Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
  10 */
  11
  12#define pr_fmt(fmt) "LSM: " fmt
  13
  14#include <linux/bpf.h>
  15#include <linux/capability.h>
  16#include <linux/dcache.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/kernel_read_file.h>
  21#include <linux/lsm_hooks.h>
 
  22#include <linux/mman.h>
  23#include <linux/mount.h>
  24#include <linux/personality.h>
  25#include <linux/backing-dev.h>
  26#include <linux/string.h>
  27#include <linux/xattr.h>
  28#include <linux/msg.h>
  29#include <linux/overflow.h>
  30#include <linux/perf_event.h>
  31#include <linux/fs.h>
  32#include <net/flow.h>
  33#include <net/sock.h>
  34
  35#define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
 
  36
  37/*
  38 * Identifier for the LSM static calls.
  39 * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
  40 * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
  41 */
  42#define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
  43
  44/*
  45 * Call the macro M for each LSM hook MAX_LSM_COUNT times.
  46 */
  47#define LSM_LOOP_UNROLL(M, ...) 		\
  48do {						\
  49	UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)	\
  50} while (0)
  51
  52#define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
 
 
 
  53
  54/*
  55 * These are descriptions of the reasons that can be passed to the
  56 * security_locked_down() LSM hook. Placing this array here allows
  57 * all security modules to use the same descriptions for auditing
  58 * purposes.
  59 */
  60const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
  61	[LOCKDOWN_NONE] = "none",
  62	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  63	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  64	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  65	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
  66	[LOCKDOWN_HIBERNATION] = "hibernation",
  67	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  68	[LOCKDOWN_IOPORT] = "raw io port access",
  69	[LOCKDOWN_MSR] = "raw MSR access",
  70	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  71	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
  72	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  73	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  74	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  75	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  76	[LOCKDOWN_DEBUGFS] = "debugfs access",
  77	[LOCKDOWN_XMON_WR] = "xmon write access",
  78	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
  79	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
  80	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
  81	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
  82	[LOCKDOWN_KCORE] = "/proc/kcore access",
  83	[LOCKDOWN_KPROBES] = "use of kprobes",
  84	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
  85	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
  86	[LOCKDOWN_PERF] = "unsafe use of perf",
  87	[LOCKDOWN_TRACEFS] = "use of tracefs",
  88	[LOCKDOWN_XMON_RW] = "xmon read and write access",
  89	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
  90	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  91};
  92
 
  93static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  94
  95static struct kmem_cache *lsm_file_cache;
  96static struct kmem_cache *lsm_inode_cache;
  97
  98char *lsm_names;
  99static struct lsm_blob_sizes blob_sizes __ro_after_init;
 100
 101/* Boot-time LSM user choice */
 102static __initdata const char *chosen_lsm_order;
 103static __initdata const char *chosen_major_lsm;
 104
 105static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
 106
 107/* Ordered list of LSMs to initialize. */
 108static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
 109static __initdata struct lsm_info *exclusive;
 110
 111#ifdef CONFIG_HAVE_STATIC_CALL
 112#define LSM_HOOK_TRAMP(NAME, NUM) \
 113	&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
 114#else
 115#define LSM_HOOK_TRAMP(NAME, NUM) NULL
 116#endif
 117
 118/*
 119 * Define static calls and static keys for each LSM hook.
 120 */
 121#define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...)			\
 122	DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM),		\
 123				*((RET(*)(__VA_ARGS__))NULL));		\
 124	DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
 125
 126#define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
 127	LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
 128#include <linux/lsm_hook_defs.h>
 129#undef LSM_HOOK
 130#undef DEFINE_LSM_STATIC_CALL
 131
 132/*
 133 * Initialise a table of static calls for each LSM hook.
 134 * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
 135 * and a trampoline (STATIC_CALL_TRAMP) which are used to call
 136 * __static_call_update when updating the static call.
 137 *
 138 * The static calls table is used by early LSMs, some architectures can fault on
 139 * unaligned accesses and the fault handling code may not be ready by then.
 140 * Thus, the static calls table should be aligned to avoid any unhandled faults
 141 * in early init.
 142 */
 143struct lsm_static_calls_table
 144	static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
 145#define INIT_LSM_STATIC_CALL(NUM, NAME)					\
 146	(struct lsm_static_call) {					\
 147		.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)),	\
 148		.trampoline = LSM_HOOK_TRAMP(NAME, NUM),		\
 149		.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM),		\
 150	},
 151#define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
 152	.NAME = {							\
 153		LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME)		\
 154	},
 155#include <linux/lsm_hook_defs.h>
 156#undef LSM_HOOK
 157#undef INIT_LSM_STATIC_CALL
 158	};
 159
 160static __initdata bool debug;
 161#define init_debug(...)						\
 162	do {							\
 163		if (debug)					\
 164			pr_info(__VA_ARGS__);			\
 165	} while (0)
 166
 167static bool __init is_enabled(struct lsm_info *lsm)
 168{
 169	if (!lsm->enabled)
 170		return false;
 171
 172	return *lsm->enabled;
 173}
 174
 175/* Mark an LSM's enabled flag. */
 176static int lsm_enabled_true __initdata = 1;
 177static int lsm_enabled_false __initdata = 0;
 178static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 179{
 180	/*
 181	 * When an LSM hasn't configured an enable variable, we can use
 182	 * a hard-coded location for storing the default enabled state.
 183	 */
 184	if (!lsm->enabled) {
 185		if (enabled)
 186			lsm->enabled = &lsm_enabled_true;
 187		else
 188			lsm->enabled = &lsm_enabled_false;
 189	} else if (lsm->enabled == &lsm_enabled_true) {
 190		if (!enabled)
 191			lsm->enabled = &lsm_enabled_false;
 192	} else if (lsm->enabled == &lsm_enabled_false) {
 193		if (enabled)
 194			lsm->enabled = &lsm_enabled_true;
 195	} else {
 196		*lsm->enabled = enabled;
 197	}
 198}
 199
 200/* Is an LSM already listed in the ordered LSMs list? */
 201static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 202{
 203	struct lsm_info **check;
 204
 205	for (check = ordered_lsms; *check; check++)
 206		if (*check == lsm)
 207			return true;
 208
 209	return false;
 210}
 211
 212/* Append an LSM to the list of ordered LSMs to initialize. */
 213static int last_lsm __initdata;
 214static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 215{
 216	/* Ignore duplicate selections. */
 217	if (exists_ordered_lsm(lsm))
 218		return;
 219
 220	if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
 221		return;
 222
 223	/* Enable this LSM, if it is not already set. */
 224	if (!lsm->enabled)
 225		lsm->enabled = &lsm_enabled_true;
 226	ordered_lsms[last_lsm++] = lsm;
 227
 228	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
 229		   is_enabled(lsm) ? "enabled" : "disabled");
 230}
 231
 232/* Is an LSM allowed to be initialized? */
 233static bool __init lsm_allowed(struct lsm_info *lsm)
 234{
 235	/* Skip if the LSM is disabled. */
 236	if (!is_enabled(lsm))
 237		return false;
 238
 239	/* Not allowed if another exclusive LSM already initialized. */
 240	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 241		init_debug("exclusive disabled: %s\n", lsm->name);
 242		return false;
 243	}
 244
 245	return true;
 246}
 247
 248static void __init lsm_set_blob_size(int *need, int *lbs)
 249{
 250	int offset;
 251
 252	if (*need <= 0)
 253		return;
 254
 255	offset = ALIGN(*lbs, sizeof(void *));
 256	*lbs = offset + *need;
 257	*need = offset;
 258}
 259
 260static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 261{
 262	if (!needed)
 263		return;
 264
 265	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 266	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 267	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
 268	/*
 269	 * The inode blob gets an rcu_head in addition to
 270	 * what the modules might need.
 271	 */
 272	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 273		blob_sizes.lbs_inode = sizeof(struct rcu_head);
 274	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 275	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 276	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
 277	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 278	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
 279	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
 280	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
 281	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 282	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
 283	lsm_set_blob_size(&needed->lbs_xattr_count,
 284			  &blob_sizes.lbs_xattr_count);
 285	lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
 286}
 287
 288/* Prepare LSM for initialization. */
 289static void __init prepare_lsm(struct lsm_info *lsm)
 290{
 291	int enabled = lsm_allowed(lsm);
 292
 293	/* Record enablement (to handle any following exclusive LSMs). */
 294	set_enabled(lsm, enabled);
 295
 296	/* If enabled, do pre-initialization work. */
 297	if (enabled) {
 298		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 299			exclusive = lsm;
 300			init_debug("exclusive chosen:   %s\n", lsm->name);
 301		}
 302
 303		lsm_set_blob_sizes(lsm->blobs);
 304	}
 305}
 306
 307/* Initialize a given LSM, if it is enabled. */
 308static void __init initialize_lsm(struct lsm_info *lsm)
 309{
 310	if (is_enabled(lsm)) {
 311		int ret;
 312
 313		init_debug("initializing %s\n", lsm->name);
 314		ret = lsm->init();
 315		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 316	}
 317}
 318
 319/*
 320 * Current index to use while initializing the lsm id list.
 321 */
 322u32 lsm_active_cnt __ro_after_init;
 323const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
 324
 325/* Populate ordered LSMs list from comma-separated LSM name list. */
 326static void __init ordered_lsm_parse(const char *order, const char *origin)
 327{
 328	struct lsm_info *lsm;
 329	char *sep, *name, *next;
 330
 331	/* LSM_ORDER_FIRST is always first. */
 332	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 333		if (lsm->order == LSM_ORDER_FIRST)
 334			append_ordered_lsm(lsm, "  first");
 335	}
 336
 337	/* Process "security=", if given. */
 338	if (chosen_major_lsm) {
 339		struct lsm_info *major;
 340
 341		/*
 342		 * To match the original "security=" behavior, this
 343		 * explicitly does NOT fallback to another Legacy Major
 344		 * if the selected one was separately disabled: disable
 345		 * all non-matching Legacy Major LSMs.
 346		 */
 347		for (major = __start_lsm_info; major < __end_lsm_info;
 348		     major++) {
 349			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 350			    strcmp(major->name, chosen_major_lsm) != 0) {
 351				set_enabled(major, false);
 352				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
 353					   chosen_major_lsm, major->name);
 354			}
 355		}
 356	}
 357
 358	sep = kstrdup(order, GFP_KERNEL);
 359	next = sep;
 360	/* Walk the list, looking for matching LSMs. */
 361	while ((name = strsep(&next, ",")) != NULL) {
 362		bool found = false;
 363
 364		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 365			if (strcmp(lsm->name, name) == 0) {
 366				if (lsm->order == LSM_ORDER_MUTABLE)
 367					append_ordered_lsm(lsm, origin);
 368				found = true;
 369			}
 370		}
 371
 372		if (!found)
 373			init_debug("%s ignored: %s (not built into kernel)\n",
 374				   origin, name);
 375	}
 376
 377	/* Process "security=", if given. */
 378	if (chosen_major_lsm) {
 379		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 380			if (exists_ordered_lsm(lsm))
 381				continue;
 382			if (strcmp(lsm->name, chosen_major_lsm) == 0)
 383				append_ordered_lsm(lsm, "security=");
 384		}
 385	}
 386
 387	/* LSM_ORDER_LAST is always last. */
 388	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 389		if (lsm->order == LSM_ORDER_LAST)
 390			append_ordered_lsm(lsm, "   last");
 391	}
 392
 393	/* Disable all LSMs not in the ordered list. */
 394	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 395		if (exists_ordered_lsm(lsm))
 396			continue;
 397		set_enabled(lsm, false);
 398		init_debug("%s skipped: %s (not in requested order)\n",
 399			   origin, lsm->name);
 400	}
 401
 402	kfree(sep);
 403}
 404
 405static void __init lsm_static_call_init(struct security_hook_list *hl)
 406{
 407	struct lsm_static_call *scall = hl->scalls;
 408	int i;
 409
 410	for (i = 0; i < MAX_LSM_COUNT; i++) {
 411		/* Update the first static call that is not used yet */
 412		if (!scall->hl) {
 413			__static_call_update(scall->key, scall->trampoline,
 414					     hl->hook.lsm_func_addr);
 415			scall->hl = hl;
 416			static_branch_enable(scall->active);
 417			return;
 418		}
 419		scall++;
 420	}
 421	panic("%s - Ran out of static slots.\n", __func__);
 422}
 423
 424static void __init lsm_early_cred(struct cred *cred);
 425static void __init lsm_early_task(struct task_struct *task);
 426
 427static int lsm_append(const char *new, char **result);
 428
 429static void __init report_lsm_order(void)
 430{
 431	struct lsm_info **lsm, *early;
 432	int first = 0;
 433
 434	pr_info("initializing lsm=");
 435
 436	/* Report each enabled LSM name, comma separated. */
 437	for (early = __start_early_lsm_info;
 438	     early < __end_early_lsm_info; early++)
 439		if (is_enabled(early))
 440			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
 441	for (lsm = ordered_lsms; *lsm; lsm++)
 442		if (is_enabled(*lsm))
 443			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
 444
 445	pr_cont("\n");
 446}
 447
 448static void __init ordered_lsm_init(void)
 449{
 450	struct lsm_info **lsm;
 451
 
 
 
 452	if (chosen_lsm_order) {
 453		if (chosen_major_lsm) {
 454			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
 455				chosen_major_lsm, chosen_lsm_order);
 456			chosen_major_lsm = NULL;
 457		}
 458		ordered_lsm_parse(chosen_lsm_order, "cmdline");
 459	} else
 460		ordered_lsm_parse(builtin_lsm_order, "builtin");
 461
 462	for (lsm = ordered_lsms; *lsm; lsm++)
 463		prepare_lsm(*lsm);
 464
 465	report_lsm_order();
 466
 467	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
 468	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
 469	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
 470	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
 471	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
 472#ifdef CONFIG_KEYS
 473	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
 474#endif /* CONFIG_KEYS */
 475	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
 476	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
 477	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
 478	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
 479	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
 480	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
 481	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
 482	init_debug("bdev blob size       = %d\n", blob_sizes.lbs_bdev);
 483
 484	/*
 485	 * Create any kmem_caches needed for blobs
 486	 */
 487	if (blob_sizes.lbs_file)
 488		lsm_file_cache = kmem_cache_create("lsm_file_cache",
 489						   blob_sizes.lbs_file, 0,
 490						   SLAB_PANIC, NULL);
 491	if (blob_sizes.lbs_inode)
 492		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 493						    blob_sizes.lbs_inode, 0,
 494						    SLAB_PANIC, NULL);
 495
 496	lsm_early_cred((struct cred *) current->cred);
 497	lsm_early_task(current);
 498	for (lsm = ordered_lsms; *lsm; lsm++)
 499		initialize_lsm(*lsm);
 
 
 500}
 501
 502int __init early_security_init(void)
 503{
 504	struct lsm_info *lsm;
 505
 
 
 
 
 
 506	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 507		if (!lsm->enabled)
 508			lsm->enabled = &lsm_enabled_true;
 509		prepare_lsm(lsm);
 510		initialize_lsm(lsm);
 511	}
 512
 513	return 0;
 514}
 515
 516/**
 517 * security_init - initializes the security framework
 518 *
 519 * This should be called early in the kernel initialization sequence.
 520 */
 521int __init security_init(void)
 522{
 523	struct lsm_info *lsm;
 524
 525	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
 526	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
 527	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
 528
 529	/*
 530	 * Append the names of the early LSM modules now that kmalloc() is
 531	 * available
 532	 */
 533	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 534		init_debug("  early started: %s (%s)\n", lsm->name,
 535			   is_enabled(lsm) ? "enabled" : "disabled");
 536		if (lsm->enabled)
 537			lsm_append(lsm->name, &lsm_names);
 538	}
 539
 540	/* Load LSMs in specified order. */
 541	ordered_lsm_init();
 542
 543	return 0;
 544}
 545
 546/* Save user chosen LSM */
 547static int __init choose_major_lsm(char *str)
 548{
 549	chosen_major_lsm = str;
 550	return 1;
 551}
 552__setup("security=", choose_major_lsm);
 553
 554/* Explicitly choose LSM initialization order. */
 555static int __init choose_lsm_order(char *str)
 556{
 557	chosen_lsm_order = str;
 558	return 1;
 559}
 560__setup("lsm=", choose_lsm_order);
 561
 562/* Enable LSM order debugging. */
 563static int __init enable_debug(char *str)
 564{
 565	debug = true;
 566	return 1;
 567}
 568__setup("lsm.debug", enable_debug);
 569
 570static bool match_last_lsm(const char *list, const char *lsm)
 571{
 572	const char *last;
 573
 574	if (WARN_ON(!list || !lsm))
 575		return false;
 576	last = strrchr(list, ',');
 577	if (last)
 578		/* Pass the comma, strcmp() will check for '\0' */
 579		last++;
 580	else
 581		last = list;
 582	return !strcmp(last, lsm);
 583}
 584
 585static int lsm_append(const char *new, char **result)
 586{
 587	char *cp;
 588
 589	if (*result == NULL) {
 590		*result = kstrdup(new, GFP_KERNEL);
 591		if (*result == NULL)
 592			return -ENOMEM;
 593	} else {
 594		/* Check if it is the last registered name */
 595		if (match_last_lsm(*result, new))
 596			return 0;
 597		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 598		if (cp == NULL)
 599			return -ENOMEM;
 600		kfree(*result);
 601		*result = cp;
 602	}
 603	return 0;
 604}
 605
 606/**
 607 * security_add_hooks - Add a modules hooks to the hook lists.
 608 * @hooks: the hooks to add
 609 * @count: the number of hooks to add
 610 * @lsmid: the identification information for the security module
 611 *
 612 * Each LSM has to register its hooks with the infrastructure.
 613 */
 614void __init security_add_hooks(struct security_hook_list *hooks, int count,
 615			       const struct lsm_id *lsmid)
 616{
 617	int i;
 618
 619	/*
 620	 * A security module may call security_add_hooks() more
 621	 * than once during initialization, and LSM initialization
 622	 * is serialized. Landlock is one such case.
 623	 * Look at the previous entry, if there is one, for duplication.
 624	 */
 625	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
 626		if (lsm_active_cnt >= MAX_LSM_COUNT)
 627			panic("%s Too many LSMs registered.\n", __func__);
 628		lsm_idlist[lsm_active_cnt++] = lsmid;
 629	}
 630
 631	for (i = 0; i < count; i++) {
 632		hooks[i].lsmid = lsmid;
 633		lsm_static_call_init(&hooks[i]);
 634	}
 635
 636	/*
 637	 * Don't try to append during early_security_init(), we'll come back
 638	 * and fix this up afterwards.
 639	 */
 640	if (slab_is_available()) {
 641		if (lsm_append(lsmid->name, &lsm_names) < 0)
 642			panic("%s - Cannot get early memory.\n", __func__);
 643	}
 644}
 645
 646int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 647{
 648	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 649					    event, data);
 650}
 651EXPORT_SYMBOL(call_blocking_lsm_notifier);
 652
 653int register_blocking_lsm_notifier(struct notifier_block *nb)
 654{
 655	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 656						nb);
 657}
 658EXPORT_SYMBOL(register_blocking_lsm_notifier);
 659
 660int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 661{
 662	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 663						  nb);
 664}
 665EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 666
 667/**
 668 * lsm_blob_alloc - allocate a composite blob
 669 * @dest: the destination for the blob
 670 * @size: the size of the blob
 671 * @gfp: allocation type
 672 *
 673 * Allocate a blob for all the modules
 674 *
 675 * Returns 0, or -ENOMEM if memory can't be allocated.
 676 */
 677static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
 678{
 679	if (size == 0) {
 680		*dest = NULL;
 681		return 0;
 682	}
 683
 684	*dest = kzalloc(size, gfp);
 685	if (*dest == NULL)
 686		return -ENOMEM;
 687	return 0;
 688}
 689
 690/**
 691 * lsm_cred_alloc - allocate a composite cred blob
 692 * @cred: the cred that needs a blob
 693 * @gfp: allocation type
 694 *
 695 * Allocate the cred blob for all the modules
 696 *
 697 * Returns 0, or -ENOMEM if memory can't be allocated.
 698 */
 699static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 700{
 701	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
 702}
 703
 704/**
 705 * lsm_early_cred - during initialization allocate a composite cred blob
 706 * @cred: the cred that needs a blob
 707 *
 708 * Allocate the cred blob for all the modules
 709 */
 710static void __init lsm_early_cred(struct cred *cred)
 711{
 712	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 713
 714	if (rc)
 715		panic("%s: Early cred alloc failed.\n", __func__);
 716}
 717
 718/**
 719 * lsm_file_alloc - allocate a composite file blob
 720 * @file: the file that needs a blob
 721 *
 722 * Allocate the file blob for all the modules
 723 *
 724 * Returns 0, or -ENOMEM if memory can't be allocated.
 725 */
 726static int lsm_file_alloc(struct file *file)
 727{
 728	if (!lsm_file_cache) {
 729		file->f_security = NULL;
 730		return 0;
 731	}
 732
 733	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 734	if (file->f_security == NULL)
 735		return -ENOMEM;
 736	return 0;
 737}
 738
 739/**
 740 * lsm_inode_alloc - allocate a composite inode blob
 741 * @inode: the inode that needs a blob
 742 * @gfp: allocation flags
 743 *
 744 * Allocate the inode blob for all the modules
 745 *
 746 * Returns 0, or -ENOMEM if memory can't be allocated.
 747 */
 748static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
 749{
 750	if (!lsm_inode_cache) {
 751		inode->i_security = NULL;
 752		return 0;
 753	}
 754
 755	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
 756	if (inode->i_security == NULL)
 757		return -ENOMEM;
 758	return 0;
 759}
 760
 761/**
 762 * lsm_task_alloc - allocate a composite task blob
 763 * @task: the task that needs a blob
 764 *
 765 * Allocate the task blob for all the modules
 766 *
 767 * Returns 0, or -ENOMEM if memory can't be allocated.
 768 */
 769static int lsm_task_alloc(struct task_struct *task)
 770{
 771	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
 
 
 
 
 
 
 
 
 772}
 773
 774/**
 775 * lsm_ipc_alloc - allocate a composite ipc blob
 776 * @kip: the ipc that needs a blob
 777 *
 778 * Allocate the ipc blob for all the modules
 779 *
 780 * Returns 0, or -ENOMEM if memory can't be allocated.
 781 */
 782static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 783{
 784	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
 785}
 
 
 786
 787#ifdef CONFIG_KEYS
 788/**
 789 * lsm_key_alloc - allocate a composite key blob
 790 * @key: the key that needs a blob
 791 *
 792 * Allocate the key blob for all the modules
 793 *
 794 * Returns 0, or -ENOMEM if memory can't be allocated.
 795 */
 796static int lsm_key_alloc(struct key *key)
 797{
 798	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
 799}
 800#endif /* CONFIG_KEYS */
 801
 802/**
 803 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 804 * @mp: the msg_msg that needs a blob
 805 *
 806 * Allocate the ipc blob for all the modules
 807 *
 808 * Returns 0, or -ENOMEM if memory can't be allocated.
 809 */
 810static int lsm_msg_msg_alloc(struct msg_msg *mp)
 811{
 812	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
 813			      GFP_KERNEL);
 814}
 815
 816/**
 817 * lsm_bdev_alloc - allocate a composite block_device blob
 818 * @bdev: the block_device that needs a blob
 819 *
 820 * Allocate the block_device blob for all the modules
 821 *
 822 * Returns 0, or -ENOMEM if memory can't be allocated.
 823 */
 824static int lsm_bdev_alloc(struct block_device *bdev)
 825{
 826	if (blob_sizes.lbs_bdev == 0) {
 827		bdev->bd_security = NULL;
 828		return 0;
 829	}
 830
 831	bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
 832	if (!bdev->bd_security)
 833		return -ENOMEM;
 834
 835	return 0;
 836}
 837
 838/**
 839 * lsm_early_task - during initialization allocate a composite task blob
 840 * @task: the task that needs a blob
 841 *
 842 * Allocate the task blob for all the modules
 843 */
 844static void __init lsm_early_task(struct task_struct *task)
 845{
 846	int rc = lsm_task_alloc(task);
 847
 848	if (rc)
 849		panic("%s: Early task alloc failed.\n", __func__);
 850}
 851
 852/**
 853 * lsm_superblock_alloc - allocate a composite superblock blob
 854 * @sb: the superblock that needs a blob
 855 *
 856 * Allocate the superblock blob for all the modules
 857 *
 858 * Returns 0, or -ENOMEM if memory can't be allocated.
 859 */
 860static int lsm_superblock_alloc(struct super_block *sb)
 861{
 862	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
 863			      GFP_KERNEL);
 
 
 
 
 
 
 
 864}
 865
 866/**
 867 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
 868 * @uctx: a userspace LSM context to be filled
 869 * @uctx_len: available uctx size (input), used uctx size (output)
 870 * @val: the new LSM context value
 871 * @val_len: the size of the new LSM context value
 872 * @id: LSM id
 873 * @flags: LSM defined flags
 874 *
 875 * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
 876 * simply calculate the required size to output via @utc_len and return
 877 * success.
 878 *
 879 * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
 880 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
 881 */
 882int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
 883		      void *val, size_t val_len,
 884		      u64 id, u64 flags)
 885{
 886	struct lsm_ctx *nctx = NULL;
 887	size_t nctx_len;
 888	int rc = 0;
 889
 890	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
 891	if (nctx_len > *uctx_len) {
 892		rc = -E2BIG;
 893		goto out;
 894	}
 895
 896	/* no buffer - return success/0 and set @uctx_len to the req size */
 897	if (!uctx)
 898		goto out;
 899
 900	nctx = kzalloc(nctx_len, GFP_KERNEL);
 901	if (nctx == NULL) {
 902		rc = -ENOMEM;
 903		goto out;
 904	}
 905	nctx->id = id;
 906	nctx->flags = flags;
 907	nctx->len = nctx_len;
 908	nctx->ctx_len = val_len;
 909	memcpy(nctx->ctx, val, val_len);
 910
 911	if (copy_to_user(uctx, nctx, nctx_len))
 912		rc = -EFAULT;
 913
 914out:
 915	kfree(nctx);
 916	*uctx_len = nctx_len;
 917	return rc;
 918}
 919
 920/*
 921 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 922 * can be accessed with:
 923 *
 924 *	LSM_RET_DEFAULT(<hook_name>)
 925 *
 926 * The macros below define static constants for the default value of each
 927 * LSM hook.
 928 */
 929#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 930#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 931#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 932	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
 933#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 934	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 935
 936#include <linux/lsm_hook_defs.h>
 937#undef LSM_HOOK
 938
 939/*
 940 * Hook list operation macros.
 941 *
 942 * call_void_hook:
 943 *	This is a hook that does not return a value.
 944 *
 945 * call_int_hook:
 946 *	This is a hook that returns a value.
 947 */
 948#define __CALL_STATIC_VOID(NUM, HOOK, ...)				     \
 949do {									     \
 950	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {    \
 951		static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);	     \
 952	}								     \
 953} while (0);
 954
 955#define call_void_hook(HOOK, ...)                                 \
 956	do {                                                      \
 957		LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
 958	} while (0)
 959
 
 
 
 
 
 
 
 960
 961#define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...)			     \
 962do {									     \
 963	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {  \
 964		R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);    \
 965		if (R != LSM_RET_DEFAULT(HOOK))				     \
 966			goto LABEL;					     \
 967	}								     \
 968} while (0);
 969
 970#define call_int_hook(HOOK, ...)					\
 971({									\
 972	__label__ OUT;							\
 973	int RC = LSM_RET_DEFAULT(HOOK);					\
 974									\
 975	LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__);	\
 976OUT:									\
 977	RC;								\
 978})
 979
 980#define lsm_for_each_hook(scall, NAME)					\
 981	for (scall = static_calls_table.NAME;				\
 982	     scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++)  \
 983		if (static_key_enabled(&scall->active->key))
 984
 985/* Security operations */
 986
 987/**
 988 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
 989 * @mgr: task credentials of current binder process
 990 *
 991 * Check whether @mgr is allowed to be the binder context manager.
 992 *
 993 * Return: Return 0 if permission is granted.
 994 */
 995int security_binder_set_context_mgr(const struct cred *mgr)
 996{
 997	return call_int_hook(binder_set_context_mgr, mgr);
 998}
 999
1000/**
1001 * security_binder_transaction() - Check if a binder transaction is allowed
1002 * @from: sending process
1003 * @to: receiving process
1004 *
1005 * Check whether @from is allowed to invoke a binder transaction call to @to.
1006 *
1007 * Return: Returns 0 if permission is granted.
1008 */
1009int security_binder_transaction(const struct cred *from,
1010				const struct cred *to)
1011{
1012	return call_int_hook(binder_transaction, from, to);
1013}
1014
1015/**
1016 * security_binder_transfer_binder() - Check if a binder transfer is allowed
1017 * @from: sending process
1018 * @to: receiving process
1019 *
1020 * Check whether @from is allowed to transfer a binder reference to @to.
1021 *
1022 * Return: Returns 0 if permission is granted.
1023 */
1024int security_binder_transfer_binder(const struct cred *from,
1025				    const struct cred *to)
1026{
1027	return call_int_hook(binder_transfer_binder, from, to);
1028}
1029
1030/**
1031 * security_binder_transfer_file() - Check if a binder file xfer is allowed
1032 * @from: sending process
1033 * @to: receiving process
1034 * @file: file being transferred
1035 *
1036 * Check whether @from is allowed to transfer @file to @to.
1037 *
1038 * Return: Returns 0 if permission is granted.
1039 */
1040int security_binder_transfer_file(const struct cred *from,
1041				  const struct cred *to, const struct file *file)
1042{
1043	return call_int_hook(binder_transfer_file, from, to, file);
1044}
1045
1046/**
1047 * security_ptrace_access_check() - Check if tracing is allowed
1048 * @child: target process
1049 * @mode: PTRACE_MODE flags
1050 *
1051 * Check permission before allowing the current process to trace the @child
1052 * process.  Security modules may also want to perform a process tracing check
1053 * during an execve in the set_security or apply_creds hooks of tracing check
1054 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1055 * process is being traced and its security attributes would be changed by the
1056 * execve.
1057 *
1058 * Return: Returns 0 if permission is granted.
1059 */
1060int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1061{
1062	return call_int_hook(ptrace_access_check, child, mode);
1063}
1064
1065/**
1066 * security_ptrace_traceme() - Check if tracing is allowed
1067 * @parent: tracing process
1068 *
1069 * Check that the @parent process has sufficient permission to trace the
1070 * current process before allowing the current process to present itself to the
1071 * @parent process for tracing.
1072 *
1073 * Return: Returns 0 if permission is granted.
1074 */
1075int security_ptrace_traceme(struct task_struct *parent)
1076{
1077	return call_int_hook(ptrace_traceme, parent);
1078}
1079
1080/**
1081 * security_capget() - Get the capability sets for a process
1082 * @target: target process
1083 * @effective: effective capability set
1084 * @inheritable: inheritable capability set
1085 * @permitted: permitted capability set
1086 *
1087 * Get the @effective, @inheritable, and @permitted capability sets for the
1088 * @target process.  The hook may also perform permission checking to determine
1089 * if the current process is allowed to see the capability sets of the @target
1090 * process.
1091 *
1092 * Return: Returns 0 if the capability sets were successfully obtained.
1093 */
1094int security_capget(const struct task_struct *target,
1095		    kernel_cap_t *effective,
1096		    kernel_cap_t *inheritable,
1097		    kernel_cap_t *permitted)
1098{
1099	return call_int_hook(capget, target, effective, inheritable, permitted);
1100}
1101
1102/**
1103 * security_capset() - Set the capability sets for a process
1104 * @new: new credentials for the target process
1105 * @old: current credentials of the target process
1106 * @effective: effective capability set
1107 * @inheritable: inheritable capability set
1108 * @permitted: permitted capability set
1109 *
1110 * Set the @effective, @inheritable, and @permitted capability sets for the
1111 * current process.
1112 *
1113 * Return: Returns 0 and update @new if permission is granted.
1114 */
1115int security_capset(struct cred *new, const struct cred *old,
1116		    const kernel_cap_t *effective,
1117		    const kernel_cap_t *inheritable,
1118		    const kernel_cap_t *permitted)
1119{
1120	return call_int_hook(capset, new, old, effective, inheritable,
1121			     permitted);
1122}
1123
1124/**
1125 * security_capable() - Check if a process has the necessary capability
1126 * @cred: credentials to examine
1127 * @ns: user namespace
1128 * @cap: capability requested
1129 * @opts: capability check options
1130 *
1131 * Check whether the @tsk process has the @cap capability in the indicated
1132 * credentials.  @cap contains the capability <include/linux/capability.h>.
1133 * @opts contains options for the capable check <include/linux/security.h>.
1134 *
1135 * Return: Returns 0 if the capability is granted.
1136 */
1137int security_capable(const struct cred *cred,
1138		     struct user_namespace *ns,
1139		     int cap,
1140		     unsigned int opts)
1141{
1142	return call_int_hook(capable, cred, ns, cap, opts);
1143}
1144
1145/**
1146 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1147 * @cmds: commands
1148 * @type: type
1149 * @id: id
1150 * @sb: filesystem
1151 *
1152 * Check whether the quotactl syscall is allowed for this @sb.
1153 *
1154 * Return: Returns 0 if permission is granted.
1155 */
1156int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1157{
1158	return call_int_hook(quotactl, cmds, type, id, sb);
1159}
1160
1161/**
1162 * security_quota_on() - Check if QUOTAON is allowed for a dentry
1163 * @dentry: dentry
1164 *
1165 * Check whether QUOTAON is allowed for @dentry.
1166 *
1167 * Return: Returns 0 if permission is granted.
1168 */
1169int security_quota_on(struct dentry *dentry)
1170{
1171	return call_int_hook(quota_on, dentry);
1172}
1173
1174/**
1175 * security_syslog() - Check if accessing the kernel message ring is allowed
1176 * @type: SYSLOG_ACTION_* type
1177 *
1178 * Check permission before accessing the kernel message ring or changing
1179 * logging to the console.  See the syslog(2) manual page for an explanation of
1180 * the @type values.
1181 *
1182 * Return: Return 0 if permission is granted.
1183 */
1184int security_syslog(int type)
1185{
1186	return call_int_hook(syslog, type);
1187}
1188
1189/**
1190 * security_settime64() - Check if changing the system time is allowed
1191 * @ts: new time
1192 * @tz: timezone
1193 *
1194 * Check permission to change the system time, struct timespec64 is defined in
1195 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1196 *
1197 * Return: Returns 0 if permission is granted.
1198 */
1199int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1200{
1201	return call_int_hook(settime, ts, tz);
1202}
1203
1204/**
1205 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1206 * @mm: mm struct
1207 * @pages: number of pages
1208 *
1209 * Check permissions for allocating a new virtual mapping.  If all LSMs return
1210 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1211 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1212 * called with cap_sys_admin cleared.
1213 *
1214 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1215 *         caller.
1216 */
1217int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1218{
1219	struct lsm_static_call *scall;
1220	int cap_sys_admin = 1;
1221	int rc;
1222
1223	/*
1224	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1225	 * call should be made with the cap_sys_admin set. If all of the modules
1226	 * agree that it should be set it will. If any module thinks it should
1227	 * not be set it won't.
 
1228	 */
1229	lsm_for_each_hook(scall, vm_enough_memory) {
1230		rc = scall->hl->hook.vm_enough_memory(mm, pages);
1231		if (rc < 0) {
1232			cap_sys_admin = 0;
1233			break;
1234		}
1235	}
1236	return __vm_enough_memory(mm, pages, cap_sys_admin);
1237}
1238
1239/**
1240 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1241 * @bprm: binary program information
1242 *
1243 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1244 * properly for executing @bprm->file, update the LSM's portion of
1245 * @bprm->cred->security to be what commit_creds needs to install for the new
1246 * program.  This hook may also optionally check permissions (e.g. for
1247 * transitions between security domains).  The hook must set @bprm->secureexec
1248 * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1249 * contains the linux_binprm structure.
1250 *
1251 * Return: Returns 0 if the hook is successful and permission is granted.
1252 */
1253int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1254{
1255	return call_int_hook(bprm_creds_for_exec, bprm);
1256}
1257
1258/**
1259 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1260 * @bprm: binary program information
1261 * @file: associated file
1262 *
1263 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1264 * exec, update @bprm->cred to reflect that change. This is called after
1265 * finding the binary that will be executed without an interpreter.  This
1266 * ensures that the credentials will not be derived from a script that the
1267 * binary will need to reopen, which when reopend may end up being a completely
1268 * different file.  This hook may also optionally check permissions (e.g. for
1269 * transitions between security domains).  The hook must set @bprm->secureexec
1270 * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1271 * hook must add to @bprm->per_clear any personality flags that should be
1272 * cleared from current->personality.  @bprm contains the linux_binprm
1273 * structure.
1274 *
1275 * Return: Returns 0 if the hook is successful and permission is granted.
1276 */
1277int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1278{
1279	return call_int_hook(bprm_creds_from_file, bprm, file);
1280}
1281
1282/**
1283 * security_bprm_check() - Mediate binary handler search
1284 * @bprm: binary program information
1285 *
1286 * This hook mediates the point when a search for a binary handler will begin.
1287 * It allows a check against the @bprm->cred->security value which was set in
1288 * the preceding creds_for_exec call.  The argv list and envp list are reliably
1289 * available in @bprm.  This hook may be called multiple times during a single
1290 * execve.  @bprm contains the linux_binprm structure.
1291 *
1292 * Return: Returns 0 if the hook is successful and permission is granted.
1293 */
1294int security_bprm_check(struct linux_binprm *bprm)
1295{
1296	return call_int_hook(bprm_check_security, bprm);
1297}
1298
1299/**
1300 * security_bprm_committing_creds() - Install creds for a process during exec()
1301 * @bprm: binary program information
1302 *
1303 * Prepare to install the new security attributes of a process being
1304 * transformed by an execve operation, based on the old credentials pointed to
1305 * by @current->cred and the information set in @bprm->cred by the
1306 * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1307 * hook is a good place to perform state changes on the process such as closing
1308 * open file descriptors to which access will no longer be granted when the
1309 * attributes are changed.  This is called immediately before commit_creds().
1310 */
1311void security_bprm_committing_creds(const struct linux_binprm *bprm)
1312{
1313	call_void_hook(bprm_committing_creds, bprm);
1314}
1315
1316/**
1317 * security_bprm_committed_creds() - Tidy up after cred install during exec()
1318 * @bprm: binary program information
1319 *
1320 * Tidy up after the installation of the new security attributes of a process
1321 * being transformed by an execve operation.  The new credentials have, by this
1322 * point, been set to @current->cred.  @bprm points to the linux_binprm
1323 * structure.  This hook is a good place to perform state changes on the
1324 * process such as clearing out non-inheritable signal state.  This is called
1325 * immediately after commit_creds().
1326 */
1327void security_bprm_committed_creds(const struct linux_binprm *bprm)
1328{
1329	call_void_hook(bprm_committed_creds, bprm);
1330}
1331
1332/**
1333 * security_fs_context_submount() - Initialise fc->security
1334 * @fc: new filesystem context
1335 * @reference: dentry reference for submount/remount
1336 *
1337 * Fill out the ->security field for a new fs_context.
1338 *
1339 * Return: Returns 0 on success or negative error code on failure.
1340 */
1341int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1342{
1343	return call_int_hook(fs_context_submount, fc, reference);
1344}
1345
1346/**
1347 * security_fs_context_dup() - Duplicate a fs_context LSM blob
1348 * @fc: destination filesystem context
1349 * @src_fc: source filesystem context
1350 *
1351 * Allocate and attach a security structure to sc->security.  This pointer is
1352 * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1353 * @src_fc indicates the original filesystem context.
1354 *
1355 * Return: Returns 0 on success or a negative error code on failure.
1356 */
1357int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1358{
1359	return call_int_hook(fs_context_dup, fc, src_fc);
1360}
1361
1362/**
1363 * security_fs_context_parse_param() - Configure a filesystem context
1364 * @fc: filesystem context
1365 * @param: filesystem parameter
1366 *
1367 * Userspace provided a parameter to configure a superblock.  The LSM can
1368 * consume the parameter or return it to the caller for use elsewhere.
1369 *
1370 * Return: If the parameter is used by the LSM it should return 0, if it is
1371 *         returned to the caller -ENOPARAM is returned, otherwise a negative
1372 *         error code is returned.
1373 */
1374int security_fs_context_parse_param(struct fs_context *fc,
1375				    struct fs_parameter *param)
1376{
1377	struct lsm_static_call *scall;
1378	int trc;
1379	int rc = -ENOPARAM;
1380
1381	lsm_for_each_hook(scall, fs_context_parse_param) {
1382		trc = scall->hl->hook.fs_context_parse_param(fc, param);
 
1383		if (trc == 0)
1384			rc = 0;
1385		else if (trc != -ENOPARAM)
1386			return trc;
1387	}
1388	return rc;
1389}
1390
1391/**
1392 * security_sb_alloc() - Allocate a super_block LSM blob
1393 * @sb: filesystem superblock
1394 *
1395 * Allocate and attach a security structure to the sb->s_security field.  The
1396 * s_security field is initialized to NULL when the structure is allocated.
1397 * @sb contains the super_block structure to be modified.
1398 *
1399 * Return: Returns 0 if operation was successful.
1400 */
1401int security_sb_alloc(struct super_block *sb)
1402{
1403	int rc = lsm_superblock_alloc(sb);
1404
1405	if (unlikely(rc))
1406		return rc;
1407	rc = call_int_hook(sb_alloc_security, sb);
1408	if (unlikely(rc))
1409		security_sb_free(sb);
1410	return rc;
1411}
1412
1413/**
1414 * security_sb_delete() - Release super_block LSM associated objects
1415 * @sb: filesystem superblock
1416 *
1417 * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1418 * super_block structure being released.
1419 */
1420void security_sb_delete(struct super_block *sb)
1421{
1422	call_void_hook(sb_delete, sb);
1423}
1424
1425/**
1426 * security_sb_free() - Free a super_block LSM blob
1427 * @sb: filesystem superblock
1428 *
1429 * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1430 * structure to be modified.
1431 */
1432void security_sb_free(struct super_block *sb)
1433{
1434	call_void_hook(sb_free_security, sb);
1435	kfree(sb->s_security);
1436	sb->s_security = NULL;
1437}
1438
1439/**
1440 * security_free_mnt_opts() - Free memory associated with mount options
1441 * @mnt_opts: LSM processed mount options
1442 *
1443 * Free memory associated with @mnt_ops.
1444 */
1445void security_free_mnt_opts(void **mnt_opts)
1446{
1447	if (!*mnt_opts)
1448		return;
1449	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1450	*mnt_opts = NULL;
1451}
1452EXPORT_SYMBOL(security_free_mnt_opts);
1453
1454/**
1455 * security_sb_eat_lsm_opts() - Consume LSM mount options
1456 * @options: mount options
1457 * @mnt_opts: LSM processed mount options
1458 *
1459 * Eat (scan @options) and save them in @mnt_opts.
1460 *
1461 * Return: Returns 0 on success, negative values on failure.
1462 */
1463int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1464{
1465	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1466}
1467EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1468
1469/**
1470 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1471 * @sb: filesystem superblock
1472 * @mnt_opts: new mount options
1473 *
1474 * Determine if the new mount options in @mnt_opts are allowed given the
1475 * existing mounted filesystem at @sb.  @sb superblock being compared.
1476 *
1477 * Return: Returns 0 if options are compatible.
1478 */
1479int security_sb_mnt_opts_compat(struct super_block *sb,
1480				void *mnt_opts)
1481{
1482	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1483}
1484EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1485
1486/**
1487 * security_sb_remount() - Verify no incompatible mount changes during remount
1488 * @sb: filesystem superblock
1489 * @mnt_opts: (re)mount options
1490 *
1491 * Extracts security system specific mount options and verifies no changes are
1492 * being made to those options.
1493 *
1494 * Return: Returns 0 if permission is granted.
1495 */
1496int security_sb_remount(struct super_block *sb,
1497			void *mnt_opts)
1498{
1499	return call_int_hook(sb_remount, sb, mnt_opts);
1500}
1501EXPORT_SYMBOL(security_sb_remount);
1502
1503/**
1504 * security_sb_kern_mount() - Check if a kernel mount is allowed
1505 * @sb: filesystem superblock
1506 *
1507 * Mount this @sb if allowed by permissions.
1508 *
1509 * Return: Returns 0 if permission is granted.
1510 */
1511int security_sb_kern_mount(const struct super_block *sb)
1512{
1513	return call_int_hook(sb_kern_mount, sb);
1514}
1515
1516/**
1517 * security_sb_show_options() - Output the mount options for a superblock
1518 * @m: output file
1519 * @sb: filesystem superblock
1520 *
1521 * Show (print on @m) mount options for this @sb.
1522 *
1523 * Return: Returns 0 on success, negative values on failure.
1524 */
1525int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1526{
1527	return call_int_hook(sb_show_options, m, sb);
1528}
1529
1530/**
1531 * security_sb_statfs() - Check if accessing fs stats is allowed
1532 * @dentry: superblock handle
1533 *
1534 * Check permission before obtaining filesystem statistics for the @mnt
1535 * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1536 *
1537 * Return: Returns 0 if permission is granted.
1538 */
1539int security_sb_statfs(struct dentry *dentry)
1540{
1541	return call_int_hook(sb_statfs, dentry);
1542}
1543
1544/**
1545 * security_sb_mount() - Check permission for mounting a filesystem
1546 * @dev_name: filesystem backing device
1547 * @path: mount point
1548 * @type: filesystem type
1549 * @flags: mount flags
1550 * @data: filesystem specific data
1551 *
1552 * Check permission before an object specified by @dev_name is mounted on the
1553 * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1554 * device if the file system type requires a device.  For a remount
1555 * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1556 * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1557 * mounted.
1558 *
1559 * Return: Returns 0 if permission is granted.
1560 */
1561int security_sb_mount(const char *dev_name, const struct path *path,
1562		      const char *type, unsigned long flags, void *data)
1563{
1564	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1565}
1566
1567/**
1568 * security_sb_umount() - Check permission for unmounting a filesystem
1569 * @mnt: mounted filesystem
1570 * @flags: unmount flags
1571 *
1572 * Check permission before the @mnt file system is unmounted.
1573 *
1574 * Return: Returns 0 if permission is granted.
1575 */
1576int security_sb_umount(struct vfsmount *mnt, int flags)
1577{
1578	return call_int_hook(sb_umount, mnt, flags);
1579}
1580
1581/**
1582 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1583 * @old_path: new location for current rootfs
1584 * @new_path: location of the new rootfs
1585 *
1586 * Check permission before pivoting the root filesystem.
1587 *
1588 * Return: Returns 0 if permission is granted.
1589 */
1590int security_sb_pivotroot(const struct path *old_path,
1591			  const struct path *new_path)
1592{
1593	return call_int_hook(sb_pivotroot, old_path, new_path);
1594}
1595
1596/**
1597 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1598 * @sb: filesystem superblock
1599 * @mnt_opts: binary mount options
1600 * @kern_flags: kernel flags (in)
1601 * @set_kern_flags: kernel flags (out)
1602 *
1603 * Set the security relevant mount options used for a superblock.
1604 *
1605 * Return: Returns 0 on success, error on failure.
1606 */
1607int security_sb_set_mnt_opts(struct super_block *sb,
1608			     void *mnt_opts,
1609			     unsigned long kern_flags,
1610			     unsigned long *set_kern_flags)
1611{
1612	struct lsm_static_call *scall;
1613	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1614
1615	lsm_for_each_hook(scall, sb_set_mnt_opts) {
1616		rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
 
1617					      set_kern_flags);
1618		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1619			break;
1620	}
1621	return rc;
1622}
1623EXPORT_SYMBOL(security_sb_set_mnt_opts);
1624
1625/**
1626 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1627 * @oldsb: source superblock
1628 * @newsb: destination superblock
1629 * @kern_flags: kernel flags (in)
1630 * @set_kern_flags: kernel flags (out)
1631 *
1632 * Copy all security options from a given superblock to another.
1633 *
1634 * Return: Returns 0 on success, error on failure.
1635 */
1636int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1637			       struct super_block *newsb,
1638			       unsigned long kern_flags,
1639			       unsigned long *set_kern_flags)
1640{
1641	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1642			     kern_flags, set_kern_flags);
1643}
1644EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1645
1646/**
1647 * security_move_mount() - Check permissions for moving a mount
1648 * @from_path: source mount point
1649 * @to_path: destination mount point
1650 *
1651 * Check permission before a mount is moved.
1652 *
1653 * Return: Returns 0 if permission is granted.
1654 */
1655int security_move_mount(const struct path *from_path,
1656			const struct path *to_path)
1657{
1658	return call_int_hook(move_mount, from_path, to_path);
1659}
1660
1661/**
1662 * security_path_notify() - Check if setting a watch is allowed
1663 * @path: file path
1664 * @mask: event mask
1665 * @obj_type: file path type
1666 *
1667 * Check permissions before setting a watch on events as defined by @mask, on
1668 * an object at @path, whose type is defined by @obj_type.
1669 *
1670 * Return: Returns 0 if permission is granted.
1671 */
1672int security_path_notify(const struct path *path, u64 mask,
1673			 unsigned int obj_type)
1674{
1675	return call_int_hook(path_notify, path, mask, obj_type);
1676}
1677
1678/**
1679 * security_inode_alloc() - Allocate an inode LSM blob
1680 * @inode: the inode
1681 * @gfp: allocation flags
1682 *
1683 * Allocate and attach a security structure to @inode->i_security.  The
1684 * i_security field is initialized to NULL when the inode structure is
1685 * allocated.
1686 *
1687 * Return: Return 0 if operation was successful.
1688 */
1689int security_inode_alloc(struct inode *inode, gfp_t gfp)
1690{
1691	int rc = lsm_inode_alloc(inode, gfp);
1692
1693	if (unlikely(rc))
1694		return rc;
1695	rc = call_int_hook(inode_alloc_security, inode);
1696	if (unlikely(rc))
1697		security_inode_free(inode);
1698	return rc;
1699}
1700
1701static void inode_free_by_rcu(struct rcu_head *head)
1702{
1703	/* The rcu head is at the start of the inode blob */
1704	call_void_hook(inode_free_security_rcu, head);
 
1705	kmem_cache_free(lsm_inode_cache, head);
1706}
1707
1708/**
1709 * security_inode_free() - Free an inode's LSM blob
1710 * @inode: the inode
1711 *
1712 * Release any LSM resources associated with @inode, although due to the
1713 * inode's RCU protections it is possible that the resources will not be
1714 * fully released until after the current RCU grace period has elapsed.
1715 *
1716 * It is important for LSMs to note that despite being present in a call to
1717 * security_inode_free(), @inode may still be referenced in a VFS path walk
1718 * and calls to security_inode_permission() may be made during, or after,
1719 * a call to security_inode_free().  For this reason the inode->i_security
1720 * field is released via a call_rcu() callback and any LSMs which need to
1721 * retain inode state for use in security_inode_permission() should only
1722 * release that state in the inode_free_security_rcu() LSM hook callback.
1723 */
1724void security_inode_free(struct inode *inode)
1725{
1726	call_void_hook(inode_free_security, inode);
1727	if (!inode->i_security)
1728		return;
1729	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
 
 
 
 
 
 
 
 
 
1730}
1731
1732/**
1733 * security_dentry_init_security() - Perform dentry initialization
1734 * @dentry: the dentry to initialize
1735 * @mode: mode used to determine resource type
1736 * @name: name of the last path component
1737 * @xattr_name: name of the security/LSM xattr
1738 * @ctx: pointer to the resulting LSM context
1739 * @ctxlen: length of @ctx
1740 *
1741 * Compute a context for a dentry as the inode is not yet available since NFSv4
1742 * has no label backed by an EA anyway.  It is important to note that
1743 * @xattr_name does not need to be free'd by the caller, it is a static string.
1744 *
1745 * Return: Returns 0 on success, negative values on failure.
1746 */
1747int security_dentry_init_security(struct dentry *dentry, int mode,
1748				  const struct qstr *name,
1749				  const char **xattr_name, void **ctx,
1750				  u32 *ctxlen)
1751{
1752	return call_int_hook(dentry_init_security, dentry, mode, name,
1753			     xattr_name, ctx, ctxlen);
1754}
1755EXPORT_SYMBOL(security_dentry_init_security);
1756
1757/**
1758 * security_dentry_create_files_as() - Perform dentry initialization
1759 * @dentry: the dentry to initialize
1760 * @mode: mode used to determine resource type
1761 * @name: name of the last path component
1762 * @old: creds to use for LSM context calculations
1763 * @new: creds to modify
1764 *
1765 * Compute a context for a dentry as the inode is not yet available and set
1766 * that context in passed in creds so that new files are created using that
1767 * context. Context is calculated using the passed in creds and not the creds
1768 * of the caller.
1769 *
1770 * Return: Returns 0 on success, error on failure.
1771 */
1772int security_dentry_create_files_as(struct dentry *dentry, int mode,
1773				    struct qstr *name,
1774				    const struct cred *old, struct cred *new)
1775{
1776	return call_int_hook(dentry_create_files_as, dentry, mode,
1777			     name, old, new);
1778}
1779EXPORT_SYMBOL(security_dentry_create_files_as);
1780
1781/**
1782 * security_inode_init_security() - Initialize an inode's LSM context
1783 * @inode: the inode
1784 * @dir: parent directory
1785 * @qstr: last component of the pathname
1786 * @initxattrs: callback function to write xattrs
1787 * @fs_data: filesystem specific data
1788 *
1789 * Obtain the security attribute name suffix and value to set on a newly
1790 * created inode and set up the incore security field for the new inode.  This
1791 * hook is called by the fs code as part of the inode creation transaction and
1792 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1793 * hooks called by the VFS.
1794 *
1795 * The hook function is expected to populate the xattrs array, by calling
1796 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1797 * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1798 * slot, the hook function should set ->name to the attribute name suffix
1799 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1800 * to the attribute value, to set ->value_len to the length of the value.  If
1801 * the security module does not use security attributes or does not wish to put
1802 * a security attribute on this particular inode, then it should return
1803 * -EOPNOTSUPP to skip this processing.
1804 *
1805 * Return: Returns 0 if the LSM successfully initialized all of the inode
1806 *         security attributes that are required, negative values otherwise.
1807 */
1808int security_inode_init_security(struct inode *inode, struct inode *dir,
1809				 const struct qstr *qstr,
1810				 const initxattrs initxattrs, void *fs_data)
1811{
1812	struct lsm_static_call *scall;
1813	struct xattr *new_xattrs = NULL;
1814	int ret = -EOPNOTSUPP, xattr_count = 0;
1815
1816	if (unlikely(IS_PRIVATE(inode)))
1817		return 0;
1818
1819	if (!blob_sizes.lbs_xattr_count)
1820		return 0;
1821
1822	if (initxattrs) {
1823		/* Allocate +1 as terminator. */
1824		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1825				     sizeof(*new_xattrs), GFP_NOFS);
1826		if (!new_xattrs)
1827			return -ENOMEM;
1828	}
1829
1830	lsm_for_each_hook(scall, inode_init_security) {
1831		ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
 
1832						  &xattr_count);
1833		if (ret && ret != -EOPNOTSUPP)
1834			goto out;
1835		/*
1836		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1837		 * means that the LSM is not willing to provide an xattr, not
1838		 * that it wants to signal an error. Thus, continue to invoke
1839		 * the remaining LSMs.
1840		 */
1841	}
1842
1843	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1844	if (!xattr_count)
1845		goto out;
1846
1847	ret = initxattrs(inode, new_xattrs, fs_data);
1848out:
1849	for (; xattr_count > 0; xattr_count--)
1850		kfree(new_xattrs[xattr_count - 1].value);
1851	kfree(new_xattrs);
1852	return (ret == -EOPNOTSUPP) ? 0 : ret;
1853}
1854EXPORT_SYMBOL(security_inode_init_security);
1855
1856/**
1857 * security_inode_init_security_anon() - Initialize an anonymous inode
1858 * @inode: the inode
1859 * @name: the anonymous inode class
1860 * @context_inode: an optional related inode
1861 *
1862 * Set up the incore security field for the new anonymous inode and return
1863 * whether the inode creation is permitted by the security module or not.
1864 *
1865 * Return: Returns 0 on success, -EACCES if the security module denies the
1866 * creation of this inode, or another -errno upon other errors.
1867 */
1868int security_inode_init_security_anon(struct inode *inode,
1869				      const struct qstr *name,
1870				      const struct inode *context_inode)
1871{
1872	return call_int_hook(inode_init_security_anon, inode, name,
1873			     context_inode);
1874}
1875
1876#ifdef CONFIG_SECURITY_PATH
1877/**
1878 * security_path_mknod() - Check if creating a special file is allowed
1879 * @dir: parent directory
1880 * @dentry: new file
1881 * @mode: new file mode
1882 * @dev: device number
1883 *
1884 * Check permissions when creating a file. Note that this hook is called even
1885 * if mknod operation is being done for a regular file.
1886 *
1887 * Return: Returns 0 if permission is granted.
1888 */
1889int security_path_mknod(const struct path *dir, struct dentry *dentry,
1890			umode_t mode, unsigned int dev)
1891{
1892	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1893		return 0;
1894	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1895}
1896EXPORT_SYMBOL(security_path_mknod);
1897
1898/**
1899 * security_path_post_mknod() - Update inode security after reg file creation
1900 * @idmap: idmap of the mount
1901 * @dentry: new file
1902 *
1903 * Update inode security field after a regular file has been created.
1904 */
1905void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1906{
1907	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1908		return;
1909	call_void_hook(path_post_mknod, idmap, dentry);
1910}
1911
1912/**
1913 * security_path_mkdir() - Check if creating a new directory is allowed
1914 * @dir: parent directory
1915 * @dentry: new directory
1916 * @mode: new directory mode
1917 *
1918 * Check permissions to create a new directory in the existing directory.
1919 *
1920 * Return: Returns 0 if permission is granted.
1921 */
1922int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1923			umode_t mode)
1924{
1925	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1926		return 0;
1927	return call_int_hook(path_mkdir, dir, dentry, mode);
1928}
1929EXPORT_SYMBOL(security_path_mkdir);
1930
1931/**
1932 * security_path_rmdir() - Check if removing a directory is allowed
1933 * @dir: parent directory
1934 * @dentry: directory to remove
1935 *
1936 * Check the permission to remove a directory.
1937 *
1938 * Return: Returns 0 if permission is granted.
1939 */
1940int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1941{
1942	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1943		return 0;
1944	return call_int_hook(path_rmdir, dir, dentry);
1945}
1946
1947/**
1948 * security_path_unlink() - Check if removing a hard link is allowed
1949 * @dir: parent directory
1950 * @dentry: file
1951 *
1952 * Check the permission to remove a hard link to a file.
1953 *
1954 * Return: Returns 0 if permission is granted.
1955 */
1956int security_path_unlink(const struct path *dir, struct dentry *dentry)
1957{
1958	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1959		return 0;
1960	return call_int_hook(path_unlink, dir, dentry);
1961}
1962EXPORT_SYMBOL(security_path_unlink);
1963
1964/**
1965 * security_path_symlink() - Check if creating a symbolic link is allowed
1966 * @dir: parent directory
1967 * @dentry: symbolic link
1968 * @old_name: file pathname
1969 *
1970 * Check the permission to create a symbolic link to a file.
1971 *
1972 * Return: Returns 0 if permission is granted.
1973 */
1974int security_path_symlink(const struct path *dir, struct dentry *dentry,
1975			  const char *old_name)
1976{
1977	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1978		return 0;
1979	return call_int_hook(path_symlink, dir, dentry, old_name);
1980}
1981
1982/**
1983 * security_path_link - Check if creating a hard link is allowed
1984 * @old_dentry: existing file
1985 * @new_dir: new parent directory
1986 * @new_dentry: new link
1987 *
1988 * Check permission before creating a new hard link to a file.
1989 *
1990 * Return: Returns 0 if permission is granted.
1991 */
1992int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1993		       struct dentry *new_dentry)
1994{
1995	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1996		return 0;
1997	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1998}
1999
2000/**
2001 * security_path_rename() - Check if renaming a file is allowed
2002 * @old_dir: parent directory of the old file
2003 * @old_dentry: the old file
2004 * @new_dir: parent directory of the new file
2005 * @new_dentry: the new file
2006 * @flags: flags
2007 *
2008 * Check for permission to rename a file or directory.
2009 *
2010 * Return: Returns 0 if permission is granted.
2011 */
2012int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2013			 const struct path *new_dir, struct dentry *new_dentry,
2014			 unsigned int flags)
2015{
2016	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2017		     (d_is_positive(new_dentry) &&
2018		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2019		return 0;
2020
2021	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2022			     new_dentry, flags);
2023}
2024EXPORT_SYMBOL(security_path_rename);
2025
2026/**
2027 * security_path_truncate() - Check if truncating a file is allowed
2028 * @path: file
2029 *
2030 * Check permission before truncating the file indicated by path.  Note that
2031 * truncation permissions may also be checked based on already opened files,
2032 * using the security_file_truncate() hook.
2033 *
2034 * Return: Returns 0 if permission is granted.
2035 */
2036int security_path_truncate(const struct path *path)
2037{
2038	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2039		return 0;
2040	return call_int_hook(path_truncate, path);
2041}
2042
2043/**
2044 * security_path_chmod() - Check if changing the file's mode is allowed
2045 * @path: file
2046 * @mode: new mode
2047 *
2048 * Check for permission to change a mode of the file @path. The new mode is
2049 * specified in @mode which is a bitmask of constants from
2050 * <include/uapi/linux/stat.h>.
2051 *
2052 * Return: Returns 0 if permission is granted.
2053 */
2054int security_path_chmod(const struct path *path, umode_t mode)
2055{
2056	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2057		return 0;
2058	return call_int_hook(path_chmod, path, mode);
2059}
2060
2061/**
2062 * security_path_chown() - Check if changing the file's owner/group is allowed
2063 * @path: file
2064 * @uid: file owner
2065 * @gid: file group
2066 *
2067 * Check for permission to change owner/group of a file or directory.
2068 *
2069 * Return: Returns 0 if permission is granted.
2070 */
2071int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2072{
2073	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2074		return 0;
2075	return call_int_hook(path_chown, path, uid, gid);
2076}
2077
2078/**
2079 * security_path_chroot() - Check if changing the root directory is allowed
2080 * @path: directory
2081 *
2082 * Check for permission to change root directory.
2083 *
2084 * Return: Returns 0 if permission is granted.
2085 */
2086int security_path_chroot(const struct path *path)
2087{
2088	return call_int_hook(path_chroot, path);
2089}
2090#endif /* CONFIG_SECURITY_PATH */
2091
2092/**
2093 * security_inode_create() - Check if creating a file is allowed
2094 * @dir: the parent directory
2095 * @dentry: the file being created
2096 * @mode: requested file mode
2097 *
2098 * Check permission to create a regular file.
2099 *
2100 * Return: Returns 0 if permission is granted.
2101 */
2102int security_inode_create(struct inode *dir, struct dentry *dentry,
2103			  umode_t mode)
2104{
2105	if (unlikely(IS_PRIVATE(dir)))
2106		return 0;
2107	return call_int_hook(inode_create, dir, dentry, mode);
2108}
2109EXPORT_SYMBOL_GPL(security_inode_create);
2110
2111/**
2112 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2113 * @idmap: idmap of the mount
2114 * @inode: inode of the new tmpfile
2115 *
2116 * Update inode security data after a tmpfile has been created.
2117 */
2118void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2119					struct inode *inode)
2120{
2121	if (unlikely(IS_PRIVATE(inode)))
2122		return;
2123	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2124}
2125
2126/**
2127 * security_inode_link() - Check if creating a hard link is allowed
2128 * @old_dentry: existing file
2129 * @dir: new parent directory
2130 * @new_dentry: new link
2131 *
2132 * Check permission before creating a new hard link to a file.
2133 *
2134 * Return: Returns 0 if permission is granted.
2135 */
2136int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2137			struct dentry *new_dentry)
2138{
2139	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2140		return 0;
2141	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2142}
2143
2144/**
2145 * security_inode_unlink() - Check if removing a hard link is allowed
2146 * @dir: parent directory
2147 * @dentry: file
2148 *
2149 * Check the permission to remove a hard link to a file.
2150 *
2151 * Return: Returns 0 if permission is granted.
2152 */
2153int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2154{
2155	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2156		return 0;
2157	return call_int_hook(inode_unlink, dir, dentry);
2158}
2159
2160/**
2161 * security_inode_symlink() - Check if creating a symbolic link is allowed
2162 * @dir: parent directory
2163 * @dentry: symbolic link
2164 * @old_name: existing filename
2165 *
2166 * Check the permission to create a symbolic link to a file.
2167 *
2168 * Return: Returns 0 if permission is granted.
2169 */
2170int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2171			   const char *old_name)
2172{
2173	if (unlikely(IS_PRIVATE(dir)))
2174		return 0;
2175	return call_int_hook(inode_symlink, dir, dentry, old_name);
2176}
2177
2178/**
2179 * security_inode_mkdir() - Check if creation a new director is allowed
2180 * @dir: parent directory
2181 * @dentry: new directory
2182 * @mode: new directory mode
2183 *
2184 * Check permissions to create a new directory in the existing directory
2185 * associated with inode structure @dir.
2186 *
2187 * Return: Returns 0 if permission is granted.
2188 */
2189int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2190{
2191	if (unlikely(IS_PRIVATE(dir)))
2192		return 0;
2193	return call_int_hook(inode_mkdir, dir, dentry, mode);
2194}
2195EXPORT_SYMBOL_GPL(security_inode_mkdir);
2196
2197/**
2198 * security_inode_rmdir() - Check if removing a directory is allowed
2199 * @dir: parent directory
2200 * @dentry: directory to be removed
2201 *
2202 * Check the permission to remove a directory.
2203 *
2204 * Return: Returns 0 if permission is granted.
2205 */
2206int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2207{
2208	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2209		return 0;
2210	return call_int_hook(inode_rmdir, dir, dentry);
2211}
2212
2213/**
2214 * security_inode_mknod() - Check if creating a special file is allowed
2215 * @dir: parent directory
2216 * @dentry: new file
2217 * @mode: new file mode
2218 * @dev: device number
2219 *
2220 * Check permissions when creating a special file (or a socket or a fifo file
2221 * created via the mknod system call).  Note that if mknod operation is being
2222 * done for a regular file, then the create hook will be called and not this
2223 * hook.
2224 *
2225 * Return: Returns 0 if permission is granted.
2226 */
2227int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2228			 umode_t mode, dev_t dev)
2229{
2230	if (unlikely(IS_PRIVATE(dir)))
2231		return 0;
2232	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2233}
2234
2235/**
2236 * security_inode_rename() - Check if renaming a file is allowed
2237 * @old_dir: parent directory of the old file
2238 * @old_dentry: the old file
2239 * @new_dir: parent directory of the new file
2240 * @new_dentry: the new file
2241 * @flags: flags
2242 *
2243 * Check for permission to rename a file or directory.
2244 *
2245 * Return: Returns 0 if permission is granted.
2246 */
2247int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2248			  struct inode *new_dir, struct dentry *new_dentry,
2249			  unsigned int flags)
2250{
2251	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2252		     (d_is_positive(new_dentry) &&
2253		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2254		return 0;
2255
2256	if (flags & RENAME_EXCHANGE) {
2257		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2258					old_dir, old_dentry);
2259		if (err)
2260			return err;
2261	}
2262
2263	return call_int_hook(inode_rename, old_dir, old_dentry,
2264			     new_dir, new_dentry);
2265}
2266
2267/**
2268 * security_inode_readlink() - Check if reading a symbolic link is allowed
2269 * @dentry: link
2270 *
2271 * Check the permission to read the symbolic link.
2272 *
2273 * Return: Returns 0 if permission is granted.
2274 */
2275int security_inode_readlink(struct dentry *dentry)
2276{
2277	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2278		return 0;
2279	return call_int_hook(inode_readlink, dentry);
2280}
2281
2282/**
2283 * security_inode_follow_link() - Check if following a symbolic link is allowed
2284 * @dentry: link dentry
2285 * @inode: link inode
2286 * @rcu: true if in RCU-walk mode
2287 *
2288 * Check permission to follow a symbolic link when looking up a pathname.  If
2289 * @rcu is true, @inode is not stable.
2290 *
2291 * Return: Returns 0 if permission is granted.
2292 */
2293int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2294			       bool rcu)
2295{
2296	if (unlikely(IS_PRIVATE(inode)))
2297		return 0;
2298	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2299}
2300
2301/**
2302 * security_inode_permission() - Check if accessing an inode is allowed
2303 * @inode: inode
2304 * @mask: access mask
2305 *
2306 * Check permission before accessing an inode.  This hook is called by the
2307 * existing Linux permission function, so a security module can use it to
2308 * provide additional checking for existing Linux permission checks.  Notice
2309 * that this hook is called when a file is opened (as well as many other
2310 * operations), whereas the file_security_ops permission hook is called when
2311 * the actual read/write operations are performed.
2312 *
2313 * Return: Returns 0 if permission is granted.
2314 */
2315int security_inode_permission(struct inode *inode, int mask)
2316{
2317	if (unlikely(IS_PRIVATE(inode)))
2318		return 0;
2319	return call_int_hook(inode_permission, inode, mask);
2320}
2321
2322/**
2323 * security_inode_setattr() - Check if setting file attributes is allowed
2324 * @idmap: idmap of the mount
2325 * @dentry: file
2326 * @attr: new attributes
2327 *
2328 * Check permission before setting file attributes.  Note that the kernel call
2329 * to notify_change is performed from several locations, whenever file
2330 * attributes change (such as when a file is truncated, chown/chmod operations,
2331 * transferring disk quotas, etc).
2332 *
2333 * Return: Returns 0 if permission is granted.
2334 */
2335int security_inode_setattr(struct mnt_idmap *idmap,
2336			   struct dentry *dentry, struct iattr *attr)
2337{
2338	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2339		return 0;
2340	return call_int_hook(inode_setattr, idmap, dentry, attr);
2341}
2342EXPORT_SYMBOL_GPL(security_inode_setattr);
2343
2344/**
2345 * security_inode_post_setattr() - Update the inode after a setattr operation
2346 * @idmap: idmap of the mount
2347 * @dentry: file
2348 * @ia_valid: file attributes set
2349 *
2350 * Update inode security field after successful setting file attributes.
2351 */
2352void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2353				 int ia_valid)
2354{
2355	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2356		return;
2357	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2358}
2359
2360/**
2361 * security_inode_getattr() - Check if getting file attributes is allowed
2362 * @path: file
2363 *
2364 * Check permission before obtaining file attributes.
2365 *
2366 * Return: Returns 0 if permission is granted.
2367 */
2368int security_inode_getattr(const struct path *path)
2369{
2370	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2371		return 0;
2372	return call_int_hook(inode_getattr, path);
2373}
2374
2375/**
2376 * security_inode_setxattr() - Check if setting file xattrs is allowed
2377 * @idmap: idmap of the mount
2378 * @dentry: file
2379 * @name: xattr name
2380 * @value: xattr value
2381 * @size: size of xattr value
2382 * @flags: flags
2383 *
2384 * This hook performs the desired permission checks before setting the extended
2385 * attributes (xattrs) on @dentry.  It is important to note that we have some
2386 * additional logic before the main LSM implementation calls to detect if we
2387 * need to perform an additional capability check at the LSM layer.
2388 *
2389 * Normally we enforce a capability check prior to executing the various LSM
2390 * hook implementations, but if a LSM wants to avoid this capability check,
2391 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2392 * xattrs that it wants to avoid the capability check, leaving the LSM fully
2393 * responsible for enforcing the access control for the specific xattr.  If all
2394 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2395 * or return a 0 (the default return value), the capability check is still
2396 * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2397 * check is performed.
2398 *
2399 * Return: Returns 0 if permission is granted.
2400 */
2401int security_inode_setxattr(struct mnt_idmap *idmap,
2402			    struct dentry *dentry, const char *name,
2403			    const void *value, size_t size, int flags)
2404{
2405	int rc;
2406
2407	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2408		return 0;
 
 
 
 
 
 
2409
2410	/* enforce the capability checks at the lsm layer, if needed */
2411	if (!call_int_hook(inode_xattr_skipcap, name)) {
2412		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2413		if (rc)
2414			return rc;
2415	}
2416
2417	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2418			     flags);
2419}
2420
2421/**
2422 * security_inode_set_acl() - Check if setting posix acls is allowed
2423 * @idmap: idmap of the mount
2424 * @dentry: file
2425 * @acl_name: acl name
2426 * @kacl: acl struct
2427 *
2428 * Check permission before setting posix acls, the posix acls in @kacl are
2429 * identified by @acl_name.
2430 *
2431 * Return: Returns 0 if permission is granted.
2432 */
2433int security_inode_set_acl(struct mnt_idmap *idmap,
2434			   struct dentry *dentry, const char *acl_name,
2435			   struct posix_acl *kacl)
2436{
2437	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2438		return 0;
2439	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2440}
2441
2442/**
2443 * security_inode_post_set_acl() - Update inode security from posix acls set
2444 * @dentry: file
2445 * @acl_name: acl name
2446 * @kacl: acl struct
2447 *
2448 * Update inode security data after successfully setting posix acls on @dentry.
2449 * The posix acls in @kacl are identified by @acl_name.
2450 */
2451void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2452				 struct posix_acl *kacl)
2453{
2454	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2455		return;
2456	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2457}
2458
2459/**
2460 * security_inode_get_acl() - Check if reading posix acls is allowed
2461 * @idmap: idmap of the mount
2462 * @dentry: file
2463 * @acl_name: acl name
2464 *
2465 * Check permission before getting osix acls, the posix acls are identified by
2466 * @acl_name.
2467 *
2468 * Return: Returns 0 if permission is granted.
2469 */
2470int security_inode_get_acl(struct mnt_idmap *idmap,
2471			   struct dentry *dentry, const char *acl_name)
2472{
2473	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2474		return 0;
2475	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2476}
2477
2478/**
2479 * security_inode_remove_acl() - Check if removing a posix acl is allowed
2480 * @idmap: idmap of the mount
2481 * @dentry: file
2482 * @acl_name: acl name
2483 *
2484 * Check permission before removing posix acls, the posix acls are identified
2485 * by @acl_name.
2486 *
2487 * Return: Returns 0 if permission is granted.
2488 */
2489int security_inode_remove_acl(struct mnt_idmap *idmap,
2490			      struct dentry *dentry, const char *acl_name)
2491{
2492	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2493		return 0;
2494	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2495}
2496
2497/**
2498 * security_inode_post_remove_acl() - Update inode security after rm posix acls
2499 * @idmap: idmap of the mount
2500 * @dentry: file
2501 * @acl_name: acl name
2502 *
2503 * Update inode security data after successfully removing posix acls on
2504 * @dentry in @idmap. The posix acls are identified by @acl_name.
2505 */
2506void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2507				    struct dentry *dentry, const char *acl_name)
2508{
2509	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2510		return;
2511	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2512}
2513
2514/**
2515 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2516 * @dentry: file
2517 * @name: xattr name
2518 * @value: xattr value
2519 * @size: xattr value size
2520 * @flags: flags
2521 *
2522 * Update inode security field after successful setxattr operation.
2523 */
2524void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2525				  const void *value, size_t size, int flags)
2526{
2527	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2528		return;
2529	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2530}
2531
2532/**
2533 * security_inode_getxattr() - Check if xattr access is allowed
2534 * @dentry: file
2535 * @name: xattr name
2536 *
2537 * Check permission before obtaining the extended attributes identified by
2538 * @name for @dentry.
2539 *
2540 * Return: Returns 0 if permission is granted.
2541 */
2542int security_inode_getxattr(struct dentry *dentry, const char *name)
2543{
2544	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2545		return 0;
2546	return call_int_hook(inode_getxattr, dentry, name);
2547}
2548
2549/**
2550 * security_inode_listxattr() - Check if listing xattrs is allowed
2551 * @dentry: file
2552 *
2553 * Check permission before obtaining the list of extended attribute names for
2554 * @dentry.
2555 *
2556 * Return: Returns 0 if permission is granted.
2557 */
2558int security_inode_listxattr(struct dentry *dentry)
2559{
2560	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2561		return 0;
2562	return call_int_hook(inode_listxattr, dentry);
2563}
2564
2565/**
2566 * security_inode_removexattr() - Check if removing an xattr is allowed
2567 * @idmap: idmap of the mount
2568 * @dentry: file
2569 * @name: xattr name
2570 *
2571 * This hook performs the desired permission checks before setting the extended
2572 * attributes (xattrs) on @dentry.  It is important to note that we have some
2573 * additional logic before the main LSM implementation calls to detect if we
2574 * need to perform an additional capability check at the LSM layer.
2575 *
2576 * Normally we enforce a capability check prior to executing the various LSM
2577 * hook implementations, but if a LSM wants to avoid this capability check,
2578 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2579 * xattrs that it wants to avoid the capability check, leaving the LSM fully
2580 * responsible for enforcing the access control for the specific xattr.  If all
2581 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2582 * or return a 0 (the default return value), the capability check is still
2583 * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2584 * check is performed.
2585 *
2586 * Return: Returns 0 if permission is granted.
2587 */
2588int security_inode_removexattr(struct mnt_idmap *idmap,
2589			       struct dentry *dentry, const char *name)
2590{
2591	int rc;
2592
2593	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2594		return 0;
2595
2596	/* enforce the capability checks at the lsm layer, if needed */
2597	if (!call_int_hook(inode_xattr_skipcap, name)) {
2598		rc = cap_inode_removexattr(idmap, dentry, name);
2599		if (rc)
2600			return rc;
2601	}
2602
2603	return call_int_hook(inode_removexattr, idmap, dentry, name);
2604}
2605
2606/**
2607 * security_inode_post_removexattr() - Update the inode after a removexattr op
2608 * @dentry: file
2609 * @name: xattr name
2610 *
2611 * Update the inode after a successful removexattr operation.
2612 */
2613void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2614{
2615	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2616		return;
2617	call_void_hook(inode_post_removexattr, dentry, name);
2618}
2619
2620/**
2621 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2622 * @dentry: associated dentry
2623 *
2624 * Called when an inode has been changed to determine if
2625 * security_inode_killpriv() should be called.
2626 *
2627 * Return: Return <0 on error to abort the inode change operation, return 0 if
2628 *         security_inode_killpriv() does not need to be called, return >0 if
2629 *         security_inode_killpriv() does need to be called.
2630 */
2631int security_inode_need_killpriv(struct dentry *dentry)
2632{
2633	return call_int_hook(inode_need_killpriv, dentry);
2634}
2635
2636/**
2637 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2638 * @idmap: idmap of the mount
2639 * @dentry: associated dentry
2640 *
2641 * The @dentry's setuid bit is being removed.  Remove similar security labels.
2642 * Called with the dentry->d_inode->i_mutex held.
2643 *
2644 * Return: Return 0 on success.  If error is returned, then the operation
2645 *         causing setuid bit removal is failed.
2646 */
2647int security_inode_killpriv(struct mnt_idmap *idmap,
2648			    struct dentry *dentry)
2649{
2650	return call_int_hook(inode_killpriv, idmap, dentry);
2651}
2652
2653/**
2654 * security_inode_getsecurity() - Get the xattr security label of an inode
2655 * @idmap: idmap of the mount
2656 * @inode: inode
2657 * @name: xattr name
2658 * @buffer: security label buffer
2659 * @alloc: allocation flag
2660 *
2661 * Retrieve a copy of the extended attribute representation of the security
2662 * label associated with @name for @inode via @buffer.  Note that @name is the
2663 * remainder of the attribute name after the security prefix has been removed.
2664 * @alloc is used to specify if the call should return a value via the buffer
2665 * or just the value length.
2666 *
2667 * Return: Returns size of buffer on success.
2668 */
2669int security_inode_getsecurity(struct mnt_idmap *idmap,
2670			       struct inode *inode, const char *name,
2671			       void **buffer, bool alloc)
2672{
2673	if (unlikely(IS_PRIVATE(inode)))
2674		return LSM_RET_DEFAULT(inode_getsecurity);
2675
2676	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2677			     alloc);
2678}
2679
2680/**
2681 * security_inode_setsecurity() - Set the xattr security label of an inode
2682 * @inode: inode
2683 * @name: xattr name
2684 * @value: security label
2685 * @size: length of security label
2686 * @flags: flags
2687 *
2688 * Set the security label associated with @name for @inode from the extended
2689 * attribute value @value.  @size indicates the size of the @value in bytes.
2690 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2691 * remainder of the attribute name after the security. prefix has been removed.
2692 *
2693 * Return: Returns 0 on success.
2694 */
2695int security_inode_setsecurity(struct inode *inode, const char *name,
2696			       const void *value, size_t size, int flags)
2697{
2698	if (unlikely(IS_PRIVATE(inode)))
2699		return LSM_RET_DEFAULT(inode_setsecurity);
2700
2701	return call_int_hook(inode_setsecurity, inode, name, value, size,
2702			     flags);
2703}
2704
2705/**
2706 * security_inode_listsecurity() - List the xattr security label names
2707 * @inode: inode
2708 * @buffer: buffer
2709 * @buffer_size: size of buffer
2710 *
2711 * Copy the extended attribute names for the security labels associated with
2712 * @inode into @buffer.  The maximum size of @buffer is specified by
2713 * @buffer_size.  @buffer may be NULL to request the size of the buffer
2714 * required.
2715 *
2716 * Return: Returns number of bytes used/required on success.
2717 */
2718int security_inode_listsecurity(struct inode *inode,
2719				char *buffer, size_t buffer_size)
2720{
2721	if (unlikely(IS_PRIVATE(inode)))
2722		return 0;
2723	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2724}
2725EXPORT_SYMBOL(security_inode_listsecurity);
2726
2727/**
2728 * security_inode_getlsmprop() - Get an inode's LSM data
2729 * @inode: inode
2730 * @prop: lsm specific information to return
2731 *
2732 * Get the lsm specific information associated with the node.
 
2733 */
2734void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2735{
2736	call_void_hook(inode_getlsmprop, inode, prop);
2737}
2738
2739/**
2740 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2741 * @src: union dentry of copy-up file
2742 * @new: newly created creds
2743 *
2744 * A file is about to be copied up from lower layer to upper layer of overlay
2745 * filesystem. Security module can prepare a set of new creds and modify as
2746 * need be and return new creds. Caller will switch to new creds temporarily to
2747 * create new file and release newly allocated creds.
2748 *
2749 * Return: Returns 0 on success or a negative error code on error.
2750 */
2751int security_inode_copy_up(struct dentry *src, struct cred **new)
2752{
2753	return call_int_hook(inode_copy_up, src, new);
2754}
2755EXPORT_SYMBOL(security_inode_copy_up);
2756
2757/**
2758 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2759 * @src: union dentry of copy-up file
2760 * @name: xattr name
2761 *
2762 * Filter the xattrs being copied up when a unioned file is copied up from a
2763 * lower layer to the union/overlay layer.   The caller is responsible for
2764 * reading and writing the xattrs, this hook is merely a filter.
2765 *
2766 * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2767 *         -EOPNOTSUPP if the security module does not know about attribute,
2768 *         or a negative error code to abort the copy up.
2769 */
2770int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2771{
2772	int rc;
2773
2774	rc = call_int_hook(inode_copy_up_xattr, src, name);
 
 
 
 
 
2775	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2776		return rc;
2777
2778	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2779}
2780EXPORT_SYMBOL(security_inode_copy_up_xattr);
2781
2782/**
2783 * security_inode_setintegrity() - Set the inode's integrity data
2784 * @inode: inode
2785 * @type: type of integrity, e.g. hash digest, signature, etc
2786 * @value: the integrity value
2787 * @size: size of the integrity value
2788 *
2789 * Register a verified integrity measurement of a inode with LSMs.
2790 * LSMs should free the previously saved data if @value is NULL.
2791 *
2792 * Return: Returns 0 on success, negative values on failure.
2793 */
2794int security_inode_setintegrity(const struct inode *inode,
2795				enum lsm_integrity_type type, const void *value,
2796				size_t size)
2797{
2798	return call_int_hook(inode_setintegrity, inode, type, value, size);
2799}
2800EXPORT_SYMBOL(security_inode_setintegrity);
2801
2802/**
2803 * security_kernfs_init_security() - Init LSM context for a kernfs node
2804 * @kn_dir: parent kernfs node
2805 * @kn: the kernfs node to initialize
2806 *
2807 * Initialize the security context of a newly created kernfs node based on its
2808 * own and its parent's attributes.
2809 *
2810 * Return: Returns 0 if permission is granted.
2811 */
2812int security_kernfs_init_security(struct kernfs_node *kn_dir,
2813				  struct kernfs_node *kn)
2814{
2815	return call_int_hook(kernfs_init_security, kn_dir, kn);
2816}
2817
2818/**
2819 * security_file_permission() - Check file permissions
2820 * @file: file
2821 * @mask: requested permissions
2822 *
2823 * Check file permissions before accessing an open file.  This hook is called
2824 * by various operations that read or write files.  A security module can use
2825 * this hook to perform additional checking on these operations, e.g. to
2826 * revalidate permissions on use to support privilege bracketing or policy
2827 * changes.  Notice that this hook is used when the actual read/write
2828 * operations are performed, whereas the inode_security_ops hook is called when
2829 * a file is opened (as well as many other operations).  Although this hook can
2830 * be used to revalidate permissions for various system call operations that
2831 * read or write files, it does not address the revalidation of permissions for
2832 * memory-mapped files.  Security modules must handle this separately if they
2833 * need such revalidation.
2834 *
2835 * Return: Returns 0 if permission is granted.
2836 */
2837int security_file_permission(struct file *file, int mask)
2838{
2839	return call_int_hook(file_permission, file, mask);
2840}
2841
2842/**
2843 * security_file_alloc() - Allocate and init a file's LSM blob
2844 * @file: the file
2845 *
2846 * Allocate and attach a security structure to the file->f_security field.  The
2847 * security field is initialized to NULL when the structure is first created.
2848 *
2849 * Return: Return 0 if the hook is successful and permission is granted.
2850 */
2851int security_file_alloc(struct file *file)
2852{
2853	int rc = lsm_file_alloc(file);
2854
2855	if (rc)
2856		return rc;
2857	rc = call_int_hook(file_alloc_security, file);
2858	if (unlikely(rc))
2859		security_file_free(file);
2860	return rc;
2861}
2862
2863/**
2864 * security_file_release() - Perform actions before releasing the file ref
2865 * @file: the file
2866 *
2867 * Perform actions before releasing the last reference to a file.
2868 */
2869void security_file_release(struct file *file)
2870{
2871	call_void_hook(file_release, file);
2872}
2873
2874/**
2875 * security_file_free() - Free a file's LSM blob
2876 * @file: the file
2877 *
2878 * Deallocate and free any security structures stored in file->f_security.
2879 */
2880void security_file_free(struct file *file)
2881{
2882	void *blob;
2883
2884	call_void_hook(file_free_security, file);
2885
2886	blob = file->f_security;
2887	if (blob) {
2888		file->f_security = NULL;
2889		kmem_cache_free(lsm_file_cache, blob);
2890	}
2891}
2892
2893/**
2894 * security_file_ioctl() - Check if an ioctl is allowed
2895 * @file: associated file
2896 * @cmd: ioctl cmd
2897 * @arg: ioctl arguments
2898 *
2899 * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2900 * represents a user space pointer; in other cases, it may be a simple integer
2901 * value.  When @arg represents a user space pointer, it should never be used
2902 * by the security module.
2903 *
2904 * Return: Returns 0 if permission is granted.
2905 */
2906int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2907{
2908	return call_int_hook(file_ioctl, file, cmd, arg);
2909}
2910EXPORT_SYMBOL_GPL(security_file_ioctl);
2911
2912/**
2913 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2914 * @file: associated file
2915 * @cmd: ioctl cmd
2916 * @arg: ioctl arguments
2917 *
2918 * Compat version of security_file_ioctl() that correctly handles 32-bit
2919 * processes running on 64-bit kernels.
2920 *
2921 * Return: Returns 0 if permission is granted.
2922 */
2923int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2924			       unsigned long arg)
2925{
2926	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2927}
2928EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2929
2930static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2931{
2932	/*
2933	 * Does we have PROT_READ and does the application expect
2934	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2935	 */
2936	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2937		return prot;
2938	if (!(current->personality & READ_IMPLIES_EXEC))
2939		return prot;
2940	/*
2941	 * if that's an anonymous mapping, let it.
2942	 */
2943	if (!file)
2944		return prot | PROT_EXEC;
2945	/*
2946	 * ditto if it's not on noexec mount, except that on !MMU we need
2947	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2948	 */
2949	if (!path_noexec(&file->f_path)) {
2950#ifndef CONFIG_MMU
2951		if (file->f_op->mmap_capabilities) {
2952			unsigned caps = file->f_op->mmap_capabilities(file);
2953			if (!(caps & NOMMU_MAP_EXEC))
2954				return prot;
2955		}
2956#endif
2957		return prot | PROT_EXEC;
2958	}
2959	/* anything on noexec mount won't get PROT_EXEC */
2960	return prot;
2961}
2962
2963/**
2964 * security_mmap_file() - Check if mmap'ing a file is allowed
2965 * @file: file
2966 * @prot: protection applied by the kernel
2967 * @flags: flags
2968 *
2969 * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2970 * mapping anonymous memory.
2971 *
2972 * Return: Returns 0 if permission is granted.
2973 */
2974int security_mmap_file(struct file *file, unsigned long prot,
2975		       unsigned long flags)
2976{
2977	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2978			     flags);
2979}
2980
2981/**
2982 * security_mmap_addr() - Check if mmap'ing an address is allowed
2983 * @addr: address
2984 *
2985 * Check permissions for a mmap operation at @addr.
2986 *
2987 * Return: Returns 0 if permission is granted.
2988 */
2989int security_mmap_addr(unsigned long addr)
2990{
2991	return call_int_hook(mmap_addr, addr);
2992}
2993
2994/**
2995 * security_file_mprotect() - Check if changing memory protections is allowed
2996 * @vma: memory region
2997 * @reqprot: application requested protection
2998 * @prot: protection applied by the kernel
2999 *
3000 * Check permissions before changing memory access permissions.
3001 *
3002 * Return: Returns 0 if permission is granted.
3003 */
3004int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3005			   unsigned long prot)
3006{
3007	return call_int_hook(file_mprotect, vma, reqprot, prot);
3008}
3009
3010/**
3011 * security_file_lock() - Check if a file lock is allowed
3012 * @file: file
3013 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3014 *
3015 * Check permission before performing file locking operations.  Note the hook
3016 * mediates both flock and fcntl style locks.
3017 *
3018 * Return: Returns 0 if permission is granted.
3019 */
3020int security_file_lock(struct file *file, unsigned int cmd)
3021{
3022	return call_int_hook(file_lock, file, cmd);
3023}
3024
3025/**
3026 * security_file_fcntl() - Check if fcntl() op is allowed
3027 * @file: file
3028 * @cmd: fcntl command
3029 * @arg: command argument
3030 *
3031 * Check permission before allowing the file operation specified by @cmd from
3032 * being performed on the file @file.  Note that @arg sometimes represents a
3033 * user space pointer; in other cases, it may be a simple integer value.  When
3034 * @arg represents a user space pointer, it should never be used by the
3035 * security module.
3036 *
3037 * Return: Returns 0 if permission is granted.
3038 */
3039int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3040{
3041	return call_int_hook(file_fcntl, file, cmd, arg);
3042}
3043
3044/**
3045 * security_file_set_fowner() - Set the file owner info in the LSM blob
3046 * @file: the file
3047 *
3048 * Save owner security information (typically from current->security) in
3049 * file->f_security for later use by the send_sigiotask hook.
3050 *
3051 * This hook is called with file->f_owner.lock held.
3052 *
3053 * Return: Returns 0 on success.
3054 */
3055void security_file_set_fowner(struct file *file)
3056{
3057	call_void_hook(file_set_fowner, file);
3058}
3059
3060/**
3061 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3062 * @tsk: target task
3063 * @fown: signal sender
3064 * @sig: signal to be sent, SIGIO is sent if 0
3065 *
3066 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3067 * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
3068 * that the fown_struct, @fown, is never outside the context of a struct file,
3069 * so the file structure (and associated security information) can always be
3070 * obtained: container_of(fown, struct file, f_owner).
3071 *
3072 * Return: Returns 0 if permission is granted.
3073 */
3074int security_file_send_sigiotask(struct task_struct *tsk,
3075				 struct fown_struct *fown, int sig)
3076{
3077	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3078}
3079
3080/**
3081 * security_file_receive() - Check if receiving a file via IPC is allowed
3082 * @file: file being received
3083 *
3084 * This hook allows security modules to control the ability of a process to
3085 * receive an open file descriptor via socket IPC.
3086 *
3087 * Return: Returns 0 if permission is granted.
3088 */
3089int security_file_receive(struct file *file)
3090{
3091	return call_int_hook(file_receive, file);
3092}
3093
3094/**
3095 * security_file_open() - Save open() time state for late use by the LSM
3096 * @file:
3097 *
3098 * Save open-time permission checking state for later use upon file_permission,
3099 * and recheck access if anything has changed since inode_permission.
3100 *
3101 * Return: Returns 0 if permission is granted.
3102 */
3103int security_file_open(struct file *file)
3104{
3105	return call_int_hook(file_open, file);
 
 
 
 
 
 
3106}
3107
3108/**
3109 * security_file_post_open() - Evaluate a file after it has been opened
3110 * @file: the file
3111 * @mask: access mask
3112 *
3113 * Evaluate an opened file and the access mask requested with open(). The hook
3114 * is useful for LSMs that require the file content to be available in order to
3115 * make decisions.
3116 *
3117 * Return: Returns 0 if permission is granted.
3118 */
3119int security_file_post_open(struct file *file, int mask)
3120{
3121	return call_int_hook(file_post_open, file, mask);
3122}
3123EXPORT_SYMBOL_GPL(security_file_post_open);
3124
3125/**
3126 * security_file_truncate() - Check if truncating a file is allowed
3127 * @file: file
3128 *
3129 * Check permission before truncating a file, i.e. using ftruncate.  Note that
3130 * truncation permission may also be checked based on the path, using the
3131 * @path_truncate hook.
3132 *
3133 * Return: Returns 0 if permission is granted.
3134 */
3135int security_file_truncate(struct file *file)
3136{
3137	return call_int_hook(file_truncate, file);
3138}
3139
3140/**
3141 * security_task_alloc() - Allocate a task's LSM blob
3142 * @task: the task
3143 * @clone_flags: flags indicating what is being shared
3144 *
3145 * Handle allocation of task-related resources.
3146 *
3147 * Return: Returns a zero on success, negative values on failure.
3148 */
3149int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3150{
3151	int rc = lsm_task_alloc(task);
3152
3153	if (rc)
3154		return rc;
3155	rc = call_int_hook(task_alloc, task, clone_flags);
3156	if (unlikely(rc))
3157		security_task_free(task);
3158	return rc;
3159}
3160
3161/**
3162 * security_task_free() - Free a task's LSM blob and related resources
3163 * @task: task
3164 *
3165 * Handle release of task-related resources.  Note that this can be called from
3166 * interrupt context.
3167 */
3168void security_task_free(struct task_struct *task)
3169{
3170	call_void_hook(task_free, task);
3171
3172	kfree(task->security);
3173	task->security = NULL;
3174}
3175
3176/**
3177 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3178 * @cred: credentials
3179 * @gfp: gfp flags
3180 *
3181 * Only allocate sufficient memory and attach to @cred such that
3182 * cred_transfer() will not get ENOMEM.
3183 *
3184 * Return: Returns 0 on success, negative values on failure.
3185 */
3186int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3187{
3188	int rc = lsm_cred_alloc(cred, gfp);
3189
3190	if (rc)
3191		return rc;
3192
3193	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3194	if (unlikely(rc))
3195		security_cred_free(cred);
3196	return rc;
3197}
3198
3199/**
3200 * security_cred_free() - Free the cred's LSM blob and associated resources
3201 * @cred: credentials
3202 *
3203 * Deallocate and clear the cred->security field in a set of credentials.
3204 */
3205void security_cred_free(struct cred *cred)
3206{
3207	/*
3208	 * There is a failure case in prepare_creds() that
3209	 * may result in a call here with ->security being NULL.
3210	 */
3211	if (unlikely(cred->security == NULL))
3212		return;
3213
3214	call_void_hook(cred_free, cred);
3215
3216	kfree(cred->security);
3217	cred->security = NULL;
3218}
3219
3220/**
3221 * security_prepare_creds() - Prepare a new set of credentials
3222 * @new: new credentials
3223 * @old: original credentials
3224 * @gfp: gfp flags
3225 *
3226 * Prepare a new set of credentials by copying the data from the old set.
3227 *
3228 * Return: Returns 0 on success, negative values on failure.
3229 */
3230int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3231{
3232	int rc = lsm_cred_alloc(new, gfp);
3233
3234	if (rc)
3235		return rc;
3236
3237	rc = call_int_hook(cred_prepare, new, old, gfp);
3238	if (unlikely(rc))
3239		security_cred_free(new);
3240	return rc;
3241}
3242
3243/**
3244 * security_transfer_creds() - Transfer creds
3245 * @new: target credentials
3246 * @old: original credentials
3247 *
3248 * Transfer data from original creds to new creds.
3249 */
3250void security_transfer_creds(struct cred *new, const struct cred *old)
3251{
3252	call_void_hook(cred_transfer, new, old);
3253}
3254
3255/**
3256 * security_cred_getsecid() - Get the secid from a set of credentials
3257 * @c: credentials
3258 * @secid: secid value
3259 *
3260 * Retrieve the security identifier of the cred structure @c.  In case of
3261 * failure, @secid will be set to zero.
3262 */
3263void security_cred_getsecid(const struct cred *c, u32 *secid)
3264{
3265	*secid = 0;
3266	call_void_hook(cred_getsecid, c, secid);
3267}
3268EXPORT_SYMBOL(security_cred_getsecid);
3269
3270/**
3271 * security_cred_getlsmprop() - Get the LSM data from a set of credentials
3272 * @c: credentials
3273 * @prop: destination for the LSM data
3274 *
3275 * Retrieve the security data of the cred structure @c.  In case of
3276 * failure, @prop will be cleared.
3277 */
3278void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
3279{
3280	lsmprop_init(prop);
3281	call_void_hook(cred_getlsmprop, c, prop);
3282}
3283EXPORT_SYMBOL(security_cred_getlsmprop);
3284
3285/**
3286 * security_kernel_act_as() - Set the kernel credentials to act as secid
3287 * @new: credentials
3288 * @secid: secid
3289 *
3290 * Set the credentials for a kernel service to act as (subjective context).
3291 * The current task must be the one that nominated @secid.
3292 *
3293 * Return: Returns 0 if successful.
3294 */
3295int security_kernel_act_as(struct cred *new, u32 secid)
3296{
3297	return call_int_hook(kernel_act_as, new, secid);
3298}
3299
3300/**
3301 * security_kernel_create_files_as() - Set file creation context using an inode
3302 * @new: target credentials
3303 * @inode: reference inode
3304 *
3305 * Set the file creation context in a set of credentials to be the same as the
3306 * objective context of the specified inode.  The current task must be the one
3307 * that nominated @inode.
3308 *
3309 * Return: Returns 0 if successful.
3310 */
3311int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3312{
3313	return call_int_hook(kernel_create_files_as, new, inode);
3314}
3315
3316/**
3317 * security_kernel_module_request() - Check if loading a module is allowed
3318 * @kmod_name: module name
3319 *
3320 * Ability to trigger the kernel to automatically upcall to userspace for
3321 * userspace to load a kernel module with the given name.
3322 *
3323 * Return: Returns 0 if successful.
3324 */
3325int security_kernel_module_request(char *kmod_name)
3326{
3327	return call_int_hook(kernel_module_request, kmod_name);
3328}
3329
3330/**
3331 * security_kernel_read_file() - Read a file specified by userspace
3332 * @file: file
3333 * @id: file identifier
3334 * @contents: trust if security_kernel_post_read_file() will be called
3335 *
3336 * Read a file specified by userspace.
3337 *
3338 * Return: Returns 0 if permission is granted.
3339 */
3340int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3341			      bool contents)
3342{
3343	return call_int_hook(kernel_read_file, file, id, contents);
3344}
3345EXPORT_SYMBOL_GPL(security_kernel_read_file);
3346
3347/**
3348 * security_kernel_post_read_file() - Read a file specified by userspace
3349 * @file: file
3350 * @buf: file contents
3351 * @size: size of file contents
3352 * @id: file identifier
3353 *
3354 * Read a file specified by userspace.  This must be paired with a prior call
3355 * to security_kernel_read_file() call that indicated this hook would also be
3356 * called, see security_kernel_read_file() for more information.
3357 *
3358 * Return: Returns 0 if permission is granted.
3359 */
3360int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3361				   enum kernel_read_file_id id)
3362{
3363	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3364}
3365EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3366
3367/**
3368 * security_kernel_load_data() - Load data provided by userspace
3369 * @id: data identifier
3370 * @contents: true if security_kernel_post_load_data() will be called
3371 *
3372 * Load data provided by userspace.
3373 *
3374 * Return: Returns 0 if permission is granted.
3375 */
3376int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3377{
3378	return call_int_hook(kernel_load_data, id, contents);
3379}
3380EXPORT_SYMBOL_GPL(security_kernel_load_data);
3381
3382/**
3383 * security_kernel_post_load_data() - Load userspace data from a non-file source
3384 * @buf: data
3385 * @size: size of data
3386 * @id: data identifier
3387 * @description: text description of data, specific to the id value
3388 *
3389 * Load data provided by a non-file source (usually userspace buffer).  This
3390 * must be paired with a prior security_kernel_load_data() call that indicated
3391 * this hook would also be called, see security_kernel_load_data() for more
3392 * information.
3393 *
3394 * Return: Returns 0 if permission is granted.
3395 */
3396int security_kernel_post_load_data(char *buf, loff_t size,
3397				   enum kernel_load_data_id id,
3398				   char *description)
3399{
3400	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3401}
3402EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3403
3404/**
3405 * security_task_fix_setuid() - Update LSM with new user id attributes
3406 * @new: updated credentials
3407 * @old: credentials being replaced
3408 * @flags: LSM_SETID_* flag values
3409 *
3410 * Update the module's state after setting one or more of the user identity
3411 * attributes of the current process.  The @flags parameter indicates which of
3412 * the set*uid system calls invoked this hook.  If @new is the set of
3413 * credentials that will be installed.  Modifications should be made to this
3414 * rather than to @current->cred.
3415 *
3416 * Return: Returns 0 on success.
3417 */
3418int security_task_fix_setuid(struct cred *new, const struct cred *old,
3419			     int flags)
3420{
3421	return call_int_hook(task_fix_setuid, new, old, flags);
3422}
3423
3424/**
3425 * security_task_fix_setgid() - Update LSM with new group id attributes
3426 * @new: updated credentials
3427 * @old: credentials being replaced
3428 * @flags: LSM_SETID_* flag value
3429 *
3430 * Update the module's state after setting one or more of the group identity
3431 * attributes of the current process.  The @flags parameter indicates which of
3432 * the set*gid system calls invoked this hook.  @new is the set of credentials
3433 * that will be installed.  Modifications should be made to this rather than to
3434 * @current->cred.
3435 *
3436 * Return: Returns 0 on success.
3437 */
3438int security_task_fix_setgid(struct cred *new, const struct cred *old,
3439			     int flags)
3440{
3441	return call_int_hook(task_fix_setgid, new, old, flags);
3442}
3443
3444/**
3445 * security_task_fix_setgroups() - Update LSM with new supplementary groups
3446 * @new: updated credentials
3447 * @old: credentials being replaced
3448 *
3449 * Update the module's state after setting the supplementary group identity
3450 * attributes of the current process.  @new is the set of credentials that will
3451 * be installed.  Modifications should be made to this rather than to
3452 * @current->cred.
3453 *
3454 * Return: Returns 0 on success.
3455 */
3456int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3457{
3458	return call_int_hook(task_fix_setgroups, new, old);
3459}
3460
3461/**
3462 * security_task_setpgid() - Check if setting the pgid is allowed
3463 * @p: task being modified
3464 * @pgid: new pgid
3465 *
3466 * Check permission before setting the process group identifier of the process
3467 * @p to @pgid.
3468 *
3469 * Return: Returns 0 if permission is granted.
3470 */
3471int security_task_setpgid(struct task_struct *p, pid_t pgid)
3472{
3473	return call_int_hook(task_setpgid, p, pgid);
3474}
3475
3476/**
3477 * security_task_getpgid() - Check if getting the pgid is allowed
3478 * @p: task
3479 *
3480 * Check permission before getting the process group identifier of the process
3481 * @p.
3482 *
3483 * Return: Returns 0 if permission is granted.
3484 */
3485int security_task_getpgid(struct task_struct *p)
3486{
3487	return call_int_hook(task_getpgid, p);
3488}
3489
3490/**
3491 * security_task_getsid() - Check if getting the session id is allowed
3492 * @p: task
3493 *
3494 * Check permission before getting the session identifier of the process @p.
3495 *
3496 * Return: Returns 0 if permission is granted.
3497 */
3498int security_task_getsid(struct task_struct *p)
3499{
3500	return call_int_hook(task_getsid, p);
3501}
3502
3503/**
3504 * security_current_getlsmprop_subj() - Current task's subjective LSM data
3505 * @prop: lsm specific information
3506 *
3507 * Retrieve the subjective security identifier of the current task and return
3508 * it in @prop.
3509 */
3510void security_current_getlsmprop_subj(struct lsm_prop *prop)
3511{
3512	lsmprop_init(prop);
3513	call_void_hook(current_getlsmprop_subj, prop);
3514}
3515EXPORT_SYMBOL(security_current_getlsmprop_subj);
3516
3517/**
3518 * security_task_getlsmprop_obj() - Get a task's objective LSM data
3519 * @p: target task
3520 * @prop: lsm specific information
3521 *
3522 * Retrieve the objective security identifier of the task_struct in @p and
3523 * return it in @prop.
3524 */
3525void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3526{
3527	lsmprop_init(prop);
3528	call_void_hook(task_getlsmprop_obj, p, prop);
3529}
3530EXPORT_SYMBOL(security_task_getlsmprop_obj);
3531
3532/**
3533 * security_task_setnice() - Check if setting a task's nice value is allowed
3534 * @p: target task
3535 * @nice: nice value
3536 *
3537 * Check permission before setting the nice value of @p to @nice.
3538 *
3539 * Return: Returns 0 if permission is granted.
3540 */
3541int security_task_setnice(struct task_struct *p, int nice)
3542{
3543	return call_int_hook(task_setnice, p, nice);
3544}
3545
3546/**
3547 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3548 * @p: target task
3549 * @ioprio: ioprio value
3550 *
3551 * Check permission before setting the ioprio value of @p to @ioprio.
3552 *
3553 * Return: Returns 0 if permission is granted.
3554 */
3555int security_task_setioprio(struct task_struct *p, int ioprio)
3556{
3557	return call_int_hook(task_setioprio, p, ioprio);
3558}
3559
3560/**
3561 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3562 * @p: task
3563 *
3564 * Check permission before getting the ioprio value of @p.
3565 *
3566 * Return: Returns 0 if permission is granted.
3567 */
3568int security_task_getioprio(struct task_struct *p)
3569{
3570	return call_int_hook(task_getioprio, p);
3571}
3572
3573/**
3574 * security_task_prlimit() - Check if get/setting resources limits is allowed
3575 * @cred: current task credentials
3576 * @tcred: target task credentials
3577 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3578 *
3579 * Check permission before getting and/or setting the resource limits of
3580 * another task.
3581 *
3582 * Return: Returns 0 if permission is granted.
3583 */
3584int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3585			  unsigned int flags)
3586{
3587	return call_int_hook(task_prlimit, cred, tcred, flags);
3588}
3589
3590/**
3591 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3592 * @p: target task's group leader
3593 * @resource: resource whose limit is being set
3594 * @new_rlim: new resource limit
3595 *
3596 * Check permission before setting the resource limits of process @p for
3597 * @resource to @new_rlim.  The old resource limit values can be examined by
3598 * dereferencing (p->signal->rlim + resource).
3599 *
3600 * Return: Returns 0 if permission is granted.
3601 */
3602int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3603			    struct rlimit *new_rlim)
3604{
3605	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3606}
3607
3608/**
3609 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3610 * @p: target task
3611 *
3612 * Check permission before setting scheduling policy and/or parameters of
3613 * process @p.
3614 *
3615 * Return: Returns 0 if permission is granted.
3616 */
3617int security_task_setscheduler(struct task_struct *p)
3618{
3619	return call_int_hook(task_setscheduler, p);
3620}
3621
3622/**
3623 * security_task_getscheduler() - Check if getting scheduling info is allowed
3624 * @p: target task
3625 *
3626 * Check permission before obtaining scheduling information for process @p.
3627 *
3628 * Return: Returns 0 if permission is granted.
3629 */
3630int security_task_getscheduler(struct task_struct *p)
3631{
3632	return call_int_hook(task_getscheduler, p);
3633}
3634
3635/**
3636 * security_task_movememory() - Check if moving memory is allowed
3637 * @p: task
3638 *
3639 * Check permission before moving memory owned by process @p.
3640 *
3641 * Return: Returns 0 if permission is granted.
3642 */
3643int security_task_movememory(struct task_struct *p)
3644{
3645	return call_int_hook(task_movememory, p);
3646}
3647
3648/**
3649 * security_task_kill() - Check if sending a signal is allowed
3650 * @p: target process
3651 * @info: signal information
3652 * @sig: signal value
3653 * @cred: credentials of the signal sender, NULL if @current
3654 *
3655 * Check permission before sending signal @sig to @p.  @info can be NULL, the
3656 * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3657 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3658 * the kernel and should typically be permitted.  SIGIO signals are handled
3659 * separately by the send_sigiotask hook in file_security_ops.
3660 *
3661 * Return: Returns 0 if permission is granted.
3662 */
3663int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3664		       int sig, const struct cred *cred)
3665{
3666	return call_int_hook(task_kill, p, info, sig, cred);
3667}
3668
3669/**
3670 * security_task_prctl() - Check if a prctl op is allowed
3671 * @option: operation
3672 * @arg2: argument
3673 * @arg3: argument
3674 * @arg4: argument
3675 * @arg5: argument
3676 *
3677 * Check permission before performing a process control operation on the
3678 * current process.
3679 *
3680 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3681 *         to cause prctl() to return immediately with that value.
3682 */
3683int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3684			unsigned long arg4, unsigned long arg5)
3685{
3686	int thisrc;
3687	int rc = LSM_RET_DEFAULT(task_prctl);
3688	struct lsm_static_call *scall;
3689
3690	lsm_for_each_hook(scall, task_prctl) {
3691		thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3692		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3693			rc = thisrc;
3694			if (thisrc != 0)
3695				break;
3696		}
3697	}
3698	return rc;
3699}
3700
3701/**
3702 * security_task_to_inode() - Set the security attributes of a task's inode
3703 * @p: task
3704 * @inode: inode
3705 *
3706 * Set the security attributes for an inode based on an associated task's
3707 * security attributes, e.g. for /proc/pid inodes.
3708 */
3709void security_task_to_inode(struct task_struct *p, struct inode *inode)
3710{
3711	call_void_hook(task_to_inode, p, inode);
3712}
3713
3714/**
3715 * security_create_user_ns() - Check if creating a new userns is allowed
3716 * @cred: prepared creds
3717 *
3718 * Check permission prior to creating a new user namespace.
3719 *
3720 * Return: Returns 0 if successful, otherwise < 0 error code.
3721 */
3722int security_create_user_ns(const struct cred *cred)
3723{
3724	return call_int_hook(userns_create, cred);
3725}
3726
3727/**
3728 * security_ipc_permission() - Check if sysv ipc access is allowed
3729 * @ipcp: ipc permission structure
3730 * @flag: requested permissions
3731 *
3732 * Check permissions for access to IPC.
3733 *
3734 * Return: Returns 0 if permission is granted.
3735 */
3736int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3737{
3738	return call_int_hook(ipc_permission, ipcp, flag);
3739}
3740
3741/**
3742 * security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3743 * @ipcp: ipc permission structure
3744 * @prop: pointer to lsm information
3745 *
3746 * Get the lsm information associated with the ipc object.
 
3747 */
3748
3749void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3750{
3751	lsmprop_init(prop);
3752	call_void_hook(ipc_getlsmprop, ipcp, prop);
3753}
3754
3755/**
3756 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3757 * @msg: message structure
3758 *
3759 * Allocate and attach a security structure to the msg->security field.  The
3760 * security field is initialized to NULL when the structure is first created.
3761 *
3762 * Return: Return 0 if operation was successful and permission is granted.
3763 */
3764int security_msg_msg_alloc(struct msg_msg *msg)
3765{
3766	int rc = lsm_msg_msg_alloc(msg);
3767
3768	if (unlikely(rc))
3769		return rc;
3770	rc = call_int_hook(msg_msg_alloc_security, msg);
3771	if (unlikely(rc))
3772		security_msg_msg_free(msg);
3773	return rc;
3774}
3775
3776/**
3777 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3778 * @msg: message structure
3779 *
3780 * Deallocate the security structure for this message.
3781 */
3782void security_msg_msg_free(struct msg_msg *msg)
3783{
3784	call_void_hook(msg_msg_free_security, msg);
3785	kfree(msg->security);
3786	msg->security = NULL;
3787}
3788
3789/**
3790 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3791 * @msq: sysv ipc permission structure
3792 *
3793 * Allocate and attach a security structure to @msg. The security field is
3794 * initialized to NULL when the structure is first created.
3795 *
3796 * Return: Returns 0 if operation was successful and permission is granted.
3797 */
3798int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3799{
3800	int rc = lsm_ipc_alloc(msq);
3801
3802	if (unlikely(rc))
3803		return rc;
3804	rc = call_int_hook(msg_queue_alloc_security, msq);
3805	if (unlikely(rc))
3806		security_msg_queue_free(msq);
3807	return rc;
3808}
3809
3810/**
3811 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3812 * @msq: sysv ipc permission structure
3813 *
3814 * Deallocate security field @perm->security for the message queue.
3815 */
3816void security_msg_queue_free(struct kern_ipc_perm *msq)
3817{
3818	call_void_hook(msg_queue_free_security, msq);
3819	kfree(msq->security);
3820	msq->security = NULL;
3821}
3822
3823/**
3824 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3825 * @msq: sysv ipc permission structure
3826 * @msqflg: operation flags
3827 *
3828 * Check permission when a message queue is requested through the msgget system
3829 * call. This hook is only called when returning the message queue identifier
3830 * for an existing message queue, not when a new message queue is created.
3831 *
3832 * Return: Return 0 if permission is granted.
3833 */
3834int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3835{
3836	return call_int_hook(msg_queue_associate, msq, msqflg);
3837}
3838
3839/**
3840 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3841 * @msq: sysv ipc permission structure
3842 * @cmd: operation
3843 *
3844 * Check permission when a message control operation specified by @cmd is to be
3845 * performed on the message queue with permissions.
3846 *
3847 * Return: Returns 0 if permission is granted.
3848 */
3849int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3850{
3851	return call_int_hook(msg_queue_msgctl, msq, cmd);
3852}
3853
3854/**
3855 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3856 * @msq: sysv ipc permission structure
3857 * @msg: message
3858 * @msqflg: operation flags
3859 *
3860 * Check permission before a message, @msg, is enqueued on the message queue
3861 * with permissions specified in @msq.
3862 *
3863 * Return: Returns 0 if permission is granted.
3864 */
3865int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3866			      struct msg_msg *msg, int msqflg)
3867{
3868	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3869}
3870
3871/**
3872 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3873 * @msq: sysv ipc permission structure
3874 * @msg: message
3875 * @target: target task
3876 * @type: type of message requested
3877 * @mode: operation flags
3878 *
3879 * Check permission before a message, @msg, is removed from the message	queue.
3880 * The @target task structure contains a pointer to the process that will be
3881 * receiving the message (not equal to the current process when inline receives
3882 * are being performed).
3883 *
3884 * Return: Returns 0 if permission is granted.
3885 */
3886int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3887			      struct task_struct *target, long type, int mode)
3888{
3889	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3890}
3891
3892/**
3893 * security_shm_alloc() - Allocate a sysv shm LSM blob
3894 * @shp: sysv ipc permission structure
3895 *
3896 * Allocate and attach a security structure to the @shp security field.  The
3897 * security field is initialized to NULL when the structure is first created.
3898 *
3899 * Return: Returns 0 if operation was successful and permission is granted.
3900 */
3901int security_shm_alloc(struct kern_ipc_perm *shp)
3902{
3903	int rc = lsm_ipc_alloc(shp);
3904
3905	if (unlikely(rc))
3906		return rc;
3907	rc = call_int_hook(shm_alloc_security, shp);
3908	if (unlikely(rc))
3909		security_shm_free(shp);
3910	return rc;
3911}
3912
3913/**
3914 * security_shm_free() - Free a sysv shm LSM blob
3915 * @shp: sysv ipc permission structure
3916 *
3917 * Deallocate the security structure @perm->security for the memory segment.
3918 */
3919void security_shm_free(struct kern_ipc_perm *shp)
3920{
3921	call_void_hook(shm_free_security, shp);
3922	kfree(shp->security);
3923	shp->security = NULL;
3924}
3925
3926/**
3927 * security_shm_associate() - Check if a sysv shm operation is allowed
3928 * @shp: sysv ipc permission structure
3929 * @shmflg: operation flags
3930 *
3931 * Check permission when a shared memory region is requested through the shmget
3932 * system call. This hook is only called when returning the shared memory
3933 * region identifier for an existing region, not when a new shared memory
3934 * region is created.
3935 *
3936 * Return: Returns 0 if permission is granted.
3937 */
3938int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3939{
3940	return call_int_hook(shm_associate, shp, shmflg);
3941}
3942
3943/**
3944 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3945 * @shp: sysv ipc permission structure
3946 * @cmd: operation
3947 *
3948 * Check permission when a shared memory control operation specified by @cmd is
3949 * to be performed on the shared memory region with permissions in @shp.
3950 *
3951 * Return: Return 0 if permission is granted.
3952 */
3953int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3954{
3955	return call_int_hook(shm_shmctl, shp, cmd);
3956}
3957
3958/**
3959 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3960 * @shp: sysv ipc permission structure
3961 * @shmaddr: address of memory region to attach
3962 * @shmflg: operation flags
3963 *
3964 * Check permissions prior to allowing the shmat system call to attach the
3965 * shared memory segment with permissions @shp to the data segment of the
3966 * calling process. The attaching address is specified by @shmaddr.
3967 *
3968 * Return: Returns 0 if permission is granted.
3969 */
3970int security_shm_shmat(struct kern_ipc_perm *shp,
3971		       char __user *shmaddr, int shmflg)
3972{
3973	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3974}
3975
3976/**
3977 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3978 * @sma: sysv ipc permission structure
3979 *
3980 * Allocate and attach a security structure to the @sma security field. The
3981 * security field is initialized to NULL when the structure is first created.
3982 *
3983 * Return: Returns 0 if operation was successful and permission is granted.
3984 */
3985int security_sem_alloc(struct kern_ipc_perm *sma)
3986{
3987	int rc = lsm_ipc_alloc(sma);
3988
3989	if (unlikely(rc))
3990		return rc;
3991	rc = call_int_hook(sem_alloc_security, sma);
3992	if (unlikely(rc))
3993		security_sem_free(sma);
3994	return rc;
3995}
3996
3997/**
3998 * security_sem_free() - Free a sysv semaphore LSM blob
3999 * @sma: sysv ipc permission structure
4000 *
4001 * Deallocate security structure @sma->security for the semaphore.
4002 */
4003void security_sem_free(struct kern_ipc_perm *sma)
4004{
4005	call_void_hook(sem_free_security, sma);
4006	kfree(sma->security);
4007	sma->security = NULL;
4008}
4009
4010/**
4011 * security_sem_associate() - Check if a sysv semaphore operation is allowed
4012 * @sma: sysv ipc permission structure
4013 * @semflg: operation flags
4014 *
4015 * Check permission when a semaphore is requested through the semget system
4016 * call. This hook is only called when returning the semaphore identifier for
4017 * an existing semaphore, not when a new one must be created.
4018 *
4019 * Return: Returns 0 if permission is granted.
4020 */
4021int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4022{
4023	return call_int_hook(sem_associate, sma, semflg);
4024}
4025
4026/**
4027 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4028 * @sma: sysv ipc permission structure
4029 * @cmd: operation
4030 *
4031 * Check permission when a semaphore operation specified by @cmd is to be
4032 * performed on the semaphore.
4033 *
4034 * Return: Returns 0 if permission is granted.
4035 */
4036int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4037{
4038	return call_int_hook(sem_semctl, sma, cmd);
4039}
4040
4041/**
4042 * security_sem_semop() - Check if a sysv semaphore operation is allowed
4043 * @sma: sysv ipc permission structure
4044 * @sops: operations to perform
4045 * @nsops: number of operations
4046 * @alter: flag indicating changes will be made
4047 *
4048 * Check permissions before performing operations on members of the semaphore
4049 * set. If the @alter flag is nonzero, the semaphore set may be modified.
4050 *
4051 * Return: Returns 0 if permission is granted.
4052 */
4053int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4054		       unsigned nsops, int alter)
4055{
4056	return call_int_hook(sem_semop, sma, sops, nsops, alter);
4057}
4058
4059/**
4060 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4061 * @dentry: dentry
4062 * @inode: inode
4063 *
4064 * Fill in @inode security information for a @dentry if allowed.
4065 */
4066void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4067{
4068	if (unlikely(inode && IS_PRIVATE(inode)))
4069		return;
4070	call_void_hook(d_instantiate, dentry, inode);
4071}
4072EXPORT_SYMBOL(security_d_instantiate);
4073
4074/*
4075 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4076 */
4077
4078/**
4079 * security_getselfattr - Read an LSM attribute of the current process.
4080 * @attr: which attribute to return
4081 * @uctx: the user-space destination for the information, or NULL
4082 * @size: pointer to the size of space available to receive the data
4083 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4084 * attributes associated with the LSM identified in the passed @ctx be
4085 * reported.
4086 *
4087 * A NULL value for @uctx can be used to get both the number of attributes
4088 * and the size of the data.
4089 *
4090 * Returns the number of attributes found on success, negative value
4091 * on error. @size is reset to the total size of the data.
4092 * If @size is insufficient to contain the data -E2BIG is returned.
4093 */
4094int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4095			 u32 __user *size, u32 flags)
4096{
4097	struct lsm_static_call *scall;
4098	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4099	u8 __user *base = (u8 __user *)uctx;
4100	u32 entrysize;
4101	u32 total = 0;
4102	u32 left;
4103	bool toobig = false;
4104	bool single = false;
4105	int count = 0;
4106	int rc;
4107
4108	if (attr == LSM_ATTR_UNDEF)
4109		return -EINVAL;
4110	if (size == NULL)
4111		return -EINVAL;
4112	if (get_user(left, size))
4113		return -EFAULT;
4114
4115	if (flags) {
4116		/*
4117		 * Only flag supported is LSM_FLAG_SINGLE
4118		 */
4119		if (flags != LSM_FLAG_SINGLE || !uctx)
4120			return -EINVAL;
4121		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4122			return -EFAULT;
4123		/*
4124		 * If the LSM ID isn't specified it is an error.
4125		 */
4126		if (lctx.id == LSM_ID_UNDEF)
4127			return -EINVAL;
4128		single = true;
4129	}
4130
4131	/*
4132	 * In the usual case gather all the data from the LSMs.
4133	 * In the single case only get the data from the LSM specified.
4134	 */
4135	lsm_for_each_hook(scall, getselfattr) {
4136		if (single && lctx.id != scall->hl->lsmid->id)
4137			continue;
4138		entrysize = left;
4139		if (base)
4140			uctx = (struct lsm_ctx __user *)(base + total);
4141		rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4142		if (rc == -EOPNOTSUPP) {
4143			rc = 0;
4144			continue;
4145		}
4146		if (rc == -E2BIG) {
4147			rc = 0;
4148			left = 0;
4149			toobig = true;
4150		} else if (rc < 0)
4151			return rc;
4152		else
4153			left -= entrysize;
4154
4155		total += entrysize;
4156		count += rc;
4157		if (single)
4158			break;
4159	}
4160	if (put_user(total, size))
4161		return -EFAULT;
4162	if (toobig)
4163		return -E2BIG;
4164	if (count == 0)
4165		return LSM_RET_DEFAULT(getselfattr);
4166	return count;
4167}
4168
4169/*
4170 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4171 */
4172
4173/**
4174 * security_setselfattr - Set an LSM attribute on the current process.
4175 * @attr: which attribute to set
4176 * @uctx: the user-space source for the information
4177 * @size: the size of the data
4178 * @flags: reserved for future use, must be 0
4179 *
4180 * Set an LSM attribute for the current process. The LSM, attribute
4181 * and new value are included in @uctx.
4182 *
4183 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4184 * if the user buffer is inaccessible, E2BIG if size is too big, or an
4185 * LSM specific failure.
4186 */
4187int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4188			 u32 size, u32 flags)
4189{
4190	struct lsm_static_call *scall;
4191	struct lsm_ctx *lctx;
4192	int rc = LSM_RET_DEFAULT(setselfattr);
4193	u64 required_len;
4194
4195	if (flags)
4196		return -EINVAL;
4197	if (size < sizeof(*lctx))
4198		return -EINVAL;
4199	if (size > PAGE_SIZE)
4200		return -E2BIG;
4201
4202	lctx = memdup_user(uctx, size);
4203	if (IS_ERR(lctx))
4204		return PTR_ERR(lctx);
4205
4206	if (size < lctx->len ||
4207	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4208	    lctx->len < required_len) {
4209		rc = -EINVAL;
4210		goto free_out;
4211	}
4212
4213	lsm_for_each_hook(scall, setselfattr)
4214		if ((scall->hl->lsmid->id) == lctx->id) {
4215			rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4216			break;
4217		}
4218
4219free_out:
4220	kfree(lctx);
4221	return rc;
4222}
4223
4224/**
4225 * security_getprocattr() - Read an attribute for a task
4226 * @p: the task
4227 * @lsmid: LSM identification
4228 * @name: attribute name
4229 * @value: attribute value
4230 *
4231 * Read attribute @name for task @p and store it into @value if allowed.
4232 *
4233 * Return: Returns the length of @value on success, a negative value otherwise.
4234 */
4235int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4236			 char **value)
4237{
4238	struct lsm_static_call *scall;
4239
4240	lsm_for_each_hook(scall, getprocattr) {
4241		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4242			continue;
4243		return scall->hl->hook.getprocattr(p, name, value);
4244	}
4245	return LSM_RET_DEFAULT(getprocattr);
4246}
4247
4248/**
4249 * security_setprocattr() - Set an attribute for a task
4250 * @lsmid: LSM identification
4251 * @name: attribute name
4252 * @value: attribute value
4253 * @size: attribute value size
4254 *
4255 * Write (set) the current task's attribute @name to @value, size @size if
4256 * allowed.
4257 *
4258 * Return: Returns bytes written on success, a negative value otherwise.
4259 */
4260int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4261{
4262	struct lsm_static_call *scall;
4263
4264	lsm_for_each_hook(scall, setprocattr) {
4265		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4266			continue;
4267		return scall->hl->hook.setprocattr(name, value, size);
4268	}
4269	return LSM_RET_DEFAULT(setprocattr);
4270}
4271
4272/**
4273 * security_netlink_send() - Save info and check if netlink sending is allowed
4274 * @sk: sending socket
4275 * @skb: netlink message
4276 *
4277 * Save security information for a netlink message so that permission checking
4278 * can be performed when the message is processed.  The security information
4279 * can be saved using the eff_cap field of the netlink_skb_parms structure.
4280 * Also may be used to provide fine grained control over message transmission.
4281 *
4282 * Return: Returns 0 if the information was successfully saved and message is
4283 *         allowed to be transmitted.
4284 */
4285int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4286{
4287	return call_int_hook(netlink_send, sk, skb);
4288}
4289
4290/**
4291 * security_ismaclabel() - Check if the named attribute is a MAC label
4292 * @name: full extended attribute name
4293 *
4294 * Check if the extended attribute specified by @name represents a MAC label.
4295 *
4296 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4297 */
4298int security_ismaclabel(const char *name)
4299{
4300	return call_int_hook(ismaclabel, name);
4301}
4302EXPORT_SYMBOL(security_ismaclabel);
4303
4304/**
4305 * security_secid_to_secctx() - Convert a secid to a secctx
4306 * @secid: secid
4307 * @secdata: secctx
4308 * @seclen: secctx length
4309 *
4310 * Convert secid to security context.  If @secdata is NULL the length of the
4311 * result will be returned in @seclen, but no @secdata will be returned.  This
4312 * does mean that the length could change between calls to check the length and
4313 * the next call which actually allocates and returns the @secdata.
4314 *
4315 * Return: Return 0 on success, error on failure.
4316 */
4317int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4318{
4319	return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4320}
4321EXPORT_SYMBOL(security_secid_to_secctx);
4322
4323/**
4324 * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
4325 * @prop: lsm specific information
4326 * @secdata: secctx
4327 * @seclen: secctx length
4328 *
4329 * Convert a @prop entry to security context.  If @secdata is NULL the
4330 * length of the result will be returned in @seclen, but no @secdata
4331 * will be returned.  This does mean that the length could change between
4332 * calls to check the length and the next call which actually allocates
4333 * and returns the @secdata.
4334 *
4335 * Return: Return 0 on success, error on failure.
4336 */
4337int security_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata,
4338			       u32 *seclen)
4339{
4340	return call_int_hook(lsmprop_to_secctx, prop, secdata, seclen);
4341}
4342EXPORT_SYMBOL(security_lsmprop_to_secctx);
4343
4344/**
4345 * security_secctx_to_secid() - Convert a secctx to a secid
4346 * @secdata: secctx
4347 * @seclen: length of secctx
4348 * @secid: secid
4349 *
4350 * Convert security context to secid.
4351 *
4352 * Return: Returns 0 on success, error on failure.
4353 */
4354int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4355{
4356	*secid = 0;
4357	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4358}
4359EXPORT_SYMBOL(security_secctx_to_secid);
4360
4361/**
4362 * security_release_secctx() - Free a secctx buffer
4363 * @secdata: secctx
4364 * @seclen: length of secctx
4365 *
4366 * Release the security context.
4367 */
4368void security_release_secctx(char *secdata, u32 seclen)
4369{
4370	call_void_hook(release_secctx, secdata, seclen);
4371}
4372EXPORT_SYMBOL(security_release_secctx);
4373
4374/**
4375 * security_inode_invalidate_secctx() - Invalidate an inode's security label
4376 * @inode: inode
4377 *
4378 * Notify the security module that it must revalidate the security context of
4379 * an inode.
4380 */
4381void security_inode_invalidate_secctx(struct inode *inode)
4382{
4383	call_void_hook(inode_invalidate_secctx, inode);
4384}
4385EXPORT_SYMBOL(security_inode_invalidate_secctx);
4386
4387/**
4388 * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4389 * @inode: inode
4390 * @ctx: secctx
4391 * @ctxlen: length of secctx
4392 *
4393 * Notify the security module of what the security context of an inode should
4394 * be.  Initializes the incore security context managed by the security module
4395 * for this inode.  Example usage: NFS client invokes this hook to initialize
4396 * the security context in its incore inode to the value provided by the server
4397 * for the file when the server returned the file's attributes to the client.
4398 * Must be called with inode->i_mutex locked.
4399 *
4400 * Return: Returns 0 on success, error on failure.
4401 */
4402int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4403{
4404	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4405}
4406EXPORT_SYMBOL(security_inode_notifysecctx);
4407
4408/**
4409 * security_inode_setsecctx() - Change the security label of an inode
4410 * @dentry: inode
4411 * @ctx: secctx
4412 * @ctxlen: length of secctx
4413 *
4414 * Change the security context of an inode.  Updates the incore security
4415 * context managed by the security module and invokes the fs code as needed
4416 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4417 * context.  Example usage: NFS server invokes this hook to change the security
4418 * context in its incore inode and on the backing filesystem to a value
4419 * provided by the client on a SETATTR operation.  Must be called with
4420 * inode->i_mutex locked.
4421 *
4422 * Return: Returns 0 on success, error on failure.
4423 */
4424int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4425{
4426	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4427}
4428EXPORT_SYMBOL(security_inode_setsecctx);
4429
4430/**
4431 * security_inode_getsecctx() - Get the security label of an inode
4432 * @inode: inode
4433 * @ctx: secctx
4434 * @ctxlen: length of secctx
4435 *
4436 * On success, returns 0 and fills out @ctx and @ctxlen with the security
4437 * context for the given @inode.
4438 *
4439 * Return: Returns 0 on success, error on failure.
4440 */
4441int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4442{
4443	return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4444}
4445EXPORT_SYMBOL(security_inode_getsecctx);
4446
4447#ifdef CONFIG_WATCH_QUEUE
4448/**
4449 * security_post_notification() - Check if a watch notification can be posted
4450 * @w_cred: credentials of the task that set the watch
4451 * @cred: credentials of the task which triggered the watch
4452 * @n: the notification
4453 *
4454 * Check to see if a watch notification can be posted to a particular queue.
4455 *
4456 * Return: Returns 0 if permission is granted.
4457 */
4458int security_post_notification(const struct cred *w_cred,
4459			       const struct cred *cred,
4460			       struct watch_notification *n)
4461{
4462	return call_int_hook(post_notification, w_cred, cred, n);
4463}
4464#endif /* CONFIG_WATCH_QUEUE */
4465
4466#ifdef CONFIG_KEY_NOTIFICATIONS
4467/**
4468 * security_watch_key() - Check if a task is allowed to watch for key events
4469 * @key: the key to watch
4470 *
4471 * Check to see if a process is allowed to watch for event notifications from
4472 * a key or keyring.
4473 *
4474 * Return: Returns 0 if permission is granted.
4475 */
4476int security_watch_key(struct key *key)
4477{
4478	return call_int_hook(watch_key, key);
4479}
4480#endif /* CONFIG_KEY_NOTIFICATIONS */
4481
4482#ifdef CONFIG_SECURITY_NETWORK
4483/**
4484 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4485 * @sock: originating sock
4486 * @other: peer sock
4487 * @newsk: new sock
4488 *
4489 * Check permissions before establishing a Unix domain stream connection
4490 * between @sock and @other.
4491 *
4492 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4493 * Linux provides an alternative to the conventional file name space for Unix
4494 * domain sockets.  Whereas binding and connecting to sockets in the file name
4495 * space is mediated by the typical file permissions (and caught by the mknod
4496 * and permission hooks in inode_security_ops), binding and connecting to
4497 * sockets in the abstract name space is completely unmediated.  Sufficient
4498 * control of Unix domain sockets in the abstract name space isn't possible
4499 * using only the socket layer hooks, since we need to know the actual target
4500 * socket, which is not looked up until we are inside the af_unix code.
4501 *
4502 * Return: Returns 0 if permission is granted.
4503 */
4504int security_unix_stream_connect(struct sock *sock, struct sock *other,
4505				 struct sock *newsk)
4506{
4507	return call_int_hook(unix_stream_connect, sock, other, newsk);
4508}
4509EXPORT_SYMBOL(security_unix_stream_connect);
4510
4511/**
4512 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4513 * @sock: originating sock
4514 * @other: peer sock
4515 *
4516 * Check permissions before connecting or sending datagrams from @sock to
4517 * @other.
4518 *
4519 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4520 * Linux provides an alternative to the conventional file name space for Unix
4521 * domain sockets.  Whereas binding and connecting to sockets in the file name
4522 * space is mediated by the typical file permissions (and caught by the mknod
4523 * and permission hooks in inode_security_ops), binding and connecting to
4524 * sockets in the abstract name space is completely unmediated.  Sufficient
4525 * control of Unix domain sockets in the abstract name space isn't possible
4526 * using only the socket layer hooks, since we need to know the actual target
4527 * socket, which is not looked up until we are inside the af_unix code.
4528 *
4529 * Return: Returns 0 if permission is granted.
4530 */
4531int security_unix_may_send(struct socket *sock,  struct socket *other)
4532{
4533	return call_int_hook(unix_may_send, sock, other);
4534}
4535EXPORT_SYMBOL(security_unix_may_send);
4536
4537/**
4538 * security_socket_create() - Check if creating a new socket is allowed
4539 * @family: protocol family
4540 * @type: communications type
4541 * @protocol: requested protocol
4542 * @kern: set to 1 if a kernel socket is requested
4543 *
4544 * Check permissions prior to creating a new socket.
4545 *
4546 * Return: Returns 0 if permission is granted.
4547 */
4548int security_socket_create(int family, int type, int protocol, int kern)
4549{
4550	return call_int_hook(socket_create, family, type, protocol, kern);
4551}
4552
4553/**
4554 * security_socket_post_create() - Initialize a newly created socket
4555 * @sock: socket
4556 * @family: protocol family
4557 * @type: communications type
4558 * @protocol: requested protocol
4559 * @kern: set to 1 if a kernel socket is requested
4560 *
4561 * This hook allows a module to update or allocate a per-socket security
4562 * structure. Note that the security field was not added directly to the socket
4563 * structure, but rather, the socket security information is stored in the
4564 * associated inode.  Typically, the inode alloc_security hook will allocate
4565 * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4566 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4567 * information that wasn't available when the inode was allocated.
4568 *
4569 * Return: Returns 0 if permission is granted.
4570 */
4571int security_socket_post_create(struct socket *sock, int family,
4572				int type, int protocol, int kern)
4573{
4574	return call_int_hook(socket_post_create, sock, family, type,
4575			     protocol, kern);
4576}
4577
4578/**
4579 * security_socket_socketpair() - Check if creating a socketpair is allowed
4580 * @socka: first socket
4581 * @sockb: second socket
4582 *
4583 * Check permissions before creating a fresh pair of sockets.
4584 *
4585 * Return: Returns 0 if permission is granted and the connection was
4586 *         established.
4587 */
4588int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4589{
4590	return call_int_hook(socket_socketpair, socka, sockb);
4591}
4592EXPORT_SYMBOL(security_socket_socketpair);
4593
4594/**
4595 * security_socket_bind() - Check if a socket bind operation is allowed
4596 * @sock: socket
4597 * @address: requested bind address
4598 * @addrlen: length of address
4599 *
4600 * Check permission before socket protocol layer bind operation is performed
4601 * and the socket @sock is bound to the address specified in the @address
4602 * parameter.
4603 *
4604 * Return: Returns 0 if permission is granted.
4605 */
4606int security_socket_bind(struct socket *sock,
4607			 struct sockaddr *address, int addrlen)
4608{
4609	return call_int_hook(socket_bind, sock, address, addrlen);
4610}
4611
4612/**
4613 * security_socket_connect() - Check if a socket connect operation is allowed
4614 * @sock: socket
4615 * @address: address of remote connection point
4616 * @addrlen: length of address
4617 *
4618 * Check permission before socket protocol layer connect operation attempts to
4619 * connect socket @sock to a remote address, @address.
4620 *
4621 * Return: Returns 0 if permission is granted.
4622 */
4623int security_socket_connect(struct socket *sock,
4624			    struct sockaddr *address, int addrlen)
4625{
4626	return call_int_hook(socket_connect, sock, address, addrlen);
4627}
4628
4629/**
4630 * security_socket_listen() - Check if a socket is allowed to listen
4631 * @sock: socket
4632 * @backlog: connection queue size
4633 *
4634 * Check permission before socket protocol layer listen operation.
4635 *
4636 * Return: Returns 0 if permission is granted.
4637 */
4638int security_socket_listen(struct socket *sock, int backlog)
4639{
4640	return call_int_hook(socket_listen, sock, backlog);
4641}
4642
4643/**
4644 * security_socket_accept() - Check if a socket is allowed to accept connections
4645 * @sock: listening socket
4646 * @newsock: newly creation connection socket
4647 *
4648 * Check permission before accepting a new connection.  Note that the new
4649 * socket, @newsock, has been created and some information copied to it, but
4650 * the accept operation has not actually been performed.
4651 *
4652 * Return: Returns 0 if permission is granted.
4653 */
4654int security_socket_accept(struct socket *sock, struct socket *newsock)
4655{
4656	return call_int_hook(socket_accept, sock, newsock);
4657}
4658
4659/**
4660 * security_socket_sendmsg() - Check if sending a message is allowed
4661 * @sock: sending socket
4662 * @msg: message to send
4663 * @size: size of message
4664 *
4665 * Check permission before transmitting a message to another socket.
4666 *
4667 * Return: Returns 0 if permission is granted.
4668 */
4669int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4670{
4671	return call_int_hook(socket_sendmsg, sock, msg, size);
4672}
4673
4674/**
4675 * security_socket_recvmsg() - Check if receiving a message is allowed
4676 * @sock: receiving socket
4677 * @msg: message to receive
4678 * @size: size of message
4679 * @flags: operational flags
4680 *
4681 * Check permission before receiving a message from a socket.
4682 *
4683 * Return: Returns 0 if permission is granted.
4684 */
4685int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4686			    int size, int flags)
4687{
4688	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4689}
4690
4691/**
4692 * security_socket_getsockname() - Check if reading the socket addr is allowed
4693 * @sock: socket
4694 *
4695 * Check permission before reading the local address (name) of the socket
4696 * object.
4697 *
4698 * Return: Returns 0 if permission is granted.
4699 */
4700int security_socket_getsockname(struct socket *sock)
4701{
4702	return call_int_hook(socket_getsockname, sock);
4703}
4704
4705/**
4706 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4707 * @sock: socket
4708 *
4709 * Check permission before the remote address (name) of a socket object.
4710 *
4711 * Return: Returns 0 if permission is granted.
4712 */
4713int security_socket_getpeername(struct socket *sock)
4714{
4715	return call_int_hook(socket_getpeername, sock);
4716}
4717
4718/**
4719 * security_socket_getsockopt() - Check if reading a socket option is allowed
4720 * @sock: socket
4721 * @level: option's protocol level
4722 * @optname: option name
4723 *
4724 * Check permissions before retrieving the options associated with socket
4725 * @sock.
4726 *
4727 * Return: Returns 0 if permission is granted.
4728 */
4729int security_socket_getsockopt(struct socket *sock, int level, int optname)
4730{
4731	return call_int_hook(socket_getsockopt, sock, level, optname);
4732}
4733
4734/**
4735 * security_socket_setsockopt() - Check if setting a socket option is allowed
4736 * @sock: socket
4737 * @level: option's protocol level
4738 * @optname: option name
4739 *
4740 * Check permissions before setting the options associated with socket @sock.
4741 *
4742 * Return: Returns 0 if permission is granted.
4743 */
4744int security_socket_setsockopt(struct socket *sock, int level, int optname)
4745{
4746	return call_int_hook(socket_setsockopt, sock, level, optname);
4747}
4748
4749/**
4750 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4751 * @sock: socket
4752 * @how: flag indicating how sends and receives are handled
4753 *
4754 * Checks permission before all or part of a connection on the socket @sock is
4755 * shut down.
4756 *
4757 * Return: Returns 0 if permission is granted.
4758 */
4759int security_socket_shutdown(struct socket *sock, int how)
4760{
4761	return call_int_hook(socket_shutdown, sock, how);
4762}
4763
4764/**
4765 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4766 * @sk: destination sock
4767 * @skb: incoming packet
4768 *
4769 * Check permissions on incoming network packets.  This hook is distinct from
4770 * Netfilter's IP input hooks since it is the first time that the incoming
4771 * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4772 * sleep inside this hook because some callers hold spinlocks.
4773 *
4774 * Return: Returns 0 if permission is granted.
4775 */
4776int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4777{
4778	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4779}
4780EXPORT_SYMBOL(security_sock_rcv_skb);
4781
4782/**
4783 * security_socket_getpeersec_stream() - Get the remote peer label
4784 * @sock: socket
4785 * @optval: destination buffer
4786 * @optlen: size of peer label copied into the buffer
4787 * @len: maximum size of the destination buffer
4788 *
4789 * This hook allows the security module to provide peer socket security state
4790 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4791 * For tcp sockets this can be meaningful if the socket is associated with an
4792 * ipsec SA.
4793 *
4794 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4795 *         values.
4796 */
4797int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4798				      sockptr_t optlen, unsigned int len)
4799{
4800	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4801			     len);
4802}
4803
4804/**
4805 * security_socket_getpeersec_dgram() - Get the remote peer label
4806 * @sock: socket
4807 * @skb: datagram packet
4808 * @secid: remote peer label secid
4809 *
4810 * This hook allows the security module to provide peer socket security state
4811 * for udp sockets on a per-packet basis to userspace via getsockopt
4812 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4813 * option via getsockopt. It can then retrieve the security state returned by
4814 * this hook for a packet via the SCM_SECURITY ancillary message type.
4815 *
4816 * Return: Returns 0 on success, error on failure.
4817 */
4818int security_socket_getpeersec_dgram(struct socket *sock,
4819				     struct sk_buff *skb, u32 *secid)
4820{
4821	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4822}
4823EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4824
4825/**
4826 * lsm_sock_alloc - allocate a composite sock blob
4827 * @sock: the sock that needs a blob
4828 * @gfp: allocation mode
4829 *
4830 * Allocate the sock blob for all the modules
4831 *
4832 * Returns 0, or -ENOMEM if memory can't be allocated.
4833 */
4834static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4835{
4836	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4837}
4838
4839/**
4840 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4841 * @sk: sock
4842 * @family: protocol family
4843 * @priority: gfp flags
4844 *
4845 * Allocate and attach a security structure to the sk->sk_security field, which
4846 * is used to copy security attributes between local stream sockets.
4847 *
4848 * Return: Returns 0 on success, error on failure.
4849 */
4850int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4851{
4852	int rc = lsm_sock_alloc(sk, priority);
4853
4854	if (unlikely(rc))
4855		return rc;
4856	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4857	if (unlikely(rc))
4858		security_sk_free(sk);
4859	return rc;
4860}
4861
4862/**
4863 * security_sk_free() - Free the sock's LSM blob
4864 * @sk: sock
4865 *
4866 * Deallocate security structure.
4867 */
4868void security_sk_free(struct sock *sk)
4869{
4870	call_void_hook(sk_free_security, sk);
4871	kfree(sk->sk_security);
4872	sk->sk_security = NULL;
4873}
4874
4875/**
4876 * security_sk_clone() - Clone a sock's LSM state
4877 * @sk: original sock
4878 * @newsk: target sock
4879 *
4880 * Clone/copy security structure.
4881 */
4882void security_sk_clone(const struct sock *sk, struct sock *newsk)
4883{
4884	call_void_hook(sk_clone_security, sk, newsk);
4885}
4886EXPORT_SYMBOL(security_sk_clone);
4887
4888/**
4889 * security_sk_classify_flow() - Set a flow's secid based on socket
4890 * @sk: original socket
4891 * @flic: target flow
4892 *
4893 * Set the target flow's secid to socket's secid.
4894 */
4895void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4896{
4897	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4898}
4899EXPORT_SYMBOL(security_sk_classify_flow);
4900
4901/**
4902 * security_req_classify_flow() - Set a flow's secid based on request_sock
4903 * @req: request_sock
4904 * @flic: target flow
4905 *
4906 * Sets @flic's secid to @req's secid.
4907 */
4908void security_req_classify_flow(const struct request_sock *req,
4909				struct flowi_common *flic)
4910{
4911	call_void_hook(req_classify_flow, req, flic);
4912}
4913EXPORT_SYMBOL(security_req_classify_flow);
4914
4915/**
4916 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4917 * @sk: sock being grafted
4918 * @parent: target parent socket
4919 *
4920 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4921 * LSM state from @parent.
4922 */
4923void security_sock_graft(struct sock *sk, struct socket *parent)
4924{
4925	call_void_hook(sock_graft, sk, parent);
4926}
4927EXPORT_SYMBOL(security_sock_graft);
4928
4929/**
4930 * security_inet_conn_request() - Set request_sock state using incoming connect
4931 * @sk: parent listening sock
4932 * @skb: incoming connection
4933 * @req: new request_sock
4934 *
4935 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4936 *
4937 * Return: Returns 0 if permission is granted.
4938 */
4939int security_inet_conn_request(const struct sock *sk,
4940			       struct sk_buff *skb, struct request_sock *req)
4941{
4942	return call_int_hook(inet_conn_request, sk, skb, req);
4943}
4944EXPORT_SYMBOL(security_inet_conn_request);
4945
4946/**
4947 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4948 * @newsk: new sock
4949 * @req: connection request_sock
4950 *
4951 * Set that LSM state of @sock using the LSM state from @req.
4952 */
4953void security_inet_csk_clone(struct sock *newsk,
4954			     const struct request_sock *req)
4955{
4956	call_void_hook(inet_csk_clone, newsk, req);
4957}
4958
4959/**
4960 * security_inet_conn_established() - Update sock's LSM state with connection
4961 * @sk: sock
4962 * @skb: connection packet
4963 *
4964 * Update @sock's LSM state to represent a new connection from @skb.
4965 */
4966void security_inet_conn_established(struct sock *sk,
4967				    struct sk_buff *skb)
4968{
4969	call_void_hook(inet_conn_established, sk, skb);
4970}
4971EXPORT_SYMBOL(security_inet_conn_established);
4972
4973/**
4974 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4975 * @secid: new secmark value
4976 *
4977 * Check if the process should be allowed to relabel packets to @secid.
4978 *
4979 * Return: Returns 0 if permission is granted.
4980 */
4981int security_secmark_relabel_packet(u32 secid)
4982{
4983	return call_int_hook(secmark_relabel_packet, secid);
4984}
4985EXPORT_SYMBOL(security_secmark_relabel_packet);
4986
4987/**
4988 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4989 *
4990 * Tells the LSM to increment the number of secmark labeling rules loaded.
4991 */
4992void security_secmark_refcount_inc(void)
4993{
4994	call_void_hook(secmark_refcount_inc);
4995}
4996EXPORT_SYMBOL(security_secmark_refcount_inc);
4997
4998/**
4999 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
5000 *
5001 * Tells the LSM to decrement the number of secmark labeling rules loaded.
5002 */
5003void security_secmark_refcount_dec(void)
5004{
5005	call_void_hook(secmark_refcount_dec);
5006}
5007EXPORT_SYMBOL(security_secmark_refcount_dec);
5008
5009/**
5010 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
5011 * @security: pointer to the LSM blob
5012 *
5013 * This hook allows a module to allocate a security structure for a TUN	device,
5014 * returning the pointer in @security.
5015 *
5016 * Return: Returns a zero on success, negative values on failure.
5017 */
5018int security_tun_dev_alloc_security(void **security)
5019{
5020	int rc;
5021
5022	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
5023	if (rc)
5024		return rc;
5025
5026	rc = call_int_hook(tun_dev_alloc_security, *security);
5027	if (rc) {
5028		kfree(*security);
5029		*security = NULL;
5030	}
5031	return rc;
5032}
5033EXPORT_SYMBOL(security_tun_dev_alloc_security);
5034
5035/**
5036 * security_tun_dev_free_security() - Free a TUN device LSM blob
5037 * @security: LSM blob
5038 *
5039 * This hook allows a module to free the security structure for a TUN device.
5040 */
5041void security_tun_dev_free_security(void *security)
5042{
5043	kfree(security);
5044}
5045EXPORT_SYMBOL(security_tun_dev_free_security);
5046
5047/**
5048 * security_tun_dev_create() - Check if creating a TUN device is allowed
5049 *
5050 * Check permissions prior to creating a new TUN device.
5051 *
5052 * Return: Returns 0 if permission is granted.
5053 */
5054int security_tun_dev_create(void)
5055{
5056	return call_int_hook(tun_dev_create);
5057}
5058EXPORT_SYMBOL(security_tun_dev_create);
5059
5060/**
5061 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5062 * @security: TUN device LSM blob
5063 *
5064 * Check permissions prior to attaching to a TUN device queue.
5065 *
5066 * Return: Returns 0 if permission is granted.
5067 */
5068int security_tun_dev_attach_queue(void *security)
5069{
5070	return call_int_hook(tun_dev_attach_queue, security);
5071}
5072EXPORT_SYMBOL(security_tun_dev_attach_queue);
5073
5074/**
5075 * security_tun_dev_attach() - Update TUN device LSM state on attach
5076 * @sk: associated sock
5077 * @security: TUN device LSM blob
5078 *
5079 * This hook can be used by the module to update any security state associated
5080 * with the TUN device's sock structure.
5081 *
5082 * Return: Returns 0 if permission is granted.
5083 */
5084int security_tun_dev_attach(struct sock *sk, void *security)
5085{
5086	return call_int_hook(tun_dev_attach, sk, security);
5087}
5088EXPORT_SYMBOL(security_tun_dev_attach);
5089
5090/**
5091 * security_tun_dev_open() - Update TUN device LSM state on open
5092 * @security: TUN device LSM blob
5093 *
5094 * This hook can be used by the module to update any security state associated
5095 * with the TUN device's security structure.
5096 *
5097 * Return: Returns 0 if permission is granted.
5098 */
5099int security_tun_dev_open(void *security)
5100{
5101	return call_int_hook(tun_dev_open, security);
5102}
5103EXPORT_SYMBOL(security_tun_dev_open);
5104
5105/**
5106 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5107 * @asoc: SCTP association
5108 * @skb: packet requesting the association
5109 *
5110 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5111 *
5112 * Return: Returns 0 on success, error on failure.
5113 */
5114int security_sctp_assoc_request(struct sctp_association *asoc,
5115				struct sk_buff *skb)
5116{
5117	return call_int_hook(sctp_assoc_request, asoc, skb);
5118}
5119EXPORT_SYMBOL(security_sctp_assoc_request);
5120
5121/**
5122 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5123 * @sk: socket
5124 * @optname: SCTP option to validate
5125 * @address: list of IP addresses to validate
5126 * @addrlen: length of the address list
5127 *
5128 * Validiate permissions required for each address associated with sock	@sk.
5129 * Depending on @optname, the addresses will be treated as either a connect or
5130 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5131 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5132 *
5133 * Return: Returns 0 on success, error on failure.
5134 */
5135int security_sctp_bind_connect(struct sock *sk, int optname,
5136			       struct sockaddr *address, int addrlen)
5137{
5138	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5139}
5140EXPORT_SYMBOL(security_sctp_bind_connect);
5141
5142/**
5143 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5144 * @asoc: SCTP association
5145 * @sk: original sock
5146 * @newsk: target sock
5147 *
5148 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5149 * socket) or when a socket is 'peeled off' e.g userspace calls
5150 * sctp_peeloff(3).
5151 */
5152void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5153			    struct sock *newsk)
5154{
5155	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5156}
5157EXPORT_SYMBOL(security_sctp_sk_clone);
5158
5159/**
5160 * security_sctp_assoc_established() - Update LSM state when assoc established
5161 * @asoc: SCTP association
5162 * @skb: packet establishing the association
5163 *
5164 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5165 * security module.
5166 *
5167 * Return: Returns 0 if permission is granted.
5168 */
5169int security_sctp_assoc_established(struct sctp_association *asoc,
5170				    struct sk_buff *skb)
5171{
5172	return call_int_hook(sctp_assoc_established, asoc, skb);
5173}
5174EXPORT_SYMBOL(security_sctp_assoc_established);
5175
5176/**
5177 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5178 * @sk: the owning MPTCP socket
5179 * @ssk: the new subflow
5180 *
5181 * Update the labeling for the given MPTCP subflow, to match the one of the
5182 * owning MPTCP socket. This hook has to be called after the socket creation and
5183 * initialization via the security_socket_create() and
5184 * security_socket_post_create() LSM hooks.
5185 *
5186 * Return: Returns 0 on success or a negative error code on failure.
5187 */
5188int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5189{
5190	return call_int_hook(mptcp_add_subflow, sk, ssk);
5191}
5192
5193#endif	/* CONFIG_SECURITY_NETWORK */
5194
5195#ifdef CONFIG_SECURITY_INFINIBAND
5196/**
5197 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5198 * @sec: LSM blob
5199 * @subnet_prefix: subnet prefix of the port
5200 * @pkey: IB pkey
5201 *
5202 * Check permission to access a pkey when modifying a QP.
5203 *
5204 * Return: Returns 0 if permission is granted.
5205 */
5206int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5207{
5208	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5209}
5210EXPORT_SYMBOL(security_ib_pkey_access);
5211
5212/**
5213 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5214 * @sec: LSM blob
5215 * @dev_name: IB device name
5216 * @port_num: port number
5217 *
5218 * Check permissions to send and receive SMPs on a end port.
5219 *
5220 * Return: Returns 0 if permission is granted.
5221 */
5222int security_ib_endport_manage_subnet(void *sec,
5223				      const char *dev_name, u8 port_num)
5224{
5225	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5226}
5227EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5228
5229/**
5230 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5231 * @sec: LSM blob
5232 *
5233 * Allocate a security structure for Infiniband objects.
5234 *
5235 * Return: Returns 0 on success, non-zero on failure.
5236 */
5237int security_ib_alloc_security(void **sec)
5238{
5239	int rc;
5240
5241	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5242	if (rc)
5243		return rc;
5244
5245	rc = call_int_hook(ib_alloc_security, *sec);
5246	if (rc) {
5247		kfree(*sec);
5248		*sec = NULL;
5249	}
5250	return rc;
5251}
5252EXPORT_SYMBOL(security_ib_alloc_security);
5253
5254/**
5255 * security_ib_free_security() - Free an Infiniband LSM blob
5256 * @sec: LSM blob
5257 *
5258 * Deallocate an Infiniband security structure.
5259 */
5260void security_ib_free_security(void *sec)
5261{
5262	kfree(sec);
5263}
5264EXPORT_SYMBOL(security_ib_free_security);
5265#endif	/* CONFIG_SECURITY_INFINIBAND */
5266
5267#ifdef CONFIG_SECURITY_NETWORK_XFRM
5268/**
5269 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5270 * @ctxp: xfrm security context being added to the SPD
5271 * @sec_ctx: security label provided by userspace
5272 * @gfp: gfp flags
5273 *
5274 * Allocate a security structure to the xp->security field; the security field
5275 * is initialized to NULL when the xfrm_policy is allocated.
5276 *
5277 * Return:  Return 0 if operation was successful.
5278 */
5279int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5280			       struct xfrm_user_sec_ctx *sec_ctx,
5281			       gfp_t gfp)
5282{
5283	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5284}
5285EXPORT_SYMBOL(security_xfrm_policy_alloc);
5286
5287/**
5288 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5289 * @old_ctx: xfrm security context
5290 * @new_ctxp: target xfrm security context
5291 *
5292 * Allocate a security structure in new_ctxp that contains the information from
5293 * the old_ctx structure.
5294 *
5295 * Return: Return 0 if operation was successful.
5296 */
5297int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5298			       struct xfrm_sec_ctx **new_ctxp)
5299{
5300	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5301}
5302
5303/**
5304 * security_xfrm_policy_free() - Free a xfrm security context
5305 * @ctx: xfrm security context
5306 *
5307 * Free LSM resources associated with @ctx.
5308 */
5309void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5310{
5311	call_void_hook(xfrm_policy_free_security, ctx);
5312}
5313EXPORT_SYMBOL(security_xfrm_policy_free);
5314
5315/**
5316 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5317 * @ctx: xfrm security context
5318 *
5319 * Authorize deletion of a SPD entry.
5320 *
5321 * Return: Returns 0 if permission is granted.
5322 */
5323int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5324{
5325	return call_int_hook(xfrm_policy_delete_security, ctx);
5326}
5327
5328/**
5329 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5330 * @x: xfrm state being added to the SAD
5331 * @sec_ctx: security label provided by userspace
5332 *
5333 * Allocate a security structure to the @x->security field; the security field
5334 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5335 * correspond to @sec_ctx.
5336 *
5337 * Return: Return 0 if operation was successful.
5338 */
5339int security_xfrm_state_alloc(struct xfrm_state *x,
5340			      struct xfrm_user_sec_ctx *sec_ctx)
5341{
5342	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5343}
5344EXPORT_SYMBOL(security_xfrm_state_alloc);
5345
5346/**
5347 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5348 * @x: xfrm state being added to the SAD
5349 * @polsec: associated policy's security context
5350 * @secid: secid from the flow
5351 *
5352 * Allocate a security structure to the x->security field; the security field
5353 * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5354 * correspond to secid.
5355 *
5356 * Return: Returns 0 if operation was successful.
5357 */
5358int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5359				      struct xfrm_sec_ctx *polsec, u32 secid)
5360{
5361	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5362}
5363
5364/**
5365 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5366 * @x: xfrm state
5367 *
5368 * Authorize deletion of x->security.
5369 *
5370 * Return: Returns 0 if permission is granted.
5371 */
5372int security_xfrm_state_delete(struct xfrm_state *x)
5373{
5374	return call_int_hook(xfrm_state_delete_security, x);
5375}
5376EXPORT_SYMBOL(security_xfrm_state_delete);
5377
5378/**
5379 * security_xfrm_state_free() - Free a xfrm state
5380 * @x: xfrm state
5381 *
5382 * Deallocate x->security.
5383 */
5384void security_xfrm_state_free(struct xfrm_state *x)
5385{
5386	call_void_hook(xfrm_state_free_security, x);
5387}
5388
5389/**
5390 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5391 * @ctx: target xfrm security context
5392 * @fl_secid: flow secid used to authorize access
5393 *
5394 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5395 * packet.  The hook is called when selecting either a per-socket policy or a
5396 * generic xfrm policy.
5397 *
5398 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5399 *         other errors.
5400 */
5401int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5402{
5403	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5404}
5405
5406/**
5407 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5408 * @x: xfrm state to match
5409 * @xp: xfrm policy to check for a match
5410 * @flic: flow to check for a match.
5411 *
5412 * Check @xp and @flic for a match with @x.
5413 *
5414 * Return: Returns 1 if there is a match.
5415 */
5416int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5417				       struct xfrm_policy *xp,
5418				       const struct flowi_common *flic)
5419{
5420	struct lsm_static_call *scall;
5421	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5422
5423	/*
5424	 * Since this function is expected to return 0 or 1, the judgment
5425	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5426	 * we can use the first LSM's judgment because currently only SELinux
5427	 * supplies this call.
5428	 *
5429	 * For speed optimization, we explicitly break the loop rather than
5430	 * using the macro
5431	 */
5432	lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5433		rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
 
5434		break;
5435	}
5436	return rc;
5437}
5438
5439/**
5440 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5441 * @skb: xfrm packet
5442 * @secid: secid
5443 *
5444 * Decode the packet in @skb and return the security label in @secid.
5445 *
5446 * Return: Return 0 if all xfrms used have the same secid.
5447 */
5448int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5449{
5450	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5451}
5452
5453void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5454{
5455	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5456			       0);
5457
5458	BUG_ON(rc);
5459}
5460EXPORT_SYMBOL(security_skb_classify_flow);
5461#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5462
5463#ifdef CONFIG_KEYS
5464/**
5465 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5466 * @key: key
5467 * @cred: credentials
5468 * @flags: allocation flags
5469 *
5470 * Permit allocation of a key and assign security data. Note that key does not
5471 * have a serial number assigned at this point.
5472 *
5473 * Return: Return 0 if permission is granted, -ve error otherwise.
5474 */
5475int security_key_alloc(struct key *key, const struct cred *cred,
5476		       unsigned long flags)
5477{
5478	int rc = lsm_key_alloc(key);
5479
5480	if (unlikely(rc))
5481		return rc;
5482	rc = call_int_hook(key_alloc, key, cred, flags);
5483	if (unlikely(rc))
5484		security_key_free(key);
5485	return rc;
5486}
5487
5488/**
5489 * security_key_free() - Free a kernel key LSM blob
5490 * @key: key
5491 *
5492 * Notification of destruction; free security data.
5493 */
5494void security_key_free(struct key *key)
5495{
5496	kfree(key->security);
5497	key->security = NULL;
5498}
5499
5500/**
5501 * security_key_permission() - Check if a kernel key operation is allowed
5502 * @key_ref: key reference
5503 * @cred: credentials of actor requesting access
5504 * @need_perm: requested permissions
5505 *
5506 * See whether a specific operational right is granted to a process on a key.
5507 *
5508 * Return: Return 0 if permission is granted, -ve error otherwise.
5509 */
5510int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5511			    enum key_need_perm need_perm)
5512{
5513	return call_int_hook(key_permission, key_ref, cred, need_perm);
5514}
5515
5516/**
5517 * security_key_getsecurity() - Get the key's security label
5518 * @key: key
5519 * @buffer: security label buffer
5520 *
5521 * Get a textual representation of the security context attached to a key for
5522 * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5523 * storage for the NUL-terminated string and the caller should free it.
5524 *
5525 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5526 *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5527 *         there is no security label assigned to the key.
5528 */
5529int security_key_getsecurity(struct key *key, char **buffer)
5530{
5531	*buffer = NULL;
5532	return call_int_hook(key_getsecurity, key, buffer);
5533}
5534
5535/**
5536 * security_key_post_create_or_update() - Notification of key create or update
5537 * @keyring: keyring to which the key is linked to
5538 * @key: created or updated key
5539 * @payload: data used to instantiate or update the key
5540 * @payload_len: length of payload
5541 * @flags: key flags
5542 * @create: flag indicating whether the key was created or updated
5543 *
5544 * Notify the caller of a key creation or update.
5545 */
5546void security_key_post_create_or_update(struct key *keyring, struct key *key,
5547					const void *payload, size_t payload_len,
5548					unsigned long flags, bool create)
5549{
5550	call_void_hook(key_post_create_or_update, keyring, key, payload,
5551		       payload_len, flags, create);
5552}
5553#endif	/* CONFIG_KEYS */
5554
5555#ifdef CONFIG_AUDIT
5556/**
5557 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5558 * @field: audit action
5559 * @op: rule operator
5560 * @rulestr: rule context
5561 * @lsmrule: receive buffer for audit rule struct
5562 * @gfp: GFP flag used for kmalloc
5563 *
5564 * Allocate and initialize an LSM audit rule structure.
5565 *
5566 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5567 *         an invalid rule.
5568 */
5569int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5570			     gfp_t gfp)
5571{
5572	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5573}
5574
5575/**
5576 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5577 * @krule: audit rule
5578 *
5579 * Specifies whether given @krule contains any fields related to the current
5580 * LSM.
5581 *
5582 * Return: Returns 1 in case of relation found, 0 otherwise.
5583 */
5584int security_audit_rule_known(struct audit_krule *krule)
5585{
5586	return call_int_hook(audit_rule_known, krule);
5587}
5588
5589/**
5590 * security_audit_rule_free() - Free an LSM audit rule struct
5591 * @lsmrule: audit rule struct
5592 *
5593 * Deallocate the LSM audit rule structure previously allocated by
5594 * audit_rule_init().
5595 */
5596void security_audit_rule_free(void *lsmrule)
5597{
5598	call_void_hook(audit_rule_free, lsmrule);
5599}
5600
5601/**
5602 * security_audit_rule_match() - Check if a label matches an audit rule
5603 * @prop: security label
5604 * @field: LSM audit field
5605 * @op: matching operator
5606 * @lsmrule: audit rule
5607 *
5608 * Determine if given @secid matches a rule previously approved by
5609 * security_audit_rule_known().
5610 *
5611 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5612 *         failure.
5613 */
5614int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5615			      void *lsmrule)
5616{
5617	return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5618}
5619#endif /* CONFIG_AUDIT */
5620
5621#ifdef CONFIG_BPF_SYSCALL
5622/**
5623 * security_bpf() - Check if the bpf syscall operation is allowed
5624 * @cmd: command
5625 * @attr: bpf attribute
5626 * @size: size
5627 *
5628 * Do a initial check for all bpf syscalls after the attribute is copied into
5629 * the kernel. The actual security module can implement their own rules to
5630 * check the specific cmd they need.
5631 *
5632 * Return: Returns 0 if permission is granted.
5633 */
5634int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5635{
5636	return call_int_hook(bpf, cmd, attr, size);
5637}
5638
5639/**
5640 * security_bpf_map() - Check if access to a bpf map is allowed
5641 * @map: bpf map
5642 * @fmode: mode
5643 *
5644 * Do a check when the kernel generates and returns a file descriptor for eBPF
5645 * maps.
5646 *
5647 * Return: Returns 0 if permission is granted.
5648 */
5649int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5650{
5651	return call_int_hook(bpf_map, map, fmode);
5652}
5653
5654/**
5655 * security_bpf_prog() - Check if access to a bpf program is allowed
5656 * @prog: bpf program
5657 *
5658 * Do a check when the kernel generates and returns a file descriptor for eBPF
5659 * programs.
5660 *
5661 * Return: Returns 0 if permission is granted.
5662 */
5663int security_bpf_prog(struct bpf_prog *prog)
5664{
5665	return call_int_hook(bpf_prog, prog);
5666}
5667
5668/**
5669 * security_bpf_map_create() - Check if BPF map creation is allowed
5670 * @map: BPF map object
5671 * @attr: BPF syscall attributes used to create BPF map
5672 * @token: BPF token used to grant user access
5673 *
5674 * Do a check when the kernel creates a new BPF map. This is also the
5675 * point where LSM blob is allocated for LSMs that need them.
5676 *
5677 * Return: Returns 0 on success, error on failure.
5678 */
5679int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5680			    struct bpf_token *token)
5681{
5682	return call_int_hook(bpf_map_create, map, attr, token);
5683}
5684
5685/**
5686 * security_bpf_prog_load() - Check if loading of BPF program is allowed
5687 * @prog: BPF program object
5688 * @attr: BPF syscall attributes used to create BPF program
5689 * @token: BPF token used to grant user access to BPF subsystem
5690 *
5691 * Perform an access control check when the kernel loads a BPF program and
5692 * allocates associated BPF program object. This hook is also responsible for
5693 * allocating any required LSM state for the BPF program.
5694 *
5695 * Return: Returns 0 on success, error on failure.
5696 */
5697int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5698			   struct bpf_token *token)
5699{
5700	return call_int_hook(bpf_prog_load, prog, attr, token);
5701}
5702
5703/**
5704 * security_bpf_token_create() - Check if creating of BPF token is allowed
5705 * @token: BPF token object
5706 * @attr: BPF syscall attributes used to create BPF token
5707 * @path: path pointing to BPF FS mount point from which BPF token is created
5708 *
5709 * Do a check when the kernel instantiates a new BPF token object from BPF FS
5710 * instance. This is also the point where LSM blob can be allocated for LSMs.
5711 *
5712 * Return: Returns 0 on success, error on failure.
5713 */
5714int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5715			      const struct path *path)
5716{
5717	return call_int_hook(bpf_token_create, token, attr, path);
5718}
5719
5720/**
5721 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5722 * requested BPF syscall command
5723 * @token: BPF token object
5724 * @cmd: BPF syscall command requested to be delegated by BPF token
5725 *
5726 * Do a check when the kernel decides whether provided BPF token should allow
5727 * delegation of requested BPF syscall command.
5728 *
5729 * Return: Returns 0 on success, error on failure.
5730 */
5731int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5732{
5733	return call_int_hook(bpf_token_cmd, token, cmd);
5734}
5735
5736/**
5737 * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5738 * requested BPF-related capability
5739 * @token: BPF token object
5740 * @cap: capabilities requested to be delegated by BPF token
5741 *
5742 * Do a check when the kernel decides whether provided BPF token should allow
5743 * delegation of requested BPF-related capabilities.
5744 *
5745 * Return: Returns 0 on success, error on failure.
5746 */
5747int security_bpf_token_capable(const struct bpf_token *token, int cap)
5748{
5749	return call_int_hook(bpf_token_capable, token, cap);
5750}
5751
5752/**
5753 * security_bpf_map_free() - Free a bpf map's LSM blob
5754 * @map: bpf map
5755 *
5756 * Clean up the security information stored inside bpf map.
5757 */
5758void security_bpf_map_free(struct bpf_map *map)
5759{
5760	call_void_hook(bpf_map_free, map);
5761}
5762
5763/**
5764 * security_bpf_prog_free() - Free a BPF program's LSM blob
5765 * @prog: BPF program struct
5766 *
5767 * Clean up the security information stored inside BPF program.
5768 */
5769void security_bpf_prog_free(struct bpf_prog *prog)
5770{
5771	call_void_hook(bpf_prog_free, prog);
5772}
5773
5774/**
5775 * security_bpf_token_free() - Free a BPF token's LSM blob
5776 * @token: BPF token struct
5777 *
5778 * Clean up the security information stored inside BPF token.
5779 */
5780void security_bpf_token_free(struct bpf_token *token)
5781{
5782	call_void_hook(bpf_token_free, token);
5783}
5784#endif /* CONFIG_BPF_SYSCALL */
5785
5786/**
5787 * security_locked_down() - Check if a kernel feature is allowed
5788 * @what: requested kernel feature
5789 *
5790 * Determine whether a kernel feature that potentially enables arbitrary code
5791 * execution in kernel space should be permitted.
5792 *
5793 * Return: Returns 0 if permission is granted.
5794 */
5795int security_locked_down(enum lockdown_reason what)
5796{
5797	return call_int_hook(locked_down, what);
5798}
5799EXPORT_SYMBOL(security_locked_down);
5800
5801/**
5802 * security_bdev_alloc() - Allocate a block device LSM blob
5803 * @bdev: block device
5804 *
5805 * Allocate and attach a security structure to @bdev->bd_security.  The
5806 * security field is initialized to NULL when the bdev structure is
5807 * allocated.
5808 *
5809 * Return: Return 0 if operation was successful.
5810 */
5811int security_bdev_alloc(struct block_device *bdev)
5812{
5813	int rc = 0;
5814
5815	rc = lsm_bdev_alloc(bdev);
5816	if (unlikely(rc))
5817		return rc;
5818
5819	rc = call_int_hook(bdev_alloc_security, bdev);
5820	if (unlikely(rc))
5821		security_bdev_free(bdev);
5822
5823	return rc;
5824}
5825EXPORT_SYMBOL(security_bdev_alloc);
5826
5827/**
5828 * security_bdev_free() - Free a block device's LSM blob
5829 * @bdev: block device
5830 *
5831 * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5832 */
5833void security_bdev_free(struct block_device *bdev)
5834{
5835	if (!bdev->bd_security)
5836		return;
5837
5838	call_void_hook(bdev_free_security, bdev);
5839
5840	kfree(bdev->bd_security);
5841	bdev->bd_security = NULL;
5842}
5843EXPORT_SYMBOL(security_bdev_free);
5844
5845/**
5846 * security_bdev_setintegrity() - Set the device's integrity data
5847 * @bdev: block device
5848 * @type: type of integrity, e.g. hash digest, signature, etc
5849 * @value: the integrity value
5850 * @size: size of the integrity value
5851 *
5852 * Register a verified integrity measurement of a bdev with LSMs.
5853 * LSMs should free the previously saved data if @value is NULL.
5854 * Please note that the new hook should be invoked every time the security
5855 * information is updated to keep these data current. For example, in dm-verity,
5856 * if the mapping table is reloaded and configured to use a different dm-verity
5857 * target with a new roothash and signing information, the previously stored
5858 * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5859 * hook to refresh these data and ensure they are up to date. This necessity
5860 * arises from the design of device-mapper, where a device-mapper device is
5861 * first created, and then targets are subsequently loaded into it. These
5862 * targets can be modified multiple times during the device's lifetime.
5863 * Therefore, while the LSM blob is allocated during the creation of the block
5864 * device, its actual contents are not initialized at this stage and can change
5865 * substantially over time. This includes alterations from data that the LSMs
5866 * 'trusts' to those they do not, making it essential to handle these changes
5867 * correctly. Failure to address this dynamic aspect could potentially allow
5868 * for bypassing LSM checks.
5869 *
5870 * Return: Returns 0 on success, negative values on failure.
5871 */
5872int security_bdev_setintegrity(struct block_device *bdev,
5873			       enum lsm_integrity_type type, const void *value,
5874			       size_t size)
5875{
5876	return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5877}
5878EXPORT_SYMBOL(security_bdev_setintegrity);
5879
5880#ifdef CONFIG_PERF_EVENTS
5881/**
5882 * security_perf_event_open() - Check if a perf event open is allowed
5883 * @attr: perf event attribute
5884 * @type: type of event
5885 *
5886 * Check whether the @type of perf_event_open syscall is allowed.
5887 *
5888 * Return: Returns 0 if permission is granted.
5889 */
5890int security_perf_event_open(struct perf_event_attr *attr, int type)
5891{
5892	return call_int_hook(perf_event_open, attr, type);
5893}
5894
5895/**
5896 * security_perf_event_alloc() - Allocate a perf event LSM blob
5897 * @event: perf event
5898 *
5899 * Allocate and save perf_event security info.
5900 *
5901 * Return: Returns 0 on success, error on failure.
5902 */
5903int security_perf_event_alloc(struct perf_event *event)
5904{
5905	int rc;
5906
5907	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5908			    GFP_KERNEL);
5909	if (rc)
5910		return rc;
5911
5912	rc = call_int_hook(perf_event_alloc, event);
5913	if (rc) {
5914		kfree(event->security);
5915		event->security = NULL;
5916	}
5917	return rc;
5918}
5919
5920/**
5921 * security_perf_event_free() - Free a perf event LSM blob
5922 * @event: perf event
5923 *
5924 * Release (free) perf_event security info.
5925 */
5926void security_perf_event_free(struct perf_event *event)
5927{
5928	kfree(event->security);
5929	event->security = NULL;
5930}
5931
5932/**
5933 * security_perf_event_read() - Check if reading a perf event label is allowed
5934 * @event: perf event
5935 *
5936 * Read perf_event security info if allowed.
5937 *
5938 * Return: Returns 0 if permission is granted.
5939 */
5940int security_perf_event_read(struct perf_event *event)
5941{
5942	return call_int_hook(perf_event_read, event);
5943}
5944
5945/**
5946 * security_perf_event_write() - Check if writing a perf event label is allowed
5947 * @event: perf event
5948 *
5949 * Write perf_event security info if allowed.
5950 *
5951 * Return: Returns 0 if permission is granted.
5952 */
5953int security_perf_event_write(struct perf_event *event)
5954{
5955	return call_int_hook(perf_event_write, event);
5956}
5957#endif /* CONFIG_PERF_EVENTS */
5958
5959#ifdef CONFIG_IO_URING
5960/**
5961 * security_uring_override_creds() - Check if overriding creds is allowed
5962 * @new: new credentials
5963 *
5964 * Check if the current task, executing an io_uring operation, is allowed to
5965 * override it's credentials with @new.
5966 *
5967 * Return: Returns 0 if permission is granted.
5968 */
5969int security_uring_override_creds(const struct cred *new)
5970{
5971	return call_int_hook(uring_override_creds, new);
5972}
5973
5974/**
5975 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5976 *
5977 * Check whether the current task is allowed to spawn a io_uring polling thread
5978 * (IORING_SETUP_SQPOLL).
5979 *
5980 * Return: Returns 0 if permission is granted.
5981 */
5982int security_uring_sqpoll(void)
5983{
5984	return call_int_hook(uring_sqpoll);
5985}
5986
5987/**
5988 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5989 * @ioucmd: command
5990 *
5991 * Check whether the file_operations uring_cmd is allowed to run.
5992 *
5993 * Return: Returns 0 if permission is granted.
5994 */
5995int security_uring_cmd(struct io_uring_cmd *ioucmd)
5996{
5997	return call_int_hook(uring_cmd, ioucmd);
5998}
5999#endif /* CONFIG_IO_URING */
6000
6001/**
6002 * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
6003 *
6004 * Tells the LSMs the initramfs has been unpacked into the rootfs.
6005 */
6006void security_initramfs_populated(void)
6007{
6008	call_void_hook(initramfs_populated);
6009}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
  10 */
  11
  12#define pr_fmt(fmt) "LSM: " fmt
  13
  14#include <linux/bpf.h>
  15#include <linux/capability.h>
  16#include <linux/dcache.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/kernel_read_file.h>
  21#include <linux/lsm_hooks.h>
  22#include <linux/fsnotify.h>
  23#include <linux/mman.h>
  24#include <linux/mount.h>
  25#include <linux/personality.h>
  26#include <linux/backing-dev.h>
  27#include <linux/string.h>
  28#include <linux/xattr.h>
  29#include <linux/msg.h>
  30#include <linux/overflow.h>
 
 
  31#include <net/flow.h>
 
  32
  33/* How many LSMs were built into the kernel? */
  34#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  35
  36/*
  37 * How many LSMs are built into the kernel as determined at
  38 * build time. Used to determine fixed array sizes.
  39 * The capability module is accounted for by CONFIG_SECURITY
  40 */
  41#define LSM_CONFIG_COUNT ( \
  42	(IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \
  43	(IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \
  44	(IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \
  45	(IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \
  46	(IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \
  47	(IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \
  48	(IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \
  49	(IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \
  50	(IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \
  51	(IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \
  52	(IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \
  53	(IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \
  54	(IS_ENABLED(CONFIG_EVM) ? 1 : 0))
  55
  56/*
  57 * These are descriptions of the reasons that can be passed to the
  58 * security_locked_down() LSM hook. Placing this array here allows
  59 * all security modules to use the same descriptions for auditing
  60 * purposes.
  61 */
  62const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
  63	[LOCKDOWN_NONE] = "none",
  64	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  65	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  66	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  67	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
  68	[LOCKDOWN_HIBERNATION] = "hibernation",
  69	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  70	[LOCKDOWN_IOPORT] = "raw io port access",
  71	[LOCKDOWN_MSR] = "raw MSR access",
  72	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  73	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
  74	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  75	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  76	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  77	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  78	[LOCKDOWN_DEBUGFS] = "debugfs access",
  79	[LOCKDOWN_XMON_WR] = "xmon write access",
  80	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
  81	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
  82	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
  83	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
  84	[LOCKDOWN_KCORE] = "/proc/kcore access",
  85	[LOCKDOWN_KPROBES] = "use of kprobes",
  86	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
  87	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
  88	[LOCKDOWN_PERF] = "unsafe use of perf",
  89	[LOCKDOWN_TRACEFS] = "use of tracefs",
  90	[LOCKDOWN_XMON_RW] = "xmon read and write access",
  91	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
  92	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  93};
  94
  95struct security_hook_heads security_hook_heads __ro_after_init;
  96static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  97
  98static struct kmem_cache *lsm_file_cache;
  99static struct kmem_cache *lsm_inode_cache;
 100
 101char *lsm_names;
 102static struct lsm_blob_sizes blob_sizes __ro_after_init;
 103
 104/* Boot-time LSM user choice */
 105static __initdata const char *chosen_lsm_order;
 106static __initdata const char *chosen_major_lsm;
 107
 108static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
 109
 110/* Ordered list of LSMs to initialize. */
 111static __initdata struct lsm_info **ordered_lsms;
 112static __initdata struct lsm_info *exclusive;
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114static __initdata bool debug;
 115#define init_debug(...)						\
 116	do {							\
 117		if (debug)					\
 118			pr_info(__VA_ARGS__);			\
 119	} while (0)
 120
 121static bool __init is_enabled(struct lsm_info *lsm)
 122{
 123	if (!lsm->enabled)
 124		return false;
 125
 126	return *lsm->enabled;
 127}
 128
 129/* Mark an LSM's enabled flag. */
 130static int lsm_enabled_true __initdata = 1;
 131static int lsm_enabled_false __initdata = 0;
 132static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 133{
 134	/*
 135	 * When an LSM hasn't configured an enable variable, we can use
 136	 * a hard-coded location for storing the default enabled state.
 137	 */
 138	if (!lsm->enabled) {
 139		if (enabled)
 140			lsm->enabled = &lsm_enabled_true;
 141		else
 142			lsm->enabled = &lsm_enabled_false;
 143	} else if (lsm->enabled == &lsm_enabled_true) {
 144		if (!enabled)
 145			lsm->enabled = &lsm_enabled_false;
 146	} else if (lsm->enabled == &lsm_enabled_false) {
 147		if (enabled)
 148			lsm->enabled = &lsm_enabled_true;
 149	} else {
 150		*lsm->enabled = enabled;
 151	}
 152}
 153
 154/* Is an LSM already listed in the ordered LSMs list? */
 155static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 156{
 157	struct lsm_info **check;
 158
 159	for (check = ordered_lsms; *check; check++)
 160		if (*check == lsm)
 161			return true;
 162
 163	return false;
 164}
 165
 166/* Append an LSM to the list of ordered LSMs to initialize. */
 167static int last_lsm __initdata;
 168static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 169{
 170	/* Ignore duplicate selections. */
 171	if (exists_ordered_lsm(lsm))
 172		return;
 173
 174	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 175		return;
 176
 177	/* Enable this LSM, if it is not already set. */
 178	if (!lsm->enabled)
 179		lsm->enabled = &lsm_enabled_true;
 180	ordered_lsms[last_lsm++] = lsm;
 181
 182	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
 183		   is_enabled(lsm) ? "enabled" : "disabled");
 184}
 185
 186/* Is an LSM allowed to be initialized? */
 187static bool __init lsm_allowed(struct lsm_info *lsm)
 188{
 189	/* Skip if the LSM is disabled. */
 190	if (!is_enabled(lsm))
 191		return false;
 192
 193	/* Not allowed if another exclusive LSM already initialized. */
 194	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 195		init_debug("exclusive disabled: %s\n", lsm->name);
 196		return false;
 197	}
 198
 199	return true;
 200}
 201
 202static void __init lsm_set_blob_size(int *need, int *lbs)
 203{
 204	int offset;
 205
 206	if (*need <= 0)
 207		return;
 208
 209	offset = ALIGN(*lbs, sizeof(void *));
 210	*lbs = offset + *need;
 211	*need = offset;
 212}
 213
 214static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 215{
 216	if (!needed)
 217		return;
 218
 219	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 220	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 
 221	/*
 222	 * The inode blob gets an rcu_head in addition to
 223	 * what the modules might need.
 224	 */
 225	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 226		blob_sizes.lbs_inode = sizeof(struct rcu_head);
 227	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 228	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 
 229	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 
 
 230	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
 231	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 
 232	lsm_set_blob_size(&needed->lbs_xattr_count,
 233			  &blob_sizes.lbs_xattr_count);
 
 234}
 235
 236/* Prepare LSM for initialization. */
 237static void __init prepare_lsm(struct lsm_info *lsm)
 238{
 239	int enabled = lsm_allowed(lsm);
 240
 241	/* Record enablement (to handle any following exclusive LSMs). */
 242	set_enabled(lsm, enabled);
 243
 244	/* If enabled, do pre-initialization work. */
 245	if (enabled) {
 246		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 247			exclusive = lsm;
 248			init_debug("exclusive chosen:   %s\n", lsm->name);
 249		}
 250
 251		lsm_set_blob_sizes(lsm->blobs);
 252	}
 253}
 254
 255/* Initialize a given LSM, if it is enabled. */
 256static void __init initialize_lsm(struct lsm_info *lsm)
 257{
 258	if (is_enabled(lsm)) {
 259		int ret;
 260
 261		init_debug("initializing %s\n", lsm->name);
 262		ret = lsm->init();
 263		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 264	}
 265}
 266
 267/*
 268 * Current index to use while initializing the lsm id list.
 269 */
 270u32 lsm_active_cnt __ro_after_init;
 271const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT];
 272
 273/* Populate ordered LSMs list from comma-separated LSM name list. */
 274static void __init ordered_lsm_parse(const char *order, const char *origin)
 275{
 276	struct lsm_info *lsm;
 277	char *sep, *name, *next;
 278
 279	/* LSM_ORDER_FIRST is always first. */
 280	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 281		if (lsm->order == LSM_ORDER_FIRST)
 282			append_ordered_lsm(lsm, "  first");
 283	}
 284
 285	/* Process "security=", if given. */
 286	if (chosen_major_lsm) {
 287		struct lsm_info *major;
 288
 289		/*
 290		 * To match the original "security=" behavior, this
 291		 * explicitly does NOT fallback to another Legacy Major
 292		 * if the selected one was separately disabled: disable
 293		 * all non-matching Legacy Major LSMs.
 294		 */
 295		for (major = __start_lsm_info; major < __end_lsm_info;
 296		     major++) {
 297			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 298			    strcmp(major->name, chosen_major_lsm) != 0) {
 299				set_enabled(major, false);
 300				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
 301					   chosen_major_lsm, major->name);
 302			}
 303		}
 304	}
 305
 306	sep = kstrdup(order, GFP_KERNEL);
 307	next = sep;
 308	/* Walk the list, looking for matching LSMs. */
 309	while ((name = strsep(&next, ",")) != NULL) {
 310		bool found = false;
 311
 312		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 313			if (strcmp(lsm->name, name) == 0) {
 314				if (lsm->order == LSM_ORDER_MUTABLE)
 315					append_ordered_lsm(lsm, origin);
 316				found = true;
 317			}
 318		}
 319
 320		if (!found)
 321			init_debug("%s ignored: %s (not built into kernel)\n",
 322				   origin, name);
 323	}
 324
 325	/* Process "security=", if given. */
 326	if (chosen_major_lsm) {
 327		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 328			if (exists_ordered_lsm(lsm))
 329				continue;
 330			if (strcmp(lsm->name, chosen_major_lsm) == 0)
 331				append_ordered_lsm(lsm, "security=");
 332		}
 333	}
 334
 335	/* LSM_ORDER_LAST is always last. */
 336	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 337		if (lsm->order == LSM_ORDER_LAST)
 338			append_ordered_lsm(lsm, "   last");
 339	}
 340
 341	/* Disable all LSMs not in the ordered list. */
 342	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 343		if (exists_ordered_lsm(lsm))
 344			continue;
 345		set_enabled(lsm, false);
 346		init_debug("%s skipped: %s (not in requested order)\n",
 347			   origin, lsm->name);
 348	}
 349
 350	kfree(sep);
 351}
 352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 353static void __init lsm_early_cred(struct cred *cred);
 354static void __init lsm_early_task(struct task_struct *task);
 355
 356static int lsm_append(const char *new, char **result);
 357
 358static void __init report_lsm_order(void)
 359{
 360	struct lsm_info **lsm, *early;
 361	int first = 0;
 362
 363	pr_info("initializing lsm=");
 364
 365	/* Report each enabled LSM name, comma separated. */
 366	for (early = __start_early_lsm_info;
 367	     early < __end_early_lsm_info; early++)
 368		if (is_enabled(early))
 369			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
 370	for (lsm = ordered_lsms; *lsm; lsm++)
 371		if (is_enabled(*lsm))
 372			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
 373
 374	pr_cont("\n");
 375}
 376
 377static void __init ordered_lsm_init(void)
 378{
 379	struct lsm_info **lsm;
 380
 381	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 382			       GFP_KERNEL);
 383
 384	if (chosen_lsm_order) {
 385		if (chosen_major_lsm) {
 386			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
 387				chosen_major_lsm, chosen_lsm_order);
 388			chosen_major_lsm = NULL;
 389		}
 390		ordered_lsm_parse(chosen_lsm_order, "cmdline");
 391	} else
 392		ordered_lsm_parse(builtin_lsm_order, "builtin");
 393
 394	for (lsm = ordered_lsms; *lsm; lsm++)
 395		prepare_lsm(*lsm);
 396
 397	report_lsm_order();
 398
 399	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
 400	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
 
 401	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
 402	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
 
 
 
 403	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
 
 404	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
 
 405	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
 
 406	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
 
 407
 408	/*
 409	 * Create any kmem_caches needed for blobs
 410	 */
 411	if (blob_sizes.lbs_file)
 412		lsm_file_cache = kmem_cache_create("lsm_file_cache",
 413						   blob_sizes.lbs_file, 0,
 414						   SLAB_PANIC, NULL);
 415	if (blob_sizes.lbs_inode)
 416		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 417						    blob_sizes.lbs_inode, 0,
 418						    SLAB_PANIC, NULL);
 419
 420	lsm_early_cred((struct cred *) current->cred);
 421	lsm_early_task(current);
 422	for (lsm = ordered_lsms; *lsm; lsm++)
 423		initialize_lsm(*lsm);
 424
 425	kfree(ordered_lsms);
 426}
 427
 428int __init early_security_init(void)
 429{
 430	struct lsm_info *lsm;
 431
 432#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 433	INIT_HLIST_HEAD(&security_hook_heads.NAME);
 434#include "linux/lsm_hook_defs.h"
 435#undef LSM_HOOK
 436
 437	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 438		if (!lsm->enabled)
 439			lsm->enabled = &lsm_enabled_true;
 440		prepare_lsm(lsm);
 441		initialize_lsm(lsm);
 442	}
 443
 444	return 0;
 445}
 446
 447/**
 448 * security_init - initializes the security framework
 449 *
 450 * This should be called early in the kernel initialization sequence.
 451 */
 452int __init security_init(void)
 453{
 454	struct lsm_info *lsm;
 455
 456	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
 457	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
 458	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
 459
 460	/*
 461	 * Append the names of the early LSM modules now that kmalloc() is
 462	 * available
 463	 */
 464	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 465		init_debug("  early started: %s (%s)\n", lsm->name,
 466			   is_enabled(lsm) ? "enabled" : "disabled");
 467		if (lsm->enabled)
 468			lsm_append(lsm->name, &lsm_names);
 469	}
 470
 471	/* Load LSMs in specified order. */
 472	ordered_lsm_init();
 473
 474	return 0;
 475}
 476
 477/* Save user chosen LSM */
 478static int __init choose_major_lsm(char *str)
 479{
 480	chosen_major_lsm = str;
 481	return 1;
 482}
 483__setup("security=", choose_major_lsm);
 484
 485/* Explicitly choose LSM initialization order. */
 486static int __init choose_lsm_order(char *str)
 487{
 488	chosen_lsm_order = str;
 489	return 1;
 490}
 491__setup("lsm=", choose_lsm_order);
 492
 493/* Enable LSM order debugging. */
 494static int __init enable_debug(char *str)
 495{
 496	debug = true;
 497	return 1;
 498}
 499__setup("lsm.debug", enable_debug);
 500
 501static bool match_last_lsm(const char *list, const char *lsm)
 502{
 503	const char *last;
 504
 505	if (WARN_ON(!list || !lsm))
 506		return false;
 507	last = strrchr(list, ',');
 508	if (last)
 509		/* Pass the comma, strcmp() will check for '\0' */
 510		last++;
 511	else
 512		last = list;
 513	return !strcmp(last, lsm);
 514}
 515
 516static int lsm_append(const char *new, char **result)
 517{
 518	char *cp;
 519
 520	if (*result == NULL) {
 521		*result = kstrdup(new, GFP_KERNEL);
 522		if (*result == NULL)
 523			return -ENOMEM;
 524	} else {
 525		/* Check if it is the last registered name */
 526		if (match_last_lsm(*result, new))
 527			return 0;
 528		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 529		if (cp == NULL)
 530			return -ENOMEM;
 531		kfree(*result);
 532		*result = cp;
 533	}
 534	return 0;
 535}
 536
 537/**
 538 * security_add_hooks - Add a modules hooks to the hook lists.
 539 * @hooks: the hooks to add
 540 * @count: the number of hooks to add
 541 * @lsmid: the identification information for the security module
 542 *
 543 * Each LSM has to register its hooks with the infrastructure.
 544 */
 545void __init security_add_hooks(struct security_hook_list *hooks, int count,
 546			       const struct lsm_id *lsmid)
 547{
 548	int i;
 549
 550	/*
 551	 * A security module may call security_add_hooks() more
 552	 * than once during initialization, and LSM initialization
 553	 * is serialized. Landlock is one such case.
 554	 * Look at the previous entry, if there is one, for duplication.
 555	 */
 556	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
 557		if (lsm_active_cnt >= LSM_CONFIG_COUNT)
 558			panic("%s Too many LSMs registered.\n", __func__);
 559		lsm_idlist[lsm_active_cnt++] = lsmid;
 560	}
 561
 562	for (i = 0; i < count; i++) {
 563		hooks[i].lsmid = lsmid;
 564		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 565	}
 566
 567	/*
 568	 * Don't try to append during early_security_init(), we'll come back
 569	 * and fix this up afterwards.
 570	 */
 571	if (slab_is_available()) {
 572		if (lsm_append(lsmid->name, &lsm_names) < 0)
 573			panic("%s - Cannot get early memory.\n", __func__);
 574	}
 575}
 576
 577int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 578{
 579	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 580					    event, data);
 581}
 582EXPORT_SYMBOL(call_blocking_lsm_notifier);
 583
 584int register_blocking_lsm_notifier(struct notifier_block *nb)
 585{
 586	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 587						nb);
 588}
 589EXPORT_SYMBOL(register_blocking_lsm_notifier);
 590
 591int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 592{
 593	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 594						  nb);
 595}
 596EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 597
 598/**
 599 * lsm_cred_alloc - allocate a composite cred blob
 600 * @cred: the cred that needs a blob
 
 601 * @gfp: allocation type
 602 *
 603 * Allocate the cred blob for all the modules
 604 *
 605 * Returns 0, or -ENOMEM if memory can't be allocated.
 606 */
 607static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 608{
 609	if (blob_sizes.lbs_cred == 0) {
 610		cred->security = NULL;
 611		return 0;
 612	}
 613
 614	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 615	if (cred->security == NULL)
 616		return -ENOMEM;
 617	return 0;
 618}
 619
 620/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621 * lsm_early_cred - during initialization allocate a composite cred blob
 622 * @cred: the cred that needs a blob
 623 *
 624 * Allocate the cred blob for all the modules
 625 */
 626static void __init lsm_early_cred(struct cred *cred)
 627{
 628	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 629
 630	if (rc)
 631		panic("%s: Early cred alloc failed.\n", __func__);
 632}
 633
 634/**
 635 * lsm_file_alloc - allocate a composite file blob
 636 * @file: the file that needs a blob
 637 *
 638 * Allocate the file blob for all the modules
 639 *
 640 * Returns 0, or -ENOMEM if memory can't be allocated.
 641 */
 642static int lsm_file_alloc(struct file *file)
 643{
 644	if (!lsm_file_cache) {
 645		file->f_security = NULL;
 646		return 0;
 647	}
 648
 649	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 650	if (file->f_security == NULL)
 651		return -ENOMEM;
 652	return 0;
 653}
 654
 655/**
 656 * lsm_inode_alloc - allocate a composite inode blob
 657 * @inode: the inode that needs a blob
 
 658 *
 659 * Allocate the inode blob for all the modules
 660 *
 661 * Returns 0, or -ENOMEM if memory can't be allocated.
 662 */
 663int lsm_inode_alloc(struct inode *inode)
 664{
 665	if (!lsm_inode_cache) {
 666		inode->i_security = NULL;
 667		return 0;
 668	}
 669
 670	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 671	if (inode->i_security == NULL)
 672		return -ENOMEM;
 673	return 0;
 674}
 675
 676/**
 677 * lsm_task_alloc - allocate a composite task blob
 678 * @task: the task that needs a blob
 679 *
 680 * Allocate the task blob for all the modules
 681 *
 682 * Returns 0, or -ENOMEM if memory can't be allocated.
 683 */
 684static int lsm_task_alloc(struct task_struct *task)
 685{
 686	if (blob_sizes.lbs_task == 0) {
 687		task->security = NULL;
 688		return 0;
 689	}
 690
 691	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 692	if (task->security == NULL)
 693		return -ENOMEM;
 694	return 0;
 695}
 696
 697/**
 698 * lsm_ipc_alloc - allocate a composite ipc blob
 699 * @kip: the ipc that needs a blob
 700 *
 701 * Allocate the ipc blob for all the modules
 702 *
 703 * Returns 0, or -ENOMEM if memory can't be allocated.
 704 */
 705static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 706{
 707	if (blob_sizes.lbs_ipc == 0) {
 708		kip->security = NULL;
 709		return 0;
 710	}
 711
 712	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 713	if (kip->security == NULL)
 714		return -ENOMEM;
 715	return 0;
 
 
 
 
 
 
 
 
 716}
 
 717
 718/**
 719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 720 * @mp: the msg_msg that needs a blob
 721 *
 722 * Allocate the ipc blob for all the modules
 723 *
 724 * Returns 0, or -ENOMEM if memory can't be allocated.
 725 */
 726static int lsm_msg_msg_alloc(struct msg_msg *mp)
 727{
 728	if (blob_sizes.lbs_msg_msg == 0) {
 729		mp->security = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730		return 0;
 731	}
 732
 733	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 734	if (mp->security == NULL)
 735		return -ENOMEM;
 
 736	return 0;
 737}
 738
 739/**
 740 * lsm_early_task - during initialization allocate a composite task blob
 741 * @task: the task that needs a blob
 742 *
 743 * Allocate the task blob for all the modules
 744 */
 745static void __init lsm_early_task(struct task_struct *task)
 746{
 747	int rc = lsm_task_alloc(task);
 748
 749	if (rc)
 750		panic("%s: Early task alloc failed.\n", __func__);
 751}
 752
 753/**
 754 * lsm_superblock_alloc - allocate a composite superblock blob
 755 * @sb: the superblock that needs a blob
 756 *
 757 * Allocate the superblock blob for all the modules
 758 *
 759 * Returns 0, or -ENOMEM if memory can't be allocated.
 760 */
 761static int lsm_superblock_alloc(struct super_block *sb)
 762{
 763	if (blob_sizes.lbs_superblock == 0) {
 764		sb->s_security = NULL;
 765		return 0;
 766	}
 767
 768	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
 769	if (sb->s_security == NULL)
 770		return -ENOMEM;
 771	return 0;
 772}
 773
 774/**
 775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
 776 * @uctx: a userspace LSM context to be filled
 777 * @uctx_len: available uctx size (input), used uctx size (output)
 778 * @val: the new LSM context value
 779 * @val_len: the size of the new LSM context value
 780 * @id: LSM id
 781 * @flags: LSM defined flags
 782 *
 783 * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
 784 * simply calculate the required size to output via @utc_len and return
 785 * success.
 786 *
 787 * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
 788 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
 789 */
 790int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
 791		      void *val, size_t val_len,
 792		      u64 id, u64 flags)
 793{
 794	struct lsm_ctx *nctx = NULL;
 795	size_t nctx_len;
 796	int rc = 0;
 797
 798	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
 799	if (nctx_len > *uctx_len) {
 800		rc = -E2BIG;
 801		goto out;
 802	}
 803
 804	/* no buffer - return success/0 and set @uctx_len to the req size */
 805	if (!uctx)
 806		goto out;
 807
 808	nctx = kzalloc(nctx_len, GFP_KERNEL);
 809	if (nctx == NULL) {
 810		rc = -ENOMEM;
 811		goto out;
 812	}
 813	nctx->id = id;
 814	nctx->flags = flags;
 815	nctx->len = nctx_len;
 816	nctx->ctx_len = val_len;
 817	memcpy(nctx->ctx, val, val_len);
 818
 819	if (copy_to_user(uctx, nctx, nctx_len))
 820		rc = -EFAULT;
 821
 822out:
 823	kfree(nctx);
 824	*uctx_len = nctx_len;
 825	return rc;
 826}
 827
 828/*
 829 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 830 * can be accessed with:
 831 *
 832 *	LSM_RET_DEFAULT(<hook_name>)
 833 *
 834 * The macros below define static constants for the default value of each
 835 * LSM hook.
 836 */
 837#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 838#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 839#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 840	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
 841#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 842	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 843
 844#include <linux/lsm_hook_defs.h>
 845#undef LSM_HOOK
 846
 847/*
 848 * Hook list operation macros.
 849 *
 850 * call_void_hook:
 851 *	This is a hook that does not return a value.
 852 *
 853 * call_int_hook:
 854 *	This is a hook that returns a value.
 855 */
 
 
 
 
 
 
 
 
 
 
 
 856
 857#define call_void_hook(FUNC, ...)				\
 858	do {							\
 859		struct security_hook_list *P;			\
 860								\
 861		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 862			P->hook.FUNC(__VA_ARGS__);		\
 863	} while (0)
 864
 865#define call_int_hook(FUNC, ...) ({				\
 866	int RC = LSM_RET_DEFAULT(FUNC);				\
 867	do {							\
 868		struct security_hook_list *P;			\
 869								\
 870		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 871			RC = P->hook.FUNC(__VA_ARGS__);		\
 872			if (RC != LSM_RET_DEFAULT(FUNC))	\
 873				break;				\
 874		}						\
 875	} while (0);						\
 876	RC;							\
 
 
 
 
 
 877})
 878
 
 
 
 
 
 879/* Security operations */
 880
 881/**
 882 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
 883 * @mgr: task credentials of current binder process
 884 *
 885 * Check whether @mgr is allowed to be the binder context manager.
 886 *
 887 * Return: Return 0 if permission is granted.
 888 */
 889int security_binder_set_context_mgr(const struct cred *mgr)
 890{
 891	return call_int_hook(binder_set_context_mgr, mgr);
 892}
 893
 894/**
 895 * security_binder_transaction() - Check if a binder transaction is allowed
 896 * @from: sending process
 897 * @to: receiving process
 898 *
 899 * Check whether @from is allowed to invoke a binder transaction call to @to.
 900 *
 901 * Return: Returns 0 if permission is granted.
 902 */
 903int security_binder_transaction(const struct cred *from,
 904				const struct cred *to)
 905{
 906	return call_int_hook(binder_transaction, from, to);
 907}
 908
 909/**
 910 * security_binder_transfer_binder() - Check if a binder transfer is allowed
 911 * @from: sending process
 912 * @to: receiving process
 913 *
 914 * Check whether @from is allowed to transfer a binder reference to @to.
 915 *
 916 * Return: Returns 0 if permission is granted.
 917 */
 918int security_binder_transfer_binder(const struct cred *from,
 919				    const struct cred *to)
 920{
 921	return call_int_hook(binder_transfer_binder, from, to);
 922}
 923
 924/**
 925 * security_binder_transfer_file() - Check if a binder file xfer is allowed
 926 * @from: sending process
 927 * @to: receiving process
 928 * @file: file being transferred
 929 *
 930 * Check whether @from is allowed to transfer @file to @to.
 931 *
 932 * Return: Returns 0 if permission is granted.
 933 */
 934int security_binder_transfer_file(const struct cred *from,
 935				  const struct cred *to, const struct file *file)
 936{
 937	return call_int_hook(binder_transfer_file, from, to, file);
 938}
 939
 940/**
 941 * security_ptrace_access_check() - Check if tracing is allowed
 942 * @child: target process
 943 * @mode: PTRACE_MODE flags
 944 *
 945 * Check permission before allowing the current process to trace the @child
 946 * process.  Security modules may also want to perform a process tracing check
 947 * during an execve in the set_security or apply_creds hooks of tracing check
 948 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
 949 * process is being traced and its security attributes would be changed by the
 950 * execve.
 951 *
 952 * Return: Returns 0 if permission is granted.
 953 */
 954int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 955{
 956	return call_int_hook(ptrace_access_check, child, mode);
 957}
 958
 959/**
 960 * security_ptrace_traceme() - Check if tracing is allowed
 961 * @parent: tracing process
 962 *
 963 * Check that the @parent process has sufficient permission to trace the
 964 * current process before allowing the current process to present itself to the
 965 * @parent process for tracing.
 966 *
 967 * Return: Returns 0 if permission is granted.
 968 */
 969int security_ptrace_traceme(struct task_struct *parent)
 970{
 971	return call_int_hook(ptrace_traceme, parent);
 972}
 973
 974/**
 975 * security_capget() - Get the capability sets for a process
 976 * @target: target process
 977 * @effective: effective capability set
 978 * @inheritable: inheritable capability set
 979 * @permitted: permitted capability set
 980 *
 981 * Get the @effective, @inheritable, and @permitted capability sets for the
 982 * @target process.  The hook may also perform permission checking to determine
 983 * if the current process is allowed to see the capability sets of the @target
 984 * process.
 985 *
 986 * Return: Returns 0 if the capability sets were successfully obtained.
 987 */
 988int security_capget(const struct task_struct *target,
 989		    kernel_cap_t *effective,
 990		    kernel_cap_t *inheritable,
 991		    kernel_cap_t *permitted)
 992{
 993	return call_int_hook(capget, target, effective, inheritable, permitted);
 994}
 995
 996/**
 997 * security_capset() - Set the capability sets for a process
 998 * @new: new credentials for the target process
 999 * @old: current credentials of the target process
1000 * @effective: effective capability set
1001 * @inheritable: inheritable capability set
1002 * @permitted: permitted capability set
1003 *
1004 * Set the @effective, @inheritable, and @permitted capability sets for the
1005 * current process.
1006 *
1007 * Return: Returns 0 and update @new if permission is granted.
1008 */
1009int security_capset(struct cred *new, const struct cred *old,
1010		    const kernel_cap_t *effective,
1011		    const kernel_cap_t *inheritable,
1012		    const kernel_cap_t *permitted)
1013{
1014	return call_int_hook(capset, new, old, effective, inheritable,
1015			     permitted);
1016}
1017
1018/**
1019 * security_capable() - Check if a process has the necessary capability
1020 * @cred: credentials to examine
1021 * @ns: user namespace
1022 * @cap: capability requested
1023 * @opts: capability check options
1024 *
1025 * Check whether the @tsk process has the @cap capability in the indicated
1026 * credentials.  @cap contains the capability <include/linux/capability.h>.
1027 * @opts contains options for the capable check <include/linux/security.h>.
1028 *
1029 * Return: Returns 0 if the capability is granted.
1030 */
1031int security_capable(const struct cred *cred,
1032		     struct user_namespace *ns,
1033		     int cap,
1034		     unsigned int opts)
1035{
1036	return call_int_hook(capable, cred, ns, cap, opts);
1037}
1038
1039/**
1040 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1041 * @cmds: commands
1042 * @type: type
1043 * @id: id
1044 * @sb: filesystem
1045 *
1046 * Check whether the quotactl syscall is allowed for this @sb.
1047 *
1048 * Return: Returns 0 if permission is granted.
1049 */
1050int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1051{
1052	return call_int_hook(quotactl, cmds, type, id, sb);
1053}
1054
1055/**
1056 * security_quota_on() - Check if QUOTAON is allowed for a dentry
1057 * @dentry: dentry
1058 *
1059 * Check whether QUOTAON is allowed for @dentry.
1060 *
1061 * Return: Returns 0 if permission is granted.
1062 */
1063int security_quota_on(struct dentry *dentry)
1064{
1065	return call_int_hook(quota_on, dentry);
1066}
1067
1068/**
1069 * security_syslog() - Check if accessing the kernel message ring is allowed
1070 * @type: SYSLOG_ACTION_* type
1071 *
1072 * Check permission before accessing the kernel message ring or changing
1073 * logging to the console.  See the syslog(2) manual page for an explanation of
1074 * the @type values.
1075 *
1076 * Return: Return 0 if permission is granted.
1077 */
1078int security_syslog(int type)
1079{
1080	return call_int_hook(syslog, type);
1081}
1082
1083/**
1084 * security_settime64() - Check if changing the system time is allowed
1085 * @ts: new time
1086 * @tz: timezone
1087 *
1088 * Check permission to change the system time, struct timespec64 is defined in
1089 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1090 *
1091 * Return: Returns 0 if permission is granted.
1092 */
1093int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1094{
1095	return call_int_hook(settime, ts, tz);
1096}
1097
1098/**
1099 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1100 * @mm: mm struct
1101 * @pages: number of pages
1102 *
1103 * Check permissions for allocating a new virtual mapping.  If all LSMs return
1104 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1105 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1106 * called with cap_sys_admin cleared.
1107 *
1108 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1109 *         caller.
1110 */
1111int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1112{
1113	struct security_hook_list *hp;
1114	int cap_sys_admin = 1;
1115	int rc;
1116
1117	/*
1118	 * The module will respond with a positive value if
1119	 * it thinks the __vm_enough_memory() call should be
1120	 * made with the cap_sys_admin set. If all of the modules
1121	 * agree that it should be set it will. If any module
1122	 * thinks it should not be set it won't.
1123	 */
1124	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
1125		rc = hp->hook.vm_enough_memory(mm, pages);
1126		if (rc <= 0) {
1127			cap_sys_admin = 0;
1128			break;
1129		}
1130	}
1131	return __vm_enough_memory(mm, pages, cap_sys_admin);
1132}
1133
1134/**
1135 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1136 * @bprm: binary program information
1137 *
1138 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1139 * properly for executing @bprm->file, update the LSM's portion of
1140 * @bprm->cred->security to be what commit_creds needs to install for the new
1141 * program.  This hook may also optionally check permissions (e.g. for
1142 * transitions between security domains).  The hook must set @bprm->secureexec
1143 * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1144 * contains the linux_binprm structure.
1145 *
1146 * Return: Returns 0 if the hook is successful and permission is granted.
1147 */
1148int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1149{
1150	return call_int_hook(bprm_creds_for_exec, bprm);
1151}
1152
1153/**
1154 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1155 * @bprm: binary program information
1156 * @file: associated file
1157 *
1158 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1159 * exec, update @bprm->cred to reflect that change. This is called after
1160 * finding the binary that will be executed without an interpreter.  This
1161 * ensures that the credentials will not be derived from a script that the
1162 * binary will need to reopen, which when reopend may end up being a completely
1163 * different file.  This hook may also optionally check permissions (e.g. for
1164 * transitions between security domains).  The hook must set @bprm->secureexec
1165 * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1166 * hook must add to @bprm->per_clear any personality flags that should be
1167 * cleared from current->personality.  @bprm contains the linux_binprm
1168 * structure.
1169 *
1170 * Return: Returns 0 if the hook is successful and permission is granted.
1171 */
1172int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1173{
1174	return call_int_hook(bprm_creds_from_file, bprm, file);
1175}
1176
1177/**
1178 * security_bprm_check() - Mediate binary handler search
1179 * @bprm: binary program information
1180 *
1181 * This hook mediates the point when a search for a binary handler will begin.
1182 * It allows a check against the @bprm->cred->security value which was set in
1183 * the preceding creds_for_exec call.  The argv list and envp list are reliably
1184 * available in @bprm.  This hook may be called multiple times during a single
1185 * execve.  @bprm contains the linux_binprm structure.
1186 *
1187 * Return: Returns 0 if the hook is successful and permission is granted.
1188 */
1189int security_bprm_check(struct linux_binprm *bprm)
1190{
1191	return call_int_hook(bprm_check_security, bprm);
1192}
1193
1194/**
1195 * security_bprm_committing_creds() - Install creds for a process during exec()
1196 * @bprm: binary program information
1197 *
1198 * Prepare to install the new security attributes of a process being
1199 * transformed by an execve operation, based on the old credentials pointed to
1200 * by @current->cred and the information set in @bprm->cred by the
1201 * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1202 * hook is a good place to perform state changes on the process such as closing
1203 * open file descriptors to which access will no longer be granted when the
1204 * attributes are changed.  This is called immediately before commit_creds().
1205 */
1206void security_bprm_committing_creds(const struct linux_binprm *bprm)
1207{
1208	call_void_hook(bprm_committing_creds, bprm);
1209}
1210
1211/**
1212 * security_bprm_committed_creds() - Tidy up after cred install during exec()
1213 * @bprm: binary program information
1214 *
1215 * Tidy up after the installation of the new security attributes of a process
1216 * being transformed by an execve operation.  The new credentials have, by this
1217 * point, been set to @current->cred.  @bprm points to the linux_binprm
1218 * structure.  This hook is a good place to perform state changes on the
1219 * process such as clearing out non-inheritable signal state.  This is called
1220 * immediately after commit_creds().
1221 */
1222void security_bprm_committed_creds(const struct linux_binprm *bprm)
1223{
1224	call_void_hook(bprm_committed_creds, bprm);
1225}
1226
1227/**
1228 * security_fs_context_submount() - Initialise fc->security
1229 * @fc: new filesystem context
1230 * @reference: dentry reference for submount/remount
1231 *
1232 * Fill out the ->security field for a new fs_context.
1233 *
1234 * Return: Returns 0 on success or negative error code on failure.
1235 */
1236int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1237{
1238	return call_int_hook(fs_context_submount, fc, reference);
1239}
1240
1241/**
1242 * security_fs_context_dup() - Duplicate a fs_context LSM blob
1243 * @fc: destination filesystem context
1244 * @src_fc: source filesystem context
1245 *
1246 * Allocate and attach a security structure to sc->security.  This pointer is
1247 * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1248 * @src_fc indicates the original filesystem context.
1249 *
1250 * Return: Returns 0 on success or a negative error code on failure.
1251 */
1252int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1253{
1254	return call_int_hook(fs_context_dup, fc, src_fc);
1255}
1256
1257/**
1258 * security_fs_context_parse_param() - Configure a filesystem context
1259 * @fc: filesystem context
1260 * @param: filesystem parameter
1261 *
1262 * Userspace provided a parameter to configure a superblock.  The LSM can
1263 * consume the parameter or return it to the caller for use elsewhere.
1264 *
1265 * Return: If the parameter is used by the LSM it should return 0, if it is
1266 *         returned to the caller -ENOPARAM is returned, otherwise a negative
1267 *         error code is returned.
1268 */
1269int security_fs_context_parse_param(struct fs_context *fc,
1270				    struct fs_parameter *param)
1271{
1272	struct security_hook_list *hp;
1273	int trc;
1274	int rc = -ENOPARAM;
1275
1276	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
1277			     list) {
1278		trc = hp->hook.fs_context_parse_param(fc, param);
1279		if (trc == 0)
1280			rc = 0;
1281		else if (trc != -ENOPARAM)
1282			return trc;
1283	}
1284	return rc;
1285}
1286
1287/**
1288 * security_sb_alloc() - Allocate a super_block LSM blob
1289 * @sb: filesystem superblock
1290 *
1291 * Allocate and attach a security structure to the sb->s_security field.  The
1292 * s_security field is initialized to NULL when the structure is allocated.
1293 * @sb contains the super_block structure to be modified.
1294 *
1295 * Return: Returns 0 if operation was successful.
1296 */
1297int security_sb_alloc(struct super_block *sb)
1298{
1299	int rc = lsm_superblock_alloc(sb);
1300
1301	if (unlikely(rc))
1302		return rc;
1303	rc = call_int_hook(sb_alloc_security, sb);
1304	if (unlikely(rc))
1305		security_sb_free(sb);
1306	return rc;
1307}
1308
1309/**
1310 * security_sb_delete() - Release super_block LSM associated objects
1311 * @sb: filesystem superblock
1312 *
1313 * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1314 * super_block structure being released.
1315 */
1316void security_sb_delete(struct super_block *sb)
1317{
1318	call_void_hook(sb_delete, sb);
1319}
1320
1321/**
1322 * security_sb_free() - Free a super_block LSM blob
1323 * @sb: filesystem superblock
1324 *
1325 * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1326 * structure to be modified.
1327 */
1328void security_sb_free(struct super_block *sb)
1329{
1330	call_void_hook(sb_free_security, sb);
1331	kfree(sb->s_security);
1332	sb->s_security = NULL;
1333}
1334
1335/**
1336 * security_free_mnt_opts() - Free memory associated with mount options
1337 * @mnt_opts: LSM processed mount options
1338 *
1339 * Free memory associated with @mnt_ops.
1340 */
1341void security_free_mnt_opts(void **mnt_opts)
1342{
1343	if (!*mnt_opts)
1344		return;
1345	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1346	*mnt_opts = NULL;
1347}
1348EXPORT_SYMBOL(security_free_mnt_opts);
1349
1350/**
1351 * security_sb_eat_lsm_opts() - Consume LSM mount options
1352 * @options: mount options
1353 * @mnt_opts: LSM processed mount options
1354 *
1355 * Eat (scan @options) and save them in @mnt_opts.
1356 *
1357 * Return: Returns 0 on success, negative values on failure.
1358 */
1359int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1360{
1361	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1362}
1363EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1364
1365/**
1366 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1367 * @sb: filesystem superblock
1368 * @mnt_opts: new mount options
1369 *
1370 * Determine if the new mount options in @mnt_opts are allowed given the
1371 * existing mounted filesystem at @sb.  @sb superblock being compared.
1372 *
1373 * Return: Returns 0 if options are compatible.
1374 */
1375int security_sb_mnt_opts_compat(struct super_block *sb,
1376				void *mnt_opts)
1377{
1378	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1379}
1380EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1381
1382/**
1383 * security_sb_remount() - Verify no incompatible mount changes during remount
1384 * @sb: filesystem superblock
1385 * @mnt_opts: (re)mount options
1386 *
1387 * Extracts security system specific mount options and verifies no changes are
1388 * being made to those options.
1389 *
1390 * Return: Returns 0 if permission is granted.
1391 */
1392int security_sb_remount(struct super_block *sb,
1393			void *mnt_opts)
1394{
1395	return call_int_hook(sb_remount, sb, mnt_opts);
1396}
1397EXPORT_SYMBOL(security_sb_remount);
1398
1399/**
1400 * security_sb_kern_mount() - Check if a kernel mount is allowed
1401 * @sb: filesystem superblock
1402 *
1403 * Mount this @sb if allowed by permissions.
1404 *
1405 * Return: Returns 0 if permission is granted.
1406 */
1407int security_sb_kern_mount(const struct super_block *sb)
1408{
1409	return call_int_hook(sb_kern_mount, sb);
1410}
1411
1412/**
1413 * security_sb_show_options() - Output the mount options for a superblock
1414 * @m: output file
1415 * @sb: filesystem superblock
1416 *
1417 * Show (print on @m) mount options for this @sb.
1418 *
1419 * Return: Returns 0 on success, negative values on failure.
1420 */
1421int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1422{
1423	return call_int_hook(sb_show_options, m, sb);
1424}
1425
1426/**
1427 * security_sb_statfs() - Check if accessing fs stats is allowed
1428 * @dentry: superblock handle
1429 *
1430 * Check permission before obtaining filesystem statistics for the @mnt
1431 * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1432 *
1433 * Return: Returns 0 if permission is granted.
1434 */
1435int security_sb_statfs(struct dentry *dentry)
1436{
1437	return call_int_hook(sb_statfs, dentry);
1438}
1439
1440/**
1441 * security_sb_mount() - Check permission for mounting a filesystem
1442 * @dev_name: filesystem backing device
1443 * @path: mount point
1444 * @type: filesystem type
1445 * @flags: mount flags
1446 * @data: filesystem specific data
1447 *
1448 * Check permission before an object specified by @dev_name is mounted on the
1449 * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1450 * device if the file system type requires a device.  For a remount
1451 * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1452 * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1453 * mounted.
1454 *
1455 * Return: Returns 0 if permission is granted.
1456 */
1457int security_sb_mount(const char *dev_name, const struct path *path,
1458		      const char *type, unsigned long flags, void *data)
1459{
1460	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1461}
1462
1463/**
1464 * security_sb_umount() - Check permission for unmounting a filesystem
1465 * @mnt: mounted filesystem
1466 * @flags: unmount flags
1467 *
1468 * Check permission before the @mnt file system is unmounted.
1469 *
1470 * Return: Returns 0 if permission is granted.
1471 */
1472int security_sb_umount(struct vfsmount *mnt, int flags)
1473{
1474	return call_int_hook(sb_umount, mnt, flags);
1475}
1476
1477/**
1478 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1479 * @old_path: new location for current rootfs
1480 * @new_path: location of the new rootfs
1481 *
1482 * Check permission before pivoting the root filesystem.
1483 *
1484 * Return: Returns 0 if permission is granted.
1485 */
1486int security_sb_pivotroot(const struct path *old_path,
1487			  const struct path *new_path)
1488{
1489	return call_int_hook(sb_pivotroot, old_path, new_path);
1490}
1491
1492/**
1493 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1494 * @sb: filesystem superblock
1495 * @mnt_opts: binary mount options
1496 * @kern_flags: kernel flags (in)
1497 * @set_kern_flags: kernel flags (out)
1498 *
1499 * Set the security relevant mount options used for a superblock.
1500 *
1501 * Return: Returns 0 on success, error on failure.
1502 */
1503int security_sb_set_mnt_opts(struct super_block *sb,
1504			     void *mnt_opts,
1505			     unsigned long kern_flags,
1506			     unsigned long *set_kern_flags)
1507{
1508	struct security_hook_list *hp;
1509	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1510
1511	hlist_for_each_entry(hp, &security_hook_heads.sb_set_mnt_opts,
1512			     list) {
1513		rc = hp->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1514					      set_kern_flags);
1515		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1516			break;
1517	}
1518	return rc;
1519}
1520EXPORT_SYMBOL(security_sb_set_mnt_opts);
1521
1522/**
1523 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1524 * @oldsb: source superblock
1525 * @newsb: destination superblock
1526 * @kern_flags: kernel flags (in)
1527 * @set_kern_flags: kernel flags (out)
1528 *
1529 * Copy all security options from a given superblock to another.
1530 *
1531 * Return: Returns 0 on success, error on failure.
1532 */
1533int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1534			       struct super_block *newsb,
1535			       unsigned long kern_flags,
1536			       unsigned long *set_kern_flags)
1537{
1538	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1539			     kern_flags, set_kern_flags);
1540}
1541EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1542
1543/**
1544 * security_move_mount() - Check permissions for moving a mount
1545 * @from_path: source mount point
1546 * @to_path: destination mount point
1547 *
1548 * Check permission before a mount is moved.
1549 *
1550 * Return: Returns 0 if permission is granted.
1551 */
1552int security_move_mount(const struct path *from_path,
1553			const struct path *to_path)
1554{
1555	return call_int_hook(move_mount, from_path, to_path);
1556}
1557
1558/**
1559 * security_path_notify() - Check if setting a watch is allowed
1560 * @path: file path
1561 * @mask: event mask
1562 * @obj_type: file path type
1563 *
1564 * Check permissions before setting a watch on events as defined by @mask, on
1565 * an object at @path, whose type is defined by @obj_type.
1566 *
1567 * Return: Returns 0 if permission is granted.
1568 */
1569int security_path_notify(const struct path *path, u64 mask,
1570			 unsigned int obj_type)
1571{
1572	return call_int_hook(path_notify, path, mask, obj_type);
1573}
1574
1575/**
1576 * security_inode_alloc() - Allocate an inode LSM blob
1577 * @inode: the inode
 
1578 *
1579 * Allocate and attach a security structure to @inode->i_security.  The
1580 * i_security field is initialized to NULL when the inode structure is
1581 * allocated.
1582 *
1583 * Return: Return 0 if operation was successful.
1584 */
1585int security_inode_alloc(struct inode *inode)
1586{
1587	int rc = lsm_inode_alloc(inode);
1588
1589	if (unlikely(rc))
1590		return rc;
1591	rc = call_int_hook(inode_alloc_security, inode);
1592	if (unlikely(rc))
1593		security_inode_free(inode);
1594	return rc;
1595}
1596
1597static void inode_free_by_rcu(struct rcu_head *head)
1598{
1599	/*
1600	 * The rcu head is at the start of the inode blob
1601	 */
1602	kmem_cache_free(lsm_inode_cache, head);
1603}
1604
1605/**
1606 * security_inode_free() - Free an inode's LSM blob
1607 * @inode: the inode
1608 *
1609 * Deallocate the inode security structure and set @inode->i_security to NULL.
 
 
 
 
 
 
 
 
 
 
1610 */
1611void security_inode_free(struct inode *inode)
1612{
1613	call_void_hook(inode_free_security, inode);
1614	/*
1615	 * The inode may still be referenced in a path walk and
1616	 * a call to security_inode_permission() can be made
1617	 * after inode_free_security() is called. Ideally, the VFS
1618	 * wouldn't do this, but fixing that is a much harder
1619	 * job. For now, simply free the i_security via RCU, and
1620	 * leave the current inode->i_security pointer intact.
1621	 * The inode will be freed after the RCU grace period too.
1622	 */
1623	if (inode->i_security)
1624		call_rcu((struct rcu_head *)inode->i_security,
1625			 inode_free_by_rcu);
1626}
1627
1628/**
1629 * security_dentry_init_security() - Perform dentry initialization
1630 * @dentry: the dentry to initialize
1631 * @mode: mode used to determine resource type
1632 * @name: name of the last path component
1633 * @xattr_name: name of the security/LSM xattr
1634 * @ctx: pointer to the resulting LSM context
1635 * @ctxlen: length of @ctx
1636 *
1637 * Compute a context for a dentry as the inode is not yet available since NFSv4
1638 * has no label backed by an EA anyway.  It is important to note that
1639 * @xattr_name does not need to be free'd by the caller, it is a static string.
1640 *
1641 * Return: Returns 0 on success, negative values on failure.
1642 */
1643int security_dentry_init_security(struct dentry *dentry, int mode,
1644				  const struct qstr *name,
1645				  const char **xattr_name, void **ctx,
1646				  u32 *ctxlen)
1647{
1648	return call_int_hook(dentry_init_security, dentry, mode, name,
1649			     xattr_name, ctx, ctxlen);
1650}
1651EXPORT_SYMBOL(security_dentry_init_security);
1652
1653/**
1654 * security_dentry_create_files_as() - Perform dentry initialization
1655 * @dentry: the dentry to initialize
1656 * @mode: mode used to determine resource type
1657 * @name: name of the last path component
1658 * @old: creds to use for LSM context calculations
1659 * @new: creds to modify
1660 *
1661 * Compute a context for a dentry as the inode is not yet available and set
1662 * that context in passed in creds so that new files are created using that
1663 * context. Context is calculated using the passed in creds and not the creds
1664 * of the caller.
1665 *
1666 * Return: Returns 0 on success, error on failure.
1667 */
1668int security_dentry_create_files_as(struct dentry *dentry, int mode,
1669				    struct qstr *name,
1670				    const struct cred *old, struct cred *new)
1671{
1672	return call_int_hook(dentry_create_files_as, dentry, mode,
1673			     name, old, new);
1674}
1675EXPORT_SYMBOL(security_dentry_create_files_as);
1676
1677/**
1678 * security_inode_init_security() - Initialize an inode's LSM context
1679 * @inode: the inode
1680 * @dir: parent directory
1681 * @qstr: last component of the pathname
1682 * @initxattrs: callback function to write xattrs
1683 * @fs_data: filesystem specific data
1684 *
1685 * Obtain the security attribute name suffix and value to set on a newly
1686 * created inode and set up the incore security field for the new inode.  This
1687 * hook is called by the fs code as part of the inode creation transaction and
1688 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1689 * hooks called by the VFS.
1690 *
1691 * The hook function is expected to populate the xattrs array, by calling
1692 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1693 * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1694 * slot, the hook function should set ->name to the attribute name suffix
1695 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1696 * to the attribute value, to set ->value_len to the length of the value.  If
1697 * the security module does not use security attributes or does not wish to put
1698 * a security attribute on this particular inode, then it should return
1699 * -EOPNOTSUPP to skip this processing.
1700 *
1701 * Return: Returns 0 if the LSM successfully initialized all of the inode
1702 *         security attributes that are required, negative values otherwise.
1703 */
1704int security_inode_init_security(struct inode *inode, struct inode *dir,
1705				 const struct qstr *qstr,
1706				 const initxattrs initxattrs, void *fs_data)
1707{
1708	struct security_hook_list *hp;
1709	struct xattr *new_xattrs = NULL;
1710	int ret = -EOPNOTSUPP, xattr_count = 0;
1711
1712	if (unlikely(IS_PRIVATE(inode)))
1713		return 0;
1714
1715	if (!blob_sizes.lbs_xattr_count)
1716		return 0;
1717
1718	if (initxattrs) {
1719		/* Allocate +1 as terminator. */
1720		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1721				     sizeof(*new_xattrs), GFP_NOFS);
1722		if (!new_xattrs)
1723			return -ENOMEM;
1724	}
1725
1726	hlist_for_each_entry(hp, &security_hook_heads.inode_init_security,
1727			     list) {
1728		ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1729						  &xattr_count);
1730		if (ret && ret != -EOPNOTSUPP)
1731			goto out;
1732		/*
1733		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1734		 * means that the LSM is not willing to provide an xattr, not
1735		 * that it wants to signal an error. Thus, continue to invoke
1736		 * the remaining LSMs.
1737		 */
1738	}
1739
1740	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1741	if (!xattr_count)
1742		goto out;
1743
1744	ret = initxattrs(inode, new_xattrs, fs_data);
1745out:
1746	for (; xattr_count > 0; xattr_count--)
1747		kfree(new_xattrs[xattr_count - 1].value);
1748	kfree(new_xattrs);
1749	return (ret == -EOPNOTSUPP) ? 0 : ret;
1750}
1751EXPORT_SYMBOL(security_inode_init_security);
1752
1753/**
1754 * security_inode_init_security_anon() - Initialize an anonymous inode
1755 * @inode: the inode
1756 * @name: the anonymous inode class
1757 * @context_inode: an optional related inode
1758 *
1759 * Set up the incore security field for the new anonymous inode and return
1760 * whether the inode creation is permitted by the security module or not.
1761 *
1762 * Return: Returns 0 on success, -EACCES if the security module denies the
1763 * creation of this inode, or another -errno upon other errors.
1764 */
1765int security_inode_init_security_anon(struct inode *inode,
1766				      const struct qstr *name,
1767				      const struct inode *context_inode)
1768{
1769	return call_int_hook(inode_init_security_anon, inode, name,
1770			     context_inode);
1771}
1772
1773#ifdef CONFIG_SECURITY_PATH
1774/**
1775 * security_path_mknod() - Check if creating a special file is allowed
1776 * @dir: parent directory
1777 * @dentry: new file
1778 * @mode: new file mode
1779 * @dev: device number
1780 *
1781 * Check permissions when creating a file. Note that this hook is called even
1782 * if mknod operation is being done for a regular file.
1783 *
1784 * Return: Returns 0 if permission is granted.
1785 */
1786int security_path_mknod(const struct path *dir, struct dentry *dentry,
1787			umode_t mode, unsigned int dev)
1788{
1789	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1790		return 0;
1791	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1792}
1793EXPORT_SYMBOL(security_path_mknod);
1794
1795/**
1796 * security_path_post_mknod() - Update inode security after reg file creation
1797 * @idmap: idmap of the mount
1798 * @dentry: new file
1799 *
1800 * Update inode security field after a regular file has been created.
1801 */
1802void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1803{
1804	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1805		return;
1806	call_void_hook(path_post_mknod, idmap, dentry);
1807}
1808
1809/**
1810 * security_path_mkdir() - Check if creating a new directory is allowed
1811 * @dir: parent directory
1812 * @dentry: new directory
1813 * @mode: new directory mode
1814 *
1815 * Check permissions to create a new directory in the existing directory.
1816 *
1817 * Return: Returns 0 if permission is granted.
1818 */
1819int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1820			umode_t mode)
1821{
1822	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1823		return 0;
1824	return call_int_hook(path_mkdir, dir, dentry, mode);
1825}
1826EXPORT_SYMBOL(security_path_mkdir);
1827
1828/**
1829 * security_path_rmdir() - Check if removing a directory is allowed
1830 * @dir: parent directory
1831 * @dentry: directory to remove
1832 *
1833 * Check the permission to remove a directory.
1834 *
1835 * Return: Returns 0 if permission is granted.
1836 */
1837int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1838{
1839	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1840		return 0;
1841	return call_int_hook(path_rmdir, dir, dentry);
1842}
1843
1844/**
1845 * security_path_unlink() - Check if removing a hard link is allowed
1846 * @dir: parent directory
1847 * @dentry: file
1848 *
1849 * Check the permission to remove a hard link to a file.
1850 *
1851 * Return: Returns 0 if permission is granted.
1852 */
1853int security_path_unlink(const struct path *dir, struct dentry *dentry)
1854{
1855	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1856		return 0;
1857	return call_int_hook(path_unlink, dir, dentry);
1858}
1859EXPORT_SYMBOL(security_path_unlink);
1860
1861/**
1862 * security_path_symlink() - Check if creating a symbolic link is allowed
1863 * @dir: parent directory
1864 * @dentry: symbolic link
1865 * @old_name: file pathname
1866 *
1867 * Check the permission to create a symbolic link to a file.
1868 *
1869 * Return: Returns 0 if permission is granted.
1870 */
1871int security_path_symlink(const struct path *dir, struct dentry *dentry,
1872			  const char *old_name)
1873{
1874	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1875		return 0;
1876	return call_int_hook(path_symlink, dir, dentry, old_name);
1877}
1878
1879/**
1880 * security_path_link - Check if creating a hard link is allowed
1881 * @old_dentry: existing file
1882 * @new_dir: new parent directory
1883 * @new_dentry: new link
1884 *
1885 * Check permission before creating a new hard link to a file.
1886 *
1887 * Return: Returns 0 if permission is granted.
1888 */
1889int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1890		       struct dentry *new_dentry)
1891{
1892	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1893		return 0;
1894	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1895}
1896
1897/**
1898 * security_path_rename() - Check if renaming a file is allowed
1899 * @old_dir: parent directory of the old file
1900 * @old_dentry: the old file
1901 * @new_dir: parent directory of the new file
1902 * @new_dentry: the new file
1903 * @flags: flags
1904 *
1905 * Check for permission to rename a file or directory.
1906 *
1907 * Return: Returns 0 if permission is granted.
1908 */
1909int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1910			 const struct path *new_dir, struct dentry *new_dentry,
1911			 unsigned int flags)
1912{
1913	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1914		     (d_is_positive(new_dentry) &&
1915		      IS_PRIVATE(d_backing_inode(new_dentry)))))
1916		return 0;
1917
1918	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
1919			     new_dentry, flags);
1920}
1921EXPORT_SYMBOL(security_path_rename);
1922
1923/**
1924 * security_path_truncate() - Check if truncating a file is allowed
1925 * @path: file
1926 *
1927 * Check permission before truncating the file indicated by path.  Note that
1928 * truncation permissions may also be checked based on already opened files,
1929 * using the security_file_truncate() hook.
1930 *
1931 * Return: Returns 0 if permission is granted.
1932 */
1933int security_path_truncate(const struct path *path)
1934{
1935	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1936		return 0;
1937	return call_int_hook(path_truncate, path);
1938}
1939
1940/**
1941 * security_path_chmod() - Check if changing the file's mode is allowed
1942 * @path: file
1943 * @mode: new mode
1944 *
1945 * Check for permission to change a mode of the file @path. The new mode is
1946 * specified in @mode which is a bitmask of constants from
1947 * <include/uapi/linux/stat.h>.
1948 *
1949 * Return: Returns 0 if permission is granted.
1950 */
1951int security_path_chmod(const struct path *path, umode_t mode)
1952{
1953	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1954		return 0;
1955	return call_int_hook(path_chmod, path, mode);
1956}
1957
1958/**
1959 * security_path_chown() - Check if changing the file's owner/group is allowed
1960 * @path: file
1961 * @uid: file owner
1962 * @gid: file group
1963 *
1964 * Check for permission to change owner/group of a file or directory.
1965 *
1966 * Return: Returns 0 if permission is granted.
1967 */
1968int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1969{
1970	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1971		return 0;
1972	return call_int_hook(path_chown, path, uid, gid);
1973}
1974
1975/**
1976 * security_path_chroot() - Check if changing the root directory is allowed
1977 * @path: directory
1978 *
1979 * Check for permission to change root directory.
1980 *
1981 * Return: Returns 0 if permission is granted.
1982 */
1983int security_path_chroot(const struct path *path)
1984{
1985	return call_int_hook(path_chroot, path);
1986}
1987#endif /* CONFIG_SECURITY_PATH */
1988
1989/**
1990 * security_inode_create() - Check if creating a file is allowed
1991 * @dir: the parent directory
1992 * @dentry: the file being created
1993 * @mode: requested file mode
1994 *
1995 * Check permission to create a regular file.
1996 *
1997 * Return: Returns 0 if permission is granted.
1998 */
1999int security_inode_create(struct inode *dir, struct dentry *dentry,
2000			  umode_t mode)
2001{
2002	if (unlikely(IS_PRIVATE(dir)))
2003		return 0;
2004	return call_int_hook(inode_create, dir, dentry, mode);
2005}
2006EXPORT_SYMBOL_GPL(security_inode_create);
2007
2008/**
2009 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2010 * @idmap: idmap of the mount
2011 * @inode: inode of the new tmpfile
2012 *
2013 * Update inode security data after a tmpfile has been created.
2014 */
2015void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2016					struct inode *inode)
2017{
2018	if (unlikely(IS_PRIVATE(inode)))
2019		return;
2020	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2021}
2022
2023/**
2024 * security_inode_link() - Check if creating a hard link is allowed
2025 * @old_dentry: existing file
2026 * @dir: new parent directory
2027 * @new_dentry: new link
2028 *
2029 * Check permission before creating a new hard link to a file.
2030 *
2031 * Return: Returns 0 if permission is granted.
2032 */
2033int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2034			struct dentry *new_dentry)
2035{
2036	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2037		return 0;
2038	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2039}
2040
2041/**
2042 * security_inode_unlink() - Check if removing a hard link is allowed
2043 * @dir: parent directory
2044 * @dentry: file
2045 *
2046 * Check the permission to remove a hard link to a file.
2047 *
2048 * Return: Returns 0 if permission is granted.
2049 */
2050int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2051{
2052	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2053		return 0;
2054	return call_int_hook(inode_unlink, dir, dentry);
2055}
2056
2057/**
2058 * security_inode_symlink() - Check if creating a symbolic link is allowed
2059 * @dir: parent directory
2060 * @dentry: symbolic link
2061 * @old_name: existing filename
2062 *
2063 * Check the permission to create a symbolic link to a file.
2064 *
2065 * Return: Returns 0 if permission is granted.
2066 */
2067int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2068			   const char *old_name)
2069{
2070	if (unlikely(IS_PRIVATE(dir)))
2071		return 0;
2072	return call_int_hook(inode_symlink, dir, dentry, old_name);
2073}
2074
2075/**
2076 * security_inode_mkdir() - Check if creation a new director is allowed
2077 * @dir: parent directory
2078 * @dentry: new directory
2079 * @mode: new directory mode
2080 *
2081 * Check permissions to create a new directory in the existing directory
2082 * associated with inode structure @dir.
2083 *
2084 * Return: Returns 0 if permission is granted.
2085 */
2086int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2087{
2088	if (unlikely(IS_PRIVATE(dir)))
2089		return 0;
2090	return call_int_hook(inode_mkdir, dir, dentry, mode);
2091}
2092EXPORT_SYMBOL_GPL(security_inode_mkdir);
2093
2094/**
2095 * security_inode_rmdir() - Check if removing a directory is allowed
2096 * @dir: parent directory
2097 * @dentry: directory to be removed
2098 *
2099 * Check the permission to remove a directory.
2100 *
2101 * Return: Returns 0 if permission is granted.
2102 */
2103int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2104{
2105	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2106		return 0;
2107	return call_int_hook(inode_rmdir, dir, dentry);
2108}
2109
2110/**
2111 * security_inode_mknod() - Check if creating a special file is allowed
2112 * @dir: parent directory
2113 * @dentry: new file
2114 * @mode: new file mode
2115 * @dev: device number
2116 *
2117 * Check permissions when creating a special file (or a socket or a fifo file
2118 * created via the mknod system call).  Note that if mknod operation is being
2119 * done for a regular file, then the create hook will be called and not this
2120 * hook.
2121 *
2122 * Return: Returns 0 if permission is granted.
2123 */
2124int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2125			 umode_t mode, dev_t dev)
2126{
2127	if (unlikely(IS_PRIVATE(dir)))
2128		return 0;
2129	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2130}
2131
2132/**
2133 * security_inode_rename() - Check if renaming a file is allowed
2134 * @old_dir: parent directory of the old file
2135 * @old_dentry: the old file
2136 * @new_dir: parent directory of the new file
2137 * @new_dentry: the new file
2138 * @flags: flags
2139 *
2140 * Check for permission to rename a file or directory.
2141 *
2142 * Return: Returns 0 if permission is granted.
2143 */
2144int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2145			  struct inode *new_dir, struct dentry *new_dentry,
2146			  unsigned int flags)
2147{
2148	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2149		     (d_is_positive(new_dentry) &&
2150		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2151		return 0;
2152
2153	if (flags & RENAME_EXCHANGE) {
2154		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2155					old_dir, old_dentry);
2156		if (err)
2157			return err;
2158	}
2159
2160	return call_int_hook(inode_rename, old_dir, old_dentry,
2161			     new_dir, new_dentry);
2162}
2163
2164/**
2165 * security_inode_readlink() - Check if reading a symbolic link is allowed
2166 * @dentry: link
2167 *
2168 * Check the permission to read the symbolic link.
2169 *
2170 * Return: Returns 0 if permission is granted.
2171 */
2172int security_inode_readlink(struct dentry *dentry)
2173{
2174	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2175		return 0;
2176	return call_int_hook(inode_readlink, dentry);
2177}
2178
2179/**
2180 * security_inode_follow_link() - Check if following a symbolic link is allowed
2181 * @dentry: link dentry
2182 * @inode: link inode
2183 * @rcu: true if in RCU-walk mode
2184 *
2185 * Check permission to follow a symbolic link when looking up a pathname.  If
2186 * @rcu is true, @inode is not stable.
2187 *
2188 * Return: Returns 0 if permission is granted.
2189 */
2190int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2191			       bool rcu)
2192{
2193	if (unlikely(IS_PRIVATE(inode)))
2194		return 0;
2195	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2196}
2197
2198/**
2199 * security_inode_permission() - Check if accessing an inode is allowed
2200 * @inode: inode
2201 * @mask: access mask
2202 *
2203 * Check permission before accessing an inode.  This hook is called by the
2204 * existing Linux permission function, so a security module can use it to
2205 * provide additional checking for existing Linux permission checks.  Notice
2206 * that this hook is called when a file is opened (as well as many other
2207 * operations), whereas the file_security_ops permission hook is called when
2208 * the actual read/write operations are performed.
2209 *
2210 * Return: Returns 0 if permission is granted.
2211 */
2212int security_inode_permission(struct inode *inode, int mask)
2213{
2214	if (unlikely(IS_PRIVATE(inode)))
2215		return 0;
2216	return call_int_hook(inode_permission, inode, mask);
2217}
2218
2219/**
2220 * security_inode_setattr() - Check if setting file attributes is allowed
2221 * @idmap: idmap of the mount
2222 * @dentry: file
2223 * @attr: new attributes
2224 *
2225 * Check permission before setting file attributes.  Note that the kernel call
2226 * to notify_change is performed from several locations, whenever file
2227 * attributes change (such as when a file is truncated, chown/chmod operations,
2228 * transferring disk quotas, etc).
2229 *
2230 * Return: Returns 0 if permission is granted.
2231 */
2232int security_inode_setattr(struct mnt_idmap *idmap,
2233			   struct dentry *dentry, struct iattr *attr)
2234{
2235	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2236		return 0;
2237	return call_int_hook(inode_setattr, idmap, dentry, attr);
2238}
2239EXPORT_SYMBOL_GPL(security_inode_setattr);
2240
2241/**
2242 * security_inode_post_setattr() - Update the inode after a setattr operation
2243 * @idmap: idmap of the mount
2244 * @dentry: file
2245 * @ia_valid: file attributes set
2246 *
2247 * Update inode security field after successful setting file attributes.
2248 */
2249void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2250				 int ia_valid)
2251{
2252	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2253		return;
2254	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2255}
2256
2257/**
2258 * security_inode_getattr() - Check if getting file attributes is allowed
2259 * @path: file
2260 *
2261 * Check permission before obtaining file attributes.
2262 *
2263 * Return: Returns 0 if permission is granted.
2264 */
2265int security_inode_getattr(const struct path *path)
2266{
2267	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2268		return 0;
2269	return call_int_hook(inode_getattr, path);
2270}
2271
2272/**
2273 * security_inode_setxattr() - Check if setting file xattrs is allowed
2274 * @idmap: idmap of the mount
2275 * @dentry: file
2276 * @name: xattr name
2277 * @value: xattr value
2278 * @size: size of xattr value
2279 * @flags: flags
2280 *
2281 * Check permission before setting the extended attributes.
 
 
 
 
 
 
 
 
 
 
 
 
 
2282 *
2283 * Return: Returns 0 if permission is granted.
2284 */
2285int security_inode_setxattr(struct mnt_idmap *idmap,
2286			    struct dentry *dentry, const char *name,
2287			    const void *value, size_t size, int flags)
2288{
2289	int ret;
2290
2291	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2292		return 0;
2293	/*
2294	 * SELinux and Smack integrate the cap call,
2295	 * so assume that all LSMs supplying this call do so.
2296	 */
2297	ret = call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2298			    flags);
2299
2300	if (ret == 1)
2301		ret = cap_inode_setxattr(dentry, name, value, size, flags);
2302	return ret;
 
 
 
 
 
 
2303}
2304
2305/**
2306 * security_inode_set_acl() - Check if setting posix acls is allowed
2307 * @idmap: idmap of the mount
2308 * @dentry: file
2309 * @acl_name: acl name
2310 * @kacl: acl struct
2311 *
2312 * Check permission before setting posix acls, the posix acls in @kacl are
2313 * identified by @acl_name.
2314 *
2315 * Return: Returns 0 if permission is granted.
2316 */
2317int security_inode_set_acl(struct mnt_idmap *idmap,
2318			   struct dentry *dentry, const char *acl_name,
2319			   struct posix_acl *kacl)
2320{
2321	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2322		return 0;
2323	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2324}
2325
2326/**
2327 * security_inode_post_set_acl() - Update inode security from posix acls set
2328 * @dentry: file
2329 * @acl_name: acl name
2330 * @kacl: acl struct
2331 *
2332 * Update inode security data after successfully setting posix acls on @dentry.
2333 * The posix acls in @kacl are identified by @acl_name.
2334 */
2335void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2336				 struct posix_acl *kacl)
2337{
2338	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2339		return;
2340	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2341}
2342
2343/**
2344 * security_inode_get_acl() - Check if reading posix acls is allowed
2345 * @idmap: idmap of the mount
2346 * @dentry: file
2347 * @acl_name: acl name
2348 *
2349 * Check permission before getting osix acls, the posix acls are identified by
2350 * @acl_name.
2351 *
2352 * Return: Returns 0 if permission is granted.
2353 */
2354int security_inode_get_acl(struct mnt_idmap *idmap,
2355			   struct dentry *dentry, const char *acl_name)
2356{
2357	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2358		return 0;
2359	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2360}
2361
2362/**
2363 * security_inode_remove_acl() - Check if removing a posix acl is allowed
2364 * @idmap: idmap of the mount
2365 * @dentry: file
2366 * @acl_name: acl name
2367 *
2368 * Check permission before removing posix acls, the posix acls are identified
2369 * by @acl_name.
2370 *
2371 * Return: Returns 0 if permission is granted.
2372 */
2373int security_inode_remove_acl(struct mnt_idmap *idmap,
2374			      struct dentry *dentry, const char *acl_name)
2375{
2376	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2377		return 0;
2378	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2379}
2380
2381/**
2382 * security_inode_post_remove_acl() - Update inode security after rm posix acls
2383 * @idmap: idmap of the mount
2384 * @dentry: file
2385 * @acl_name: acl name
2386 *
2387 * Update inode security data after successfully removing posix acls on
2388 * @dentry in @idmap. The posix acls are identified by @acl_name.
2389 */
2390void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2391				    struct dentry *dentry, const char *acl_name)
2392{
2393	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2394		return;
2395	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2396}
2397
2398/**
2399 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2400 * @dentry: file
2401 * @name: xattr name
2402 * @value: xattr value
2403 * @size: xattr value size
2404 * @flags: flags
2405 *
2406 * Update inode security field after successful setxattr operation.
2407 */
2408void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2409				  const void *value, size_t size, int flags)
2410{
2411	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2412		return;
2413	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2414}
2415
2416/**
2417 * security_inode_getxattr() - Check if xattr access is allowed
2418 * @dentry: file
2419 * @name: xattr name
2420 *
2421 * Check permission before obtaining the extended attributes identified by
2422 * @name for @dentry.
2423 *
2424 * Return: Returns 0 if permission is granted.
2425 */
2426int security_inode_getxattr(struct dentry *dentry, const char *name)
2427{
2428	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2429		return 0;
2430	return call_int_hook(inode_getxattr, dentry, name);
2431}
2432
2433/**
2434 * security_inode_listxattr() - Check if listing xattrs is allowed
2435 * @dentry: file
2436 *
2437 * Check permission before obtaining the list of extended attribute names for
2438 * @dentry.
2439 *
2440 * Return: Returns 0 if permission is granted.
2441 */
2442int security_inode_listxattr(struct dentry *dentry)
2443{
2444	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2445		return 0;
2446	return call_int_hook(inode_listxattr, dentry);
2447}
2448
2449/**
2450 * security_inode_removexattr() - Check if removing an xattr is allowed
2451 * @idmap: idmap of the mount
2452 * @dentry: file
2453 * @name: xattr name
2454 *
2455 * Check permission before removing the extended attribute identified by @name
2456 * for @dentry.
 
 
 
 
 
 
 
 
 
 
 
 
2457 *
2458 * Return: Returns 0 if permission is granted.
2459 */
2460int security_inode_removexattr(struct mnt_idmap *idmap,
2461			       struct dentry *dentry, const char *name)
2462{
2463	int ret;
2464
2465	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2466		return 0;
2467	/*
2468	 * SELinux and Smack integrate the cap call,
2469	 * so assume that all LSMs supplying this call do so.
2470	 */
2471	ret = call_int_hook(inode_removexattr, idmap, dentry, name);
2472	if (ret == 1)
2473		ret = cap_inode_removexattr(idmap, dentry, name);
2474	return ret;
 
2475}
2476
2477/**
2478 * security_inode_post_removexattr() - Update the inode after a removexattr op
2479 * @dentry: file
2480 * @name: xattr name
2481 *
2482 * Update the inode after a successful removexattr operation.
2483 */
2484void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2485{
2486	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2487		return;
2488	call_void_hook(inode_post_removexattr, dentry, name);
2489}
2490
2491/**
2492 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2493 * @dentry: associated dentry
2494 *
2495 * Called when an inode has been changed to determine if
2496 * security_inode_killpriv() should be called.
2497 *
2498 * Return: Return <0 on error to abort the inode change operation, return 0 if
2499 *         security_inode_killpriv() does not need to be called, return >0 if
2500 *         security_inode_killpriv() does need to be called.
2501 */
2502int security_inode_need_killpriv(struct dentry *dentry)
2503{
2504	return call_int_hook(inode_need_killpriv, dentry);
2505}
2506
2507/**
2508 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2509 * @idmap: idmap of the mount
2510 * @dentry: associated dentry
2511 *
2512 * The @dentry's setuid bit is being removed.  Remove similar security labels.
2513 * Called with the dentry->d_inode->i_mutex held.
2514 *
2515 * Return: Return 0 on success.  If error is returned, then the operation
2516 *         causing setuid bit removal is failed.
2517 */
2518int security_inode_killpriv(struct mnt_idmap *idmap,
2519			    struct dentry *dentry)
2520{
2521	return call_int_hook(inode_killpriv, idmap, dentry);
2522}
2523
2524/**
2525 * security_inode_getsecurity() - Get the xattr security label of an inode
2526 * @idmap: idmap of the mount
2527 * @inode: inode
2528 * @name: xattr name
2529 * @buffer: security label buffer
2530 * @alloc: allocation flag
2531 *
2532 * Retrieve a copy of the extended attribute representation of the security
2533 * label associated with @name for @inode via @buffer.  Note that @name is the
2534 * remainder of the attribute name after the security prefix has been removed.
2535 * @alloc is used to specify if the call should return a value via the buffer
2536 * or just the value length.
2537 *
2538 * Return: Returns size of buffer on success.
2539 */
2540int security_inode_getsecurity(struct mnt_idmap *idmap,
2541			       struct inode *inode, const char *name,
2542			       void **buffer, bool alloc)
2543{
2544	if (unlikely(IS_PRIVATE(inode)))
2545		return LSM_RET_DEFAULT(inode_getsecurity);
2546
2547	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2548			     alloc);
2549}
2550
2551/**
2552 * security_inode_setsecurity() - Set the xattr security label of an inode
2553 * @inode: inode
2554 * @name: xattr name
2555 * @value: security label
2556 * @size: length of security label
2557 * @flags: flags
2558 *
2559 * Set the security label associated with @name for @inode from the extended
2560 * attribute value @value.  @size indicates the size of the @value in bytes.
2561 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2562 * remainder of the attribute name after the security. prefix has been removed.
2563 *
2564 * Return: Returns 0 on success.
2565 */
2566int security_inode_setsecurity(struct inode *inode, const char *name,
2567			       const void *value, size_t size, int flags)
2568{
2569	if (unlikely(IS_PRIVATE(inode)))
2570		return LSM_RET_DEFAULT(inode_setsecurity);
2571
2572	return call_int_hook(inode_setsecurity, inode, name, value, size,
2573			     flags);
2574}
2575
2576/**
2577 * security_inode_listsecurity() - List the xattr security label names
2578 * @inode: inode
2579 * @buffer: buffer
2580 * @buffer_size: size of buffer
2581 *
2582 * Copy the extended attribute names for the security labels associated with
2583 * @inode into @buffer.  The maximum size of @buffer is specified by
2584 * @buffer_size.  @buffer may be NULL to request the size of the buffer
2585 * required.
2586 *
2587 * Return: Returns number of bytes used/required on success.
2588 */
2589int security_inode_listsecurity(struct inode *inode,
2590				char *buffer, size_t buffer_size)
2591{
2592	if (unlikely(IS_PRIVATE(inode)))
2593		return 0;
2594	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2595}
2596EXPORT_SYMBOL(security_inode_listsecurity);
2597
2598/**
2599 * security_inode_getsecid() - Get an inode's secid
2600 * @inode: inode
2601 * @secid: secid to return
2602 *
2603 * Get the secid associated with the node.  In case of failure, @secid will be
2604 * set to zero.
2605 */
2606void security_inode_getsecid(struct inode *inode, u32 *secid)
2607{
2608	call_void_hook(inode_getsecid, inode, secid);
2609}
2610
2611/**
2612 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2613 * @src: union dentry of copy-up file
2614 * @new: newly created creds
2615 *
2616 * A file is about to be copied up from lower layer to upper layer of overlay
2617 * filesystem. Security module can prepare a set of new creds and modify as
2618 * need be and return new creds. Caller will switch to new creds temporarily to
2619 * create new file and release newly allocated creds.
2620 *
2621 * Return: Returns 0 on success or a negative error code on error.
2622 */
2623int security_inode_copy_up(struct dentry *src, struct cred **new)
2624{
2625	return call_int_hook(inode_copy_up, src, new);
2626}
2627EXPORT_SYMBOL(security_inode_copy_up);
2628
2629/**
2630 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
 
2631 * @name: xattr name
2632 *
2633 * Filter the xattrs being copied up when a unioned file is copied up from a
2634 * lower layer to the union/overlay layer.   The caller is responsible for
2635 * reading and writing the xattrs, this hook is merely a filter.
2636 *
2637 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP
2638 *         if the security module does not know about attribute, or a negative
2639 *         error code to abort the copy up.
2640 */
2641int security_inode_copy_up_xattr(const char *name)
2642{
2643	int rc;
2644
2645	/*
2646	 * The implementation can return 0 (accept the xattr), 1 (discard the
2647	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
2648	 * any other error code in case of an error.
2649	 */
2650	rc = call_int_hook(inode_copy_up_xattr, name);
2651	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2652		return rc;
2653
2654	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2655}
2656EXPORT_SYMBOL(security_inode_copy_up_xattr);
2657
2658/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2659 * security_kernfs_init_security() - Init LSM context for a kernfs node
2660 * @kn_dir: parent kernfs node
2661 * @kn: the kernfs node to initialize
2662 *
2663 * Initialize the security context of a newly created kernfs node based on its
2664 * own and its parent's attributes.
2665 *
2666 * Return: Returns 0 if permission is granted.
2667 */
2668int security_kernfs_init_security(struct kernfs_node *kn_dir,
2669				  struct kernfs_node *kn)
2670{
2671	return call_int_hook(kernfs_init_security, kn_dir, kn);
2672}
2673
2674/**
2675 * security_file_permission() - Check file permissions
2676 * @file: file
2677 * @mask: requested permissions
2678 *
2679 * Check file permissions before accessing an open file.  This hook is called
2680 * by various operations that read or write files.  A security module can use
2681 * this hook to perform additional checking on these operations, e.g. to
2682 * revalidate permissions on use to support privilege bracketing or policy
2683 * changes.  Notice that this hook is used when the actual read/write
2684 * operations are performed, whereas the inode_security_ops hook is called when
2685 * a file is opened (as well as many other operations).  Although this hook can
2686 * be used to revalidate permissions for various system call operations that
2687 * read or write files, it does not address the revalidation of permissions for
2688 * memory-mapped files.  Security modules must handle this separately if they
2689 * need such revalidation.
2690 *
2691 * Return: Returns 0 if permission is granted.
2692 */
2693int security_file_permission(struct file *file, int mask)
2694{
2695	return call_int_hook(file_permission, file, mask);
2696}
2697
2698/**
2699 * security_file_alloc() - Allocate and init a file's LSM blob
2700 * @file: the file
2701 *
2702 * Allocate and attach a security structure to the file->f_security field.  The
2703 * security field is initialized to NULL when the structure is first created.
2704 *
2705 * Return: Return 0 if the hook is successful and permission is granted.
2706 */
2707int security_file_alloc(struct file *file)
2708{
2709	int rc = lsm_file_alloc(file);
2710
2711	if (rc)
2712		return rc;
2713	rc = call_int_hook(file_alloc_security, file);
2714	if (unlikely(rc))
2715		security_file_free(file);
2716	return rc;
2717}
2718
2719/**
2720 * security_file_release() - Perform actions before releasing the file ref
2721 * @file: the file
2722 *
2723 * Perform actions before releasing the last reference to a file.
2724 */
2725void security_file_release(struct file *file)
2726{
2727	call_void_hook(file_release, file);
2728}
2729
2730/**
2731 * security_file_free() - Free a file's LSM blob
2732 * @file: the file
2733 *
2734 * Deallocate and free any security structures stored in file->f_security.
2735 */
2736void security_file_free(struct file *file)
2737{
2738	void *blob;
2739
2740	call_void_hook(file_free_security, file);
2741
2742	blob = file->f_security;
2743	if (blob) {
2744		file->f_security = NULL;
2745		kmem_cache_free(lsm_file_cache, blob);
2746	}
2747}
2748
2749/**
2750 * security_file_ioctl() - Check if an ioctl is allowed
2751 * @file: associated file
2752 * @cmd: ioctl cmd
2753 * @arg: ioctl arguments
2754 *
2755 * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2756 * represents a user space pointer; in other cases, it may be a simple integer
2757 * value.  When @arg represents a user space pointer, it should never be used
2758 * by the security module.
2759 *
2760 * Return: Returns 0 if permission is granted.
2761 */
2762int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2763{
2764	return call_int_hook(file_ioctl, file, cmd, arg);
2765}
2766EXPORT_SYMBOL_GPL(security_file_ioctl);
2767
2768/**
2769 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2770 * @file: associated file
2771 * @cmd: ioctl cmd
2772 * @arg: ioctl arguments
2773 *
2774 * Compat version of security_file_ioctl() that correctly handles 32-bit
2775 * processes running on 64-bit kernels.
2776 *
2777 * Return: Returns 0 if permission is granted.
2778 */
2779int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2780			       unsigned long arg)
2781{
2782	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2783}
2784EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2785
2786static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2787{
2788	/*
2789	 * Does we have PROT_READ and does the application expect
2790	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2791	 */
2792	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2793		return prot;
2794	if (!(current->personality & READ_IMPLIES_EXEC))
2795		return prot;
2796	/*
2797	 * if that's an anonymous mapping, let it.
2798	 */
2799	if (!file)
2800		return prot | PROT_EXEC;
2801	/*
2802	 * ditto if it's not on noexec mount, except that on !MMU we need
2803	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2804	 */
2805	if (!path_noexec(&file->f_path)) {
2806#ifndef CONFIG_MMU
2807		if (file->f_op->mmap_capabilities) {
2808			unsigned caps = file->f_op->mmap_capabilities(file);
2809			if (!(caps & NOMMU_MAP_EXEC))
2810				return prot;
2811		}
2812#endif
2813		return prot | PROT_EXEC;
2814	}
2815	/* anything on noexec mount won't get PROT_EXEC */
2816	return prot;
2817}
2818
2819/**
2820 * security_mmap_file() - Check if mmap'ing a file is allowed
2821 * @file: file
2822 * @prot: protection applied by the kernel
2823 * @flags: flags
2824 *
2825 * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2826 * mapping anonymous memory.
2827 *
2828 * Return: Returns 0 if permission is granted.
2829 */
2830int security_mmap_file(struct file *file, unsigned long prot,
2831		       unsigned long flags)
2832{
2833	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2834			     flags);
2835}
2836
2837/**
2838 * security_mmap_addr() - Check if mmap'ing an address is allowed
2839 * @addr: address
2840 *
2841 * Check permissions for a mmap operation at @addr.
2842 *
2843 * Return: Returns 0 if permission is granted.
2844 */
2845int security_mmap_addr(unsigned long addr)
2846{
2847	return call_int_hook(mmap_addr, addr);
2848}
2849
2850/**
2851 * security_file_mprotect() - Check if changing memory protections is allowed
2852 * @vma: memory region
2853 * @reqprot: application requested protection
2854 * @prot: protection applied by the kernel
2855 *
2856 * Check permissions before changing memory access permissions.
2857 *
2858 * Return: Returns 0 if permission is granted.
2859 */
2860int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2861			   unsigned long prot)
2862{
2863	return call_int_hook(file_mprotect, vma, reqprot, prot);
2864}
2865
2866/**
2867 * security_file_lock() - Check if a file lock is allowed
2868 * @file: file
2869 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2870 *
2871 * Check permission before performing file locking operations.  Note the hook
2872 * mediates both flock and fcntl style locks.
2873 *
2874 * Return: Returns 0 if permission is granted.
2875 */
2876int security_file_lock(struct file *file, unsigned int cmd)
2877{
2878	return call_int_hook(file_lock, file, cmd);
2879}
2880
2881/**
2882 * security_file_fcntl() - Check if fcntl() op is allowed
2883 * @file: file
2884 * @cmd: fcntl command
2885 * @arg: command argument
2886 *
2887 * Check permission before allowing the file operation specified by @cmd from
2888 * being performed on the file @file.  Note that @arg sometimes represents a
2889 * user space pointer; in other cases, it may be a simple integer value.  When
2890 * @arg represents a user space pointer, it should never be used by the
2891 * security module.
2892 *
2893 * Return: Returns 0 if permission is granted.
2894 */
2895int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2896{
2897	return call_int_hook(file_fcntl, file, cmd, arg);
2898}
2899
2900/**
2901 * security_file_set_fowner() - Set the file owner info in the LSM blob
2902 * @file: the file
2903 *
2904 * Save owner security information (typically from current->security) in
2905 * file->f_security for later use by the send_sigiotask hook.
2906 *
 
 
2907 * Return: Returns 0 on success.
2908 */
2909void security_file_set_fowner(struct file *file)
2910{
2911	call_void_hook(file_set_fowner, file);
2912}
2913
2914/**
2915 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2916 * @tsk: target task
2917 * @fown: signal sender
2918 * @sig: signal to be sent, SIGIO is sent if 0
2919 *
2920 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
2921 * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
2922 * that the fown_struct, @fown, is never outside the context of a struct file,
2923 * so the file structure (and associated security information) can always be
2924 * obtained: container_of(fown, struct file, f_owner).
2925 *
2926 * Return: Returns 0 if permission is granted.
2927 */
2928int security_file_send_sigiotask(struct task_struct *tsk,
2929				 struct fown_struct *fown, int sig)
2930{
2931	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
2932}
2933
2934/**
2935 * security_file_receive() - Check if receiving a file via IPC is allowed
2936 * @file: file being received
2937 *
2938 * This hook allows security modules to control the ability of a process to
2939 * receive an open file descriptor via socket IPC.
2940 *
2941 * Return: Returns 0 if permission is granted.
2942 */
2943int security_file_receive(struct file *file)
2944{
2945	return call_int_hook(file_receive, file);
2946}
2947
2948/**
2949 * security_file_open() - Save open() time state for late use by the LSM
2950 * @file:
2951 *
2952 * Save open-time permission checking state for later use upon file_permission,
2953 * and recheck access if anything has changed since inode_permission.
2954 *
2955 * Return: Returns 0 if permission is granted.
2956 */
2957int security_file_open(struct file *file)
2958{
2959	int ret;
2960
2961	ret = call_int_hook(file_open, file);
2962	if (ret)
2963		return ret;
2964
2965	return fsnotify_open_perm(file);
2966}
2967
2968/**
2969 * security_file_post_open() - Evaluate a file after it has been opened
2970 * @file: the file
2971 * @mask: access mask
2972 *
2973 * Evaluate an opened file and the access mask requested with open(). The hook
2974 * is useful for LSMs that require the file content to be available in order to
2975 * make decisions.
2976 *
2977 * Return: Returns 0 if permission is granted.
2978 */
2979int security_file_post_open(struct file *file, int mask)
2980{
2981	return call_int_hook(file_post_open, file, mask);
2982}
2983EXPORT_SYMBOL_GPL(security_file_post_open);
2984
2985/**
2986 * security_file_truncate() - Check if truncating a file is allowed
2987 * @file: file
2988 *
2989 * Check permission before truncating a file, i.e. using ftruncate.  Note that
2990 * truncation permission may also be checked based on the path, using the
2991 * @path_truncate hook.
2992 *
2993 * Return: Returns 0 if permission is granted.
2994 */
2995int security_file_truncate(struct file *file)
2996{
2997	return call_int_hook(file_truncate, file);
2998}
2999
3000/**
3001 * security_task_alloc() - Allocate a task's LSM blob
3002 * @task: the task
3003 * @clone_flags: flags indicating what is being shared
3004 *
3005 * Handle allocation of task-related resources.
3006 *
3007 * Return: Returns a zero on success, negative values on failure.
3008 */
3009int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3010{
3011	int rc = lsm_task_alloc(task);
3012
3013	if (rc)
3014		return rc;
3015	rc = call_int_hook(task_alloc, task, clone_flags);
3016	if (unlikely(rc))
3017		security_task_free(task);
3018	return rc;
3019}
3020
3021/**
3022 * security_task_free() - Free a task's LSM blob and related resources
3023 * @task: task
3024 *
3025 * Handle release of task-related resources.  Note that this can be called from
3026 * interrupt context.
3027 */
3028void security_task_free(struct task_struct *task)
3029{
3030	call_void_hook(task_free, task);
3031
3032	kfree(task->security);
3033	task->security = NULL;
3034}
3035
3036/**
3037 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3038 * @cred: credentials
3039 * @gfp: gfp flags
3040 *
3041 * Only allocate sufficient memory and attach to @cred such that
3042 * cred_transfer() will not get ENOMEM.
3043 *
3044 * Return: Returns 0 on success, negative values on failure.
3045 */
3046int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3047{
3048	int rc = lsm_cred_alloc(cred, gfp);
3049
3050	if (rc)
3051		return rc;
3052
3053	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3054	if (unlikely(rc))
3055		security_cred_free(cred);
3056	return rc;
3057}
3058
3059/**
3060 * security_cred_free() - Free the cred's LSM blob and associated resources
3061 * @cred: credentials
3062 *
3063 * Deallocate and clear the cred->security field in a set of credentials.
3064 */
3065void security_cred_free(struct cred *cred)
3066{
3067	/*
3068	 * There is a failure case in prepare_creds() that
3069	 * may result in a call here with ->security being NULL.
3070	 */
3071	if (unlikely(cred->security == NULL))
3072		return;
3073
3074	call_void_hook(cred_free, cred);
3075
3076	kfree(cred->security);
3077	cred->security = NULL;
3078}
3079
3080/**
3081 * security_prepare_creds() - Prepare a new set of credentials
3082 * @new: new credentials
3083 * @old: original credentials
3084 * @gfp: gfp flags
3085 *
3086 * Prepare a new set of credentials by copying the data from the old set.
3087 *
3088 * Return: Returns 0 on success, negative values on failure.
3089 */
3090int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3091{
3092	int rc = lsm_cred_alloc(new, gfp);
3093
3094	if (rc)
3095		return rc;
3096
3097	rc = call_int_hook(cred_prepare, new, old, gfp);
3098	if (unlikely(rc))
3099		security_cred_free(new);
3100	return rc;
3101}
3102
3103/**
3104 * security_transfer_creds() - Transfer creds
3105 * @new: target credentials
3106 * @old: original credentials
3107 *
3108 * Transfer data from original creds to new creds.
3109 */
3110void security_transfer_creds(struct cred *new, const struct cred *old)
3111{
3112	call_void_hook(cred_transfer, new, old);
3113}
3114
3115/**
3116 * security_cred_getsecid() - Get the secid from a set of credentials
3117 * @c: credentials
3118 * @secid: secid value
3119 *
3120 * Retrieve the security identifier of the cred structure @c.  In case of
3121 * failure, @secid will be set to zero.
3122 */
3123void security_cred_getsecid(const struct cred *c, u32 *secid)
3124{
3125	*secid = 0;
3126	call_void_hook(cred_getsecid, c, secid);
3127}
3128EXPORT_SYMBOL(security_cred_getsecid);
3129
3130/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3131 * security_kernel_act_as() - Set the kernel credentials to act as secid
3132 * @new: credentials
3133 * @secid: secid
3134 *
3135 * Set the credentials for a kernel service to act as (subjective context).
3136 * The current task must be the one that nominated @secid.
3137 *
3138 * Return: Returns 0 if successful.
3139 */
3140int security_kernel_act_as(struct cred *new, u32 secid)
3141{
3142	return call_int_hook(kernel_act_as, new, secid);
3143}
3144
3145/**
3146 * security_kernel_create_files_as() - Set file creation context using an inode
3147 * @new: target credentials
3148 * @inode: reference inode
3149 *
3150 * Set the file creation context in a set of credentials to be the same as the
3151 * objective context of the specified inode.  The current task must be the one
3152 * that nominated @inode.
3153 *
3154 * Return: Returns 0 if successful.
3155 */
3156int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3157{
3158	return call_int_hook(kernel_create_files_as, new, inode);
3159}
3160
3161/**
3162 * security_kernel_module_request() - Check if loading a module is allowed
3163 * @kmod_name: module name
3164 *
3165 * Ability to trigger the kernel to automatically upcall to userspace for
3166 * userspace to load a kernel module with the given name.
3167 *
3168 * Return: Returns 0 if successful.
3169 */
3170int security_kernel_module_request(char *kmod_name)
3171{
3172	return call_int_hook(kernel_module_request, kmod_name);
3173}
3174
3175/**
3176 * security_kernel_read_file() - Read a file specified by userspace
3177 * @file: file
3178 * @id: file identifier
3179 * @contents: trust if security_kernel_post_read_file() will be called
3180 *
3181 * Read a file specified by userspace.
3182 *
3183 * Return: Returns 0 if permission is granted.
3184 */
3185int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3186			      bool contents)
3187{
3188	return call_int_hook(kernel_read_file, file, id, contents);
3189}
3190EXPORT_SYMBOL_GPL(security_kernel_read_file);
3191
3192/**
3193 * security_kernel_post_read_file() - Read a file specified by userspace
3194 * @file: file
3195 * @buf: file contents
3196 * @size: size of file contents
3197 * @id: file identifier
3198 *
3199 * Read a file specified by userspace.  This must be paired with a prior call
3200 * to security_kernel_read_file() call that indicated this hook would also be
3201 * called, see security_kernel_read_file() for more information.
3202 *
3203 * Return: Returns 0 if permission is granted.
3204 */
3205int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3206				   enum kernel_read_file_id id)
3207{
3208	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3209}
3210EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3211
3212/**
3213 * security_kernel_load_data() - Load data provided by userspace
3214 * @id: data identifier
3215 * @contents: true if security_kernel_post_load_data() will be called
3216 *
3217 * Load data provided by userspace.
3218 *
3219 * Return: Returns 0 if permission is granted.
3220 */
3221int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3222{
3223	return call_int_hook(kernel_load_data, id, contents);
3224}
3225EXPORT_SYMBOL_GPL(security_kernel_load_data);
3226
3227/**
3228 * security_kernel_post_load_data() - Load userspace data from a non-file source
3229 * @buf: data
3230 * @size: size of data
3231 * @id: data identifier
3232 * @description: text description of data, specific to the id value
3233 *
3234 * Load data provided by a non-file source (usually userspace buffer).  This
3235 * must be paired with a prior security_kernel_load_data() call that indicated
3236 * this hook would also be called, see security_kernel_load_data() for more
3237 * information.
3238 *
3239 * Return: Returns 0 if permission is granted.
3240 */
3241int security_kernel_post_load_data(char *buf, loff_t size,
3242				   enum kernel_load_data_id id,
3243				   char *description)
3244{
3245	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3246}
3247EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3248
3249/**
3250 * security_task_fix_setuid() - Update LSM with new user id attributes
3251 * @new: updated credentials
3252 * @old: credentials being replaced
3253 * @flags: LSM_SETID_* flag values
3254 *
3255 * Update the module's state after setting one or more of the user identity
3256 * attributes of the current process.  The @flags parameter indicates which of
3257 * the set*uid system calls invoked this hook.  If @new is the set of
3258 * credentials that will be installed.  Modifications should be made to this
3259 * rather than to @current->cred.
3260 *
3261 * Return: Returns 0 on success.
3262 */
3263int security_task_fix_setuid(struct cred *new, const struct cred *old,
3264			     int flags)
3265{
3266	return call_int_hook(task_fix_setuid, new, old, flags);
3267}
3268
3269/**
3270 * security_task_fix_setgid() - Update LSM with new group id attributes
3271 * @new: updated credentials
3272 * @old: credentials being replaced
3273 * @flags: LSM_SETID_* flag value
3274 *
3275 * Update the module's state after setting one or more of the group identity
3276 * attributes of the current process.  The @flags parameter indicates which of
3277 * the set*gid system calls invoked this hook.  @new is the set of credentials
3278 * that will be installed.  Modifications should be made to this rather than to
3279 * @current->cred.
3280 *
3281 * Return: Returns 0 on success.
3282 */
3283int security_task_fix_setgid(struct cred *new, const struct cred *old,
3284			     int flags)
3285{
3286	return call_int_hook(task_fix_setgid, new, old, flags);
3287}
3288
3289/**
3290 * security_task_fix_setgroups() - Update LSM with new supplementary groups
3291 * @new: updated credentials
3292 * @old: credentials being replaced
3293 *
3294 * Update the module's state after setting the supplementary group identity
3295 * attributes of the current process.  @new is the set of credentials that will
3296 * be installed.  Modifications should be made to this rather than to
3297 * @current->cred.
3298 *
3299 * Return: Returns 0 on success.
3300 */
3301int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3302{
3303	return call_int_hook(task_fix_setgroups, new, old);
3304}
3305
3306/**
3307 * security_task_setpgid() - Check if setting the pgid is allowed
3308 * @p: task being modified
3309 * @pgid: new pgid
3310 *
3311 * Check permission before setting the process group identifier of the process
3312 * @p to @pgid.
3313 *
3314 * Return: Returns 0 if permission is granted.
3315 */
3316int security_task_setpgid(struct task_struct *p, pid_t pgid)
3317{
3318	return call_int_hook(task_setpgid, p, pgid);
3319}
3320
3321/**
3322 * security_task_getpgid() - Check if getting the pgid is allowed
3323 * @p: task
3324 *
3325 * Check permission before getting the process group identifier of the process
3326 * @p.
3327 *
3328 * Return: Returns 0 if permission is granted.
3329 */
3330int security_task_getpgid(struct task_struct *p)
3331{
3332	return call_int_hook(task_getpgid, p);
3333}
3334
3335/**
3336 * security_task_getsid() - Check if getting the session id is allowed
3337 * @p: task
3338 *
3339 * Check permission before getting the session identifier of the process @p.
3340 *
3341 * Return: Returns 0 if permission is granted.
3342 */
3343int security_task_getsid(struct task_struct *p)
3344{
3345	return call_int_hook(task_getsid, p);
3346}
3347
3348/**
3349 * security_current_getsecid_subj() - Get the current task's subjective secid
3350 * @secid: secid value
3351 *
3352 * Retrieve the subjective security identifier of the current task and return
3353 * it in @secid.  In case of failure, @secid will be set to zero.
3354 */
3355void security_current_getsecid_subj(u32 *secid)
3356{
3357	*secid = 0;
3358	call_void_hook(current_getsecid_subj, secid);
3359}
3360EXPORT_SYMBOL(security_current_getsecid_subj);
3361
3362/**
3363 * security_task_getsecid_obj() - Get a task's objective secid
3364 * @p: target task
3365 * @secid: secid value
3366 *
3367 * Retrieve the objective security identifier of the task_struct in @p and
3368 * return it in @secid. In case of failure, @secid will be set to zero.
3369 */
3370void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3371{
3372	*secid = 0;
3373	call_void_hook(task_getsecid_obj, p, secid);
3374}
3375EXPORT_SYMBOL(security_task_getsecid_obj);
3376
3377/**
3378 * security_task_setnice() - Check if setting a task's nice value is allowed
3379 * @p: target task
3380 * @nice: nice value
3381 *
3382 * Check permission before setting the nice value of @p to @nice.
3383 *
3384 * Return: Returns 0 if permission is granted.
3385 */
3386int security_task_setnice(struct task_struct *p, int nice)
3387{
3388	return call_int_hook(task_setnice, p, nice);
3389}
3390
3391/**
3392 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3393 * @p: target task
3394 * @ioprio: ioprio value
3395 *
3396 * Check permission before setting the ioprio value of @p to @ioprio.
3397 *
3398 * Return: Returns 0 if permission is granted.
3399 */
3400int security_task_setioprio(struct task_struct *p, int ioprio)
3401{
3402	return call_int_hook(task_setioprio, p, ioprio);
3403}
3404
3405/**
3406 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3407 * @p: task
3408 *
3409 * Check permission before getting the ioprio value of @p.
3410 *
3411 * Return: Returns 0 if permission is granted.
3412 */
3413int security_task_getioprio(struct task_struct *p)
3414{
3415	return call_int_hook(task_getioprio, p);
3416}
3417
3418/**
3419 * security_task_prlimit() - Check if get/setting resources limits is allowed
3420 * @cred: current task credentials
3421 * @tcred: target task credentials
3422 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3423 *
3424 * Check permission before getting and/or setting the resource limits of
3425 * another task.
3426 *
3427 * Return: Returns 0 if permission is granted.
3428 */
3429int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3430			  unsigned int flags)
3431{
3432	return call_int_hook(task_prlimit, cred, tcred, flags);
3433}
3434
3435/**
3436 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3437 * @p: target task's group leader
3438 * @resource: resource whose limit is being set
3439 * @new_rlim: new resource limit
3440 *
3441 * Check permission before setting the resource limits of process @p for
3442 * @resource to @new_rlim.  The old resource limit values can be examined by
3443 * dereferencing (p->signal->rlim + resource).
3444 *
3445 * Return: Returns 0 if permission is granted.
3446 */
3447int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3448			    struct rlimit *new_rlim)
3449{
3450	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3451}
3452
3453/**
3454 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3455 * @p: target task
3456 *
3457 * Check permission before setting scheduling policy and/or parameters of
3458 * process @p.
3459 *
3460 * Return: Returns 0 if permission is granted.
3461 */
3462int security_task_setscheduler(struct task_struct *p)
3463{
3464	return call_int_hook(task_setscheduler, p);
3465}
3466
3467/**
3468 * security_task_getscheduler() - Check if getting scheduling info is allowed
3469 * @p: target task
3470 *
3471 * Check permission before obtaining scheduling information for process @p.
3472 *
3473 * Return: Returns 0 if permission is granted.
3474 */
3475int security_task_getscheduler(struct task_struct *p)
3476{
3477	return call_int_hook(task_getscheduler, p);
3478}
3479
3480/**
3481 * security_task_movememory() - Check if moving memory is allowed
3482 * @p: task
3483 *
3484 * Check permission before moving memory owned by process @p.
3485 *
3486 * Return: Returns 0 if permission is granted.
3487 */
3488int security_task_movememory(struct task_struct *p)
3489{
3490	return call_int_hook(task_movememory, p);
3491}
3492
3493/**
3494 * security_task_kill() - Check if sending a signal is allowed
3495 * @p: target process
3496 * @info: signal information
3497 * @sig: signal value
3498 * @cred: credentials of the signal sender, NULL if @current
3499 *
3500 * Check permission before sending signal @sig to @p.  @info can be NULL, the
3501 * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3502 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3503 * the kernel and should typically be permitted.  SIGIO signals are handled
3504 * separately by the send_sigiotask hook in file_security_ops.
3505 *
3506 * Return: Returns 0 if permission is granted.
3507 */
3508int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3509		       int sig, const struct cred *cred)
3510{
3511	return call_int_hook(task_kill, p, info, sig, cred);
3512}
3513
3514/**
3515 * security_task_prctl() - Check if a prctl op is allowed
3516 * @option: operation
3517 * @arg2: argument
3518 * @arg3: argument
3519 * @arg4: argument
3520 * @arg5: argument
3521 *
3522 * Check permission before performing a process control operation on the
3523 * current process.
3524 *
3525 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3526 *         to cause prctl() to return immediately with that value.
3527 */
3528int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3529			unsigned long arg4, unsigned long arg5)
3530{
3531	int thisrc;
3532	int rc = LSM_RET_DEFAULT(task_prctl);
3533	struct security_hook_list *hp;
3534
3535	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
3536		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3537		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3538			rc = thisrc;
3539			if (thisrc != 0)
3540				break;
3541		}
3542	}
3543	return rc;
3544}
3545
3546/**
3547 * security_task_to_inode() - Set the security attributes of a task's inode
3548 * @p: task
3549 * @inode: inode
3550 *
3551 * Set the security attributes for an inode based on an associated task's
3552 * security attributes, e.g. for /proc/pid inodes.
3553 */
3554void security_task_to_inode(struct task_struct *p, struct inode *inode)
3555{
3556	call_void_hook(task_to_inode, p, inode);
3557}
3558
3559/**
3560 * security_create_user_ns() - Check if creating a new userns is allowed
3561 * @cred: prepared creds
3562 *
3563 * Check permission prior to creating a new user namespace.
3564 *
3565 * Return: Returns 0 if successful, otherwise < 0 error code.
3566 */
3567int security_create_user_ns(const struct cred *cred)
3568{
3569	return call_int_hook(userns_create, cred);
3570}
3571
3572/**
3573 * security_ipc_permission() - Check if sysv ipc access is allowed
3574 * @ipcp: ipc permission structure
3575 * @flag: requested permissions
3576 *
3577 * Check permissions for access to IPC.
3578 *
3579 * Return: Returns 0 if permission is granted.
3580 */
3581int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3582{
3583	return call_int_hook(ipc_permission, ipcp, flag);
3584}
3585
3586/**
3587 * security_ipc_getsecid() - Get the sysv ipc object's secid
3588 * @ipcp: ipc permission structure
3589 * @secid: secid pointer
3590 *
3591 * Get the secid associated with the ipc object.  In case of failure, @secid
3592 * will be set to zero.
3593 */
3594void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 
3595{
3596	*secid = 0;
3597	call_void_hook(ipc_getsecid, ipcp, secid);
3598}
3599
3600/**
3601 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3602 * @msg: message structure
3603 *
3604 * Allocate and attach a security structure to the msg->security field.  The
3605 * security field is initialized to NULL when the structure is first created.
3606 *
3607 * Return: Return 0 if operation was successful and permission is granted.
3608 */
3609int security_msg_msg_alloc(struct msg_msg *msg)
3610{
3611	int rc = lsm_msg_msg_alloc(msg);
3612
3613	if (unlikely(rc))
3614		return rc;
3615	rc = call_int_hook(msg_msg_alloc_security, msg);
3616	if (unlikely(rc))
3617		security_msg_msg_free(msg);
3618	return rc;
3619}
3620
3621/**
3622 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3623 * @msg: message structure
3624 *
3625 * Deallocate the security structure for this message.
3626 */
3627void security_msg_msg_free(struct msg_msg *msg)
3628{
3629	call_void_hook(msg_msg_free_security, msg);
3630	kfree(msg->security);
3631	msg->security = NULL;
3632}
3633
3634/**
3635 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3636 * @msq: sysv ipc permission structure
3637 *
3638 * Allocate and attach a security structure to @msg. The security field is
3639 * initialized to NULL when the structure is first created.
3640 *
3641 * Return: Returns 0 if operation was successful and permission is granted.
3642 */
3643int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3644{
3645	int rc = lsm_ipc_alloc(msq);
3646
3647	if (unlikely(rc))
3648		return rc;
3649	rc = call_int_hook(msg_queue_alloc_security, msq);
3650	if (unlikely(rc))
3651		security_msg_queue_free(msq);
3652	return rc;
3653}
3654
3655/**
3656 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3657 * @msq: sysv ipc permission structure
3658 *
3659 * Deallocate security field @perm->security for the message queue.
3660 */
3661void security_msg_queue_free(struct kern_ipc_perm *msq)
3662{
3663	call_void_hook(msg_queue_free_security, msq);
3664	kfree(msq->security);
3665	msq->security = NULL;
3666}
3667
3668/**
3669 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3670 * @msq: sysv ipc permission structure
3671 * @msqflg: operation flags
3672 *
3673 * Check permission when a message queue is requested through the msgget system
3674 * call. This hook is only called when returning the message queue identifier
3675 * for an existing message queue, not when a new message queue is created.
3676 *
3677 * Return: Return 0 if permission is granted.
3678 */
3679int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3680{
3681	return call_int_hook(msg_queue_associate, msq, msqflg);
3682}
3683
3684/**
3685 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3686 * @msq: sysv ipc permission structure
3687 * @cmd: operation
3688 *
3689 * Check permission when a message control operation specified by @cmd is to be
3690 * performed on the message queue with permissions.
3691 *
3692 * Return: Returns 0 if permission is granted.
3693 */
3694int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3695{
3696	return call_int_hook(msg_queue_msgctl, msq, cmd);
3697}
3698
3699/**
3700 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3701 * @msq: sysv ipc permission structure
3702 * @msg: message
3703 * @msqflg: operation flags
3704 *
3705 * Check permission before a message, @msg, is enqueued on the message queue
3706 * with permissions specified in @msq.
3707 *
3708 * Return: Returns 0 if permission is granted.
3709 */
3710int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3711			      struct msg_msg *msg, int msqflg)
3712{
3713	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3714}
3715
3716/**
3717 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3718 * @msq: sysv ipc permission structure
3719 * @msg: message
3720 * @target: target task
3721 * @type: type of message requested
3722 * @mode: operation flags
3723 *
3724 * Check permission before a message, @msg, is removed from the message	queue.
3725 * The @target task structure contains a pointer to the process that will be
3726 * receiving the message (not equal to the current process when inline receives
3727 * are being performed).
3728 *
3729 * Return: Returns 0 if permission is granted.
3730 */
3731int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3732			      struct task_struct *target, long type, int mode)
3733{
3734	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3735}
3736
3737/**
3738 * security_shm_alloc() - Allocate a sysv shm LSM blob
3739 * @shp: sysv ipc permission structure
3740 *
3741 * Allocate and attach a security structure to the @shp security field.  The
3742 * security field is initialized to NULL when the structure is first created.
3743 *
3744 * Return: Returns 0 if operation was successful and permission is granted.
3745 */
3746int security_shm_alloc(struct kern_ipc_perm *shp)
3747{
3748	int rc = lsm_ipc_alloc(shp);
3749
3750	if (unlikely(rc))
3751		return rc;
3752	rc = call_int_hook(shm_alloc_security, shp);
3753	if (unlikely(rc))
3754		security_shm_free(shp);
3755	return rc;
3756}
3757
3758/**
3759 * security_shm_free() - Free a sysv shm LSM blob
3760 * @shp: sysv ipc permission structure
3761 *
3762 * Deallocate the security structure @perm->security for the memory segment.
3763 */
3764void security_shm_free(struct kern_ipc_perm *shp)
3765{
3766	call_void_hook(shm_free_security, shp);
3767	kfree(shp->security);
3768	shp->security = NULL;
3769}
3770
3771/**
3772 * security_shm_associate() - Check if a sysv shm operation is allowed
3773 * @shp: sysv ipc permission structure
3774 * @shmflg: operation flags
3775 *
3776 * Check permission when a shared memory region is requested through the shmget
3777 * system call. This hook is only called when returning the shared memory
3778 * region identifier for an existing region, not when a new shared memory
3779 * region is created.
3780 *
3781 * Return: Returns 0 if permission is granted.
3782 */
3783int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3784{
3785	return call_int_hook(shm_associate, shp, shmflg);
3786}
3787
3788/**
3789 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3790 * @shp: sysv ipc permission structure
3791 * @cmd: operation
3792 *
3793 * Check permission when a shared memory control operation specified by @cmd is
3794 * to be performed on the shared memory region with permissions in @shp.
3795 *
3796 * Return: Return 0 if permission is granted.
3797 */
3798int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3799{
3800	return call_int_hook(shm_shmctl, shp, cmd);
3801}
3802
3803/**
3804 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3805 * @shp: sysv ipc permission structure
3806 * @shmaddr: address of memory region to attach
3807 * @shmflg: operation flags
3808 *
3809 * Check permissions prior to allowing the shmat system call to attach the
3810 * shared memory segment with permissions @shp to the data segment of the
3811 * calling process. The attaching address is specified by @shmaddr.
3812 *
3813 * Return: Returns 0 if permission is granted.
3814 */
3815int security_shm_shmat(struct kern_ipc_perm *shp,
3816		       char __user *shmaddr, int shmflg)
3817{
3818	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3819}
3820
3821/**
3822 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3823 * @sma: sysv ipc permission structure
3824 *
3825 * Allocate and attach a security structure to the @sma security field. The
3826 * security field is initialized to NULL when the structure is first created.
3827 *
3828 * Return: Returns 0 if operation was successful and permission is granted.
3829 */
3830int security_sem_alloc(struct kern_ipc_perm *sma)
3831{
3832	int rc = lsm_ipc_alloc(sma);
3833
3834	if (unlikely(rc))
3835		return rc;
3836	rc = call_int_hook(sem_alloc_security, sma);
3837	if (unlikely(rc))
3838		security_sem_free(sma);
3839	return rc;
3840}
3841
3842/**
3843 * security_sem_free() - Free a sysv semaphore LSM blob
3844 * @sma: sysv ipc permission structure
3845 *
3846 * Deallocate security structure @sma->security for the semaphore.
3847 */
3848void security_sem_free(struct kern_ipc_perm *sma)
3849{
3850	call_void_hook(sem_free_security, sma);
3851	kfree(sma->security);
3852	sma->security = NULL;
3853}
3854
3855/**
3856 * security_sem_associate() - Check if a sysv semaphore operation is allowed
3857 * @sma: sysv ipc permission structure
3858 * @semflg: operation flags
3859 *
3860 * Check permission when a semaphore is requested through the semget system
3861 * call. This hook is only called when returning the semaphore identifier for
3862 * an existing semaphore, not when a new one must be created.
3863 *
3864 * Return: Returns 0 if permission is granted.
3865 */
3866int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3867{
3868	return call_int_hook(sem_associate, sma, semflg);
3869}
3870
3871/**
3872 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3873 * @sma: sysv ipc permission structure
3874 * @cmd: operation
3875 *
3876 * Check permission when a semaphore operation specified by @cmd is to be
3877 * performed on the semaphore.
3878 *
3879 * Return: Returns 0 if permission is granted.
3880 */
3881int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3882{
3883	return call_int_hook(sem_semctl, sma, cmd);
3884}
3885
3886/**
3887 * security_sem_semop() - Check if a sysv semaphore operation is allowed
3888 * @sma: sysv ipc permission structure
3889 * @sops: operations to perform
3890 * @nsops: number of operations
3891 * @alter: flag indicating changes will be made
3892 *
3893 * Check permissions before performing operations on members of the semaphore
3894 * set. If the @alter flag is nonzero, the semaphore set may be modified.
3895 *
3896 * Return: Returns 0 if permission is granted.
3897 */
3898int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3899		       unsigned nsops, int alter)
3900{
3901	return call_int_hook(sem_semop, sma, sops, nsops, alter);
3902}
3903
3904/**
3905 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3906 * @dentry: dentry
3907 * @inode: inode
3908 *
3909 * Fill in @inode security information for a @dentry if allowed.
3910 */
3911void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3912{
3913	if (unlikely(inode && IS_PRIVATE(inode)))
3914		return;
3915	call_void_hook(d_instantiate, dentry, inode);
3916}
3917EXPORT_SYMBOL(security_d_instantiate);
3918
3919/*
3920 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
3921 */
3922
3923/**
3924 * security_getselfattr - Read an LSM attribute of the current process.
3925 * @attr: which attribute to return
3926 * @uctx: the user-space destination for the information, or NULL
3927 * @size: pointer to the size of space available to receive the data
3928 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
3929 * attributes associated with the LSM identified in the passed @ctx be
3930 * reported.
3931 *
3932 * A NULL value for @uctx can be used to get both the number of attributes
3933 * and the size of the data.
3934 *
3935 * Returns the number of attributes found on success, negative value
3936 * on error. @size is reset to the total size of the data.
3937 * If @size is insufficient to contain the data -E2BIG is returned.
3938 */
3939int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
3940			 u32 __user *size, u32 flags)
3941{
3942	struct security_hook_list *hp;
3943	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
3944	u8 __user *base = (u8 __user *)uctx;
3945	u32 entrysize;
3946	u32 total = 0;
3947	u32 left;
3948	bool toobig = false;
3949	bool single = false;
3950	int count = 0;
3951	int rc;
3952
3953	if (attr == LSM_ATTR_UNDEF)
3954		return -EINVAL;
3955	if (size == NULL)
3956		return -EINVAL;
3957	if (get_user(left, size))
3958		return -EFAULT;
3959
3960	if (flags) {
3961		/*
3962		 * Only flag supported is LSM_FLAG_SINGLE
3963		 */
3964		if (flags != LSM_FLAG_SINGLE || !uctx)
3965			return -EINVAL;
3966		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
3967			return -EFAULT;
3968		/*
3969		 * If the LSM ID isn't specified it is an error.
3970		 */
3971		if (lctx.id == LSM_ID_UNDEF)
3972			return -EINVAL;
3973		single = true;
3974	}
3975
3976	/*
3977	 * In the usual case gather all the data from the LSMs.
3978	 * In the single case only get the data from the LSM specified.
3979	 */
3980	hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) {
3981		if (single && lctx.id != hp->lsmid->id)
3982			continue;
3983		entrysize = left;
3984		if (base)
3985			uctx = (struct lsm_ctx __user *)(base + total);
3986		rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags);
3987		if (rc == -EOPNOTSUPP) {
3988			rc = 0;
3989			continue;
3990		}
3991		if (rc == -E2BIG) {
3992			rc = 0;
3993			left = 0;
3994			toobig = true;
3995		} else if (rc < 0)
3996			return rc;
3997		else
3998			left -= entrysize;
3999
4000		total += entrysize;
4001		count += rc;
4002		if (single)
4003			break;
4004	}
4005	if (put_user(total, size))
4006		return -EFAULT;
4007	if (toobig)
4008		return -E2BIG;
4009	if (count == 0)
4010		return LSM_RET_DEFAULT(getselfattr);
4011	return count;
4012}
4013
4014/*
4015 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4016 */
4017
4018/**
4019 * security_setselfattr - Set an LSM attribute on the current process.
4020 * @attr: which attribute to set
4021 * @uctx: the user-space source for the information
4022 * @size: the size of the data
4023 * @flags: reserved for future use, must be 0
4024 *
4025 * Set an LSM attribute for the current process. The LSM, attribute
4026 * and new value are included in @uctx.
4027 *
4028 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4029 * if the user buffer is inaccessible, E2BIG if size is too big, or an
4030 * LSM specific failure.
4031 */
4032int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4033			 u32 size, u32 flags)
4034{
4035	struct security_hook_list *hp;
4036	struct lsm_ctx *lctx;
4037	int rc = LSM_RET_DEFAULT(setselfattr);
4038	u64 required_len;
4039
4040	if (flags)
4041		return -EINVAL;
4042	if (size < sizeof(*lctx))
4043		return -EINVAL;
4044	if (size > PAGE_SIZE)
4045		return -E2BIG;
4046
4047	lctx = memdup_user(uctx, size);
4048	if (IS_ERR(lctx))
4049		return PTR_ERR(lctx);
4050
4051	if (size < lctx->len ||
4052	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4053	    lctx->len < required_len) {
4054		rc = -EINVAL;
4055		goto free_out;
4056	}
4057
4058	hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list)
4059		if ((hp->lsmid->id) == lctx->id) {
4060			rc = hp->hook.setselfattr(attr, lctx, size, flags);
4061			break;
4062		}
4063
4064free_out:
4065	kfree(lctx);
4066	return rc;
4067}
4068
4069/**
4070 * security_getprocattr() - Read an attribute for a task
4071 * @p: the task
4072 * @lsmid: LSM identification
4073 * @name: attribute name
4074 * @value: attribute value
4075 *
4076 * Read attribute @name for task @p and store it into @value if allowed.
4077 *
4078 * Return: Returns the length of @value on success, a negative value otherwise.
4079 */
4080int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4081			 char **value)
4082{
4083	struct security_hook_list *hp;
4084
4085	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
4086		if (lsmid != 0 && lsmid != hp->lsmid->id)
4087			continue;
4088		return hp->hook.getprocattr(p, name, value);
4089	}
4090	return LSM_RET_DEFAULT(getprocattr);
4091}
4092
4093/**
4094 * security_setprocattr() - Set an attribute for a task
4095 * @lsmid: LSM identification
4096 * @name: attribute name
4097 * @value: attribute value
4098 * @size: attribute value size
4099 *
4100 * Write (set) the current task's attribute @name to @value, size @size if
4101 * allowed.
4102 *
4103 * Return: Returns bytes written on success, a negative value otherwise.
4104 */
4105int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4106{
4107	struct security_hook_list *hp;
4108
4109	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
4110		if (lsmid != 0 && lsmid != hp->lsmid->id)
4111			continue;
4112		return hp->hook.setprocattr(name, value, size);
4113	}
4114	return LSM_RET_DEFAULT(setprocattr);
4115}
4116
4117/**
4118 * security_netlink_send() - Save info and check if netlink sending is allowed
4119 * @sk: sending socket
4120 * @skb: netlink message
4121 *
4122 * Save security information for a netlink message so that permission checking
4123 * can be performed when the message is processed.  The security information
4124 * can be saved using the eff_cap field of the netlink_skb_parms structure.
4125 * Also may be used to provide fine grained control over message transmission.
4126 *
4127 * Return: Returns 0 if the information was successfully saved and message is
4128 *         allowed to be transmitted.
4129 */
4130int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4131{
4132	return call_int_hook(netlink_send, sk, skb);
4133}
4134
4135/**
4136 * security_ismaclabel() - Check if the named attribute is a MAC label
4137 * @name: full extended attribute name
4138 *
4139 * Check if the extended attribute specified by @name represents a MAC label.
4140 *
4141 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4142 */
4143int security_ismaclabel(const char *name)
4144{
4145	return call_int_hook(ismaclabel, name);
4146}
4147EXPORT_SYMBOL(security_ismaclabel);
4148
4149/**
4150 * security_secid_to_secctx() - Convert a secid to a secctx
4151 * @secid: secid
4152 * @secdata: secctx
4153 * @seclen: secctx length
4154 *
4155 * Convert secid to security context.  If @secdata is NULL the length of the
4156 * result will be returned in @seclen, but no @secdata will be returned.  This
4157 * does mean that the length could change between calls to check the length and
4158 * the next call which actually allocates and returns the @secdata.
4159 *
4160 * Return: Return 0 on success, error on failure.
4161 */
4162int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4163{
4164	return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4165}
4166EXPORT_SYMBOL(security_secid_to_secctx);
4167
4168/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4169 * security_secctx_to_secid() - Convert a secctx to a secid
4170 * @secdata: secctx
4171 * @seclen: length of secctx
4172 * @secid: secid
4173 *
4174 * Convert security context to secid.
4175 *
4176 * Return: Returns 0 on success, error on failure.
4177 */
4178int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4179{
4180	*secid = 0;
4181	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4182}
4183EXPORT_SYMBOL(security_secctx_to_secid);
4184
4185/**
4186 * security_release_secctx() - Free a secctx buffer
4187 * @secdata: secctx
4188 * @seclen: length of secctx
4189 *
4190 * Release the security context.
4191 */
4192void security_release_secctx(char *secdata, u32 seclen)
4193{
4194	call_void_hook(release_secctx, secdata, seclen);
4195}
4196EXPORT_SYMBOL(security_release_secctx);
4197
4198/**
4199 * security_inode_invalidate_secctx() - Invalidate an inode's security label
4200 * @inode: inode
4201 *
4202 * Notify the security module that it must revalidate the security context of
4203 * an inode.
4204 */
4205void security_inode_invalidate_secctx(struct inode *inode)
4206{
4207	call_void_hook(inode_invalidate_secctx, inode);
4208}
4209EXPORT_SYMBOL(security_inode_invalidate_secctx);
4210
4211/**
4212 * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4213 * @inode: inode
4214 * @ctx: secctx
4215 * @ctxlen: length of secctx
4216 *
4217 * Notify the security module of what the security context of an inode should
4218 * be.  Initializes the incore security context managed by the security module
4219 * for this inode.  Example usage: NFS client invokes this hook to initialize
4220 * the security context in its incore inode to the value provided by the server
4221 * for the file when the server returned the file's attributes to the client.
4222 * Must be called with inode->i_mutex locked.
4223 *
4224 * Return: Returns 0 on success, error on failure.
4225 */
4226int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4227{
4228	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4229}
4230EXPORT_SYMBOL(security_inode_notifysecctx);
4231
4232/**
4233 * security_inode_setsecctx() - Change the security label of an inode
4234 * @dentry: inode
4235 * @ctx: secctx
4236 * @ctxlen: length of secctx
4237 *
4238 * Change the security context of an inode.  Updates the incore security
4239 * context managed by the security module and invokes the fs code as needed
4240 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4241 * context.  Example usage: NFS server invokes this hook to change the security
4242 * context in its incore inode and on the backing filesystem to a value
4243 * provided by the client on a SETATTR operation.  Must be called with
4244 * inode->i_mutex locked.
4245 *
4246 * Return: Returns 0 on success, error on failure.
4247 */
4248int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4249{
4250	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4251}
4252EXPORT_SYMBOL(security_inode_setsecctx);
4253
4254/**
4255 * security_inode_getsecctx() - Get the security label of an inode
4256 * @inode: inode
4257 * @ctx: secctx
4258 * @ctxlen: length of secctx
4259 *
4260 * On success, returns 0 and fills out @ctx and @ctxlen with the security
4261 * context for the given @inode.
4262 *
4263 * Return: Returns 0 on success, error on failure.
4264 */
4265int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4266{
4267	return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4268}
4269EXPORT_SYMBOL(security_inode_getsecctx);
4270
4271#ifdef CONFIG_WATCH_QUEUE
4272/**
4273 * security_post_notification() - Check if a watch notification can be posted
4274 * @w_cred: credentials of the task that set the watch
4275 * @cred: credentials of the task which triggered the watch
4276 * @n: the notification
4277 *
4278 * Check to see if a watch notification can be posted to a particular queue.
4279 *
4280 * Return: Returns 0 if permission is granted.
4281 */
4282int security_post_notification(const struct cred *w_cred,
4283			       const struct cred *cred,
4284			       struct watch_notification *n)
4285{
4286	return call_int_hook(post_notification, w_cred, cred, n);
4287}
4288#endif /* CONFIG_WATCH_QUEUE */
4289
4290#ifdef CONFIG_KEY_NOTIFICATIONS
4291/**
4292 * security_watch_key() - Check if a task is allowed to watch for key events
4293 * @key: the key to watch
4294 *
4295 * Check to see if a process is allowed to watch for event notifications from
4296 * a key or keyring.
4297 *
4298 * Return: Returns 0 if permission is granted.
4299 */
4300int security_watch_key(struct key *key)
4301{
4302	return call_int_hook(watch_key, key);
4303}
4304#endif /* CONFIG_KEY_NOTIFICATIONS */
4305
4306#ifdef CONFIG_SECURITY_NETWORK
4307/**
4308 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4309 * @sock: originating sock
4310 * @other: peer sock
4311 * @newsk: new sock
4312 *
4313 * Check permissions before establishing a Unix domain stream connection
4314 * between @sock and @other.
4315 *
4316 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4317 * Linux provides an alternative to the conventional file name space for Unix
4318 * domain sockets.  Whereas binding and connecting to sockets in the file name
4319 * space is mediated by the typical file permissions (and caught by the mknod
4320 * and permission hooks in inode_security_ops), binding and connecting to
4321 * sockets in the abstract name space is completely unmediated.  Sufficient
4322 * control of Unix domain sockets in the abstract name space isn't possible
4323 * using only the socket layer hooks, since we need to know the actual target
4324 * socket, which is not looked up until we are inside the af_unix code.
4325 *
4326 * Return: Returns 0 if permission is granted.
4327 */
4328int security_unix_stream_connect(struct sock *sock, struct sock *other,
4329				 struct sock *newsk)
4330{
4331	return call_int_hook(unix_stream_connect, sock, other, newsk);
4332}
4333EXPORT_SYMBOL(security_unix_stream_connect);
4334
4335/**
4336 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4337 * @sock: originating sock
4338 * @other: peer sock
4339 *
4340 * Check permissions before connecting or sending datagrams from @sock to
4341 * @other.
4342 *
4343 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4344 * Linux provides an alternative to the conventional file name space for Unix
4345 * domain sockets.  Whereas binding and connecting to sockets in the file name
4346 * space is mediated by the typical file permissions (and caught by the mknod
4347 * and permission hooks in inode_security_ops), binding and connecting to
4348 * sockets in the abstract name space is completely unmediated.  Sufficient
4349 * control of Unix domain sockets in the abstract name space isn't possible
4350 * using only the socket layer hooks, since we need to know the actual target
4351 * socket, which is not looked up until we are inside the af_unix code.
4352 *
4353 * Return: Returns 0 if permission is granted.
4354 */
4355int security_unix_may_send(struct socket *sock,  struct socket *other)
4356{
4357	return call_int_hook(unix_may_send, sock, other);
4358}
4359EXPORT_SYMBOL(security_unix_may_send);
4360
4361/**
4362 * security_socket_create() - Check if creating a new socket is allowed
4363 * @family: protocol family
4364 * @type: communications type
4365 * @protocol: requested protocol
4366 * @kern: set to 1 if a kernel socket is requested
4367 *
4368 * Check permissions prior to creating a new socket.
4369 *
4370 * Return: Returns 0 if permission is granted.
4371 */
4372int security_socket_create(int family, int type, int protocol, int kern)
4373{
4374	return call_int_hook(socket_create, family, type, protocol, kern);
4375}
4376
4377/**
4378 * security_socket_post_create() - Initialize a newly created socket
4379 * @sock: socket
4380 * @family: protocol family
4381 * @type: communications type
4382 * @protocol: requested protocol
4383 * @kern: set to 1 if a kernel socket is requested
4384 *
4385 * This hook allows a module to update or allocate a per-socket security
4386 * structure. Note that the security field was not added directly to the socket
4387 * structure, but rather, the socket security information is stored in the
4388 * associated inode.  Typically, the inode alloc_security hook will allocate
4389 * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4390 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4391 * information that wasn't available when the inode was allocated.
4392 *
4393 * Return: Returns 0 if permission is granted.
4394 */
4395int security_socket_post_create(struct socket *sock, int family,
4396				int type, int protocol, int kern)
4397{
4398	return call_int_hook(socket_post_create, sock, family, type,
4399			     protocol, kern);
4400}
4401
4402/**
4403 * security_socket_socketpair() - Check if creating a socketpair is allowed
4404 * @socka: first socket
4405 * @sockb: second socket
4406 *
4407 * Check permissions before creating a fresh pair of sockets.
4408 *
4409 * Return: Returns 0 if permission is granted and the connection was
4410 *         established.
4411 */
4412int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4413{
4414	return call_int_hook(socket_socketpair, socka, sockb);
4415}
4416EXPORT_SYMBOL(security_socket_socketpair);
4417
4418/**
4419 * security_socket_bind() - Check if a socket bind operation is allowed
4420 * @sock: socket
4421 * @address: requested bind address
4422 * @addrlen: length of address
4423 *
4424 * Check permission before socket protocol layer bind operation is performed
4425 * and the socket @sock is bound to the address specified in the @address
4426 * parameter.
4427 *
4428 * Return: Returns 0 if permission is granted.
4429 */
4430int security_socket_bind(struct socket *sock,
4431			 struct sockaddr *address, int addrlen)
4432{
4433	return call_int_hook(socket_bind, sock, address, addrlen);
4434}
4435
4436/**
4437 * security_socket_connect() - Check if a socket connect operation is allowed
4438 * @sock: socket
4439 * @address: address of remote connection point
4440 * @addrlen: length of address
4441 *
4442 * Check permission before socket protocol layer connect operation attempts to
4443 * connect socket @sock to a remote address, @address.
4444 *
4445 * Return: Returns 0 if permission is granted.
4446 */
4447int security_socket_connect(struct socket *sock,
4448			    struct sockaddr *address, int addrlen)
4449{
4450	return call_int_hook(socket_connect, sock, address, addrlen);
4451}
4452
4453/**
4454 * security_socket_listen() - Check if a socket is allowed to listen
4455 * @sock: socket
4456 * @backlog: connection queue size
4457 *
4458 * Check permission before socket protocol layer listen operation.
4459 *
4460 * Return: Returns 0 if permission is granted.
4461 */
4462int security_socket_listen(struct socket *sock, int backlog)
4463{
4464	return call_int_hook(socket_listen, sock, backlog);
4465}
4466
4467/**
4468 * security_socket_accept() - Check if a socket is allowed to accept connections
4469 * @sock: listening socket
4470 * @newsock: newly creation connection socket
4471 *
4472 * Check permission before accepting a new connection.  Note that the new
4473 * socket, @newsock, has been created and some information copied to it, but
4474 * the accept operation has not actually been performed.
4475 *
4476 * Return: Returns 0 if permission is granted.
4477 */
4478int security_socket_accept(struct socket *sock, struct socket *newsock)
4479{
4480	return call_int_hook(socket_accept, sock, newsock);
4481}
4482
4483/**
4484 * security_socket_sendmsg() - Check if sending a message is allowed
4485 * @sock: sending socket
4486 * @msg: message to send
4487 * @size: size of message
4488 *
4489 * Check permission before transmitting a message to another socket.
4490 *
4491 * Return: Returns 0 if permission is granted.
4492 */
4493int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4494{
4495	return call_int_hook(socket_sendmsg, sock, msg, size);
4496}
4497
4498/**
4499 * security_socket_recvmsg() - Check if receiving a message is allowed
4500 * @sock: receiving socket
4501 * @msg: message to receive
4502 * @size: size of message
4503 * @flags: operational flags
4504 *
4505 * Check permission before receiving a message from a socket.
4506 *
4507 * Return: Returns 0 if permission is granted.
4508 */
4509int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4510			    int size, int flags)
4511{
4512	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4513}
4514
4515/**
4516 * security_socket_getsockname() - Check if reading the socket addr is allowed
4517 * @sock: socket
4518 *
4519 * Check permission before reading the local address (name) of the socket
4520 * object.
4521 *
4522 * Return: Returns 0 if permission is granted.
4523 */
4524int security_socket_getsockname(struct socket *sock)
4525{
4526	return call_int_hook(socket_getsockname, sock);
4527}
4528
4529/**
4530 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4531 * @sock: socket
4532 *
4533 * Check permission before the remote address (name) of a socket object.
4534 *
4535 * Return: Returns 0 if permission is granted.
4536 */
4537int security_socket_getpeername(struct socket *sock)
4538{
4539	return call_int_hook(socket_getpeername, sock);
4540}
4541
4542/**
4543 * security_socket_getsockopt() - Check if reading a socket option is allowed
4544 * @sock: socket
4545 * @level: option's protocol level
4546 * @optname: option name
4547 *
4548 * Check permissions before retrieving the options associated with socket
4549 * @sock.
4550 *
4551 * Return: Returns 0 if permission is granted.
4552 */
4553int security_socket_getsockopt(struct socket *sock, int level, int optname)
4554{
4555	return call_int_hook(socket_getsockopt, sock, level, optname);
4556}
4557
4558/**
4559 * security_socket_setsockopt() - Check if setting a socket option is allowed
4560 * @sock: socket
4561 * @level: option's protocol level
4562 * @optname: option name
4563 *
4564 * Check permissions before setting the options associated with socket @sock.
4565 *
4566 * Return: Returns 0 if permission is granted.
4567 */
4568int security_socket_setsockopt(struct socket *sock, int level, int optname)
4569{
4570	return call_int_hook(socket_setsockopt, sock, level, optname);
4571}
4572
4573/**
4574 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4575 * @sock: socket
4576 * @how: flag indicating how sends and receives are handled
4577 *
4578 * Checks permission before all or part of a connection on the socket @sock is
4579 * shut down.
4580 *
4581 * Return: Returns 0 if permission is granted.
4582 */
4583int security_socket_shutdown(struct socket *sock, int how)
4584{
4585	return call_int_hook(socket_shutdown, sock, how);
4586}
4587
4588/**
4589 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4590 * @sk: destination sock
4591 * @skb: incoming packet
4592 *
4593 * Check permissions on incoming network packets.  This hook is distinct from
4594 * Netfilter's IP input hooks since it is the first time that the incoming
4595 * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4596 * sleep inside this hook because some callers hold spinlocks.
4597 *
4598 * Return: Returns 0 if permission is granted.
4599 */
4600int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4601{
4602	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4603}
4604EXPORT_SYMBOL(security_sock_rcv_skb);
4605
4606/**
4607 * security_socket_getpeersec_stream() - Get the remote peer label
4608 * @sock: socket
4609 * @optval: destination buffer
4610 * @optlen: size of peer label copied into the buffer
4611 * @len: maximum size of the destination buffer
4612 *
4613 * This hook allows the security module to provide peer socket security state
4614 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4615 * For tcp sockets this can be meaningful if the socket is associated with an
4616 * ipsec SA.
4617 *
4618 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4619 *         values.
4620 */
4621int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4622				      sockptr_t optlen, unsigned int len)
4623{
4624	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4625			     len);
4626}
4627
4628/**
4629 * security_socket_getpeersec_dgram() - Get the remote peer label
4630 * @sock: socket
4631 * @skb: datagram packet
4632 * @secid: remote peer label secid
4633 *
4634 * This hook allows the security module to provide peer socket security state
4635 * for udp sockets on a per-packet basis to userspace via getsockopt
4636 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4637 * option via getsockopt. It can then retrieve the security state returned by
4638 * this hook for a packet via the SCM_SECURITY ancillary message type.
4639 *
4640 * Return: Returns 0 on success, error on failure.
4641 */
4642int security_socket_getpeersec_dgram(struct socket *sock,
4643				     struct sk_buff *skb, u32 *secid)
4644{
4645	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4646}
4647EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4648
4649/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4650 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4651 * @sk: sock
4652 * @family: protocol family
4653 * @priority: gfp flags
4654 *
4655 * Allocate and attach a security structure to the sk->sk_security field, which
4656 * is used to copy security attributes between local stream sockets.
4657 *
4658 * Return: Returns 0 on success, error on failure.
4659 */
4660int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4661{
4662	return call_int_hook(sk_alloc_security, sk, family, priority);
 
 
 
 
 
 
 
4663}
4664
4665/**
4666 * security_sk_free() - Free the sock's LSM blob
4667 * @sk: sock
4668 *
4669 * Deallocate security structure.
4670 */
4671void security_sk_free(struct sock *sk)
4672{
4673	call_void_hook(sk_free_security, sk);
 
 
4674}
4675
4676/**
4677 * security_sk_clone() - Clone a sock's LSM state
4678 * @sk: original sock
4679 * @newsk: target sock
4680 *
4681 * Clone/copy security structure.
4682 */
4683void security_sk_clone(const struct sock *sk, struct sock *newsk)
4684{
4685	call_void_hook(sk_clone_security, sk, newsk);
4686}
4687EXPORT_SYMBOL(security_sk_clone);
4688
4689/**
4690 * security_sk_classify_flow() - Set a flow's secid based on socket
4691 * @sk: original socket
4692 * @flic: target flow
4693 *
4694 * Set the target flow's secid to socket's secid.
4695 */
4696void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4697{
4698	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4699}
4700EXPORT_SYMBOL(security_sk_classify_flow);
4701
4702/**
4703 * security_req_classify_flow() - Set a flow's secid based on request_sock
4704 * @req: request_sock
4705 * @flic: target flow
4706 *
4707 * Sets @flic's secid to @req's secid.
4708 */
4709void security_req_classify_flow(const struct request_sock *req,
4710				struct flowi_common *flic)
4711{
4712	call_void_hook(req_classify_flow, req, flic);
4713}
4714EXPORT_SYMBOL(security_req_classify_flow);
4715
4716/**
4717 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4718 * @sk: sock being grafted
4719 * @parent: target parent socket
4720 *
4721 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4722 * LSM state from @parent.
4723 */
4724void security_sock_graft(struct sock *sk, struct socket *parent)
4725{
4726	call_void_hook(sock_graft, sk, parent);
4727}
4728EXPORT_SYMBOL(security_sock_graft);
4729
4730/**
4731 * security_inet_conn_request() - Set request_sock state using incoming connect
4732 * @sk: parent listening sock
4733 * @skb: incoming connection
4734 * @req: new request_sock
4735 *
4736 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4737 *
4738 * Return: Returns 0 if permission is granted.
4739 */
4740int security_inet_conn_request(const struct sock *sk,
4741			       struct sk_buff *skb, struct request_sock *req)
4742{
4743	return call_int_hook(inet_conn_request, sk, skb, req);
4744}
4745EXPORT_SYMBOL(security_inet_conn_request);
4746
4747/**
4748 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4749 * @newsk: new sock
4750 * @req: connection request_sock
4751 *
4752 * Set that LSM state of @sock using the LSM state from @req.
4753 */
4754void security_inet_csk_clone(struct sock *newsk,
4755			     const struct request_sock *req)
4756{
4757	call_void_hook(inet_csk_clone, newsk, req);
4758}
4759
4760/**
4761 * security_inet_conn_established() - Update sock's LSM state with connection
4762 * @sk: sock
4763 * @skb: connection packet
4764 *
4765 * Update @sock's LSM state to represent a new connection from @skb.
4766 */
4767void security_inet_conn_established(struct sock *sk,
4768				    struct sk_buff *skb)
4769{
4770	call_void_hook(inet_conn_established, sk, skb);
4771}
4772EXPORT_SYMBOL(security_inet_conn_established);
4773
4774/**
4775 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4776 * @secid: new secmark value
4777 *
4778 * Check if the process should be allowed to relabel packets to @secid.
4779 *
4780 * Return: Returns 0 if permission is granted.
4781 */
4782int security_secmark_relabel_packet(u32 secid)
4783{
4784	return call_int_hook(secmark_relabel_packet, secid);
4785}
4786EXPORT_SYMBOL(security_secmark_relabel_packet);
4787
4788/**
4789 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4790 *
4791 * Tells the LSM to increment the number of secmark labeling rules loaded.
4792 */
4793void security_secmark_refcount_inc(void)
4794{
4795	call_void_hook(secmark_refcount_inc);
4796}
4797EXPORT_SYMBOL(security_secmark_refcount_inc);
4798
4799/**
4800 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4801 *
4802 * Tells the LSM to decrement the number of secmark labeling rules loaded.
4803 */
4804void security_secmark_refcount_dec(void)
4805{
4806	call_void_hook(secmark_refcount_dec);
4807}
4808EXPORT_SYMBOL(security_secmark_refcount_dec);
4809
4810/**
4811 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4812 * @security: pointer to the LSM blob
4813 *
4814 * This hook allows a module to allocate a security structure for a TUN	device,
4815 * returning the pointer in @security.
4816 *
4817 * Return: Returns a zero on success, negative values on failure.
4818 */
4819int security_tun_dev_alloc_security(void **security)
4820{
4821	return call_int_hook(tun_dev_alloc_security, security);
 
 
 
 
 
 
 
 
 
 
 
4822}
4823EXPORT_SYMBOL(security_tun_dev_alloc_security);
4824
4825/**
4826 * security_tun_dev_free_security() - Free a TUN device LSM blob
4827 * @security: LSM blob
4828 *
4829 * This hook allows a module to free the security structure for a TUN device.
4830 */
4831void security_tun_dev_free_security(void *security)
4832{
4833	call_void_hook(tun_dev_free_security, security);
4834}
4835EXPORT_SYMBOL(security_tun_dev_free_security);
4836
4837/**
4838 * security_tun_dev_create() - Check if creating a TUN device is allowed
4839 *
4840 * Check permissions prior to creating a new TUN device.
4841 *
4842 * Return: Returns 0 if permission is granted.
4843 */
4844int security_tun_dev_create(void)
4845{
4846	return call_int_hook(tun_dev_create);
4847}
4848EXPORT_SYMBOL(security_tun_dev_create);
4849
4850/**
4851 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4852 * @security: TUN device LSM blob
4853 *
4854 * Check permissions prior to attaching to a TUN device queue.
4855 *
4856 * Return: Returns 0 if permission is granted.
4857 */
4858int security_tun_dev_attach_queue(void *security)
4859{
4860	return call_int_hook(tun_dev_attach_queue, security);
4861}
4862EXPORT_SYMBOL(security_tun_dev_attach_queue);
4863
4864/**
4865 * security_tun_dev_attach() - Update TUN device LSM state on attach
4866 * @sk: associated sock
4867 * @security: TUN device LSM blob
4868 *
4869 * This hook can be used by the module to update any security state associated
4870 * with the TUN device's sock structure.
4871 *
4872 * Return: Returns 0 if permission is granted.
4873 */
4874int security_tun_dev_attach(struct sock *sk, void *security)
4875{
4876	return call_int_hook(tun_dev_attach, sk, security);
4877}
4878EXPORT_SYMBOL(security_tun_dev_attach);
4879
4880/**
4881 * security_tun_dev_open() - Update TUN device LSM state on open
4882 * @security: TUN device LSM blob
4883 *
4884 * This hook can be used by the module to update any security state associated
4885 * with the TUN device's security structure.
4886 *
4887 * Return: Returns 0 if permission is granted.
4888 */
4889int security_tun_dev_open(void *security)
4890{
4891	return call_int_hook(tun_dev_open, security);
4892}
4893EXPORT_SYMBOL(security_tun_dev_open);
4894
4895/**
4896 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
4897 * @asoc: SCTP association
4898 * @skb: packet requesting the association
4899 *
4900 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4901 *
4902 * Return: Returns 0 on success, error on failure.
4903 */
4904int security_sctp_assoc_request(struct sctp_association *asoc,
4905				struct sk_buff *skb)
4906{
4907	return call_int_hook(sctp_assoc_request, asoc, skb);
4908}
4909EXPORT_SYMBOL(security_sctp_assoc_request);
4910
4911/**
4912 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4913 * @sk: socket
4914 * @optname: SCTP option to validate
4915 * @address: list of IP addresses to validate
4916 * @addrlen: length of the address list
4917 *
4918 * Validiate permissions required for each address associated with sock	@sk.
4919 * Depending on @optname, the addresses will be treated as either a connect or
4920 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4921 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4922 *
4923 * Return: Returns 0 on success, error on failure.
4924 */
4925int security_sctp_bind_connect(struct sock *sk, int optname,
4926			       struct sockaddr *address, int addrlen)
4927{
4928	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
4929}
4930EXPORT_SYMBOL(security_sctp_bind_connect);
4931
4932/**
4933 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
4934 * @asoc: SCTP association
4935 * @sk: original sock
4936 * @newsk: target sock
4937 *
4938 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
4939 * socket) or when a socket is 'peeled off' e.g userspace calls
4940 * sctp_peeloff(3).
4941 */
4942void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
4943			    struct sock *newsk)
4944{
4945	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
4946}
4947EXPORT_SYMBOL(security_sctp_sk_clone);
4948
4949/**
4950 * security_sctp_assoc_established() - Update LSM state when assoc established
4951 * @asoc: SCTP association
4952 * @skb: packet establishing the association
4953 *
4954 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
4955 * security module.
4956 *
4957 * Return: Returns 0 if permission is granted.
4958 */
4959int security_sctp_assoc_established(struct sctp_association *asoc,
4960				    struct sk_buff *skb)
4961{
4962	return call_int_hook(sctp_assoc_established, asoc, skb);
4963}
4964EXPORT_SYMBOL(security_sctp_assoc_established);
4965
4966/**
4967 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
4968 * @sk: the owning MPTCP socket
4969 * @ssk: the new subflow
4970 *
4971 * Update the labeling for the given MPTCP subflow, to match the one of the
4972 * owning MPTCP socket. This hook has to be called after the socket creation and
4973 * initialization via the security_socket_create() and
4974 * security_socket_post_create() LSM hooks.
4975 *
4976 * Return: Returns 0 on success or a negative error code on failure.
4977 */
4978int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
4979{
4980	return call_int_hook(mptcp_add_subflow, sk, ssk);
4981}
4982
4983#endif	/* CONFIG_SECURITY_NETWORK */
4984
4985#ifdef CONFIG_SECURITY_INFINIBAND
4986/**
4987 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
4988 * @sec: LSM blob
4989 * @subnet_prefix: subnet prefix of the port
4990 * @pkey: IB pkey
4991 *
4992 * Check permission to access a pkey when modifying a QP.
4993 *
4994 * Return: Returns 0 if permission is granted.
4995 */
4996int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
4997{
4998	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
4999}
5000EXPORT_SYMBOL(security_ib_pkey_access);
5001
5002/**
5003 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5004 * @sec: LSM blob
5005 * @dev_name: IB device name
5006 * @port_num: port number
5007 *
5008 * Check permissions to send and receive SMPs on a end port.
5009 *
5010 * Return: Returns 0 if permission is granted.
5011 */
5012int security_ib_endport_manage_subnet(void *sec,
5013				      const char *dev_name, u8 port_num)
5014{
5015	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5016}
5017EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5018
5019/**
5020 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5021 * @sec: LSM blob
5022 *
5023 * Allocate a security structure for Infiniband objects.
5024 *
5025 * Return: Returns 0 on success, non-zero on failure.
5026 */
5027int security_ib_alloc_security(void **sec)
5028{
5029	return call_int_hook(ib_alloc_security, sec);
 
 
 
 
 
 
 
 
 
 
 
5030}
5031EXPORT_SYMBOL(security_ib_alloc_security);
5032
5033/**
5034 * security_ib_free_security() - Free an Infiniband LSM blob
5035 * @sec: LSM blob
5036 *
5037 * Deallocate an Infiniband security structure.
5038 */
5039void security_ib_free_security(void *sec)
5040{
5041	call_void_hook(ib_free_security, sec);
5042}
5043EXPORT_SYMBOL(security_ib_free_security);
5044#endif	/* CONFIG_SECURITY_INFINIBAND */
5045
5046#ifdef CONFIG_SECURITY_NETWORK_XFRM
5047/**
5048 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5049 * @ctxp: xfrm security context being added to the SPD
5050 * @sec_ctx: security label provided by userspace
5051 * @gfp: gfp flags
5052 *
5053 * Allocate a security structure to the xp->security field; the security field
5054 * is initialized to NULL when the xfrm_policy is allocated.
5055 *
5056 * Return:  Return 0 if operation was successful.
5057 */
5058int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5059			       struct xfrm_user_sec_ctx *sec_ctx,
5060			       gfp_t gfp)
5061{
5062	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5063}
5064EXPORT_SYMBOL(security_xfrm_policy_alloc);
5065
5066/**
5067 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5068 * @old_ctx: xfrm security context
5069 * @new_ctxp: target xfrm security context
5070 *
5071 * Allocate a security structure in new_ctxp that contains the information from
5072 * the old_ctx structure.
5073 *
5074 * Return: Return 0 if operation was successful.
5075 */
5076int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5077			       struct xfrm_sec_ctx **new_ctxp)
5078{
5079	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5080}
5081
5082/**
5083 * security_xfrm_policy_free() - Free a xfrm security context
5084 * @ctx: xfrm security context
5085 *
5086 * Free LSM resources associated with @ctx.
5087 */
5088void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5089{
5090	call_void_hook(xfrm_policy_free_security, ctx);
5091}
5092EXPORT_SYMBOL(security_xfrm_policy_free);
5093
5094/**
5095 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5096 * @ctx: xfrm security context
5097 *
5098 * Authorize deletion of a SPD entry.
5099 *
5100 * Return: Returns 0 if permission is granted.
5101 */
5102int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5103{
5104	return call_int_hook(xfrm_policy_delete_security, ctx);
5105}
5106
5107/**
5108 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5109 * @x: xfrm state being added to the SAD
5110 * @sec_ctx: security label provided by userspace
5111 *
5112 * Allocate a security structure to the @x->security field; the security field
5113 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5114 * correspond to @sec_ctx.
5115 *
5116 * Return: Return 0 if operation was successful.
5117 */
5118int security_xfrm_state_alloc(struct xfrm_state *x,
5119			      struct xfrm_user_sec_ctx *sec_ctx)
5120{
5121	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5122}
5123EXPORT_SYMBOL(security_xfrm_state_alloc);
5124
5125/**
5126 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5127 * @x: xfrm state being added to the SAD
5128 * @polsec: associated policy's security context
5129 * @secid: secid from the flow
5130 *
5131 * Allocate a security structure to the x->security field; the security field
5132 * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5133 * correspond to secid.
5134 *
5135 * Return: Returns 0 if operation was successful.
5136 */
5137int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5138				      struct xfrm_sec_ctx *polsec, u32 secid)
5139{
5140	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5141}
5142
5143/**
5144 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5145 * @x: xfrm state
5146 *
5147 * Authorize deletion of x->security.
5148 *
5149 * Return: Returns 0 if permission is granted.
5150 */
5151int security_xfrm_state_delete(struct xfrm_state *x)
5152{
5153	return call_int_hook(xfrm_state_delete_security, x);
5154}
5155EXPORT_SYMBOL(security_xfrm_state_delete);
5156
5157/**
5158 * security_xfrm_state_free() - Free a xfrm state
5159 * @x: xfrm state
5160 *
5161 * Deallocate x->security.
5162 */
5163void security_xfrm_state_free(struct xfrm_state *x)
5164{
5165	call_void_hook(xfrm_state_free_security, x);
5166}
5167
5168/**
5169 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5170 * @ctx: target xfrm security context
5171 * @fl_secid: flow secid used to authorize access
5172 *
5173 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5174 * packet.  The hook is called when selecting either a per-socket policy or a
5175 * generic xfrm policy.
5176 *
5177 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5178 *         other errors.
5179 */
5180int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5181{
5182	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5183}
5184
5185/**
5186 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5187 * @x: xfrm state to match
5188 * @xp: xfrm policy to check for a match
5189 * @flic: flow to check for a match.
5190 *
5191 * Check @xp and @flic for a match with @x.
5192 *
5193 * Return: Returns 1 if there is a match.
5194 */
5195int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5196				       struct xfrm_policy *xp,
5197				       const struct flowi_common *flic)
5198{
5199	struct security_hook_list *hp;
5200	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5201
5202	/*
5203	 * Since this function is expected to return 0 or 1, the judgment
5204	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5205	 * we can use the first LSM's judgment because currently only SELinux
5206	 * supplies this call.
5207	 *
5208	 * For speed optimization, we explicitly break the loop rather than
5209	 * using the macro
5210	 */
5211	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
5212			     list) {
5213		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
5214		break;
5215	}
5216	return rc;
5217}
5218
5219/**
5220 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5221 * @skb: xfrm packet
5222 * @secid: secid
5223 *
5224 * Decode the packet in @skb and return the security label in @secid.
5225 *
5226 * Return: Return 0 if all xfrms used have the same secid.
5227 */
5228int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5229{
5230	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5231}
5232
5233void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5234{
5235	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5236			       0);
5237
5238	BUG_ON(rc);
5239}
5240EXPORT_SYMBOL(security_skb_classify_flow);
5241#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5242
5243#ifdef CONFIG_KEYS
5244/**
5245 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5246 * @key: key
5247 * @cred: credentials
5248 * @flags: allocation flags
5249 *
5250 * Permit allocation of a key and assign security data. Note that key does not
5251 * have a serial number assigned at this point.
5252 *
5253 * Return: Return 0 if permission is granted, -ve error otherwise.
5254 */
5255int security_key_alloc(struct key *key, const struct cred *cred,
5256		       unsigned long flags)
5257{
5258	return call_int_hook(key_alloc, key, cred, flags);
 
 
 
 
 
 
 
5259}
5260
5261/**
5262 * security_key_free() - Free a kernel key LSM blob
5263 * @key: key
5264 *
5265 * Notification of destruction; free security data.
5266 */
5267void security_key_free(struct key *key)
5268{
5269	call_void_hook(key_free, key);
 
5270}
5271
5272/**
5273 * security_key_permission() - Check if a kernel key operation is allowed
5274 * @key_ref: key reference
5275 * @cred: credentials of actor requesting access
5276 * @need_perm: requested permissions
5277 *
5278 * See whether a specific operational right is granted to a process on a key.
5279 *
5280 * Return: Return 0 if permission is granted, -ve error otherwise.
5281 */
5282int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5283			    enum key_need_perm need_perm)
5284{
5285	return call_int_hook(key_permission, key_ref, cred, need_perm);
5286}
5287
5288/**
5289 * security_key_getsecurity() - Get the key's security label
5290 * @key: key
5291 * @buffer: security label buffer
5292 *
5293 * Get a textual representation of the security context attached to a key for
5294 * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5295 * storage for the NUL-terminated string and the caller should free it.
5296 *
5297 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5298 *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5299 *         there is no security label assigned to the key.
5300 */
5301int security_key_getsecurity(struct key *key, char **buffer)
5302{
5303	*buffer = NULL;
5304	return call_int_hook(key_getsecurity, key, buffer);
5305}
5306
5307/**
5308 * security_key_post_create_or_update() - Notification of key create or update
5309 * @keyring: keyring to which the key is linked to
5310 * @key: created or updated key
5311 * @payload: data used to instantiate or update the key
5312 * @payload_len: length of payload
5313 * @flags: key flags
5314 * @create: flag indicating whether the key was created or updated
5315 *
5316 * Notify the caller of a key creation or update.
5317 */
5318void security_key_post_create_or_update(struct key *keyring, struct key *key,
5319					const void *payload, size_t payload_len,
5320					unsigned long flags, bool create)
5321{
5322	call_void_hook(key_post_create_or_update, keyring, key, payload,
5323		       payload_len, flags, create);
5324}
5325#endif	/* CONFIG_KEYS */
5326
5327#ifdef CONFIG_AUDIT
5328/**
5329 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5330 * @field: audit action
5331 * @op: rule operator
5332 * @rulestr: rule context
5333 * @lsmrule: receive buffer for audit rule struct
 
5334 *
5335 * Allocate and initialize an LSM audit rule structure.
5336 *
5337 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5338 *         an invalid rule.
5339 */
5340int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
 
5341{
5342	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule);
5343}
5344
5345/**
5346 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5347 * @krule: audit rule
5348 *
5349 * Specifies whether given @krule contains any fields related to the current
5350 * LSM.
5351 *
5352 * Return: Returns 1 in case of relation found, 0 otherwise.
5353 */
5354int security_audit_rule_known(struct audit_krule *krule)
5355{
5356	return call_int_hook(audit_rule_known, krule);
5357}
5358
5359/**
5360 * security_audit_rule_free() - Free an LSM audit rule struct
5361 * @lsmrule: audit rule struct
5362 *
5363 * Deallocate the LSM audit rule structure previously allocated by
5364 * audit_rule_init().
5365 */
5366void security_audit_rule_free(void *lsmrule)
5367{
5368	call_void_hook(audit_rule_free, lsmrule);
5369}
5370
5371/**
5372 * security_audit_rule_match() - Check if a label matches an audit rule
5373 * @secid: security label
5374 * @field: LSM audit field
5375 * @op: matching operator
5376 * @lsmrule: audit rule
5377 *
5378 * Determine if given @secid matches a rule previously approved by
5379 * security_audit_rule_known().
5380 *
5381 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5382 *         failure.
5383 */
5384int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
 
5385{
5386	return call_int_hook(audit_rule_match, secid, field, op, lsmrule);
5387}
5388#endif /* CONFIG_AUDIT */
5389
5390#ifdef CONFIG_BPF_SYSCALL
5391/**
5392 * security_bpf() - Check if the bpf syscall operation is allowed
5393 * @cmd: command
5394 * @attr: bpf attribute
5395 * @size: size
5396 *
5397 * Do a initial check for all bpf syscalls after the attribute is copied into
5398 * the kernel. The actual security module can implement their own rules to
5399 * check the specific cmd they need.
5400 *
5401 * Return: Returns 0 if permission is granted.
5402 */
5403int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5404{
5405	return call_int_hook(bpf, cmd, attr, size);
5406}
5407
5408/**
5409 * security_bpf_map() - Check if access to a bpf map is allowed
5410 * @map: bpf map
5411 * @fmode: mode
5412 *
5413 * Do a check when the kernel generates and returns a file descriptor for eBPF
5414 * maps.
5415 *
5416 * Return: Returns 0 if permission is granted.
5417 */
5418int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5419{
5420	return call_int_hook(bpf_map, map, fmode);
5421}
5422
5423/**
5424 * security_bpf_prog() - Check if access to a bpf program is allowed
5425 * @prog: bpf program
5426 *
5427 * Do a check when the kernel generates and returns a file descriptor for eBPF
5428 * programs.
5429 *
5430 * Return: Returns 0 if permission is granted.
5431 */
5432int security_bpf_prog(struct bpf_prog *prog)
5433{
5434	return call_int_hook(bpf_prog, prog);
5435}
5436
5437/**
5438 * security_bpf_map_create() - Check if BPF map creation is allowed
5439 * @map: BPF map object
5440 * @attr: BPF syscall attributes used to create BPF map
5441 * @token: BPF token used to grant user access
5442 *
5443 * Do a check when the kernel creates a new BPF map. This is also the
5444 * point where LSM blob is allocated for LSMs that need them.
5445 *
5446 * Return: Returns 0 on success, error on failure.
5447 */
5448int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5449			    struct bpf_token *token)
5450{
5451	return call_int_hook(bpf_map_create, map, attr, token);
5452}
5453
5454/**
5455 * security_bpf_prog_load() - Check if loading of BPF program is allowed
5456 * @prog: BPF program object
5457 * @attr: BPF syscall attributes used to create BPF program
5458 * @token: BPF token used to grant user access to BPF subsystem
5459 *
5460 * Perform an access control check when the kernel loads a BPF program and
5461 * allocates associated BPF program object. This hook is also responsible for
5462 * allocating any required LSM state for the BPF program.
5463 *
5464 * Return: Returns 0 on success, error on failure.
5465 */
5466int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5467			   struct bpf_token *token)
5468{
5469	return call_int_hook(bpf_prog_load, prog, attr, token);
5470}
5471
5472/**
5473 * security_bpf_token_create() - Check if creating of BPF token is allowed
5474 * @token: BPF token object
5475 * @attr: BPF syscall attributes used to create BPF token
5476 * @path: path pointing to BPF FS mount point from which BPF token is created
5477 *
5478 * Do a check when the kernel instantiates a new BPF token object from BPF FS
5479 * instance. This is also the point where LSM blob can be allocated for LSMs.
5480 *
5481 * Return: Returns 0 on success, error on failure.
5482 */
5483int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5484			      struct path *path)
5485{
5486	return call_int_hook(bpf_token_create, token, attr, path);
5487}
5488
5489/**
5490 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5491 * requested BPF syscall command
5492 * @token: BPF token object
5493 * @cmd: BPF syscall command requested to be delegated by BPF token
5494 *
5495 * Do a check when the kernel decides whether provided BPF token should allow
5496 * delegation of requested BPF syscall command.
5497 *
5498 * Return: Returns 0 on success, error on failure.
5499 */
5500int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5501{
5502	return call_int_hook(bpf_token_cmd, token, cmd);
5503}
5504
5505/**
5506 * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5507 * requested BPF-related capability
5508 * @token: BPF token object
5509 * @cap: capabilities requested to be delegated by BPF token
5510 *
5511 * Do a check when the kernel decides whether provided BPF token should allow
5512 * delegation of requested BPF-related capabilities.
5513 *
5514 * Return: Returns 0 on success, error on failure.
5515 */
5516int security_bpf_token_capable(const struct bpf_token *token, int cap)
5517{
5518	return call_int_hook(bpf_token_capable, token, cap);
5519}
5520
5521/**
5522 * security_bpf_map_free() - Free a bpf map's LSM blob
5523 * @map: bpf map
5524 *
5525 * Clean up the security information stored inside bpf map.
5526 */
5527void security_bpf_map_free(struct bpf_map *map)
5528{
5529	call_void_hook(bpf_map_free, map);
5530}
5531
5532/**
5533 * security_bpf_prog_free() - Free a BPF program's LSM blob
5534 * @prog: BPF program struct
5535 *
5536 * Clean up the security information stored inside BPF program.
5537 */
5538void security_bpf_prog_free(struct bpf_prog *prog)
5539{
5540	call_void_hook(bpf_prog_free, prog);
5541}
5542
5543/**
5544 * security_bpf_token_free() - Free a BPF token's LSM blob
5545 * @token: BPF token struct
5546 *
5547 * Clean up the security information stored inside BPF token.
5548 */
5549void security_bpf_token_free(struct bpf_token *token)
5550{
5551	call_void_hook(bpf_token_free, token);
5552}
5553#endif /* CONFIG_BPF_SYSCALL */
5554
5555/**
5556 * security_locked_down() - Check if a kernel feature is allowed
5557 * @what: requested kernel feature
5558 *
5559 * Determine whether a kernel feature that potentially enables arbitrary code
5560 * execution in kernel space should be permitted.
5561 *
5562 * Return: Returns 0 if permission is granted.
5563 */
5564int security_locked_down(enum lockdown_reason what)
5565{
5566	return call_int_hook(locked_down, what);
5567}
5568EXPORT_SYMBOL(security_locked_down);
5569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5570#ifdef CONFIG_PERF_EVENTS
5571/**
5572 * security_perf_event_open() - Check if a perf event open is allowed
5573 * @attr: perf event attribute
5574 * @type: type of event
5575 *
5576 * Check whether the @type of perf_event_open syscall is allowed.
5577 *
5578 * Return: Returns 0 if permission is granted.
5579 */
5580int security_perf_event_open(struct perf_event_attr *attr, int type)
5581{
5582	return call_int_hook(perf_event_open, attr, type);
5583}
5584
5585/**
5586 * security_perf_event_alloc() - Allocate a perf event LSM blob
5587 * @event: perf event
5588 *
5589 * Allocate and save perf_event security info.
5590 *
5591 * Return: Returns 0 on success, error on failure.
5592 */
5593int security_perf_event_alloc(struct perf_event *event)
5594{
5595	return call_int_hook(perf_event_alloc, event);
 
 
 
 
 
 
 
 
 
 
 
 
5596}
5597
5598/**
5599 * security_perf_event_free() - Free a perf event LSM blob
5600 * @event: perf event
5601 *
5602 * Release (free) perf_event security info.
5603 */
5604void security_perf_event_free(struct perf_event *event)
5605{
5606	call_void_hook(perf_event_free, event);
 
5607}
5608
5609/**
5610 * security_perf_event_read() - Check if reading a perf event label is allowed
5611 * @event: perf event
5612 *
5613 * Read perf_event security info if allowed.
5614 *
5615 * Return: Returns 0 if permission is granted.
5616 */
5617int security_perf_event_read(struct perf_event *event)
5618{
5619	return call_int_hook(perf_event_read, event);
5620}
5621
5622/**
5623 * security_perf_event_write() - Check if writing a perf event label is allowed
5624 * @event: perf event
5625 *
5626 * Write perf_event security info if allowed.
5627 *
5628 * Return: Returns 0 if permission is granted.
5629 */
5630int security_perf_event_write(struct perf_event *event)
5631{
5632	return call_int_hook(perf_event_write, event);
5633}
5634#endif /* CONFIG_PERF_EVENTS */
5635
5636#ifdef CONFIG_IO_URING
5637/**
5638 * security_uring_override_creds() - Check if overriding creds is allowed
5639 * @new: new credentials
5640 *
5641 * Check if the current task, executing an io_uring operation, is allowed to
5642 * override it's credentials with @new.
5643 *
5644 * Return: Returns 0 if permission is granted.
5645 */
5646int security_uring_override_creds(const struct cred *new)
5647{
5648	return call_int_hook(uring_override_creds, new);
5649}
5650
5651/**
5652 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5653 *
5654 * Check whether the current task is allowed to spawn a io_uring polling thread
5655 * (IORING_SETUP_SQPOLL).
5656 *
5657 * Return: Returns 0 if permission is granted.
5658 */
5659int security_uring_sqpoll(void)
5660{
5661	return call_int_hook(uring_sqpoll);
5662}
5663
5664/**
5665 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5666 * @ioucmd: command
5667 *
5668 * Check whether the file_operations uring_cmd is allowed to run.
5669 *
5670 * Return: Returns 0 if permission is granted.
5671 */
5672int security_uring_cmd(struct io_uring_cmd *ioucmd)
5673{
5674	return call_int_hook(uring_cmd, ioucmd);
5675}
5676#endif /* CONFIG_IO_URING */