Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _BCACHEFS_JOURNAL_H
  3#define _BCACHEFS_JOURNAL_H
  4
  5/*
  6 * THE JOURNAL:
  7 *
  8 * The primary purpose of the journal is to log updates (insertions) to the
  9 * b-tree, to avoid having to do synchronous updates to the b-tree on disk.
 10 *
 11 * Without the journal, the b-tree is always internally consistent on
 12 * disk - and in fact, in the earliest incarnations bcache didn't have a journal
 13 * but did handle unclean shutdowns by doing all index updates synchronously
 14 * (with coalescing).
 15 *
 16 * Updates to interior nodes still happen synchronously and without the journal
 17 * (for simplicity) - this may change eventually but updates to interior nodes
 18 * are rare enough it's not a huge priority.
 19 *
 20 * This means the journal is relatively separate from the b-tree; it consists of
 21 * just a list of keys and journal replay consists of just redoing those
 22 * insertions in same order that they appear in the journal.
 23 *
 24 * PERSISTENCE:
 25 *
 26 * For synchronous updates (where we're waiting on the index update to hit
 27 * disk), the journal entry will be written out immediately (or as soon as
 28 * possible, if the write for the previous journal entry was still in flight).
 29 *
 30 * Synchronous updates are specified by passing a closure (@flush_cl) to
 31 * bch2_btree_insert() or bch_btree_insert_node(), which then pass that parameter
 32 * down to the journalling code. That closure will wait on the journal write to
 33 * complete (via closure_wait()).
 34 *
 35 * If the index update wasn't synchronous, the journal entry will be
 36 * written out after 10 ms have elapsed, by default (the delay_ms field
 37 * in struct journal).
 38 *
 39 * JOURNAL ENTRIES:
 40 *
 41 * A journal entry is variable size (struct jset), it's got a fixed length
 42 * header and then a variable number of struct jset_entry entries.
 43 *
 44 * Journal entries are identified by monotonically increasing 64 bit sequence
 45 * numbers - jset->seq; other places in the code refer to this sequence number.
 46 *
 47 * A jset_entry entry contains one or more bkeys (which is what gets inserted
 48 * into the b-tree). We need a container to indicate which b-tree the key is
 49 * for; also, the roots of the various b-trees are stored in jset_entry entries
 50 * (one for each b-tree) - this lets us add new b-tree types without changing
 51 * the on disk format.
 52 *
 53 * We also keep some things in the journal header that are logically part of the
 54 * superblock - all the things that are frequently updated. This is for future
 55 * bcache on raw flash support; the superblock (which will become another
 56 * journal) can't be moved or wear leveled, so it contains just enough
 57 * information to find the main journal, and the superblock only has to be
 58 * rewritten when we want to move/wear level the main journal.
 59 *
 60 * JOURNAL LAYOUT ON DISK:
 61 *
 62 * The journal is written to a ringbuffer of buckets (which is kept in the
 63 * superblock); the individual buckets are not necessarily contiguous on disk
 64 * which means that journal entries are not allowed to span buckets, but also
 65 * that we can resize the journal at runtime if desired (unimplemented).
 66 *
 67 * The journal buckets exist in the same pool as all the other buckets that are
 68 * managed by the allocator and garbage collection - garbage collection marks
 69 * the journal buckets as metadata buckets.
 70 *
 71 * OPEN/DIRTY JOURNAL ENTRIES:
 72 *
 73 * Open/dirty journal entries are journal entries that contain b-tree updates
 74 * that have not yet been written out to the b-tree on disk. We have to track
 75 * which journal entries are dirty, and we also have to avoid wrapping around
 76 * the journal and overwriting old but still dirty journal entries with new
 77 * journal entries.
 78 *
 79 * On disk, this is represented with the "last_seq" field of struct jset;
 80 * last_seq is the first sequence number that journal replay has to replay.
 81 *
 82 * To avoid overwriting dirty journal entries on disk, we keep a mapping (in
 83 * journal_device->seq) of for each journal bucket, the highest sequence number
 84 * any journal entry it contains. Then, by comparing that against last_seq we
 85 * can determine whether that journal bucket contains dirty journal entries or
 86 * not.
 87 *
 88 * To track which journal entries are dirty, we maintain a fifo of refcounts
 89 * (where each entry corresponds to a specific sequence number) - when a ref
 90 * goes to 0, that journal entry is no longer dirty.
 91 *
 92 * Journalling of index updates is done at the same time as the b-tree itself is
 93 * being modified (see btree_insert_key()); when we add the key to the journal
 94 * the pending b-tree write takes a ref on the journal entry the key was added
 95 * to. If a pending b-tree write would need to take refs on multiple dirty
 96 * journal entries, it only keeps the ref on the oldest one (since a newer
 97 * journal entry will still be replayed if an older entry was dirty).
 98 *
 99 * JOURNAL FILLING UP:
100 *
101 * There are two ways the journal could fill up; either we could run out of
102 * space to write to, or we could have too many open journal entries and run out
103 * of room in the fifo of refcounts. Since those refcounts are decremented
104 * without any locking we can't safely resize that fifo, so we handle it the
105 * same way.
106 *
107 * If the journal fills up, we start flushing dirty btree nodes until we can
108 * allocate space for a journal write again - preferentially flushing btree
109 * nodes that are pinning the oldest journal entries first.
110 */
111
112#include <linux/hash.h>
113
114#include "journal_types.h"
115
116struct bch_fs;
117
118static inline void journal_wake(struct journal *j)
119{
120	wake_up(&j->wait);
121	closure_wake_up(&j->async_wait);
122}
123
124static inline struct journal_buf *journal_cur_buf(struct journal *j)
125{
126	return j->buf + j->reservations.idx;
127}
128
129/* Sequence number of oldest dirty journal entry */
130
131static inline u64 journal_last_seq(struct journal *j)
132{
133	return j->pin.front;
134}
135
136static inline u64 journal_cur_seq(struct journal *j)
137{
138	return atomic64_read(&j->seq);
139}
140
141static inline u64 journal_last_unwritten_seq(struct journal *j)
142{
143	return j->seq_ondisk + 1;
144}
145
146static inline int journal_state_count(union journal_res_state s, int idx)
147{
148	switch (idx) {
149	case 0: return s.buf0_count;
150	case 1: return s.buf1_count;
151	case 2: return s.buf2_count;
152	case 3: return s.buf3_count;
153	}
154	BUG();
155}
156
157static inline void journal_state_inc(union journal_res_state *s)
158{
159	s->buf0_count += s->idx == 0;
160	s->buf1_count += s->idx == 1;
161	s->buf2_count += s->idx == 2;
162	s->buf3_count += s->idx == 3;
163}
164
165/*
166 * Amount of space that will be taken up by some keys in the journal (i.e.
167 * including the jset header)
168 */
169static inline unsigned jset_u64s(unsigned u64s)
170{
171	return u64s + sizeof(struct jset_entry) / sizeof(u64);
172}
173
174static inline int journal_entry_overhead(struct journal *j)
175{
176	return sizeof(struct jset) / sizeof(u64) + j->entry_u64s_reserved;
177}
178
179static inline struct jset_entry *
180bch2_journal_add_entry_noreservation(struct journal_buf *buf, size_t u64s)
181{
182	struct jset *jset = buf->data;
183	struct jset_entry *entry = vstruct_idx(jset, le32_to_cpu(jset->u64s));
184
185	memset(entry, 0, sizeof(*entry));
186	entry->u64s = cpu_to_le16(u64s);
187
188	le32_add_cpu(&jset->u64s, jset_u64s(u64s));
189
190	return entry;
191}
192
193static inline struct jset_entry *
194journal_res_entry(struct journal *j, struct journal_res *res)
195{
196	return vstruct_idx(j->buf[res->idx].data, res->offset);
197}
198
199static inline unsigned journal_entry_init(struct jset_entry *entry, unsigned type,
200					  enum btree_id id, unsigned level,
201					  unsigned u64s)
202{
203	entry->u64s	= cpu_to_le16(u64s);
204	entry->btree_id = id;
205	entry->level	= level;
206	entry->type	= type;
207	entry->pad[0]	= 0;
208	entry->pad[1]	= 0;
209	entry->pad[2]	= 0;
210	return jset_u64s(u64s);
211}
212
213static inline unsigned journal_entry_set(struct jset_entry *entry, unsigned type,
214					  enum btree_id id, unsigned level,
215					  const void *data, unsigned u64s)
216{
217	unsigned ret = journal_entry_init(entry, type, id, level, u64s);
218
219	memcpy_u64s_small(entry->_data, data, u64s);
220	return ret;
221}
222
223static inline struct jset_entry *
224bch2_journal_add_entry(struct journal *j, struct journal_res *res,
225			 unsigned type, enum btree_id id,
226			 unsigned level, unsigned u64s)
227{
228	struct jset_entry *entry = journal_res_entry(j, res);
229	unsigned actual = journal_entry_init(entry, type, id, level, u64s);
230
231	EBUG_ON(!res->ref);
232	EBUG_ON(actual > res->u64s);
233
234	res->offset	+= actual;
235	res->u64s	-= actual;
236	return entry;
237}
238
239static inline bool journal_entry_empty(struct jset *j)
240{
241	if (j->seq != j->last_seq)
242		return false;
243
244	vstruct_for_each(j, i)
245		if (i->type == BCH_JSET_ENTRY_btree_keys && i->u64s)
246			return false;
247	return true;
248}
249
250/*
251 * Drop reference on a buffer index and return true if the count has hit zero.
252 */
253static inline union journal_res_state journal_state_buf_put(struct journal *j, unsigned idx)
254{
255	union journal_res_state s;
256
257	s.v = atomic64_sub_return(((union journal_res_state) {
258				    .buf0_count = idx == 0,
259				    .buf1_count = idx == 1,
260				    .buf2_count = idx == 2,
261				    .buf3_count = idx == 3,
262				    }).v, &j->reservations.counter);
263	return s;
264}
265
266bool bch2_journal_entry_close(struct journal *);
267void bch2_journal_do_writes(struct journal *);
268void bch2_journal_buf_put_final(struct journal *, u64);
269
270static inline void __bch2_journal_buf_put(struct journal *j, unsigned idx, u64 seq)
271{
272	union journal_res_state s;
273
274	s = journal_state_buf_put(j, idx);
275	if (!journal_state_count(s, idx))
276		bch2_journal_buf_put_final(j, seq);
277}
278
279static inline void bch2_journal_buf_put(struct journal *j, unsigned idx, u64 seq)
280{
281	union journal_res_state s;
282
283	s = journal_state_buf_put(j, idx);
284	if (!journal_state_count(s, idx)) {
285		spin_lock(&j->lock);
286		bch2_journal_buf_put_final(j, seq);
287		spin_unlock(&j->lock);
288	}
289}
290
291/*
292 * This function releases the journal write structure so other threads can
293 * then proceed to add their keys as well.
294 */
295static inline void bch2_journal_res_put(struct journal *j,
296				       struct journal_res *res)
297{
298	if (!res->ref)
299		return;
300
301	lock_release(&j->res_map, _THIS_IP_);
302
303	while (res->u64s)
304		bch2_journal_add_entry(j, res,
305				       BCH_JSET_ENTRY_btree_keys,
306				       0, 0, 0);
307
308	bch2_journal_buf_put(j, res->idx, res->seq);
309
310	res->ref = 0;
311}
312
313int bch2_journal_res_get_slowpath(struct journal *, struct journal_res *,
314				  unsigned);
315
316/* First bits for BCH_WATERMARK: */
317enum journal_res_flags {
318	__JOURNAL_RES_GET_NONBLOCK	= BCH_WATERMARK_BITS,
319	__JOURNAL_RES_GET_CHECK,
320};
321
322#define JOURNAL_RES_GET_NONBLOCK	(1 << __JOURNAL_RES_GET_NONBLOCK)
323#define JOURNAL_RES_GET_CHECK		(1 << __JOURNAL_RES_GET_CHECK)
324
325static inline int journal_res_get_fast(struct journal *j,
326				       struct journal_res *res,
327				       unsigned flags)
328{
329	union journal_res_state old, new;
330
331	old.v = atomic64_read(&j->reservations.counter);
332	do {
333		new.v = old.v;
334
335		/*
336		 * Check if there is still room in the current journal
337		 * entry:
338		 */
339		if (new.cur_entry_offset + res->u64s > j->cur_entry_u64s)
340			return 0;
341
342		EBUG_ON(!journal_state_count(new, new.idx));
343
344		if ((flags & BCH_WATERMARK_MASK) < j->watermark)
345			return 0;
346
347		new.cur_entry_offset += res->u64s;
348		journal_state_inc(&new);
349
350		/*
351		 * If the refcount would overflow, we have to wait:
352		 * XXX - tracepoint this:
353		 */
354		if (!journal_state_count(new, new.idx))
355			return 0;
356
357		if (flags & JOURNAL_RES_GET_CHECK)
358			return 1;
359	} while (!atomic64_try_cmpxchg(&j->reservations.counter,
360				       &old.v, new.v));
361
362	res->ref	= true;
363	res->idx	= old.idx;
364	res->offset	= old.cur_entry_offset;
365	res->seq	= le64_to_cpu(j->buf[old.idx].data->seq);
366	return 1;
367}
368
369static inline int bch2_journal_res_get(struct journal *j, struct journal_res *res,
370				       unsigned u64s, unsigned flags)
371{
372	int ret;
373
374	EBUG_ON(res->ref);
375	EBUG_ON(!test_bit(JOURNAL_running, &j->flags));
376
377	res->u64s = u64s;
378
379	if (journal_res_get_fast(j, res, flags))
380		goto out;
381
382	ret = bch2_journal_res_get_slowpath(j, res, flags);
383	if (ret)
384		return ret;
385out:
386	if (!(flags & JOURNAL_RES_GET_CHECK)) {
387		lock_acquire_shared(&j->res_map, 0,
388				    (flags & JOURNAL_RES_GET_NONBLOCK) != 0,
389				    NULL, _THIS_IP_);
390		EBUG_ON(!res->ref);
391	}
392	return 0;
393}
394
395/* journal_entry_res: */
396
397void bch2_journal_entry_res_resize(struct journal *,
398				   struct journal_entry_res *,
399				   unsigned);
400
401int bch2_journal_flush_seq_async(struct journal *, u64, struct closure *);
402void bch2_journal_flush_async(struct journal *, struct closure *);
403
404int bch2_journal_flush_seq(struct journal *, u64, unsigned);
405int bch2_journal_flush(struct journal *);
406bool bch2_journal_noflush_seq(struct journal *, u64);
407int bch2_journal_meta(struct journal *);
408
409void bch2_journal_halt(struct journal *);
410
411static inline int bch2_journal_error(struct journal *j)
412{
413	return j->reservations.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL
414		? -EIO : 0;
415}
416
417struct bch_dev;
418
419static inline void bch2_journal_set_replay_done(struct journal *j)
420{
421	BUG_ON(!test_bit(JOURNAL_running, &j->flags));
422	set_bit(JOURNAL_replay_done, &j->flags);
423}
424
425void bch2_journal_unblock(struct journal *);
426void bch2_journal_block(struct journal *);
427struct journal_buf *bch2_next_write_buffer_flush_journal_buf(struct journal *j, u64 max_seq);
428
429void __bch2_journal_debug_to_text(struct printbuf *, struct journal *);
430void bch2_journal_debug_to_text(struct printbuf *, struct journal *);
431void bch2_journal_pins_to_text(struct printbuf *, struct journal *);
432bool bch2_journal_seq_pins_to_text(struct printbuf *, struct journal *, u64 *);
433
434int bch2_set_nr_journal_buckets(struct bch_fs *, struct bch_dev *,
435				unsigned nr);
436int bch2_dev_journal_alloc(struct bch_dev *, bool);
437int bch2_fs_journal_alloc(struct bch_fs *);
438
439void bch2_dev_journal_stop(struct journal *, struct bch_dev *);
440
441void bch2_fs_journal_stop(struct journal *);
442int bch2_fs_journal_start(struct journal *, u64);
443
444void bch2_dev_journal_exit(struct bch_dev *);
445int bch2_dev_journal_init(struct bch_dev *, struct bch_sb *);
446void bch2_fs_journal_exit(struct journal *);
447int bch2_fs_journal_init(struct journal *);
448
449#endif /* _BCACHEFS_JOURNAL_H */