Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2024, SUSE LLC
  4 *
  5 * Authors: Enzo Matsumiya <ematsumiya@suse.de>
  6 *
  7 * This file implements I/O compression support for SMB2 messages (SMB 3.1.1 only).
  8 * See compress/ for implementation details of each algorithm.
  9 *
 10 * References:
 11 * MS-SMB2 "3.1.4.4 Compressing the Message"
 12 * MS-SMB2 "3.1.5.3 Decompressing the Chained Message"
 13 * MS-XCA - for details of the supported algorithms
 14 */
 15#include <linux/slab.h>
 16#include <linux/kernel.h>
 17#include <linux/uio.h>
 18#include <linux/sort.h>
 19
 20#include "cifsglob.h"
 21#include "../common/smb2pdu.h"
 22#include "cifsproto.h"
 23#include "smb2proto.h"
 24
 25#include "compress/lz77.h"
 26#include "compress.h"
 27
 28/*
 29 * The heuristic_*() functions below try to determine data compressibility.
 30 *
 31 * Derived from fs/btrfs/compression.c, changing coding style, some parameters, and removing
 32 * unused parts.
 33 *
 34 * Read that file for better and more detailed explanation of the calculations.
 35 *
 36 * The algorithms are ran in a collected sample of the input (uncompressed) data.
 37 * The sample is formed of 2K reads in PAGE_SIZE intervals, with a maximum size of 4M.
 38 *
 39 * Parsing the sample goes from "low-hanging fruits" (fastest algorithms, likely compressible)
 40 * to "need more analysis" (likely uncompressible).
 41 */
 42
 43struct bucket {
 44	unsigned int count;
 45};
 46
 47/**
 48 * has_low_entropy() - Compute Shannon entropy of the sampled data.
 49 * @bkt:	Bytes counts of the sample.
 50 * @slen:	Size of the sample.
 51 *
 52 * Return: true if the level (percentage of number of bits that would be required to
 53 *	   compress the data) is below the minimum threshold.
 54 *
 55 * Note:
 56 * There _is_ an entropy level here that's > 65 (minimum threshold) that would indicate a
 57 * possibility of compression, but compressing, or even further analysing, it would waste so much
 58 * resources that it's simply not worth it.
 59 *
 60 * Also Shannon entropy is the last computed heuristic; if we got this far and ended up
 61 * with uncertainty, just stay on the safe side and call it uncompressible.
 62 */
 63static bool has_low_entropy(struct bucket *bkt, size_t slen)
 64{
 65	const size_t threshold = 65, max_entropy = 8 * ilog2(16);
 66	size_t i, p, p2, len, sum = 0;
 67
 68#define pow4(n) (n * n * n * n)
 69	len = ilog2(pow4(slen));
 70
 71	for (i = 0; i < 256 && bkt[i].count > 0; i++) {
 72		p = bkt[i].count;
 73		p2 = ilog2(pow4(p));
 74		sum += p * (len - p2);
 75	}
 76
 77	sum /= slen;
 78
 79	return ((sum * 100 / max_entropy) <= threshold);
 80}
 81
 82#define BYTE_DIST_BAD		0
 83#define BYTE_DIST_GOOD		1
 84#define BYTE_DIST_MAYBE		2
 85/**
 86 * calc_byte_distribution() - Compute byte distribution on the sampled data.
 87 * @bkt:	Byte counts of the sample.
 88 * @slen:	Size of the sample.
 89 *
 90 * Return:
 91 * BYTE_DIST_BAD:	A "hard no" for compression -- a computed uniform distribution of
 92 *			the bytes (e.g. random or encrypted data).
 93 * BYTE_DIST_GOOD:	High probability (normal (Gaussian) distribution) of the data being
 94 *			compressible.
 95 * BYTE_DIST_MAYBE:	When computed byte distribution resulted in "low > n < high"
 96 *			grounds.  has_low_entropy() should be used for a final decision.
 97 */
 98static int calc_byte_distribution(struct bucket *bkt, size_t slen)
 99{
100	const size_t low = 64, high = 200, threshold = slen * 90 / 100;
101	size_t sum = 0;
102	int i;
103
104	for (i = 0; i < low; i++)
105		sum += bkt[i].count;
106
107	if (sum > threshold)
108		return BYTE_DIST_BAD;
109
110	for (; i < high && bkt[i].count > 0; i++) {
111		sum += bkt[i].count;
112		if (sum > threshold)
113			break;
114	}
115
116	if (i <= low)
117		return BYTE_DIST_GOOD;
118
119	if (i >= high)
120		return BYTE_DIST_BAD;
121
122	return BYTE_DIST_MAYBE;
123}
124
125static bool is_mostly_ascii(const struct bucket *bkt)
126{
127	size_t count = 0;
128	int i;
129
130	for (i = 0; i < 256; i++)
131		if (bkt[i].count > 0)
132			/* Too many non-ASCII (0-63) bytes. */
133			if (++count > 64)
134				return false;
135
136	return true;
137}
138
139static bool has_repeated_data(const u8 *sample, size_t len)
140{
141	size_t s = len / 2;
142
143	return (!memcmp(&sample[0], &sample[s], s));
144}
145
146static int cmp_bkt(const void *_a, const void *_b)
147{
148	const struct bucket *a = _a, *b = _b;
149
150	/* Reverse sort. */
151	if (a->count > b->count)
152		return -1;
153
154	return 1;
155}
156
157/*
158 * TODO:
159 * Support other iter types, if required.
160 * Only ITER_XARRAY is supported for now.
161 */
162static int collect_sample(const struct iov_iter *iter, ssize_t max, u8 *sample)
163{
164	struct folio *folios[16], *folio;
165	unsigned int nr, i, j, npages;
166	loff_t start = iter->xarray_start + iter->iov_offset;
167	pgoff_t last, index = start / PAGE_SIZE;
168	size_t len, off, foff;
169	void *p;
170	int s = 0;
171
172	last = (start + max - 1) / PAGE_SIZE;
173	do {
174		nr = xa_extract(iter->xarray, (void **)folios, index, last, ARRAY_SIZE(folios),
175				XA_PRESENT);
176		if (nr == 0)
177			return -EIO;
178
179		for (i = 0; i < nr; i++) {
180			folio = folios[i];
181			npages = folio_nr_pages(folio);
182			foff = start - folio_pos(folio);
183			off = foff % PAGE_SIZE;
184
185			for (j = foff / PAGE_SIZE; j < npages; j++) {
186				size_t len2;
187
188				len = min_t(size_t, max, PAGE_SIZE - off);
189				len2 = min_t(size_t, len, SZ_2K);
190
191				p = kmap_local_page(folio_page(folio, j));
192				memcpy(&sample[s], p, len2);
193				kunmap_local(p);
194
195				s += len2;
196
197				if (len2 < SZ_2K || s >= max - SZ_2K)
198					return s;
199
200				max -= len;
201				if (max <= 0)
202					return s;
203
204				start += len;
205				off = 0;
206				index++;
207			}
208		}
209	} while (nr == ARRAY_SIZE(folios));
210
211	return s;
212}
213
214/**
215 * is_compressible() - Determines if a chunk of data is compressible.
216 * @data: Iterator containing uncompressed data.
217 *
218 * Return: true if @data is compressible, false otherwise.
219 *
220 * Tests shows that this function is quite reliable in predicting data compressibility,
221 * matching close to 1:1 with the behaviour of LZ77 compression success and failures.
222 */
223static bool is_compressible(const struct iov_iter *data)
224{
225	const size_t read_size = SZ_2K, bkt_size = 256, max = SZ_4M;
226	struct bucket *bkt = NULL;
227	size_t len;
228	u8 *sample;
229	bool ret = false;
230	int i;
231
232	/* Preventive double check -- already checked in should_compress(). */
233	len = iov_iter_count(data);
234	if (unlikely(len < read_size))
235		return ret;
236
237	if (len - read_size > max)
238		len = max;
239
240	sample = kvzalloc(len, GFP_KERNEL);
241	if (!sample) {
242		WARN_ON_ONCE(1);
243
244		return ret;
245	}
246
247	/* Sample 2K bytes per page of the uncompressed data. */
248	i = collect_sample(data, len, sample);
249	if (i <= 0) {
250		WARN_ON_ONCE(1);
251
252		goto out;
253	}
254
255	len = i;
256	ret = true;
257
258	if (has_repeated_data(sample, len))
259		goto out;
260
261	bkt = kcalloc(bkt_size, sizeof(*bkt), GFP_KERNEL);
262	if (!bkt) {
263		WARN_ON_ONCE(1);
264		ret = false;
265
266		goto out;
267	}
268
269	for (i = 0; i < len; i++)
270		bkt[sample[i]].count++;
271
272	if (is_mostly_ascii(bkt))
273		goto out;
274
275	/* Sort in descending order */
276	sort(bkt, bkt_size, sizeof(*bkt), cmp_bkt, NULL);
277
278	i = calc_byte_distribution(bkt, len);
279	if (i != BYTE_DIST_MAYBE) {
280		ret = !!i;
281
282		goto out;
283	}
284
285	ret = has_low_entropy(bkt, len);
286out:
287	kvfree(sample);
288	kfree(bkt);
289
290	return ret;
291}
292
293bool should_compress(const struct cifs_tcon *tcon, const struct smb_rqst *rq)
294{
295	const struct smb2_hdr *shdr = rq->rq_iov->iov_base;
296
297	if (unlikely(!tcon || !tcon->ses || !tcon->ses->server))
298		return false;
299
300	if (!tcon->ses->server->compression.enabled)
301		return false;
302
303	if (!(tcon->share_flags & SMB2_SHAREFLAG_COMPRESS_DATA))
304		return false;
305
306	if (shdr->Command == SMB2_WRITE) {
307		const struct smb2_write_req *wreq = rq->rq_iov->iov_base;
308
309		if (le32_to_cpu(wreq->Length) < SMB_COMPRESS_MIN_LEN)
310			return false;
311
312		return is_compressible(&rq->rq_iter);
313	}
314
315	return (shdr->Command == SMB2_READ);
316}
317
318int smb_compress(struct TCP_Server_Info *server, struct smb_rqst *rq, compress_send_fn send_fn)
319{
320	struct iov_iter iter;
321	u32 slen, dlen;
322	void *src, *dst = NULL;
323	int ret;
324
325	if (!server || !rq || !rq->rq_iov || !rq->rq_iov->iov_base)
326		return -EINVAL;
327
328	if (rq->rq_iov->iov_len != sizeof(struct smb2_write_req))
329		return -EINVAL;
330
331	slen = iov_iter_count(&rq->rq_iter);
332	src = kvzalloc(slen, GFP_KERNEL);
333	if (!src) {
334		ret = -ENOMEM;
335		goto err_free;
336	}
337
338	/* Keep the original iter intact. */
339	iter = rq->rq_iter;
340
341	if (!copy_from_iter_full(src, slen, &iter)) {
342		ret = -EIO;
343		goto err_free;
344	}
345
346	/*
347	 * This is just overprovisioning, as the algorithm will error out if @dst reaches 7/8
348	 * of @slen.
349	 */
350	dlen = slen;
351	dst = kvzalloc(dlen, GFP_KERNEL);
352	if (!dst) {
353		ret = -ENOMEM;
354		goto err_free;
355	}
356
357	ret = lz77_compress(src, slen, dst, &dlen);
358	if (!ret) {
359		struct smb2_compression_hdr hdr = { 0 };
360		struct smb_rqst comp_rq = { .rq_nvec = 3, };
361		struct kvec iov[3];
362
363		hdr.ProtocolId = SMB2_COMPRESSION_TRANSFORM_ID;
364		hdr.OriginalCompressedSegmentSize = cpu_to_le32(slen);
365		hdr.CompressionAlgorithm = SMB3_COMPRESS_LZ77;
366		hdr.Flags = SMB2_COMPRESSION_FLAG_NONE;
367		hdr.Offset = cpu_to_le32(rq->rq_iov[0].iov_len);
368
369		iov[0].iov_base = &hdr;
370		iov[0].iov_len = sizeof(hdr);
371		iov[1] = rq->rq_iov[0];
372		iov[2].iov_base = dst;
373		iov[2].iov_len = dlen;
374
375		comp_rq.rq_iov = iov;
376
377		ret = send_fn(server, 1, &comp_rq);
378	} else if (ret == -EMSGSIZE || dlen >= slen) {
379		ret = send_fn(server, 1, rq);
380	}
381err_free:
382	kvfree(dst);
383	kvfree(src);
384
385	return ret;
386}