3881 * to gather multiple requests. However if this
3882 * device is no Insync, the block could only be computed
3883 * and there is no need to delay that.
3884 */
3885 return 0;
3886
3887 for (i = 0; i < s->failed && i < 2; i++) {
3888 if (fdev[i]->towrite &&
3889 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3890 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3891 /* If we have a partial write to a failed
3892 * device, then we will need to reconstruct
3893 * the content of that device, so all other
3894 * devices must be read.
3895 */
3896 return 1;
3897
3898 if (s->failed >= 2 &&
3899 (fdev[i]->towrite ||
3900 s->failed_num[i] == sh->pd_idx ||
3901 s->failed_num[i] == sh->qd_idx) &&
3902 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3903 /* In max degraded raid6, If the failed disk is P, Q,
3904 * or we want to read the failed disk, we need to do
3905 * reconstruct-write.
3906 */
3907 force_rcw = true;
3908 }
3909
3910 /* If we are forced to do a reconstruct-write, because parity
3911 * cannot be trusted and we are currently recovering it, there
3912 * is extra need to be careful.
3913 * If one of the devices that we would need to read, because
3914 * it is not being overwritten (and maybe not written at all)
3915 * is missing/faulty, then we need to read everything we can.
3916 */
3917 if (!force_rcw &&
3918 sh->sector < sh->raid_conf->mddev->recovery_cp)
3919 /* reconstruct-write isn't being forced */
3920 return 0;
3921 for (i = 0; i < s->failed && i < 2; i++) {
3922 if (s->failed_num[i] != sh->pd_idx &&
3923 s->failed_num[i] != sh->qd_idx &&
3924 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3925 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3926 return 1;
3927 }
3928
3929 return 0;
3930}
3931
3932/* fetch_block - checks the given member device to see if its data needs
3933 * to be read or computed to satisfy a request.
3934 *
3935 * Returns 1 when no more member devices need to be checked, otherwise returns
3936 * 0 to tell the loop in handle_stripe_fill to continue
3937 */
3938static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3939 int disk_idx, int disks)
3940{
3941 struct r5dev *dev = &sh->dev[disk_idx];
3942
3943 /* is the data in this block needed, and can we get it? */
3944 if (need_this_block(sh, s, disk_idx, disks)) {
3945 /* we would like to get this block, possibly by computing it,
3946 * otherwise read it if the backing disk is insync
3947 */
3948 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3949 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3950 BUG_ON(sh->batch_head);
3951
3952 /*
3953 * In the raid6 case if the only non-uptodate disk is P
3954 * then we already trusted P to compute the other failed
3955 * drives. It is safe to compute rather than re-read P.
3956 * In other cases we only compute blocks from failed
3957 * devices, otherwise check/repair might fail to detect
3958 * a real inconsistency.
3959 */
3960
3961 if ((s->uptodate == disks - 1) &&
3962 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3963 (s->failed && (disk_idx == s->failed_num[0] ||
3964 disk_idx == s->failed_num[1])))) {
3965 /* have disk failed, and we're requested to fetch it;
3966 * do compute it
3967 */
3968 pr_debug("Computing stripe %llu block %d\n",
3969 (unsigned long long)sh->sector, disk_idx);
3970 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3971 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3972 set_bit(R5_Wantcompute, &dev->flags);
3973 sh->ops.target = disk_idx;
3974 sh->ops.target2 = -1; /* no 2nd target */
3975 s->req_compute = 1;
3976 /* Careful: from this point on 'uptodate' is in the eye
3977 * of raid_run_ops which services 'compute' operations
3978 * before writes. R5_Wantcompute flags a block that will
3979 * be R5_UPTODATE by the time it is needed for a
3980 * subsequent operation.
3981 */
3982 s->uptodate++;
3983 return 1;
3984 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3985 /* Computing 2-failure is *very* expensive; only
3986 * do it if failed >= 2
3987 */
3988 int other;
3989 for (other = disks; other--; ) {
3990 if (other == disk_idx)
3991 continue;
3992 if (!test_bit(R5_UPTODATE,
3993 &sh->dev[other].flags))
3994 break;
3995 }
3996 BUG_ON(other < 0);
3997 pr_debug("Computing stripe %llu blocks %d,%d\n",
3998 (unsigned long long)sh->sector,
3999 disk_idx, other);
4000 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4001 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4002 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
4003 set_bit(R5_Wantcompute, &sh->dev[other].flags);
4004 sh->ops.target = disk_idx;
4005 sh->ops.target2 = other;
4006 s->uptodate += 2;
4007 s->req_compute = 1;
4008 return 1;
4009 } else if (test_bit(R5_Insync, &dev->flags)) {
4010 set_bit(R5_LOCKED, &dev->flags);
4011 set_bit(R5_Wantread, &dev->flags);
4012 s->locked++;
4013 pr_debug("Reading block %d (sync=%d)\n",
4014 disk_idx, s->syncing);
4015 }
4016 }
4017
4018 return 0;
4019}
4020
4021/*
4022 * handle_stripe_fill - read or compute data to satisfy pending requests.
4023 */
4024static void handle_stripe_fill(struct stripe_head *sh,
4025 struct stripe_head_state *s,
4026 int disks)
4027{
4028 int i;
4029
4030 /* look for blocks to read/compute, skip this if a compute
4031 * is already in flight, or if the stripe contents are in the
4032 * midst of changing due to a write
4033 */
4034 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
4035 !sh->reconstruct_state) {
4036
4037 /*
4038 * For degraded stripe with data in journal, do not handle
4039 * read requests yet, instead, flush the stripe to raid
4040 * disks first, this avoids handling complex rmw of write
4041 * back cache (prexor with orig_page, and then xor with
4042 * page) in the read path
4043 */
4044 if (s->to_read && s->injournal && s->failed) {
4045 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4046 r5c_make_stripe_write_out(sh);
4047 goto out;
4048 }
4049
4050 for (i = disks; i--; )
4051 if (fetch_block(sh, s, i, disks))
4052 break;
4053 }
4054out:
4055 set_bit(STRIPE_HANDLE, &sh->state);
4056}
4057
4058static void break_stripe_batch_list(struct stripe_head *head_sh,
4059 unsigned long handle_flags);
4060/* handle_stripe_clean_event
4061 * any written block on an uptodate or failed drive can be returned.
4062 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4063 * never LOCKED, so we don't need to test 'failed' directly.
4064 */
4065static void handle_stripe_clean_event(struct r5conf *conf,
4066 struct stripe_head *sh, int disks)
4067{
4068 int i;
4069 struct r5dev *dev;
4070 int discard_pending = 0;
4071 struct stripe_head *head_sh = sh;
4072 bool do_endio = false;
4073
4074 for (i = disks; i--; )
4075 if (sh->dev[i].written) {
4076 dev = &sh->dev[i];
4077 if (!test_bit(R5_LOCKED, &dev->flags) &&
4078 (test_bit(R5_UPTODATE, &dev->flags) ||
4079 test_bit(R5_Discard, &dev->flags) ||
4080 test_bit(R5_SkipCopy, &dev->flags))) {
4081 /* We can return any write requests */
4082 struct bio *wbi, *wbi2;
4083 pr_debug("Return write for disc %d\n", i);
4084 if (test_and_clear_bit(R5_Discard, &dev->flags))
4085 clear_bit(R5_UPTODATE, &dev->flags);
4086 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4087 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4088 }
4089 do_endio = true;
4090
4091returnbi:
4092 dev->page = dev->orig_page;
4093 wbi = dev->written;
4094 dev->written = NULL;
4095 while (wbi && wbi->bi_iter.bi_sector <
4096 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4097 wbi2 = r5_next_bio(conf, wbi, dev->sector);
4098 md_write_end(conf->mddev);
4099 bio_endio(wbi);
4100 wbi = wbi2;
4101 }
4102 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4103 RAID5_STRIPE_SECTORS(conf),
4104 !test_bit(STRIPE_DEGRADED, &sh->state),
4105 0);
4106 if (head_sh->batch_head) {
4107 sh = list_first_entry(&sh->batch_list,
4108 struct stripe_head,
4109 batch_list);
4110 if (sh != head_sh) {
4111 dev = &sh->dev[i];
4112 goto returnbi;
4113 }
4114 }
4115 sh = head_sh;
4116 dev = &sh->dev[i];
4117 } else if (test_bit(R5_Discard, &dev->flags))
4118 discard_pending = 1;
4119 }
4120
4121 log_stripe_write_finished(sh);
4122
4123 if (!discard_pending &&
4124 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4125 int hash;
4126 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4127 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4128 if (sh->qd_idx >= 0) {
4129 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4130 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4131 }
4132 /* now that discard is done we can proceed with any sync */
4133 clear_bit(STRIPE_DISCARD, &sh->state);
4134 /*
4135 * SCSI discard will change some bio fields and the stripe has
4136 * no updated data, so remove it from hash list and the stripe
4137 * will be reinitialized
4138 */
4139unhash:
4140 hash = sh->hash_lock_index;
4141 spin_lock_irq(conf->hash_locks + hash);
4142 remove_hash(sh);
4143 spin_unlock_irq(conf->hash_locks + hash);
4144 if (head_sh->batch_head) {
4145 sh = list_first_entry(&sh->batch_list,
4146 struct stripe_head, batch_list);
4147 if (sh != head_sh)
4148 goto unhash;
4149 }
4150 sh = head_sh;
4151
4152 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4153 set_bit(STRIPE_HANDLE, &sh->state);
4154
4155 }
4156
4157 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4158 if (atomic_dec_and_test(&conf->pending_full_writes))
4159 md_wakeup_thread(conf->mddev->thread);
4160
4161 if (head_sh->batch_head && do_endio)
4162 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4163}
4164
4165/*
4166 * For RMW in write back cache, we need extra page in prexor to store the
4167 * old data. This page is stored in dev->orig_page.
4168 *
4169 * This function checks whether we have data for prexor. The exact logic
4170 * is:
4171 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4172 */
4173static inline bool uptodate_for_rmw(struct r5dev *dev)
4174{
4175 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4176 (!test_bit(R5_InJournal, &dev->flags) ||
4177 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4178}
4179
4180static int handle_stripe_dirtying(struct r5conf *conf,
4181 struct stripe_head *sh,
4182 struct stripe_head_state *s,
4183 int disks)
4184{
4185 int rmw = 0, rcw = 0, i;
4186 sector_t recovery_cp = conf->mddev->recovery_cp;
4187
4188 /* Check whether resync is now happening or should start.
4189 * If yes, then the array is dirty (after unclean shutdown or
4190 * initial creation), so parity in some stripes might be inconsistent.
4191 * In this case, we need to always do reconstruct-write, to ensure
4192 * that in case of drive failure or read-error correction, we
4193 * generate correct data from the parity.
4194 */
4195 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4196 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4197 s->failed == 0)) {
4198 /* Calculate the real rcw later - for now make it
4199 * look like rcw is cheaper
4200 */
4201 rcw = 1; rmw = 2;
4202 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4203 conf->rmw_level, (unsigned long long)recovery_cp,
4204 (unsigned long long)sh->sector);
4205 } else for (i = disks; i--; ) {
4206 /* would I have to read this buffer for read_modify_write */
4207 struct r5dev *dev = &sh->dev[i];
4208 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4209 i == sh->pd_idx || i == sh->qd_idx ||
4210 test_bit(R5_InJournal, &dev->flags)) &&
4211 !test_bit(R5_LOCKED, &dev->flags) &&
4212 !(uptodate_for_rmw(dev) ||
4213 test_bit(R5_Wantcompute, &dev->flags))) {
4214 if (test_bit(R5_Insync, &dev->flags))
4215 rmw++;
4216 else
4217 rmw += 2*disks; /* cannot read it */
4218 }
4219 /* Would I have to read this buffer for reconstruct_write */
4220 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4221 i != sh->pd_idx && i != sh->qd_idx &&
4222 !test_bit(R5_LOCKED, &dev->flags) &&
4223 !(test_bit(R5_UPTODATE, &dev->flags) ||
4224 test_bit(R5_Wantcompute, &dev->flags))) {
4225 if (test_bit(R5_Insync, &dev->flags))
4226 rcw++;
4227 else
4228 rcw += 2*disks;
4229 }
4230 }
4231
4232 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4233 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4234 set_bit(STRIPE_HANDLE, &sh->state);
4235 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4236 /* prefer read-modify-write, but need to get some data */
4237 if (conf->mddev->queue)
4238 blk_add_trace_msg(conf->mddev->queue,
4239 "raid5 rmw %llu %d",
4240 (unsigned long long)sh->sector, rmw);
4241 for (i = disks; i--; ) {
4242 struct r5dev *dev = &sh->dev[i];
4243 if (test_bit(R5_InJournal, &dev->flags) &&
4244 dev->page == dev->orig_page &&
4245 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4246 /* alloc page for prexor */
4247 struct page *p = alloc_page(GFP_NOIO);
4248
4249 if (p) {
4250 dev->orig_page = p;
4251 continue;
4252 }
4253
4254 /*
4255 * alloc_page() failed, try use
4256 * disk_info->extra_page
4257 */
4258 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4259 &conf->cache_state)) {
4260 r5c_use_extra_page(sh);
4261 break;
4262 }
4263
4264 /* extra_page in use, add to delayed_list */
4265 set_bit(STRIPE_DELAYED, &sh->state);
4266 s->waiting_extra_page = 1;
4267 return -EAGAIN;
4268 }
4269 }
4270
4271 for (i = disks; i--; ) {
4272 struct r5dev *dev = &sh->dev[i];
4273 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4274 i == sh->pd_idx || i == sh->qd_idx ||
4275 test_bit(R5_InJournal, &dev->flags)) &&
4276 !test_bit(R5_LOCKED, &dev->flags) &&
4277 !(uptodate_for_rmw(dev) ||
4278 test_bit(R5_Wantcompute, &dev->flags)) &&
4279 test_bit(R5_Insync, &dev->flags)) {
4280 if (test_bit(STRIPE_PREREAD_ACTIVE,
4281 &sh->state)) {
4282 pr_debug("Read_old block %d for r-m-w\n",
4283 i);
4284 set_bit(R5_LOCKED, &dev->flags);
4285 set_bit(R5_Wantread, &dev->flags);
4286 s->locked++;
4287 } else
4288 set_bit(STRIPE_DELAYED, &sh->state);
4289 }
4290 }
4291 }
4292 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4293 /* want reconstruct write, but need to get some data */
4294 int qread =0;
4295 rcw = 0;
4296 for (i = disks; i--; ) {
4297 struct r5dev *dev = &sh->dev[i];
4298 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4299 i != sh->pd_idx && i != sh->qd_idx &&
4300 !test_bit(R5_LOCKED, &dev->flags) &&
4301 !(test_bit(R5_UPTODATE, &dev->flags) ||
4302 test_bit(R5_Wantcompute, &dev->flags))) {
4303 rcw++;
4304 if (test_bit(R5_Insync, &dev->flags) &&
4305 test_bit(STRIPE_PREREAD_ACTIVE,
4306 &sh->state)) {
4307 pr_debug("Read_old block "
4308 "%d for Reconstruct\n", i);
4309 set_bit(R5_LOCKED, &dev->flags);
4310 set_bit(R5_Wantread, &dev->flags);
4311 s->locked++;
4312 qread++;
4313 } else
4314 set_bit(STRIPE_DELAYED, &sh->state);
4315 }
4316 }
4317 if (rcw && conf->mddev->queue)
4318 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4319 (unsigned long long)sh->sector,
4320 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4321 }
4322
4323 if (rcw > disks && rmw > disks &&
4324 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4325 set_bit(STRIPE_DELAYED, &sh->state);
4326
4327 /* now if nothing is locked, and if we have enough data,
4328 * we can start a write request
4329 */
4330 /* since handle_stripe can be called at any time we need to handle the
4331 * case where a compute block operation has been submitted and then a
4332 * subsequent call wants to start a write request. raid_run_ops only
4333 * handles the case where compute block and reconstruct are requested
4334 * simultaneously. If this is not the case then new writes need to be
4335 * held off until the compute completes.
4336 */
4337 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4338 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4339 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4340 schedule_reconstruction(sh, s, rcw == 0, 0);
4341 return 0;
4342}
4343
4344static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4345 struct stripe_head_state *s, int disks)
4346{
4347 struct r5dev *dev = NULL;
4348
4349 BUG_ON(sh->batch_head);
4350 set_bit(STRIPE_HANDLE, &sh->state);
4351
4352 switch (sh->check_state) {
4353 case check_state_idle:
4354 /* start a new check operation if there are no failures */
4355 if (s->failed == 0) {
4356 BUG_ON(s->uptodate != disks);
4357 sh->check_state = check_state_run;
4358 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4359 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4360 s->uptodate--;
4361 break;
4362 }
4363 dev = &sh->dev[s->failed_num[0]];
4364 fallthrough;
4365 case check_state_compute_result:
4366 sh->check_state = check_state_idle;
4367 if (!dev)
4368 dev = &sh->dev[sh->pd_idx];
4369
4370 /* check that a write has not made the stripe insync */
4371 if (test_bit(STRIPE_INSYNC, &sh->state))
4372 break;
4373
4374 /* either failed parity check, or recovery is happening */
4375 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4376 BUG_ON(s->uptodate != disks);
4377
4378 set_bit(R5_LOCKED, &dev->flags);
4379 s->locked++;
4380 set_bit(R5_Wantwrite, &dev->flags);
4381
4382 clear_bit(STRIPE_DEGRADED, &sh->state);
4383 set_bit(STRIPE_INSYNC, &sh->state);
4384 break;
4385 case check_state_run:
4386 break; /* we will be called again upon completion */
4387 case check_state_check_result:
4388 sh->check_state = check_state_idle;
4389
4390 /* if a failure occurred during the check operation, leave
4391 * STRIPE_INSYNC not set and let the stripe be handled again
4392 */
4393 if (s->failed)
4394 break;
4395
4396 /* handle a successful check operation, if parity is correct
4397 * we are done. Otherwise update the mismatch count and repair
4398 * parity if !MD_RECOVERY_CHECK
4399 */
4400 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4401 /* parity is correct (on disc,
4402 * not in buffer any more)
4403 */
4404 set_bit(STRIPE_INSYNC, &sh->state);
4405 else {
4406 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4407 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4408 /* don't try to repair!! */
4409 set_bit(STRIPE_INSYNC, &sh->state);
4410 pr_warn_ratelimited("%s: mismatch sector in range "
4411 "%llu-%llu\n", mdname(conf->mddev),
4412 (unsigned long long) sh->sector,
4413 (unsigned long long) sh->sector +
4414 RAID5_STRIPE_SECTORS(conf));
4415 } else {
4416 sh->check_state = check_state_compute_run;
4417 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4418 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4419 set_bit(R5_Wantcompute,
4420 &sh->dev[sh->pd_idx].flags);
4421 sh->ops.target = sh->pd_idx;
4422 sh->ops.target2 = -1;
4423 s->uptodate++;
4424 }
4425 }
4426 break;
4427 case check_state_compute_run:
4428 break;
4429 default:
4430 pr_err("%s: unknown check_state: %d sector: %llu\n",
4431 __func__, sh->check_state,
4432 (unsigned long long) sh->sector);
4433 BUG();
4434 }
4435}
4436
4437static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4438 struct stripe_head_state *s,
4439 int disks)
4440{
4441 int pd_idx = sh->pd_idx;
4442 int qd_idx = sh->qd_idx;
4443 struct r5dev *dev;
4444
4445 BUG_ON(sh->batch_head);
4446 set_bit(STRIPE_HANDLE, &sh->state);
4447
4448 BUG_ON(s->failed > 2);
4449
4450 /* Want to check and possibly repair P and Q.
4451 * However there could be one 'failed' device, in which
4452 * case we can only check one of them, possibly using the
4453 * other to generate missing data
4454 */
4455
4456 switch (sh->check_state) {
4457 case check_state_idle:
4458 /* start a new check operation if there are < 2 failures */
4459 if (s->failed == s->q_failed) {
4460 /* The only possible failed device holds Q, so it
4461 * makes sense to check P (If anything else were failed,
4462 * we would have used P to recreate it).
4463 */
4464 sh->check_state = check_state_run;
4465 }
4466 if (!s->q_failed && s->failed < 2) {
4467 /* Q is not failed, and we didn't use it to generate
4468 * anything, so it makes sense to check it
4469 */
4470 if (sh->check_state == check_state_run)
4471 sh->check_state = check_state_run_pq;
4472 else
4473 sh->check_state = check_state_run_q;
4474 }
4475
4476 /* discard potentially stale zero_sum_result */
4477 sh->ops.zero_sum_result = 0;
4478
4479 if (sh->check_state == check_state_run) {
4480 /* async_xor_zero_sum destroys the contents of P */
4481 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4482 s->uptodate--;
4483 }
4484 if (sh->check_state >= check_state_run &&
4485 sh->check_state <= check_state_run_pq) {
4486 /* async_syndrome_zero_sum preserves P and Q, so
4487 * no need to mark them !uptodate here
4488 */
4489 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4490 break;
4491 }
4492
4493 /* we have 2-disk failure */
4494 BUG_ON(s->failed != 2);
4495 fallthrough;
4496 case check_state_compute_result:
4497 sh->check_state = check_state_idle;
4498
4499 /* check that a write has not made the stripe insync */
4500 if (test_bit(STRIPE_INSYNC, &sh->state))
4501 break;
4502
4503 /* now write out any block on a failed drive,
4504 * or P or Q if they were recomputed
4505 */
4506 dev = NULL;
4507 if (s->failed == 2) {
4508 dev = &sh->dev[s->failed_num[1]];
4509 s->locked++;
4510 set_bit(R5_LOCKED, &dev->flags);
4511 set_bit(R5_Wantwrite, &dev->flags);
4512 }
4513 if (s->failed >= 1) {
4514 dev = &sh->dev[s->failed_num[0]];
4515 s->locked++;
4516 set_bit(R5_LOCKED, &dev->flags);
4517 set_bit(R5_Wantwrite, &dev->flags);
4518 }
4519 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4520 dev = &sh->dev[pd_idx];
4521 s->locked++;
4522 set_bit(R5_LOCKED, &dev->flags);
4523 set_bit(R5_Wantwrite, &dev->flags);
4524 }
4525 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4526 dev = &sh->dev[qd_idx];
4527 s->locked++;
4528 set_bit(R5_LOCKED, &dev->flags);
4529 set_bit(R5_Wantwrite, &dev->flags);
4530 }
4531 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4532 "%s: disk%td not up to date\n",
4533 mdname(conf->mddev),
4534 dev - (struct r5dev *) &sh->dev)) {
4535 clear_bit(R5_LOCKED, &dev->flags);
4536 clear_bit(R5_Wantwrite, &dev->flags);
4537 s->locked--;
4538 }
4539 clear_bit(STRIPE_DEGRADED, &sh->state);
4540
4541 set_bit(STRIPE_INSYNC, &sh->state);
4542 break;
4543 case check_state_run:
4544 case check_state_run_q:
4545 case check_state_run_pq:
4546 break; /* we will be called again upon completion */
4547 case check_state_check_result:
4548 sh->check_state = check_state_idle;
4549
4550 /* handle a successful check operation, if parity is correct
4551 * we are done. Otherwise update the mismatch count and repair
4552 * parity if !MD_RECOVERY_CHECK
4553 */
4554 if (sh->ops.zero_sum_result == 0) {
4555 /* both parities are correct */
4556 if (!s->failed)
4557 set_bit(STRIPE_INSYNC, &sh->state);
4558 else {
4559 /* in contrast to the raid5 case we can validate
4560 * parity, but still have a failure to write
4561 * back
4562 */
4563 sh->check_state = check_state_compute_result;
4564 /* Returning at this point means that we may go
4565 * off and bring p and/or q uptodate again so
4566 * we make sure to check zero_sum_result again
4567 * to verify if p or q need writeback
4568 */
4569 }
4570 } else {
4571 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4572 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4573 /* don't try to repair!! */
4574 set_bit(STRIPE_INSYNC, &sh->state);
4575 pr_warn_ratelimited("%s: mismatch sector in range "
4576 "%llu-%llu\n", mdname(conf->mddev),
4577 (unsigned long long) sh->sector,
4578 (unsigned long long) sh->sector +
4579 RAID5_STRIPE_SECTORS(conf));
4580 } else {
4581 int *target = &sh->ops.target;
4582
4583 sh->ops.target = -1;
4584 sh->ops.target2 = -1;
4585 sh->check_state = check_state_compute_run;
4586 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4587 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4588 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4589 set_bit(R5_Wantcompute,
4590 &sh->dev[pd_idx].flags);
4591 *target = pd_idx;
4592 target = &sh->ops.target2;
4593 s->uptodate++;
4594 }
4595 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4596 set_bit(R5_Wantcompute,
4597 &sh->dev[qd_idx].flags);
4598 *target = qd_idx;
4599 s->uptodate++;
4600 }
4601 }
4602 }
4603 break;
4604 case check_state_compute_run:
4605 break;
4606 default:
4607 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4608 __func__, sh->check_state,
4609 (unsigned long long) sh->sector);
4610 BUG();
4611 }
4612}
4613
4614static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4615{
4616 int i;
4617
4618 /* We have read all the blocks in this stripe and now we need to
4619 * copy some of them into a target stripe for expand.
4620 */
4621 struct dma_async_tx_descriptor *tx = NULL;
4622 BUG_ON(sh->batch_head);
4623 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4624 for (i = 0; i < sh->disks; i++)
4625 if (i != sh->pd_idx && i != sh->qd_idx) {
4626 int dd_idx, j;
4627 struct stripe_head *sh2;
4628 struct async_submit_ctl submit;
4629
4630 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4631 sector_t s = raid5_compute_sector(conf, bn, 0,
4632 &dd_idx, NULL);
4633 sh2 = raid5_get_active_stripe(conf, NULL, s,
4634 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4635 if (sh2 == NULL)
4636 /* so far only the early blocks of this stripe
4637 * have been requested. When later blocks
4638 * get requested, we will try again
4639 */
4640 continue;
4641 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4642 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4643 /* must have already done this block */
4644 raid5_release_stripe(sh2);
4645 continue;
4646 }
4647
4648 /* place all the copies on one channel */
4649 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4650 tx = async_memcpy(sh2->dev[dd_idx].page,
4651 sh->dev[i].page, sh2->dev[dd_idx].offset,
4652 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4653 &submit);
4654
4655 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4656 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4657 for (j = 0; j < conf->raid_disks; j++)
4658 if (j != sh2->pd_idx &&
4659 j != sh2->qd_idx &&
4660 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4661 break;
4662 if (j == conf->raid_disks) {
4663 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4664 set_bit(STRIPE_HANDLE, &sh2->state);
4665 }
4666 raid5_release_stripe(sh2);
4667
4668 }
4669 /* done submitting copies, wait for them to complete */
4670 async_tx_quiesce(&tx);
4671}
4672
4673/*
4674 * handle_stripe - do things to a stripe.
4675 *
4676 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4677 * state of various bits to see what needs to be done.
4678 * Possible results:
4679 * return some read requests which now have data
4680 * return some write requests which are safely on storage
4681 * schedule a read on some buffers
4682 * schedule a write of some buffers
4683 * return confirmation of parity correctness
4684 *
4685 */
4686
4687static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4688{
4689 struct r5conf *conf = sh->raid_conf;
4690 int disks = sh->disks;
4691 struct r5dev *dev;
4692 int i;
4693 int do_recovery = 0;
4694
4695 memset(s, 0, sizeof(*s));
4696
4697 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4698 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4699 s->failed_num[0] = -1;
4700 s->failed_num[1] = -1;
4701 s->log_failed = r5l_log_disk_error(conf);
4702
4703 /* Now to look around and see what can be done */
4704 rcu_read_lock();
4705 for (i=disks; i--; ) {
4706 struct md_rdev *rdev;
4707 sector_t first_bad;
4708 int bad_sectors;
4709 int is_bad = 0;
4710
4711 dev = &sh->dev[i];
4712
4713 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4714 i, dev->flags,
4715 dev->toread, dev->towrite, dev->written);
4716 /* maybe we can reply to a read
4717 *
4718 * new wantfill requests are only permitted while
4719 * ops_complete_biofill is guaranteed to be inactive
4720 */
4721 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4722 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4723 set_bit(R5_Wantfill, &dev->flags);
4724
4725 /* now count some things */
4726 if (test_bit(R5_LOCKED, &dev->flags))
4727 s->locked++;
4728 if (test_bit(R5_UPTODATE, &dev->flags))
4729 s->uptodate++;
4730 if (test_bit(R5_Wantcompute, &dev->flags)) {
4731 s->compute++;
4732 BUG_ON(s->compute > 2);
4733 }
4734
4735 if (test_bit(R5_Wantfill, &dev->flags))
4736 s->to_fill++;
4737 else if (dev->toread)
4738 s->to_read++;
4739 if (dev->towrite) {
4740 s->to_write++;
4741 if (!test_bit(R5_OVERWRITE, &dev->flags))
4742 s->non_overwrite++;
4743 }
4744 if (dev->written)
4745 s->written++;
4746 /* Prefer to use the replacement for reads, but only
4747 * if it is recovered enough and has no bad blocks.
4748 */
4749 rdev = rcu_dereference(conf->disks[i].replacement);
4750 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4751 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4752 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4753 &first_bad, &bad_sectors))
4754 set_bit(R5_ReadRepl, &dev->flags);
4755 else {
4756 if (rdev && !test_bit(Faulty, &rdev->flags))
4757 set_bit(R5_NeedReplace, &dev->flags);
4758 else
4759 clear_bit(R5_NeedReplace, &dev->flags);
4760 rdev = rcu_dereference(conf->disks[i].rdev);
4761 clear_bit(R5_ReadRepl, &dev->flags);
4762 }
4763 if (rdev && test_bit(Faulty, &rdev->flags))
4764 rdev = NULL;
4765 if (rdev) {
4766 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4767 &first_bad, &bad_sectors);
4768 if (s->blocked_rdev == NULL
4769 && (test_bit(Blocked, &rdev->flags)
4770 || is_bad < 0)) {
4771 if (is_bad < 0)
4772 set_bit(BlockedBadBlocks,
4773 &rdev->flags);
4774 s->blocked_rdev = rdev;
4775 atomic_inc(&rdev->nr_pending);
4776 }
4777 }
4778 clear_bit(R5_Insync, &dev->flags);
4779 if (!rdev)
4780 /* Not in-sync */;
4781 else if (is_bad) {
4782 /* also not in-sync */
4783 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4784 test_bit(R5_UPTODATE, &dev->flags)) {
4785 /* treat as in-sync, but with a read error
4786 * which we can now try to correct
4787 */
4788 set_bit(R5_Insync, &dev->flags);
4789 set_bit(R5_ReadError, &dev->flags);
4790 }
4791 } else if (test_bit(In_sync, &rdev->flags))
4792 set_bit(R5_Insync, &dev->flags);
4793 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4794 /* in sync if before recovery_offset */
4795 set_bit(R5_Insync, &dev->flags);
4796 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4797 test_bit(R5_Expanded, &dev->flags))
4798 /* If we've reshaped into here, we assume it is Insync.
4799 * We will shortly update recovery_offset to make
4800 * it official.
4801 */
4802 set_bit(R5_Insync, &dev->flags);
4803
4804 if (test_bit(R5_WriteError, &dev->flags)) {
4805 /* This flag does not apply to '.replacement'
4806 * only to .rdev, so make sure to check that*/
4807 struct md_rdev *rdev2 = rcu_dereference(
4808 conf->disks[i].rdev);
4809 if (rdev2 == rdev)
4810 clear_bit(R5_Insync, &dev->flags);
4811 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4812 s->handle_bad_blocks = 1;
4813 atomic_inc(&rdev2->nr_pending);
4814 } else
4815 clear_bit(R5_WriteError, &dev->flags);
4816 }
4817 if (test_bit(R5_MadeGood, &dev->flags)) {
4818 /* This flag does not apply to '.replacement'
4819 * only to .rdev, so make sure to check that*/
4820 struct md_rdev *rdev2 = rcu_dereference(
4821 conf->disks[i].rdev);
4822 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4823 s->handle_bad_blocks = 1;
4824 atomic_inc(&rdev2->nr_pending);
4825 } else
4826 clear_bit(R5_MadeGood, &dev->flags);
4827 }
4828 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4829 struct md_rdev *rdev2 = rcu_dereference(
4830 conf->disks[i].replacement);
4831 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4832 s->handle_bad_blocks = 1;
4833 atomic_inc(&rdev2->nr_pending);
4834 } else
4835 clear_bit(R5_MadeGoodRepl, &dev->flags);
4836 }
4837 if (!test_bit(R5_Insync, &dev->flags)) {
4838 /* The ReadError flag will just be confusing now */
4839 clear_bit(R5_ReadError, &dev->flags);
4840 clear_bit(R5_ReWrite, &dev->flags);
4841 }
4842 if (test_bit(R5_ReadError, &dev->flags))
4843 clear_bit(R5_Insync, &dev->flags);
4844 if (!test_bit(R5_Insync, &dev->flags)) {
4845 if (s->failed < 2)
4846 s->failed_num[s->failed] = i;
4847 s->failed++;
4848 if (rdev && !test_bit(Faulty, &rdev->flags))
4849 do_recovery = 1;
4850 else if (!rdev) {
4851 rdev = rcu_dereference(
4852 conf->disks[i].replacement);
4853 if (rdev && !test_bit(Faulty, &rdev->flags))
4854 do_recovery = 1;
4855 }
4856 }
4857
4858 if (test_bit(R5_InJournal, &dev->flags))
4859 s->injournal++;
4860 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4861 s->just_cached++;
4862 }
4863 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4864 /* If there is a failed device being replaced,
4865 * we must be recovering.
4866 * else if we are after recovery_cp, we must be syncing
4867 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4868 * else we can only be replacing
4869 * sync and recovery both need to read all devices, and so
4870 * use the same flag.
4871 */
4872 if (do_recovery ||
4873 sh->sector >= conf->mddev->recovery_cp ||
4874 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4875 s->syncing = 1;
4876 else
4877 s->replacing = 1;
4878 }
4879 rcu_read_unlock();
4880}
4881
4882/*
4883 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4884 * a head which can now be handled.
4885 */
4886static int clear_batch_ready(struct stripe_head *sh)
4887{
4888 struct stripe_head *tmp;
4889 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4890 return (sh->batch_head && sh->batch_head != sh);
4891 spin_lock(&sh->stripe_lock);
4892 if (!sh->batch_head) {
4893 spin_unlock(&sh->stripe_lock);
4894 return 0;
4895 }
4896
4897 /*
4898 * this stripe could be added to a batch list before we check
4899 * BATCH_READY, skips it
4900 */
4901 if (sh->batch_head != sh) {
4902 spin_unlock(&sh->stripe_lock);
4903 return 1;
4904 }
4905 spin_lock(&sh->batch_lock);
4906 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4907 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4908 spin_unlock(&sh->batch_lock);
4909 spin_unlock(&sh->stripe_lock);
4910
4911 /*
4912 * BATCH_READY is cleared, no new stripes can be added.
4913 * batch_list can be accessed without lock
4914 */
4915 return 0;
4916}
4917
4918static void break_stripe_batch_list(struct stripe_head *head_sh,
4919 unsigned long handle_flags)
4920{
4921 struct stripe_head *sh, *next;
4922 int i;
4923 int do_wakeup = 0;
4924
4925 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4926
4927 list_del_init(&sh->batch_list);
4928
4929 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4930 (1 << STRIPE_SYNCING) |
4931 (1 << STRIPE_REPLACED) |
4932 (1 << STRIPE_DELAYED) |
4933 (1 << STRIPE_BIT_DELAY) |
4934 (1 << STRIPE_FULL_WRITE) |
4935 (1 << STRIPE_BIOFILL_RUN) |
4936 (1 << STRIPE_COMPUTE_RUN) |
4937 (1 << STRIPE_DISCARD) |
4938 (1 << STRIPE_BATCH_READY) |
4939 (1 << STRIPE_BATCH_ERR) |
4940 (1 << STRIPE_BITMAP_PENDING)),
4941 "stripe state: %lx\n", sh->state);
4942 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4943 (1 << STRIPE_REPLACED)),
4944 "head stripe state: %lx\n", head_sh->state);
4945
4946 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4947 (1 << STRIPE_PREREAD_ACTIVE) |
4948 (1 << STRIPE_DEGRADED) |
4949 (1 << STRIPE_ON_UNPLUG_LIST)),
4950 head_sh->state & (1 << STRIPE_INSYNC));
4951
4952 sh->check_state = head_sh->check_state;
4953 sh->reconstruct_state = head_sh->reconstruct_state;
4954 spin_lock_irq(&sh->stripe_lock);
4955 sh->batch_head = NULL;
4956 spin_unlock_irq(&sh->stripe_lock);
4957 for (i = 0; i < sh->disks; i++) {
4958 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4959 do_wakeup = 1;
4960 sh->dev[i].flags = head_sh->dev[i].flags &
4961 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4962 }
4963 if (handle_flags == 0 ||
4964 sh->state & handle_flags)
4965 set_bit(STRIPE_HANDLE, &sh->state);
4966 raid5_release_stripe(sh);
4967 }
4968 spin_lock_irq(&head_sh->stripe_lock);
4969 head_sh->batch_head = NULL;
4970 spin_unlock_irq(&head_sh->stripe_lock);
4971 for (i = 0; i < head_sh->disks; i++)
4972 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4973 do_wakeup = 1;
4974 if (head_sh->state & handle_flags)
4975 set_bit(STRIPE_HANDLE, &head_sh->state);
4976
4977 if (do_wakeup)
4978 wake_up(&head_sh->raid_conf->wait_for_overlap);
4979}
4980
4981static void handle_stripe(struct stripe_head *sh)
4982{
4983 struct stripe_head_state s;
4984 struct r5conf *conf = sh->raid_conf;
4985 int i;
4986 int prexor;
4987 int disks = sh->disks;
4988 struct r5dev *pdev, *qdev;
4989
4990 clear_bit(STRIPE_HANDLE, &sh->state);
4991
4992 /*
4993 * handle_stripe should not continue handle the batched stripe, only
4994 * the head of batch list or lone stripe can continue. Otherwise we
4995 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4996 * is set for the batched stripe.
4997 */
4998 if (clear_batch_ready(sh))
4999 return;
5000
5001 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
5002 /* already being handled, ensure it gets handled
5003 * again when current action finishes */
5004 set_bit(STRIPE_HANDLE, &sh->state);
5005 return;
5006 }
5007
5008 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
5009 break_stripe_batch_list(sh, 0);
5010
5011 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
5012 spin_lock(&sh->stripe_lock);
5013 /*
5014 * Cannot process 'sync' concurrently with 'discard'.
5015 * Flush data in r5cache before 'sync'.
5016 */
5017 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
5018 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
5019 !test_bit(STRIPE_DISCARD, &sh->state) &&
5020 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
5021 set_bit(STRIPE_SYNCING, &sh->state);
5022 clear_bit(STRIPE_INSYNC, &sh->state);
5023 clear_bit(STRIPE_REPLACED, &sh->state);
5024 }
5025 spin_unlock(&sh->stripe_lock);
5026 }
5027 clear_bit(STRIPE_DELAYED, &sh->state);
5028
5029 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
5030 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
5031 (unsigned long long)sh->sector, sh->state,
5032 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
5033 sh->check_state, sh->reconstruct_state);
5034
5035 analyse_stripe(sh, &s);
5036
5037 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
5038 goto finish;
5039
5040 if (s.handle_bad_blocks ||
5041 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
5042 set_bit(STRIPE_HANDLE, &sh->state);
5043 goto finish;
5044 }
5045
5046 if (unlikely(s.blocked_rdev)) {
5047 if (s.syncing || s.expanding || s.expanded ||
5048 s.replacing || s.to_write || s.written) {
5049 set_bit(STRIPE_HANDLE, &sh->state);
5050 goto finish;
5051 }
5052 /* There is nothing for the blocked_rdev to block */
5053 rdev_dec_pending(s.blocked_rdev, conf->mddev);
5054 s.blocked_rdev = NULL;
5055 }
5056
5057 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5058 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5059 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5060 }
5061
5062 pr_debug("locked=%d uptodate=%d to_read=%d"
5063 " to_write=%d failed=%d failed_num=%d,%d\n",
5064 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5065 s.failed_num[0], s.failed_num[1]);
5066 /*
5067 * check if the array has lost more than max_degraded devices and,
5068 * if so, some requests might need to be failed.
5069 *
5070 * When journal device failed (log_failed), we will only process
5071 * the stripe if there is data need write to raid disks
5072 */
5073 if (s.failed > conf->max_degraded ||
5074 (s.log_failed && s.injournal == 0)) {
5075 sh->check_state = 0;
5076 sh->reconstruct_state = 0;
5077 break_stripe_batch_list(sh, 0);
5078 if (s.to_read+s.to_write+s.written)
5079 handle_failed_stripe(conf, sh, &s, disks);
5080 if (s.syncing + s.replacing)
5081 handle_failed_sync(conf, sh, &s);
5082 }
5083
5084 /* Now we check to see if any write operations have recently
5085 * completed
5086 */
5087 prexor = 0;
5088 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5089 prexor = 1;
5090 if (sh->reconstruct_state == reconstruct_state_drain_result ||
5091 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5092 sh->reconstruct_state = reconstruct_state_idle;
5093
5094 /* All the 'written' buffers and the parity block are ready to
5095 * be written back to disk
5096 */
5097 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5098 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5099 BUG_ON(sh->qd_idx >= 0 &&
5100 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5101 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5102 for (i = disks; i--; ) {
5103 struct r5dev *dev = &sh->dev[i];
5104 if (test_bit(R5_LOCKED, &dev->flags) &&
5105 (i == sh->pd_idx || i == sh->qd_idx ||
5106 dev->written || test_bit(R5_InJournal,
5107 &dev->flags))) {
5108 pr_debug("Writing block %d\n", i);
5109 set_bit(R5_Wantwrite, &dev->flags);
5110 if (prexor)
5111 continue;
5112 if (s.failed > 1)
5113 continue;
5114 if (!test_bit(R5_Insync, &dev->flags) ||
5115 ((i == sh->pd_idx || i == sh->qd_idx) &&
5116 s.failed == 0))
5117 set_bit(STRIPE_INSYNC, &sh->state);
5118 }
5119 }
5120 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5121 s.dec_preread_active = 1;
5122 }
5123
5124 /*
5125 * might be able to return some write requests if the parity blocks
5126 * are safe, or on a failed drive
5127 */
5128 pdev = &sh->dev[sh->pd_idx];
5129 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5130 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5131 qdev = &sh->dev[sh->qd_idx];
5132 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5133 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5134 || conf->level < 6;
5135
5136 if (s.written &&
5137 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5138 && !test_bit(R5_LOCKED, &pdev->flags)
5139 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5140 test_bit(R5_Discard, &pdev->flags))))) &&
5141 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5142 && !test_bit(R5_LOCKED, &qdev->flags)
5143 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5144 test_bit(R5_Discard, &qdev->flags))))))
5145 handle_stripe_clean_event(conf, sh, disks);
5146
5147 if (s.just_cached)
5148 r5c_handle_cached_data_endio(conf, sh, disks);
5149 log_stripe_write_finished(sh);
5150
5151 /* Now we might consider reading some blocks, either to check/generate
5152 * parity, or to satisfy requests
5153 * or to load a block that is being partially written.
5154 */
5155 if (s.to_read || s.non_overwrite
5156 || (s.to_write && s.failed)
5157 || (s.syncing && (s.uptodate + s.compute < disks))
5158 || s.replacing
5159 || s.expanding)
5160 handle_stripe_fill(sh, &s, disks);
5161
5162 /*
5163 * When the stripe finishes full journal write cycle (write to journal
5164 * and raid disk), this is the clean up procedure so it is ready for
5165 * next operation.
5166 */
5167 r5c_finish_stripe_write_out(conf, sh, &s);
5168
5169 /*
5170 * Now to consider new write requests, cache write back and what else,
5171 * if anything should be read. We do not handle new writes when:
5172 * 1/ A 'write' operation (copy+xor) is already in flight.
5173 * 2/ A 'check' operation is in flight, as it may clobber the parity
5174 * block.
5175 * 3/ A r5c cache log write is in flight.
5176 */
5177
5178 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5179 if (!r5c_is_writeback(conf->log)) {
5180 if (s.to_write)
5181 handle_stripe_dirtying(conf, sh, &s, disks);
5182 } else { /* write back cache */
5183 int ret = 0;
5184
5185 /* First, try handle writes in caching phase */
5186 if (s.to_write)
5187 ret = r5c_try_caching_write(conf, sh, &s,
5188 disks);
5189 /*
5190 * If caching phase failed: ret == -EAGAIN
5191 * OR
5192 * stripe under reclaim: !caching && injournal
5193 *
5194 * fall back to handle_stripe_dirtying()
5195 */
5196 if (ret == -EAGAIN ||
5197 /* stripe under reclaim: !caching && injournal */
5198 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5199 s.injournal > 0)) {
5200 ret = handle_stripe_dirtying(conf, sh, &s,
5201 disks);
5202 if (ret == -EAGAIN)
5203 goto finish;
5204 }
5205 }
5206 }
5207
5208 /* maybe we need to check and possibly fix the parity for this stripe
5209 * Any reads will already have been scheduled, so we just see if enough
5210 * data is available. The parity check is held off while parity
5211 * dependent operations are in flight.
5212 */
5213 if (sh->check_state ||
5214 (s.syncing && s.locked == 0 &&
5215 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5216 !test_bit(STRIPE_INSYNC, &sh->state))) {
5217 if (conf->level == 6)
5218 handle_parity_checks6(conf, sh, &s, disks);
5219 else
5220 handle_parity_checks5(conf, sh, &s, disks);
5221 }
5222
5223 if ((s.replacing || s.syncing) && s.locked == 0
5224 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5225 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5226 /* Write out to replacement devices where possible */
5227 for (i = 0; i < conf->raid_disks; i++)
5228 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5229 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5230 set_bit(R5_WantReplace, &sh->dev[i].flags);
5231 set_bit(R5_LOCKED, &sh->dev[i].flags);
5232 s.locked++;
5233 }
5234 if (s.replacing)
5235 set_bit(STRIPE_INSYNC, &sh->state);
5236 set_bit(STRIPE_REPLACED, &sh->state);
5237 }
5238 if ((s.syncing || s.replacing) && s.locked == 0 &&
5239 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5240 test_bit(STRIPE_INSYNC, &sh->state)) {
5241 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5242 clear_bit(STRIPE_SYNCING, &sh->state);
5243 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5244 wake_up(&conf->wait_for_overlap);
5245 }
5246
5247 /* If the failed drives are just a ReadError, then we might need
5248 * to progress the repair/check process
5249 */
5250 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5251 for (i = 0; i < s.failed; i++) {
5252 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5253 if (test_bit(R5_ReadError, &dev->flags)
5254 && !test_bit(R5_LOCKED, &dev->flags)
5255 && test_bit(R5_UPTODATE, &dev->flags)
5256 ) {
5257 if (!test_bit(R5_ReWrite, &dev->flags)) {
5258 set_bit(R5_Wantwrite, &dev->flags);
5259 set_bit(R5_ReWrite, &dev->flags);
5260 } else
5261 /* let's read it back */
5262 set_bit(R5_Wantread, &dev->flags);
5263 set_bit(R5_LOCKED, &dev->flags);
5264 s.locked++;
5265 }
5266 }
5267
5268 /* Finish reconstruct operations initiated by the expansion process */
5269 if (sh->reconstruct_state == reconstruct_state_result) {
5270 struct stripe_head *sh_src
5271 = raid5_get_active_stripe(conf, NULL, sh->sector,
5272 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5273 R5_GAS_NOQUIESCE);
5274 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5275 /* sh cannot be written until sh_src has been read.
5276 * so arrange for sh to be delayed a little
5277 */
5278 set_bit(STRIPE_DELAYED, &sh->state);
5279 set_bit(STRIPE_HANDLE, &sh->state);
5280 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5281 &sh_src->state))
5282 atomic_inc(&conf->preread_active_stripes);
5283 raid5_release_stripe(sh_src);
5284 goto finish;
5285 }
5286 if (sh_src)
5287 raid5_release_stripe(sh_src);
5288
5289 sh->reconstruct_state = reconstruct_state_idle;
5290 clear_bit(STRIPE_EXPANDING, &sh->state);
5291 for (i = conf->raid_disks; i--; ) {
5292 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5293 set_bit(R5_LOCKED, &sh->dev[i].flags);
5294 s.locked++;
5295 }
5296 }
5297
5298 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5299 !sh->reconstruct_state) {
5300 /* Need to write out all blocks after computing parity */
5301 sh->disks = conf->raid_disks;
5302 stripe_set_idx(sh->sector, conf, 0, sh);
5303 schedule_reconstruction(sh, &s, 1, 1);
5304 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5305 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5306 atomic_dec(&conf->reshape_stripes);
5307 wake_up(&conf->wait_for_overlap);
5308 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5309 }
5310
5311 if (s.expanding && s.locked == 0 &&
5312 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5313 handle_stripe_expansion(conf, sh);
5314
5315finish:
5316 /* wait for this device to become unblocked */
5317 if (unlikely(s.blocked_rdev)) {
5318 if (conf->mddev->external)
5319 md_wait_for_blocked_rdev(s.blocked_rdev,
5320 conf->mddev);
5321 else
5322 /* Internal metadata will immediately
5323 * be written by raid5d, so we don't
5324 * need to wait here.
5325 */
5326 rdev_dec_pending(s.blocked_rdev,
5327 conf->mddev);
5328 }
5329
5330 if (s.handle_bad_blocks)
5331 for (i = disks; i--; ) {
5332 struct md_rdev *rdev;
5333 struct r5dev *dev = &sh->dev[i];
5334 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5335 /* We own a safe reference to the rdev */
5336 rdev = rdev_pend_deref(conf->disks[i].rdev);
5337 if (!rdev_set_badblocks(rdev, sh->sector,
5338 RAID5_STRIPE_SECTORS(conf), 0))
5339 md_error(conf->mddev, rdev);
5340 rdev_dec_pending(rdev, conf->mddev);
5341 }
5342 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5343 rdev = rdev_pend_deref(conf->disks[i].rdev);
5344 rdev_clear_badblocks(rdev, sh->sector,
5345 RAID5_STRIPE_SECTORS(conf), 0);
5346 rdev_dec_pending(rdev, conf->mddev);
5347 }
5348 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5349 rdev = rdev_pend_deref(conf->disks[i].replacement);
5350 if (!rdev)
5351 /* rdev have been moved down */
5352 rdev = rdev_pend_deref(conf->disks[i].rdev);
5353 rdev_clear_badblocks(rdev, sh->sector,
5354 RAID5_STRIPE_SECTORS(conf), 0);
5355 rdev_dec_pending(rdev, conf->mddev);
5356 }
5357 }
5358
5359 if (s.ops_request)
5360 raid_run_ops(sh, s.ops_request);
5361
5362 ops_run_io(sh, &s);
5363
5364 if (s.dec_preread_active) {
5365 /* We delay this until after ops_run_io so that if make_request
5366 * is waiting on a flush, it won't continue until the writes
5367 * have actually been submitted.
5368 */
5369 atomic_dec(&conf->preread_active_stripes);
5370 if (atomic_read(&conf->preread_active_stripes) <
5371 IO_THRESHOLD)
5372 md_wakeup_thread(conf->mddev->thread);
5373 }
5374
5375 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5376}
5377
5378static void raid5_activate_delayed(struct r5conf *conf)
5379 __must_hold(&conf->device_lock)
5380{
5381 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5382 while (!list_empty(&conf->delayed_list)) {
5383 struct list_head *l = conf->delayed_list.next;
5384 struct stripe_head *sh;
5385 sh = list_entry(l, struct stripe_head, lru);
5386 list_del_init(l);
5387 clear_bit(STRIPE_DELAYED, &sh->state);
5388 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5389 atomic_inc(&conf->preread_active_stripes);
5390 list_add_tail(&sh->lru, &conf->hold_list);
5391 raid5_wakeup_stripe_thread(sh);
5392 }
5393 }
5394}
5395
5396static void activate_bit_delay(struct r5conf *conf,
5397 struct list_head *temp_inactive_list)
5398 __must_hold(&conf->device_lock)
5399{
5400 struct list_head head;
5401 list_add(&head, &conf->bitmap_list);
5402 list_del_init(&conf->bitmap_list);
5403 while (!list_empty(&head)) {
5404 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5405 int hash;
5406 list_del_init(&sh->lru);
5407 atomic_inc(&sh->count);
5408 hash = sh->hash_lock_index;
5409 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5410 }
5411}
5412
5413static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5414{
5415 struct r5conf *conf = mddev->private;
5416 sector_t sector = bio->bi_iter.bi_sector;
5417 unsigned int chunk_sectors;
5418 unsigned int bio_sectors = bio_sectors(bio);
5419
5420 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5421 return chunk_sectors >=
5422 ((sector & (chunk_sectors - 1)) + bio_sectors);
5423}
5424
5425/*
5426 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5427 * later sampled by raid5d.
5428 */
5429static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5430{
5431 unsigned long flags;
5432
5433 spin_lock_irqsave(&conf->device_lock, flags);
5434
5435 bi->bi_next = conf->retry_read_aligned_list;
5436 conf->retry_read_aligned_list = bi;
5437
5438 spin_unlock_irqrestore(&conf->device_lock, flags);
5439 md_wakeup_thread(conf->mddev->thread);
5440}
5441
5442static struct bio *remove_bio_from_retry(struct r5conf *conf,
5443 unsigned int *offset)
5444{
5445 struct bio *bi;
5446
5447 bi = conf->retry_read_aligned;
5448 if (bi) {
5449 *offset = conf->retry_read_offset;
5450 conf->retry_read_aligned = NULL;
5451 return bi;
5452 }
5453 bi = conf->retry_read_aligned_list;
5454 if(bi) {
5455 conf->retry_read_aligned_list = bi->bi_next;
5456 bi->bi_next = NULL;
5457 *offset = 0;
5458 }
5459
5460 return bi;
5461}
5462
5463/*
5464 * The "raid5_align_endio" should check if the read succeeded and if it
5465 * did, call bio_endio on the original bio (having bio_put the new bio
5466 * first).
5467 * If the read failed..
5468 */
5469static void raid5_align_endio(struct bio *bi)
5470{
5471 struct md_io_acct *md_io_acct = bi->bi_private;
5472 struct bio *raid_bi = md_io_acct->orig_bio;
5473 struct mddev *mddev;
5474 struct r5conf *conf;
5475 struct md_rdev *rdev;
5476 blk_status_t error = bi->bi_status;
5477 unsigned long start_time = md_io_acct->start_time;
5478
5479 bio_put(bi);
5480
5481 rdev = (void*)raid_bi->bi_next;
5482 raid_bi->bi_next = NULL;
5483 mddev = rdev->mddev;
5484 conf = mddev->private;
5485
5486 rdev_dec_pending(rdev, conf->mddev);
5487
5488 if (!error) {
5489 if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5490 bio_end_io_acct(raid_bi, start_time);
5491 bio_endio(raid_bi);
5492 if (atomic_dec_and_test(&conf->active_aligned_reads))
5493 wake_up(&conf->wait_for_quiescent);
5494 return;
5495 }
5496
5497 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5498
5499 add_bio_to_retry(raid_bi, conf);
5500}
5501
5502static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5503{
5504 struct r5conf *conf = mddev->private;
5505 struct bio *align_bio;
5506 struct md_rdev *rdev;
5507 sector_t sector, end_sector, first_bad;
5508 int bad_sectors, dd_idx;
5509 struct md_io_acct *md_io_acct;
5510 bool did_inc;
5511
5512 if (!in_chunk_boundary(mddev, raid_bio)) {
5513 pr_debug("%s: non aligned\n", __func__);
5514 return 0;
5515 }
5516
5517 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5518 &dd_idx, NULL);
5519 end_sector = bio_end_sector(raid_bio);
5520
5521 rcu_read_lock();
5522 if (r5c_big_stripe_cached(conf, sector))
5523 goto out_rcu_unlock;
5524
5525 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5526 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5527 rdev->recovery_offset < end_sector) {
5528 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5529 if (!rdev)
5530 goto out_rcu_unlock;
5531 if (test_bit(Faulty, &rdev->flags) ||
5532 !(test_bit(In_sync, &rdev->flags) ||
5533 rdev->recovery_offset >= end_sector))
5534 goto out_rcu_unlock;
5535 }
5536
5537 atomic_inc(&rdev->nr_pending);
5538 rcu_read_unlock();
5539
5540 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5541 &bad_sectors)) {
5542 rdev_dec_pending(rdev, mddev);
5543 return 0;
5544 }
5545
5546 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5547 &mddev->io_acct_set);
5548 md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5549 raid_bio->bi_next = (void *)rdev;
5550 if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5551 md_io_acct->start_time = bio_start_io_acct(raid_bio);
5552 md_io_acct->orig_bio = raid_bio;
5553
5554 align_bio->bi_end_io = raid5_align_endio;
5555 align_bio->bi_private = md_io_acct;
5556 align_bio->bi_iter.bi_sector = sector;
5557
5558 /* No reshape active, so we can trust rdev->data_offset */
5559 align_bio->bi_iter.bi_sector += rdev->data_offset;
5560
5561 did_inc = false;
5562 if (conf->quiesce == 0) {
5563 atomic_inc(&conf->active_aligned_reads);
5564 did_inc = true;
5565 }
5566 /* need a memory barrier to detect the race with raid5_quiesce() */
5567 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5568 /* quiesce is in progress, so we need to undo io activation and wait
5569 * for it to finish
5570 */
5571 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5572 wake_up(&conf->wait_for_quiescent);
5573 spin_lock_irq(&conf->device_lock);
5574 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5575 conf->device_lock);
5576 atomic_inc(&conf->active_aligned_reads);
5577 spin_unlock_irq(&conf->device_lock);
5578 }
5579
5580 if (mddev->gendisk)
5581 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5582 raid_bio->bi_iter.bi_sector);
5583 submit_bio_noacct(align_bio);
5584 return 1;
5585
5586out_rcu_unlock:
5587 rcu_read_unlock();
5588 return 0;
5589}
5590
5591static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5592{
5593 struct bio *split;
5594 sector_t sector = raid_bio->bi_iter.bi_sector;
5595 unsigned chunk_sects = mddev->chunk_sectors;
5596 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5597
5598 if (sectors < bio_sectors(raid_bio)) {
5599 struct r5conf *conf = mddev->private;
5600 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5601 bio_chain(split, raid_bio);
5602 submit_bio_noacct(raid_bio);
5603 raid_bio = split;
5604 }
5605
5606 if (!raid5_read_one_chunk(mddev, raid_bio))
5607 return raid_bio;
5608
5609 return NULL;
5610}
5611
5612/* __get_priority_stripe - get the next stripe to process
5613 *
5614 * Full stripe writes are allowed to pass preread active stripes up until
5615 * the bypass_threshold is exceeded. In general the bypass_count
5616 * increments when the handle_list is handled before the hold_list; however, it
5617 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5618 * stripe with in flight i/o. The bypass_count will be reset when the
5619 * head of the hold_list has changed, i.e. the head was promoted to the
5620 * handle_list.
5621 */
5622static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5623 __must_hold(&conf->device_lock)
5624{
5625 struct stripe_head *sh, *tmp;
5626 struct list_head *handle_list = NULL;
5627 struct r5worker_group *wg;
5628 bool second_try = !r5c_is_writeback(conf->log) &&
5629 !r5l_log_disk_error(conf);
5630 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5631 r5l_log_disk_error(conf);
5632
5633again:
5634 wg = NULL;
5635 sh = NULL;
5636 if (conf->worker_cnt_per_group == 0) {
5637 handle_list = try_loprio ? &conf->loprio_list :
5638 &conf->handle_list;
5639 } else if (group != ANY_GROUP) {
5640 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5641 &conf->worker_groups[group].handle_list;
5642 wg = &conf->worker_groups[group];
5643 } else {
5644 int i;
5645 for (i = 0; i < conf->group_cnt; i++) {
5646 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5647 &conf->worker_groups[i].handle_list;
5648 wg = &conf->worker_groups[i];
5649 if (!list_empty(handle_list))
5650 break;
5651 }
5652 }
5653
5654 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5655 __func__,
5656 list_empty(handle_list) ? "empty" : "busy",
5657 list_empty(&conf->hold_list) ? "empty" : "busy",
5658 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5659
5660 if (!list_empty(handle_list)) {
5661 sh = list_entry(handle_list->next, typeof(*sh), lru);
5662
5663 if (list_empty(&conf->hold_list))
5664 conf->bypass_count = 0;
5665 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5666 if (conf->hold_list.next == conf->last_hold)
5667 conf->bypass_count++;
5668 else {
5669 conf->last_hold = conf->hold_list.next;
5670 conf->bypass_count -= conf->bypass_threshold;
5671 if (conf->bypass_count < 0)
5672 conf->bypass_count = 0;
5673 }
5674 }
5675 } else if (!list_empty(&conf->hold_list) &&
5676 ((conf->bypass_threshold &&
5677 conf->bypass_count > conf->bypass_threshold) ||
5678 atomic_read(&conf->pending_full_writes) == 0)) {
5679
5680 list_for_each_entry(tmp, &conf->hold_list, lru) {
5681 if (conf->worker_cnt_per_group == 0 ||
5682 group == ANY_GROUP ||
5683 !cpu_online(tmp->cpu) ||
5684 cpu_to_group(tmp->cpu) == group) {
5685 sh = tmp;
5686 break;
5687 }
5688 }
5689
5690 if (sh) {
5691 conf->bypass_count -= conf->bypass_threshold;
5692 if (conf->bypass_count < 0)
5693 conf->bypass_count = 0;
5694 }
5695 wg = NULL;
5696 }
5697
5698 if (!sh) {
5699 if (second_try)
5700 return NULL;
5701 second_try = true;
5702 try_loprio = !try_loprio;
5703 goto again;
5704 }
5705
5706 if (wg) {
5707 wg->stripes_cnt--;
5708 sh->group = NULL;
5709 }
5710 list_del_init(&sh->lru);
5711 BUG_ON(atomic_inc_return(&sh->count) != 1);
5712 return sh;
5713}
5714
5715struct raid5_plug_cb {
5716 struct blk_plug_cb cb;
5717 struct list_head list;
5718 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5719};
5720
5721static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5722{
5723 struct raid5_plug_cb *cb = container_of(
5724 blk_cb, struct raid5_plug_cb, cb);
5725 struct stripe_head *sh;
5726 struct mddev *mddev = cb->cb.data;
5727 struct r5conf *conf = mddev->private;
5728 int cnt = 0;
5729 int hash;
5730
5731 if (cb->list.next && !list_empty(&cb->list)) {
5732 spin_lock_irq(&conf->device_lock);
5733 while (!list_empty(&cb->list)) {
5734 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5735 list_del_init(&sh->lru);
5736 /*
5737 * avoid race release_stripe_plug() sees
5738 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5739 * is still in our list
5740 */
5741 smp_mb__before_atomic();
5742 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5743 /*
5744 * STRIPE_ON_RELEASE_LIST could be set here. In that
5745 * case, the count is always > 1 here
5746 */
5747 hash = sh->hash_lock_index;
5748 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5749 cnt++;
5750 }
5751 spin_unlock_irq(&conf->device_lock);
5752 }
5753 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5754 NR_STRIPE_HASH_LOCKS);
5755 if (mddev->queue)
5756 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5757 kfree(cb);
5758}
5759
5760static void release_stripe_plug(struct mddev *mddev,
5761 struct stripe_head *sh)
5762{
5763 struct blk_plug_cb *blk_cb = blk_check_plugged(
5764 raid5_unplug, mddev,
5765 sizeof(struct raid5_plug_cb));
5766 struct raid5_plug_cb *cb;
5767
5768 if (!blk_cb) {
5769 raid5_release_stripe(sh);
5770 return;
5771 }
5772
5773 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5774
5775 if (cb->list.next == NULL) {
5776 int i;
5777 INIT_LIST_HEAD(&cb->list);
5778 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5779 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5780 }
5781
5782 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5783 list_add_tail(&sh->lru, &cb->list);
5784 else
5785 raid5_release_stripe(sh);
5786}
5787
5788static void make_discard_request(struct mddev *mddev, struct bio *bi)
5789{
5790 struct r5conf *conf = mddev->private;
5791 sector_t logical_sector, last_sector;
5792 struct stripe_head *sh;
5793 int stripe_sectors;
5794
5795 /* We need to handle this when io_uring supports discard/trim */
5796 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5797 return;
5798
5799 if (mddev->reshape_position != MaxSector)
5800 /* Skip discard while reshape is happening */
5801 return;
5802
5803 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5804 last_sector = bio_end_sector(bi);
5805
5806 bi->bi_next = NULL;
5807
5808 stripe_sectors = conf->chunk_sectors *
5809 (conf->raid_disks - conf->max_degraded);
5810 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5811 stripe_sectors);
5812 sector_div(last_sector, stripe_sectors);
5813
5814 logical_sector *= conf->chunk_sectors;
5815 last_sector *= conf->chunk_sectors;
5816
5817 for (; logical_sector < last_sector;
5818 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5819 DEFINE_WAIT(w);
5820 int d;
5821 again:
5822 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5823 prepare_to_wait(&conf->wait_for_overlap, &w,
5824 TASK_UNINTERRUPTIBLE);
5825 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5826 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5827 raid5_release_stripe(sh);
5828 schedule();
5829 goto again;
5830 }
5831 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5832 spin_lock_irq(&sh->stripe_lock);
5833 for (d = 0; d < conf->raid_disks; d++) {
5834 if (d == sh->pd_idx || d == sh->qd_idx)
5835 continue;
5836 if (sh->dev[d].towrite || sh->dev[d].toread) {
5837 set_bit(R5_Overlap, &sh->dev[d].flags);
5838 spin_unlock_irq(&sh->stripe_lock);
5839 raid5_release_stripe(sh);
5840 schedule();
5841 goto again;
5842 }
5843 }
5844 set_bit(STRIPE_DISCARD, &sh->state);
5845 finish_wait(&conf->wait_for_overlap, &w);
5846 sh->overwrite_disks = 0;
5847 for (d = 0; d < conf->raid_disks; d++) {
5848 if (d == sh->pd_idx || d == sh->qd_idx)
5849 continue;
5850 sh->dev[d].towrite = bi;
5851 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5852 bio_inc_remaining(bi);
5853 md_write_inc(mddev, bi);
5854 sh->overwrite_disks++;
5855 }
5856 spin_unlock_irq(&sh->stripe_lock);
5857 if (conf->mddev->bitmap) {
5858 for (d = 0;
5859 d < conf->raid_disks - conf->max_degraded;
5860 d++)
5861 md_bitmap_startwrite(mddev->bitmap,
5862 sh->sector,
5863 RAID5_STRIPE_SECTORS(conf),
5864 0);
5865 sh->bm_seq = conf->seq_flush + 1;
5866 set_bit(STRIPE_BIT_DELAY, &sh->state);
5867 }
5868
5869 set_bit(STRIPE_HANDLE, &sh->state);
5870 clear_bit(STRIPE_DELAYED, &sh->state);
5871 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5872 atomic_inc(&conf->preread_active_stripes);
5873 release_stripe_plug(mddev, sh);
5874 }
5875
5876 bio_endio(bi);
5877}
5878
5879static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5880 sector_t reshape_sector)
5881{
5882 return mddev->reshape_backwards ? sector < reshape_sector :
5883 sector >= reshape_sector;
5884}
5885
5886static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5887 sector_t max, sector_t reshape_sector)
5888{
5889 return mddev->reshape_backwards ? max < reshape_sector :
5890 min >= reshape_sector;
5891}
5892
5893static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5894 struct stripe_head *sh)
5895{
5896 sector_t max_sector = 0, min_sector = MaxSector;
5897 bool ret = false;
5898 int dd_idx;
5899
5900 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5901 if (dd_idx == sh->pd_idx)
5902 continue;
5903
5904 min_sector = min(min_sector, sh->dev[dd_idx].sector);
5905 max_sector = min(max_sector, sh->dev[dd_idx].sector);
5906 }
5907
5908 spin_lock_irq(&conf->device_lock);
5909
5910 if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5911 conf->reshape_progress))
5912 /* mismatch, need to try again */
5913 ret = true;
5914
5915 spin_unlock_irq(&conf->device_lock);
5916
5917 return ret;
5918}
5919
5920static int add_all_stripe_bios(struct r5conf *conf,
5921 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5922 struct bio *bi, int forwrite, int previous)
5923{
5924 int dd_idx;
5925 int ret = 1;
5926
5927 spin_lock_irq(&sh->stripe_lock);
5928
5929 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5930 struct r5dev *dev = &sh->dev[dd_idx];
5931
5932 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5933 continue;
5934
5935 if (dev->sector < ctx->first_sector ||
5936 dev->sector >= ctx->last_sector)
5937 continue;
5938
5939 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5940 set_bit(R5_Overlap, &dev->flags);
5941 ret = 0;
5942 continue;
5943 }
5944 }
5945
5946 if (!ret)
5947 goto out;
5948
5949 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5950 struct r5dev *dev = &sh->dev[dd_idx];
5951
5952 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5953 continue;
5954
5955 if (dev->sector < ctx->first_sector ||
5956 dev->sector >= ctx->last_sector)
5957 continue;
5958
5959 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5960 clear_bit((dev->sector - ctx->first_sector) >>
5961 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5962 }
5963
5964out:
5965 spin_unlock_irq(&sh->stripe_lock);
5966 return ret;
5967}
5968
5969static enum stripe_result make_stripe_request(struct mddev *mddev,
5970 struct r5conf *conf, struct stripe_request_ctx *ctx,
5971 sector_t logical_sector, struct bio *bi)
5972{
5973 const int rw = bio_data_dir(bi);
5974 enum stripe_result ret;
5975 struct stripe_head *sh;
5976 sector_t new_sector;
5977 int previous = 0, flags = 0;
5978 int seq, dd_idx;
5979
5980 seq = read_seqcount_begin(&conf->gen_lock);
5981
5982 if (unlikely(conf->reshape_progress != MaxSector)) {
5983 /*
5984 * Spinlock is needed as reshape_progress may be
5985 * 64bit on a 32bit platform, and so it might be
5986 * possible to see a half-updated value
5987 * Of course reshape_progress could change after
5988 * the lock is dropped, so once we get a reference
5989 * to the stripe that we think it is, we will have
5990 * to check again.
5991 */
5992 spin_lock_irq(&conf->device_lock);
5993 if (ahead_of_reshape(mddev, logical_sector,
5994 conf->reshape_progress)) {
5995 previous = 1;
5996 } else {
5997 if (ahead_of_reshape(mddev, logical_sector,
5998 conf->reshape_safe)) {
5999 spin_unlock_irq(&conf->device_lock);
6000 return STRIPE_SCHEDULE_AND_RETRY;
6001 }
6002 }
6003 spin_unlock_irq(&conf->device_lock);
6004 }
6005
6006 new_sector = raid5_compute_sector(conf, logical_sector, previous,
6007 &dd_idx, NULL);
6008 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
6009 new_sector, logical_sector);
6010
6011 if (previous)
6012 flags |= R5_GAS_PREVIOUS;
6013 if (bi->bi_opf & REQ_RAHEAD)
6014 flags |= R5_GAS_NOBLOCK;
6015 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
6016 if (unlikely(!sh)) {
6017 /* cannot get stripe, just give-up */
6018 bi->bi_status = BLK_STS_IOERR;
6019 return STRIPE_FAIL;
6020 }
6021
6022 if (unlikely(previous) &&
6023 stripe_ahead_of_reshape(mddev, conf, sh)) {
6024 /*
6025 * Expansion moved on while waiting for a stripe.
6026 * Expansion could still move past after this
6027 * test, but as we are holding a reference to
6028 * 'sh', we know that if that happens,
6029 * STRIPE_EXPANDING will get set and the expansion
6030 * won't proceed until we finish with the stripe.
6031 */
6032 ret = STRIPE_SCHEDULE_AND_RETRY;
6033 goto out_release;
6034 }
6035
6036 if (read_seqcount_retry(&conf->gen_lock, seq)) {
6037 /* Might have got the wrong stripe_head by accident */
6038 ret = STRIPE_RETRY;
6039 goto out_release;
6040 }
6041
6042 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
6043 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
6044 /*
6045 * Stripe is busy expanding or add failed due to
6046 * overlap. Flush everything and wait a while.
6047 */
6048 md_wakeup_thread(mddev->thread);
6049 ret = STRIPE_SCHEDULE_AND_RETRY;
6050 goto out_release;
6051 }
6052
6053 if (stripe_can_batch(sh)) {
6054 stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6055 if (ctx->batch_last)
6056 raid5_release_stripe(ctx->batch_last);
6057 atomic_inc(&sh->count);
6058 ctx->batch_last = sh;
6059 }
6060
6061 if (ctx->do_flush) {
6062 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6063 /* we only need flush for one stripe */
6064 ctx->do_flush = false;
6065 }
6066
6067 set_bit(STRIPE_HANDLE, &sh->state);
6068 clear_bit(STRIPE_DELAYED, &sh->state);
6069 if ((!sh->batch_head || sh == sh->batch_head) &&
6070 (bi->bi_opf & REQ_SYNC) &&
6071 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6072 atomic_inc(&conf->preread_active_stripes);
6073
6074 release_stripe_plug(mddev, sh);
6075 return STRIPE_SUCCESS;
6076
6077out_release:
6078 raid5_release_stripe(sh);
6079 return ret;
6080}
6081
6082static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6083{
6084 DEFINE_WAIT_FUNC(wait, woken_wake_function);
6085 struct r5conf *conf = mddev->private;
6086 sector_t logical_sector;
6087 struct stripe_request_ctx ctx = {};
6088 const int rw = bio_data_dir(bi);
6089 enum stripe_result res;
6090 int s, stripe_cnt;
6091
6092 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6093 int ret = log_handle_flush_request(conf, bi);
6094
6095 if (ret == 0)
6096 return true;
6097 if (ret == -ENODEV) {
6098 if (md_flush_request(mddev, bi))
6099 return true;
6100 }
6101 /* ret == -EAGAIN, fallback */
6102 /*
6103 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6104 * we need to flush journal device
6105 */
6106 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6107 }
6108
6109 if (!md_write_start(mddev, bi))
6110 return false;
6111 /*
6112 * If array is degraded, better not do chunk aligned read because
6113 * later we might have to read it again in order to reconstruct
6114 * data on failed drives.
6115 */
6116 if (rw == READ && mddev->degraded == 0 &&
6117 mddev->reshape_position == MaxSector) {
6118 bi = chunk_aligned_read(mddev, bi);
6119 if (!bi)
6120 return true;
6121 }
6122
6123 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6124 make_discard_request(mddev, bi);
6125 md_write_end(mddev);
6126 return true;
6127 }
6128
6129 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6130 ctx.first_sector = logical_sector;
6131 ctx.last_sector = bio_end_sector(bi);
6132 bi->bi_next = NULL;
6133
6134 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6135 RAID5_STRIPE_SECTORS(conf));
6136 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6137
6138 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6139 bi->bi_iter.bi_sector, ctx.last_sector);
6140
6141 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6142 if ((bi->bi_opf & REQ_NOWAIT) &&
6143 (conf->reshape_progress != MaxSector) &&
6144 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) &&
6145 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) {
6146 bio_wouldblock_error(bi);
6147 if (rw == WRITE)
6148 md_write_end(mddev);
6149 return true;
6150 }
6151 md_account_bio(mddev, &bi);
6152
6153 add_wait_queue(&conf->wait_for_overlap, &wait);
6154 while (1) {
6155 res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6156 bi);
6157 if (res == STRIPE_FAIL)
6158 break;
6159
6160 if (res == STRIPE_RETRY)
6161 continue;
6162
6163 if (res == STRIPE_SCHEDULE_AND_RETRY) {
6164 /*
6165 * Must release the reference to batch_last before
6166 * scheduling and waiting for work to be done,
6167 * otherwise the batch_last stripe head could prevent
6168 * raid5_activate_delayed() from making progress
6169 * and thus deadlocking.
6170 */
6171 if (ctx.batch_last) {
6172 raid5_release_stripe(ctx.batch_last);
6173 ctx.batch_last = NULL;
6174 }
6175
6176 wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6177 MAX_SCHEDULE_TIMEOUT);
6178 continue;
6179 }
6180
6181 s = find_first_bit(ctx.sectors_to_do, stripe_cnt);
6182 if (s == stripe_cnt)
6183 break;
6184
6185 logical_sector = ctx.first_sector +
6186 (s << RAID5_STRIPE_SHIFT(conf));
6187 }
6188 remove_wait_queue(&conf->wait_for_overlap, &wait);
6189
6190 if (ctx.batch_last)
6191 raid5_release_stripe(ctx.batch_last);
6192
6193 if (rw == WRITE)
6194 md_write_end(mddev);
6195 bio_endio(bi);
6196 return true;
6197}
6198
6199static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6200
6201static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6202{
6203 /* reshaping is quite different to recovery/resync so it is
6204 * handled quite separately ... here.
6205 *
6206 * On each call to sync_request, we gather one chunk worth of
6207 * destination stripes and flag them as expanding.
6208 * Then we find all the source stripes and request reads.
6209 * As the reads complete, handle_stripe will copy the data
6210 * into the destination stripe and release that stripe.
6211 */
6212 struct r5conf *conf = mddev->private;
6213 struct stripe_head *sh;
6214 struct md_rdev *rdev;
6215 sector_t first_sector, last_sector;
6216 int raid_disks = conf->previous_raid_disks;
6217 int data_disks = raid_disks - conf->max_degraded;
6218 int new_data_disks = conf->raid_disks - conf->max_degraded;
6219 int i;
6220 int dd_idx;
6221 sector_t writepos, readpos, safepos;
6222 sector_t stripe_addr;
6223 int reshape_sectors;
6224 struct list_head stripes;
6225 sector_t retn;
6226
6227 if (sector_nr == 0) {
6228 /* If restarting in the middle, skip the initial sectors */
6229 if (mddev->reshape_backwards &&
6230 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6231 sector_nr = raid5_size(mddev, 0, 0)
6232 - conf->reshape_progress;
6233 } else if (mddev->reshape_backwards &&
6234 conf->reshape_progress == MaxSector) {
6235 /* shouldn't happen, but just in case, finish up.*/
6236 sector_nr = MaxSector;
6237 } else if (!mddev->reshape_backwards &&
6238 conf->reshape_progress > 0)
6239 sector_nr = conf->reshape_progress;
6240 sector_div(sector_nr, new_data_disks);
6241 if (sector_nr) {
6242 mddev->curr_resync_completed = sector_nr;
6243 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6244 *skipped = 1;
6245 retn = sector_nr;
6246 goto finish;
6247 }
6248 }
6249
6250 /* We need to process a full chunk at a time.
6251 * If old and new chunk sizes differ, we need to process the
6252 * largest of these
6253 */
6254
6255 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6256
6257 /* We update the metadata at least every 10 seconds, or when
6258 * the data about to be copied would over-write the source of
6259 * the data at the front of the range. i.e. one new_stripe
6260 * along from reshape_progress new_maps to after where
6261 * reshape_safe old_maps to
6262 */
6263 writepos = conf->reshape_progress;
6264 sector_div(writepos, new_data_disks);
6265 readpos = conf->reshape_progress;
6266 sector_div(readpos, data_disks);
6267 safepos = conf->reshape_safe;
6268 sector_div(safepos, data_disks);
6269 if (mddev->reshape_backwards) {
6270 BUG_ON(writepos < reshape_sectors);
6271 writepos -= reshape_sectors;
6272 readpos += reshape_sectors;
6273 safepos += reshape_sectors;
6274 } else {
6275 writepos += reshape_sectors;
6276 /* readpos and safepos are worst-case calculations.
6277 * A negative number is overly pessimistic, and causes
6278 * obvious problems for unsigned storage. So clip to 0.
6279 */
6280 readpos -= min_t(sector_t, reshape_sectors, readpos);
6281 safepos -= min_t(sector_t, reshape_sectors, safepos);
6282 }
6283
6284 /* Having calculated the 'writepos' possibly use it
6285 * to set 'stripe_addr' which is where we will write to.
6286 */
6287 if (mddev->reshape_backwards) {
6288 BUG_ON(conf->reshape_progress == 0);
6289 stripe_addr = writepos;
6290 BUG_ON((mddev->dev_sectors &
6291 ~((sector_t)reshape_sectors - 1))
6292 - reshape_sectors - stripe_addr
6293 != sector_nr);
6294 } else {
6295 BUG_ON(writepos != sector_nr + reshape_sectors);
6296 stripe_addr = sector_nr;
6297 }
6298
6299 /* 'writepos' is the most advanced device address we might write.
6300 * 'readpos' is the least advanced device address we might read.
6301 * 'safepos' is the least address recorded in the metadata as having
6302 * been reshaped.
6303 * If there is a min_offset_diff, these are adjusted either by
6304 * increasing the safepos/readpos if diff is negative, or
6305 * increasing writepos if diff is positive.
6306 * If 'readpos' is then behind 'writepos', there is no way that we can
6307 * ensure safety in the face of a crash - that must be done by userspace
6308 * making a backup of the data. So in that case there is no particular
6309 * rush to update metadata.
6310 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6311 * update the metadata to advance 'safepos' to match 'readpos' so that
6312 * we can be safe in the event of a crash.
6313 * So we insist on updating metadata if safepos is behind writepos and
6314 * readpos is beyond writepos.
6315 * In any case, update the metadata every 10 seconds.
6316 * Maybe that number should be configurable, but I'm not sure it is
6317 * worth it.... maybe it could be a multiple of safemode_delay???
6318 */
6319 if (conf->min_offset_diff < 0) {
6320 safepos += -conf->min_offset_diff;
6321 readpos += -conf->min_offset_diff;
6322 } else
6323 writepos += conf->min_offset_diff;
6324
6325 if ((mddev->reshape_backwards
6326 ? (safepos > writepos && readpos < writepos)
6327 : (safepos < writepos && readpos > writepos)) ||
6328 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6329 /* Cannot proceed until we've updated the superblock... */
6330 wait_event(conf->wait_for_overlap,
6331 atomic_read(&conf->reshape_stripes)==0
6332 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6333 if (atomic_read(&conf->reshape_stripes) != 0)
6334 return 0;
6335 mddev->reshape_position = conf->reshape_progress;
6336 mddev->curr_resync_completed = sector_nr;
6337 if (!mddev->reshape_backwards)
6338 /* Can update recovery_offset */
6339 rdev_for_each(rdev, mddev)
6340 if (rdev->raid_disk >= 0 &&
6341 !test_bit(Journal, &rdev->flags) &&
6342 !test_bit(In_sync, &rdev->flags) &&
6343 rdev->recovery_offset < sector_nr)
6344 rdev->recovery_offset = sector_nr;
6345
6346 conf->reshape_checkpoint = jiffies;
6347 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6348 md_wakeup_thread(mddev->thread);
6349 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6350 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6351 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6352 return 0;
6353 spin_lock_irq(&conf->device_lock);
6354 conf->reshape_safe = mddev->reshape_position;
6355 spin_unlock_irq(&conf->device_lock);
6356 wake_up(&conf->wait_for_overlap);
6357 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6358 }
6359
6360 INIT_LIST_HEAD(&stripes);
6361 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6362 int j;
6363 int skipped_disk = 0;
6364 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6365 R5_GAS_NOQUIESCE);
6366 set_bit(STRIPE_EXPANDING, &sh->state);
6367 atomic_inc(&conf->reshape_stripes);
6368 /* If any of this stripe is beyond the end of the old
6369 * array, then we need to zero those blocks
6370 */
6371 for (j=sh->disks; j--;) {
6372 sector_t s;
6373 if (j == sh->pd_idx)
6374 continue;
6375 if (conf->level == 6 &&
6376 j == sh->qd_idx)
6377 continue;
6378 s = raid5_compute_blocknr(sh, j, 0);
6379 if (s < raid5_size(mddev, 0, 0)) {
6380 skipped_disk = 1;
6381 continue;
6382 }
6383 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6384 set_bit(R5_Expanded, &sh->dev[j].flags);
6385 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6386 }
6387 if (!skipped_disk) {
6388 set_bit(STRIPE_EXPAND_READY, &sh->state);
6389 set_bit(STRIPE_HANDLE, &sh->state);
6390 }
6391 list_add(&sh->lru, &stripes);
6392 }
6393 spin_lock_irq(&conf->device_lock);
6394 if (mddev->reshape_backwards)
6395 conf->reshape_progress -= reshape_sectors * new_data_disks;
6396 else
6397 conf->reshape_progress += reshape_sectors * new_data_disks;
6398 spin_unlock_irq(&conf->device_lock);
6399 /* Ok, those stripe are ready. We can start scheduling
6400 * reads on the source stripes.
6401 * The source stripes are determined by mapping the first and last
6402 * block on the destination stripes.
6403 */
6404 first_sector =
6405 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6406 1, &dd_idx, NULL);
6407 last_sector =
6408 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6409 * new_data_disks - 1),
6410 1, &dd_idx, NULL);
6411 if (last_sector >= mddev->dev_sectors)
6412 last_sector = mddev->dev_sectors - 1;
6413 while (first_sector <= last_sector) {
6414 sh = raid5_get_active_stripe(conf, NULL, first_sector,
6415 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6416 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6417 set_bit(STRIPE_HANDLE, &sh->state);
6418 raid5_release_stripe(sh);
6419 first_sector += RAID5_STRIPE_SECTORS(conf);
6420 }
6421 /* Now that the sources are clearly marked, we can release
6422 * the destination stripes
6423 */
6424 while (!list_empty(&stripes)) {
6425 sh = list_entry(stripes.next, struct stripe_head, lru);
6426 list_del_init(&sh->lru);
6427 raid5_release_stripe(sh);
6428 }
6429 /* If this takes us to the resync_max point where we have to pause,
6430 * then we need to write out the superblock.
6431 */
6432 sector_nr += reshape_sectors;
6433 retn = reshape_sectors;
6434finish:
6435 if (mddev->curr_resync_completed > mddev->resync_max ||
6436 (sector_nr - mddev->curr_resync_completed) * 2
6437 >= mddev->resync_max - mddev->curr_resync_completed) {
6438 /* Cannot proceed until we've updated the superblock... */
6439 wait_event(conf->wait_for_overlap,
6440 atomic_read(&conf->reshape_stripes) == 0
6441 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6442 if (atomic_read(&conf->reshape_stripes) != 0)
6443 goto ret;
6444 mddev->reshape_position = conf->reshape_progress;
6445 mddev->curr_resync_completed = sector_nr;
6446 if (!mddev->reshape_backwards)
6447 /* Can update recovery_offset */
6448 rdev_for_each(rdev, mddev)
6449 if (rdev->raid_disk >= 0 &&
6450 !test_bit(Journal, &rdev->flags) &&
6451 !test_bit(In_sync, &rdev->flags) &&
6452 rdev->recovery_offset < sector_nr)
6453 rdev->recovery_offset = sector_nr;
6454 conf->reshape_checkpoint = jiffies;
6455 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6456 md_wakeup_thread(mddev->thread);
6457 wait_event(mddev->sb_wait,
6458 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6459 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6460 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6461 goto ret;
6462 spin_lock_irq(&conf->device_lock);
6463 conf->reshape_safe = mddev->reshape_position;
6464 spin_unlock_irq(&conf->device_lock);
6465 wake_up(&conf->wait_for_overlap);
6466 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6467 }
6468ret:
6469 return retn;
6470}
6471
6472static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6473 int *skipped)
6474{
6475 struct r5conf *conf = mddev->private;
6476 struct stripe_head *sh;
6477 sector_t max_sector = mddev->dev_sectors;
6478 sector_t sync_blocks;
6479 int still_degraded = 0;
6480 int i;
6481
6482 if (sector_nr >= max_sector) {
6483 /* just being told to finish up .. nothing much to do */
6484
6485 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6486 end_reshape(conf);
6487 return 0;
6488 }
6489
6490 if (mddev->curr_resync < max_sector) /* aborted */
6491 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6492 &sync_blocks, 1);
6493 else /* completed sync */
6494 conf->fullsync = 0;
6495 md_bitmap_close_sync(mddev->bitmap);
6496
6497 return 0;
6498 }
6499
6500 /* Allow raid5_quiesce to complete */
6501 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6502
6503 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6504 return reshape_request(mddev, sector_nr, skipped);
6505
6506 /* No need to check resync_max as we never do more than one
6507 * stripe, and as resync_max will always be on a chunk boundary,
6508 * if the check in md_do_sync didn't fire, there is no chance
6509 * of overstepping resync_max here
6510 */
6511
6512 /* if there is too many failed drives and we are trying
6513 * to resync, then assert that we are finished, because there is
6514 * nothing we can do.
6515 */
6516 if (mddev->degraded >= conf->max_degraded &&
6517 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6518 sector_t rv = mddev->dev_sectors - sector_nr;
6519 *skipped = 1;
6520 return rv;
6521 }
6522 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6523 !conf->fullsync &&
6524 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6525 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6526 /* we can skip this block, and probably more */
6527 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6528 *skipped = 1;
6529 /* keep things rounded to whole stripes */
6530 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6531 }
6532
6533 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6534
6535 sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6536 R5_GAS_NOBLOCK);
6537 if (sh == NULL) {
6538 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6539 /* make sure we don't swamp the stripe cache if someone else
6540 * is trying to get access
6541 */
6542 schedule_timeout_uninterruptible(1);
6543 }
6544 /* Need to check if array will still be degraded after recovery/resync
6545 * Note in case of > 1 drive failures it's possible we're rebuilding
6546 * one drive while leaving another faulty drive in array.
6547 */
6548 rcu_read_lock();
6549 for (i = 0; i < conf->raid_disks; i++) {
6550 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
6551
6552 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6553 still_degraded = 1;
6554 }
6555 rcu_read_unlock();
6556
6557 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6558
6559 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6560 set_bit(STRIPE_HANDLE, &sh->state);
6561
6562 raid5_release_stripe(sh);
6563
6564 return RAID5_STRIPE_SECTORS(conf);
6565}
6566
6567static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6568 unsigned int offset)
6569{
6570 /* We may not be able to submit a whole bio at once as there
6571 * may not be enough stripe_heads available.
6572 * We cannot pre-allocate enough stripe_heads as we may need
6573 * more than exist in the cache (if we allow ever large chunks).
6574 * So we do one stripe head at a time and record in
6575 * ->bi_hw_segments how many have been done.
6576 *
6577 * We *know* that this entire raid_bio is in one chunk, so
6578 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6579 */
6580 struct stripe_head *sh;
6581 int dd_idx;
6582 sector_t sector, logical_sector, last_sector;
6583 int scnt = 0;
6584 int handled = 0;
6585
6586 logical_sector = raid_bio->bi_iter.bi_sector &
6587 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6588 sector = raid5_compute_sector(conf, logical_sector,
6589 0, &dd_idx, NULL);
6590 last_sector = bio_end_sector(raid_bio);
6591
6592 for (; logical_sector < last_sector;
6593 logical_sector += RAID5_STRIPE_SECTORS(conf),
6594 sector += RAID5_STRIPE_SECTORS(conf),
6595 scnt++) {
6596
6597 if (scnt < offset)
6598 /* already done this stripe */
6599 continue;
6600
6601 sh = raid5_get_active_stripe(conf, NULL, sector,
6602 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6603 if (!sh) {
6604 /* failed to get a stripe - must wait */
6605 conf->retry_read_aligned = raid_bio;
6606 conf->retry_read_offset = scnt;
6607 return handled;
6608 }
6609
6610 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6611 raid5_release_stripe(sh);
6612 conf->retry_read_aligned = raid_bio;
6613 conf->retry_read_offset = scnt;
6614 return handled;
6615 }
6616
6617 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6618 handle_stripe(sh);
6619 raid5_release_stripe(sh);
6620 handled++;
6621 }
6622
6623 bio_endio(raid_bio);
6624
6625 if (atomic_dec_and_test(&conf->active_aligned_reads))
6626 wake_up(&conf->wait_for_quiescent);
6627 return handled;
6628}
6629
6630static int handle_active_stripes(struct r5conf *conf, int group,
6631 struct r5worker *worker,
6632 struct list_head *temp_inactive_list)
6633 __must_hold(&conf->device_lock)
6634{
6635 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6636 int i, batch_size = 0, hash;
6637 bool release_inactive = false;
6638
6639 while (batch_size < MAX_STRIPE_BATCH &&
6640 (sh = __get_priority_stripe(conf, group)) != NULL)
6641 batch[batch_size++] = sh;
6642
6643 if (batch_size == 0) {
6644 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6645 if (!list_empty(temp_inactive_list + i))
6646 break;
6647 if (i == NR_STRIPE_HASH_LOCKS) {
6648 spin_unlock_irq(&conf->device_lock);
6649 log_flush_stripe_to_raid(conf);
6650 spin_lock_irq(&conf->device_lock);
6651 return batch_size;
6652 }
6653 release_inactive = true;
6654 }
6655 spin_unlock_irq(&conf->device_lock);
6656
6657 release_inactive_stripe_list(conf, temp_inactive_list,
6658 NR_STRIPE_HASH_LOCKS);
6659
6660 r5l_flush_stripe_to_raid(conf->log);
6661 if (release_inactive) {
6662 spin_lock_irq(&conf->device_lock);
6663 return 0;
6664 }
6665
6666 for (i = 0; i < batch_size; i++)
6667 handle_stripe(batch[i]);
6668 log_write_stripe_run(conf);
6669
6670 cond_resched();
6671
6672 spin_lock_irq(&conf->device_lock);
6673 for (i = 0; i < batch_size; i++) {
6674 hash = batch[i]->hash_lock_index;
6675 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6676 }
6677 return batch_size;
6678}
6679
6680static void raid5_do_work(struct work_struct *work)
6681{
6682 struct r5worker *worker = container_of(work, struct r5worker, work);
6683 struct r5worker_group *group = worker->group;
6684 struct r5conf *conf = group->conf;
6685 struct mddev *mddev = conf->mddev;
6686 int group_id = group - conf->worker_groups;
6687 int handled;
6688 struct blk_plug plug;
6689
6690 pr_debug("+++ raid5worker active\n");
6691
6692 blk_start_plug(&plug);
6693 handled = 0;
6694 spin_lock_irq(&conf->device_lock);
6695 while (1) {
6696 int batch_size, released;
6697
6698 released = release_stripe_list(conf, worker->temp_inactive_list);
6699
6700 batch_size = handle_active_stripes(conf, group_id, worker,
6701 worker->temp_inactive_list);
6702 worker->working = false;
6703 if (!batch_size && !released)
6704 break;
6705 handled += batch_size;
6706 wait_event_lock_irq(mddev->sb_wait,
6707 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6708 conf->device_lock);
6709 }
6710 pr_debug("%d stripes handled\n", handled);
6711
6712 spin_unlock_irq(&conf->device_lock);
6713
6714 flush_deferred_bios(conf);
6715
6716 r5l_flush_stripe_to_raid(conf->log);
6717
6718 async_tx_issue_pending_all();
6719 blk_finish_plug(&plug);
6720
6721 pr_debug("--- raid5worker inactive\n");
6722}
6723
6724/*
6725 * This is our raid5 kernel thread.
6726 *
6727 * We scan the hash table for stripes which can be handled now.
6728 * During the scan, completed stripes are saved for us by the interrupt
6729 * handler, so that they will not have to wait for our next wakeup.
6730 */
6731static void raid5d(struct md_thread *thread)
6732{
6733 struct mddev *mddev = thread->mddev;
6734 struct r5conf *conf = mddev->private;
6735 int handled;
6736 struct blk_plug plug;
6737
6738 pr_debug("+++ raid5d active\n");
6739
6740 md_check_recovery(mddev);
6741
6742 blk_start_plug(&plug);
6743 handled = 0;
6744 spin_lock_irq(&conf->device_lock);
6745 while (1) {
6746 struct bio *bio;
6747 int batch_size, released;
6748 unsigned int offset;
6749
6750 released = release_stripe_list(conf, conf->temp_inactive_list);
6751 if (released)
6752 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6753
6754 if (
6755 !list_empty(&conf->bitmap_list)) {
6756 /* Now is a good time to flush some bitmap updates */
6757 conf->seq_flush++;
6758 spin_unlock_irq(&conf->device_lock);
6759 md_bitmap_unplug(mddev->bitmap);
6760 spin_lock_irq(&conf->device_lock);
6761 conf->seq_write = conf->seq_flush;
6762 activate_bit_delay(conf, conf->temp_inactive_list);
6763 }
6764 raid5_activate_delayed(conf);
6765
6766 while ((bio = remove_bio_from_retry(conf, &offset))) {
6767 int ok;
6768 spin_unlock_irq(&conf->device_lock);
6769 ok = retry_aligned_read(conf, bio, offset);
6770 spin_lock_irq(&conf->device_lock);
6771 if (!ok)
6772 break;
6773 handled++;
6774 }
6775
6776 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6777 conf->temp_inactive_list);
6778 if (!batch_size && !released)
6779 break;
6780 handled += batch_size;
6781
6782 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6783 spin_unlock_irq(&conf->device_lock);
6784 md_check_recovery(mddev);
6785 spin_lock_irq(&conf->device_lock);
6786
6787 /*
6788 * Waiting on MD_SB_CHANGE_PENDING below may deadlock
6789 * seeing md_check_recovery() is needed to clear
6790 * the flag when using mdmon.
6791 */
6792 continue;
6793 }
6794
6795 wait_event_lock_irq(mddev->sb_wait,
6796 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6797 conf->device_lock);
6798 }
6799 pr_debug("%d stripes handled\n", handled);
6800
6801 spin_unlock_irq(&conf->device_lock);
6802 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6803 mutex_trylock(&conf->cache_size_mutex)) {
6804 grow_one_stripe(conf, __GFP_NOWARN);
6805 /* Set flag even if allocation failed. This helps
6806 * slow down allocation requests when mem is short
6807 */
6808 set_bit(R5_DID_ALLOC, &conf->cache_state);
6809 mutex_unlock(&conf->cache_size_mutex);
6810 }
6811
6812 flush_deferred_bios(conf);
6813
6814 r5l_flush_stripe_to_raid(conf->log);
6815
6816 async_tx_issue_pending_all();
6817 blk_finish_plug(&plug);
6818
6819 pr_debug("--- raid5d inactive\n");
6820}
6821
6822static ssize_t
6823raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6824{
6825 struct r5conf *conf;
6826 int ret = 0;
6827 spin_lock(&mddev->lock);
6828 conf = mddev->private;
6829 if (conf)
6830 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6831 spin_unlock(&mddev->lock);
6832 return ret;
6833}
6834
6835int
6836raid5_set_cache_size(struct mddev *mddev, int size)
6837{
6838 int result = 0;
6839 struct r5conf *conf = mddev->private;
6840
6841 if (size <= 16 || size > 32768)
6842 return -EINVAL;
6843
6844 conf->min_nr_stripes = size;
6845 mutex_lock(&conf->cache_size_mutex);
6846 while (size < conf->max_nr_stripes &&
6847 drop_one_stripe(conf))
6848 ;
6849 mutex_unlock(&conf->cache_size_mutex);
6850
6851 md_allow_write(mddev);
6852
6853 mutex_lock(&conf->cache_size_mutex);
6854 while (size > conf->max_nr_stripes)
6855 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6856 conf->min_nr_stripes = conf->max_nr_stripes;
6857 result = -ENOMEM;
6858 break;
6859 }
6860 mutex_unlock(&conf->cache_size_mutex);
6861
6862 return result;
6863}
6864EXPORT_SYMBOL(raid5_set_cache_size);
6865
6866static ssize_t
6867raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6868{
6869 struct r5conf *conf;
6870 unsigned long new;
6871 int err;
6872
6873 if (len >= PAGE_SIZE)
6874 return -EINVAL;
6875 if (kstrtoul(page, 10, &new))
6876 return -EINVAL;
6877 err = mddev_lock(mddev);
6878 if (err)
6879 return err;
6880 conf = mddev->private;
6881 if (!conf)
6882 err = -ENODEV;
6883 else
6884 err = raid5_set_cache_size(mddev, new);
6885 mddev_unlock(mddev);
6886
6887 return err ?: len;
6888}
6889
6890static struct md_sysfs_entry
6891raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6892 raid5_show_stripe_cache_size,
6893 raid5_store_stripe_cache_size);
6894
6895static ssize_t
6896raid5_show_rmw_level(struct mddev *mddev, char *page)
6897{
6898 struct r5conf *conf = mddev->private;
6899 if (conf)
6900 return sprintf(page, "%d\n", conf->rmw_level);
6901 else
6902 return 0;
6903}
6904
6905static ssize_t
6906raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6907{
6908 struct r5conf *conf = mddev->private;
6909 unsigned long new;
6910
6911 if (!conf)
6912 return -ENODEV;
6913
6914 if (len >= PAGE_SIZE)
6915 return -EINVAL;
6916
6917 if (kstrtoul(page, 10, &new))
6918 return -EINVAL;
6919
6920 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6921 return -EINVAL;
6922
6923 if (new != PARITY_DISABLE_RMW &&
6924 new != PARITY_ENABLE_RMW &&
6925 new != PARITY_PREFER_RMW)
6926 return -EINVAL;
6927
6928 conf->rmw_level = new;
6929 return len;
6930}
6931
6932static struct md_sysfs_entry
6933raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6934 raid5_show_rmw_level,
6935 raid5_store_rmw_level);
6936
6937static ssize_t
6938raid5_show_stripe_size(struct mddev *mddev, char *page)
6939{
6940 struct r5conf *conf;
6941 int ret = 0;
6942
6943 spin_lock(&mddev->lock);
6944 conf = mddev->private;
6945 if (conf)
6946 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6947 spin_unlock(&mddev->lock);
6948 return ret;
6949}
6950
6951#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6952static ssize_t
6953raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6954{
6955 struct r5conf *conf;
6956 unsigned long new;
6957 int err;
6958 int size;
6959
6960 if (len >= PAGE_SIZE)
6961 return -EINVAL;
6962 if (kstrtoul(page, 10, &new))
6963 return -EINVAL;
6964
6965 /*
6966 * The value should not be bigger than PAGE_SIZE. It requires to
6967 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6968 * of two.
6969 */
6970 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6971 new > PAGE_SIZE || new == 0 ||
6972 new != roundup_pow_of_two(new))
6973 return -EINVAL;
6974
6975 err = mddev_lock(mddev);
6976 if (err)
6977 return err;
6978
6979 conf = mddev->private;
6980 if (!conf) {
6981 err = -ENODEV;
6982 goto out_unlock;
6983 }
6984
6985 if (new == conf->stripe_size)
6986 goto out_unlock;
6987
6988 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6989 conf->stripe_size, new);
6990
6991 if (mddev->sync_thread ||
6992 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6993 mddev->reshape_position != MaxSector ||
6994 mddev->sysfs_active) {
6995 err = -EBUSY;
6996 goto out_unlock;
6997 }
6998
6999 mddev_suspend(mddev);
7000 mutex_lock(&conf->cache_size_mutex);
7001 size = conf->max_nr_stripes;
7002
7003 shrink_stripes(conf);
7004
7005 conf->stripe_size = new;
7006 conf->stripe_shift = ilog2(new) - 9;
7007 conf->stripe_sectors = new >> 9;
7008 if (grow_stripes(conf, size)) {
7009 pr_warn("md/raid:%s: couldn't allocate buffers\n",
7010 mdname(mddev));
7011 err = -ENOMEM;
7012 }
7013 mutex_unlock(&conf->cache_size_mutex);
7014 mddev_resume(mddev);
7015
7016out_unlock:
7017 mddev_unlock(mddev);
7018 return err ?: len;
7019}
7020
7021static struct md_sysfs_entry
7022raid5_stripe_size = __ATTR(stripe_size, 0644,
7023 raid5_show_stripe_size,
7024 raid5_store_stripe_size);
7025#else
7026static struct md_sysfs_entry
7027raid5_stripe_size = __ATTR(stripe_size, 0444,
7028 raid5_show_stripe_size,
7029 NULL);
7030#endif
7031
7032static ssize_t
7033raid5_show_preread_threshold(struct mddev *mddev, char *page)
7034{
7035 struct r5conf *conf;
7036 int ret = 0;
7037 spin_lock(&mddev->lock);
7038 conf = mddev->private;
7039 if (conf)
7040 ret = sprintf(page, "%d\n", conf->bypass_threshold);
7041 spin_unlock(&mddev->lock);
7042 return ret;
7043}
7044
7045static ssize_t
7046raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7047{
7048 struct r5conf *conf;
7049 unsigned long new;
7050 int err;
7051
7052 if (len >= PAGE_SIZE)
7053 return -EINVAL;
7054 if (kstrtoul(page, 10, &new))
7055 return -EINVAL;
7056
7057 err = mddev_lock(mddev);
7058 if (err)
7059 return err;
7060 conf = mddev->private;
7061 if (!conf)
7062 err = -ENODEV;
7063 else if (new > conf->min_nr_stripes)
7064 err = -EINVAL;
7065 else
7066 conf->bypass_threshold = new;
7067 mddev_unlock(mddev);
7068 return err ?: len;
7069}
7070
7071static struct md_sysfs_entry
7072raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7073 S_IRUGO | S_IWUSR,
7074 raid5_show_preread_threshold,
7075 raid5_store_preread_threshold);
7076
7077static ssize_t
7078raid5_show_skip_copy(struct mddev *mddev, char *page)
7079{
7080 struct r5conf *conf;
7081 int ret = 0;
7082 spin_lock(&mddev->lock);
7083 conf = mddev->private;
7084 if (conf)
7085 ret = sprintf(page, "%d\n", conf->skip_copy);
7086 spin_unlock(&mddev->lock);
7087 return ret;
7088}
7089
7090static ssize_t
7091raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7092{
7093 struct r5conf *conf;
7094 unsigned long new;
7095 int err;
7096
7097 if (len >= PAGE_SIZE)
7098 return -EINVAL;
7099 if (kstrtoul(page, 10, &new))
7100 return -EINVAL;
7101 new = !!new;
7102
7103 err = mddev_lock(mddev);
7104 if (err)
7105 return err;
7106 conf = mddev->private;
7107 if (!conf)
7108 err = -ENODEV;
7109 else if (new != conf->skip_copy) {
7110 struct request_queue *q = mddev->queue;
7111
7112 mddev_suspend(mddev);
7113 conf->skip_copy = new;
7114 if (new)
7115 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
7116 else
7117 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
7118 mddev_resume(mddev);
7119 }
7120 mddev_unlock(mddev);
7121 return err ?: len;
7122}
7123
7124static struct md_sysfs_entry
7125raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7126 raid5_show_skip_copy,
7127 raid5_store_skip_copy);
7128
7129static ssize_t
7130stripe_cache_active_show(struct mddev *mddev, char *page)
7131{
7132 struct r5conf *conf = mddev->private;
7133 if (conf)
7134 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7135 else
7136 return 0;
7137}
7138
7139static struct md_sysfs_entry
7140raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7141
7142static ssize_t
7143raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7144{
7145 struct r5conf *conf;
7146 int ret = 0;
7147 spin_lock(&mddev->lock);
7148 conf = mddev->private;
7149 if (conf)
7150 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7151 spin_unlock(&mddev->lock);
7152 return ret;
7153}
7154
7155static int alloc_thread_groups(struct r5conf *conf, int cnt,
7156 int *group_cnt,
7157 struct r5worker_group **worker_groups);
7158static ssize_t
7159raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7160{
7161 struct r5conf *conf;
7162 unsigned int new;
7163 int err;
7164 struct r5worker_group *new_groups, *old_groups;
7165 int group_cnt;
7166
7167 if (len >= PAGE_SIZE)
7168 return -EINVAL;
7169 if (kstrtouint(page, 10, &new))
7170 return -EINVAL;
7171 /* 8192 should be big enough */
7172 if (new > 8192)
7173 return -EINVAL;
7174
7175 err = mddev_lock(mddev);
7176 if (err)
7177 return err;
7178 conf = mddev->private;
7179 if (!conf)
7180 err = -ENODEV;
7181 else if (new != conf->worker_cnt_per_group) {
7182 mddev_suspend(mddev);
7183
7184 old_groups = conf->worker_groups;
7185 if (old_groups)
7186 flush_workqueue(raid5_wq);
7187
7188 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7189 if (!err) {
7190 spin_lock_irq(&conf->device_lock);
7191 conf->group_cnt = group_cnt;
7192 conf->worker_cnt_per_group = new;
7193 conf->worker_groups = new_groups;
7194 spin_unlock_irq(&conf->device_lock);
7195
7196 if (old_groups)
7197 kfree(old_groups[0].workers);
7198 kfree(old_groups);
7199 }
7200 mddev_resume(mddev);
7201 }
7202 mddev_unlock(mddev);
7203
7204 return err ?: len;
7205}
7206
7207static struct md_sysfs_entry
7208raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7209 raid5_show_group_thread_cnt,
7210 raid5_store_group_thread_cnt);
7211
7212static struct attribute *raid5_attrs[] = {
7213 &raid5_stripecache_size.attr,
7214 &raid5_stripecache_active.attr,
7215 &raid5_preread_bypass_threshold.attr,
7216 &raid5_group_thread_cnt.attr,
7217 &raid5_skip_copy.attr,
7218 &raid5_rmw_level.attr,
7219 &raid5_stripe_size.attr,
7220 &r5c_journal_mode.attr,
7221 &ppl_write_hint.attr,
7222 NULL,
7223};
7224static const struct attribute_group raid5_attrs_group = {
7225 .name = NULL,
7226 .attrs = raid5_attrs,
7227};
7228
7229static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7230 struct r5worker_group **worker_groups)
7231{
7232 int i, j, k;
7233 ssize_t size;
7234 struct r5worker *workers;
7235
7236 if (cnt == 0) {
7237 *group_cnt = 0;
7238 *worker_groups = NULL;
7239 return 0;
7240 }
7241 *group_cnt = num_possible_nodes();
7242 size = sizeof(struct r5worker) * cnt;
7243 workers = kcalloc(size, *group_cnt, GFP_NOIO);
7244 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7245 GFP_NOIO);
7246 if (!*worker_groups || !workers) {
7247 kfree(workers);
7248 kfree(*worker_groups);
7249 return -ENOMEM;
7250 }
7251
7252 for (i = 0; i < *group_cnt; i++) {
7253 struct r5worker_group *group;
7254
7255 group = &(*worker_groups)[i];
7256 INIT_LIST_HEAD(&group->handle_list);
7257 INIT_LIST_HEAD(&group->loprio_list);
7258 group->conf = conf;
7259 group->workers = workers + i * cnt;
7260
7261 for (j = 0; j < cnt; j++) {
7262 struct r5worker *worker = group->workers + j;
7263 worker->group = group;
7264 INIT_WORK(&worker->work, raid5_do_work);
7265
7266 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7267 INIT_LIST_HEAD(worker->temp_inactive_list + k);
7268 }
7269 }
7270
7271 return 0;
7272}
7273
7274static void free_thread_groups(struct r5conf *conf)
7275{
7276 if (conf->worker_groups)
7277 kfree(conf->worker_groups[0].workers);
7278 kfree(conf->worker_groups);
7279 conf->worker_groups = NULL;
7280}
7281
7282static sector_t
7283raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7284{
7285 struct r5conf *conf = mddev->private;
7286
7287 if (!sectors)
7288 sectors = mddev->dev_sectors;
7289 if (!raid_disks)
7290 /* size is defined by the smallest of previous and new size */
7291 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7292
7293 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7294 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7295 return sectors * (raid_disks - conf->max_degraded);
7296}
7297
7298static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7299{
7300 safe_put_page(percpu->spare_page);
7301 percpu->spare_page = NULL;
7302 kvfree(percpu->scribble);
7303 percpu->scribble = NULL;
7304}
7305
7306static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7307{
7308 if (conf->level == 6 && !percpu->spare_page) {
7309 percpu->spare_page = alloc_page(GFP_KERNEL);
7310 if (!percpu->spare_page)
7311 return -ENOMEM;
7312 }
7313
7314 if (scribble_alloc(percpu,
7315 max(conf->raid_disks,
7316 conf->previous_raid_disks),
7317 max(conf->chunk_sectors,
7318 conf->prev_chunk_sectors)
7319 / RAID5_STRIPE_SECTORS(conf))) {
7320 free_scratch_buffer(conf, percpu);
7321 return -ENOMEM;
7322 }
7323
7324 local_lock_init(&percpu->lock);
7325 return 0;
7326}
7327
7328static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7329{
7330 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7331
7332 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7333 return 0;
7334}
7335
7336static void raid5_free_percpu(struct r5conf *conf)
7337{
7338 if (!conf->percpu)
7339 return;
7340
7341 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7342 free_percpu(conf->percpu);
7343}
7344
7345static void free_conf(struct r5conf *conf)
7346{
7347 int i;
7348
7349 log_exit(conf);
7350
7351 unregister_shrinker(&conf->shrinker);
7352 free_thread_groups(conf);
7353 shrink_stripes(conf);
7354 raid5_free_percpu(conf);
7355 for (i = 0; i < conf->pool_size; i++)
7356 if (conf->disks[i].extra_page)
7357 put_page(conf->disks[i].extra_page);
7358 kfree(conf->disks);
7359 bioset_exit(&conf->bio_split);
7360 kfree(conf->stripe_hashtbl);
7361 kfree(conf->pending_data);
7362 kfree(conf);
7363}
7364
7365static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7366{
7367 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7368 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7369
7370 if (alloc_scratch_buffer(conf, percpu)) {
7371 pr_warn("%s: failed memory allocation for cpu%u\n",
7372 __func__, cpu);
7373 return -ENOMEM;
7374 }
7375 return 0;
7376}
7377
7378static int raid5_alloc_percpu(struct r5conf *conf)
7379{
7380 int err = 0;
7381
7382 conf->percpu = alloc_percpu(struct raid5_percpu);
7383 if (!conf->percpu)
7384 return -ENOMEM;
7385
7386 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7387 if (!err) {
7388 conf->scribble_disks = max(conf->raid_disks,
7389 conf->previous_raid_disks);
7390 conf->scribble_sectors = max(conf->chunk_sectors,
7391 conf->prev_chunk_sectors);
7392 }
7393 return err;
7394}
7395
7396static unsigned long raid5_cache_scan(struct shrinker *shrink,
7397 struct shrink_control *sc)
7398{
7399 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7400 unsigned long ret = SHRINK_STOP;
7401
7402 if (mutex_trylock(&conf->cache_size_mutex)) {
7403 ret= 0;
7404 while (ret < sc->nr_to_scan &&
7405 conf->max_nr_stripes > conf->min_nr_stripes) {
7406 if (drop_one_stripe(conf) == 0) {
7407 ret = SHRINK_STOP;
7408 break;
7409 }
7410 ret++;
7411 }
7412 mutex_unlock(&conf->cache_size_mutex);
7413 }
7414 return ret;
7415}
7416
7417static unsigned long raid5_cache_count(struct shrinker *shrink,
7418 struct shrink_control *sc)
7419{
7420 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7421
7422 if (conf->max_nr_stripes < conf->min_nr_stripes)
7423 /* unlikely, but not impossible */
7424 return 0;
7425 return conf->max_nr_stripes - conf->min_nr_stripes;
7426}
7427
7428static struct r5conf *setup_conf(struct mddev *mddev)
7429{
7430 struct r5conf *conf;
7431 int raid_disk, memory, max_disks;
7432 struct md_rdev *rdev;
7433 struct disk_info *disk;
7434 char pers_name[6];
7435 int i;
7436 int group_cnt;
7437 struct r5worker_group *new_group;
7438 int ret = -ENOMEM;
7439
7440 if (mddev->new_level != 5
7441 && mddev->new_level != 4
7442 && mddev->new_level != 6) {
7443 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7444 mdname(mddev), mddev->new_level);
7445 return ERR_PTR(-EIO);
7446 }
7447 if ((mddev->new_level == 5
7448 && !algorithm_valid_raid5(mddev->new_layout)) ||
7449 (mddev->new_level == 6
7450 && !algorithm_valid_raid6(mddev->new_layout))) {
7451 pr_warn("md/raid:%s: layout %d not supported\n",
7452 mdname(mddev), mddev->new_layout);
7453 return ERR_PTR(-EIO);
7454 }
7455 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7456 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7457 mdname(mddev), mddev->raid_disks);
7458 return ERR_PTR(-EINVAL);
7459 }
7460
7461 if (!mddev->new_chunk_sectors ||
7462 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7463 !is_power_of_2(mddev->new_chunk_sectors)) {
7464 pr_warn("md/raid:%s: invalid chunk size %d\n",
7465 mdname(mddev), mddev->new_chunk_sectors << 9);
7466 return ERR_PTR(-EINVAL);
7467 }
7468
7469 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7470 if (conf == NULL)
7471 goto abort;
7472
7473#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7474 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7475 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7476 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7477#endif
7478 INIT_LIST_HEAD(&conf->free_list);
7479 INIT_LIST_HEAD(&conf->pending_list);
7480 conf->pending_data = kcalloc(PENDING_IO_MAX,
7481 sizeof(struct r5pending_data),
7482 GFP_KERNEL);
7483 if (!conf->pending_data)
7484 goto abort;
7485 for (i = 0; i < PENDING_IO_MAX; i++)
7486 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7487 /* Don't enable multi-threading by default*/
7488 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7489 conf->group_cnt = group_cnt;
7490 conf->worker_cnt_per_group = 0;
7491 conf->worker_groups = new_group;
7492 } else
7493 goto abort;
7494 spin_lock_init(&conf->device_lock);
7495 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7496 mutex_init(&conf->cache_size_mutex);
7497
7498 init_waitqueue_head(&conf->wait_for_quiescent);
7499 init_waitqueue_head(&conf->wait_for_stripe);
7500 init_waitqueue_head(&conf->wait_for_overlap);
7501 INIT_LIST_HEAD(&conf->handle_list);
7502 INIT_LIST_HEAD(&conf->loprio_list);
7503 INIT_LIST_HEAD(&conf->hold_list);
7504 INIT_LIST_HEAD(&conf->delayed_list);
7505 INIT_LIST_HEAD(&conf->bitmap_list);
7506 init_llist_head(&conf->released_stripes);
7507 atomic_set(&conf->active_stripes, 0);
7508 atomic_set(&conf->preread_active_stripes, 0);
7509 atomic_set(&conf->active_aligned_reads, 0);
7510 spin_lock_init(&conf->pending_bios_lock);
7511 conf->batch_bio_dispatch = true;
7512 rdev_for_each(rdev, mddev) {
7513 if (test_bit(Journal, &rdev->flags))
7514 continue;
7515 if (bdev_nonrot(rdev->bdev)) {
7516 conf->batch_bio_dispatch = false;
7517 break;
7518 }
7519 }
7520
7521 conf->bypass_threshold = BYPASS_THRESHOLD;
7522 conf->recovery_disabled = mddev->recovery_disabled - 1;
7523
7524 conf->raid_disks = mddev->raid_disks;
7525 if (mddev->reshape_position == MaxSector)
7526 conf->previous_raid_disks = mddev->raid_disks;
7527 else
7528 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7529 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7530
7531 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7532 GFP_KERNEL);
7533
7534 if (!conf->disks)
7535 goto abort;
7536
7537 for (i = 0; i < max_disks; i++) {
7538 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7539 if (!conf->disks[i].extra_page)
7540 goto abort;
7541 }
7542
7543 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7544 if (ret)
7545 goto abort;
7546 conf->mddev = mddev;
7547
7548 ret = -ENOMEM;
7549 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7550 if (!conf->stripe_hashtbl)
7551 goto abort;
7552
7553 /* We init hash_locks[0] separately to that it can be used
7554 * as the reference lock in the spin_lock_nest_lock() call
7555 * in lock_all_device_hash_locks_irq in order to convince
7556 * lockdep that we know what we are doing.
7557 */
7558 spin_lock_init(conf->hash_locks);
7559 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7560 spin_lock_init(conf->hash_locks + i);
7561
7562 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7563 INIT_LIST_HEAD(conf->inactive_list + i);
7564
7565 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7566 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7567
7568 atomic_set(&conf->r5c_cached_full_stripes, 0);
7569 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7570 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7571 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7572 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7573 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7574
7575 conf->level = mddev->new_level;
7576 conf->chunk_sectors = mddev->new_chunk_sectors;
7577 ret = raid5_alloc_percpu(conf);
7578 if (ret)
7579 goto abort;
7580
7581 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7582
7583 ret = -EIO;
7584 rdev_for_each(rdev, mddev) {
7585 raid_disk = rdev->raid_disk;
7586 if (raid_disk >= max_disks
7587 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7588 continue;
7589 disk = conf->disks + raid_disk;
7590
7591 if (test_bit(Replacement, &rdev->flags)) {
7592 if (disk->replacement)
7593 goto abort;
7594 RCU_INIT_POINTER(disk->replacement, rdev);
7595 } else {
7596 if (disk->rdev)
7597 goto abort;
7598 RCU_INIT_POINTER(disk->rdev, rdev);
7599 }
7600
7601 if (test_bit(In_sync, &rdev->flags)) {
7602 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7603 mdname(mddev), rdev->bdev, raid_disk);
7604 } else if (rdev->saved_raid_disk != raid_disk)
7605 /* Cannot rely on bitmap to complete recovery */
7606 conf->fullsync = 1;
7607 }
7608
7609 conf->level = mddev->new_level;
7610 if (conf->level == 6) {
7611 conf->max_degraded = 2;
7612 if (raid6_call.xor_syndrome)
7613 conf->rmw_level = PARITY_ENABLE_RMW;
7614 else
7615 conf->rmw_level = PARITY_DISABLE_RMW;
7616 } else {
7617 conf->max_degraded = 1;
7618 conf->rmw_level = PARITY_ENABLE_RMW;
7619 }
7620 conf->algorithm = mddev->new_layout;
7621 conf->reshape_progress = mddev->reshape_position;
7622 if (conf->reshape_progress != MaxSector) {
7623 conf->prev_chunk_sectors = mddev->chunk_sectors;
7624 conf->prev_algo = mddev->layout;
7625 } else {
7626 conf->prev_chunk_sectors = conf->chunk_sectors;
7627 conf->prev_algo = conf->algorithm;
7628 }
7629
7630 conf->min_nr_stripes = NR_STRIPES;
7631 if (mddev->reshape_position != MaxSector) {
7632 int stripes = max_t(int,
7633 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7634 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7635 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7636 if (conf->min_nr_stripes != NR_STRIPES)
7637 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7638 mdname(mddev), conf->min_nr_stripes);
7639 }
7640 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7641 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7642 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7643 if (grow_stripes(conf, conf->min_nr_stripes)) {
7644 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7645 mdname(mddev), memory);
7646 ret = -ENOMEM;
7647 goto abort;
7648 } else
7649 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7650 /*
7651 * Losing a stripe head costs more than the time to refill it,
7652 * it reduces the queue depth and so can hurt throughput.
7653 * So set it rather large, scaled by number of devices.
7654 */
7655 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7656 conf->shrinker.scan_objects = raid5_cache_scan;
7657 conf->shrinker.count_objects = raid5_cache_count;
7658 conf->shrinker.batch = 128;
7659 conf->shrinker.flags = 0;
7660 ret = register_shrinker(&conf->shrinker, "md-raid5:%s", mdname(mddev));
7661 if (ret) {
7662 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7663 mdname(mddev));
7664 goto abort;
7665 }
7666
7667 sprintf(pers_name, "raid%d", mddev->new_level);
7668 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7669 if (!conf->thread) {
7670 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7671 mdname(mddev));
7672 ret = -ENOMEM;
7673 goto abort;
7674 }
7675
7676 return conf;
7677
7678 abort:
7679 if (conf)
7680 free_conf(conf);
7681 return ERR_PTR(ret);
7682}
7683
7684static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7685{
7686 switch (algo) {
7687 case ALGORITHM_PARITY_0:
7688 if (raid_disk < max_degraded)
7689 return 1;
7690 break;
7691 case ALGORITHM_PARITY_N:
7692 if (raid_disk >= raid_disks - max_degraded)
7693 return 1;
7694 break;
7695 case ALGORITHM_PARITY_0_6:
7696 if (raid_disk == 0 ||
7697 raid_disk == raid_disks - 1)
7698 return 1;
7699 break;
7700 case ALGORITHM_LEFT_ASYMMETRIC_6:
7701 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7702 case ALGORITHM_LEFT_SYMMETRIC_6:
7703 case ALGORITHM_RIGHT_SYMMETRIC_6:
7704 if (raid_disk == raid_disks - 1)
7705 return 1;
7706 }
7707 return 0;
7708}
7709
7710static void raid5_set_io_opt(struct r5conf *conf)
7711{
7712 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7713 (conf->raid_disks - conf->max_degraded));
7714}
7715
7716static int raid5_run(struct mddev *mddev)
7717{
7718 struct r5conf *conf;
7719 int working_disks = 0;
7720 int dirty_parity_disks = 0;
7721 struct md_rdev *rdev;
7722 struct md_rdev *journal_dev = NULL;
7723 sector_t reshape_offset = 0;
7724 int i, ret = 0;
7725 long long min_offset_diff = 0;
7726 int first = 1;
7727
7728 if (acct_bioset_init(mddev)) {
7729 pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev));
7730 return -ENOMEM;
7731 }
7732
7733 if (mddev_init_writes_pending(mddev) < 0) {
7734 ret = -ENOMEM;
7735 goto exit_acct_set;
7736 }
7737
7738 if (mddev->recovery_cp != MaxSector)
7739 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7740 mdname(mddev));
7741
7742 rdev_for_each(rdev, mddev) {
7743 long long diff;
7744
7745 if (test_bit(Journal, &rdev->flags)) {
7746 journal_dev = rdev;
7747 continue;
7748 }
7749 if (rdev->raid_disk < 0)
7750 continue;
7751 diff = (rdev->new_data_offset - rdev->data_offset);
7752 if (first) {
7753 min_offset_diff = diff;
7754 first = 0;
7755 } else if (mddev->reshape_backwards &&
7756 diff < min_offset_diff)
7757 min_offset_diff = diff;
7758 else if (!mddev->reshape_backwards &&
7759 diff > min_offset_diff)
7760 min_offset_diff = diff;
7761 }
7762
7763 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7764 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7765 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7766 mdname(mddev));
7767 ret = -EINVAL;
7768 goto exit_acct_set;
7769 }
7770
7771 if (mddev->reshape_position != MaxSector) {
7772 /* Check that we can continue the reshape.
7773 * Difficulties arise if the stripe we would write to
7774 * next is at or after the stripe we would read from next.
7775 * For a reshape that changes the number of devices, this
7776 * is only possible for a very short time, and mdadm makes
7777 * sure that time appears to have past before assembling
7778 * the array. So we fail if that time hasn't passed.
7779 * For a reshape that keeps the number of devices the same
7780 * mdadm must be monitoring the reshape can keeping the
7781 * critical areas read-only and backed up. It will start
7782 * the array in read-only mode, so we check for that.
7783 */
7784 sector_t here_new, here_old;
7785 int old_disks;
7786 int max_degraded = (mddev->level == 6 ? 2 : 1);
7787 int chunk_sectors;
7788 int new_data_disks;
7789
7790 if (journal_dev) {
7791 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7792 mdname(mddev));
7793 ret = -EINVAL;
7794 goto exit_acct_set;
7795 }
7796
7797 if (mddev->new_level != mddev->level) {
7798 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7799 mdname(mddev));
7800 ret = -EINVAL;
7801 goto exit_acct_set;
7802 }
7803 old_disks = mddev->raid_disks - mddev->delta_disks;
7804 /* reshape_position must be on a new-stripe boundary, and one
7805 * further up in new geometry must map after here in old
7806 * geometry.
7807 * If the chunk sizes are different, then as we perform reshape
7808 * in units of the largest of the two, reshape_position needs
7809 * be a multiple of the largest chunk size times new data disks.
7810 */
7811 here_new = mddev->reshape_position;
7812 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7813 new_data_disks = mddev->raid_disks - max_degraded;
7814 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7815 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7816 mdname(mddev));
7817 ret = -EINVAL;
7818 goto exit_acct_set;
7819 }
7820 reshape_offset = here_new * chunk_sectors;
7821 /* here_new is the stripe we will write to */
7822 here_old = mddev->reshape_position;
7823 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7824 /* here_old is the first stripe that we might need to read
7825 * from */
7826 if (mddev->delta_disks == 0) {
7827 /* We cannot be sure it is safe to start an in-place
7828 * reshape. It is only safe if user-space is monitoring
7829 * and taking constant backups.
7830 * mdadm always starts a situation like this in
7831 * readonly mode so it can take control before
7832 * allowing any writes. So just check for that.
7833 */
7834 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7835 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7836 /* not really in-place - so OK */;
7837 else if (mddev->ro == 0) {
7838 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7839 mdname(mddev));
7840 ret = -EINVAL;
7841 goto exit_acct_set;
7842 }
7843 } else if (mddev->reshape_backwards
7844 ? (here_new * chunk_sectors + min_offset_diff <=
7845 here_old * chunk_sectors)
7846 : (here_new * chunk_sectors >=
7847 here_old * chunk_sectors + (-min_offset_diff))) {
7848 /* Reading from the same stripe as writing to - bad */
7849 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7850 mdname(mddev));
7851 ret = -EINVAL;
7852 goto exit_acct_set;
7853 }
7854 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7855 /* OK, we should be able to continue; */
7856 } else {
7857 BUG_ON(mddev->level != mddev->new_level);
7858 BUG_ON(mddev->layout != mddev->new_layout);
7859 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7860 BUG_ON(mddev->delta_disks != 0);
7861 }
7862
7863 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7864 test_bit(MD_HAS_PPL, &mddev->flags)) {
7865 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7866 mdname(mddev));
7867 clear_bit(MD_HAS_PPL, &mddev->flags);
7868 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7869 }
7870
7871 if (mddev->private == NULL)
7872 conf = setup_conf(mddev);
7873 else
7874 conf = mddev->private;
7875
7876 if (IS_ERR(conf)) {
7877 ret = PTR_ERR(conf);
7878 goto exit_acct_set;
7879 }
7880
7881 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7882 if (!journal_dev) {
7883 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7884 mdname(mddev));
7885 mddev->ro = 1;
7886 set_disk_ro(mddev->gendisk, 1);
7887 } else if (mddev->recovery_cp == MaxSector)
7888 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7889 }
7890
7891 conf->min_offset_diff = min_offset_diff;
7892 mddev->thread = conf->thread;
7893 conf->thread = NULL;
7894 mddev->private = conf;
7895
7896 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7897 i++) {
7898 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
7899 if (!rdev && conf->disks[i].replacement) {
7900 /* The replacement is all we have yet */
7901 rdev = rdev_mdlock_deref(mddev,
7902 conf->disks[i].replacement);
7903 conf->disks[i].replacement = NULL;
7904 clear_bit(Replacement, &rdev->flags);
7905 rcu_assign_pointer(conf->disks[i].rdev, rdev);
7906 }
7907 if (!rdev)
7908 continue;
7909 if (rcu_access_pointer(conf->disks[i].replacement) &&
7910 conf->reshape_progress != MaxSector) {
7911 /* replacements and reshape simply do not mix. */
7912 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7913 goto abort;
7914 }
7915 if (test_bit(In_sync, &rdev->flags)) {
7916 working_disks++;
7917 continue;
7918 }
7919 /* This disc is not fully in-sync. However if it
7920 * just stored parity (beyond the recovery_offset),
7921 * when we don't need to be concerned about the
7922 * array being dirty.
7923 * When reshape goes 'backwards', we never have
7924 * partially completed devices, so we only need
7925 * to worry about reshape going forwards.
7926 */
7927 /* Hack because v0.91 doesn't store recovery_offset properly. */
7928 if (mddev->major_version == 0 &&
7929 mddev->minor_version > 90)
7930 rdev->recovery_offset = reshape_offset;
7931
7932 if (rdev->recovery_offset < reshape_offset) {
7933 /* We need to check old and new layout */
7934 if (!only_parity(rdev->raid_disk,
7935 conf->algorithm,
7936 conf->raid_disks,
7937 conf->max_degraded))
7938 continue;
7939 }
7940 if (!only_parity(rdev->raid_disk,
7941 conf->prev_algo,
7942 conf->previous_raid_disks,
7943 conf->max_degraded))
7944 continue;
7945 dirty_parity_disks++;
7946 }
7947
7948 /*
7949 * 0 for a fully functional array, 1 or 2 for a degraded array.
7950 */
7951 mddev->degraded = raid5_calc_degraded(conf);
7952
7953 if (has_failed(conf)) {
7954 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7955 mdname(mddev), mddev->degraded, conf->raid_disks);
7956 goto abort;
7957 }
7958
7959 /* device size must be a multiple of chunk size */
7960 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7961 mddev->resync_max_sectors = mddev->dev_sectors;
7962
7963 if (mddev->degraded > dirty_parity_disks &&
7964 mddev->recovery_cp != MaxSector) {
7965 if (test_bit(MD_HAS_PPL, &mddev->flags))
7966 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7967 mdname(mddev));
7968 else if (mddev->ok_start_degraded)
7969 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7970 mdname(mddev));
7971 else {
7972 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7973 mdname(mddev));
7974 goto abort;
7975 }
7976 }
7977
7978 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7979 mdname(mddev), conf->level,
7980 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7981 mddev->new_layout);
7982
7983 print_raid5_conf(conf);
7984
7985 if (conf->reshape_progress != MaxSector) {
7986 conf->reshape_safe = conf->reshape_progress;
7987 atomic_set(&conf->reshape_stripes, 0);
7988 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7989 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7990 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7991 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7992 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7993 "reshape");
7994 if (!mddev->sync_thread)
7995 goto abort;
7996 }
7997
7998 /* Ok, everything is just fine now */
7999 if (mddev->to_remove == &raid5_attrs_group)
8000 mddev->to_remove = NULL;
8001 else if (mddev->kobj.sd &&
8002 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8003 pr_warn("raid5: failed to create sysfs attributes for %s\n",
8004 mdname(mddev));
8005 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8006
8007 if (mddev->queue) {
8008 int chunk_size;
8009 /* read-ahead size must cover two whole stripes, which
8010 * is 2 * (datadisks) * chunksize where 'n' is the
8011 * number of raid devices
8012 */
8013 int data_disks = conf->previous_raid_disks - conf->max_degraded;
8014 int stripe = data_disks *
8015 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
8016
8017 chunk_size = mddev->chunk_sectors << 9;
8018 blk_queue_io_min(mddev->queue, chunk_size);
8019 raid5_set_io_opt(conf);
8020 mddev->queue->limits.raid_partial_stripes_expensive = 1;
8021 /*
8022 * We can only discard a whole stripe. It doesn't make sense to
8023 * discard data disk but write parity disk
8024 */
8025 stripe = stripe * PAGE_SIZE;
8026 stripe = roundup_pow_of_two(stripe);
8027 mddev->queue->limits.discard_granularity = stripe;
8028
8029 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
8030
8031 rdev_for_each(rdev, mddev) {
8032 disk_stack_limits(mddev->gendisk, rdev->bdev,
8033 rdev->data_offset << 9);
8034 disk_stack_limits(mddev->gendisk, rdev->bdev,
8035 rdev->new_data_offset << 9);
8036 }
8037
8038 /*
8039 * zeroing is required, otherwise data
8040 * could be lost. Consider a scenario: discard a stripe
8041 * (the stripe could be inconsistent if
8042 * discard_zeroes_data is 0); write one disk of the
8043 * stripe (the stripe could be inconsistent again
8044 * depending on which disks are used to calculate
8045 * parity); the disk is broken; The stripe data of this
8046 * disk is lost.
8047 *
8048 * We only allow DISCARD if the sysadmin has confirmed that
8049 * only safe devices are in use by setting a module parameter.
8050 * A better idea might be to turn DISCARD into WRITE_ZEROES
8051 * requests, as that is required to be safe.
8052 */
8053 if (!devices_handle_discard_safely ||
8054 mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
8055 mddev->queue->limits.discard_granularity < stripe)
8056 blk_queue_max_discard_sectors(mddev->queue, 0);
8057
8058 /*
8059 * Requests require having a bitmap for each stripe.
8060 * Limit the max sectors based on this.
8061 */
8062 blk_queue_max_hw_sectors(mddev->queue,
8063 RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf));
8064
8065 /* No restrictions on the number of segments in the request */
8066 blk_queue_max_segments(mddev->queue, USHRT_MAX);
8067 }
8068
8069 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8070 goto abort;
8071
8072 return 0;
8073abort:
8074 md_unregister_thread(&mddev->thread);
8075 print_raid5_conf(conf);
8076 free_conf(conf);
8077 mddev->private = NULL;
8078 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8079 ret = -EIO;
8080exit_acct_set:
8081 acct_bioset_exit(mddev);
8082 return ret;
8083}
8084
8085static void raid5_free(struct mddev *mddev, void *priv)
8086{
8087 struct r5conf *conf = priv;
8088
8089 free_conf(conf);
8090 acct_bioset_exit(mddev);
8091 mddev->to_remove = &raid5_attrs_group;
8092}
8093
8094static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8095{
8096 struct r5conf *conf = mddev->private;
8097 int i;
8098
8099 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8100 conf->chunk_sectors / 2, mddev->layout);
8101 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8102 rcu_read_lock();
8103 for (i = 0; i < conf->raid_disks; i++) {
8104 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
8105 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8106 }
8107 rcu_read_unlock();
8108 seq_printf (seq, "]");
8109}
8110
8111static void print_raid5_conf (struct r5conf *conf)
8112{
8113 struct md_rdev *rdev;
8114 int i;
8115
8116 pr_debug("RAID conf printout:\n");
8117 if (!conf) {
8118 pr_debug("(conf==NULL)\n");
8119 return;
8120 }
8121 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8122 conf->raid_disks,
8123 conf->raid_disks - conf->mddev->degraded);
8124
8125 rcu_read_lock();
8126 for (i = 0; i < conf->raid_disks; i++) {
8127 rdev = rcu_dereference(conf->disks[i].rdev);
8128 if (rdev)
8129 pr_debug(" disk %d, o:%d, dev:%pg\n",
8130 i, !test_bit(Faulty, &rdev->flags),
8131 rdev->bdev);
8132 }
8133 rcu_read_unlock();
8134}
8135
8136static int raid5_spare_active(struct mddev *mddev)
8137{
8138 int i;
8139 struct r5conf *conf = mddev->private;
8140 struct md_rdev *rdev, *replacement;
8141 int count = 0;
8142 unsigned long flags;
8143
8144 for (i = 0; i < conf->raid_disks; i++) {
8145 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
8146 replacement = rdev_mdlock_deref(mddev,
8147 conf->disks[i].replacement);
8148 if (replacement
8149 && replacement->recovery_offset == MaxSector
8150 && !test_bit(Faulty, &replacement->flags)
8151 && !test_and_set_bit(In_sync, &replacement->flags)) {
8152 /* Replacement has just become active. */
8153 if (!rdev
8154 || !test_and_clear_bit(In_sync, &rdev->flags))
8155 count++;
8156 if (rdev) {
8157 /* Replaced device not technically faulty,
8158 * but we need to be sure it gets removed
8159 * and never re-added.
8160 */
8161 set_bit(Faulty, &rdev->flags);
8162 sysfs_notify_dirent_safe(
8163 rdev->sysfs_state);
8164 }
8165 sysfs_notify_dirent_safe(replacement->sysfs_state);
8166 } else if (rdev
8167 && rdev->recovery_offset == MaxSector
8168 && !test_bit(Faulty, &rdev->flags)
8169 && !test_and_set_bit(In_sync, &rdev->flags)) {
8170 count++;
8171 sysfs_notify_dirent_safe(rdev->sysfs_state);
8172 }
8173 }
8174 spin_lock_irqsave(&conf->device_lock, flags);
8175 mddev->degraded = raid5_calc_degraded(conf);
8176 spin_unlock_irqrestore(&conf->device_lock, flags);
8177 print_raid5_conf(conf);
8178 return count;
8179}
8180
8181static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8182{
8183 struct r5conf *conf = mddev->private;
8184 int err = 0;
8185 int number = rdev->raid_disk;
8186 struct md_rdev __rcu **rdevp;
8187 struct disk_info *p;
8188 struct md_rdev *tmp;
8189
8190 print_raid5_conf(conf);
8191 if (test_bit(Journal, &rdev->flags) && conf->log) {
8192 /*
8193 * we can't wait pending write here, as this is called in
8194 * raid5d, wait will deadlock.
8195 * neilb: there is no locking about new writes here,
8196 * so this cannot be safe.
8197 */
8198 if (atomic_read(&conf->active_stripes) ||
8199 atomic_read(&conf->r5c_cached_full_stripes) ||
8200 atomic_read(&conf->r5c_cached_partial_stripes)) {
8201 return -EBUSY;
8202 }
8203 log_exit(conf);
8204 return 0;
8205 }
8206 if (unlikely(number >= conf->pool_size))
8207 return 0;
8208 p = conf->disks + number;
8209 if (rdev == rcu_access_pointer(p->rdev))
8210 rdevp = &p->rdev;
8211 else if (rdev == rcu_access_pointer(p->replacement))
8212 rdevp = &p->replacement;
8213 else
8214 return 0;
8215
8216 if (number >= conf->raid_disks &&
8217 conf->reshape_progress == MaxSector)
8218 clear_bit(In_sync, &rdev->flags);
8219
8220 if (test_bit(In_sync, &rdev->flags) ||
8221 atomic_read(&rdev->nr_pending)) {
8222 err = -EBUSY;
8223 goto abort;
8224 }
8225 /* Only remove non-faulty devices if recovery
8226 * isn't possible.
8227 */
8228 if (!test_bit(Faulty, &rdev->flags) &&
8229 mddev->recovery_disabled != conf->recovery_disabled &&
8230 !has_failed(conf) &&
8231 (!rcu_access_pointer(p->replacement) ||
8232 rcu_access_pointer(p->replacement) == rdev) &&
8233 number < conf->raid_disks) {
8234 err = -EBUSY;
8235 goto abort;
8236 }
8237 *rdevp = NULL;
8238 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
8239 lockdep_assert_held(&mddev->reconfig_mutex);
8240 synchronize_rcu();
8241 if (atomic_read(&rdev->nr_pending)) {
8242 /* lost the race, try later */
8243 err = -EBUSY;
8244 rcu_assign_pointer(*rdevp, rdev);
8245 }
8246 }
8247 if (!err) {
8248 err = log_modify(conf, rdev, false);
8249 if (err)
8250 goto abort;
8251 }
8252
8253 tmp = rcu_access_pointer(p->replacement);
8254 if (tmp) {
8255 /* We must have just cleared 'rdev' */
8256 rcu_assign_pointer(p->rdev, tmp);
8257 clear_bit(Replacement, &tmp->flags);
8258 smp_mb(); /* Make sure other CPUs may see both as identical
8259 * but will never see neither - if they are careful
8260 */
8261 rcu_assign_pointer(p->replacement, NULL);
8262
8263 if (!err)
8264 err = log_modify(conf, tmp, true);
8265 }
8266
8267 clear_bit(WantReplacement, &rdev->flags);
8268abort:
8269
8270 print_raid5_conf(conf);
8271 return err;
8272}
8273
8274static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8275{
8276 struct r5conf *conf = mddev->private;
8277 int ret, err = -EEXIST;
8278 int disk;
8279 struct disk_info *p;
8280 struct md_rdev *tmp;
8281 int first = 0;
8282 int last = conf->raid_disks - 1;
8283
8284 if (test_bit(Journal, &rdev->flags)) {
8285 if (conf->log)
8286 return -EBUSY;
8287
8288 rdev->raid_disk = 0;
8289 /*
8290 * The array is in readonly mode if journal is missing, so no
8291 * write requests running. We should be safe
8292 */
8293 ret = log_init(conf, rdev, false);
8294 if (ret)
8295 return ret;
8296
8297 ret = r5l_start(conf->log);
8298 if (ret)
8299 return ret;
8300
8301 return 0;
8302 }
8303 if (mddev->recovery_disabled == conf->recovery_disabled)
8304 return -EBUSY;
8305
8306 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8307 /* no point adding a device */
8308 return -EINVAL;
8309
8310 if (rdev->raid_disk >= 0)
8311 first = last = rdev->raid_disk;
8312
8313 /*
8314 * find the disk ... but prefer rdev->saved_raid_disk
8315 * if possible.
8316 */
8317 if (rdev->saved_raid_disk >= first &&
8318 rdev->saved_raid_disk <= last &&
8319 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8320 first = rdev->saved_raid_disk;
8321
8322 for (disk = first; disk <= last; disk++) {
8323 p = conf->disks + disk;
8324 if (p->rdev == NULL) {
8325 clear_bit(In_sync, &rdev->flags);
8326 rdev->raid_disk = disk;
8327 if (rdev->saved_raid_disk != disk)
8328 conf->fullsync = 1;
8329 rcu_assign_pointer(p->rdev, rdev);
8330
8331 err = log_modify(conf, rdev, true);
8332
8333 goto out;
8334 }
8335 }
8336 for (disk = first; disk <= last; disk++) {
8337 p = conf->disks + disk;
8338 tmp = rdev_mdlock_deref(mddev, p->rdev);
8339 if (test_bit(WantReplacement, &tmp->flags) &&
8340 p->replacement == NULL) {
8341 clear_bit(In_sync, &rdev->flags);
8342 set_bit(Replacement, &rdev->flags);
8343 rdev->raid_disk = disk;
8344 err = 0;
8345 conf->fullsync = 1;
8346 rcu_assign_pointer(p->replacement, rdev);
8347 break;
8348 }
8349 }
8350out:
8351 print_raid5_conf(conf);
8352 return err;
8353}
8354
8355static int raid5_resize(struct mddev *mddev, sector_t sectors)
8356{
8357 /* no resync is happening, and there is enough space
8358 * on all devices, so we can resize.
8359 * We need to make sure resync covers any new space.
8360 * If the array is shrinking we should possibly wait until
8361 * any io in the removed space completes, but it hardly seems
8362 * worth it.
8363 */
8364 sector_t newsize;
8365 struct r5conf *conf = mddev->private;
8366
8367 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8368 return -EINVAL;
8369 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8370 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8371 if (mddev->external_size &&
8372 mddev->array_sectors > newsize)
8373 return -EINVAL;
8374 if (mddev->bitmap) {
8375 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8376 if (ret)
8377 return ret;
8378 }
8379 md_set_array_sectors(mddev, newsize);
8380 if (sectors > mddev->dev_sectors &&
8381 mddev->recovery_cp > mddev->dev_sectors) {
8382 mddev->recovery_cp = mddev->dev_sectors;
8383 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8384 }
8385 mddev->dev_sectors = sectors;
8386 mddev->resync_max_sectors = sectors;
8387 return 0;
8388}
8389
8390static int check_stripe_cache(struct mddev *mddev)
8391{
8392 /* Can only proceed if there are plenty of stripe_heads.
8393 * We need a minimum of one full stripe,, and for sensible progress
8394 * it is best to have about 4 times that.
8395 * If we require 4 times, then the default 256 4K stripe_heads will
8396 * allow for chunk sizes up to 256K, which is probably OK.
8397 * If the chunk size is greater, user-space should request more
8398 * stripe_heads first.
8399 */
8400 struct r5conf *conf = mddev->private;
8401 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8402 > conf->min_nr_stripes ||
8403 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8404 > conf->min_nr_stripes) {
8405 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8406 mdname(mddev),
8407 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8408 / RAID5_STRIPE_SIZE(conf))*4);
8409 return 0;
8410 }
8411 return 1;
8412}
8413
8414static int check_reshape(struct mddev *mddev)
8415{
8416 struct r5conf *conf = mddev->private;
8417
8418 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8419 return -EINVAL;
8420 if (mddev->delta_disks == 0 &&
8421 mddev->new_layout == mddev->layout &&
8422 mddev->new_chunk_sectors == mddev->chunk_sectors)
8423 return 0; /* nothing to do */
8424 if (has_failed(conf))
8425 return -EINVAL;
8426 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8427 /* We might be able to shrink, but the devices must
8428 * be made bigger first.
8429 * For raid6, 4 is the minimum size.
8430 * Otherwise 2 is the minimum
8431 */
8432 int min = 2;
8433 if (mddev->level == 6)
8434 min = 4;
8435 if (mddev->raid_disks + mddev->delta_disks < min)
8436 return -EINVAL;
8437 }
8438
8439 if (!check_stripe_cache(mddev))
8440 return -ENOSPC;
8441
8442 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8443 mddev->delta_disks > 0)
8444 if (resize_chunks(conf,
8445 conf->previous_raid_disks
8446 + max(0, mddev->delta_disks),
8447 max(mddev->new_chunk_sectors,
8448 mddev->chunk_sectors)
8449 ) < 0)
8450 return -ENOMEM;
8451
8452 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8453 return 0; /* never bother to shrink */
8454 return resize_stripes(conf, (conf->previous_raid_disks
8455 + mddev->delta_disks));
8456}
8457
8458static int raid5_start_reshape(struct mddev *mddev)
8459{
8460 struct r5conf *conf = mddev->private;
8461 struct md_rdev *rdev;
8462 int spares = 0;
8463 unsigned long flags;
8464
8465 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8466 return -EBUSY;
8467
8468 if (!check_stripe_cache(mddev))
8469 return -ENOSPC;
8470
8471 if (has_failed(conf))
8472 return -EINVAL;
8473
8474 rdev_for_each(rdev, mddev) {
8475 if (!test_bit(In_sync, &rdev->flags)
8476 && !test_bit(Faulty, &rdev->flags))
8477 spares++;
8478 }
8479
8480 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8481 /* Not enough devices even to make a degraded array
8482 * of that size
8483 */
8484 return -EINVAL;
8485
8486 /* Refuse to reduce size of the array. Any reductions in
8487 * array size must be through explicit setting of array_size
8488 * attribute.
8489 */
8490 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8491 < mddev->array_sectors) {
8492 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8493 mdname(mddev));
8494 return -EINVAL;
8495 }
8496
8497 atomic_set(&conf->reshape_stripes, 0);
8498 spin_lock_irq(&conf->device_lock);
8499 write_seqcount_begin(&conf->gen_lock);
8500 conf->previous_raid_disks = conf->raid_disks;
8501 conf->raid_disks += mddev->delta_disks;
8502 conf->prev_chunk_sectors = conf->chunk_sectors;
8503 conf->chunk_sectors = mddev->new_chunk_sectors;
8504 conf->prev_algo = conf->algorithm;
8505 conf->algorithm = mddev->new_layout;
8506 conf->generation++;
8507 /* Code that selects data_offset needs to see the generation update
8508 * if reshape_progress has been set - so a memory barrier needed.
8509 */
8510 smp_mb();
8511 if (mddev->reshape_backwards)
8512 conf->reshape_progress = raid5_size(mddev, 0, 0);
8513 else
8514 conf->reshape_progress = 0;
8515 conf->reshape_safe = conf->reshape_progress;
8516 write_seqcount_end(&conf->gen_lock);
8517 spin_unlock_irq(&conf->device_lock);
8518
8519 /* Now make sure any requests that proceeded on the assumption
8520 * the reshape wasn't running - like Discard or Read - have
8521 * completed.
8522 */
8523 mddev_suspend(mddev);
8524 mddev_resume(mddev);
8525
8526 /* Add some new drives, as many as will fit.
8527 * We know there are enough to make the newly sized array work.
8528 * Don't add devices if we are reducing the number of
8529 * devices in the array. This is because it is not possible
8530 * to correctly record the "partially reconstructed" state of
8531 * such devices during the reshape and confusion could result.
8532 */
8533 if (mddev->delta_disks >= 0) {
8534 rdev_for_each(rdev, mddev)
8535 if (rdev->raid_disk < 0 &&
8536 !test_bit(Faulty, &rdev->flags)) {
8537 if (raid5_add_disk(mddev, rdev) == 0) {
8538 if (rdev->raid_disk
8539 >= conf->previous_raid_disks)
8540 set_bit(In_sync, &rdev->flags);
8541 else
8542 rdev->recovery_offset = 0;
8543
8544 /* Failure here is OK */
8545 sysfs_link_rdev(mddev, rdev);
8546 }
8547 } else if (rdev->raid_disk >= conf->previous_raid_disks
8548 && !test_bit(Faulty, &rdev->flags)) {
8549 /* This is a spare that was manually added */
8550 set_bit(In_sync, &rdev->flags);
8551 }
8552
8553 /* When a reshape changes the number of devices,
8554 * ->degraded is measured against the larger of the
8555 * pre and post number of devices.
8556 */
8557 spin_lock_irqsave(&conf->device_lock, flags);
8558 mddev->degraded = raid5_calc_degraded(conf);
8559 spin_unlock_irqrestore(&conf->device_lock, flags);
8560 }
8561 mddev->raid_disks = conf->raid_disks;
8562 mddev->reshape_position = conf->reshape_progress;
8563 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8564
8565 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8566 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8567 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8568 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8569 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8570 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8571 "reshape");
8572 if (!mddev->sync_thread) {
8573 mddev->recovery = 0;
8574 spin_lock_irq(&conf->device_lock);
8575 write_seqcount_begin(&conf->gen_lock);
8576 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8577 mddev->new_chunk_sectors =
8578 conf->chunk_sectors = conf->prev_chunk_sectors;
8579 mddev->new_layout = conf->algorithm = conf->prev_algo;
8580 rdev_for_each(rdev, mddev)
8581 rdev->new_data_offset = rdev->data_offset;
8582 smp_wmb();
8583 conf->generation --;
8584 conf->reshape_progress = MaxSector;
8585 mddev->reshape_position = MaxSector;
8586 write_seqcount_end(&conf->gen_lock);
8587 spin_unlock_irq(&conf->device_lock);
8588 return -EAGAIN;
8589 }
8590 conf->reshape_checkpoint = jiffies;
8591 md_wakeup_thread(mddev->sync_thread);
8592 md_new_event();
8593 return 0;
8594}
8595
8596/* This is called from the reshape thread and should make any
8597 * changes needed in 'conf'
8598 */
8599static void end_reshape(struct r5conf *conf)
8600{
8601
8602 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8603 struct md_rdev *rdev;
8604
8605 spin_lock_irq(&conf->device_lock);
8606 conf->previous_raid_disks = conf->raid_disks;
8607 md_finish_reshape(conf->mddev);
8608 smp_wmb();
8609 conf->reshape_progress = MaxSector;
8610 conf->mddev->reshape_position = MaxSector;
8611 rdev_for_each(rdev, conf->mddev)
8612 if (rdev->raid_disk >= 0 &&
8613 !test_bit(Journal, &rdev->flags) &&
8614 !test_bit(In_sync, &rdev->flags))
8615 rdev->recovery_offset = MaxSector;
8616 spin_unlock_irq(&conf->device_lock);
8617 wake_up(&conf->wait_for_overlap);
8618
8619 if (conf->mddev->queue)
8620 raid5_set_io_opt(conf);
8621 }
8622}
8623
8624/* This is called from the raid5d thread with mddev_lock held.
8625 * It makes config changes to the device.
8626 */
8627static void raid5_finish_reshape(struct mddev *mddev)
8628{
8629 struct r5conf *conf = mddev->private;
8630 struct md_rdev *rdev;
8631
8632 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8633
8634 if (mddev->delta_disks <= 0) {
8635 int d;
8636 spin_lock_irq(&conf->device_lock);
8637 mddev->degraded = raid5_calc_degraded(conf);
8638 spin_unlock_irq(&conf->device_lock);
8639 for (d = conf->raid_disks ;
8640 d < conf->raid_disks - mddev->delta_disks;
8641 d++) {
8642 rdev = rdev_mdlock_deref(mddev,
8643 conf->disks[d].rdev);
8644 if (rdev)
8645 clear_bit(In_sync, &rdev->flags);
8646 rdev = rdev_mdlock_deref(mddev,
8647 conf->disks[d].replacement);
8648 if (rdev)
8649 clear_bit(In_sync, &rdev->flags);
8650 }
8651 }
8652 mddev->layout = conf->algorithm;
8653 mddev->chunk_sectors = conf->chunk_sectors;
8654 mddev->reshape_position = MaxSector;
8655 mddev->delta_disks = 0;
8656 mddev->reshape_backwards = 0;
8657 }
8658}
8659
8660static void raid5_quiesce(struct mddev *mddev, int quiesce)
8661{
8662 struct r5conf *conf = mddev->private;
8663
8664 if (quiesce) {
8665 /* stop all writes */
8666 lock_all_device_hash_locks_irq(conf);
8667 /* '2' tells resync/reshape to pause so that all
8668 * active stripes can drain
8669 */
8670 r5c_flush_cache(conf, INT_MAX);
8671 /* need a memory barrier to make sure read_one_chunk() sees
8672 * quiesce started and reverts to slow (locked) path.
8673 */
8674 smp_store_release(&conf->quiesce, 2);
8675 wait_event_cmd(conf->wait_for_quiescent,
8676 atomic_read(&conf->active_stripes) == 0 &&
8677 atomic_read(&conf->active_aligned_reads) == 0,
8678 unlock_all_device_hash_locks_irq(conf),
8679 lock_all_device_hash_locks_irq(conf));
8680 conf->quiesce = 1;
8681 unlock_all_device_hash_locks_irq(conf);
8682 /* allow reshape to continue */
8683 wake_up(&conf->wait_for_overlap);
8684 } else {
8685 /* re-enable writes */
8686 lock_all_device_hash_locks_irq(conf);
8687 conf->quiesce = 0;
8688 wake_up(&conf->wait_for_quiescent);
8689 wake_up(&conf->wait_for_overlap);
8690 unlock_all_device_hash_locks_irq(conf);
8691 }
8692 log_quiesce(conf, quiesce);
8693}
8694
8695static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8696{
8697 struct r0conf *raid0_conf = mddev->private;
8698 sector_t sectors;
8699
8700 /* for raid0 takeover only one zone is supported */
8701 if (raid0_conf->nr_strip_zones > 1) {
8702 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8703 mdname(mddev));
8704 return ERR_PTR(-EINVAL);
8705 }
8706
8707 sectors = raid0_conf->strip_zone[0].zone_end;
8708 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8709 mddev->dev_sectors = sectors;
8710 mddev->new_level = level;
8711 mddev->new_layout = ALGORITHM_PARITY_N;
8712 mddev->new_chunk_sectors = mddev->chunk_sectors;
8713 mddev->raid_disks += 1;
8714 mddev->delta_disks = 1;
8715 /* make sure it will be not marked as dirty */
8716 mddev->recovery_cp = MaxSector;
8717
8718 return setup_conf(mddev);
8719}
8720
8721static void *raid5_takeover_raid1(struct mddev *mddev)
8722{
8723 int chunksect;
8724 void *ret;
8725
8726 if (mddev->raid_disks != 2 ||
8727 mddev->degraded > 1)
8728 return ERR_PTR(-EINVAL);
8729
8730 /* Should check if there are write-behind devices? */
8731
8732 chunksect = 64*2; /* 64K by default */
8733
8734 /* The array must be an exact multiple of chunksize */
8735 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8736 chunksect >>= 1;
8737
8738 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8739 /* array size does not allow a suitable chunk size */
8740 return ERR_PTR(-EINVAL);
8741
8742 mddev->new_level = 5;
8743 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8744 mddev->new_chunk_sectors = chunksect;
8745
8746 ret = setup_conf(mddev);
8747 if (!IS_ERR(ret))
8748 mddev_clear_unsupported_flags(mddev,
8749 UNSUPPORTED_MDDEV_FLAGS);
8750 return ret;
8751}
8752
8753static void *raid5_takeover_raid6(struct mddev *mddev)
8754{
8755 int new_layout;
8756
8757 switch (mddev->layout) {
8758 case ALGORITHM_LEFT_ASYMMETRIC_6:
8759 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8760 break;
8761 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8762 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8763 break;
8764 case ALGORITHM_LEFT_SYMMETRIC_6:
8765 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8766 break;
8767 case ALGORITHM_RIGHT_SYMMETRIC_6:
8768 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8769 break;
8770 case ALGORITHM_PARITY_0_6:
8771 new_layout = ALGORITHM_PARITY_0;
8772 break;
8773 case ALGORITHM_PARITY_N:
8774 new_layout = ALGORITHM_PARITY_N;
8775 break;
8776 default:
8777 return ERR_PTR(-EINVAL);
8778 }
8779 mddev->new_level = 5;
8780 mddev->new_layout = new_layout;
8781 mddev->delta_disks = -1;
8782 mddev->raid_disks -= 1;
8783 return setup_conf(mddev);
8784}
8785
8786static int raid5_check_reshape(struct mddev *mddev)
8787{
8788 /* For a 2-drive array, the layout and chunk size can be changed
8789 * immediately as not restriping is needed.
8790 * For larger arrays we record the new value - after validation
8791 * to be used by a reshape pass.
8792 */
8793 struct r5conf *conf = mddev->private;
8794 int new_chunk = mddev->new_chunk_sectors;
8795
8796 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8797 return -EINVAL;
8798 if (new_chunk > 0) {
8799 if (!is_power_of_2(new_chunk))
8800 return -EINVAL;
8801 if (new_chunk < (PAGE_SIZE>>9))
8802 return -EINVAL;
8803 if (mddev->array_sectors & (new_chunk-1))
8804 /* not factor of array size */
8805 return -EINVAL;
8806 }
8807
8808 /* They look valid */
8809
8810 if (mddev->raid_disks == 2) {
8811 /* can make the change immediately */
8812 if (mddev->new_layout >= 0) {
8813 conf->algorithm = mddev->new_layout;
8814 mddev->layout = mddev->new_layout;
8815 }
8816 if (new_chunk > 0) {
8817 conf->chunk_sectors = new_chunk ;
8818 mddev->chunk_sectors = new_chunk;
8819 }
8820 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8821 md_wakeup_thread(mddev->thread);
8822 }
8823 return check_reshape(mddev);
8824}
8825
8826static int raid6_check_reshape(struct mddev *mddev)
8827{
8828 int new_chunk = mddev->new_chunk_sectors;
8829
8830 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8831 return -EINVAL;
8832 if (new_chunk > 0) {
8833 if (!is_power_of_2(new_chunk))
8834 return -EINVAL;
8835 if (new_chunk < (PAGE_SIZE >> 9))
8836 return -EINVAL;
8837 if (mddev->array_sectors & (new_chunk-1))
8838 /* not factor of array size */
8839 return -EINVAL;
8840 }
8841
8842 /* They look valid */
8843 return check_reshape(mddev);
8844}
8845
8846static void *raid5_takeover(struct mddev *mddev)
8847{
8848 /* raid5 can take over:
8849 * raid0 - if there is only one strip zone - make it a raid4 layout
8850 * raid1 - if there are two drives. We need to know the chunk size
8851 * raid4 - trivial - just use a raid4 layout.
8852 * raid6 - Providing it is a *_6 layout
8853 */
8854 if (mddev->level == 0)
8855 return raid45_takeover_raid0(mddev, 5);
8856 if (mddev->level == 1)
8857 return raid5_takeover_raid1(mddev);
8858 if (mddev->level == 4) {
8859 mddev->new_layout = ALGORITHM_PARITY_N;
8860 mddev->new_level = 5;
8861 return setup_conf(mddev);
8862 }
8863 if (mddev->level == 6)
8864 return raid5_takeover_raid6(mddev);
8865
8866 return ERR_PTR(-EINVAL);
8867}
8868
8869static void *raid4_takeover(struct mddev *mddev)
8870{
8871 /* raid4 can take over:
8872 * raid0 - if there is only one strip zone
8873 * raid5 - if layout is right
8874 */
8875 if (mddev->level == 0)
8876 return raid45_takeover_raid0(mddev, 4);
8877 if (mddev->level == 5 &&
8878 mddev->layout == ALGORITHM_PARITY_N) {
8879 mddev->new_layout = 0;
8880 mddev->new_level = 4;
8881 return setup_conf(mddev);
8882 }
8883 return ERR_PTR(-EINVAL);
8884}
8885
8886static struct md_personality raid5_personality;
8887
8888static void *raid6_takeover(struct mddev *mddev)
8889{
8890 /* Currently can only take over a raid5. We map the
8891 * personality to an equivalent raid6 personality
8892 * with the Q block at the end.
8893 */
8894 int new_layout;
8895
8896 if (mddev->pers != &raid5_personality)
8897 return ERR_PTR(-EINVAL);
8898 if (mddev->degraded > 1)
8899 return ERR_PTR(-EINVAL);
8900 if (mddev->raid_disks > 253)
8901 return ERR_PTR(-EINVAL);
8902 if (mddev->raid_disks < 3)
8903 return ERR_PTR(-EINVAL);
8904
8905 switch (mddev->layout) {
8906 case ALGORITHM_LEFT_ASYMMETRIC:
8907 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8908 break;
8909 case ALGORITHM_RIGHT_ASYMMETRIC:
8910 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8911 break;
8912 case ALGORITHM_LEFT_SYMMETRIC:
8913 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8914 break;
8915 case ALGORITHM_RIGHT_SYMMETRIC:
8916 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8917 break;
8918 case ALGORITHM_PARITY_0:
8919 new_layout = ALGORITHM_PARITY_0_6;
8920 break;
8921 case ALGORITHM_PARITY_N:
8922 new_layout = ALGORITHM_PARITY_N;
8923 break;
8924 default:
8925 return ERR_PTR(-EINVAL);
8926 }
8927 mddev->new_level = 6;
8928 mddev->new_layout = new_layout;
8929 mddev->delta_disks = 1;
8930 mddev->raid_disks += 1;
8931 return setup_conf(mddev);
8932}
8933
8934static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8935{
8936 struct r5conf *conf;
8937 int err;
8938
8939 err = mddev_lock(mddev);
8940 if (err)
8941 return err;
8942 conf = mddev->private;
8943 if (!conf) {
8944 mddev_unlock(mddev);
8945 return -ENODEV;
8946 }
8947
8948 if (strncmp(buf, "ppl", 3) == 0) {
8949 /* ppl only works with RAID 5 */
8950 if (!raid5_has_ppl(conf) && conf->level == 5) {
8951 err = log_init(conf, NULL, true);
8952 if (!err) {
8953 err = resize_stripes(conf, conf->pool_size);
8954 if (err) {
8955 mddev_suspend(mddev);
8956 log_exit(conf);
8957 mddev_resume(mddev);
8958 }
8959 }
8960 } else
8961 err = -EINVAL;
8962 } else if (strncmp(buf, "resync", 6) == 0) {
8963 if (raid5_has_ppl(conf)) {
8964 mddev_suspend(mddev);
8965 log_exit(conf);
8966 mddev_resume(mddev);
8967 err = resize_stripes(conf, conf->pool_size);
8968 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8969 r5l_log_disk_error(conf)) {
8970 bool journal_dev_exists = false;
8971 struct md_rdev *rdev;
8972
8973 rdev_for_each(rdev, mddev)
8974 if (test_bit(Journal, &rdev->flags)) {
8975 journal_dev_exists = true;
8976 break;
8977 }
8978
8979 if (!journal_dev_exists) {
8980 mddev_suspend(mddev);
8981 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8982 mddev_resume(mddev);
8983 } else /* need remove journal device first */
8984 err = -EBUSY;
8985 } else
8986 err = -EINVAL;
8987 } else {
8988 err = -EINVAL;
8989 }
8990
8991 if (!err)
8992 md_update_sb(mddev, 1);
8993
8994 mddev_unlock(mddev);
8995
8996 return err;
8997}
8998
8999static int raid5_start(struct mddev *mddev)
9000{
9001 struct r5conf *conf = mddev->private;
9002
9003 return r5l_start(conf->log);
9004}
9005
9006static struct md_personality raid6_personality =
9007{
9008 .name = "raid6",
9009 .level = 6,
9010 .owner = THIS_MODULE,
9011 .make_request = raid5_make_request,
9012 .run = raid5_run,
9013 .start = raid5_start,
9014 .free = raid5_free,
9015 .status = raid5_status,
9016 .error_handler = raid5_error,
9017 .hot_add_disk = raid5_add_disk,
9018 .hot_remove_disk= raid5_remove_disk,
9019 .spare_active = raid5_spare_active,
9020 .sync_request = raid5_sync_request,
9021 .resize = raid5_resize,
9022 .size = raid5_size,
9023 .check_reshape = raid6_check_reshape,
9024 .start_reshape = raid5_start_reshape,
9025 .finish_reshape = raid5_finish_reshape,
9026 .quiesce = raid5_quiesce,
9027 .takeover = raid6_takeover,
9028 .change_consistency_policy = raid5_change_consistency_policy,
9029};
9030static struct md_personality raid5_personality =
9031{
9032 .name = "raid5",
9033 .level = 5,
9034 .owner = THIS_MODULE,
9035 .make_request = raid5_make_request,
9036 .run = raid5_run,
9037 .start = raid5_start,
9038 .free = raid5_free,
9039 .status = raid5_status,
9040 .error_handler = raid5_error,
9041 .hot_add_disk = raid5_add_disk,
9042 .hot_remove_disk= raid5_remove_disk,
9043 .spare_active = raid5_spare_active,
9044 .sync_request = raid5_sync_request,
9045 .resize = raid5_resize,
9046 .size = raid5_size,
9047 .check_reshape = raid5_check_reshape,
9048 .start_reshape = raid5_start_reshape,
9049 .finish_reshape = raid5_finish_reshape,
9050 .quiesce = raid5_quiesce,
9051 .takeover = raid5_takeover,
9052 .change_consistency_policy = raid5_change_consistency_policy,
9053};
9054
9055static struct md_personality raid4_personality =
9056{
9057 .name = "raid4",
9058 .level = 4,
9059 .owner = THIS_MODULE,
9060 .make_request = raid5_make_request,
9061 .run = raid5_run,
9062 .start = raid5_start,
9063 .free = raid5_free,
9064 .status = raid5_status,
9065 .error_handler = raid5_error,
9066 .hot_add_disk = raid5_add_disk,
9067 .hot_remove_disk= raid5_remove_disk,
9068 .spare_active = raid5_spare_active,
9069 .sync_request = raid5_sync_request,
9070 .resize = raid5_resize,
9071 .size = raid5_size,
9072 .check_reshape = raid5_check_reshape,
9073 .start_reshape = raid5_start_reshape,
9074 .finish_reshape = raid5_finish_reshape,
9075 .quiesce = raid5_quiesce,
9076 .takeover = raid4_takeover,
9077 .change_consistency_policy = raid5_change_consistency_policy,
9078};
9079
9080static int __init raid5_init(void)
9081{
9082 int ret;
9083
9084 raid5_wq = alloc_workqueue("raid5wq",
9085 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9086 if (!raid5_wq)
9087 return -ENOMEM;
9088
9089 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9090 "md/raid5:prepare",
9091 raid456_cpu_up_prepare,
9092 raid456_cpu_dead);
9093 if (ret) {
9094 destroy_workqueue(raid5_wq);
9095 return ret;
9096 }
9097 register_md_personality(&raid6_personality);
9098 register_md_personality(&raid5_personality);
9099 register_md_personality(&raid4_personality);
9100 return 0;
9101}
9102
9103static void raid5_exit(void)
9104{
9105 unregister_md_personality(&raid6_personality);
9106 unregister_md_personality(&raid5_personality);
9107 unregister_md_personality(&raid4_personality);
9108 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9109 destroy_workqueue(raid5_wq);
9110}
9111
9112module_init(raid5_init);
9113module_exit(raid5_exit);
9114MODULE_LICENSE("GPL");
9115MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9116MODULE_ALIAS("md-personality-4"); /* RAID5 */
9117MODULE_ALIAS("md-raid5");
9118MODULE_ALIAS("md-raid4");
9119MODULE_ALIAS("md-level-5");
9120MODULE_ALIAS("md-level-4");
9121MODULE_ALIAS("md-personality-8"); /* RAID6 */
9122MODULE_ALIAS("md-raid6");
9123MODULE_ALIAS("md-level-6");
9124
9125/* This used to be two separate modules, they were: */
9126MODULE_ALIAS("raid5");
9127MODULE_ALIAS("raid6");
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/async.h>
51#include <linux/seq_file.h>
52#include <linux/cpu.h>
53#include <linux/slab.h>
54#include <linux/ratelimit.h>
55#include "md.h"
56#include "raid5.h"
57#include "raid0.h"
58#include "bitmap.h"
59
60/*
61 * Stripe cache
62 */
63
64#define NR_STRIPES 256
65#define STRIPE_SIZE PAGE_SIZE
66#define STRIPE_SHIFT (PAGE_SHIFT - 9)
67#define STRIPE_SECTORS (STRIPE_SIZE>>9)
68#define IO_THRESHOLD 1
69#define BYPASS_THRESHOLD 1
70#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
71#define HASH_MASK (NR_HASH - 1)
72
73#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74
75/* bio's attached to a stripe+device for I/O are linked together in bi_sector
76 * order without overlap. There may be several bio's per stripe+device, and
77 * a bio could span several devices.
78 * When walking this list for a particular stripe+device, we must never proceed
79 * beyond a bio that extends past this device, as the next bio might no longer
80 * be valid.
81 * This macro is used to determine the 'next' bio in the list, given the sector
82 * of the current stripe+device
83 */
84#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85/*
86 * The following can be used to debug the driver
87 */
88#define RAID5_PARANOIA 1
89#if RAID5_PARANOIA && defined(CONFIG_SMP)
90# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91#else
92# define CHECK_DEVLOCK()
93#endif
94
95#ifdef DEBUG
96#define inline
97#define __inline__
98#endif
99
100/*
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 */
104static inline int raid5_bi_phys_segments(struct bio *bio)
105{
106 return bio->bi_phys_segments & 0xffff;
107}
108
109static inline int raid5_bi_hw_segments(struct bio *bio)
110{
111 return (bio->bi_phys_segments >> 16) & 0xffff;
112}
113
114static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115{
116 --bio->bi_phys_segments;
117 return raid5_bi_phys_segments(bio);
118}
119
120static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121{
122 unsigned short val = raid5_bi_hw_segments(bio);
123
124 --val;
125 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 return val;
127}
128
129static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130{
131 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132}
133
134/* Find first data disk in a raid6 stripe */
135static inline int raid6_d0(struct stripe_head *sh)
136{
137 if (sh->ddf_layout)
138 /* ddf always start from first device */
139 return 0;
140 /* md starts just after Q block */
141 if (sh->qd_idx == sh->disks - 1)
142 return 0;
143 else
144 return sh->qd_idx + 1;
145}
146static inline int raid6_next_disk(int disk, int raid_disks)
147{
148 disk++;
149 return (disk < raid_disks) ? disk : 0;
150}
151
152/* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
156 */
157static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 int *count, int syndrome_disks)
159{
160 int slot = *count;
161
162 if (sh->ddf_layout)
163 (*count)++;
164 if (idx == sh->pd_idx)
165 return syndrome_disks;
166 if (idx == sh->qd_idx)
167 return syndrome_disks + 1;
168 if (!sh->ddf_layout)
169 (*count)++;
170 return slot;
171}
172
173static void return_io(struct bio *return_bi)
174{
175 struct bio *bi = return_bi;
176 while (bi) {
177
178 return_bi = bi->bi_next;
179 bi->bi_next = NULL;
180 bi->bi_size = 0;
181 bio_endio(bi, 0);
182 bi = return_bi;
183 }
184}
185
186static void print_raid5_conf (raid5_conf_t *conf);
187
188static int stripe_operations_active(struct stripe_head *sh)
189{
190 return sh->check_state || sh->reconstruct_state ||
191 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193}
194
195static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196{
197 if (atomic_dec_and_test(&sh->count)) {
198 BUG_ON(!list_empty(&sh->lru));
199 BUG_ON(atomic_read(&conf->active_stripes)==0);
200 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201 if (test_bit(STRIPE_DELAYED, &sh->state))
202 list_add_tail(&sh->lru, &conf->delayed_list);
203 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0)
205 list_add_tail(&sh->lru, &conf->bitmap_list);
206 else {
207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208 list_add_tail(&sh->lru, &conf->handle_list);
209 }
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
212 BUG_ON(stripe_operations_active(sh));
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214 atomic_dec(&conf->preread_active_stripes);
215 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
217 }
218 atomic_dec(&conf->active_stripes);
219 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220 list_add_tail(&sh->lru, &conf->inactive_list);
221 wake_up(&conf->wait_for_stripe);
222 if (conf->retry_read_aligned)
223 md_wakeup_thread(conf->mddev->thread);
224 }
225 }
226 }
227}
228
229static void release_stripe(struct stripe_head *sh)
230{
231 raid5_conf_t *conf = sh->raid_conf;
232 unsigned long flags;
233
234 spin_lock_irqsave(&conf->device_lock, flags);
235 __release_stripe(conf, sh);
236 spin_unlock_irqrestore(&conf->device_lock, flags);
237}
238
239static inline void remove_hash(struct stripe_head *sh)
240{
241 pr_debug("remove_hash(), stripe %llu\n",
242 (unsigned long long)sh->sector);
243
244 hlist_del_init(&sh->hash);
245}
246
247static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
248{
249 struct hlist_head *hp = stripe_hash(conf, sh->sector);
250
251 pr_debug("insert_hash(), stripe %llu\n",
252 (unsigned long long)sh->sector);
253
254 CHECK_DEVLOCK();
255 hlist_add_head(&sh->hash, hp);
256}
257
258
259/* find an idle stripe, make sure it is unhashed, and return it. */
260static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
261{
262 struct stripe_head *sh = NULL;
263 struct list_head *first;
264
265 CHECK_DEVLOCK();
266 if (list_empty(&conf->inactive_list))
267 goto out;
268 first = conf->inactive_list.next;
269 sh = list_entry(first, struct stripe_head, lru);
270 list_del_init(first);
271 remove_hash(sh);
272 atomic_inc(&conf->active_stripes);
273out:
274 return sh;
275}
276
277static void shrink_buffers(struct stripe_head *sh)
278{
279 struct page *p;
280 int i;
281 int num = sh->raid_conf->pool_size;
282
283 for (i = 0; i < num ; i++) {
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
288 put_page(p);
289 }
290}
291
292static int grow_buffers(struct stripe_head *sh)
293{
294 int i;
295 int num = sh->raid_conf->pool_size;
296
297 for (i = 0; i < num; i++) {
298 struct page *page;
299
300 if (!(page = alloc_page(GFP_KERNEL))) {
301 return 1;
302 }
303 sh->dev[i].page = page;
304 }
305 return 0;
306}
307
308static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 struct stripe_head *sh);
311
312static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313{
314 raid5_conf_t *conf = sh->raid_conf;
315 int i;
316
317 BUG_ON(atomic_read(&sh->count) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319 BUG_ON(stripe_operations_active(sh));
320
321 CHECK_DEVLOCK();
322 pr_debug("init_stripe called, stripe %llu\n",
323 (unsigned long long)sh->sector);
324
325 remove_hash(sh);
326
327 sh->generation = conf->generation - previous;
328 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329 sh->sector = sector;
330 stripe_set_idx(sector, conf, previous, sh);
331 sh->state = 0;
332
333
334 for (i = sh->disks; i--; ) {
335 struct r5dev *dev = &sh->dev[i];
336
337 if (dev->toread || dev->read || dev->towrite || dev->written ||
338 test_bit(R5_LOCKED, &dev->flags)) {
339 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340 (unsigned long long)sh->sector, i, dev->toread,
341 dev->read, dev->towrite, dev->written,
342 test_bit(R5_LOCKED, &dev->flags));
343 WARN_ON(1);
344 }
345 dev->flags = 0;
346 raid5_build_block(sh, i, previous);
347 }
348 insert_hash(conf, sh);
349}
350
351static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 short generation)
353{
354 struct stripe_head *sh;
355 struct hlist_node *hn;
356
357 CHECK_DEVLOCK();
358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360 if (sh->sector == sector && sh->generation == generation)
361 return sh;
362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363 return NULL;
364}
365
366/*
367 * Need to check if array has failed when deciding whether to:
368 * - start an array
369 * - remove non-faulty devices
370 * - add a spare
371 * - allow a reshape
372 * This determination is simple when no reshape is happening.
373 * However if there is a reshape, we need to carefully check
374 * both the before and after sections.
375 * This is because some failed devices may only affect one
376 * of the two sections, and some non-in_sync devices may
377 * be insync in the section most affected by failed devices.
378 */
379static int has_failed(raid5_conf_t *conf)
380{
381 int degraded;
382 int i;
383 if (conf->mddev->reshape_position == MaxSector)
384 return conf->mddev->degraded > conf->max_degraded;
385
386 rcu_read_lock();
387 degraded = 0;
388 for (i = 0; i < conf->previous_raid_disks; i++) {
389 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390 if (!rdev || test_bit(Faulty, &rdev->flags))
391 degraded++;
392 else if (test_bit(In_sync, &rdev->flags))
393 ;
394 else
395 /* not in-sync or faulty.
396 * If the reshape increases the number of devices,
397 * this is being recovered by the reshape, so
398 * this 'previous' section is not in_sync.
399 * If the number of devices is being reduced however,
400 * the device can only be part of the array if
401 * we are reverting a reshape, so this section will
402 * be in-sync.
403 */
404 if (conf->raid_disks >= conf->previous_raid_disks)
405 degraded++;
406 }
407 rcu_read_unlock();
408 if (degraded > conf->max_degraded)
409 return 1;
410 rcu_read_lock();
411 degraded = 0;
412 for (i = 0; i < conf->raid_disks; i++) {
413 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414 if (!rdev || test_bit(Faulty, &rdev->flags))
415 degraded++;
416 else if (test_bit(In_sync, &rdev->flags))
417 ;
418 else
419 /* not in-sync or faulty.
420 * If reshape increases the number of devices, this
421 * section has already been recovered, else it
422 * almost certainly hasn't.
423 */
424 if (conf->raid_disks <= conf->previous_raid_disks)
425 degraded++;
426 }
427 rcu_read_unlock();
428 if (degraded > conf->max_degraded)
429 return 1;
430 return 0;
431}
432
433static struct stripe_head *
434get_active_stripe(raid5_conf_t *conf, sector_t sector,
435 int previous, int noblock, int noquiesce)
436{
437 struct stripe_head *sh;
438
439 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
440
441 spin_lock_irq(&conf->device_lock);
442
443 do {
444 wait_event_lock_irq(conf->wait_for_stripe,
445 conf->quiesce == 0 || noquiesce,
446 conf->device_lock, /* nothing */);
447 sh = __find_stripe(conf, sector, conf->generation - previous);
448 if (!sh) {
449 if (!conf->inactive_blocked)
450 sh = get_free_stripe(conf);
451 if (noblock && sh == NULL)
452 break;
453 if (!sh) {
454 conf->inactive_blocked = 1;
455 wait_event_lock_irq(conf->wait_for_stripe,
456 !list_empty(&conf->inactive_list) &&
457 (atomic_read(&conf->active_stripes)
458 < (conf->max_nr_stripes *3/4)
459 || !conf->inactive_blocked),
460 conf->device_lock,
461 );
462 conf->inactive_blocked = 0;
463 } else
464 init_stripe(sh, sector, previous);
465 } else {
466 if (atomic_read(&sh->count)) {
467 BUG_ON(!list_empty(&sh->lru)
468 && !test_bit(STRIPE_EXPANDING, &sh->state));
469 } else {
470 if (!test_bit(STRIPE_HANDLE, &sh->state))
471 atomic_inc(&conf->active_stripes);
472 if (list_empty(&sh->lru) &&
473 !test_bit(STRIPE_EXPANDING, &sh->state))
474 BUG();
475 list_del_init(&sh->lru);
476 }
477 }
478 } while (sh == NULL);
479
480 if (sh)
481 atomic_inc(&sh->count);
482
483 spin_unlock_irq(&conf->device_lock);
484 return sh;
485}
486
487static void
488raid5_end_read_request(struct bio *bi, int error);
489static void
490raid5_end_write_request(struct bio *bi, int error);
491
492static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
493{
494 raid5_conf_t *conf = sh->raid_conf;
495 int i, disks = sh->disks;
496
497 might_sleep();
498
499 for (i = disks; i--; ) {
500 int rw;
501 struct bio *bi;
502 mdk_rdev_t *rdev;
503 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505 rw = WRITE_FUA;
506 else
507 rw = WRITE;
508 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509 rw = READ;
510 else
511 continue;
512
513 bi = &sh->dev[i].req;
514
515 bi->bi_rw = rw;
516 if (rw & WRITE)
517 bi->bi_end_io = raid5_end_write_request;
518 else
519 bi->bi_end_io = raid5_end_read_request;
520
521 rcu_read_lock();
522 rdev = rcu_dereference(conf->disks[i].rdev);
523 if (rdev && test_bit(Faulty, &rdev->flags))
524 rdev = NULL;
525 if (rdev)
526 atomic_inc(&rdev->nr_pending);
527 rcu_read_unlock();
528
529 /* We have already checked bad blocks for reads. Now
530 * need to check for writes.
531 */
532 while ((rw & WRITE) && rdev &&
533 test_bit(WriteErrorSeen, &rdev->flags)) {
534 sector_t first_bad;
535 int bad_sectors;
536 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
537 &first_bad, &bad_sectors);
538 if (!bad)
539 break;
540
541 if (bad < 0) {
542 set_bit(BlockedBadBlocks, &rdev->flags);
543 if (!conf->mddev->external &&
544 conf->mddev->flags) {
545 /* It is very unlikely, but we might
546 * still need to write out the
547 * bad block log - better give it
548 * a chance*/
549 md_check_recovery(conf->mddev);
550 }
551 md_wait_for_blocked_rdev(rdev, conf->mddev);
552 } else {
553 /* Acknowledged bad block - skip the write */
554 rdev_dec_pending(rdev, conf->mddev);
555 rdev = NULL;
556 }
557 }
558
559 if (rdev) {
560 if (s->syncing || s->expanding || s->expanded)
561 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
562
563 set_bit(STRIPE_IO_STARTED, &sh->state);
564
565 bi->bi_bdev = rdev->bdev;
566 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
567 __func__, (unsigned long long)sh->sector,
568 bi->bi_rw, i);
569 atomic_inc(&sh->count);
570 bi->bi_sector = sh->sector + rdev->data_offset;
571 bi->bi_flags = 1 << BIO_UPTODATE;
572 bi->bi_vcnt = 1;
573 bi->bi_max_vecs = 1;
574 bi->bi_idx = 0;
575 bi->bi_io_vec = &sh->dev[i].vec;
576 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
577 bi->bi_io_vec[0].bv_offset = 0;
578 bi->bi_size = STRIPE_SIZE;
579 bi->bi_next = NULL;
580 generic_make_request(bi);
581 } else {
582 if (rw & WRITE)
583 set_bit(STRIPE_DEGRADED, &sh->state);
584 pr_debug("skip op %ld on disc %d for sector %llu\n",
585 bi->bi_rw, i, (unsigned long long)sh->sector);
586 clear_bit(R5_LOCKED, &sh->dev[i].flags);
587 set_bit(STRIPE_HANDLE, &sh->state);
588 }
589 }
590}
591
592static struct dma_async_tx_descriptor *
593async_copy_data(int frombio, struct bio *bio, struct page *page,
594 sector_t sector, struct dma_async_tx_descriptor *tx)
595{
596 struct bio_vec *bvl;
597 struct page *bio_page;
598 int i;
599 int page_offset;
600 struct async_submit_ctl submit;
601 enum async_tx_flags flags = 0;
602
603 if (bio->bi_sector >= sector)
604 page_offset = (signed)(bio->bi_sector - sector) * 512;
605 else
606 page_offset = (signed)(sector - bio->bi_sector) * -512;
607
608 if (frombio)
609 flags |= ASYNC_TX_FENCE;
610 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
611
612 bio_for_each_segment(bvl, bio, i) {
613 int len = bvl->bv_len;
614 int clen;
615 int b_offset = 0;
616
617 if (page_offset < 0) {
618 b_offset = -page_offset;
619 page_offset += b_offset;
620 len -= b_offset;
621 }
622
623 if (len > 0 && page_offset + len > STRIPE_SIZE)
624 clen = STRIPE_SIZE - page_offset;
625 else
626 clen = len;
627
628 if (clen > 0) {
629 b_offset += bvl->bv_offset;
630 bio_page = bvl->bv_page;
631 if (frombio)
632 tx = async_memcpy(page, bio_page, page_offset,
633 b_offset, clen, &submit);
634 else
635 tx = async_memcpy(bio_page, page, b_offset,
636 page_offset, clen, &submit);
637 }
638 /* chain the operations */
639 submit.depend_tx = tx;
640
641 if (clen < len) /* hit end of page */
642 break;
643 page_offset += len;
644 }
645
646 return tx;
647}
648
649static void ops_complete_biofill(void *stripe_head_ref)
650{
651 struct stripe_head *sh = stripe_head_ref;
652 struct bio *return_bi = NULL;
653 raid5_conf_t *conf = sh->raid_conf;
654 int i;
655
656 pr_debug("%s: stripe %llu\n", __func__,
657 (unsigned long long)sh->sector);
658
659 /* clear completed biofills */
660 spin_lock_irq(&conf->device_lock);
661 for (i = sh->disks; i--; ) {
662 struct r5dev *dev = &sh->dev[i];
663
664 /* acknowledge completion of a biofill operation */
665 /* and check if we need to reply to a read request,
666 * new R5_Wantfill requests are held off until
667 * !STRIPE_BIOFILL_RUN
668 */
669 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
670 struct bio *rbi, *rbi2;
671
672 BUG_ON(!dev->read);
673 rbi = dev->read;
674 dev->read = NULL;
675 while (rbi && rbi->bi_sector <
676 dev->sector + STRIPE_SECTORS) {
677 rbi2 = r5_next_bio(rbi, dev->sector);
678 if (!raid5_dec_bi_phys_segments(rbi)) {
679 rbi->bi_next = return_bi;
680 return_bi = rbi;
681 }
682 rbi = rbi2;
683 }
684 }
685 }
686 spin_unlock_irq(&conf->device_lock);
687 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
688
689 return_io(return_bi);
690
691 set_bit(STRIPE_HANDLE, &sh->state);
692 release_stripe(sh);
693}
694
695static void ops_run_biofill(struct stripe_head *sh)
696{
697 struct dma_async_tx_descriptor *tx = NULL;
698 raid5_conf_t *conf = sh->raid_conf;
699 struct async_submit_ctl submit;
700 int i;
701
702 pr_debug("%s: stripe %llu\n", __func__,
703 (unsigned long long)sh->sector);
704
705 for (i = sh->disks; i--; ) {
706 struct r5dev *dev = &sh->dev[i];
707 if (test_bit(R5_Wantfill, &dev->flags)) {
708 struct bio *rbi;
709 spin_lock_irq(&conf->device_lock);
710 dev->read = rbi = dev->toread;
711 dev->toread = NULL;
712 spin_unlock_irq(&conf->device_lock);
713 while (rbi && rbi->bi_sector <
714 dev->sector + STRIPE_SECTORS) {
715 tx = async_copy_data(0, rbi, dev->page,
716 dev->sector, tx);
717 rbi = r5_next_bio(rbi, dev->sector);
718 }
719 }
720 }
721
722 atomic_inc(&sh->count);
723 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
724 async_trigger_callback(&submit);
725}
726
727static void mark_target_uptodate(struct stripe_head *sh, int target)
728{
729 struct r5dev *tgt;
730
731 if (target < 0)
732 return;
733
734 tgt = &sh->dev[target];
735 set_bit(R5_UPTODATE, &tgt->flags);
736 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
737 clear_bit(R5_Wantcompute, &tgt->flags);
738}
739
740static void ops_complete_compute(void *stripe_head_ref)
741{
742 struct stripe_head *sh = stripe_head_ref;
743
744 pr_debug("%s: stripe %llu\n", __func__,
745 (unsigned long long)sh->sector);
746
747 /* mark the computed target(s) as uptodate */
748 mark_target_uptodate(sh, sh->ops.target);
749 mark_target_uptodate(sh, sh->ops.target2);
750
751 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
752 if (sh->check_state == check_state_compute_run)
753 sh->check_state = check_state_compute_result;
754 set_bit(STRIPE_HANDLE, &sh->state);
755 release_stripe(sh);
756}
757
758/* return a pointer to the address conversion region of the scribble buffer */
759static addr_conv_t *to_addr_conv(struct stripe_head *sh,
760 struct raid5_percpu *percpu)
761{
762 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
763}
764
765static struct dma_async_tx_descriptor *
766ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
767{
768 int disks = sh->disks;
769 struct page **xor_srcs = percpu->scribble;
770 int target = sh->ops.target;
771 struct r5dev *tgt = &sh->dev[target];
772 struct page *xor_dest = tgt->page;
773 int count = 0;
774 struct dma_async_tx_descriptor *tx;
775 struct async_submit_ctl submit;
776 int i;
777
778 pr_debug("%s: stripe %llu block: %d\n",
779 __func__, (unsigned long long)sh->sector, target);
780 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
781
782 for (i = disks; i--; )
783 if (i != target)
784 xor_srcs[count++] = sh->dev[i].page;
785
786 atomic_inc(&sh->count);
787
788 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
789 ops_complete_compute, sh, to_addr_conv(sh, percpu));
790 if (unlikely(count == 1))
791 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
792 else
793 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
794
795 return tx;
796}
797
798/* set_syndrome_sources - populate source buffers for gen_syndrome
799 * @srcs - (struct page *) array of size sh->disks
800 * @sh - stripe_head to parse
801 *
802 * Populates srcs in proper layout order for the stripe and returns the
803 * 'count' of sources to be used in a call to async_gen_syndrome. The P
804 * destination buffer is recorded in srcs[count] and the Q destination
805 * is recorded in srcs[count+1]].
806 */
807static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
808{
809 int disks = sh->disks;
810 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
811 int d0_idx = raid6_d0(sh);
812 int count;
813 int i;
814
815 for (i = 0; i < disks; i++)
816 srcs[i] = NULL;
817
818 count = 0;
819 i = d0_idx;
820 do {
821 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
822
823 srcs[slot] = sh->dev[i].page;
824 i = raid6_next_disk(i, disks);
825 } while (i != d0_idx);
826
827 return syndrome_disks;
828}
829
830static struct dma_async_tx_descriptor *
831ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
832{
833 int disks = sh->disks;
834 struct page **blocks = percpu->scribble;
835 int target;
836 int qd_idx = sh->qd_idx;
837 struct dma_async_tx_descriptor *tx;
838 struct async_submit_ctl submit;
839 struct r5dev *tgt;
840 struct page *dest;
841 int i;
842 int count;
843
844 if (sh->ops.target < 0)
845 target = sh->ops.target2;
846 else if (sh->ops.target2 < 0)
847 target = sh->ops.target;
848 else
849 /* we should only have one valid target */
850 BUG();
851 BUG_ON(target < 0);
852 pr_debug("%s: stripe %llu block: %d\n",
853 __func__, (unsigned long long)sh->sector, target);
854
855 tgt = &sh->dev[target];
856 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
857 dest = tgt->page;
858
859 atomic_inc(&sh->count);
860
861 if (target == qd_idx) {
862 count = set_syndrome_sources(blocks, sh);
863 blocks[count] = NULL; /* regenerating p is not necessary */
864 BUG_ON(blocks[count+1] != dest); /* q should already be set */
865 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
866 ops_complete_compute, sh,
867 to_addr_conv(sh, percpu));
868 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
869 } else {
870 /* Compute any data- or p-drive using XOR */
871 count = 0;
872 for (i = disks; i-- ; ) {
873 if (i == target || i == qd_idx)
874 continue;
875 blocks[count++] = sh->dev[i].page;
876 }
877
878 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
879 NULL, ops_complete_compute, sh,
880 to_addr_conv(sh, percpu));
881 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
882 }
883
884 return tx;
885}
886
887static struct dma_async_tx_descriptor *
888ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
889{
890 int i, count, disks = sh->disks;
891 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
892 int d0_idx = raid6_d0(sh);
893 int faila = -1, failb = -1;
894 int target = sh->ops.target;
895 int target2 = sh->ops.target2;
896 struct r5dev *tgt = &sh->dev[target];
897 struct r5dev *tgt2 = &sh->dev[target2];
898 struct dma_async_tx_descriptor *tx;
899 struct page **blocks = percpu->scribble;
900 struct async_submit_ctl submit;
901
902 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
903 __func__, (unsigned long long)sh->sector, target, target2);
904 BUG_ON(target < 0 || target2 < 0);
905 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
906 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
907
908 /* we need to open-code set_syndrome_sources to handle the
909 * slot number conversion for 'faila' and 'failb'
910 */
911 for (i = 0; i < disks ; i++)
912 blocks[i] = NULL;
913 count = 0;
914 i = d0_idx;
915 do {
916 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
917
918 blocks[slot] = sh->dev[i].page;
919
920 if (i == target)
921 faila = slot;
922 if (i == target2)
923 failb = slot;
924 i = raid6_next_disk(i, disks);
925 } while (i != d0_idx);
926
927 BUG_ON(faila == failb);
928 if (failb < faila)
929 swap(faila, failb);
930 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
931 __func__, (unsigned long long)sh->sector, faila, failb);
932
933 atomic_inc(&sh->count);
934
935 if (failb == syndrome_disks+1) {
936 /* Q disk is one of the missing disks */
937 if (faila == syndrome_disks) {
938 /* Missing P+Q, just recompute */
939 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
940 ops_complete_compute, sh,
941 to_addr_conv(sh, percpu));
942 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
943 STRIPE_SIZE, &submit);
944 } else {
945 struct page *dest;
946 int data_target;
947 int qd_idx = sh->qd_idx;
948
949 /* Missing D+Q: recompute D from P, then recompute Q */
950 if (target == qd_idx)
951 data_target = target2;
952 else
953 data_target = target;
954
955 count = 0;
956 for (i = disks; i-- ; ) {
957 if (i == data_target || i == qd_idx)
958 continue;
959 blocks[count++] = sh->dev[i].page;
960 }
961 dest = sh->dev[data_target].page;
962 init_async_submit(&submit,
963 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
964 NULL, NULL, NULL,
965 to_addr_conv(sh, percpu));
966 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
967 &submit);
968
969 count = set_syndrome_sources(blocks, sh);
970 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
971 ops_complete_compute, sh,
972 to_addr_conv(sh, percpu));
973 return async_gen_syndrome(blocks, 0, count+2,
974 STRIPE_SIZE, &submit);
975 }
976 } else {
977 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
978 ops_complete_compute, sh,
979 to_addr_conv(sh, percpu));
980 if (failb == syndrome_disks) {
981 /* We're missing D+P. */
982 return async_raid6_datap_recov(syndrome_disks+2,
983 STRIPE_SIZE, faila,
984 blocks, &submit);
985 } else {
986 /* We're missing D+D. */
987 return async_raid6_2data_recov(syndrome_disks+2,
988 STRIPE_SIZE, faila, failb,
989 blocks, &submit);
990 }
991 }
992}
993
994
995static void ops_complete_prexor(void *stripe_head_ref)
996{
997 struct stripe_head *sh = stripe_head_ref;
998
999 pr_debug("%s: stripe %llu\n", __func__,
1000 (unsigned long long)sh->sector);
1001}
1002
1003static struct dma_async_tx_descriptor *
1004ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1005 struct dma_async_tx_descriptor *tx)
1006{
1007 int disks = sh->disks;
1008 struct page **xor_srcs = percpu->scribble;
1009 int count = 0, pd_idx = sh->pd_idx, i;
1010 struct async_submit_ctl submit;
1011
1012 /* existing parity data subtracted */
1013 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1014
1015 pr_debug("%s: stripe %llu\n", __func__,
1016 (unsigned long long)sh->sector);
1017
1018 for (i = disks; i--; ) {
1019 struct r5dev *dev = &sh->dev[i];
1020 /* Only process blocks that are known to be uptodate */
1021 if (test_bit(R5_Wantdrain, &dev->flags))
1022 xor_srcs[count++] = dev->page;
1023 }
1024
1025 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1026 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1027 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1028
1029 return tx;
1030}
1031
1032static struct dma_async_tx_descriptor *
1033ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1034{
1035 int disks = sh->disks;
1036 int i;
1037
1038 pr_debug("%s: stripe %llu\n", __func__,
1039 (unsigned long long)sh->sector);
1040
1041 for (i = disks; i--; ) {
1042 struct r5dev *dev = &sh->dev[i];
1043 struct bio *chosen;
1044
1045 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1046 struct bio *wbi;
1047
1048 spin_lock_irq(&sh->raid_conf->device_lock);
1049 chosen = dev->towrite;
1050 dev->towrite = NULL;
1051 BUG_ON(dev->written);
1052 wbi = dev->written = chosen;
1053 spin_unlock_irq(&sh->raid_conf->device_lock);
1054
1055 while (wbi && wbi->bi_sector <
1056 dev->sector + STRIPE_SECTORS) {
1057 if (wbi->bi_rw & REQ_FUA)
1058 set_bit(R5_WantFUA, &dev->flags);
1059 tx = async_copy_data(1, wbi, dev->page,
1060 dev->sector, tx);
1061 wbi = r5_next_bio(wbi, dev->sector);
1062 }
1063 }
1064 }
1065
1066 return tx;
1067}
1068
1069static void ops_complete_reconstruct(void *stripe_head_ref)
1070{
1071 struct stripe_head *sh = stripe_head_ref;
1072 int disks = sh->disks;
1073 int pd_idx = sh->pd_idx;
1074 int qd_idx = sh->qd_idx;
1075 int i;
1076 bool fua = false;
1077
1078 pr_debug("%s: stripe %llu\n", __func__,
1079 (unsigned long long)sh->sector);
1080
1081 for (i = disks; i--; )
1082 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1083
1084 for (i = disks; i--; ) {
1085 struct r5dev *dev = &sh->dev[i];
1086
1087 if (dev->written || i == pd_idx || i == qd_idx) {
1088 set_bit(R5_UPTODATE, &dev->flags);
1089 if (fua)
1090 set_bit(R5_WantFUA, &dev->flags);
1091 }
1092 }
1093
1094 if (sh->reconstruct_state == reconstruct_state_drain_run)
1095 sh->reconstruct_state = reconstruct_state_drain_result;
1096 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1097 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1098 else {
1099 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1100 sh->reconstruct_state = reconstruct_state_result;
1101 }
1102
1103 set_bit(STRIPE_HANDLE, &sh->state);
1104 release_stripe(sh);
1105}
1106
1107static void
1108ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1109 struct dma_async_tx_descriptor *tx)
1110{
1111 int disks = sh->disks;
1112 struct page **xor_srcs = percpu->scribble;
1113 struct async_submit_ctl submit;
1114 int count = 0, pd_idx = sh->pd_idx, i;
1115 struct page *xor_dest;
1116 int prexor = 0;
1117 unsigned long flags;
1118
1119 pr_debug("%s: stripe %llu\n", __func__,
1120 (unsigned long long)sh->sector);
1121
1122 /* check if prexor is active which means only process blocks
1123 * that are part of a read-modify-write (written)
1124 */
1125 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1126 prexor = 1;
1127 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1128 for (i = disks; i--; ) {
1129 struct r5dev *dev = &sh->dev[i];
1130 if (dev->written)
1131 xor_srcs[count++] = dev->page;
1132 }
1133 } else {
1134 xor_dest = sh->dev[pd_idx].page;
1135 for (i = disks; i--; ) {
1136 struct r5dev *dev = &sh->dev[i];
1137 if (i != pd_idx)
1138 xor_srcs[count++] = dev->page;
1139 }
1140 }
1141
1142 /* 1/ if we prexor'd then the dest is reused as a source
1143 * 2/ if we did not prexor then we are redoing the parity
1144 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1145 * for the synchronous xor case
1146 */
1147 flags = ASYNC_TX_ACK |
1148 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1149
1150 atomic_inc(&sh->count);
1151
1152 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1153 to_addr_conv(sh, percpu));
1154 if (unlikely(count == 1))
1155 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1156 else
1157 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1158}
1159
1160static void
1161ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1162 struct dma_async_tx_descriptor *tx)
1163{
1164 struct async_submit_ctl submit;
1165 struct page **blocks = percpu->scribble;
1166 int count;
1167
1168 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1169
1170 count = set_syndrome_sources(blocks, sh);
1171
1172 atomic_inc(&sh->count);
1173
1174 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1175 sh, to_addr_conv(sh, percpu));
1176 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1177}
1178
1179static void ops_complete_check(void *stripe_head_ref)
1180{
1181 struct stripe_head *sh = stripe_head_ref;
1182
1183 pr_debug("%s: stripe %llu\n", __func__,
1184 (unsigned long long)sh->sector);
1185
1186 sh->check_state = check_state_check_result;
1187 set_bit(STRIPE_HANDLE, &sh->state);
1188 release_stripe(sh);
1189}
1190
1191static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1192{
1193 int disks = sh->disks;
1194 int pd_idx = sh->pd_idx;
1195 int qd_idx = sh->qd_idx;
1196 struct page *xor_dest;
1197 struct page **xor_srcs = percpu->scribble;
1198 struct dma_async_tx_descriptor *tx;
1199 struct async_submit_ctl submit;
1200 int count;
1201 int i;
1202
1203 pr_debug("%s: stripe %llu\n", __func__,
1204 (unsigned long long)sh->sector);
1205
1206 count = 0;
1207 xor_dest = sh->dev[pd_idx].page;
1208 xor_srcs[count++] = xor_dest;
1209 for (i = disks; i--; ) {
1210 if (i == pd_idx || i == qd_idx)
1211 continue;
1212 xor_srcs[count++] = sh->dev[i].page;
1213 }
1214
1215 init_async_submit(&submit, 0, NULL, NULL, NULL,
1216 to_addr_conv(sh, percpu));
1217 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1218 &sh->ops.zero_sum_result, &submit);
1219
1220 atomic_inc(&sh->count);
1221 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1222 tx = async_trigger_callback(&submit);
1223}
1224
1225static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1226{
1227 struct page **srcs = percpu->scribble;
1228 struct async_submit_ctl submit;
1229 int count;
1230
1231 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1232 (unsigned long long)sh->sector, checkp);
1233
1234 count = set_syndrome_sources(srcs, sh);
1235 if (!checkp)
1236 srcs[count] = NULL;
1237
1238 atomic_inc(&sh->count);
1239 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1240 sh, to_addr_conv(sh, percpu));
1241 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1242 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1243}
1244
1245static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1246{
1247 int overlap_clear = 0, i, disks = sh->disks;
1248 struct dma_async_tx_descriptor *tx = NULL;
1249 raid5_conf_t *conf = sh->raid_conf;
1250 int level = conf->level;
1251 struct raid5_percpu *percpu;
1252 unsigned long cpu;
1253
1254 cpu = get_cpu();
1255 percpu = per_cpu_ptr(conf->percpu, cpu);
1256 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1257 ops_run_biofill(sh);
1258 overlap_clear++;
1259 }
1260
1261 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1262 if (level < 6)
1263 tx = ops_run_compute5(sh, percpu);
1264 else {
1265 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1266 tx = ops_run_compute6_1(sh, percpu);
1267 else
1268 tx = ops_run_compute6_2(sh, percpu);
1269 }
1270 /* terminate the chain if reconstruct is not set to be run */
1271 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1272 async_tx_ack(tx);
1273 }
1274
1275 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1276 tx = ops_run_prexor(sh, percpu, tx);
1277
1278 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1279 tx = ops_run_biodrain(sh, tx);
1280 overlap_clear++;
1281 }
1282
1283 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1284 if (level < 6)
1285 ops_run_reconstruct5(sh, percpu, tx);
1286 else
1287 ops_run_reconstruct6(sh, percpu, tx);
1288 }
1289
1290 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1291 if (sh->check_state == check_state_run)
1292 ops_run_check_p(sh, percpu);
1293 else if (sh->check_state == check_state_run_q)
1294 ops_run_check_pq(sh, percpu, 0);
1295 else if (sh->check_state == check_state_run_pq)
1296 ops_run_check_pq(sh, percpu, 1);
1297 else
1298 BUG();
1299 }
1300
1301 if (overlap_clear)
1302 for (i = disks; i--; ) {
1303 struct r5dev *dev = &sh->dev[i];
1304 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1305 wake_up(&sh->raid_conf->wait_for_overlap);
1306 }
1307 put_cpu();
1308}
1309
1310#ifdef CONFIG_MULTICORE_RAID456
1311static void async_run_ops(void *param, async_cookie_t cookie)
1312{
1313 struct stripe_head *sh = param;
1314 unsigned long ops_request = sh->ops.request;
1315
1316 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1317 wake_up(&sh->ops.wait_for_ops);
1318
1319 __raid_run_ops(sh, ops_request);
1320 release_stripe(sh);
1321}
1322
1323static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1324{
1325 /* since handle_stripe can be called outside of raid5d context
1326 * we need to ensure sh->ops.request is de-staged before another
1327 * request arrives
1328 */
1329 wait_event(sh->ops.wait_for_ops,
1330 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1331 sh->ops.request = ops_request;
1332
1333 atomic_inc(&sh->count);
1334 async_schedule(async_run_ops, sh);
1335}
1336#else
1337#define raid_run_ops __raid_run_ops
1338#endif
1339
1340static int grow_one_stripe(raid5_conf_t *conf)
1341{
1342 struct stripe_head *sh;
1343 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1344 if (!sh)
1345 return 0;
1346
1347 sh->raid_conf = conf;
1348 #ifdef CONFIG_MULTICORE_RAID456
1349 init_waitqueue_head(&sh->ops.wait_for_ops);
1350 #endif
1351
1352 if (grow_buffers(sh)) {
1353 shrink_buffers(sh);
1354 kmem_cache_free(conf->slab_cache, sh);
1355 return 0;
1356 }
1357 /* we just created an active stripe so... */
1358 atomic_set(&sh->count, 1);
1359 atomic_inc(&conf->active_stripes);
1360 INIT_LIST_HEAD(&sh->lru);
1361 release_stripe(sh);
1362 return 1;
1363}
1364
1365static int grow_stripes(raid5_conf_t *conf, int num)
1366{
1367 struct kmem_cache *sc;
1368 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1369
1370 if (conf->mddev->gendisk)
1371 sprintf(conf->cache_name[0],
1372 "raid%d-%s", conf->level, mdname(conf->mddev));
1373 else
1374 sprintf(conf->cache_name[0],
1375 "raid%d-%p", conf->level, conf->mddev);
1376 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1377
1378 conf->active_name = 0;
1379 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1380 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1381 0, 0, NULL);
1382 if (!sc)
1383 return 1;
1384 conf->slab_cache = sc;
1385 conf->pool_size = devs;
1386 while (num--)
1387 if (!grow_one_stripe(conf))
1388 return 1;
1389 return 0;
1390}
1391
1392/**
1393 * scribble_len - return the required size of the scribble region
1394 * @num - total number of disks in the array
1395 *
1396 * The size must be enough to contain:
1397 * 1/ a struct page pointer for each device in the array +2
1398 * 2/ room to convert each entry in (1) to its corresponding dma
1399 * (dma_map_page()) or page (page_address()) address.
1400 *
1401 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1402 * calculate over all devices (not just the data blocks), using zeros in place
1403 * of the P and Q blocks.
1404 */
1405static size_t scribble_len(int num)
1406{
1407 size_t len;
1408
1409 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1410
1411 return len;
1412}
1413
1414static int resize_stripes(raid5_conf_t *conf, int newsize)
1415{
1416 /* Make all the stripes able to hold 'newsize' devices.
1417 * New slots in each stripe get 'page' set to a new page.
1418 *
1419 * This happens in stages:
1420 * 1/ create a new kmem_cache and allocate the required number of
1421 * stripe_heads.
1422 * 2/ gather all the old stripe_heads and tranfer the pages across
1423 * to the new stripe_heads. This will have the side effect of
1424 * freezing the array as once all stripe_heads have been collected,
1425 * no IO will be possible. Old stripe heads are freed once their
1426 * pages have been transferred over, and the old kmem_cache is
1427 * freed when all stripes are done.
1428 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1429 * we simple return a failre status - no need to clean anything up.
1430 * 4/ allocate new pages for the new slots in the new stripe_heads.
1431 * If this fails, we don't bother trying the shrink the
1432 * stripe_heads down again, we just leave them as they are.
1433 * As each stripe_head is processed the new one is released into
1434 * active service.
1435 *
1436 * Once step2 is started, we cannot afford to wait for a write,
1437 * so we use GFP_NOIO allocations.
1438 */
1439 struct stripe_head *osh, *nsh;
1440 LIST_HEAD(newstripes);
1441 struct disk_info *ndisks;
1442 unsigned long cpu;
1443 int err;
1444 struct kmem_cache *sc;
1445 int i;
1446
1447 if (newsize <= conf->pool_size)
1448 return 0; /* never bother to shrink */
1449
1450 err = md_allow_write(conf->mddev);
1451 if (err)
1452 return err;
1453
1454 /* Step 1 */
1455 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1456 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1457 0, 0, NULL);
1458 if (!sc)
1459 return -ENOMEM;
1460
1461 for (i = conf->max_nr_stripes; i; i--) {
1462 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1463 if (!nsh)
1464 break;
1465
1466 nsh->raid_conf = conf;
1467 #ifdef CONFIG_MULTICORE_RAID456
1468 init_waitqueue_head(&nsh->ops.wait_for_ops);
1469 #endif
1470
1471 list_add(&nsh->lru, &newstripes);
1472 }
1473 if (i) {
1474 /* didn't get enough, give up */
1475 while (!list_empty(&newstripes)) {
1476 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1477 list_del(&nsh->lru);
1478 kmem_cache_free(sc, nsh);
1479 }
1480 kmem_cache_destroy(sc);
1481 return -ENOMEM;
1482 }
1483 /* Step 2 - Must use GFP_NOIO now.
1484 * OK, we have enough stripes, start collecting inactive
1485 * stripes and copying them over
1486 */
1487 list_for_each_entry(nsh, &newstripes, lru) {
1488 spin_lock_irq(&conf->device_lock);
1489 wait_event_lock_irq(conf->wait_for_stripe,
1490 !list_empty(&conf->inactive_list),
1491 conf->device_lock,
1492 );
1493 osh = get_free_stripe(conf);
1494 spin_unlock_irq(&conf->device_lock);
1495 atomic_set(&nsh->count, 1);
1496 for(i=0; i<conf->pool_size; i++)
1497 nsh->dev[i].page = osh->dev[i].page;
1498 for( ; i<newsize; i++)
1499 nsh->dev[i].page = NULL;
1500 kmem_cache_free(conf->slab_cache, osh);
1501 }
1502 kmem_cache_destroy(conf->slab_cache);
1503
1504 /* Step 3.
1505 * At this point, we are holding all the stripes so the array
1506 * is completely stalled, so now is a good time to resize
1507 * conf->disks and the scribble region
1508 */
1509 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1510 if (ndisks) {
1511 for (i=0; i<conf->raid_disks; i++)
1512 ndisks[i] = conf->disks[i];
1513 kfree(conf->disks);
1514 conf->disks = ndisks;
1515 } else
1516 err = -ENOMEM;
1517
1518 get_online_cpus();
1519 conf->scribble_len = scribble_len(newsize);
1520 for_each_present_cpu(cpu) {
1521 struct raid5_percpu *percpu;
1522 void *scribble;
1523
1524 percpu = per_cpu_ptr(conf->percpu, cpu);
1525 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1526
1527 if (scribble) {
1528 kfree(percpu->scribble);
1529 percpu->scribble = scribble;
1530 } else {
1531 err = -ENOMEM;
1532 break;
1533 }
1534 }
1535 put_online_cpus();
1536
1537 /* Step 4, return new stripes to service */
1538 while(!list_empty(&newstripes)) {
1539 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1540 list_del_init(&nsh->lru);
1541
1542 for (i=conf->raid_disks; i < newsize; i++)
1543 if (nsh->dev[i].page == NULL) {
1544 struct page *p = alloc_page(GFP_NOIO);
1545 nsh->dev[i].page = p;
1546 if (!p)
1547 err = -ENOMEM;
1548 }
1549 release_stripe(nsh);
1550 }
1551 /* critical section pass, GFP_NOIO no longer needed */
1552
1553 conf->slab_cache = sc;
1554 conf->active_name = 1-conf->active_name;
1555 conf->pool_size = newsize;
1556 return err;
1557}
1558
1559static int drop_one_stripe(raid5_conf_t *conf)
1560{
1561 struct stripe_head *sh;
1562
1563 spin_lock_irq(&conf->device_lock);
1564 sh = get_free_stripe(conf);
1565 spin_unlock_irq(&conf->device_lock);
1566 if (!sh)
1567 return 0;
1568 BUG_ON(atomic_read(&sh->count));
1569 shrink_buffers(sh);
1570 kmem_cache_free(conf->slab_cache, sh);
1571 atomic_dec(&conf->active_stripes);
1572 return 1;
1573}
1574
1575static void shrink_stripes(raid5_conf_t *conf)
1576{
1577 while (drop_one_stripe(conf))
1578 ;
1579
1580 if (conf->slab_cache)
1581 kmem_cache_destroy(conf->slab_cache);
1582 conf->slab_cache = NULL;
1583}
1584
1585static void raid5_end_read_request(struct bio * bi, int error)
1586{
1587 struct stripe_head *sh = bi->bi_private;
1588 raid5_conf_t *conf = sh->raid_conf;
1589 int disks = sh->disks, i;
1590 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1591 char b[BDEVNAME_SIZE];
1592 mdk_rdev_t *rdev;
1593
1594
1595 for (i=0 ; i<disks; i++)
1596 if (bi == &sh->dev[i].req)
1597 break;
1598
1599 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1600 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1601 uptodate);
1602 if (i == disks) {
1603 BUG();
1604 return;
1605 }
1606
1607 if (uptodate) {
1608 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1609 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1610 rdev = conf->disks[i].rdev;
1611 printk_ratelimited(
1612 KERN_INFO
1613 "md/raid:%s: read error corrected"
1614 " (%lu sectors at %llu on %s)\n",
1615 mdname(conf->mddev), STRIPE_SECTORS,
1616 (unsigned long long)(sh->sector
1617 + rdev->data_offset),
1618 bdevname(rdev->bdev, b));
1619 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1620 clear_bit(R5_ReadError, &sh->dev[i].flags);
1621 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1622 }
1623 if (atomic_read(&conf->disks[i].rdev->read_errors))
1624 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1625 } else {
1626 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1627 int retry = 0;
1628 rdev = conf->disks[i].rdev;
1629
1630 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1631 atomic_inc(&rdev->read_errors);
1632 if (conf->mddev->degraded >= conf->max_degraded)
1633 printk_ratelimited(
1634 KERN_WARNING
1635 "md/raid:%s: read error not correctable "
1636 "(sector %llu on %s).\n",
1637 mdname(conf->mddev),
1638 (unsigned long long)(sh->sector
1639 + rdev->data_offset),
1640 bdn);
1641 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1642 /* Oh, no!!! */
1643 printk_ratelimited(
1644 KERN_WARNING
1645 "md/raid:%s: read error NOT corrected!! "
1646 "(sector %llu on %s).\n",
1647 mdname(conf->mddev),
1648 (unsigned long long)(sh->sector
1649 + rdev->data_offset),
1650 bdn);
1651 else if (atomic_read(&rdev->read_errors)
1652 > conf->max_nr_stripes)
1653 printk(KERN_WARNING
1654 "md/raid:%s: Too many read errors, failing device %s.\n",
1655 mdname(conf->mddev), bdn);
1656 else
1657 retry = 1;
1658 if (retry)
1659 set_bit(R5_ReadError, &sh->dev[i].flags);
1660 else {
1661 clear_bit(R5_ReadError, &sh->dev[i].flags);
1662 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1663 md_error(conf->mddev, rdev);
1664 }
1665 }
1666 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1667 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1668 set_bit(STRIPE_HANDLE, &sh->state);
1669 release_stripe(sh);
1670}
1671
1672static void raid5_end_write_request(struct bio *bi, int error)
1673{
1674 struct stripe_head *sh = bi->bi_private;
1675 raid5_conf_t *conf = sh->raid_conf;
1676 int disks = sh->disks, i;
1677 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1678 sector_t first_bad;
1679 int bad_sectors;
1680
1681 for (i=0 ; i<disks; i++)
1682 if (bi == &sh->dev[i].req)
1683 break;
1684
1685 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1686 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1687 uptodate);
1688 if (i == disks) {
1689 BUG();
1690 return;
1691 }
1692
1693 if (!uptodate) {
1694 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1695 set_bit(R5_WriteError, &sh->dev[i].flags);
1696 } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1697 &first_bad, &bad_sectors))
1698 set_bit(R5_MadeGood, &sh->dev[i].flags);
1699
1700 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1701
1702 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1703 set_bit(STRIPE_HANDLE, &sh->state);
1704 release_stripe(sh);
1705}
1706
1707
1708static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1709
1710static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1711{
1712 struct r5dev *dev = &sh->dev[i];
1713
1714 bio_init(&dev->req);
1715 dev->req.bi_io_vec = &dev->vec;
1716 dev->req.bi_vcnt++;
1717 dev->req.bi_max_vecs++;
1718 dev->vec.bv_page = dev->page;
1719 dev->vec.bv_len = STRIPE_SIZE;
1720 dev->vec.bv_offset = 0;
1721
1722 dev->req.bi_sector = sh->sector;
1723 dev->req.bi_private = sh;
1724
1725 dev->flags = 0;
1726 dev->sector = compute_blocknr(sh, i, previous);
1727}
1728
1729static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1730{
1731 char b[BDEVNAME_SIZE];
1732 raid5_conf_t *conf = mddev->private;
1733 pr_debug("raid456: error called\n");
1734
1735 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1736 unsigned long flags;
1737 spin_lock_irqsave(&conf->device_lock, flags);
1738 mddev->degraded++;
1739 spin_unlock_irqrestore(&conf->device_lock, flags);
1740 /*
1741 * if recovery was running, make sure it aborts.
1742 */
1743 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1744 }
1745 set_bit(Blocked, &rdev->flags);
1746 set_bit(Faulty, &rdev->flags);
1747 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1748 printk(KERN_ALERT
1749 "md/raid:%s: Disk failure on %s, disabling device.\n"
1750 "md/raid:%s: Operation continuing on %d devices.\n",
1751 mdname(mddev),
1752 bdevname(rdev->bdev, b),
1753 mdname(mddev),
1754 conf->raid_disks - mddev->degraded);
1755}
1756
1757/*
1758 * Input: a 'big' sector number,
1759 * Output: index of the data and parity disk, and the sector # in them.
1760 */
1761static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1762 int previous, int *dd_idx,
1763 struct stripe_head *sh)
1764{
1765 sector_t stripe, stripe2;
1766 sector_t chunk_number;
1767 unsigned int chunk_offset;
1768 int pd_idx, qd_idx;
1769 int ddf_layout = 0;
1770 sector_t new_sector;
1771 int algorithm = previous ? conf->prev_algo
1772 : conf->algorithm;
1773 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1774 : conf->chunk_sectors;
1775 int raid_disks = previous ? conf->previous_raid_disks
1776 : conf->raid_disks;
1777 int data_disks = raid_disks - conf->max_degraded;
1778
1779 /* First compute the information on this sector */
1780
1781 /*
1782 * Compute the chunk number and the sector offset inside the chunk
1783 */
1784 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1785 chunk_number = r_sector;
1786
1787 /*
1788 * Compute the stripe number
1789 */
1790 stripe = chunk_number;
1791 *dd_idx = sector_div(stripe, data_disks);
1792 stripe2 = stripe;
1793 /*
1794 * Select the parity disk based on the user selected algorithm.
1795 */
1796 pd_idx = qd_idx = -1;
1797 switch(conf->level) {
1798 case 4:
1799 pd_idx = data_disks;
1800 break;
1801 case 5:
1802 switch (algorithm) {
1803 case ALGORITHM_LEFT_ASYMMETRIC:
1804 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1805 if (*dd_idx >= pd_idx)
1806 (*dd_idx)++;
1807 break;
1808 case ALGORITHM_RIGHT_ASYMMETRIC:
1809 pd_idx = sector_div(stripe2, raid_disks);
1810 if (*dd_idx >= pd_idx)
1811 (*dd_idx)++;
1812 break;
1813 case ALGORITHM_LEFT_SYMMETRIC:
1814 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1815 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1816 break;
1817 case ALGORITHM_RIGHT_SYMMETRIC:
1818 pd_idx = sector_div(stripe2, raid_disks);
1819 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1820 break;
1821 case ALGORITHM_PARITY_0:
1822 pd_idx = 0;
1823 (*dd_idx)++;
1824 break;
1825 case ALGORITHM_PARITY_N:
1826 pd_idx = data_disks;
1827 break;
1828 default:
1829 BUG();
1830 }
1831 break;
1832 case 6:
1833
1834 switch (algorithm) {
1835 case ALGORITHM_LEFT_ASYMMETRIC:
1836 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1837 qd_idx = pd_idx + 1;
1838 if (pd_idx == raid_disks-1) {
1839 (*dd_idx)++; /* Q D D D P */
1840 qd_idx = 0;
1841 } else if (*dd_idx >= pd_idx)
1842 (*dd_idx) += 2; /* D D P Q D */
1843 break;
1844 case ALGORITHM_RIGHT_ASYMMETRIC:
1845 pd_idx = sector_div(stripe2, raid_disks);
1846 qd_idx = pd_idx + 1;
1847 if (pd_idx == raid_disks-1) {
1848 (*dd_idx)++; /* Q D D D P */
1849 qd_idx = 0;
1850 } else if (*dd_idx >= pd_idx)
1851 (*dd_idx) += 2; /* D D P Q D */
1852 break;
1853 case ALGORITHM_LEFT_SYMMETRIC:
1854 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1855 qd_idx = (pd_idx + 1) % raid_disks;
1856 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1857 break;
1858 case ALGORITHM_RIGHT_SYMMETRIC:
1859 pd_idx = sector_div(stripe2, raid_disks);
1860 qd_idx = (pd_idx + 1) % raid_disks;
1861 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1862 break;
1863
1864 case ALGORITHM_PARITY_0:
1865 pd_idx = 0;
1866 qd_idx = 1;
1867 (*dd_idx) += 2;
1868 break;
1869 case ALGORITHM_PARITY_N:
1870 pd_idx = data_disks;
1871 qd_idx = data_disks + 1;
1872 break;
1873
1874 case ALGORITHM_ROTATING_ZERO_RESTART:
1875 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1876 * of blocks for computing Q is different.
1877 */
1878 pd_idx = sector_div(stripe2, raid_disks);
1879 qd_idx = pd_idx + 1;
1880 if (pd_idx == raid_disks-1) {
1881 (*dd_idx)++; /* Q D D D P */
1882 qd_idx = 0;
1883 } else if (*dd_idx >= pd_idx)
1884 (*dd_idx) += 2; /* D D P Q D */
1885 ddf_layout = 1;
1886 break;
1887
1888 case ALGORITHM_ROTATING_N_RESTART:
1889 /* Same a left_asymmetric, by first stripe is
1890 * D D D P Q rather than
1891 * Q D D D P
1892 */
1893 stripe2 += 1;
1894 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1895 qd_idx = pd_idx + 1;
1896 if (pd_idx == raid_disks-1) {
1897 (*dd_idx)++; /* Q D D D P */
1898 qd_idx = 0;
1899 } else if (*dd_idx >= pd_idx)
1900 (*dd_idx) += 2; /* D D P Q D */
1901 ddf_layout = 1;
1902 break;
1903
1904 case ALGORITHM_ROTATING_N_CONTINUE:
1905 /* Same as left_symmetric but Q is before P */
1906 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1907 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1908 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1909 ddf_layout = 1;
1910 break;
1911
1912 case ALGORITHM_LEFT_ASYMMETRIC_6:
1913 /* RAID5 left_asymmetric, with Q on last device */
1914 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1915 if (*dd_idx >= pd_idx)
1916 (*dd_idx)++;
1917 qd_idx = raid_disks - 1;
1918 break;
1919
1920 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1921 pd_idx = sector_div(stripe2, raid_disks-1);
1922 if (*dd_idx >= pd_idx)
1923 (*dd_idx)++;
1924 qd_idx = raid_disks - 1;
1925 break;
1926
1927 case ALGORITHM_LEFT_SYMMETRIC_6:
1928 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1929 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1930 qd_idx = raid_disks - 1;
1931 break;
1932
1933 case ALGORITHM_RIGHT_SYMMETRIC_6:
1934 pd_idx = sector_div(stripe2, raid_disks-1);
1935 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1936 qd_idx = raid_disks - 1;
1937 break;
1938
1939 case ALGORITHM_PARITY_0_6:
1940 pd_idx = 0;
1941 (*dd_idx)++;
1942 qd_idx = raid_disks - 1;
1943 break;
1944
1945 default:
1946 BUG();
1947 }
1948 break;
1949 }
1950
1951 if (sh) {
1952 sh->pd_idx = pd_idx;
1953 sh->qd_idx = qd_idx;
1954 sh->ddf_layout = ddf_layout;
1955 }
1956 /*
1957 * Finally, compute the new sector number
1958 */
1959 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1960 return new_sector;
1961}
1962
1963
1964static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1965{
1966 raid5_conf_t *conf = sh->raid_conf;
1967 int raid_disks = sh->disks;
1968 int data_disks = raid_disks - conf->max_degraded;
1969 sector_t new_sector = sh->sector, check;
1970 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1971 : conf->chunk_sectors;
1972 int algorithm = previous ? conf->prev_algo
1973 : conf->algorithm;
1974 sector_t stripe;
1975 int chunk_offset;
1976 sector_t chunk_number;
1977 int dummy1, dd_idx = i;
1978 sector_t r_sector;
1979 struct stripe_head sh2;
1980
1981
1982 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1983 stripe = new_sector;
1984
1985 if (i == sh->pd_idx)
1986 return 0;
1987 switch(conf->level) {
1988 case 4: break;
1989 case 5:
1990 switch (algorithm) {
1991 case ALGORITHM_LEFT_ASYMMETRIC:
1992 case ALGORITHM_RIGHT_ASYMMETRIC:
1993 if (i > sh->pd_idx)
1994 i--;
1995 break;
1996 case ALGORITHM_LEFT_SYMMETRIC:
1997 case ALGORITHM_RIGHT_SYMMETRIC:
1998 if (i < sh->pd_idx)
1999 i += raid_disks;
2000 i -= (sh->pd_idx + 1);
2001 break;
2002 case ALGORITHM_PARITY_0:
2003 i -= 1;
2004 break;
2005 case ALGORITHM_PARITY_N:
2006 break;
2007 default:
2008 BUG();
2009 }
2010 break;
2011 case 6:
2012 if (i == sh->qd_idx)
2013 return 0; /* It is the Q disk */
2014 switch (algorithm) {
2015 case ALGORITHM_LEFT_ASYMMETRIC:
2016 case ALGORITHM_RIGHT_ASYMMETRIC:
2017 case ALGORITHM_ROTATING_ZERO_RESTART:
2018 case ALGORITHM_ROTATING_N_RESTART:
2019 if (sh->pd_idx == raid_disks-1)
2020 i--; /* Q D D D P */
2021 else if (i > sh->pd_idx)
2022 i -= 2; /* D D P Q D */
2023 break;
2024 case ALGORITHM_LEFT_SYMMETRIC:
2025 case ALGORITHM_RIGHT_SYMMETRIC:
2026 if (sh->pd_idx == raid_disks-1)
2027 i--; /* Q D D D P */
2028 else {
2029 /* D D P Q D */
2030 if (i < sh->pd_idx)
2031 i += raid_disks;
2032 i -= (sh->pd_idx + 2);
2033 }
2034 break;
2035 case ALGORITHM_PARITY_0:
2036 i -= 2;
2037 break;
2038 case ALGORITHM_PARITY_N:
2039 break;
2040 case ALGORITHM_ROTATING_N_CONTINUE:
2041 /* Like left_symmetric, but P is before Q */
2042 if (sh->pd_idx == 0)
2043 i--; /* P D D D Q */
2044 else {
2045 /* D D Q P D */
2046 if (i < sh->pd_idx)
2047 i += raid_disks;
2048 i -= (sh->pd_idx + 1);
2049 }
2050 break;
2051 case ALGORITHM_LEFT_ASYMMETRIC_6:
2052 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2053 if (i > sh->pd_idx)
2054 i--;
2055 break;
2056 case ALGORITHM_LEFT_SYMMETRIC_6:
2057 case ALGORITHM_RIGHT_SYMMETRIC_6:
2058 if (i < sh->pd_idx)
2059 i += data_disks + 1;
2060 i -= (sh->pd_idx + 1);
2061 break;
2062 case ALGORITHM_PARITY_0_6:
2063 i -= 1;
2064 break;
2065 default:
2066 BUG();
2067 }
2068 break;
2069 }
2070
2071 chunk_number = stripe * data_disks + i;
2072 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2073
2074 check = raid5_compute_sector(conf, r_sector,
2075 previous, &dummy1, &sh2);
2076 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2077 || sh2.qd_idx != sh->qd_idx) {
2078 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2079 mdname(conf->mddev));
2080 return 0;
2081 }
2082 return r_sector;
2083}
2084
2085
2086static void
2087schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2088 int rcw, int expand)
2089{
2090 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2091 raid5_conf_t *conf = sh->raid_conf;
2092 int level = conf->level;
2093
2094 if (rcw) {
2095 /* if we are not expanding this is a proper write request, and
2096 * there will be bios with new data to be drained into the
2097 * stripe cache
2098 */
2099 if (!expand) {
2100 sh->reconstruct_state = reconstruct_state_drain_run;
2101 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2102 } else
2103 sh->reconstruct_state = reconstruct_state_run;
2104
2105 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2106
2107 for (i = disks; i--; ) {
2108 struct r5dev *dev = &sh->dev[i];
2109
2110 if (dev->towrite) {
2111 set_bit(R5_LOCKED, &dev->flags);
2112 set_bit(R5_Wantdrain, &dev->flags);
2113 if (!expand)
2114 clear_bit(R5_UPTODATE, &dev->flags);
2115 s->locked++;
2116 }
2117 }
2118 if (s->locked + conf->max_degraded == disks)
2119 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2120 atomic_inc(&conf->pending_full_writes);
2121 } else {
2122 BUG_ON(level == 6);
2123 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2124 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2125
2126 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2127 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2128 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2129 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2130
2131 for (i = disks; i--; ) {
2132 struct r5dev *dev = &sh->dev[i];
2133 if (i == pd_idx)
2134 continue;
2135
2136 if (dev->towrite &&
2137 (test_bit(R5_UPTODATE, &dev->flags) ||
2138 test_bit(R5_Wantcompute, &dev->flags))) {
2139 set_bit(R5_Wantdrain, &dev->flags);
2140 set_bit(R5_LOCKED, &dev->flags);
2141 clear_bit(R5_UPTODATE, &dev->flags);
2142 s->locked++;
2143 }
2144 }
2145 }
2146
2147 /* keep the parity disk(s) locked while asynchronous operations
2148 * are in flight
2149 */
2150 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2151 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2152 s->locked++;
2153
2154 if (level == 6) {
2155 int qd_idx = sh->qd_idx;
2156 struct r5dev *dev = &sh->dev[qd_idx];
2157
2158 set_bit(R5_LOCKED, &dev->flags);
2159 clear_bit(R5_UPTODATE, &dev->flags);
2160 s->locked++;
2161 }
2162
2163 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2164 __func__, (unsigned long long)sh->sector,
2165 s->locked, s->ops_request);
2166}
2167
2168/*
2169 * Each stripe/dev can have one or more bion attached.
2170 * toread/towrite point to the first in a chain.
2171 * The bi_next chain must be in order.
2172 */
2173static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2174{
2175 struct bio **bip;
2176 raid5_conf_t *conf = sh->raid_conf;
2177 int firstwrite=0;
2178
2179 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2180 (unsigned long long)bi->bi_sector,
2181 (unsigned long long)sh->sector);
2182
2183
2184 spin_lock_irq(&conf->device_lock);
2185 if (forwrite) {
2186 bip = &sh->dev[dd_idx].towrite;
2187 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2188 firstwrite = 1;
2189 } else
2190 bip = &sh->dev[dd_idx].toread;
2191 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2192 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2193 goto overlap;
2194 bip = & (*bip)->bi_next;
2195 }
2196 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2197 goto overlap;
2198
2199 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2200 if (*bip)
2201 bi->bi_next = *bip;
2202 *bip = bi;
2203 bi->bi_phys_segments++;
2204
2205 if (forwrite) {
2206 /* check if page is covered */
2207 sector_t sector = sh->dev[dd_idx].sector;
2208 for (bi=sh->dev[dd_idx].towrite;
2209 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2210 bi && bi->bi_sector <= sector;
2211 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2212 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2213 sector = bi->bi_sector + (bi->bi_size>>9);
2214 }
2215 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2216 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2217 }
2218 spin_unlock_irq(&conf->device_lock);
2219
2220 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2221 (unsigned long long)(*bip)->bi_sector,
2222 (unsigned long long)sh->sector, dd_idx);
2223
2224 if (conf->mddev->bitmap && firstwrite) {
2225 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2226 STRIPE_SECTORS, 0);
2227 sh->bm_seq = conf->seq_flush+1;
2228 set_bit(STRIPE_BIT_DELAY, &sh->state);
2229 }
2230 return 1;
2231
2232 overlap:
2233 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2234 spin_unlock_irq(&conf->device_lock);
2235 return 0;
2236}
2237
2238static void end_reshape(raid5_conf_t *conf);
2239
2240static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2241 struct stripe_head *sh)
2242{
2243 int sectors_per_chunk =
2244 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2245 int dd_idx;
2246 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2247 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2248
2249 raid5_compute_sector(conf,
2250 stripe * (disks - conf->max_degraded)
2251 *sectors_per_chunk + chunk_offset,
2252 previous,
2253 &dd_idx, sh);
2254}
2255
2256static void
2257handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2258 struct stripe_head_state *s, int disks,
2259 struct bio **return_bi)
2260{
2261 int i;
2262 for (i = disks; i--; ) {
2263 struct bio *bi;
2264 int bitmap_end = 0;
2265
2266 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2267 mdk_rdev_t *rdev;
2268 rcu_read_lock();
2269 rdev = rcu_dereference(conf->disks[i].rdev);
2270 if (rdev && test_bit(In_sync, &rdev->flags))
2271 atomic_inc(&rdev->nr_pending);
2272 else
2273 rdev = NULL;
2274 rcu_read_unlock();
2275 if (rdev) {
2276 if (!rdev_set_badblocks(
2277 rdev,
2278 sh->sector,
2279 STRIPE_SECTORS, 0))
2280 md_error(conf->mddev, rdev);
2281 rdev_dec_pending(rdev, conf->mddev);
2282 }
2283 }
2284 spin_lock_irq(&conf->device_lock);
2285 /* fail all writes first */
2286 bi = sh->dev[i].towrite;
2287 sh->dev[i].towrite = NULL;
2288 if (bi) {
2289 s->to_write--;
2290 bitmap_end = 1;
2291 }
2292
2293 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2294 wake_up(&conf->wait_for_overlap);
2295
2296 while (bi && bi->bi_sector <
2297 sh->dev[i].sector + STRIPE_SECTORS) {
2298 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2299 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2300 if (!raid5_dec_bi_phys_segments(bi)) {
2301 md_write_end(conf->mddev);
2302 bi->bi_next = *return_bi;
2303 *return_bi = bi;
2304 }
2305 bi = nextbi;
2306 }
2307 /* and fail all 'written' */
2308 bi = sh->dev[i].written;
2309 sh->dev[i].written = NULL;
2310 if (bi) bitmap_end = 1;
2311 while (bi && bi->bi_sector <
2312 sh->dev[i].sector + STRIPE_SECTORS) {
2313 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2314 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2315 if (!raid5_dec_bi_phys_segments(bi)) {
2316 md_write_end(conf->mddev);
2317 bi->bi_next = *return_bi;
2318 *return_bi = bi;
2319 }
2320 bi = bi2;
2321 }
2322
2323 /* fail any reads if this device is non-operational and
2324 * the data has not reached the cache yet.
2325 */
2326 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2327 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2328 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2329 bi = sh->dev[i].toread;
2330 sh->dev[i].toread = NULL;
2331 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2332 wake_up(&conf->wait_for_overlap);
2333 if (bi) s->to_read--;
2334 while (bi && bi->bi_sector <
2335 sh->dev[i].sector + STRIPE_SECTORS) {
2336 struct bio *nextbi =
2337 r5_next_bio(bi, sh->dev[i].sector);
2338 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2339 if (!raid5_dec_bi_phys_segments(bi)) {
2340 bi->bi_next = *return_bi;
2341 *return_bi = bi;
2342 }
2343 bi = nextbi;
2344 }
2345 }
2346 spin_unlock_irq(&conf->device_lock);
2347 if (bitmap_end)
2348 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2349 STRIPE_SECTORS, 0, 0);
2350 /* If we were in the middle of a write the parity block might
2351 * still be locked - so just clear all R5_LOCKED flags
2352 */
2353 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2354 }
2355
2356 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2357 if (atomic_dec_and_test(&conf->pending_full_writes))
2358 md_wakeup_thread(conf->mddev->thread);
2359}
2360
2361static void
2362handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
2363 struct stripe_head_state *s)
2364{
2365 int abort = 0;
2366 int i;
2367
2368 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2369 clear_bit(STRIPE_SYNCING, &sh->state);
2370 s->syncing = 0;
2371 /* There is nothing more to do for sync/check/repair.
2372 * For recover we need to record a bad block on all
2373 * non-sync devices, or abort the recovery
2374 */
2375 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2376 return;
2377 /* During recovery devices cannot be removed, so locking and
2378 * refcounting of rdevs is not needed
2379 */
2380 for (i = 0; i < conf->raid_disks; i++) {
2381 mdk_rdev_t *rdev = conf->disks[i].rdev;
2382 if (!rdev
2383 || test_bit(Faulty, &rdev->flags)
2384 || test_bit(In_sync, &rdev->flags))
2385 continue;
2386 if (!rdev_set_badblocks(rdev, sh->sector,
2387 STRIPE_SECTORS, 0))
2388 abort = 1;
2389 }
2390 if (abort) {
2391 conf->recovery_disabled = conf->mddev->recovery_disabled;
2392 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2393 }
2394}
2395
2396/* fetch_block - checks the given member device to see if its data needs
2397 * to be read or computed to satisfy a request.
2398 *
2399 * Returns 1 when no more member devices need to be checked, otherwise returns
2400 * 0 to tell the loop in handle_stripe_fill to continue
2401 */
2402static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2403 int disk_idx, int disks)
2404{
2405 struct r5dev *dev = &sh->dev[disk_idx];
2406 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2407 &sh->dev[s->failed_num[1]] };
2408
2409 /* is the data in this block needed, and can we get it? */
2410 if (!test_bit(R5_LOCKED, &dev->flags) &&
2411 !test_bit(R5_UPTODATE, &dev->flags) &&
2412 (dev->toread ||
2413 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2414 s->syncing || s->expanding ||
2415 (s->failed >= 1 && fdev[0]->toread) ||
2416 (s->failed >= 2 && fdev[1]->toread) ||
2417 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2418 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2419 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2420 /* we would like to get this block, possibly by computing it,
2421 * otherwise read it if the backing disk is insync
2422 */
2423 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2424 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2425 if ((s->uptodate == disks - 1) &&
2426 (s->failed && (disk_idx == s->failed_num[0] ||
2427 disk_idx == s->failed_num[1]))) {
2428 /* have disk failed, and we're requested to fetch it;
2429 * do compute it
2430 */
2431 pr_debug("Computing stripe %llu block %d\n",
2432 (unsigned long long)sh->sector, disk_idx);
2433 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2434 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2435 set_bit(R5_Wantcompute, &dev->flags);
2436 sh->ops.target = disk_idx;
2437 sh->ops.target2 = -1; /* no 2nd target */
2438 s->req_compute = 1;
2439 /* Careful: from this point on 'uptodate' is in the eye
2440 * of raid_run_ops which services 'compute' operations
2441 * before writes. R5_Wantcompute flags a block that will
2442 * be R5_UPTODATE by the time it is needed for a
2443 * subsequent operation.
2444 */
2445 s->uptodate++;
2446 return 1;
2447 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2448 /* Computing 2-failure is *very* expensive; only
2449 * do it if failed >= 2
2450 */
2451 int other;
2452 for (other = disks; other--; ) {
2453 if (other == disk_idx)
2454 continue;
2455 if (!test_bit(R5_UPTODATE,
2456 &sh->dev[other].flags))
2457 break;
2458 }
2459 BUG_ON(other < 0);
2460 pr_debug("Computing stripe %llu blocks %d,%d\n",
2461 (unsigned long long)sh->sector,
2462 disk_idx, other);
2463 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2464 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2465 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2466 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2467 sh->ops.target = disk_idx;
2468 sh->ops.target2 = other;
2469 s->uptodate += 2;
2470 s->req_compute = 1;
2471 return 1;
2472 } else if (test_bit(R5_Insync, &dev->flags)) {
2473 set_bit(R5_LOCKED, &dev->flags);
2474 set_bit(R5_Wantread, &dev->flags);
2475 s->locked++;
2476 pr_debug("Reading block %d (sync=%d)\n",
2477 disk_idx, s->syncing);
2478 }
2479 }
2480
2481 return 0;
2482}
2483
2484/**
2485 * handle_stripe_fill - read or compute data to satisfy pending requests.
2486 */
2487static void handle_stripe_fill(struct stripe_head *sh,
2488 struct stripe_head_state *s,
2489 int disks)
2490{
2491 int i;
2492
2493 /* look for blocks to read/compute, skip this if a compute
2494 * is already in flight, or if the stripe contents are in the
2495 * midst of changing due to a write
2496 */
2497 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2498 !sh->reconstruct_state)
2499 for (i = disks; i--; )
2500 if (fetch_block(sh, s, i, disks))
2501 break;
2502 set_bit(STRIPE_HANDLE, &sh->state);
2503}
2504
2505
2506/* handle_stripe_clean_event
2507 * any written block on an uptodate or failed drive can be returned.
2508 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2509 * never LOCKED, so we don't need to test 'failed' directly.
2510 */
2511static void handle_stripe_clean_event(raid5_conf_t *conf,
2512 struct stripe_head *sh, int disks, struct bio **return_bi)
2513{
2514 int i;
2515 struct r5dev *dev;
2516
2517 for (i = disks; i--; )
2518 if (sh->dev[i].written) {
2519 dev = &sh->dev[i];
2520 if (!test_bit(R5_LOCKED, &dev->flags) &&
2521 test_bit(R5_UPTODATE, &dev->flags)) {
2522 /* We can return any write requests */
2523 struct bio *wbi, *wbi2;
2524 int bitmap_end = 0;
2525 pr_debug("Return write for disc %d\n", i);
2526 spin_lock_irq(&conf->device_lock);
2527 wbi = dev->written;
2528 dev->written = NULL;
2529 while (wbi && wbi->bi_sector <
2530 dev->sector + STRIPE_SECTORS) {
2531 wbi2 = r5_next_bio(wbi, dev->sector);
2532 if (!raid5_dec_bi_phys_segments(wbi)) {
2533 md_write_end(conf->mddev);
2534 wbi->bi_next = *return_bi;
2535 *return_bi = wbi;
2536 }
2537 wbi = wbi2;
2538 }
2539 if (dev->towrite == NULL)
2540 bitmap_end = 1;
2541 spin_unlock_irq(&conf->device_lock);
2542 if (bitmap_end)
2543 bitmap_endwrite(conf->mddev->bitmap,
2544 sh->sector,
2545 STRIPE_SECTORS,
2546 !test_bit(STRIPE_DEGRADED, &sh->state),
2547 0);
2548 }
2549 }
2550
2551 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2552 if (atomic_dec_and_test(&conf->pending_full_writes))
2553 md_wakeup_thread(conf->mddev->thread);
2554}
2555
2556static void handle_stripe_dirtying(raid5_conf_t *conf,
2557 struct stripe_head *sh,
2558 struct stripe_head_state *s,
2559 int disks)
2560{
2561 int rmw = 0, rcw = 0, i;
2562 if (conf->max_degraded == 2) {
2563 /* RAID6 requires 'rcw' in current implementation
2564 * Calculate the real rcw later - for now fake it
2565 * look like rcw is cheaper
2566 */
2567 rcw = 1; rmw = 2;
2568 } else for (i = disks; i--; ) {
2569 /* would I have to read this buffer for read_modify_write */
2570 struct r5dev *dev = &sh->dev[i];
2571 if ((dev->towrite || i == sh->pd_idx) &&
2572 !test_bit(R5_LOCKED, &dev->flags) &&
2573 !(test_bit(R5_UPTODATE, &dev->flags) ||
2574 test_bit(R5_Wantcompute, &dev->flags))) {
2575 if (test_bit(R5_Insync, &dev->flags))
2576 rmw++;
2577 else
2578 rmw += 2*disks; /* cannot read it */
2579 }
2580 /* Would I have to read this buffer for reconstruct_write */
2581 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2582 !test_bit(R5_LOCKED, &dev->flags) &&
2583 !(test_bit(R5_UPTODATE, &dev->flags) ||
2584 test_bit(R5_Wantcompute, &dev->flags))) {
2585 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2586 else
2587 rcw += 2*disks;
2588 }
2589 }
2590 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2591 (unsigned long long)sh->sector, rmw, rcw);
2592 set_bit(STRIPE_HANDLE, &sh->state);
2593 if (rmw < rcw && rmw > 0)
2594 /* prefer read-modify-write, but need to get some data */
2595 for (i = disks; i--; ) {
2596 struct r5dev *dev = &sh->dev[i];
2597 if ((dev->towrite || i == sh->pd_idx) &&
2598 !test_bit(R5_LOCKED, &dev->flags) &&
2599 !(test_bit(R5_UPTODATE, &dev->flags) ||
2600 test_bit(R5_Wantcompute, &dev->flags)) &&
2601 test_bit(R5_Insync, &dev->flags)) {
2602 if (
2603 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2604 pr_debug("Read_old block "
2605 "%d for r-m-w\n", i);
2606 set_bit(R5_LOCKED, &dev->flags);
2607 set_bit(R5_Wantread, &dev->flags);
2608 s->locked++;
2609 } else {
2610 set_bit(STRIPE_DELAYED, &sh->state);
2611 set_bit(STRIPE_HANDLE, &sh->state);
2612 }
2613 }
2614 }
2615 if (rcw <= rmw && rcw > 0) {
2616 /* want reconstruct write, but need to get some data */
2617 rcw = 0;
2618 for (i = disks; i--; ) {
2619 struct r5dev *dev = &sh->dev[i];
2620 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2621 i != sh->pd_idx && i != sh->qd_idx &&
2622 !test_bit(R5_LOCKED, &dev->flags) &&
2623 !(test_bit(R5_UPTODATE, &dev->flags) ||
2624 test_bit(R5_Wantcompute, &dev->flags))) {
2625 rcw++;
2626 if (!test_bit(R5_Insync, &dev->flags))
2627 continue; /* it's a failed drive */
2628 if (
2629 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2630 pr_debug("Read_old block "
2631 "%d for Reconstruct\n", i);
2632 set_bit(R5_LOCKED, &dev->flags);
2633 set_bit(R5_Wantread, &dev->flags);
2634 s->locked++;
2635 } else {
2636 set_bit(STRIPE_DELAYED, &sh->state);
2637 set_bit(STRIPE_HANDLE, &sh->state);
2638 }
2639 }
2640 }
2641 }
2642 /* now if nothing is locked, and if we have enough data,
2643 * we can start a write request
2644 */
2645 /* since handle_stripe can be called at any time we need to handle the
2646 * case where a compute block operation has been submitted and then a
2647 * subsequent call wants to start a write request. raid_run_ops only
2648 * handles the case where compute block and reconstruct are requested
2649 * simultaneously. If this is not the case then new writes need to be
2650 * held off until the compute completes.
2651 */
2652 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2653 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2654 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2655 schedule_reconstruction(sh, s, rcw == 0, 0);
2656}
2657
2658static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2659 struct stripe_head_state *s, int disks)
2660{
2661 struct r5dev *dev = NULL;
2662
2663 set_bit(STRIPE_HANDLE, &sh->state);
2664
2665 switch (sh->check_state) {
2666 case check_state_idle:
2667 /* start a new check operation if there are no failures */
2668 if (s->failed == 0) {
2669 BUG_ON(s->uptodate != disks);
2670 sh->check_state = check_state_run;
2671 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2672 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2673 s->uptodate--;
2674 break;
2675 }
2676 dev = &sh->dev[s->failed_num[0]];
2677 /* fall through */
2678 case check_state_compute_result:
2679 sh->check_state = check_state_idle;
2680 if (!dev)
2681 dev = &sh->dev[sh->pd_idx];
2682
2683 /* check that a write has not made the stripe insync */
2684 if (test_bit(STRIPE_INSYNC, &sh->state))
2685 break;
2686
2687 /* either failed parity check, or recovery is happening */
2688 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2689 BUG_ON(s->uptodate != disks);
2690
2691 set_bit(R5_LOCKED, &dev->flags);
2692 s->locked++;
2693 set_bit(R5_Wantwrite, &dev->flags);
2694
2695 clear_bit(STRIPE_DEGRADED, &sh->state);
2696 set_bit(STRIPE_INSYNC, &sh->state);
2697 break;
2698 case check_state_run:
2699 break; /* we will be called again upon completion */
2700 case check_state_check_result:
2701 sh->check_state = check_state_idle;
2702
2703 /* if a failure occurred during the check operation, leave
2704 * STRIPE_INSYNC not set and let the stripe be handled again
2705 */
2706 if (s->failed)
2707 break;
2708
2709 /* handle a successful check operation, if parity is correct
2710 * we are done. Otherwise update the mismatch count and repair
2711 * parity if !MD_RECOVERY_CHECK
2712 */
2713 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2714 /* parity is correct (on disc,
2715 * not in buffer any more)
2716 */
2717 set_bit(STRIPE_INSYNC, &sh->state);
2718 else {
2719 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2720 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2721 /* don't try to repair!! */
2722 set_bit(STRIPE_INSYNC, &sh->state);
2723 else {
2724 sh->check_state = check_state_compute_run;
2725 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2726 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2727 set_bit(R5_Wantcompute,
2728 &sh->dev[sh->pd_idx].flags);
2729 sh->ops.target = sh->pd_idx;
2730 sh->ops.target2 = -1;
2731 s->uptodate++;
2732 }
2733 }
2734 break;
2735 case check_state_compute_run:
2736 break;
2737 default:
2738 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2739 __func__, sh->check_state,
2740 (unsigned long long) sh->sector);
2741 BUG();
2742 }
2743}
2744
2745
2746static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2747 struct stripe_head_state *s,
2748 int disks)
2749{
2750 int pd_idx = sh->pd_idx;
2751 int qd_idx = sh->qd_idx;
2752 struct r5dev *dev;
2753
2754 set_bit(STRIPE_HANDLE, &sh->state);
2755
2756 BUG_ON(s->failed > 2);
2757
2758 /* Want to check and possibly repair P and Q.
2759 * However there could be one 'failed' device, in which
2760 * case we can only check one of them, possibly using the
2761 * other to generate missing data
2762 */
2763
2764 switch (sh->check_state) {
2765 case check_state_idle:
2766 /* start a new check operation if there are < 2 failures */
2767 if (s->failed == s->q_failed) {
2768 /* The only possible failed device holds Q, so it
2769 * makes sense to check P (If anything else were failed,
2770 * we would have used P to recreate it).
2771 */
2772 sh->check_state = check_state_run;
2773 }
2774 if (!s->q_failed && s->failed < 2) {
2775 /* Q is not failed, and we didn't use it to generate
2776 * anything, so it makes sense to check it
2777 */
2778 if (sh->check_state == check_state_run)
2779 sh->check_state = check_state_run_pq;
2780 else
2781 sh->check_state = check_state_run_q;
2782 }
2783
2784 /* discard potentially stale zero_sum_result */
2785 sh->ops.zero_sum_result = 0;
2786
2787 if (sh->check_state == check_state_run) {
2788 /* async_xor_zero_sum destroys the contents of P */
2789 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2790 s->uptodate--;
2791 }
2792 if (sh->check_state >= check_state_run &&
2793 sh->check_state <= check_state_run_pq) {
2794 /* async_syndrome_zero_sum preserves P and Q, so
2795 * no need to mark them !uptodate here
2796 */
2797 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2798 break;
2799 }
2800
2801 /* we have 2-disk failure */
2802 BUG_ON(s->failed != 2);
2803 /* fall through */
2804 case check_state_compute_result:
2805 sh->check_state = check_state_idle;
2806
2807 /* check that a write has not made the stripe insync */
2808 if (test_bit(STRIPE_INSYNC, &sh->state))
2809 break;
2810
2811 /* now write out any block on a failed drive,
2812 * or P or Q if they were recomputed
2813 */
2814 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2815 if (s->failed == 2) {
2816 dev = &sh->dev[s->failed_num[1]];
2817 s->locked++;
2818 set_bit(R5_LOCKED, &dev->flags);
2819 set_bit(R5_Wantwrite, &dev->flags);
2820 }
2821 if (s->failed >= 1) {
2822 dev = &sh->dev[s->failed_num[0]];
2823 s->locked++;
2824 set_bit(R5_LOCKED, &dev->flags);
2825 set_bit(R5_Wantwrite, &dev->flags);
2826 }
2827 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2828 dev = &sh->dev[pd_idx];
2829 s->locked++;
2830 set_bit(R5_LOCKED, &dev->flags);
2831 set_bit(R5_Wantwrite, &dev->flags);
2832 }
2833 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2834 dev = &sh->dev[qd_idx];
2835 s->locked++;
2836 set_bit(R5_LOCKED, &dev->flags);
2837 set_bit(R5_Wantwrite, &dev->flags);
2838 }
2839 clear_bit(STRIPE_DEGRADED, &sh->state);
2840
2841 set_bit(STRIPE_INSYNC, &sh->state);
2842 break;
2843 case check_state_run:
2844 case check_state_run_q:
2845 case check_state_run_pq:
2846 break; /* we will be called again upon completion */
2847 case check_state_check_result:
2848 sh->check_state = check_state_idle;
2849
2850 /* handle a successful check operation, if parity is correct
2851 * we are done. Otherwise update the mismatch count and repair
2852 * parity if !MD_RECOVERY_CHECK
2853 */
2854 if (sh->ops.zero_sum_result == 0) {
2855 /* both parities are correct */
2856 if (!s->failed)
2857 set_bit(STRIPE_INSYNC, &sh->state);
2858 else {
2859 /* in contrast to the raid5 case we can validate
2860 * parity, but still have a failure to write
2861 * back
2862 */
2863 sh->check_state = check_state_compute_result;
2864 /* Returning at this point means that we may go
2865 * off and bring p and/or q uptodate again so
2866 * we make sure to check zero_sum_result again
2867 * to verify if p or q need writeback
2868 */
2869 }
2870 } else {
2871 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2872 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2873 /* don't try to repair!! */
2874 set_bit(STRIPE_INSYNC, &sh->state);
2875 else {
2876 int *target = &sh->ops.target;
2877
2878 sh->ops.target = -1;
2879 sh->ops.target2 = -1;
2880 sh->check_state = check_state_compute_run;
2881 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2882 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2883 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2884 set_bit(R5_Wantcompute,
2885 &sh->dev[pd_idx].flags);
2886 *target = pd_idx;
2887 target = &sh->ops.target2;
2888 s->uptodate++;
2889 }
2890 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2891 set_bit(R5_Wantcompute,
2892 &sh->dev[qd_idx].flags);
2893 *target = qd_idx;
2894 s->uptodate++;
2895 }
2896 }
2897 }
2898 break;
2899 case check_state_compute_run:
2900 break;
2901 default:
2902 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2903 __func__, sh->check_state,
2904 (unsigned long long) sh->sector);
2905 BUG();
2906 }
2907}
2908
2909static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2910{
2911 int i;
2912
2913 /* We have read all the blocks in this stripe and now we need to
2914 * copy some of them into a target stripe for expand.
2915 */
2916 struct dma_async_tx_descriptor *tx = NULL;
2917 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2918 for (i = 0; i < sh->disks; i++)
2919 if (i != sh->pd_idx && i != sh->qd_idx) {
2920 int dd_idx, j;
2921 struct stripe_head *sh2;
2922 struct async_submit_ctl submit;
2923
2924 sector_t bn = compute_blocknr(sh, i, 1);
2925 sector_t s = raid5_compute_sector(conf, bn, 0,
2926 &dd_idx, NULL);
2927 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2928 if (sh2 == NULL)
2929 /* so far only the early blocks of this stripe
2930 * have been requested. When later blocks
2931 * get requested, we will try again
2932 */
2933 continue;
2934 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2935 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2936 /* must have already done this block */
2937 release_stripe(sh2);
2938 continue;
2939 }
2940
2941 /* place all the copies on one channel */
2942 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2943 tx = async_memcpy(sh2->dev[dd_idx].page,
2944 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2945 &submit);
2946
2947 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2948 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2949 for (j = 0; j < conf->raid_disks; j++)
2950 if (j != sh2->pd_idx &&
2951 j != sh2->qd_idx &&
2952 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2953 break;
2954 if (j == conf->raid_disks) {
2955 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2956 set_bit(STRIPE_HANDLE, &sh2->state);
2957 }
2958 release_stripe(sh2);
2959
2960 }
2961 /* done submitting copies, wait for them to complete */
2962 if (tx) {
2963 async_tx_ack(tx);
2964 dma_wait_for_async_tx(tx);
2965 }
2966}
2967
2968
2969/*
2970 * handle_stripe - do things to a stripe.
2971 *
2972 * We lock the stripe and then examine the state of various bits
2973 * to see what needs to be done.
2974 * Possible results:
2975 * return some read request which now have data
2976 * return some write requests which are safely on disc
2977 * schedule a read on some buffers
2978 * schedule a write of some buffers
2979 * return confirmation of parity correctness
2980 *
2981 * buffers are taken off read_list or write_list, and bh_cache buffers
2982 * get BH_Lock set before the stripe lock is released.
2983 *
2984 */
2985
2986static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2987{
2988 raid5_conf_t *conf = sh->raid_conf;
2989 int disks = sh->disks;
2990 struct r5dev *dev;
2991 int i;
2992
2993 memset(s, 0, sizeof(*s));
2994
2995 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2996 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2997 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2998 s->failed_num[0] = -1;
2999 s->failed_num[1] = -1;
3000
3001 /* Now to look around and see what can be done */
3002 rcu_read_lock();
3003 spin_lock_irq(&conf->device_lock);
3004 for (i=disks; i--; ) {
3005 mdk_rdev_t *rdev;
3006 sector_t first_bad;
3007 int bad_sectors;
3008 int is_bad = 0;
3009
3010 dev = &sh->dev[i];
3011
3012 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3013 i, dev->flags, dev->toread, dev->towrite, dev->written);
3014 /* maybe we can reply to a read
3015 *
3016 * new wantfill requests are only permitted while
3017 * ops_complete_biofill is guaranteed to be inactive
3018 */
3019 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3020 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3021 set_bit(R5_Wantfill, &dev->flags);
3022
3023 /* now count some things */
3024 if (test_bit(R5_LOCKED, &dev->flags))
3025 s->locked++;
3026 if (test_bit(R5_UPTODATE, &dev->flags))
3027 s->uptodate++;
3028 if (test_bit(R5_Wantcompute, &dev->flags)) {
3029 s->compute++;
3030 BUG_ON(s->compute > 2);
3031 }
3032
3033 if (test_bit(R5_Wantfill, &dev->flags))
3034 s->to_fill++;
3035 else if (dev->toread)
3036 s->to_read++;
3037 if (dev->towrite) {
3038 s->to_write++;
3039 if (!test_bit(R5_OVERWRITE, &dev->flags))
3040 s->non_overwrite++;
3041 }
3042 if (dev->written)
3043 s->written++;
3044 rdev = rcu_dereference(conf->disks[i].rdev);
3045 if (rdev) {
3046 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3047 &first_bad, &bad_sectors);
3048 if (s->blocked_rdev == NULL
3049 && (test_bit(Blocked, &rdev->flags)
3050 || is_bad < 0)) {
3051 if (is_bad < 0)
3052 set_bit(BlockedBadBlocks,
3053 &rdev->flags);
3054 s->blocked_rdev = rdev;
3055 atomic_inc(&rdev->nr_pending);
3056 }
3057 }
3058 clear_bit(R5_Insync, &dev->flags);
3059 if (!rdev)
3060 /* Not in-sync */;
3061 else if (is_bad) {
3062 /* also not in-sync */
3063 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3064 /* treat as in-sync, but with a read error
3065 * which we can now try to correct
3066 */
3067 set_bit(R5_Insync, &dev->flags);
3068 set_bit(R5_ReadError, &dev->flags);
3069 }
3070 } else if (test_bit(In_sync, &rdev->flags))
3071 set_bit(R5_Insync, &dev->flags);
3072 else {
3073 /* in sync if before recovery_offset */
3074 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3075 set_bit(R5_Insync, &dev->flags);
3076 }
3077 if (test_bit(R5_WriteError, &dev->flags)) {
3078 clear_bit(R5_Insync, &dev->flags);
3079 if (!test_bit(Faulty, &rdev->flags)) {
3080 s->handle_bad_blocks = 1;
3081 atomic_inc(&rdev->nr_pending);
3082 } else
3083 clear_bit(R5_WriteError, &dev->flags);
3084 }
3085 if (test_bit(R5_MadeGood, &dev->flags)) {
3086 if (!test_bit(Faulty, &rdev->flags)) {
3087 s->handle_bad_blocks = 1;
3088 atomic_inc(&rdev->nr_pending);
3089 } else
3090 clear_bit(R5_MadeGood, &dev->flags);
3091 }
3092 if (!test_bit(R5_Insync, &dev->flags)) {
3093 /* The ReadError flag will just be confusing now */
3094 clear_bit(R5_ReadError, &dev->flags);
3095 clear_bit(R5_ReWrite, &dev->flags);
3096 }
3097 if (test_bit(R5_ReadError, &dev->flags))
3098 clear_bit(R5_Insync, &dev->flags);
3099 if (!test_bit(R5_Insync, &dev->flags)) {
3100 if (s->failed < 2)
3101 s->failed_num[s->failed] = i;
3102 s->failed++;
3103 }
3104 }
3105 spin_unlock_irq(&conf->device_lock);
3106 rcu_read_unlock();
3107}
3108
3109static void handle_stripe(struct stripe_head *sh)
3110{
3111 struct stripe_head_state s;
3112 raid5_conf_t *conf = sh->raid_conf;
3113 int i;
3114 int prexor;
3115 int disks = sh->disks;
3116 struct r5dev *pdev, *qdev;
3117
3118 clear_bit(STRIPE_HANDLE, &sh->state);
3119 if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3120 /* already being handled, ensure it gets handled
3121 * again when current action finishes */
3122 set_bit(STRIPE_HANDLE, &sh->state);
3123 return;
3124 }
3125
3126 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3127 set_bit(STRIPE_SYNCING, &sh->state);
3128 clear_bit(STRIPE_INSYNC, &sh->state);
3129 }
3130 clear_bit(STRIPE_DELAYED, &sh->state);
3131
3132 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3133 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3134 (unsigned long long)sh->sector, sh->state,
3135 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3136 sh->check_state, sh->reconstruct_state);
3137
3138 analyse_stripe(sh, &s);
3139
3140 if (s.handle_bad_blocks) {
3141 set_bit(STRIPE_HANDLE, &sh->state);
3142 goto finish;
3143 }
3144
3145 if (unlikely(s.blocked_rdev)) {
3146 if (s.syncing || s.expanding || s.expanded ||
3147 s.to_write || s.written) {
3148 set_bit(STRIPE_HANDLE, &sh->state);
3149 goto finish;
3150 }
3151 /* There is nothing for the blocked_rdev to block */
3152 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3153 s.blocked_rdev = NULL;
3154 }
3155
3156 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3157 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3158 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3159 }
3160
3161 pr_debug("locked=%d uptodate=%d to_read=%d"
3162 " to_write=%d failed=%d failed_num=%d,%d\n",
3163 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3164 s.failed_num[0], s.failed_num[1]);
3165 /* check if the array has lost more than max_degraded devices and,
3166 * if so, some requests might need to be failed.
3167 */
3168 if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3169 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3170 if (s.failed > conf->max_degraded && s.syncing)
3171 handle_failed_sync(conf, sh, &s);
3172
3173 /*
3174 * might be able to return some write requests if the parity blocks
3175 * are safe, or on a failed drive
3176 */
3177 pdev = &sh->dev[sh->pd_idx];
3178 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3179 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3180 qdev = &sh->dev[sh->qd_idx];
3181 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3182 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3183 || conf->level < 6;
3184
3185 if (s.written &&
3186 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3187 && !test_bit(R5_LOCKED, &pdev->flags)
3188 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3189 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3190 && !test_bit(R5_LOCKED, &qdev->flags)
3191 && test_bit(R5_UPTODATE, &qdev->flags)))))
3192 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3193
3194 /* Now we might consider reading some blocks, either to check/generate
3195 * parity, or to satisfy requests
3196 * or to load a block that is being partially written.
3197 */
3198 if (s.to_read || s.non_overwrite
3199 || (conf->level == 6 && s.to_write && s.failed)
3200 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3201 handle_stripe_fill(sh, &s, disks);
3202
3203 /* Now we check to see if any write operations have recently
3204 * completed
3205 */
3206 prexor = 0;
3207 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3208 prexor = 1;
3209 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3210 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3211 sh->reconstruct_state = reconstruct_state_idle;
3212
3213 /* All the 'written' buffers and the parity block are ready to
3214 * be written back to disk
3215 */
3216 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3217 BUG_ON(sh->qd_idx >= 0 &&
3218 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3219 for (i = disks; i--; ) {
3220 struct r5dev *dev = &sh->dev[i];
3221 if (test_bit(R5_LOCKED, &dev->flags) &&
3222 (i == sh->pd_idx || i == sh->qd_idx ||
3223 dev->written)) {
3224 pr_debug("Writing block %d\n", i);
3225 set_bit(R5_Wantwrite, &dev->flags);
3226 if (prexor)
3227 continue;
3228 if (!test_bit(R5_Insync, &dev->flags) ||
3229 ((i == sh->pd_idx || i == sh->qd_idx) &&
3230 s.failed == 0))
3231 set_bit(STRIPE_INSYNC, &sh->state);
3232 }
3233 }
3234 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3235 s.dec_preread_active = 1;
3236 }
3237
3238 /* Now to consider new write requests and what else, if anything
3239 * should be read. We do not handle new writes when:
3240 * 1/ A 'write' operation (copy+xor) is already in flight.
3241 * 2/ A 'check' operation is in flight, as it may clobber the parity
3242 * block.
3243 */
3244 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3245 handle_stripe_dirtying(conf, sh, &s, disks);
3246
3247 /* maybe we need to check and possibly fix the parity for this stripe
3248 * Any reads will already have been scheduled, so we just see if enough
3249 * data is available. The parity check is held off while parity
3250 * dependent operations are in flight.
3251 */
3252 if (sh->check_state ||
3253 (s.syncing && s.locked == 0 &&
3254 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3255 !test_bit(STRIPE_INSYNC, &sh->state))) {
3256 if (conf->level == 6)
3257 handle_parity_checks6(conf, sh, &s, disks);
3258 else
3259 handle_parity_checks5(conf, sh, &s, disks);
3260 }
3261
3262 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3263 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3264 clear_bit(STRIPE_SYNCING, &sh->state);
3265 }
3266
3267 /* If the failed drives are just a ReadError, then we might need
3268 * to progress the repair/check process
3269 */
3270 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3271 for (i = 0; i < s.failed; i++) {
3272 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3273 if (test_bit(R5_ReadError, &dev->flags)
3274 && !test_bit(R5_LOCKED, &dev->flags)
3275 && test_bit(R5_UPTODATE, &dev->flags)
3276 ) {
3277 if (!test_bit(R5_ReWrite, &dev->flags)) {
3278 set_bit(R5_Wantwrite, &dev->flags);
3279 set_bit(R5_ReWrite, &dev->flags);
3280 set_bit(R5_LOCKED, &dev->flags);
3281 s.locked++;
3282 } else {
3283 /* let's read it back */
3284 set_bit(R5_Wantread, &dev->flags);
3285 set_bit(R5_LOCKED, &dev->flags);
3286 s.locked++;
3287 }
3288 }
3289 }
3290
3291
3292 /* Finish reconstruct operations initiated by the expansion process */
3293 if (sh->reconstruct_state == reconstruct_state_result) {
3294 struct stripe_head *sh_src
3295 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3296 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3297 /* sh cannot be written until sh_src has been read.
3298 * so arrange for sh to be delayed a little
3299 */
3300 set_bit(STRIPE_DELAYED, &sh->state);
3301 set_bit(STRIPE_HANDLE, &sh->state);
3302 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3303 &sh_src->state))
3304 atomic_inc(&conf->preread_active_stripes);
3305 release_stripe(sh_src);
3306 goto finish;
3307 }
3308 if (sh_src)
3309 release_stripe(sh_src);
3310
3311 sh->reconstruct_state = reconstruct_state_idle;
3312 clear_bit(STRIPE_EXPANDING, &sh->state);
3313 for (i = conf->raid_disks; i--; ) {
3314 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3315 set_bit(R5_LOCKED, &sh->dev[i].flags);
3316 s.locked++;
3317 }
3318 }
3319
3320 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3321 !sh->reconstruct_state) {
3322 /* Need to write out all blocks after computing parity */
3323 sh->disks = conf->raid_disks;
3324 stripe_set_idx(sh->sector, conf, 0, sh);
3325 schedule_reconstruction(sh, &s, 1, 1);
3326 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3327 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3328 atomic_dec(&conf->reshape_stripes);
3329 wake_up(&conf->wait_for_overlap);
3330 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3331 }
3332
3333 if (s.expanding && s.locked == 0 &&
3334 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3335 handle_stripe_expansion(conf, sh);
3336
3337finish:
3338 /* wait for this device to become unblocked */
3339 if (conf->mddev->external && unlikely(s.blocked_rdev))
3340 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3341
3342 if (s.handle_bad_blocks)
3343 for (i = disks; i--; ) {
3344 mdk_rdev_t *rdev;
3345 struct r5dev *dev = &sh->dev[i];
3346 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3347 /* We own a safe reference to the rdev */
3348 rdev = conf->disks[i].rdev;
3349 if (!rdev_set_badblocks(rdev, sh->sector,
3350 STRIPE_SECTORS, 0))
3351 md_error(conf->mddev, rdev);
3352 rdev_dec_pending(rdev, conf->mddev);
3353 }
3354 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3355 rdev = conf->disks[i].rdev;
3356 rdev_clear_badblocks(rdev, sh->sector,
3357 STRIPE_SECTORS);
3358 rdev_dec_pending(rdev, conf->mddev);
3359 }
3360 }
3361
3362 if (s.ops_request)
3363 raid_run_ops(sh, s.ops_request);
3364
3365 ops_run_io(sh, &s);
3366
3367 if (s.dec_preread_active) {
3368 /* We delay this until after ops_run_io so that if make_request
3369 * is waiting on a flush, it won't continue until the writes
3370 * have actually been submitted.
3371 */
3372 atomic_dec(&conf->preread_active_stripes);
3373 if (atomic_read(&conf->preread_active_stripes) <
3374 IO_THRESHOLD)
3375 md_wakeup_thread(conf->mddev->thread);
3376 }
3377
3378 return_io(s.return_bi);
3379
3380 clear_bit(STRIPE_ACTIVE, &sh->state);
3381}
3382
3383static void raid5_activate_delayed(raid5_conf_t *conf)
3384{
3385 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3386 while (!list_empty(&conf->delayed_list)) {
3387 struct list_head *l = conf->delayed_list.next;
3388 struct stripe_head *sh;
3389 sh = list_entry(l, struct stripe_head, lru);
3390 list_del_init(l);
3391 clear_bit(STRIPE_DELAYED, &sh->state);
3392 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3393 atomic_inc(&conf->preread_active_stripes);
3394 list_add_tail(&sh->lru, &conf->hold_list);
3395 }
3396 }
3397}
3398
3399static void activate_bit_delay(raid5_conf_t *conf)
3400{
3401 /* device_lock is held */
3402 struct list_head head;
3403 list_add(&head, &conf->bitmap_list);
3404 list_del_init(&conf->bitmap_list);
3405 while (!list_empty(&head)) {
3406 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3407 list_del_init(&sh->lru);
3408 atomic_inc(&sh->count);
3409 __release_stripe(conf, sh);
3410 }
3411}
3412
3413int md_raid5_congested(mddev_t *mddev, int bits)
3414{
3415 raid5_conf_t *conf = mddev->private;
3416
3417 /* No difference between reads and writes. Just check
3418 * how busy the stripe_cache is
3419 */
3420
3421 if (conf->inactive_blocked)
3422 return 1;
3423 if (conf->quiesce)
3424 return 1;
3425 if (list_empty_careful(&conf->inactive_list))
3426 return 1;
3427
3428 return 0;
3429}
3430EXPORT_SYMBOL_GPL(md_raid5_congested);
3431
3432static int raid5_congested(void *data, int bits)
3433{
3434 mddev_t *mddev = data;
3435
3436 return mddev_congested(mddev, bits) ||
3437 md_raid5_congested(mddev, bits);
3438}
3439
3440/* We want read requests to align with chunks where possible,
3441 * but write requests don't need to.
3442 */
3443static int raid5_mergeable_bvec(struct request_queue *q,
3444 struct bvec_merge_data *bvm,
3445 struct bio_vec *biovec)
3446{
3447 mddev_t *mddev = q->queuedata;
3448 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3449 int max;
3450 unsigned int chunk_sectors = mddev->chunk_sectors;
3451 unsigned int bio_sectors = bvm->bi_size >> 9;
3452
3453 if ((bvm->bi_rw & 1) == WRITE)
3454 return biovec->bv_len; /* always allow writes to be mergeable */
3455
3456 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3457 chunk_sectors = mddev->new_chunk_sectors;
3458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3459 if (max < 0) max = 0;
3460 if (max <= biovec->bv_len && bio_sectors == 0)
3461 return biovec->bv_len;
3462 else
3463 return max;
3464}
3465
3466
3467static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3468{
3469 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3470 unsigned int chunk_sectors = mddev->chunk_sectors;
3471 unsigned int bio_sectors = bio->bi_size >> 9;
3472
3473 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3474 chunk_sectors = mddev->new_chunk_sectors;
3475 return chunk_sectors >=
3476 ((sector & (chunk_sectors - 1)) + bio_sectors);
3477}
3478
3479/*
3480 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3481 * later sampled by raid5d.
3482 */
3483static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3484{
3485 unsigned long flags;
3486
3487 spin_lock_irqsave(&conf->device_lock, flags);
3488
3489 bi->bi_next = conf->retry_read_aligned_list;
3490 conf->retry_read_aligned_list = bi;
3491
3492 spin_unlock_irqrestore(&conf->device_lock, flags);
3493 md_wakeup_thread(conf->mddev->thread);
3494}
3495
3496
3497static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3498{
3499 struct bio *bi;
3500
3501 bi = conf->retry_read_aligned;
3502 if (bi) {
3503 conf->retry_read_aligned = NULL;
3504 return bi;
3505 }
3506 bi = conf->retry_read_aligned_list;
3507 if(bi) {
3508 conf->retry_read_aligned_list = bi->bi_next;
3509 bi->bi_next = NULL;
3510 /*
3511 * this sets the active strip count to 1 and the processed
3512 * strip count to zero (upper 8 bits)
3513 */
3514 bi->bi_phys_segments = 1; /* biased count of active stripes */
3515 }
3516
3517 return bi;
3518}
3519
3520
3521/*
3522 * The "raid5_align_endio" should check if the read succeeded and if it
3523 * did, call bio_endio on the original bio (having bio_put the new bio
3524 * first).
3525 * If the read failed..
3526 */
3527static void raid5_align_endio(struct bio *bi, int error)
3528{
3529 struct bio* raid_bi = bi->bi_private;
3530 mddev_t *mddev;
3531 raid5_conf_t *conf;
3532 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3533 mdk_rdev_t *rdev;
3534
3535 bio_put(bi);
3536
3537 rdev = (void*)raid_bi->bi_next;
3538 raid_bi->bi_next = NULL;
3539 mddev = rdev->mddev;
3540 conf = mddev->private;
3541
3542 rdev_dec_pending(rdev, conf->mddev);
3543
3544 if (!error && uptodate) {
3545 bio_endio(raid_bi, 0);
3546 if (atomic_dec_and_test(&conf->active_aligned_reads))
3547 wake_up(&conf->wait_for_stripe);
3548 return;
3549 }
3550
3551
3552 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3553
3554 add_bio_to_retry(raid_bi, conf);
3555}
3556
3557static int bio_fits_rdev(struct bio *bi)
3558{
3559 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3560
3561 if ((bi->bi_size>>9) > queue_max_sectors(q))
3562 return 0;
3563 blk_recount_segments(q, bi);
3564 if (bi->bi_phys_segments > queue_max_segments(q))
3565 return 0;
3566
3567 if (q->merge_bvec_fn)
3568 /* it's too hard to apply the merge_bvec_fn at this stage,
3569 * just just give up
3570 */
3571 return 0;
3572
3573 return 1;
3574}
3575
3576
3577static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3578{
3579 raid5_conf_t *conf = mddev->private;
3580 int dd_idx;
3581 struct bio* align_bi;
3582 mdk_rdev_t *rdev;
3583
3584 if (!in_chunk_boundary(mddev, raid_bio)) {
3585 pr_debug("chunk_aligned_read : non aligned\n");
3586 return 0;
3587 }
3588 /*
3589 * use bio_clone_mddev to make a copy of the bio
3590 */
3591 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3592 if (!align_bi)
3593 return 0;
3594 /*
3595 * set bi_end_io to a new function, and set bi_private to the
3596 * original bio.
3597 */
3598 align_bi->bi_end_io = raid5_align_endio;
3599 align_bi->bi_private = raid_bio;
3600 /*
3601 * compute position
3602 */
3603 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3604 0,
3605 &dd_idx, NULL);
3606
3607 rcu_read_lock();
3608 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3609 if (rdev && test_bit(In_sync, &rdev->flags)) {
3610 sector_t first_bad;
3611 int bad_sectors;
3612
3613 atomic_inc(&rdev->nr_pending);
3614 rcu_read_unlock();
3615 raid_bio->bi_next = (void*)rdev;
3616 align_bi->bi_bdev = rdev->bdev;
3617 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3618 align_bi->bi_sector += rdev->data_offset;
3619
3620 if (!bio_fits_rdev(align_bi) ||
3621 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3622 &first_bad, &bad_sectors)) {
3623 /* too big in some way, or has a known bad block */
3624 bio_put(align_bi);
3625 rdev_dec_pending(rdev, mddev);
3626 return 0;
3627 }
3628
3629 spin_lock_irq(&conf->device_lock);
3630 wait_event_lock_irq(conf->wait_for_stripe,
3631 conf->quiesce == 0,
3632 conf->device_lock, /* nothing */);
3633 atomic_inc(&conf->active_aligned_reads);
3634 spin_unlock_irq(&conf->device_lock);
3635
3636 generic_make_request(align_bi);
3637 return 1;
3638 } else {
3639 rcu_read_unlock();
3640 bio_put(align_bi);
3641 return 0;
3642 }
3643}
3644
3645/* __get_priority_stripe - get the next stripe to process
3646 *
3647 * Full stripe writes are allowed to pass preread active stripes up until
3648 * the bypass_threshold is exceeded. In general the bypass_count
3649 * increments when the handle_list is handled before the hold_list; however, it
3650 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3651 * stripe with in flight i/o. The bypass_count will be reset when the
3652 * head of the hold_list has changed, i.e. the head was promoted to the
3653 * handle_list.
3654 */
3655static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3656{
3657 struct stripe_head *sh;
3658
3659 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3660 __func__,
3661 list_empty(&conf->handle_list) ? "empty" : "busy",
3662 list_empty(&conf->hold_list) ? "empty" : "busy",
3663 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3664
3665 if (!list_empty(&conf->handle_list)) {
3666 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3667
3668 if (list_empty(&conf->hold_list))
3669 conf->bypass_count = 0;
3670 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3671 if (conf->hold_list.next == conf->last_hold)
3672 conf->bypass_count++;
3673 else {
3674 conf->last_hold = conf->hold_list.next;
3675 conf->bypass_count -= conf->bypass_threshold;
3676 if (conf->bypass_count < 0)
3677 conf->bypass_count = 0;
3678 }
3679 }
3680 } else if (!list_empty(&conf->hold_list) &&
3681 ((conf->bypass_threshold &&
3682 conf->bypass_count > conf->bypass_threshold) ||
3683 atomic_read(&conf->pending_full_writes) == 0)) {
3684 sh = list_entry(conf->hold_list.next,
3685 typeof(*sh), lru);
3686 conf->bypass_count -= conf->bypass_threshold;
3687 if (conf->bypass_count < 0)
3688 conf->bypass_count = 0;
3689 } else
3690 return NULL;
3691
3692 list_del_init(&sh->lru);
3693 atomic_inc(&sh->count);
3694 BUG_ON(atomic_read(&sh->count) != 1);
3695 return sh;
3696}
3697
3698static int make_request(mddev_t *mddev, struct bio * bi)
3699{
3700 raid5_conf_t *conf = mddev->private;
3701 int dd_idx;
3702 sector_t new_sector;
3703 sector_t logical_sector, last_sector;
3704 struct stripe_head *sh;
3705 const int rw = bio_data_dir(bi);
3706 int remaining;
3707 int plugged;
3708
3709 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3710 md_flush_request(mddev, bi);
3711 return 0;
3712 }
3713
3714 md_write_start(mddev, bi);
3715
3716 if (rw == READ &&
3717 mddev->reshape_position == MaxSector &&
3718 chunk_aligned_read(mddev,bi))
3719 return 0;
3720
3721 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3722 last_sector = bi->bi_sector + (bi->bi_size>>9);
3723 bi->bi_next = NULL;
3724 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3725
3726 plugged = mddev_check_plugged(mddev);
3727 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3728 DEFINE_WAIT(w);
3729 int disks, data_disks;
3730 int previous;
3731
3732 retry:
3733 previous = 0;
3734 disks = conf->raid_disks;
3735 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3736 if (unlikely(conf->reshape_progress != MaxSector)) {
3737 /* spinlock is needed as reshape_progress may be
3738 * 64bit on a 32bit platform, and so it might be
3739 * possible to see a half-updated value
3740 * Of course reshape_progress could change after
3741 * the lock is dropped, so once we get a reference
3742 * to the stripe that we think it is, we will have
3743 * to check again.
3744 */
3745 spin_lock_irq(&conf->device_lock);
3746 if (mddev->delta_disks < 0
3747 ? logical_sector < conf->reshape_progress
3748 : logical_sector >= conf->reshape_progress) {
3749 disks = conf->previous_raid_disks;
3750 previous = 1;
3751 } else {
3752 if (mddev->delta_disks < 0
3753 ? logical_sector < conf->reshape_safe
3754 : logical_sector >= conf->reshape_safe) {
3755 spin_unlock_irq(&conf->device_lock);
3756 schedule();
3757 goto retry;
3758 }
3759 }
3760 spin_unlock_irq(&conf->device_lock);
3761 }
3762 data_disks = disks - conf->max_degraded;
3763
3764 new_sector = raid5_compute_sector(conf, logical_sector,
3765 previous,
3766 &dd_idx, NULL);
3767 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3768 (unsigned long long)new_sector,
3769 (unsigned long long)logical_sector);
3770
3771 sh = get_active_stripe(conf, new_sector, previous,
3772 (bi->bi_rw&RWA_MASK), 0);
3773 if (sh) {
3774 if (unlikely(previous)) {
3775 /* expansion might have moved on while waiting for a
3776 * stripe, so we must do the range check again.
3777 * Expansion could still move past after this
3778 * test, but as we are holding a reference to
3779 * 'sh', we know that if that happens,
3780 * STRIPE_EXPANDING will get set and the expansion
3781 * won't proceed until we finish with the stripe.
3782 */
3783 int must_retry = 0;
3784 spin_lock_irq(&conf->device_lock);
3785 if (mddev->delta_disks < 0
3786 ? logical_sector >= conf->reshape_progress
3787 : logical_sector < conf->reshape_progress)
3788 /* mismatch, need to try again */
3789 must_retry = 1;
3790 spin_unlock_irq(&conf->device_lock);
3791 if (must_retry) {
3792 release_stripe(sh);
3793 schedule();
3794 goto retry;
3795 }
3796 }
3797
3798 if (rw == WRITE &&
3799 logical_sector >= mddev->suspend_lo &&
3800 logical_sector < mddev->suspend_hi) {
3801 release_stripe(sh);
3802 /* As the suspend_* range is controlled by
3803 * userspace, we want an interruptible
3804 * wait.
3805 */
3806 flush_signals(current);
3807 prepare_to_wait(&conf->wait_for_overlap,
3808 &w, TASK_INTERRUPTIBLE);
3809 if (logical_sector >= mddev->suspend_lo &&
3810 logical_sector < mddev->suspend_hi)
3811 schedule();
3812 goto retry;
3813 }
3814
3815 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3816 !add_stripe_bio(sh, bi, dd_idx, rw)) {
3817 /* Stripe is busy expanding or
3818 * add failed due to overlap. Flush everything
3819 * and wait a while
3820 */
3821 md_wakeup_thread(mddev->thread);
3822 release_stripe(sh);
3823 schedule();
3824 goto retry;
3825 }
3826 finish_wait(&conf->wait_for_overlap, &w);
3827 set_bit(STRIPE_HANDLE, &sh->state);
3828 clear_bit(STRIPE_DELAYED, &sh->state);
3829 if ((bi->bi_rw & REQ_SYNC) &&
3830 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3831 atomic_inc(&conf->preread_active_stripes);
3832 release_stripe(sh);
3833 } else {
3834 /* cannot get stripe for read-ahead, just give-up */
3835 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3836 finish_wait(&conf->wait_for_overlap, &w);
3837 break;
3838 }
3839
3840 }
3841 if (!plugged)
3842 md_wakeup_thread(mddev->thread);
3843
3844 spin_lock_irq(&conf->device_lock);
3845 remaining = raid5_dec_bi_phys_segments(bi);
3846 spin_unlock_irq(&conf->device_lock);
3847 if (remaining == 0) {
3848
3849 if ( rw == WRITE )
3850 md_write_end(mddev);
3851
3852 bio_endio(bi, 0);
3853 }
3854
3855 return 0;
3856}
3857
3858static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3859
3860static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3861{
3862 /* reshaping is quite different to recovery/resync so it is
3863 * handled quite separately ... here.
3864 *
3865 * On each call to sync_request, we gather one chunk worth of
3866 * destination stripes and flag them as expanding.
3867 * Then we find all the source stripes and request reads.
3868 * As the reads complete, handle_stripe will copy the data
3869 * into the destination stripe and release that stripe.
3870 */
3871 raid5_conf_t *conf = mddev->private;
3872 struct stripe_head *sh;
3873 sector_t first_sector, last_sector;
3874 int raid_disks = conf->previous_raid_disks;
3875 int data_disks = raid_disks - conf->max_degraded;
3876 int new_data_disks = conf->raid_disks - conf->max_degraded;
3877 int i;
3878 int dd_idx;
3879 sector_t writepos, readpos, safepos;
3880 sector_t stripe_addr;
3881 int reshape_sectors;
3882 struct list_head stripes;
3883
3884 if (sector_nr == 0) {
3885 /* If restarting in the middle, skip the initial sectors */
3886 if (mddev->delta_disks < 0 &&
3887 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3888 sector_nr = raid5_size(mddev, 0, 0)
3889 - conf->reshape_progress;
3890 } else if (mddev->delta_disks >= 0 &&
3891 conf->reshape_progress > 0)
3892 sector_nr = conf->reshape_progress;
3893 sector_div(sector_nr, new_data_disks);
3894 if (sector_nr) {
3895 mddev->curr_resync_completed = sector_nr;
3896 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3897 *skipped = 1;
3898 return sector_nr;
3899 }
3900 }
3901
3902 /* We need to process a full chunk at a time.
3903 * If old and new chunk sizes differ, we need to process the
3904 * largest of these
3905 */
3906 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3907 reshape_sectors = mddev->new_chunk_sectors;
3908 else
3909 reshape_sectors = mddev->chunk_sectors;
3910
3911 /* we update the metadata when there is more than 3Meg
3912 * in the block range (that is rather arbitrary, should
3913 * probably be time based) or when the data about to be
3914 * copied would over-write the source of the data at
3915 * the front of the range.
3916 * i.e. one new_stripe along from reshape_progress new_maps
3917 * to after where reshape_safe old_maps to
3918 */
3919 writepos = conf->reshape_progress;
3920 sector_div(writepos, new_data_disks);
3921 readpos = conf->reshape_progress;
3922 sector_div(readpos, data_disks);
3923 safepos = conf->reshape_safe;
3924 sector_div(safepos, data_disks);
3925 if (mddev->delta_disks < 0) {
3926 writepos -= min_t(sector_t, reshape_sectors, writepos);
3927 readpos += reshape_sectors;
3928 safepos += reshape_sectors;
3929 } else {
3930 writepos += reshape_sectors;
3931 readpos -= min_t(sector_t, reshape_sectors, readpos);
3932 safepos -= min_t(sector_t, reshape_sectors, safepos);
3933 }
3934
3935 /* 'writepos' is the most advanced device address we might write.
3936 * 'readpos' is the least advanced device address we might read.
3937 * 'safepos' is the least address recorded in the metadata as having
3938 * been reshaped.
3939 * If 'readpos' is behind 'writepos', then there is no way that we can
3940 * ensure safety in the face of a crash - that must be done by userspace
3941 * making a backup of the data. So in that case there is no particular
3942 * rush to update metadata.
3943 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3944 * update the metadata to advance 'safepos' to match 'readpos' so that
3945 * we can be safe in the event of a crash.
3946 * So we insist on updating metadata if safepos is behind writepos and
3947 * readpos is beyond writepos.
3948 * In any case, update the metadata every 10 seconds.
3949 * Maybe that number should be configurable, but I'm not sure it is
3950 * worth it.... maybe it could be a multiple of safemode_delay???
3951 */
3952 if ((mddev->delta_disks < 0
3953 ? (safepos > writepos && readpos < writepos)
3954 : (safepos < writepos && readpos > writepos)) ||
3955 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3956 /* Cannot proceed until we've updated the superblock... */
3957 wait_event(conf->wait_for_overlap,
3958 atomic_read(&conf->reshape_stripes)==0);
3959 mddev->reshape_position = conf->reshape_progress;
3960 mddev->curr_resync_completed = sector_nr;
3961 conf->reshape_checkpoint = jiffies;
3962 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3963 md_wakeup_thread(mddev->thread);
3964 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3965 kthread_should_stop());
3966 spin_lock_irq(&conf->device_lock);
3967 conf->reshape_safe = mddev->reshape_position;
3968 spin_unlock_irq(&conf->device_lock);
3969 wake_up(&conf->wait_for_overlap);
3970 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3971 }
3972
3973 if (mddev->delta_disks < 0) {
3974 BUG_ON(conf->reshape_progress == 0);
3975 stripe_addr = writepos;
3976 BUG_ON((mddev->dev_sectors &
3977 ~((sector_t)reshape_sectors - 1))
3978 - reshape_sectors - stripe_addr
3979 != sector_nr);
3980 } else {
3981 BUG_ON(writepos != sector_nr + reshape_sectors);
3982 stripe_addr = sector_nr;
3983 }
3984 INIT_LIST_HEAD(&stripes);
3985 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3986 int j;
3987 int skipped_disk = 0;
3988 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3989 set_bit(STRIPE_EXPANDING, &sh->state);
3990 atomic_inc(&conf->reshape_stripes);
3991 /* If any of this stripe is beyond the end of the old
3992 * array, then we need to zero those blocks
3993 */
3994 for (j=sh->disks; j--;) {
3995 sector_t s;
3996 if (j == sh->pd_idx)
3997 continue;
3998 if (conf->level == 6 &&
3999 j == sh->qd_idx)
4000 continue;
4001 s = compute_blocknr(sh, j, 0);
4002 if (s < raid5_size(mddev, 0, 0)) {
4003 skipped_disk = 1;
4004 continue;
4005 }
4006 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4007 set_bit(R5_Expanded, &sh->dev[j].flags);
4008 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4009 }
4010 if (!skipped_disk) {
4011 set_bit(STRIPE_EXPAND_READY, &sh->state);
4012 set_bit(STRIPE_HANDLE, &sh->state);
4013 }
4014 list_add(&sh->lru, &stripes);
4015 }
4016 spin_lock_irq(&conf->device_lock);
4017 if (mddev->delta_disks < 0)
4018 conf->reshape_progress -= reshape_sectors * new_data_disks;
4019 else
4020 conf->reshape_progress += reshape_sectors * new_data_disks;
4021 spin_unlock_irq(&conf->device_lock);
4022 /* Ok, those stripe are ready. We can start scheduling
4023 * reads on the source stripes.
4024 * The source stripes are determined by mapping the first and last
4025 * block on the destination stripes.
4026 */
4027 first_sector =
4028 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4029 1, &dd_idx, NULL);
4030 last_sector =
4031 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4032 * new_data_disks - 1),
4033 1, &dd_idx, NULL);
4034 if (last_sector >= mddev->dev_sectors)
4035 last_sector = mddev->dev_sectors - 1;
4036 while (first_sector <= last_sector) {
4037 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4038 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4039 set_bit(STRIPE_HANDLE, &sh->state);
4040 release_stripe(sh);
4041 first_sector += STRIPE_SECTORS;
4042 }
4043 /* Now that the sources are clearly marked, we can release
4044 * the destination stripes
4045 */
4046 while (!list_empty(&stripes)) {
4047 sh = list_entry(stripes.next, struct stripe_head, lru);
4048 list_del_init(&sh->lru);
4049 release_stripe(sh);
4050 }
4051 /* If this takes us to the resync_max point where we have to pause,
4052 * then we need to write out the superblock.
4053 */
4054 sector_nr += reshape_sectors;
4055 if ((sector_nr - mddev->curr_resync_completed) * 2
4056 >= mddev->resync_max - mddev->curr_resync_completed) {
4057 /* Cannot proceed until we've updated the superblock... */
4058 wait_event(conf->wait_for_overlap,
4059 atomic_read(&conf->reshape_stripes) == 0);
4060 mddev->reshape_position = conf->reshape_progress;
4061 mddev->curr_resync_completed = sector_nr;
4062 conf->reshape_checkpoint = jiffies;
4063 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4064 md_wakeup_thread(mddev->thread);
4065 wait_event(mddev->sb_wait,
4066 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4067 || kthread_should_stop());
4068 spin_lock_irq(&conf->device_lock);
4069 conf->reshape_safe = mddev->reshape_position;
4070 spin_unlock_irq(&conf->device_lock);
4071 wake_up(&conf->wait_for_overlap);
4072 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4073 }
4074 return reshape_sectors;
4075}
4076
4077/* FIXME go_faster isn't used */
4078static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4079{
4080 raid5_conf_t *conf = mddev->private;
4081 struct stripe_head *sh;
4082 sector_t max_sector = mddev->dev_sectors;
4083 sector_t sync_blocks;
4084 int still_degraded = 0;
4085 int i;
4086
4087 if (sector_nr >= max_sector) {
4088 /* just being told to finish up .. nothing much to do */
4089
4090 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4091 end_reshape(conf);
4092 return 0;
4093 }
4094
4095 if (mddev->curr_resync < max_sector) /* aborted */
4096 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4097 &sync_blocks, 1);
4098 else /* completed sync */
4099 conf->fullsync = 0;
4100 bitmap_close_sync(mddev->bitmap);
4101
4102 return 0;
4103 }
4104
4105 /* Allow raid5_quiesce to complete */
4106 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4107
4108 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4109 return reshape_request(mddev, sector_nr, skipped);
4110
4111 /* No need to check resync_max as we never do more than one
4112 * stripe, and as resync_max will always be on a chunk boundary,
4113 * if the check in md_do_sync didn't fire, there is no chance
4114 * of overstepping resync_max here
4115 */
4116
4117 /* if there is too many failed drives and we are trying
4118 * to resync, then assert that we are finished, because there is
4119 * nothing we can do.
4120 */
4121 if (mddev->degraded >= conf->max_degraded &&
4122 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4123 sector_t rv = mddev->dev_sectors - sector_nr;
4124 *skipped = 1;
4125 return rv;
4126 }
4127 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4128 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4129 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4130 /* we can skip this block, and probably more */
4131 sync_blocks /= STRIPE_SECTORS;
4132 *skipped = 1;
4133 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4134 }
4135
4136
4137 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4138
4139 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4140 if (sh == NULL) {
4141 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4142 /* make sure we don't swamp the stripe cache if someone else
4143 * is trying to get access
4144 */
4145 schedule_timeout_uninterruptible(1);
4146 }
4147 /* Need to check if array will still be degraded after recovery/resync
4148 * We don't need to check the 'failed' flag as when that gets set,
4149 * recovery aborts.
4150 */
4151 for (i = 0; i < conf->raid_disks; i++)
4152 if (conf->disks[i].rdev == NULL)
4153 still_degraded = 1;
4154
4155 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4156
4157 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4158
4159 handle_stripe(sh);
4160 release_stripe(sh);
4161
4162 return STRIPE_SECTORS;
4163}
4164
4165static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4166{
4167 /* We may not be able to submit a whole bio at once as there
4168 * may not be enough stripe_heads available.
4169 * We cannot pre-allocate enough stripe_heads as we may need
4170 * more than exist in the cache (if we allow ever large chunks).
4171 * So we do one stripe head at a time and record in
4172 * ->bi_hw_segments how many have been done.
4173 *
4174 * We *know* that this entire raid_bio is in one chunk, so
4175 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4176 */
4177 struct stripe_head *sh;
4178 int dd_idx;
4179 sector_t sector, logical_sector, last_sector;
4180 int scnt = 0;
4181 int remaining;
4182 int handled = 0;
4183
4184 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4185 sector = raid5_compute_sector(conf, logical_sector,
4186 0, &dd_idx, NULL);
4187 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4188
4189 for (; logical_sector < last_sector;
4190 logical_sector += STRIPE_SECTORS,
4191 sector += STRIPE_SECTORS,
4192 scnt++) {
4193
4194 if (scnt < raid5_bi_hw_segments(raid_bio))
4195 /* already done this stripe */
4196 continue;
4197
4198 sh = get_active_stripe(conf, sector, 0, 1, 0);
4199
4200 if (!sh) {
4201 /* failed to get a stripe - must wait */
4202 raid5_set_bi_hw_segments(raid_bio, scnt);
4203 conf->retry_read_aligned = raid_bio;
4204 return handled;
4205 }
4206
4207 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4208 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4209 release_stripe(sh);
4210 raid5_set_bi_hw_segments(raid_bio, scnt);
4211 conf->retry_read_aligned = raid_bio;
4212 return handled;
4213 }
4214
4215 handle_stripe(sh);
4216 release_stripe(sh);
4217 handled++;
4218 }
4219 spin_lock_irq(&conf->device_lock);
4220 remaining = raid5_dec_bi_phys_segments(raid_bio);
4221 spin_unlock_irq(&conf->device_lock);
4222 if (remaining == 0)
4223 bio_endio(raid_bio, 0);
4224 if (atomic_dec_and_test(&conf->active_aligned_reads))
4225 wake_up(&conf->wait_for_stripe);
4226 return handled;
4227}
4228
4229
4230/*
4231 * This is our raid5 kernel thread.
4232 *
4233 * We scan the hash table for stripes which can be handled now.
4234 * During the scan, completed stripes are saved for us by the interrupt
4235 * handler, so that they will not have to wait for our next wakeup.
4236 */
4237static void raid5d(mddev_t *mddev)
4238{
4239 struct stripe_head *sh;
4240 raid5_conf_t *conf = mddev->private;
4241 int handled;
4242 struct blk_plug plug;
4243
4244 pr_debug("+++ raid5d active\n");
4245
4246 md_check_recovery(mddev);
4247
4248 blk_start_plug(&plug);
4249 handled = 0;
4250 spin_lock_irq(&conf->device_lock);
4251 while (1) {
4252 struct bio *bio;
4253
4254 if (atomic_read(&mddev->plug_cnt) == 0 &&
4255 !list_empty(&conf->bitmap_list)) {
4256 /* Now is a good time to flush some bitmap updates */
4257 conf->seq_flush++;
4258 spin_unlock_irq(&conf->device_lock);
4259 bitmap_unplug(mddev->bitmap);
4260 spin_lock_irq(&conf->device_lock);
4261 conf->seq_write = conf->seq_flush;
4262 activate_bit_delay(conf);
4263 }
4264 if (atomic_read(&mddev->plug_cnt) == 0)
4265 raid5_activate_delayed(conf);
4266
4267 while ((bio = remove_bio_from_retry(conf))) {
4268 int ok;
4269 spin_unlock_irq(&conf->device_lock);
4270 ok = retry_aligned_read(conf, bio);
4271 spin_lock_irq(&conf->device_lock);
4272 if (!ok)
4273 break;
4274 handled++;
4275 }
4276
4277 sh = __get_priority_stripe(conf);
4278
4279 if (!sh)
4280 break;
4281 spin_unlock_irq(&conf->device_lock);
4282
4283 handled++;
4284 handle_stripe(sh);
4285 release_stripe(sh);
4286 cond_resched();
4287
4288 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4289 md_check_recovery(mddev);
4290
4291 spin_lock_irq(&conf->device_lock);
4292 }
4293 pr_debug("%d stripes handled\n", handled);
4294
4295 spin_unlock_irq(&conf->device_lock);
4296
4297 async_tx_issue_pending_all();
4298 blk_finish_plug(&plug);
4299
4300 pr_debug("--- raid5d inactive\n");
4301}
4302
4303static ssize_t
4304raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4305{
4306 raid5_conf_t *conf = mddev->private;
4307 if (conf)
4308 return sprintf(page, "%d\n", conf->max_nr_stripes);
4309 else
4310 return 0;
4311}
4312
4313int
4314raid5_set_cache_size(mddev_t *mddev, int size)
4315{
4316 raid5_conf_t *conf = mddev->private;
4317 int err;
4318
4319 if (size <= 16 || size > 32768)
4320 return -EINVAL;
4321 while (size < conf->max_nr_stripes) {
4322 if (drop_one_stripe(conf))
4323 conf->max_nr_stripes--;
4324 else
4325 break;
4326 }
4327 err = md_allow_write(mddev);
4328 if (err)
4329 return err;
4330 while (size > conf->max_nr_stripes) {
4331 if (grow_one_stripe(conf))
4332 conf->max_nr_stripes++;
4333 else break;
4334 }
4335 return 0;
4336}
4337EXPORT_SYMBOL(raid5_set_cache_size);
4338
4339static ssize_t
4340raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4341{
4342 raid5_conf_t *conf = mddev->private;
4343 unsigned long new;
4344 int err;
4345
4346 if (len >= PAGE_SIZE)
4347 return -EINVAL;
4348 if (!conf)
4349 return -ENODEV;
4350
4351 if (strict_strtoul(page, 10, &new))
4352 return -EINVAL;
4353 err = raid5_set_cache_size(mddev, new);
4354 if (err)
4355 return err;
4356 return len;
4357}
4358
4359static struct md_sysfs_entry
4360raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4361 raid5_show_stripe_cache_size,
4362 raid5_store_stripe_cache_size);
4363
4364static ssize_t
4365raid5_show_preread_threshold(mddev_t *mddev, char *page)
4366{
4367 raid5_conf_t *conf = mddev->private;
4368 if (conf)
4369 return sprintf(page, "%d\n", conf->bypass_threshold);
4370 else
4371 return 0;
4372}
4373
4374static ssize_t
4375raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4376{
4377 raid5_conf_t *conf = mddev->private;
4378 unsigned long new;
4379 if (len >= PAGE_SIZE)
4380 return -EINVAL;
4381 if (!conf)
4382 return -ENODEV;
4383
4384 if (strict_strtoul(page, 10, &new))
4385 return -EINVAL;
4386 if (new > conf->max_nr_stripes)
4387 return -EINVAL;
4388 conf->bypass_threshold = new;
4389 return len;
4390}
4391
4392static struct md_sysfs_entry
4393raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4394 S_IRUGO | S_IWUSR,
4395 raid5_show_preread_threshold,
4396 raid5_store_preread_threshold);
4397
4398static ssize_t
4399stripe_cache_active_show(mddev_t *mddev, char *page)
4400{
4401 raid5_conf_t *conf = mddev->private;
4402 if (conf)
4403 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4404 else
4405 return 0;
4406}
4407
4408static struct md_sysfs_entry
4409raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4410
4411static struct attribute *raid5_attrs[] = {
4412 &raid5_stripecache_size.attr,
4413 &raid5_stripecache_active.attr,
4414 &raid5_preread_bypass_threshold.attr,
4415 NULL,
4416};
4417static struct attribute_group raid5_attrs_group = {
4418 .name = NULL,
4419 .attrs = raid5_attrs,
4420};
4421
4422static sector_t
4423raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4424{
4425 raid5_conf_t *conf = mddev->private;
4426
4427 if (!sectors)
4428 sectors = mddev->dev_sectors;
4429 if (!raid_disks)
4430 /* size is defined by the smallest of previous and new size */
4431 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4432
4433 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4434 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4435 return sectors * (raid_disks - conf->max_degraded);
4436}
4437
4438static void raid5_free_percpu(raid5_conf_t *conf)
4439{
4440 struct raid5_percpu *percpu;
4441 unsigned long cpu;
4442
4443 if (!conf->percpu)
4444 return;
4445
4446 get_online_cpus();
4447 for_each_possible_cpu(cpu) {
4448 percpu = per_cpu_ptr(conf->percpu, cpu);
4449 safe_put_page(percpu->spare_page);
4450 kfree(percpu->scribble);
4451 }
4452#ifdef CONFIG_HOTPLUG_CPU
4453 unregister_cpu_notifier(&conf->cpu_notify);
4454#endif
4455 put_online_cpus();
4456
4457 free_percpu(conf->percpu);
4458}
4459
4460static void free_conf(raid5_conf_t *conf)
4461{
4462 shrink_stripes(conf);
4463 raid5_free_percpu(conf);
4464 kfree(conf->disks);
4465 kfree(conf->stripe_hashtbl);
4466 kfree(conf);
4467}
4468
4469#ifdef CONFIG_HOTPLUG_CPU
4470static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4471 void *hcpu)
4472{
4473 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4474 long cpu = (long)hcpu;
4475 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4476
4477 switch (action) {
4478 case CPU_UP_PREPARE:
4479 case CPU_UP_PREPARE_FROZEN:
4480 if (conf->level == 6 && !percpu->spare_page)
4481 percpu->spare_page = alloc_page(GFP_KERNEL);
4482 if (!percpu->scribble)
4483 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4484
4485 if (!percpu->scribble ||
4486 (conf->level == 6 && !percpu->spare_page)) {
4487 safe_put_page(percpu->spare_page);
4488 kfree(percpu->scribble);
4489 pr_err("%s: failed memory allocation for cpu%ld\n",
4490 __func__, cpu);
4491 return notifier_from_errno(-ENOMEM);
4492 }
4493 break;
4494 case CPU_DEAD:
4495 case CPU_DEAD_FROZEN:
4496 safe_put_page(percpu->spare_page);
4497 kfree(percpu->scribble);
4498 percpu->spare_page = NULL;
4499 percpu->scribble = NULL;
4500 break;
4501 default:
4502 break;
4503 }
4504 return NOTIFY_OK;
4505}
4506#endif
4507
4508static int raid5_alloc_percpu(raid5_conf_t *conf)
4509{
4510 unsigned long cpu;
4511 struct page *spare_page;
4512 struct raid5_percpu __percpu *allcpus;
4513 void *scribble;
4514 int err;
4515
4516 allcpus = alloc_percpu(struct raid5_percpu);
4517 if (!allcpus)
4518 return -ENOMEM;
4519 conf->percpu = allcpus;
4520
4521 get_online_cpus();
4522 err = 0;
4523 for_each_present_cpu(cpu) {
4524 if (conf->level == 6) {
4525 spare_page = alloc_page(GFP_KERNEL);
4526 if (!spare_page) {
4527 err = -ENOMEM;
4528 break;
4529 }
4530 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4531 }
4532 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4533 if (!scribble) {
4534 err = -ENOMEM;
4535 break;
4536 }
4537 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4538 }
4539#ifdef CONFIG_HOTPLUG_CPU
4540 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4541 conf->cpu_notify.priority = 0;
4542 if (err == 0)
4543 err = register_cpu_notifier(&conf->cpu_notify);
4544#endif
4545 put_online_cpus();
4546
4547 return err;
4548}
4549
4550static raid5_conf_t *setup_conf(mddev_t *mddev)
4551{
4552 raid5_conf_t *conf;
4553 int raid_disk, memory, max_disks;
4554 mdk_rdev_t *rdev;
4555 struct disk_info *disk;
4556
4557 if (mddev->new_level != 5
4558 && mddev->new_level != 4
4559 && mddev->new_level != 6) {
4560 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4561 mdname(mddev), mddev->new_level);
4562 return ERR_PTR(-EIO);
4563 }
4564 if ((mddev->new_level == 5
4565 && !algorithm_valid_raid5(mddev->new_layout)) ||
4566 (mddev->new_level == 6
4567 && !algorithm_valid_raid6(mddev->new_layout))) {
4568 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4569 mdname(mddev), mddev->new_layout);
4570 return ERR_PTR(-EIO);
4571 }
4572 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4573 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4574 mdname(mddev), mddev->raid_disks);
4575 return ERR_PTR(-EINVAL);
4576 }
4577
4578 if (!mddev->new_chunk_sectors ||
4579 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4580 !is_power_of_2(mddev->new_chunk_sectors)) {
4581 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4582 mdname(mddev), mddev->new_chunk_sectors << 9);
4583 return ERR_PTR(-EINVAL);
4584 }
4585
4586 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4587 if (conf == NULL)
4588 goto abort;
4589 spin_lock_init(&conf->device_lock);
4590 init_waitqueue_head(&conf->wait_for_stripe);
4591 init_waitqueue_head(&conf->wait_for_overlap);
4592 INIT_LIST_HEAD(&conf->handle_list);
4593 INIT_LIST_HEAD(&conf->hold_list);
4594 INIT_LIST_HEAD(&conf->delayed_list);
4595 INIT_LIST_HEAD(&conf->bitmap_list);
4596 INIT_LIST_HEAD(&conf->inactive_list);
4597 atomic_set(&conf->active_stripes, 0);
4598 atomic_set(&conf->preread_active_stripes, 0);
4599 atomic_set(&conf->active_aligned_reads, 0);
4600 conf->bypass_threshold = BYPASS_THRESHOLD;
4601
4602 conf->raid_disks = mddev->raid_disks;
4603 if (mddev->reshape_position == MaxSector)
4604 conf->previous_raid_disks = mddev->raid_disks;
4605 else
4606 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4607 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4608 conf->scribble_len = scribble_len(max_disks);
4609
4610 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4611 GFP_KERNEL);
4612 if (!conf->disks)
4613 goto abort;
4614
4615 conf->mddev = mddev;
4616
4617 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4618 goto abort;
4619
4620 conf->level = mddev->new_level;
4621 if (raid5_alloc_percpu(conf) != 0)
4622 goto abort;
4623
4624 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4625
4626 list_for_each_entry(rdev, &mddev->disks, same_set) {
4627 raid_disk = rdev->raid_disk;
4628 if (raid_disk >= max_disks
4629 || raid_disk < 0)
4630 continue;
4631 disk = conf->disks + raid_disk;
4632
4633 disk->rdev = rdev;
4634
4635 if (test_bit(In_sync, &rdev->flags)) {
4636 char b[BDEVNAME_SIZE];
4637 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4638 " disk %d\n",
4639 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4640 } else if (rdev->saved_raid_disk != raid_disk)
4641 /* Cannot rely on bitmap to complete recovery */
4642 conf->fullsync = 1;
4643 }
4644
4645 conf->chunk_sectors = mddev->new_chunk_sectors;
4646 conf->level = mddev->new_level;
4647 if (conf->level == 6)
4648 conf->max_degraded = 2;
4649 else
4650 conf->max_degraded = 1;
4651 conf->algorithm = mddev->new_layout;
4652 conf->max_nr_stripes = NR_STRIPES;
4653 conf->reshape_progress = mddev->reshape_position;
4654 if (conf->reshape_progress != MaxSector) {
4655 conf->prev_chunk_sectors = mddev->chunk_sectors;
4656 conf->prev_algo = mddev->layout;
4657 }
4658
4659 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4660 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4661 if (grow_stripes(conf, conf->max_nr_stripes)) {
4662 printk(KERN_ERR
4663 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4664 mdname(mddev), memory);
4665 goto abort;
4666 } else
4667 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4668 mdname(mddev), memory);
4669
4670 conf->thread = md_register_thread(raid5d, mddev, NULL);
4671 if (!conf->thread) {
4672 printk(KERN_ERR
4673 "md/raid:%s: couldn't allocate thread.\n",
4674 mdname(mddev));
4675 goto abort;
4676 }
4677
4678 return conf;
4679
4680 abort:
4681 if (conf) {
4682 free_conf(conf);
4683 return ERR_PTR(-EIO);
4684 } else
4685 return ERR_PTR(-ENOMEM);
4686}
4687
4688
4689static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4690{
4691 switch (algo) {
4692 case ALGORITHM_PARITY_0:
4693 if (raid_disk < max_degraded)
4694 return 1;
4695 break;
4696 case ALGORITHM_PARITY_N:
4697 if (raid_disk >= raid_disks - max_degraded)
4698 return 1;
4699 break;
4700 case ALGORITHM_PARITY_0_6:
4701 if (raid_disk == 0 ||
4702 raid_disk == raid_disks - 1)
4703 return 1;
4704 break;
4705 case ALGORITHM_LEFT_ASYMMETRIC_6:
4706 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4707 case ALGORITHM_LEFT_SYMMETRIC_6:
4708 case ALGORITHM_RIGHT_SYMMETRIC_6:
4709 if (raid_disk == raid_disks - 1)
4710 return 1;
4711 }
4712 return 0;
4713}
4714
4715static int run(mddev_t *mddev)
4716{
4717 raid5_conf_t *conf;
4718 int working_disks = 0;
4719 int dirty_parity_disks = 0;
4720 mdk_rdev_t *rdev;
4721 sector_t reshape_offset = 0;
4722
4723 if (mddev->recovery_cp != MaxSector)
4724 printk(KERN_NOTICE "md/raid:%s: not clean"
4725 " -- starting background reconstruction\n",
4726 mdname(mddev));
4727 if (mddev->reshape_position != MaxSector) {
4728 /* Check that we can continue the reshape.
4729 * Currently only disks can change, it must
4730 * increase, and we must be past the point where
4731 * a stripe over-writes itself
4732 */
4733 sector_t here_new, here_old;
4734 int old_disks;
4735 int max_degraded = (mddev->level == 6 ? 2 : 1);
4736
4737 if (mddev->new_level != mddev->level) {
4738 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4739 "required - aborting.\n",
4740 mdname(mddev));
4741 return -EINVAL;
4742 }
4743 old_disks = mddev->raid_disks - mddev->delta_disks;
4744 /* reshape_position must be on a new-stripe boundary, and one
4745 * further up in new geometry must map after here in old
4746 * geometry.
4747 */
4748 here_new = mddev->reshape_position;
4749 if (sector_div(here_new, mddev->new_chunk_sectors *
4750 (mddev->raid_disks - max_degraded))) {
4751 printk(KERN_ERR "md/raid:%s: reshape_position not "
4752 "on a stripe boundary\n", mdname(mddev));
4753 return -EINVAL;
4754 }
4755 reshape_offset = here_new * mddev->new_chunk_sectors;
4756 /* here_new is the stripe we will write to */
4757 here_old = mddev->reshape_position;
4758 sector_div(here_old, mddev->chunk_sectors *
4759 (old_disks-max_degraded));
4760 /* here_old is the first stripe that we might need to read
4761 * from */
4762 if (mddev->delta_disks == 0) {
4763 /* We cannot be sure it is safe to start an in-place
4764 * reshape. It is only safe if user-space if monitoring
4765 * and taking constant backups.
4766 * mdadm always starts a situation like this in
4767 * readonly mode so it can take control before
4768 * allowing any writes. So just check for that.
4769 */
4770 if ((here_new * mddev->new_chunk_sectors !=
4771 here_old * mddev->chunk_sectors) ||
4772 mddev->ro == 0) {
4773 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4774 " in read-only mode - aborting\n",
4775 mdname(mddev));
4776 return -EINVAL;
4777 }
4778 } else if (mddev->delta_disks < 0
4779 ? (here_new * mddev->new_chunk_sectors <=
4780 here_old * mddev->chunk_sectors)
4781 : (here_new * mddev->new_chunk_sectors >=
4782 here_old * mddev->chunk_sectors)) {
4783 /* Reading from the same stripe as writing to - bad */
4784 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4785 "auto-recovery - aborting.\n",
4786 mdname(mddev));
4787 return -EINVAL;
4788 }
4789 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4790 mdname(mddev));
4791 /* OK, we should be able to continue; */
4792 } else {
4793 BUG_ON(mddev->level != mddev->new_level);
4794 BUG_ON(mddev->layout != mddev->new_layout);
4795 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4796 BUG_ON(mddev->delta_disks != 0);
4797 }
4798
4799 if (mddev->private == NULL)
4800 conf = setup_conf(mddev);
4801 else
4802 conf = mddev->private;
4803
4804 if (IS_ERR(conf))
4805 return PTR_ERR(conf);
4806
4807 mddev->thread = conf->thread;
4808 conf->thread = NULL;
4809 mddev->private = conf;
4810
4811 /*
4812 * 0 for a fully functional array, 1 or 2 for a degraded array.
4813 */
4814 list_for_each_entry(rdev, &mddev->disks, same_set) {
4815 if (rdev->raid_disk < 0)
4816 continue;
4817 if (test_bit(In_sync, &rdev->flags)) {
4818 working_disks++;
4819 continue;
4820 }
4821 /* This disc is not fully in-sync. However if it
4822 * just stored parity (beyond the recovery_offset),
4823 * when we don't need to be concerned about the
4824 * array being dirty.
4825 * When reshape goes 'backwards', we never have
4826 * partially completed devices, so we only need
4827 * to worry about reshape going forwards.
4828 */
4829 /* Hack because v0.91 doesn't store recovery_offset properly. */
4830 if (mddev->major_version == 0 &&
4831 mddev->minor_version > 90)
4832 rdev->recovery_offset = reshape_offset;
4833
4834 if (rdev->recovery_offset < reshape_offset) {
4835 /* We need to check old and new layout */
4836 if (!only_parity(rdev->raid_disk,
4837 conf->algorithm,
4838 conf->raid_disks,
4839 conf->max_degraded))
4840 continue;
4841 }
4842 if (!only_parity(rdev->raid_disk,
4843 conf->prev_algo,
4844 conf->previous_raid_disks,
4845 conf->max_degraded))
4846 continue;
4847 dirty_parity_disks++;
4848 }
4849
4850 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4851 - working_disks);
4852
4853 if (has_failed(conf)) {
4854 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4855 " (%d/%d failed)\n",
4856 mdname(mddev), mddev->degraded, conf->raid_disks);
4857 goto abort;
4858 }
4859
4860 /* device size must be a multiple of chunk size */
4861 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4862 mddev->resync_max_sectors = mddev->dev_sectors;
4863
4864 if (mddev->degraded > dirty_parity_disks &&
4865 mddev->recovery_cp != MaxSector) {
4866 if (mddev->ok_start_degraded)
4867 printk(KERN_WARNING
4868 "md/raid:%s: starting dirty degraded array"
4869 " - data corruption possible.\n",
4870 mdname(mddev));
4871 else {
4872 printk(KERN_ERR
4873 "md/raid:%s: cannot start dirty degraded array.\n",
4874 mdname(mddev));
4875 goto abort;
4876 }
4877 }
4878
4879 if (mddev->degraded == 0)
4880 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4881 " devices, algorithm %d\n", mdname(mddev), conf->level,
4882 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4883 mddev->new_layout);
4884 else
4885 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4886 " out of %d devices, algorithm %d\n",
4887 mdname(mddev), conf->level,
4888 mddev->raid_disks - mddev->degraded,
4889 mddev->raid_disks, mddev->new_layout);
4890
4891 print_raid5_conf(conf);
4892
4893 if (conf->reshape_progress != MaxSector) {
4894 conf->reshape_safe = conf->reshape_progress;
4895 atomic_set(&conf->reshape_stripes, 0);
4896 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4897 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4898 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4899 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4900 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4901 "reshape");
4902 }
4903
4904
4905 /* Ok, everything is just fine now */
4906 if (mddev->to_remove == &raid5_attrs_group)
4907 mddev->to_remove = NULL;
4908 else if (mddev->kobj.sd &&
4909 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4910 printk(KERN_WARNING
4911 "raid5: failed to create sysfs attributes for %s\n",
4912 mdname(mddev));
4913 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4914
4915 if (mddev->queue) {
4916 int chunk_size;
4917 /* read-ahead size must cover two whole stripes, which
4918 * is 2 * (datadisks) * chunksize where 'n' is the
4919 * number of raid devices
4920 */
4921 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4922 int stripe = data_disks *
4923 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4924 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4925 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4926
4927 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4928
4929 mddev->queue->backing_dev_info.congested_data = mddev;
4930 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4931
4932 chunk_size = mddev->chunk_sectors << 9;
4933 blk_queue_io_min(mddev->queue, chunk_size);
4934 blk_queue_io_opt(mddev->queue, chunk_size *
4935 (conf->raid_disks - conf->max_degraded));
4936
4937 list_for_each_entry(rdev, &mddev->disks, same_set)
4938 disk_stack_limits(mddev->gendisk, rdev->bdev,
4939 rdev->data_offset << 9);
4940 }
4941
4942 return 0;
4943abort:
4944 md_unregister_thread(&mddev->thread);
4945 if (conf) {
4946 print_raid5_conf(conf);
4947 free_conf(conf);
4948 }
4949 mddev->private = NULL;
4950 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4951 return -EIO;
4952}
4953
4954static int stop(mddev_t *mddev)
4955{
4956 raid5_conf_t *conf = mddev->private;
4957
4958 md_unregister_thread(&mddev->thread);
4959 if (mddev->queue)
4960 mddev->queue->backing_dev_info.congested_fn = NULL;
4961 free_conf(conf);
4962 mddev->private = NULL;
4963 mddev->to_remove = &raid5_attrs_group;
4964 return 0;
4965}
4966
4967#ifdef DEBUG
4968static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4969{
4970 int i;
4971
4972 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4973 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4974 seq_printf(seq, "sh %llu, count %d.\n",
4975 (unsigned long long)sh->sector, atomic_read(&sh->count));
4976 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4977 for (i = 0; i < sh->disks; i++) {
4978 seq_printf(seq, "(cache%d: %p %ld) ",
4979 i, sh->dev[i].page, sh->dev[i].flags);
4980 }
4981 seq_printf(seq, "\n");
4982}
4983
4984static void printall(struct seq_file *seq, raid5_conf_t *conf)
4985{
4986 struct stripe_head *sh;
4987 struct hlist_node *hn;
4988 int i;
4989
4990 spin_lock_irq(&conf->device_lock);
4991 for (i = 0; i < NR_HASH; i++) {
4992 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4993 if (sh->raid_conf != conf)
4994 continue;
4995 print_sh(seq, sh);
4996 }
4997 }
4998 spin_unlock_irq(&conf->device_lock);
4999}
5000#endif
5001
5002static void status(struct seq_file *seq, mddev_t *mddev)
5003{
5004 raid5_conf_t *conf = mddev->private;
5005 int i;
5006
5007 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5008 mddev->chunk_sectors / 2, mddev->layout);
5009 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5010 for (i = 0; i < conf->raid_disks; i++)
5011 seq_printf (seq, "%s",
5012 conf->disks[i].rdev &&
5013 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5014 seq_printf (seq, "]");
5015#ifdef DEBUG
5016 seq_printf (seq, "\n");
5017 printall(seq, conf);
5018#endif
5019}
5020
5021static void print_raid5_conf (raid5_conf_t *conf)
5022{
5023 int i;
5024 struct disk_info *tmp;
5025
5026 printk(KERN_DEBUG "RAID conf printout:\n");
5027 if (!conf) {
5028 printk("(conf==NULL)\n");
5029 return;
5030 }
5031 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5032 conf->raid_disks,
5033 conf->raid_disks - conf->mddev->degraded);
5034
5035 for (i = 0; i < conf->raid_disks; i++) {
5036 char b[BDEVNAME_SIZE];
5037 tmp = conf->disks + i;
5038 if (tmp->rdev)
5039 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5040 i, !test_bit(Faulty, &tmp->rdev->flags),
5041 bdevname(tmp->rdev->bdev, b));
5042 }
5043}
5044
5045static int raid5_spare_active(mddev_t *mddev)
5046{
5047 int i;
5048 raid5_conf_t *conf = mddev->private;
5049 struct disk_info *tmp;
5050 int count = 0;
5051 unsigned long flags;
5052
5053 for (i = 0; i < conf->raid_disks; i++) {
5054 tmp = conf->disks + i;
5055 if (tmp->rdev
5056 && tmp->rdev->recovery_offset == MaxSector
5057 && !test_bit(Faulty, &tmp->rdev->flags)
5058 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5059 count++;
5060 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5061 }
5062 }
5063 spin_lock_irqsave(&conf->device_lock, flags);
5064 mddev->degraded -= count;
5065 spin_unlock_irqrestore(&conf->device_lock, flags);
5066 print_raid5_conf(conf);
5067 return count;
5068}
5069
5070static int raid5_remove_disk(mddev_t *mddev, int number)
5071{
5072 raid5_conf_t *conf = mddev->private;
5073 int err = 0;
5074 mdk_rdev_t *rdev;
5075 struct disk_info *p = conf->disks + number;
5076
5077 print_raid5_conf(conf);
5078 rdev = p->rdev;
5079 if (rdev) {
5080 if (number >= conf->raid_disks &&
5081 conf->reshape_progress == MaxSector)
5082 clear_bit(In_sync, &rdev->flags);
5083
5084 if (test_bit(In_sync, &rdev->flags) ||
5085 atomic_read(&rdev->nr_pending)) {
5086 err = -EBUSY;
5087 goto abort;
5088 }
5089 /* Only remove non-faulty devices if recovery
5090 * isn't possible.
5091 */
5092 if (!test_bit(Faulty, &rdev->flags) &&
5093 mddev->recovery_disabled != conf->recovery_disabled &&
5094 !has_failed(conf) &&
5095 number < conf->raid_disks) {
5096 err = -EBUSY;
5097 goto abort;
5098 }
5099 p->rdev = NULL;
5100 synchronize_rcu();
5101 if (atomic_read(&rdev->nr_pending)) {
5102 /* lost the race, try later */
5103 err = -EBUSY;
5104 p->rdev = rdev;
5105 }
5106 }
5107abort:
5108
5109 print_raid5_conf(conf);
5110 return err;
5111}
5112
5113static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5114{
5115 raid5_conf_t *conf = mddev->private;
5116 int err = -EEXIST;
5117 int disk;
5118 struct disk_info *p;
5119 int first = 0;
5120 int last = conf->raid_disks - 1;
5121
5122 if (mddev->recovery_disabled == conf->recovery_disabled)
5123 return -EBUSY;
5124
5125 if (has_failed(conf))
5126 /* no point adding a device */
5127 return -EINVAL;
5128
5129 if (rdev->raid_disk >= 0)
5130 first = last = rdev->raid_disk;
5131
5132 /*
5133 * find the disk ... but prefer rdev->saved_raid_disk
5134 * if possible.
5135 */
5136 if (rdev->saved_raid_disk >= 0 &&
5137 rdev->saved_raid_disk >= first &&
5138 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5139 disk = rdev->saved_raid_disk;
5140 else
5141 disk = first;
5142 for ( ; disk <= last ; disk++)
5143 if ((p=conf->disks + disk)->rdev == NULL) {
5144 clear_bit(In_sync, &rdev->flags);
5145 rdev->raid_disk = disk;
5146 err = 0;
5147 if (rdev->saved_raid_disk != disk)
5148 conf->fullsync = 1;
5149 rcu_assign_pointer(p->rdev, rdev);
5150 break;
5151 }
5152 print_raid5_conf(conf);
5153 return err;
5154}
5155
5156static int raid5_resize(mddev_t *mddev, sector_t sectors)
5157{
5158 /* no resync is happening, and there is enough space
5159 * on all devices, so we can resize.
5160 * We need to make sure resync covers any new space.
5161 * If the array is shrinking we should possibly wait until
5162 * any io in the removed space completes, but it hardly seems
5163 * worth it.
5164 */
5165 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5166 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5167 mddev->raid_disks));
5168 if (mddev->array_sectors >
5169 raid5_size(mddev, sectors, mddev->raid_disks))
5170 return -EINVAL;
5171 set_capacity(mddev->gendisk, mddev->array_sectors);
5172 revalidate_disk(mddev->gendisk);
5173 if (sectors > mddev->dev_sectors &&
5174 mddev->recovery_cp > mddev->dev_sectors) {
5175 mddev->recovery_cp = mddev->dev_sectors;
5176 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5177 }
5178 mddev->dev_sectors = sectors;
5179 mddev->resync_max_sectors = sectors;
5180 return 0;
5181}
5182
5183static int check_stripe_cache(mddev_t *mddev)
5184{
5185 /* Can only proceed if there are plenty of stripe_heads.
5186 * We need a minimum of one full stripe,, and for sensible progress
5187 * it is best to have about 4 times that.
5188 * If we require 4 times, then the default 256 4K stripe_heads will
5189 * allow for chunk sizes up to 256K, which is probably OK.
5190 * If the chunk size is greater, user-space should request more
5191 * stripe_heads first.
5192 */
5193 raid5_conf_t *conf = mddev->private;
5194 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5195 > conf->max_nr_stripes ||
5196 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5197 > conf->max_nr_stripes) {
5198 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5199 mdname(mddev),
5200 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5201 / STRIPE_SIZE)*4);
5202 return 0;
5203 }
5204 return 1;
5205}
5206
5207static int check_reshape(mddev_t *mddev)
5208{
5209 raid5_conf_t *conf = mddev->private;
5210
5211 if (mddev->delta_disks == 0 &&
5212 mddev->new_layout == mddev->layout &&
5213 mddev->new_chunk_sectors == mddev->chunk_sectors)
5214 return 0; /* nothing to do */
5215 if (mddev->bitmap)
5216 /* Cannot grow a bitmap yet */
5217 return -EBUSY;
5218 if (has_failed(conf))
5219 return -EINVAL;
5220 if (mddev->delta_disks < 0) {
5221 /* We might be able to shrink, but the devices must
5222 * be made bigger first.
5223 * For raid6, 4 is the minimum size.
5224 * Otherwise 2 is the minimum
5225 */
5226 int min = 2;
5227 if (mddev->level == 6)
5228 min = 4;
5229 if (mddev->raid_disks + mddev->delta_disks < min)
5230 return -EINVAL;
5231 }
5232
5233 if (!check_stripe_cache(mddev))
5234 return -ENOSPC;
5235
5236 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5237}
5238
5239static int raid5_start_reshape(mddev_t *mddev)
5240{
5241 raid5_conf_t *conf = mddev->private;
5242 mdk_rdev_t *rdev;
5243 int spares = 0;
5244 unsigned long flags;
5245
5246 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5247 return -EBUSY;
5248
5249 if (!check_stripe_cache(mddev))
5250 return -ENOSPC;
5251
5252 list_for_each_entry(rdev, &mddev->disks, same_set)
5253 if (!test_bit(In_sync, &rdev->flags)
5254 && !test_bit(Faulty, &rdev->flags))
5255 spares++;
5256
5257 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5258 /* Not enough devices even to make a degraded array
5259 * of that size
5260 */
5261 return -EINVAL;
5262
5263 /* Refuse to reduce size of the array. Any reductions in
5264 * array size must be through explicit setting of array_size
5265 * attribute.
5266 */
5267 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5268 < mddev->array_sectors) {
5269 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5270 "before number of disks\n", mdname(mddev));
5271 return -EINVAL;
5272 }
5273
5274 atomic_set(&conf->reshape_stripes, 0);
5275 spin_lock_irq(&conf->device_lock);
5276 conf->previous_raid_disks = conf->raid_disks;
5277 conf->raid_disks += mddev->delta_disks;
5278 conf->prev_chunk_sectors = conf->chunk_sectors;
5279 conf->chunk_sectors = mddev->new_chunk_sectors;
5280 conf->prev_algo = conf->algorithm;
5281 conf->algorithm = mddev->new_layout;
5282 if (mddev->delta_disks < 0)
5283 conf->reshape_progress = raid5_size(mddev, 0, 0);
5284 else
5285 conf->reshape_progress = 0;
5286 conf->reshape_safe = conf->reshape_progress;
5287 conf->generation++;
5288 spin_unlock_irq(&conf->device_lock);
5289
5290 /* Add some new drives, as many as will fit.
5291 * We know there are enough to make the newly sized array work.
5292 * Don't add devices if we are reducing the number of
5293 * devices in the array. This is because it is not possible
5294 * to correctly record the "partially reconstructed" state of
5295 * such devices during the reshape and confusion could result.
5296 */
5297 if (mddev->delta_disks >= 0) {
5298 int added_devices = 0;
5299 list_for_each_entry(rdev, &mddev->disks, same_set)
5300 if (rdev->raid_disk < 0 &&
5301 !test_bit(Faulty, &rdev->flags)) {
5302 if (raid5_add_disk(mddev, rdev) == 0) {
5303 if (rdev->raid_disk
5304 >= conf->previous_raid_disks) {
5305 set_bit(In_sync, &rdev->flags);
5306 added_devices++;
5307 } else
5308 rdev->recovery_offset = 0;
5309
5310 if (sysfs_link_rdev(mddev, rdev))
5311 /* Failure here is OK */;
5312 }
5313 } else if (rdev->raid_disk >= conf->previous_raid_disks
5314 && !test_bit(Faulty, &rdev->flags)) {
5315 /* This is a spare that was manually added */
5316 set_bit(In_sync, &rdev->flags);
5317 added_devices++;
5318 }
5319
5320 /* When a reshape changes the number of devices,
5321 * ->degraded is measured against the larger of the
5322 * pre and post number of devices.
5323 */
5324 spin_lock_irqsave(&conf->device_lock, flags);
5325 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5326 - added_devices;
5327 spin_unlock_irqrestore(&conf->device_lock, flags);
5328 }
5329 mddev->raid_disks = conf->raid_disks;
5330 mddev->reshape_position = conf->reshape_progress;
5331 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5332
5333 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5334 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5335 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5336 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5337 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5338 "reshape");
5339 if (!mddev->sync_thread) {
5340 mddev->recovery = 0;
5341 spin_lock_irq(&conf->device_lock);
5342 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5343 conf->reshape_progress = MaxSector;
5344 spin_unlock_irq(&conf->device_lock);
5345 return -EAGAIN;
5346 }
5347 conf->reshape_checkpoint = jiffies;
5348 md_wakeup_thread(mddev->sync_thread);
5349 md_new_event(mddev);
5350 return 0;
5351}
5352
5353/* This is called from the reshape thread and should make any
5354 * changes needed in 'conf'
5355 */
5356static void end_reshape(raid5_conf_t *conf)
5357{
5358
5359 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5360
5361 spin_lock_irq(&conf->device_lock);
5362 conf->previous_raid_disks = conf->raid_disks;
5363 conf->reshape_progress = MaxSector;
5364 spin_unlock_irq(&conf->device_lock);
5365 wake_up(&conf->wait_for_overlap);
5366
5367 /* read-ahead size must cover two whole stripes, which is
5368 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5369 */
5370 if (conf->mddev->queue) {
5371 int data_disks = conf->raid_disks - conf->max_degraded;
5372 int stripe = data_disks * ((conf->chunk_sectors << 9)
5373 / PAGE_SIZE);
5374 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5375 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5376 }
5377 }
5378}
5379
5380/* This is called from the raid5d thread with mddev_lock held.
5381 * It makes config changes to the device.
5382 */
5383static void raid5_finish_reshape(mddev_t *mddev)
5384{
5385 raid5_conf_t *conf = mddev->private;
5386
5387 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5388
5389 if (mddev->delta_disks > 0) {
5390 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5391 set_capacity(mddev->gendisk, mddev->array_sectors);
5392 revalidate_disk(mddev->gendisk);
5393 } else {
5394 int d;
5395 mddev->degraded = conf->raid_disks;
5396 for (d = 0; d < conf->raid_disks ; d++)
5397 if (conf->disks[d].rdev &&
5398 test_bit(In_sync,
5399 &conf->disks[d].rdev->flags))
5400 mddev->degraded--;
5401 for (d = conf->raid_disks ;
5402 d < conf->raid_disks - mddev->delta_disks;
5403 d++) {
5404 mdk_rdev_t *rdev = conf->disks[d].rdev;
5405 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5406 sysfs_unlink_rdev(mddev, rdev);
5407 rdev->raid_disk = -1;
5408 }
5409 }
5410 }
5411 mddev->layout = conf->algorithm;
5412 mddev->chunk_sectors = conf->chunk_sectors;
5413 mddev->reshape_position = MaxSector;
5414 mddev->delta_disks = 0;
5415 }
5416}
5417
5418static void raid5_quiesce(mddev_t *mddev, int state)
5419{
5420 raid5_conf_t *conf = mddev->private;
5421
5422 switch(state) {
5423 case 2: /* resume for a suspend */
5424 wake_up(&conf->wait_for_overlap);
5425 break;
5426
5427 case 1: /* stop all writes */
5428 spin_lock_irq(&conf->device_lock);
5429 /* '2' tells resync/reshape to pause so that all
5430 * active stripes can drain
5431 */
5432 conf->quiesce = 2;
5433 wait_event_lock_irq(conf->wait_for_stripe,
5434 atomic_read(&conf->active_stripes) == 0 &&
5435 atomic_read(&conf->active_aligned_reads) == 0,
5436 conf->device_lock, /* nothing */);
5437 conf->quiesce = 1;
5438 spin_unlock_irq(&conf->device_lock);
5439 /* allow reshape to continue */
5440 wake_up(&conf->wait_for_overlap);
5441 break;
5442
5443 case 0: /* re-enable writes */
5444 spin_lock_irq(&conf->device_lock);
5445 conf->quiesce = 0;
5446 wake_up(&conf->wait_for_stripe);
5447 wake_up(&conf->wait_for_overlap);
5448 spin_unlock_irq(&conf->device_lock);
5449 break;
5450 }
5451}
5452
5453
5454static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5455{
5456 struct raid0_private_data *raid0_priv = mddev->private;
5457 sector_t sectors;
5458
5459 /* for raid0 takeover only one zone is supported */
5460 if (raid0_priv->nr_strip_zones > 1) {
5461 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5462 mdname(mddev));
5463 return ERR_PTR(-EINVAL);
5464 }
5465
5466 sectors = raid0_priv->strip_zone[0].zone_end;
5467 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5468 mddev->dev_sectors = sectors;
5469 mddev->new_level = level;
5470 mddev->new_layout = ALGORITHM_PARITY_N;
5471 mddev->new_chunk_sectors = mddev->chunk_sectors;
5472 mddev->raid_disks += 1;
5473 mddev->delta_disks = 1;
5474 /* make sure it will be not marked as dirty */
5475 mddev->recovery_cp = MaxSector;
5476
5477 return setup_conf(mddev);
5478}
5479
5480
5481static void *raid5_takeover_raid1(mddev_t *mddev)
5482{
5483 int chunksect;
5484
5485 if (mddev->raid_disks != 2 ||
5486 mddev->degraded > 1)
5487 return ERR_PTR(-EINVAL);
5488
5489 /* Should check if there are write-behind devices? */
5490
5491 chunksect = 64*2; /* 64K by default */
5492
5493 /* The array must be an exact multiple of chunksize */
5494 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5495 chunksect >>= 1;
5496
5497 if ((chunksect<<9) < STRIPE_SIZE)
5498 /* array size does not allow a suitable chunk size */
5499 return ERR_PTR(-EINVAL);
5500
5501 mddev->new_level = 5;
5502 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5503 mddev->new_chunk_sectors = chunksect;
5504
5505 return setup_conf(mddev);
5506}
5507
5508static void *raid5_takeover_raid6(mddev_t *mddev)
5509{
5510 int new_layout;
5511
5512 switch (mddev->layout) {
5513 case ALGORITHM_LEFT_ASYMMETRIC_6:
5514 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5515 break;
5516 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5517 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5518 break;
5519 case ALGORITHM_LEFT_SYMMETRIC_6:
5520 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5521 break;
5522 case ALGORITHM_RIGHT_SYMMETRIC_6:
5523 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5524 break;
5525 case ALGORITHM_PARITY_0_6:
5526 new_layout = ALGORITHM_PARITY_0;
5527 break;
5528 case ALGORITHM_PARITY_N:
5529 new_layout = ALGORITHM_PARITY_N;
5530 break;
5531 default:
5532 return ERR_PTR(-EINVAL);
5533 }
5534 mddev->new_level = 5;
5535 mddev->new_layout = new_layout;
5536 mddev->delta_disks = -1;
5537 mddev->raid_disks -= 1;
5538 return setup_conf(mddev);
5539}
5540
5541
5542static int raid5_check_reshape(mddev_t *mddev)
5543{
5544 /* For a 2-drive array, the layout and chunk size can be changed
5545 * immediately as not restriping is needed.
5546 * For larger arrays we record the new value - after validation
5547 * to be used by a reshape pass.
5548 */
5549 raid5_conf_t *conf = mddev->private;
5550 int new_chunk = mddev->new_chunk_sectors;
5551
5552 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5553 return -EINVAL;
5554 if (new_chunk > 0) {
5555 if (!is_power_of_2(new_chunk))
5556 return -EINVAL;
5557 if (new_chunk < (PAGE_SIZE>>9))
5558 return -EINVAL;
5559 if (mddev->array_sectors & (new_chunk-1))
5560 /* not factor of array size */
5561 return -EINVAL;
5562 }
5563
5564 /* They look valid */
5565
5566 if (mddev->raid_disks == 2) {
5567 /* can make the change immediately */
5568 if (mddev->new_layout >= 0) {
5569 conf->algorithm = mddev->new_layout;
5570 mddev->layout = mddev->new_layout;
5571 }
5572 if (new_chunk > 0) {
5573 conf->chunk_sectors = new_chunk ;
5574 mddev->chunk_sectors = new_chunk;
5575 }
5576 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5577 md_wakeup_thread(mddev->thread);
5578 }
5579 return check_reshape(mddev);
5580}
5581
5582static int raid6_check_reshape(mddev_t *mddev)
5583{
5584 int new_chunk = mddev->new_chunk_sectors;
5585
5586 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5587 return -EINVAL;
5588 if (new_chunk > 0) {
5589 if (!is_power_of_2(new_chunk))
5590 return -EINVAL;
5591 if (new_chunk < (PAGE_SIZE >> 9))
5592 return -EINVAL;
5593 if (mddev->array_sectors & (new_chunk-1))
5594 /* not factor of array size */
5595 return -EINVAL;
5596 }
5597
5598 /* They look valid */
5599 return check_reshape(mddev);
5600}
5601
5602static void *raid5_takeover(mddev_t *mddev)
5603{
5604 /* raid5 can take over:
5605 * raid0 - if there is only one strip zone - make it a raid4 layout
5606 * raid1 - if there are two drives. We need to know the chunk size
5607 * raid4 - trivial - just use a raid4 layout.
5608 * raid6 - Providing it is a *_6 layout
5609 */
5610 if (mddev->level == 0)
5611 return raid45_takeover_raid0(mddev, 5);
5612 if (mddev->level == 1)
5613 return raid5_takeover_raid1(mddev);
5614 if (mddev->level == 4) {
5615 mddev->new_layout = ALGORITHM_PARITY_N;
5616 mddev->new_level = 5;
5617 return setup_conf(mddev);
5618 }
5619 if (mddev->level == 6)
5620 return raid5_takeover_raid6(mddev);
5621
5622 return ERR_PTR(-EINVAL);
5623}
5624
5625static void *raid4_takeover(mddev_t *mddev)
5626{
5627 /* raid4 can take over:
5628 * raid0 - if there is only one strip zone
5629 * raid5 - if layout is right
5630 */
5631 if (mddev->level == 0)
5632 return raid45_takeover_raid0(mddev, 4);
5633 if (mddev->level == 5 &&
5634 mddev->layout == ALGORITHM_PARITY_N) {
5635 mddev->new_layout = 0;
5636 mddev->new_level = 4;
5637 return setup_conf(mddev);
5638 }
5639 return ERR_PTR(-EINVAL);
5640}
5641
5642static struct mdk_personality raid5_personality;
5643
5644static void *raid6_takeover(mddev_t *mddev)
5645{
5646 /* Currently can only take over a raid5. We map the
5647 * personality to an equivalent raid6 personality
5648 * with the Q block at the end.
5649 */
5650 int new_layout;
5651
5652 if (mddev->pers != &raid5_personality)
5653 return ERR_PTR(-EINVAL);
5654 if (mddev->degraded > 1)
5655 return ERR_PTR(-EINVAL);
5656 if (mddev->raid_disks > 253)
5657 return ERR_PTR(-EINVAL);
5658 if (mddev->raid_disks < 3)
5659 return ERR_PTR(-EINVAL);
5660
5661 switch (mddev->layout) {
5662 case ALGORITHM_LEFT_ASYMMETRIC:
5663 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5664 break;
5665 case ALGORITHM_RIGHT_ASYMMETRIC:
5666 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5667 break;
5668 case ALGORITHM_LEFT_SYMMETRIC:
5669 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5670 break;
5671 case ALGORITHM_RIGHT_SYMMETRIC:
5672 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5673 break;
5674 case ALGORITHM_PARITY_0:
5675 new_layout = ALGORITHM_PARITY_0_6;
5676 break;
5677 case ALGORITHM_PARITY_N:
5678 new_layout = ALGORITHM_PARITY_N;
5679 break;
5680 default:
5681 return ERR_PTR(-EINVAL);
5682 }
5683 mddev->new_level = 6;
5684 mddev->new_layout = new_layout;
5685 mddev->delta_disks = 1;
5686 mddev->raid_disks += 1;
5687 return setup_conf(mddev);
5688}
5689
5690
5691static struct mdk_personality raid6_personality =
5692{
5693 .name = "raid6",
5694 .level = 6,
5695 .owner = THIS_MODULE,
5696 .make_request = make_request,
5697 .run = run,
5698 .stop = stop,
5699 .status = status,
5700 .error_handler = error,
5701 .hot_add_disk = raid5_add_disk,
5702 .hot_remove_disk= raid5_remove_disk,
5703 .spare_active = raid5_spare_active,
5704 .sync_request = sync_request,
5705 .resize = raid5_resize,
5706 .size = raid5_size,
5707 .check_reshape = raid6_check_reshape,
5708 .start_reshape = raid5_start_reshape,
5709 .finish_reshape = raid5_finish_reshape,
5710 .quiesce = raid5_quiesce,
5711 .takeover = raid6_takeover,
5712};
5713static struct mdk_personality raid5_personality =
5714{
5715 .name = "raid5",
5716 .level = 5,
5717 .owner = THIS_MODULE,
5718 .make_request = make_request,
5719 .run = run,
5720 .stop = stop,
5721 .status = status,
5722 .error_handler = error,
5723 .hot_add_disk = raid5_add_disk,
5724 .hot_remove_disk= raid5_remove_disk,
5725 .spare_active = raid5_spare_active,
5726 .sync_request = sync_request,
5727 .resize = raid5_resize,
5728 .size = raid5_size,
5729 .check_reshape = raid5_check_reshape,
5730 .start_reshape = raid5_start_reshape,
5731 .finish_reshape = raid5_finish_reshape,
5732 .quiesce = raid5_quiesce,
5733 .takeover = raid5_takeover,
5734};
5735
5736static struct mdk_personality raid4_personality =
5737{
5738 .name = "raid4",
5739 .level = 4,
5740 .owner = THIS_MODULE,
5741 .make_request = make_request,
5742 .run = run,
5743 .stop = stop,
5744 .status = status,
5745 .error_handler = error,
5746 .hot_add_disk = raid5_add_disk,
5747 .hot_remove_disk= raid5_remove_disk,
5748 .spare_active = raid5_spare_active,
5749 .sync_request = sync_request,
5750 .resize = raid5_resize,
5751 .size = raid5_size,
5752 .check_reshape = raid5_check_reshape,
5753 .start_reshape = raid5_start_reshape,
5754 .finish_reshape = raid5_finish_reshape,
5755 .quiesce = raid5_quiesce,
5756 .takeover = raid4_takeover,
5757};
5758
5759static int __init raid5_init(void)
5760{
5761 register_md_personality(&raid6_personality);
5762 register_md_personality(&raid5_personality);
5763 register_md_personality(&raid4_personality);
5764 return 0;
5765}
5766
5767static void raid5_exit(void)
5768{
5769 unregister_md_personality(&raid6_personality);
5770 unregister_md_personality(&raid5_personality);
5771 unregister_md_personality(&raid4_personality);
5772}
5773
5774module_init(raid5_init);
5775module_exit(raid5_exit);
5776MODULE_LICENSE("GPL");
5777MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5778MODULE_ALIAS("md-personality-4"); /* RAID5 */
5779MODULE_ALIAS("md-raid5");
5780MODULE_ALIAS("md-raid4");
5781MODULE_ALIAS("md-level-5");
5782MODULE_ALIAS("md-level-4");
5783MODULE_ALIAS("md-personality-8"); /* RAID6 */
5784MODULE_ALIAS("md-raid6");
5785MODULE_ALIAS("md-level-6");
5786
5787/* This used to be two separate modules, they were: */
5788MODULE_ALIAS("raid5");
5789MODULE_ALIAS("raid6");