Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/export.h>
16#include <linux/screen_info.h>
17#include <linux/memblock.h>
18#include <linux/initrd.h>
19#include <linux/root_dev.h>
20#include <linux/highmem.h>
21#include <linux/console.h>
22#include <linux/pfn.h>
23#include <linux/debugfs.h>
24#include <linux/kexec.h>
25#include <linux/sizes.h>
26#include <linux/device.h>
27#include <linux/dma-map-ops.h>
28#include <linux/decompress/generic.h>
29#include <linux/of_fdt.h>
30#include <linux/dmi.h>
31#include <linux/crash_dump.h>
32
33#include <asm/addrspace.h>
34#include <asm/bootinfo.h>
35#include <asm/bugs.h>
36#include <asm/cache.h>
37#include <asm/cdmm.h>
38#include <asm/cpu.h>
39#include <asm/debug.h>
40#include <asm/mmzone.h>
41#include <asm/sections.h>
42#include <asm/setup.h>
43#include <asm/smp-ops.h>
44#include <asm/prom.h>
45#include <asm/fw/fw.h>
46
47#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
48char __section(".appended_dtb") __appended_dtb[0x100000];
49#endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
50
51struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
52
53EXPORT_SYMBOL(cpu_data);
54
55#ifdef CONFIG_VT
56struct screen_info screen_info;
57#endif
58
59/*
60 * Setup information
61 *
62 * These are initialized so they are in the .data section
63 */
64unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
65
66EXPORT_SYMBOL(mips_machtype);
67
68static char __initdata command_line[COMMAND_LINE_SIZE];
69char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
70
71#ifdef CONFIG_CMDLINE_BOOL
72static const char builtin_cmdline[] __initconst = CONFIG_CMDLINE;
73#else
74static const char builtin_cmdline[] __initconst = "";
75#endif
76
77/*
78 * mips_io_port_base is the begin of the address space to which x86 style
79 * I/O ports are mapped.
80 */
81unsigned long mips_io_port_base = -1;
82EXPORT_SYMBOL(mips_io_port_base);
83
84static struct resource code_resource = { .name = "Kernel code", };
85static struct resource data_resource = { .name = "Kernel data", };
86static struct resource bss_resource = { .name = "Kernel bss", };
87
88unsigned long __kaslr_offset __ro_after_init;
89EXPORT_SYMBOL(__kaslr_offset);
90
91static void *detect_magic __initdata = detect_memory_region;
92
93#ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
94unsigned long ARCH_PFN_OFFSET;
95EXPORT_SYMBOL(ARCH_PFN_OFFSET);
96#endif
97
98void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
99{
100 void *dm = &detect_magic;
101 phys_addr_t size;
102
103 for (size = sz_min; size < sz_max; size <<= 1) {
104 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
105 break;
106 }
107
108 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
109 ((unsigned long long) size) / SZ_1M,
110 (unsigned long long) start,
111 ((unsigned long long) sz_min) / SZ_1M,
112 ((unsigned long long) sz_max) / SZ_1M);
113
114 memblock_add(start, size);
115}
116
117/*
118 * Manage initrd
119 */
120#ifdef CONFIG_BLK_DEV_INITRD
121
122static int __init rd_start_early(char *p)
123{
124 unsigned long start = memparse(p, &p);
125
126#ifdef CONFIG_64BIT
127 /* Guess if the sign extension was forgotten by bootloader */
128 if (start < XKPHYS)
129 start = (int)start;
130#endif
131 initrd_start = start;
132 initrd_end += start;
133 return 0;
134}
135early_param("rd_start", rd_start_early);
136
137static int __init rd_size_early(char *p)
138{
139 initrd_end += memparse(p, &p);
140 return 0;
141}
142early_param("rd_size", rd_size_early);
143
144/* it returns the next free pfn after initrd */
145static unsigned long __init init_initrd(void)
146{
147 unsigned long end;
148
149 /*
150 * Board specific code or command line parser should have
151 * already set up initrd_start and initrd_end. In these cases
152 * perfom sanity checks and use them if all looks good.
153 */
154 if (!initrd_start || initrd_end <= initrd_start)
155 goto disable;
156
157 if (initrd_start & ~PAGE_MASK) {
158 pr_err("initrd start must be page aligned\n");
159 goto disable;
160 }
161 if (initrd_start < PAGE_OFFSET) {
162 pr_err("initrd start < PAGE_OFFSET\n");
163 goto disable;
164 }
165
166 /*
167 * Sanitize initrd addresses. For example firmware
168 * can't guess if they need to pass them through
169 * 64-bits values if the kernel has been built in pure
170 * 32-bit. We need also to switch from KSEG0 to XKPHYS
171 * addresses now, so the code can now safely use __pa().
172 */
173 end = __pa(initrd_end);
174 initrd_end = (unsigned long)__va(end);
175 initrd_start = (unsigned long)__va(__pa(initrd_start));
176
177 ROOT_DEV = Root_RAM0;
178 return PFN_UP(end);
179disable:
180 initrd_start = 0;
181 initrd_end = 0;
182 return 0;
183}
184
185/* In some conditions (e.g. big endian bootloader with a little endian
186 kernel), the initrd might appear byte swapped. Try to detect this and
187 byte swap it if needed. */
188static void __init maybe_bswap_initrd(void)
189{
190#if defined(CONFIG_CPU_CAVIUM_OCTEON)
191 u64 buf;
192
193 /* Check for CPIO signature */
194 if (!memcmp((void *)initrd_start, "070701", 6))
195 return;
196
197 /* Check for compressed initrd */
198 if (decompress_method((unsigned char *)initrd_start, 8, NULL))
199 return;
200
201 /* Try again with a byte swapped header */
202 buf = swab64p((u64 *)initrd_start);
203 if (!memcmp(&buf, "070701", 6) ||
204 decompress_method((unsigned char *)(&buf), 8, NULL)) {
205 unsigned long i;
206
207 pr_info("Byteswapped initrd detected\n");
208 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
209 swab64s((u64 *)i);
210 }
211#endif
212}
213
214static void __init finalize_initrd(void)
215{
216 unsigned long size = initrd_end - initrd_start;
217
218 if (size == 0) {
219 printk(KERN_INFO "Initrd not found or empty");
220 goto disable;
221 }
222 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
223 printk(KERN_ERR "Initrd extends beyond end of memory");
224 goto disable;
225 }
226
227 maybe_bswap_initrd();
228
229 memblock_reserve(__pa(initrd_start), size);
230 initrd_below_start_ok = 1;
231
232 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
233 initrd_start, size);
234 return;
235disable:
236 printk(KERN_CONT " - disabling initrd\n");
237 initrd_start = 0;
238 initrd_end = 0;
239}
240
241#else /* !CONFIG_BLK_DEV_INITRD */
242
243static unsigned long __init init_initrd(void)
244{
245 return 0;
246}
247
248#define finalize_initrd() do {} while (0)
249
250#endif
251
252/*
253 * Initialize the bootmem allocator. It also setup initrd related data
254 * if needed.
255 */
256#if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON64) && defined(CONFIG_NUMA))
257
258static void __init bootmem_init(void)
259{
260 init_initrd();
261 finalize_initrd();
262}
263
264#else /* !CONFIG_SGI_IP27 */
265
266static void __init bootmem_init(void)
267{
268 phys_addr_t ramstart, ramend;
269 unsigned long start, end;
270 int i;
271
272 ramstart = memblock_start_of_DRAM();
273 ramend = memblock_end_of_DRAM();
274
275 /*
276 * Sanity check any INITRD first. We don't take it into account
277 * for bootmem setup initially, rely on the end-of-kernel-code
278 * as our memory range starting point. Once bootmem is inited we
279 * will reserve the area used for the initrd.
280 */
281 init_initrd();
282
283 /* Reserve memory occupied by kernel. */
284 memblock_reserve(__pa_symbol(&_text),
285 __pa_symbol(&_end) - __pa_symbol(&_text));
286
287 /* max_low_pfn is not a number of pages but the end pfn of low mem */
288
289#ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
290 ARCH_PFN_OFFSET = PFN_UP(ramstart);
291#else
292 /*
293 * Reserve any memory between the start of RAM and PHYS_OFFSET
294 */
295 if (ramstart > PHYS_OFFSET)
296 memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET);
297
298 if (PFN_UP(ramstart) > ARCH_PFN_OFFSET) {
299 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
300 (unsigned long)((PFN_UP(ramstart) - ARCH_PFN_OFFSET) * sizeof(struct page)),
301 (unsigned long)(PFN_UP(ramstart) - ARCH_PFN_OFFSET));
302 }
303#endif
304
305 min_low_pfn = ARCH_PFN_OFFSET;
306 max_pfn = PFN_DOWN(ramend);
307 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
308 /*
309 * Skip highmem here so we get an accurate max_low_pfn if low
310 * memory stops short of high memory.
311 * If the region overlaps HIGHMEM_START, end is clipped so
312 * max_pfn excludes the highmem portion.
313 */
314 if (start >= PFN_DOWN(HIGHMEM_START))
315 continue;
316 if (end > PFN_DOWN(HIGHMEM_START))
317 end = PFN_DOWN(HIGHMEM_START);
318 if (end > max_low_pfn)
319 max_low_pfn = end;
320 }
321
322 if (min_low_pfn >= max_low_pfn)
323 panic("Incorrect memory mapping !!!");
324
325 if (max_pfn > PFN_DOWN(HIGHMEM_START)) {
326#ifdef CONFIG_HIGHMEM
327 highstart_pfn = PFN_DOWN(HIGHMEM_START);
328 highend_pfn = max_pfn;
329#else
330 max_low_pfn = PFN_DOWN(HIGHMEM_START);
331 max_pfn = max_low_pfn;
332#endif
333 }
334
335 /*
336 * Reserve initrd memory if needed.
337 */
338 finalize_initrd();
339}
340
341#endif /* CONFIG_SGI_IP27 */
342
343static int usermem __initdata;
344
345static int __init early_parse_mem(char *p)
346{
347 phys_addr_t start, size;
348
349 if (!p) {
350 pr_err("mem parameter is empty, do nothing\n");
351 return -EINVAL;
352 }
353
354 /*
355 * If a user specifies memory size, we
356 * blow away any automatically generated
357 * size.
358 */
359 if (usermem == 0) {
360 usermem = 1;
361 memblock_remove(memblock_start_of_DRAM(),
362 memblock_end_of_DRAM() - memblock_start_of_DRAM());
363 }
364 start = 0;
365 size = memparse(p, &p);
366 if (*p == '@')
367 start = memparse(p + 1, &p);
368
369 if (IS_ENABLED(CONFIG_NUMA))
370 memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE);
371 else
372 memblock_add(start, size);
373
374 return 0;
375}
376early_param("mem", early_parse_mem);
377
378static int __init early_parse_memmap(char *p)
379{
380 char *oldp;
381 u64 start_at, mem_size;
382
383 if (!p)
384 return -EINVAL;
385
386 if (!strncmp(p, "exactmap", 8)) {
387 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
388 return 0;
389 }
390
391 oldp = p;
392 mem_size = memparse(p, &p);
393 if (p == oldp)
394 return -EINVAL;
395
396 if (*p == '@') {
397 start_at = memparse(p+1, &p);
398 memblock_add(start_at, mem_size);
399 } else if (*p == '#') {
400 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
401 return -EINVAL;
402 } else if (*p == '$') {
403 start_at = memparse(p+1, &p);
404 memblock_add(start_at, mem_size);
405 memblock_reserve(start_at, mem_size);
406 } else {
407 pr_err("\"memmap\" invalid format!\n");
408 return -EINVAL;
409 }
410
411 if (*p == '\0') {
412 usermem = 1;
413 return 0;
414 } else
415 return -EINVAL;
416}
417early_param("memmap", early_parse_memmap);
418
419static void __init mips_reserve_vmcore(void)
420{
421#ifdef CONFIG_PROC_VMCORE
422 phys_addr_t start, end;
423 u64 i;
424
425 if (!elfcorehdr_size) {
426 for_each_mem_range(i, &start, &end) {
427 if (elfcorehdr_addr >= start && elfcorehdr_addr < end) {
428 /*
429 * Reserve from the elf core header to the end of
430 * the memory segment, that should all be kdump
431 * reserved memory.
432 */
433 elfcorehdr_size = end - elfcorehdr_addr;
434 break;
435 }
436 }
437 }
438
439 pr_info("Reserving %ldKB of memory at %ldKB for kdump\n",
440 (unsigned long)elfcorehdr_size >> 10, (unsigned long)elfcorehdr_addr >> 10);
441
442 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
443#endif
444}
445
446#ifdef CONFIG_KEXEC
447
448/* 64M alignment for crash kernel regions */
449#define CRASH_ALIGN SZ_64M
450#define CRASH_ADDR_MAX SZ_512M
451
452static void __init mips_parse_crashkernel(void)
453{
454 unsigned long long total_mem;
455 unsigned long long crash_size, crash_base;
456 int ret;
457
458 total_mem = memblock_phys_mem_size();
459 ret = parse_crashkernel(boot_command_line, total_mem,
460 &crash_size, &crash_base);
461 if (ret != 0 || crash_size <= 0)
462 return;
463
464 if (crash_base <= 0) {
465 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
466 CRASH_ALIGN,
467 CRASH_ADDR_MAX);
468 if (!crash_base) {
469 pr_warn("crashkernel reservation failed - No suitable area found.\n");
470 return;
471 }
472 } else {
473 unsigned long long start;
474
475 start = memblock_phys_alloc_range(crash_size, 1,
476 crash_base,
477 crash_base + crash_size);
478 if (start != crash_base) {
479 pr_warn("Invalid memory region reserved for crash kernel\n");
480 return;
481 }
482 }
483
484 crashk_res.start = crash_base;
485 crashk_res.end = crash_base + crash_size - 1;
486}
487
488static void __init request_crashkernel(struct resource *res)
489{
490 int ret;
491
492 if (crashk_res.start == crashk_res.end)
493 return;
494
495 ret = request_resource(res, &crashk_res);
496 if (!ret)
497 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
498 (unsigned long)(resource_size(&crashk_res) >> 20),
499 (unsigned long)(crashk_res.start >> 20));
500}
501#else /* !defined(CONFIG_KEXEC) */
502static void __init mips_parse_crashkernel(void)
503{
504}
505
506static void __init request_crashkernel(struct resource *res)
507{
508}
509#endif /* !defined(CONFIG_KEXEC) */
510
511static void __init check_kernel_sections_mem(void)
512{
513 phys_addr_t start = __pa_symbol(&_text);
514 phys_addr_t size = __pa_symbol(&_end) - start;
515
516 if (!memblock_is_region_memory(start, size)) {
517 pr_info("Kernel sections are not in the memory maps\n");
518 memblock_add(start, size);
519 }
520}
521
522static void __init bootcmdline_append(const char *s, size_t max)
523{
524 if (!s[0] || !max)
525 return;
526
527 if (boot_command_line[0])
528 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
529
530 strlcat(boot_command_line, s, max);
531}
532
533#ifdef CONFIG_OF_EARLY_FLATTREE
534
535static int __init bootcmdline_scan_chosen(unsigned long node, const char *uname,
536 int depth, void *data)
537{
538 bool *dt_bootargs = data;
539 const char *p;
540 int l;
541
542 if (depth != 1 || !data ||
543 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
544 return 0;
545
546 p = of_get_flat_dt_prop(node, "bootargs", &l);
547 if (p != NULL && l > 0) {
548 bootcmdline_append(p, min(l, COMMAND_LINE_SIZE));
549 *dt_bootargs = true;
550 }
551
552 return 1;
553}
554
555#endif /* CONFIG_OF_EARLY_FLATTREE */
556
557static void __init bootcmdline_init(void)
558{
559 bool dt_bootargs = false;
560
561 /*
562 * If CMDLINE_OVERRIDE is enabled then initializing the command line is
563 * trivial - we simply use the built-in command line unconditionally &
564 * unmodified.
565 */
566 if (IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
567 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
568 return;
569 }
570
571 /*
572 * If the user specified a built-in command line &
573 * MIPS_CMDLINE_BUILTIN_EXTEND, then the built-in command line is
574 * prepended to arguments from the bootloader or DT so we'll copy them
575 * to the start of boot_command_line here. Otherwise, empty
576 * boot_command_line to undo anything early_init_dt_scan_chosen() did.
577 */
578 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
579 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
580 else
581 boot_command_line[0] = 0;
582
583#ifdef CONFIG_OF_EARLY_FLATTREE
584 /*
585 * If we're configured to take boot arguments from DT, look for those
586 * now.
587 */
588 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) ||
589 IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND))
590 of_scan_flat_dt(bootcmdline_scan_chosen, &dt_bootargs);
591#endif
592
593 /*
594 * If we didn't get any arguments from DT (regardless of whether that's
595 * because we weren't configured to look for them, or because we looked
596 * & found none) then we'll take arguments from the bootloader.
597 * plat_mem_setup() should have filled arcs_cmdline with arguments from
598 * the bootloader.
599 */
600 if (IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) || !dt_bootargs)
601 bootcmdline_append(arcs_cmdline, COMMAND_LINE_SIZE);
602
603 /*
604 * If the user specified a built-in command line & we didn't already
605 * prepend it, we append it to boot_command_line here.
606 */
607 if (IS_ENABLED(CONFIG_CMDLINE_BOOL) &&
608 !IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND))
609 bootcmdline_append(builtin_cmdline, COMMAND_LINE_SIZE);
610}
611
612/*
613 * arch_mem_init - initialize memory management subsystem
614 *
615 * o plat_mem_setup() detects the memory configuration and will record detected
616 * memory areas using memblock_add.
617 *
618 * At this stage the memory configuration of the system is known to the
619 * kernel but generic memory management system is still entirely uninitialized.
620 *
621 * o bootmem_init()
622 * o sparse_init()
623 * o paging_init()
624 * o dma_contiguous_reserve()
625 *
626 * At this stage the bootmem allocator is ready to use.
627 *
628 * NOTE: historically plat_mem_setup did the entire platform initialization.
629 * This was rather impractical because it meant plat_mem_setup had to
630 * get away without any kind of memory allocator. To keep old code from
631 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
632 * initialization hook for anything else was introduced.
633 */
634static void __init arch_mem_init(char **cmdline_p)
635{
636 /* call board setup routine */
637 plat_mem_setup();
638 memblock_set_bottom_up(true);
639
640 bootcmdline_init();
641 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
642 *cmdline_p = command_line;
643
644 parse_early_param();
645
646 if (usermem)
647 pr_info("User-defined physical RAM map overwrite\n");
648
649 check_kernel_sections_mem();
650
651 early_init_fdt_reserve_self();
652 early_init_fdt_scan_reserved_mem();
653
654#ifndef CONFIG_NUMA
655 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
656#endif
657 bootmem_init();
658
659 /*
660 * Prevent memblock from allocating high memory.
661 * This cannot be done before max_low_pfn is detected, so up
662 * to this point is possible to only reserve physical memory
663 * with memblock_reserve; memblock_alloc* can be used
664 * only after this point
665 */
666 memblock_set_current_limit(PFN_PHYS(max_low_pfn));
667
668 mips_reserve_vmcore();
669
670 mips_parse_crashkernel();
671 device_tree_init();
672
673 /*
674 * In order to reduce the possibility of kernel panic when failed to
675 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
676 * low memory as small as possible before plat_swiotlb_setup(), so
677 * make sparse_init() using top-down allocation.
678 */
679 memblock_set_bottom_up(false);
680 sparse_init();
681 memblock_set_bottom_up(true);
682
683 plat_swiotlb_setup();
684
685 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
686
687 /* Reserve for hibernation. */
688 memblock_reserve(__pa_symbol(&__nosave_begin),
689 __pa_symbol(&__nosave_end) - __pa_symbol(&__nosave_begin));
690
691 early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn));
692}
693
694static void __init resource_init(void)
695{
696 phys_addr_t start, end;
697 u64 i;
698
699 if (UNCAC_BASE != IO_BASE)
700 return;
701
702 code_resource.start = __pa_symbol(&_text);
703 code_resource.end = __pa_symbol(&_etext) - 1;
704 data_resource.start = __pa_symbol(&_etext);
705 data_resource.end = __pa_symbol(&_edata) - 1;
706 bss_resource.start = __pa_symbol(&__bss_start);
707 bss_resource.end = __pa_symbol(&__bss_stop) - 1;
708
709 for_each_mem_range(i, &start, &end) {
710 struct resource *res;
711
712 res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES);
713 if (!res)
714 panic("%s: Failed to allocate %zu bytes\n", __func__,
715 sizeof(struct resource));
716
717 res->start = start;
718 /*
719 * In memblock, end points to the first byte after the
720 * range while in resourses, end points to the last byte in
721 * the range.
722 */
723 res->end = end - 1;
724 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
725 res->name = "System RAM";
726
727 request_resource(&iomem_resource, res);
728
729 /*
730 * We don't know which RAM region contains kernel data,
731 * so we try it repeatedly and let the resource manager
732 * test it.
733 */
734 request_resource(res, &code_resource);
735 request_resource(res, &data_resource);
736 request_resource(res, &bss_resource);
737 request_crashkernel(res);
738 }
739}
740
741#ifdef CONFIG_SMP
742static void __init prefill_possible_map(void)
743{
744 int i, possible = num_possible_cpus();
745
746 if (possible > nr_cpu_ids)
747 possible = nr_cpu_ids;
748
749 for (i = 0; i < possible; i++)
750 set_cpu_possible(i, true);
751 for (; i < NR_CPUS; i++)
752 set_cpu_possible(i, false);
753
754 set_nr_cpu_ids(possible);
755}
756#else
757static inline void prefill_possible_map(void) {}
758#endif
759
760static void __init setup_rng_seed(void)
761{
762 char *rng_seed_hex = fw_getenv("rngseed");
763 u8 rng_seed[512];
764 size_t len;
765
766 if (!rng_seed_hex)
767 return;
768
769 len = min(sizeof(rng_seed), strlen(rng_seed_hex) / 2);
770 if (hex2bin(rng_seed, rng_seed_hex, len))
771 return;
772
773 add_bootloader_randomness(rng_seed, len);
774 memzero_explicit(rng_seed, len);
775 memzero_explicit(rng_seed_hex, len * 2);
776}
777
778void __init setup_arch(char **cmdline_p)
779{
780 cpu_probe();
781 mips_cm_probe();
782 prom_init();
783
784 setup_early_fdc_console();
785#ifdef CONFIG_EARLY_PRINTK
786 setup_early_printk();
787#endif
788 cpu_report();
789 check_bugs_early();
790
791#if defined(CONFIG_VT)
792#if defined(CONFIG_VGA_CONSOLE)
793 conswitchp = &vga_con;
794#endif
795#endif
796
797 arch_mem_init(cmdline_p);
798 dmi_setup();
799
800 resource_init();
801 plat_smp_setup();
802 prefill_possible_map();
803
804 cpu_cache_init();
805 paging_init();
806
807 memblock_dump_all();
808
809 setup_rng_seed();
810}
811
812unsigned long kernelsp[NR_CPUS];
813unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
814
815#ifdef CONFIG_DEBUG_FS
816struct dentry *mips_debugfs_dir;
817static int __init debugfs_mips(void)
818{
819 mips_debugfs_dir = debugfs_create_dir("mips", NULL);
820 return 0;
821}
822arch_initcall(debugfs_mips);
823#endif
824
825#ifdef CONFIG_DMA_NONCOHERENT
826static int __init setcoherentio(char *str)
827{
828 dma_default_coherent = true;
829 pr_info("Hardware DMA cache coherency (command line)\n");
830 return 0;
831}
832early_param("coherentio", setcoherentio);
833
834static int __init setnocoherentio(char *str)
835{
836 dma_default_coherent = false;
837 pr_info("Software DMA cache coherency (command line)\n");
838 return 0;
839}
840early_param("nocoherentio", setnocoherentio);
841#endif
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/module.h>
16#include <linux/screen_info.h>
17#include <linux/bootmem.h>
18#include <linux/initrd.h>
19#include <linux/root_dev.h>
20#include <linux/highmem.h>
21#include <linux/console.h>
22#include <linux/pfn.h>
23#include <linux/debugfs.h>
24
25#include <asm/addrspace.h>
26#include <asm/bootinfo.h>
27#include <asm/bugs.h>
28#include <asm/cache.h>
29#include <asm/cpu.h>
30#include <asm/sections.h>
31#include <asm/setup.h>
32#include <asm/smp-ops.h>
33#include <asm/system.h>
34#include <asm/prom.h>
35
36struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
37
38EXPORT_SYMBOL(cpu_data);
39
40#ifdef CONFIG_VT
41struct screen_info screen_info;
42#endif
43
44/*
45 * Despite it's name this variable is even if we don't have PCI
46 */
47unsigned int PCI_DMA_BUS_IS_PHYS;
48
49EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
50
51/*
52 * Setup information
53 *
54 * These are initialized so they are in the .data section
55 */
56unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
57
58EXPORT_SYMBOL(mips_machtype);
59
60struct boot_mem_map boot_mem_map;
61
62static char __initdata command_line[COMMAND_LINE_SIZE];
63char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
64
65#ifdef CONFIG_CMDLINE_BOOL
66static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
67#endif
68
69/*
70 * mips_io_port_base is the begin of the address space to which x86 style
71 * I/O ports are mapped.
72 */
73const unsigned long mips_io_port_base = -1;
74EXPORT_SYMBOL(mips_io_port_base);
75
76static struct resource code_resource = { .name = "Kernel code", };
77static struct resource data_resource = { .name = "Kernel data", };
78
79void __init add_memory_region(phys_t start, phys_t size, long type)
80{
81 int x = boot_mem_map.nr_map;
82 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
83
84 /* Sanity check */
85 if (start + size < start) {
86 pr_warning("Trying to add an invalid memory region, skipped\n");
87 return;
88 }
89
90 /*
91 * Try to merge with previous entry if any. This is far less than
92 * perfect but is sufficient for most real world cases.
93 */
94 if (x && prev->addr + prev->size == start && prev->type == type) {
95 prev->size += size;
96 return;
97 }
98
99 if (x == BOOT_MEM_MAP_MAX) {
100 pr_err("Ooops! Too many entries in the memory map!\n");
101 return;
102 }
103
104 boot_mem_map.map[x].addr = start;
105 boot_mem_map.map[x].size = size;
106 boot_mem_map.map[x].type = type;
107 boot_mem_map.nr_map++;
108}
109
110static void __init print_memory_map(void)
111{
112 int i;
113 const int field = 2 * sizeof(unsigned long);
114
115 for (i = 0; i < boot_mem_map.nr_map; i++) {
116 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
117 field, (unsigned long long) boot_mem_map.map[i].size,
118 field, (unsigned long long) boot_mem_map.map[i].addr);
119
120 switch (boot_mem_map.map[i].type) {
121 case BOOT_MEM_RAM:
122 printk(KERN_CONT "(usable)\n");
123 break;
124 case BOOT_MEM_ROM_DATA:
125 printk(KERN_CONT "(ROM data)\n");
126 break;
127 case BOOT_MEM_RESERVED:
128 printk(KERN_CONT "(reserved)\n");
129 break;
130 default:
131 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
132 break;
133 }
134 }
135}
136
137/*
138 * Manage initrd
139 */
140#ifdef CONFIG_BLK_DEV_INITRD
141
142static int __init rd_start_early(char *p)
143{
144 unsigned long start = memparse(p, &p);
145
146#ifdef CONFIG_64BIT
147 /* Guess if the sign extension was forgotten by bootloader */
148 if (start < XKPHYS)
149 start = (int)start;
150#endif
151 initrd_start = start;
152 initrd_end += start;
153 return 0;
154}
155early_param("rd_start", rd_start_early);
156
157static int __init rd_size_early(char *p)
158{
159 initrd_end += memparse(p, &p);
160 return 0;
161}
162early_param("rd_size", rd_size_early);
163
164/* it returns the next free pfn after initrd */
165static unsigned long __init init_initrd(void)
166{
167 unsigned long end;
168
169 /*
170 * Board specific code or command line parser should have
171 * already set up initrd_start and initrd_end. In these cases
172 * perfom sanity checks and use them if all looks good.
173 */
174 if (!initrd_start || initrd_end <= initrd_start)
175 goto disable;
176
177 if (initrd_start & ~PAGE_MASK) {
178 pr_err("initrd start must be page aligned\n");
179 goto disable;
180 }
181 if (initrd_start < PAGE_OFFSET) {
182 pr_err("initrd start < PAGE_OFFSET\n");
183 goto disable;
184 }
185
186 /*
187 * Sanitize initrd addresses. For example firmware
188 * can't guess if they need to pass them through
189 * 64-bits values if the kernel has been built in pure
190 * 32-bit. We need also to switch from KSEG0 to XKPHYS
191 * addresses now, so the code can now safely use __pa().
192 */
193 end = __pa(initrd_end);
194 initrd_end = (unsigned long)__va(end);
195 initrd_start = (unsigned long)__va(__pa(initrd_start));
196
197 ROOT_DEV = Root_RAM0;
198 return PFN_UP(end);
199disable:
200 initrd_start = 0;
201 initrd_end = 0;
202 return 0;
203}
204
205static void __init finalize_initrd(void)
206{
207 unsigned long size = initrd_end - initrd_start;
208
209 if (size == 0) {
210 printk(KERN_INFO "Initrd not found or empty");
211 goto disable;
212 }
213 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
214 printk(KERN_ERR "Initrd extends beyond end of memory");
215 goto disable;
216 }
217
218 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
219 initrd_below_start_ok = 1;
220
221 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
222 initrd_start, size);
223 return;
224disable:
225 printk(KERN_CONT " - disabling initrd\n");
226 initrd_start = 0;
227 initrd_end = 0;
228}
229
230#else /* !CONFIG_BLK_DEV_INITRD */
231
232static unsigned long __init init_initrd(void)
233{
234 return 0;
235}
236
237#define finalize_initrd() do {} while (0)
238
239#endif
240
241/*
242 * Initialize the bootmem allocator. It also setup initrd related data
243 * if needed.
244 */
245#ifdef CONFIG_SGI_IP27
246
247static void __init bootmem_init(void)
248{
249 init_initrd();
250 finalize_initrd();
251}
252
253#else /* !CONFIG_SGI_IP27 */
254
255static void __init bootmem_init(void)
256{
257 unsigned long reserved_end;
258 unsigned long mapstart = ~0UL;
259 unsigned long bootmap_size;
260 int i;
261
262 /*
263 * Init any data related to initrd. It's a nop if INITRD is
264 * not selected. Once that done we can determine the low bound
265 * of usable memory.
266 */
267 reserved_end = max(init_initrd(),
268 (unsigned long) PFN_UP(__pa_symbol(&_end)));
269
270 /*
271 * max_low_pfn is not a number of pages. The number of pages
272 * of the system is given by 'max_low_pfn - min_low_pfn'.
273 */
274 min_low_pfn = ~0UL;
275 max_low_pfn = 0;
276
277 /*
278 * Find the highest page frame number we have available.
279 */
280 for (i = 0; i < boot_mem_map.nr_map; i++) {
281 unsigned long start, end;
282
283 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
284 continue;
285
286 start = PFN_UP(boot_mem_map.map[i].addr);
287 end = PFN_DOWN(boot_mem_map.map[i].addr
288 + boot_mem_map.map[i].size);
289
290 if (end > max_low_pfn)
291 max_low_pfn = end;
292 if (start < min_low_pfn)
293 min_low_pfn = start;
294 if (end <= reserved_end)
295 continue;
296 if (start >= mapstart)
297 continue;
298 mapstart = max(reserved_end, start);
299 }
300
301 if (min_low_pfn >= max_low_pfn)
302 panic("Incorrect memory mapping !!!");
303 if (min_low_pfn > ARCH_PFN_OFFSET) {
304 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
305 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
306 min_low_pfn - ARCH_PFN_OFFSET);
307 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
308 pr_info("%lu free pages won't be used\n",
309 ARCH_PFN_OFFSET - min_low_pfn);
310 }
311 min_low_pfn = ARCH_PFN_OFFSET;
312
313 /*
314 * Determine low and high memory ranges
315 */
316 max_pfn = max_low_pfn;
317 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
318#ifdef CONFIG_HIGHMEM
319 highstart_pfn = PFN_DOWN(HIGHMEM_START);
320 highend_pfn = max_low_pfn;
321#endif
322 max_low_pfn = PFN_DOWN(HIGHMEM_START);
323 }
324
325 /*
326 * Initialize the boot-time allocator with low memory only.
327 */
328 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
329 min_low_pfn, max_low_pfn);
330
331
332 for (i = 0; i < boot_mem_map.nr_map; i++) {
333 unsigned long start, end;
334
335 start = PFN_UP(boot_mem_map.map[i].addr);
336 end = PFN_DOWN(boot_mem_map.map[i].addr
337 + boot_mem_map.map[i].size);
338
339 if (start <= min_low_pfn)
340 start = min_low_pfn;
341 if (start >= end)
342 continue;
343
344#ifndef CONFIG_HIGHMEM
345 if (end > max_low_pfn)
346 end = max_low_pfn;
347
348 /*
349 * ... finally, is the area going away?
350 */
351 if (end <= start)
352 continue;
353#endif
354
355 add_active_range(0, start, end);
356 }
357
358 /*
359 * Register fully available low RAM pages with the bootmem allocator.
360 */
361 for (i = 0; i < boot_mem_map.nr_map; i++) {
362 unsigned long start, end, size;
363
364 /*
365 * Reserve usable memory.
366 */
367 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
368 continue;
369
370 start = PFN_UP(boot_mem_map.map[i].addr);
371 end = PFN_DOWN(boot_mem_map.map[i].addr
372 + boot_mem_map.map[i].size);
373 /*
374 * We are rounding up the start address of usable memory
375 * and at the end of the usable range downwards.
376 */
377 if (start >= max_low_pfn)
378 continue;
379 if (start < reserved_end)
380 start = reserved_end;
381 if (end > max_low_pfn)
382 end = max_low_pfn;
383
384 /*
385 * ... finally, is the area going away?
386 */
387 if (end <= start)
388 continue;
389 size = end - start;
390
391 /* Register lowmem ranges */
392 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
393 memory_present(0, start, end);
394 }
395
396 /*
397 * Reserve the bootmap memory.
398 */
399 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
400
401 /*
402 * Reserve initrd memory if needed.
403 */
404 finalize_initrd();
405}
406
407#endif /* CONFIG_SGI_IP27 */
408
409/*
410 * arch_mem_init - initialize memory management subsystem
411 *
412 * o plat_mem_setup() detects the memory configuration and will record detected
413 * memory areas using add_memory_region.
414 *
415 * At this stage the memory configuration of the system is known to the
416 * kernel but generic memory management system is still entirely uninitialized.
417 *
418 * o bootmem_init()
419 * o sparse_init()
420 * o paging_init()
421 *
422 * At this stage the bootmem allocator is ready to use.
423 *
424 * NOTE: historically plat_mem_setup did the entire platform initialization.
425 * This was rather impractical because it meant plat_mem_setup had to
426 * get away without any kind of memory allocator. To keep old code from
427 * breaking plat_setup was just renamed to plat_setup and a second platform
428 * initialization hook for anything else was introduced.
429 */
430
431static int usermem __initdata;
432
433static int __init early_parse_mem(char *p)
434{
435 unsigned long start, size;
436
437 /*
438 * If a user specifies memory size, we
439 * blow away any automatically generated
440 * size.
441 */
442 if (usermem == 0) {
443 boot_mem_map.nr_map = 0;
444 usermem = 1;
445 }
446 start = 0;
447 size = memparse(p, &p);
448 if (*p == '@')
449 start = memparse(p + 1, &p);
450
451 add_memory_region(start, size, BOOT_MEM_RAM);
452 return 0;
453}
454early_param("mem", early_parse_mem);
455
456static void __init arch_mem_init(char **cmdline_p)
457{
458 extern void plat_mem_setup(void);
459
460 /* call board setup routine */
461 plat_mem_setup();
462
463 pr_info("Determined physical RAM map:\n");
464 print_memory_map();
465
466#ifdef CONFIG_CMDLINE_BOOL
467#ifdef CONFIG_CMDLINE_OVERRIDE
468 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
469#else
470 if (builtin_cmdline[0]) {
471 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
472 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
473 }
474 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
475#endif
476#else
477 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
478#endif
479 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
480
481 *cmdline_p = command_line;
482
483 parse_early_param();
484
485 if (usermem) {
486 pr_info("User-defined physical RAM map:\n");
487 print_memory_map();
488 }
489
490 bootmem_init();
491 device_tree_init();
492 sparse_init();
493 plat_swiotlb_setup();
494 paging_init();
495}
496
497static void __init resource_init(void)
498{
499 int i;
500
501 if (UNCAC_BASE != IO_BASE)
502 return;
503
504 code_resource.start = __pa_symbol(&_text);
505 code_resource.end = __pa_symbol(&_etext) - 1;
506 data_resource.start = __pa_symbol(&_etext);
507 data_resource.end = __pa_symbol(&_edata) - 1;
508
509 /*
510 * Request address space for all standard RAM.
511 */
512 for (i = 0; i < boot_mem_map.nr_map; i++) {
513 struct resource *res;
514 unsigned long start, end;
515
516 start = boot_mem_map.map[i].addr;
517 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
518 if (start >= HIGHMEM_START)
519 continue;
520 if (end >= HIGHMEM_START)
521 end = HIGHMEM_START - 1;
522
523 res = alloc_bootmem(sizeof(struct resource));
524 switch (boot_mem_map.map[i].type) {
525 case BOOT_MEM_RAM:
526 case BOOT_MEM_ROM_DATA:
527 res->name = "System RAM";
528 break;
529 case BOOT_MEM_RESERVED:
530 default:
531 res->name = "reserved";
532 }
533
534 res->start = start;
535 res->end = end;
536
537 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
538 request_resource(&iomem_resource, res);
539
540 /*
541 * We don't know which RAM region contains kernel data,
542 * so we try it repeatedly and let the resource manager
543 * test it.
544 */
545 request_resource(res, &code_resource);
546 request_resource(res, &data_resource);
547 }
548}
549
550void __init setup_arch(char **cmdline_p)
551{
552 cpu_probe();
553 prom_init();
554
555#ifdef CONFIG_EARLY_PRINTK
556 setup_early_printk();
557#endif
558 cpu_report();
559 check_bugs_early();
560
561#if defined(CONFIG_VT)
562#if defined(CONFIG_VGA_CONSOLE)
563 conswitchp = &vga_con;
564#elif defined(CONFIG_DUMMY_CONSOLE)
565 conswitchp = &dummy_con;
566#endif
567#endif
568
569 arch_mem_init(cmdline_p);
570
571 resource_init();
572 plat_smp_setup();
573}
574
575unsigned long kernelsp[NR_CPUS];
576unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
577
578#ifdef CONFIG_DEBUG_FS
579struct dentry *mips_debugfs_dir;
580static int __init debugfs_mips(void)
581{
582 struct dentry *d;
583
584 d = debugfs_create_dir("mips", NULL);
585 if (!d)
586 return -ENOMEM;
587 mips_debugfs_dir = d;
588 return 0;
589}
590arch_initcall(debugfs_mips);
591#endif