Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2024 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include <kunit/visibility.h>
24#include "core.h"
25#include "nl80211.h"
26#include "wext-compat.h"
27#include "rdev-ops.h"
28
29/**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65/*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73static int bss_entries_limit = 1000;
74module_param(bss_entries_limit, int, 0644);
75MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
80static void bss_free(struct cfg80211_internal_bss *bss)
81{
82 struct cfg80211_bss_ies *ies;
83
84 if (WARN_ON(atomic_read(&bss->hold)))
85 return;
86
87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 if (ies && !bss->pub.hidden_beacon_bss)
89 kfree_rcu(ies, rcu_head);
90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 if (ies)
92 kfree_rcu(ies, rcu_head);
93
94 /*
95 * This happens when the module is removed, it doesn't
96 * really matter any more save for completeness
97 */
98 if (!list_empty(&bss->hidden_list))
99 list_del(&bss->hidden_list);
100
101 kfree(bss);
102}
103
104static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 struct cfg80211_internal_bss *bss)
106{
107 lockdep_assert_held(&rdev->bss_lock);
108
109 bss->refcount++;
110
111 if (bss->pub.hidden_beacon_bss)
112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113
114 if (bss->pub.transmitted_bss)
115 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116}
117
118static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 struct cfg80211_internal_bss *bss)
120{
121 lockdep_assert_held(&rdev->bss_lock);
122
123 if (bss->pub.hidden_beacon_bss) {
124 struct cfg80211_internal_bss *hbss;
125
126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 hbss->refcount--;
128 if (hbss->refcount == 0)
129 bss_free(hbss);
130 }
131
132 if (bss->pub.transmitted_bss) {
133 struct cfg80211_internal_bss *tbss;
134
135 tbss = bss_from_pub(bss->pub.transmitted_bss);
136 tbss->refcount--;
137 if (tbss->refcount == 0)
138 bss_free(tbss);
139 }
140
141 bss->refcount--;
142 if (bss->refcount == 0)
143 bss_free(bss);
144}
145
146static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 struct cfg80211_internal_bss *bss)
148{
149 lockdep_assert_held(&rdev->bss_lock);
150
151 if (!list_empty(&bss->hidden_list)) {
152 /*
153 * don't remove the beacon entry if it has
154 * probe responses associated with it
155 */
156 if (!bss->pub.hidden_beacon_bss)
157 return false;
158 /*
159 * if it's a probe response entry break its
160 * link to the other entries in the group
161 */
162 list_del_init(&bss->hidden_list);
163 }
164
165 list_del_init(&bss->list);
166 list_del_init(&bss->pub.nontrans_list);
167 rb_erase(&bss->rbn, &rdev->bss_tree);
168 rdev->bss_entries--;
169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 rdev->bss_entries, list_empty(&rdev->bss_list));
172 bss_ref_put(rdev, bss);
173 return true;
174}
175
176bool cfg80211_is_element_inherited(const struct element *elem,
177 const struct element *non_inherit_elem)
178{
179 u8 id_len, ext_id_len, i, loop_len, id;
180 const u8 *list;
181
182 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 return false;
184
185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 return false;
188
189 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 return true;
191
192 /*
193 * non inheritance element format is:
194 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 * Both lists are optional. Both lengths are mandatory.
196 * This means valid length is:
197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 */
199 id_len = non_inherit_elem->data[1];
200 if (non_inherit_elem->datalen < 3 + id_len)
201 return true;
202
203 ext_id_len = non_inherit_elem->data[2 + id_len];
204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 return true;
206
207 if (elem->id == WLAN_EID_EXTENSION) {
208 if (!ext_id_len)
209 return true;
210 loop_len = ext_id_len;
211 list = &non_inherit_elem->data[3 + id_len];
212 id = elem->data[0];
213 } else {
214 if (!id_len)
215 return true;
216 loop_len = id_len;
217 list = &non_inherit_elem->data[2];
218 id = elem->id;
219 }
220
221 for (i = 0; i < loop_len; i++) {
222 if (list[i] == id)
223 return false;
224 }
225
226 return true;
227}
228EXPORT_SYMBOL(cfg80211_is_element_inherited);
229
230static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 const u8 *ie, size_t ie_len,
232 u8 **pos, u8 *buf, size_t buf_len)
233{
234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 elem->data + elem->datalen > ie + ie_len))
236 return 0;
237
238 if (elem->datalen + 2 > buf + buf_len - *pos)
239 return 0;
240
241 memcpy(*pos, elem, elem->datalen + 2);
242 *pos += elem->datalen + 2;
243
244 /* Finish if it is not fragmented */
245 if (elem->datalen != 255)
246 return *pos - buf;
247
248 ie_len = ie + ie_len - elem->data - elem->datalen;
249 ie = (const u8 *)elem->data + elem->datalen;
250
251 for_each_element(elem, ie, ie_len) {
252 if (elem->id != WLAN_EID_FRAGMENT)
253 break;
254
255 if (elem->datalen + 2 > buf + buf_len - *pos)
256 return 0;
257
258 memcpy(*pos, elem, elem->datalen + 2);
259 *pos += elem->datalen + 2;
260
261 if (elem->datalen != 255)
262 break;
263 }
264
265 return *pos - buf;
266}
267
268VISIBLE_IF_CFG80211_KUNIT size_t
269cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 const u8 *subie, size_t subie_len,
271 u8 *new_ie, size_t new_ie_len)
272{
273 const struct element *non_inherit_elem, *parent, *sub;
274 u8 *pos = new_ie;
275 u8 id, ext_id;
276 unsigned int match_len;
277
278 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 subie, subie_len);
280
281 /* We copy the elements one by one from the parent to the generated
282 * elements.
283 * If they are not inherited (included in subie or in the non
284 * inheritance element), then we copy all occurrences the first time
285 * we see this element type.
286 */
287 for_each_element(parent, ie, ielen) {
288 if (parent->id == WLAN_EID_FRAGMENT)
289 continue;
290
291 if (parent->id == WLAN_EID_EXTENSION) {
292 if (parent->datalen < 1)
293 continue;
294
295 id = WLAN_EID_EXTENSION;
296 ext_id = parent->data[0];
297 match_len = 1;
298 } else {
299 id = parent->id;
300 match_len = 0;
301 }
302
303 /* Find first occurrence in subie */
304 sub = cfg80211_find_elem_match(id, subie, subie_len,
305 &ext_id, match_len, 0);
306
307 /* Copy from parent if not in subie and inherited */
308 if (!sub &&
309 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 if (!cfg80211_copy_elem_with_frags(parent,
311 ie, ielen,
312 &pos, new_ie,
313 new_ie_len))
314 return 0;
315
316 continue;
317 }
318
319 /* Already copied if an earlier element had the same type */
320 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 &ext_id, match_len, 0))
322 continue;
323
324 /* Not inheriting, copy all similar elements from subie */
325 while (sub) {
326 if (!cfg80211_copy_elem_with_frags(sub,
327 subie, subie_len,
328 &pos, new_ie,
329 new_ie_len))
330 return 0;
331
332 sub = cfg80211_find_elem_match(id,
333 sub->data + sub->datalen,
334 subie_len + subie -
335 (sub->data +
336 sub->datalen),
337 &ext_id, match_len, 0);
338 }
339 }
340
341 /* The above misses elements that are included in subie but not in the
342 * parent, so do a pass over subie and append those.
343 * Skip the non-tx BSSID caps and non-inheritance element.
344 */
345 for_each_element(sub, subie, subie_len) {
346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 continue;
348
349 if (sub->id == WLAN_EID_FRAGMENT)
350 continue;
351
352 if (sub->id == WLAN_EID_EXTENSION) {
353 if (sub->datalen < 1)
354 continue;
355
356 id = WLAN_EID_EXTENSION;
357 ext_id = sub->data[0];
358 match_len = 1;
359
360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 continue;
362 } else {
363 id = sub->id;
364 match_len = 0;
365 }
366
367 /* Processed if one was included in the parent */
368 if (cfg80211_find_elem_match(id, ie, ielen,
369 &ext_id, match_len, 0))
370 continue;
371
372 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 &pos, new_ie, new_ie_len))
374 return 0;
375 }
376
377 return pos - new_ie;
378}
379EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380
381static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 const u8 *ssid, size_t ssid_len)
383{
384 const struct cfg80211_bss_ies *ies;
385 const struct element *ssid_elem;
386
387 if (bssid && !ether_addr_equal(a->bssid, bssid))
388 return false;
389
390 if (!ssid)
391 return true;
392
393 ies = rcu_access_pointer(a->ies);
394 if (!ies)
395 return false;
396 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 if (!ssid_elem)
398 return false;
399 if (ssid_elem->datalen != ssid_len)
400 return false;
401 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402}
403
404static int
405cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 struct cfg80211_bss *nontrans_bss)
407{
408 const struct element *ssid_elem;
409 struct cfg80211_bss *bss = NULL;
410
411 rcu_read_lock();
412 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 if (!ssid_elem) {
414 rcu_read_unlock();
415 return -EINVAL;
416 }
417
418 /* check if nontrans_bss is in the list */
419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 ssid_elem->datalen)) {
422 rcu_read_unlock();
423 return 0;
424 }
425 }
426
427 rcu_read_unlock();
428
429 /*
430 * This is a bit weird - it's not on the list, but already on another
431 * one! The only way that could happen is if there's some BSSID/SSID
432 * shared by multiple APs in their multi-BSSID profiles, potentially
433 * with hidden SSID mixed in ... ignore it.
434 */
435 if (!list_empty(&nontrans_bss->nontrans_list))
436 return -EINVAL;
437
438 /* add to the list */
439 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 return 0;
441}
442
443static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 unsigned long expire_time)
445{
446 struct cfg80211_internal_bss *bss, *tmp;
447 bool expired = false;
448
449 lockdep_assert_held(&rdev->bss_lock);
450
451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 if (atomic_read(&bss->hold))
453 continue;
454 if (!time_after(expire_time, bss->ts))
455 continue;
456
457 if (__cfg80211_unlink_bss(rdev, bss))
458 expired = true;
459 }
460
461 if (expired)
462 rdev->bss_generation++;
463}
464
465static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466{
467 struct cfg80211_internal_bss *bss, *oldest = NULL;
468 bool ret;
469
470 lockdep_assert_held(&rdev->bss_lock);
471
472 list_for_each_entry(bss, &rdev->bss_list, list) {
473 if (atomic_read(&bss->hold))
474 continue;
475
476 if (!list_empty(&bss->hidden_list) &&
477 !bss->pub.hidden_beacon_bss)
478 continue;
479
480 if (oldest && time_before(oldest->ts, bss->ts))
481 continue;
482 oldest = bss;
483 }
484
485 if (WARN_ON(!oldest))
486 return false;
487
488 /*
489 * The callers make sure to increase rdev->bss_generation if anything
490 * gets removed (and a new entry added), so there's no need to also do
491 * it here.
492 */
493
494 ret = __cfg80211_unlink_bss(rdev, oldest);
495 WARN_ON(!ret);
496 return ret;
497}
498
499static u8 cfg80211_parse_bss_param(u8 data,
500 struct cfg80211_colocated_ap *coloc_ap)
501{
502 coloc_ap->oct_recommended =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 coloc_ap->same_ssid =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 coloc_ap->multi_bss =
507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 coloc_ap->transmitted_bssid =
509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 coloc_ap->unsolicited_probe =
511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 coloc_ap->colocated_ess =
513 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514
515 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516}
517
518static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 const struct element **elem, u32 *s_ssid)
520{
521
522 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 return -EINVAL;
525
526 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 return 0;
528}
529
530VISIBLE_IF_CFG80211_KUNIT void
531cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532{
533 struct cfg80211_colocated_ap *ap, *tmp_ap;
534
535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 list_del(&ap->list);
537 kfree(ap);
538 }
539}
540EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541
542static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 const u8 *pos, u8 length,
544 const struct element *ssid_elem,
545 u32 s_ssid_tmp)
546{
547 u8 bss_params;
548
549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550
551 /* The length is already verified by the caller to contain bss_params */
552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554
555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 entry->short_ssid_valid = true;
558
559 bss_params = tbtt_info->bss_params;
560
561 /* Ignore disabled links */
562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 if (le16_get_bits(tbtt_info->mld_params.params,
564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 return -EINVAL;
566 }
567
568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 psd_20))
570 entry->psd_20 = tbtt_info->psd_20;
571 } else {
572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573
574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575
576 bss_params = tbtt_info->bss_params;
577
578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 psd_20))
580 entry->psd_20 = tbtt_info->psd_20;
581 }
582
583 /* ignore entries with invalid BSSID */
584 if (!is_valid_ether_addr(entry->bssid))
585 return -EINVAL;
586
587 /* skip non colocated APs */
588 if (!cfg80211_parse_bss_param(bss_params, entry))
589 return -EINVAL;
590
591 /* no information about the short ssid. Consider the entry valid
592 * for now. It would later be dropped in case there are explicit
593 * SSIDs that need to be matched
594 */
595 if (!entry->same_ssid && !entry->short_ssid_valid)
596 return 0;
597
598 if (entry->same_ssid) {
599 entry->short_ssid = s_ssid_tmp;
600 entry->short_ssid_valid = true;
601
602 /*
603 * This is safe because we validate datalen in
604 * cfg80211_parse_colocated_ap(), before calling this
605 * function.
606 */
607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 entry->ssid_len = ssid_elem->datalen;
609 }
610
611 return 0;
612}
613
614bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 enum cfg80211_rnr_iter_ret
616 (*iter)(void *data, u8 type,
617 const struct ieee80211_neighbor_ap_info *info,
618 const u8 *tbtt_info, u8 tbtt_info_len),
619 void *iter_data)
620{
621 const struct element *rnr;
622 const u8 *pos, *end;
623
624 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 elems, elems_len) {
626 const struct ieee80211_neighbor_ap_info *info;
627
628 pos = rnr->data;
629 end = rnr->data + rnr->datalen;
630
631 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 while (sizeof(*info) <= end - pos) {
633 u8 length, i, count;
634 u8 type;
635
636 info = (void *)pos;
637 count = u8_get_bits(info->tbtt_info_hdr,
638 IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 1;
640 length = info->tbtt_info_len;
641
642 pos += sizeof(*info);
643
644 if (count * length > end - pos)
645 return false;
646
647 type = u8_get_bits(info->tbtt_info_hdr,
648 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649
650 for (i = 0; i < count; i++) {
651 switch (iter(iter_data, type, info,
652 pos, length)) {
653 case RNR_ITER_CONTINUE:
654 break;
655 case RNR_ITER_BREAK:
656 return true;
657 case RNR_ITER_ERROR:
658 return false;
659 }
660
661 pos += length;
662 }
663 }
664
665 if (pos != end)
666 return false;
667 }
668
669 return true;
670}
671EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672
673struct colocated_ap_data {
674 const struct element *ssid_elem;
675 struct list_head ap_list;
676 u32 s_ssid_tmp;
677 int n_coloc;
678};
679
680static enum cfg80211_rnr_iter_ret
681cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 const struct ieee80211_neighbor_ap_info *info,
683 const u8 *tbtt_info, u8 tbtt_info_len)
684{
685 struct colocated_ap_data *data = _data;
686 struct cfg80211_colocated_ap *entry;
687 enum nl80211_band band;
688
689 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 return RNR_ITER_CONTINUE;
691
692 if (!ieee80211_operating_class_to_band(info->op_class, &band))
693 return RNR_ITER_CONTINUE;
694
695 /* TBTT info must include bss param + BSSID + (short SSID or
696 * same_ssid bit to be set). Ignore other options, and move to
697 * the next AP info
698 */
699 if (band != NL80211_BAND_6GHZ ||
700 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 bss_params) ||
702 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 bss_params)))
705 return RNR_ITER_CONTINUE;
706
707 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 if (!entry)
709 return RNR_ITER_ERROR;
710
711 entry->center_freq =
712 ieee80211_channel_to_frequency(info->channel, band);
713
714 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715 data->ssid_elem, data->s_ssid_tmp)) {
716 data->n_coloc++;
717 list_add_tail(&entry->list, &data->ap_list);
718 } else {
719 kfree(entry);
720 }
721
722 return RNR_ITER_CONTINUE;
723}
724
725VISIBLE_IF_CFG80211_KUNIT int
726cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 struct list_head *list)
728{
729 struct colocated_ap_data data = {};
730 int ret;
731
732 INIT_LIST_HEAD(&data.ap_list);
733
734 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735 if (ret)
736 return 0;
737
738 if (!cfg80211_iter_rnr(ies->data, ies->len,
739 cfg80211_parse_colocated_ap_iter, &data)) {
740 cfg80211_free_coloc_ap_list(&data.ap_list);
741 return 0;
742 }
743
744 list_splice_tail(&data.ap_list, list);
745 return data.n_coloc;
746}
747EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748
749static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 struct ieee80211_channel *chan,
751 bool add_to_6ghz)
752{
753 int i;
754 u32 n_channels = request->n_channels;
755 struct cfg80211_scan_6ghz_params *params =
756 &request->scan_6ghz_params[request->n_6ghz_params];
757
758 for (i = 0; i < n_channels; i++) {
759 if (request->channels[i] == chan) {
760 if (add_to_6ghz)
761 params->channel_idx = i;
762 return;
763 }
764 }
765
766 request->n_channels++;
767 request->channels[n_channels] = chan;
768 if (add_to_6ghz)
769 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
770 n_channels;
771}
772
773static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
774 struct cfg80211_scan_request *request)
775{
776 int i;
777 u32 s_ssid;
778
779 for (i = 0; i < request->n_ssids; i++) {
780 /* wildcard ssid in the scan request */
781 if (!request->ssids[i].ssid_len) {
782 if (ap->multi_bss && !ap->transmitted_bssid)
783 continue;
784
785 return true;
786 }
787
788 if (ap->ssid_len &&
789 ap->ssid_len == request->ssids[i].ssid_len) {
790 if (!memcmp(request->ssids[i].ssid, ap->ssid,
791 ap->ssid_len))
792 return true;
793 } else if (ap->short_ssid_valid) {
794 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
795 request->ssids[i].ssid_len);
796
797 if (ap->short_ssid == s_ssid)
798 return true;
799 }
800 }
801
802 return false;
803}
804
805static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
806{
807 u8 i;
808 struct cfg80211_colocated_ap *ap;
809 int n_channels, count = 0, err;
810 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
811 LIST_HEAD(coloc_ap_list);
812 bool need_scan_psc = true;
813 const struct ieee80211_sband_iftype_data *iftd;
814 size_t size, offs_ssids, offs_6ghz_params, offs_ies;
815
816 rdev_req->scan_6ghz = true;
817
818 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
819 return -EOPNOTSUPP;
820
821 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
822 rdev_req->wdev->iftype);
823 if (!iftd || !iftd->he_cap.has_he)
824 return -EOPNOTSUPP;
825
826 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
827
828 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
829 struct cfg80211_internal_bss *intbss;
830
831 spin_lock_bh(&rdev->bss_lock);
832 list_for_each_entry(intbss, &rdev->bss_list, list) {
833 struct cfg80211_bss *res = &intbss->pub;
834 const struct cfg80211_bss_ies *ies;
835 const struct element *ssid_elem;
836 struct cfg80211_colocated_ap *entry;
837 u32 s_ssid_tmp;
838 int ret;
839
840 ies = rcu_access_pointer(res->ies);
841 count += cfg80211_parse_colocated_ap(ies,
842 &coloc_ap_list);
843
844 /* In case the scan request specified a specific BSSID
845 * and the BSS is found and operating on 6GHz band then
846 * add this AP to the collocated APs list.
847 * This is relevant for ML probe requests when the lower
848 * band APs have not been discovered.
849 */
850 if (is_broadcast_ether_addr(rdev_req->bssid) ||
851 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
852 res->channel->band != NL80211_BAND_6GHZ)
853 continue;
854
855 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
856 &s_ssid_tmp);
857 if (ret)
858 continue;
859
860 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
861 if (!entry)
862 continue;
863
864 memcpy(entry->bssid, res->bssid, ETH_ALEN);
865 entry->short_ssid = s_ssid_tmp;
866 memcpy(entry->ssid, ssid_elem->data,
867 ssid_elem->datalen);
868 entry->ssid_len = ssid_elem->datalen;
869 entry->short_ssid_valid = true;
870 entry->center_freq = res->channel->center_freq;
871
872 list_add_tail(&entry->list, &coloc_ap_list);
873 count++;
874 }
875 spin_unlock_bh(&rdev->bss_lock);
876 }
877
878 size = struct_size(request, channels, n_channels);
879 offs_ssids = size;
880 size += sizeof(*request->ssids) * rdev_req->n_ssids;
881 offs_6ghz_params = size;
882 size += sizeof(*request->scan_6ghz_params) * count;
883 offs_ies = size;
884 size += rdev_req->ie_len;
885
886 request = kzalloc(size, GFP_KERNEL);
887 if (!request) {
888 cfg80211_free_coloc_ap_list(&coloc_ap_list);
889 return -ENOMEM;
890 }
891
892 *request = *rdev_req;
893 request->n_channels = 0;
894 request->n_6ghz_params = 0;
895 if (rdev_req->n_ssids) {
896 /*
897 * Add the ssids from the parent scan request to the new
898 * scan request, so the driver would be able to use them
899 * in its probe requests to discover hidden APs on PSC
900 * channels.
901 */
902 request->ssids = (void *)request + offs_ssids;
903 memcpy(request->ssids, rdev_req->ssids,
904 sizeof(*request->ssids) * request->n_ssids);
905 }
906 request->scan_6ghz_params = (void *)request + offs_6ghz_params;
907
908 if (rdev_req->ie_len) {
909 void *ie = (void *)request + offs_ies;
910
911 memcpy(ie, rdev_req->ie, rdev_req->ie_len);
912 request->ie = ie;
913 }
914
915 /*
916 * PSC channels should not be scanned in case of direct scan with 1 SSID
917 * and at least one of the reported co-located APs with same SSID
918 * indicating that all APs in the same ESS are co-located
919 */
920 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
921 list_for_each_entry(ap, &coloc_ap_list, list) {
922 if (ap->colocated_ess &&
923 cfg80211_find_ssid_match(ap, request)) {
924 need_scan_psc = false;
925 break;
926 }
927 }
928 }
929
930 /*
931 * add to the scan request the channels that need to be scanned
932 * regardless of the collocated APs (PSC channels or all channels
933 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
934 */
935 for (i = 0; i < rdev_req->n_channels; i++) {
936 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
937 ((need_scan_psc &&
938 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
939 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
940 cfg80211_scan_req_add_chan(request,
941 rdev_req->channels[i],
942 false);
943 }
944 }
945
946 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
947 goto skip;
948
949 list_for_each_entry(ap, &coloc_ap_list, list) {
950 bool found = false;
951 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
952 &request->scan_6ghz_params[request->n_6ghz_params];
953 struct ieee80211_channel *chan =
954 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
955
956 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED ||
957 !cfg80211_wdev_channel_allowed(rdev_req->wdev, chan))
958 continue;
959
960 for (i = 0; i < rdev_req->n_channels; i++) {
961 if (rdev_req->channels[i] == chan)
962 found = true;
963 }
964
965 if (!found)
966 continue;
967
968 if (request->n_ssids > 0 &&
969 !cfg80211_find_ssid_match(ap, request))
970 continue;
971
972 if (!is_broadcast_ether_addr(request->bssid) &&
973 !ether_addr_equal(request->bssid, ap->bssid))
974 continue;
975
976 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
977 continue;
978
979 cfg80211_scan_req_add_chan(request, chan, true);
980 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
981 scan_6ghz_params->short_ssid = ap->short_ssid;
982 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
983 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
984 scan_6ghz_params->psd_20 = ap->psd_20;
985
986 /*
987 * If a PSC channel is added to the scan and 'need_scan_psc' is
988 * set to false, then all the APs that the scan logic is
989 * interested with on the channel are collocated and thus there
990 * is no need to perform the initial PSC channel listen.
991 */
992 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
993 scan_6ghz_params->psc_no_listen = true;
994
995 request->n_6ghz_params++;
996 }
997
998skip:
999 cfg80211_free_coloc_ap_list(&coloc_ap_list);
1000
1001 if (request->n_channels) {
1002 struct cfg80211_scan_request *old = rdev->int_scan_req;
1003
1004 rdev->int_scan_req = request;
1005
1006 /*
1007 * If this scan follows a previous scan, save the scan start
1008 * info from the first part of the scan
1009 */
1010 if (old)
1011 rdev->int_scan_req->info = old->info;
1012
1013 err = rdev_scan(rdev, request);
1014 if (err) {
1015 rdev->int_scan_req = old;
1016 kfree(request);
1017 } else {
1018 kfree(old);
1019 }
1020
1021 return err;
1022 }
1023
1024 kfree(request);
1025 return -EINVAL;
1026}
1027
1028int cfg80211_scan(struct cfg80211_registered_device *rdev)
1029{
1030 struct cfg80211_scan_request *request;
1031 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1032 u32 n_channels = 0, idx, i;
1033
1034 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1035 return rdev_scan(rdev, rdev_req);
1036
1037 for (i = 0; i < rdev_req->n_channels; i++) {
1038 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1039 n_channels++;
1040 }
1041
1042 if (!n_channels)
1043 return cfg80211_scan_6ghz(rdev);
1044
1045 request = kzalloc(struct_size(request, channels, n_channels),
1046 GFP_KERNEL);
1047 if (!request)
1048 return -ENOMEM;
1049
1050 *request = *rdev_req;
1051 request->n_channels = n_channels;
1052
1053 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1054 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1055 request->channels[idx++] = rdev_req->channels[i];
1056 }
1057
1058 rdev_req->scan_6ghz = false;
1059 rdev->int_scan_req = request;
1060 return rdev_scan(rdev, request);
1061}
1062
1063void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1064 bool send_message)
1065{
1066 struct cfg80211_scan_request *request, *rdev_req;
1067 struct wireless_dev *wdev;
1068 struct sk_buff *msg;
1069#ifdef CONFIG_CFG80211_WEXT
1070 union iwreq_data wrqu;
1071#endif
1072
1073 lockdep_assert_held(&rdev->wiphy.mtx);
1074
1075 if (rdev->scan_msg) {
1076 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1077 rdev->scan_msg = NULL;
1078 return;
1079 }
1080
1081 rdev_req = rdev->scan_req;
1082 if (!rdev_req)
1083 return;
1084
1085 wdev = rdev_req->wdev;
1086 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1087
1088 if (wdev_running(wdev) &&
1089 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1090 !rdev_req->scan_6ghz && !request->info.aborted &&
1091 !cfg80211_scan_6ghz(rdev))
1092 return;
1093
1094 /*
1095 * This must be before sending the other events!
1096 * Otherwise, wpa_supplicant gets completely confused with
1097 * wext events.
1098 */
1099 if (wdev->netdev)
1100 cfg80211_sme_scan_done(wdev->netdev);
1101
1102 if (!request->info.aborted &&
1103 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1104 /* flush entries from previous scans */
1105 spin_lock_bh(&rdev->bss_lock);
1106 __cfg80211_bss_expire(rdev, request->scan_start);
1107 spin_unlock_bh(&rdev->bss_lock);
1108 }
1109
1110 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1111
1112#ifdef CONFIG_CFG80211_WEXT
1113 if (wdev->netdev && !request->info.aborted) {
1114 memset(&wrqu, 0, sizeof(wrqu));
1115
1116 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1117 }
1118#endif
1119
1120 dev_put(wdev->netdev);
1121
1122 kfree(rdev->int_scan_req);
1123 rdev->int_scan_req = NULL;
1124
1125 kfree(rdev->scan_req);
1126 rdev->scan_req = NULL;
1127
1128 if (!send_message)
1129 rdev->scan_msg = msg;
1130 else
1131 nl80211_send_scan_msg(rdev, msg);
1132}
1133
1134void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1135{
1136 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1137}
1138
1139void cfg80211_scan_done(struct cfg80211_scan_request *request,
1140 struct cfg80211_scan_info *info)
1141{
1142 struct cfg80211_scan_info old_info = request->info;
1143
1144 trace_cfg80211_scan_done(request, info);
1145 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1146 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1147
1148 request->info = *info;
1149
1150 /*
1151 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1152 * be of the first part. In such a case old_info.scan_start_tsf should
1153 * be non zero.
1154 */
1155 if (request->scan_6ghz && old_info.scan_start_tsf) {
1156 request->info.scan_start_tsf = old_info.scan_start_tsf;
1157 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1158 sizeof(request->info.tsf_bssid));
1159 }
1160
1161 request->notified = true;
1162 wiphy_work_queue(request->wiphy,
1163 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1164}
1165EXPORT_SYMBOL(cfg80211_scan_done);
1166
1167void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1168 struct cfg80211_sched_scan_request *req)
1169{
1170 lockdep_assert_held(&rdev->wiphy.mtx);
1171
1172 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1173}
1174
1175static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1176 struct cfg80211_sched_scan_request *req)
1177{
1178 lockdep_assert_held(&rdev->wiphy.mtx);
1179
1180 list_del_rcu(&req->list);
1181 kfree_rcu(req, rcu_head);
1182}
1183
1184static struct cfg80211_sched_scan_request *
1185cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1186{
1187 struct cfg80211_sched_scan_request *pos;
1188
1189 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1190 lockdep_is_held(&rdev->wiphy.mtx)) {
1191 if (pos->reqid == reqid)
1192 return pos;
1193 }
1194 return NULL;
1195}
1196
1197/*
1198 * Determines if a scheduled scan request can be handled. When a legacy
1199 * scheduled scan is running no other scheduled scan is allowed regardless
1200 * whether the request is for legacy or multi-support scan. When a multi-support
1201 * scheduled scan is running a request for legacy scan is not allowed. In this
1202 * case a request for multi-support scan can be handled if resources are
1203 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1204 */
1205int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1206 bool want_multi)
1207{
1208 struct cfg80211_sched_scan_request *pos;
1209 int i = 0;
1210
1211 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1212 /* request id zero means legacy in progress */
1213 if (!i && !pos->reqid)
1214 return -EINPROGRESS;
1215 i++;
1216 }
1217
1218 if (i) {
1219 /* no legacy allowed when multi request(s) are active */
1220 if (!want_multi)
1221 return -EINPROGRESS;
1222
1223 /* resource limit reached */
1224 if (i == rdev->wiphy.max_sched_scan_reqs)
1225 return -ENOSPC;
1226 }
1227 return 0;
1228}
1229
1230void cfg80211_sched_scan_results_wk(struct work_struct *work)
1231{
1232 struct cfg80211_registered_device *rdev;
1233 struct cfg80211_sched_scan_request *req, *tmp;
1234
1235 rdev = container_of(work, struct cfg80211_registered_device,
1236 sched_scan_res_wk);
1237
1238 wiphy_lock(&rdev->wiphy);
1239 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1240 if (req->report_results) {
1241 req->report_results = false;
1242 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1243 /* flush entries from previous scans */
1244 spin_lock_bh(&rdev->bss_lock);
1245 __cfg80211_bss_expire(rdev, req->scan_start);
1246 spin_unlock_bh(&rdev->bss_lock);
1247 req->scan_start = jiffies;
1248 }
1249 nl80211_send_sched_scan(req,
1250 NL80211_CMD_SCHED_SCAN_RESULTS);
1251 }
1252 }
1253 wiphy_unlock(&rdev->wiphy);
1254}
1255
1256void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1257{
1258 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1259 struct cfg80211_sched_scan_request *request;
1260
1261 trace_cfg80211_sched_scan_results(wiphy, reqid);
1262 /* ignore if we're not scanning */
1263
1264 rcu_read_lock();
1265 request = cfg80211_find_sched_scan_req(rdev, reqid);
1266 if (request) {
1267 request->report_results = true;
1268 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1269 }
1270 rcu_read_unlock();
1271}
1272EXPORT_SYMBOL(cfg80211_sched_scan_results);
1273
1274void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1275{
1276 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1277
1278 lockdep_assert_held(&wiphy->mtx);
1279
1280 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1281
1282 __cfg80211_stop_sched_scan(rdev, reqid, true);
1283}
1284EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1285
1286void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1287{
1288 wiphy_lock(wiphy);
1289 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1290 wiphy_unlock(wiphy);
1291}
1292EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1293
1294int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1295 struct cfg80211_sched_scan_request *req,
1296 bool driver_initiated)
1297{
1298 lockdep_assert_held(&rdev->wiphy.mtx);
1299
1300 if (!driver_initiated) {
1301 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1302 if (err)
1303 return err;
1304 }
1305
1306 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1307
1308 cfg80211_del_sched_scan_req(rdev, req);
1309
1310 return 0;
1311}
1312
1313int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1314 u64 reqid, bool driver_initiated)
1315{
1316 struct cfg80211_sched_scan_request *sched_scan_req;
1317
1318 lockdep_assert_held(&rdev->wiphy.mtx);
1319
1320 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1321 if (!sched_scan_req)
1322 return -ENOENT;
1323
1324 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1325 driver_initiated);
1326}
1327
1328void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1329 unsigned long age_secs)
1330{
1331 struct cfg80211_internal_bss *bss;
1332 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1333
1334 spin_lock_bh(&rdev->bss_lock);
1335 list_for_each_entry(bss, &rdev->bss_list, list)
1336 bss->ts -= age_jiffies;
1337 spin_unlock_bh(&rdev->bss_lock);
1338}
1339
1340void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1341{
1342 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1343}
1344
1345void cfg80211_bss_flush(struct wiphy *wiphy)
1346{
1347 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1348
1349 spin_lock_bh(&rdev->bss_lock);
1350 __cfg80211_bss_expire(rdev, jiffies);
1351 spin_unlock_bh(&rdev->bss_lock);
1352}
1353EXPORT_SYMBOL(cfg80211_bss_flush);
1354
1355const struct element *
1356cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1357 const u8 *match, unsigned int match_len,
1358 unsigned int match_offset)
1359{
1360 const struct element *elem;
1361
1362 for_each_element_id(elem, eid, ies, len) {
1363 if (elem->datalen >= match_offset + match_len &&
1364 !memcmp(elem->data + match_offset, match, match_len))
1365 return elem;
1366 }
1367
1368 return NULL;
1369}
1370EXPORT_SYMBOL(cfg80211_find_elem_match);
1371
1372const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1373 const u8 *ies,
1374 unsigned int len)
1375{
1376 const struct element *elem;
1377 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1378 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1379
1380 if (WARN_ON(oui_type > 0xff))
1381 return NULL;
1382
1383 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1384 match, match_len, 0);
1385
1386 if (!elem || elem->datalen < 4)
1387 return NULL;
1388
1389 return elem;
1390}
1391EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1392
1393/**
1394 * enum bss_compare_mode - BSS compare mode
1395 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1396 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1397 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1398 */
1399enum bss_compare_mode {
1400 BSS_CMP_REGULAR,
1401 BSS_CMP_HIDE_ZLEN,
1402 BSS_CMP_HIDE_NUL,
1403};
1404
1405static int cmp_bss(struct cfg80211_bss *a,
1406 struct cfg80211_bss *b,
1407 enum bss_compare_mode mode)
1408{
1409 const struct cfg80211_bss_ies *a_ies, *b_ies;
1410 const u8 *ie1 = NULL;
1411 const u8 *ie2 = NULL;
1412 int i, r;
1413
1414 if (a->channel != b->channel)
1415 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1416 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1417
1418 a_ies = rcu_access_pointer(a->ies);
1419 if (!a_ies)
1420 return -1;
1421 b_ies = rcu_access_pointer(b->ies);
1422 if (!b_ies)
1423 return 1;
1424
1425 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1426 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1427 a_ies->data, a_ies->len);
1428 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1429 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1430 b_ies->data, b_ies->len);
1431 if (ie1 && ie2) {
1432 int mesh_id_cmp;
1433
1434 if (ie1[1] == ie2[1])
1435 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1436 else
1437 mesh_id_cmp = ie2[1] - ie1[1];
1438
1439 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1440 a_ies->data, a_ies->len);
1441 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1442 b_ies->data, b_ies->len);
1443 if (ie1 && ie2) {
1444 if (mesh_id_cmp)
1445 return mesh_id_cmp;
1446 if (ie1[1] != ie2[1])
1447 return ie2[1] - ie1[1];
1448 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1449 }
1450 }
1451
1452 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1453 if (r)
1454 return r;
1455
1456 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1457 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1458
1459 if (!ie1 && !ie2)
1460 return 0;
1461
1462 /*
1463 * Note that with "hide_ssid", the function returns a match if
1464 * the already-present BSS ("b") is a hidden SSID beacon for
1465 * the new BSS ("a").
1466 */
1467
1468 /* sort missing IE before (left of) present IE */
1469 if (!ie1)
1470 return -1;
1471 if (!ie2)
1472 return 1;
1473
1474 switch (mode) {
1475 case BSS_CMP_HIDE_ZLEN:
1476 /*
1477 * In ZLEN mode we assume the BSS entry we're
1478 * looking for has a zero-length SSID. So if
1479 * the one we're looking at right now has that,
1480 * return 0. Otherwise, return the difference
1481 * in length, but since we're looking for the
1482 * 0-length it's really equivalent to returning
1483 * the length of the one we're looking at.
1484 *
1485 * No content comparison is needed as we assume
1486 * the content length is zero.
1487 */
1488 return ie2[1];
1489 case BSS_CMP_REGULAR:
1490 default:
1491 /* sort by length first, then by contents */
1492 if (ie1[1] != ie2[1])
1493 return ie2[1] - ie1[1];
1494 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1495 case BSS_CMP_HIDE_NUL:
1496 if (ie1[1] != ie2[1])
1497 return ie2[1] - ie1[1];
1498 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1499 for (i = 0; i < ie2[1]; i++)
1500 if (ie2[i + 2])
1501 return -1;
1502 return 0;
1503 }
1504}
1505
1506static bool cfg80211_bss_type_match(u16 capability,
1507 enum nl80211_band band,
1508 enum ieee80211_bss_type bss_type)
1509{
1510 bool ret = true;
1511 u16 mask, val;
1512
1513 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1514 return ret;
1515
1516 if (band == NL80211_BAND_60GHZ) {
1517 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1518 switch (bss_type) {
1519 case IEEE80211_BSS_TYPE_ESS:
1520 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1521 break;
1522 case IEEE80211_BSS_TYPE_PBSS:
1523 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1524 break;
1525 case IEEE80211_BSS_TYPE_IBSS:
1526 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1527 break;
1528 default:
1529 return false;
1530 }
1531 } else {
1532 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1533 switch (bss_type) {
1534 case IEEE80211_BSS_TYPE_ESS:
1535 val = WLAN_CAPABILITY_ESS;
1536 break;
1537 case IEEE80211_BSS_TYPE_IBSS:
1538 val = WLAN_CAPABILITY_IBSS;
1539 break;
1540 case IEEE80211_BSS_TYPE_MBSS:
1541 val = 0;
1542 break;
1543 default:
1544 return false;
1545 }
1546 }
1547
1548 ret = ((capability & mask) == val);
1549 return ret;
1550}
1551
1552/* Returned bss is reference counted and must be cleaned up appropriately. */
1553struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1554 struct ieee80211_channel *channel,
1555 const u8 *bssid,
1556 const u8 *ssid, size_t ssid_len,
1557 enum ieee80211_bss_type bss_type,
1558 enum ieee80211_privacy privacy,
1559 u32 use_for)
1560{
1561 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1562 struct cfg80211_internal_bss *bss, *res = NULL;
1563 unsigned long now = jiffies;
1564 int bss_privacy;
1565
1566 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1567 privacy);
1568
1569 spin_lock_bh(&rdev->bss_lock);
1570
1571 list_for_each_entry(bss, &rdev->bss_list, list) {
1572 if (!cfg80211_bss_type_match(bss->pub.capability,
1573 bss->pub.channel->band, bss_type))
1574 continue;
1575
1576 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1577 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1578 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1579 continue;
1580 if (channel && bss->pub.channel != channel)
1581 continue;
1582 if (!is_valid_ether_addr(bss->pub.bssid))
1583 continue;
1584 if ((bss->pub.use_for & use_for) != use_for)
1585 continue;
1586 /* Don't get expired BSS structs */
1587 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1588 !atomic_read(&bss->hold))
1589 continue;
1590 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1591 res = bss;
1592 bss_ref_get(rdev, res);
1593 break;
1594 }
1595 }
1596
1597 spin_unlock_bh(&rdev->bss_lock);
1598 if (!res)
1599 return NULL;
1600 trace_cfg80211_return_bss(&res->pub);
1601 return &res->pub;
1602}
1603EXPORT_SYMBOL(__cfg80211_get_bss);
1604
1605static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1606 struct cfg80211_internal_bss *bss)
1607{
1608 struct rb_node **p = &rdev->bss_tree.rb_node;
1609 struct rb_node *parent = NULL;
1610 struct cfg80211_internal_bss *tbss;
1611 int cmp;
1612
1613 while (*p) {
1614 parent = *p;
1615 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1616
1617 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1618
1619 if (WARN_ON(!cmp)) {
1620 /* will sort of leak this BSS */
1621 return false;
1622 }
1623
1624 if (cmp < 0)
1625 p = &(*p)->rb_left;
1626 else
1627 p = &(*p)->rb_right;
1628 }
1629
1630 rb_link_node(&bss->rbn, parent, p);
1631 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1632 return true;
1633}
1634
1635static struct cfg80211_internal_bss *
1636rb_find_bss(struct cfg80211_registered_device *rdev,
1637 struct cfg80211_internal_bss *res,
1638 enum bss_compare_mode mode)
1639{
1640 struct rb_node *n = rdev->bss_tree.rb_node;
1641 struct cfg80211_internal_bss *bss;
1642 int r;
1643
1644 while (n) {
1645 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1646 r = cmp_bss(&res->pub, &bss->pub, mode);
1647
1648 if (r == 0)
1649 return bss;
1650 else if (r < 0)
1651 n = n->rb_left;
1652 else
1653 n = n->rb_right;
1654 }
1655
1656 return NULL;
1657}
1658
1659static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1660 struct cfg80211_internal_bss *bss)
1661{
1662 lockdep_assert_held(&rdev->bss_lock);
1663
1664 if (!rb_insert_bss(rdev, bss))
1665 return;
1666 list_add_tail(&bss->list, &rdev->bss_list);
1667 rdev->bss_entries++;
1668}
1669
1670static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1671 struct cfg80211_internal_bss *bss)
1672{
1673 lockdep_assert_held(&rdev->bss_lock);
1674
1675 rb_erase(&bss->rbn, &rdev->bss_tree);
1676 if (!rb_insert_bss(rdev, bss)) {
1677 list_del(&bss->list);
1678 if (!list_empty(&bss->hidden_list))
1679 list_del_init(&bss->hidden_list);
1680 if (!list_empty(&bss->pub.nontrans_list))
1681 list_del_init(&bss->pub.nontrans_list);
1682 rdev->bss_entries--;
1683 }
1684 rdev->bss_generation++;
1685}
1686
1687static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1688 struct cfg80211_internal_bss *new)
1689{
1690 const struct cfg80211_bss_ies *ies;
1691 struct cfg80211_internal_bss *bss;
1692 const u8 *ie;
1693 int i, ssidlen;
1694 u8 fold = 0;
1695 u32 n_entries = 0;
1696
1697 ies = rcu_access_pointer(new->pub.beacon_ies);
1698 if (WARN_ON(!ies))
1699 return false;
1700
1701 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1702 if (!ie) {
1703 /* nothing to do */
1704 return true;
1705 }
1706
1707 ssidlen = ie[1];
1708 for (i = 0; i < ssidlen; i++)
1709 fold |= ie[2 + i];
1710
1711 if (fold) {
1712 /* not a hidden SSID */
1713 return true;
1714 }
1715
1716 /* This is the bad part ... */
1717
1718 list_for_each_entry(bss, &rdev->bss_list, list) {
1719 /*
1720 * we're iterating all the entries anyway, so take the
1721 * opportunity to validate the list length accounting
1722 */
1723 n_entries++;
1724
1725 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1726 continue;
1727 if (bss->pub.channel != new->pub.channel)
1728 continue;
1729 if (rcu_access_pointer(bss->pub.beacon_ies))
1730 continue;
1731 ies = rcu_access_pointer(bss->pub.ies);
1732 if (!ies)
1733 continue;
1734 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1735 if (!ie)
1736 continue;
1737 if (ssidlen && ie[1] != ssidlen)
1738 continue;
1739 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1740 continue;
1741 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1742 list_del(&bss->hidden_list);
1743 /* combine them */
1744 list_add(&bss->hidden_list, &new->hidden_list);
1745 bss->pub.hidden_beacon_bss = &new->pub;
1746 new->refcount += bss->refcount;
1747 rcu_assign_pointer(bss->pub.beacon_ies,
1748 new->pub.beacon_ies);
1749 }
1750
1751 WARN_ONCE(n_entries != rdev->bss_entries,
1752 "rdev bss entries[%d]/list[len:%d] corruption\n",
1753 rdev->bss_entries, n_entries);
1754
1755 return true;
1756}
1757
1758static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1759 const struct cfg80211_bss_ies *new_ies,
1760 const struct cfg80211_bss_ies *old_ies)
1761{
1762 struct cfg80211_internal_bss *bss;
1763
1764 /* Assign beacon IEs to all sub entries */
1765 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1766 const struct cfg80211_bss_ies *ies;
1767
1768 ies = rcu_access_pointer(bss->pub.beacon_ies);
1769 WARN_ON(ies != old_ies);
1770
1771 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1772 }
1773}
1774
1775static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1776 struct cfg80211_internal_bss *known,
1777 const struct cfg80211_bss_ies *old)
1778{
1779 const struct ieee80211_ext_chansw_ie *ecsa;
1780 const struct element *elem_new, *elem_old;
1781 const struct cfg80211_bss_ies *new, *bcn;
1782
1783 if (known->pub.proberesp_ecsa_stuck)
1784 return;
1785
1786 new = rcu_dereference_protected(known->pub.proberesp_ies,
1787 lockdep_is_held(&rdev->bss_lock));
1788 if (WARN_ON(!new))
1789 return;
1790
1791 if (new->tsf - old->tsf < USEC_PER_SEC)
1792 return;
1793
1794 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1795 old->data, old->len);
1796 if (!elem_old)
1797 return;
1798
1799 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1800 new->data, new->len);
1801 if (!elem_new)
1802 return;
1803
1804 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1805 lockdep_is_held(&rdev->bss_lock));
1806 if (bcn &&
1807 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1808 bcn->data, bcn->len))
1809 return;
1810
1811 if (elem_new->datalen != elem_old->datalen)
1812 return;
1813 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1814 return;
1815 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1816 return;
1817
1818 ecsa = (void *)elem_new->data;
1819
1820 if (!ecsa->mode)
1821 return;
1822
1823 if (ecsa->new_ch_num !=
1824 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1825 return;
1826
1827 known->pub.proberesp_ecsa_stuck = 1;
1828}
1829
1830static bool
1831cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1832 struct cfg80211_internal_bss *known,
1833 struct cfg80211_internal_bss *new,
1834 bool signal_valid)
1835{
1836 lockdep_assert_held(&rdev->bss_lock);
1837
1838 /* Update IEs */
1839 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1840 const struct cfg80211_bss_ies *old;
1841
1842 old = rcu_access_pointer(known->pub.proberesp_ies);
1843
1844 rcu_assign_pointer(known->pub.proberesp_ies,
1845 new->pub.proberesp_ies);
1846 /* Override possible earlier Beacon frame IEs */
1847 rcu_assign_pointer(known->pub.ies,
1848 new->pub.proberesp_ies);
1849 if (old) {
1850 cfg80211_check_stuck_ecsa(rdev, known, old);
1851 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1852 }
1853 }
1854
1855 if (rcu_access_pointer(new->pub.beacon_ies)) {
1856 const struct cfg80211_bss_ies *old;
1857
1858 if (known->pub.hidden_beacon_bss &&
1859 !list_empty(&known->hidden_list)) {
1860 const struct cfg80211_bss_ies *f;
1861
1862 /* The known BSS struct is one of the probe
1863 * response members of a group, but we're
1864 * receiving a beacon (beacon_ies in the new
1865 * bss is used). This can only mean that the
1866 * AP changed its beacon from not having an
1867 * SSID to showing it, which is confusing so
1868 * drop this information.
1869 */
1870
1871 f = rcu_access_pointer(new->pub.beacon_ies);
1872 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1873 return false;
1874 }
1875
1876 old = rcu_access_pointer(known->pub.beacon_ies);
1877
1878 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1879
1880 /* Override IEs if they were from a beacon before */
1881 if (old == rcu_access_pointer(known->pub.ies))
1882 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1883
1884 cfg80211_update_hidden_bsses(known,
1885 rcu_access_pointer(new->pub.beacon_ies),
1886 old);
1887
1888 if (old)
1889 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1890 }
1891
1892 known->pub.beacon_interval = new->pub.beacon_interval;
1893
1894 /* don't update the signal if beacon was heard on
1895 * adjacent channel.
1896 */
1897 if (signal_valid)
1898 known->pub.signal = new->pub.signal;
1899 known->pub.capability = new->pub.capability;
1900 known->ts = new->ts;
1901 known->ts_boottime = new->ts_boottime;
1902 known->parent_tsf = new->parent_tsf;
1903 known->pub.chains = new->pub.chains;
1904 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1905 IEEE80211_MAX_CHAINS);
1906 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1907 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1908 known->pub.bssid_index = new->pub.bssid_index;
1909 known->pub.use_for &= new->pub.use_for;
1910 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1911 known->bss_source = new->bss_source;
1912
1913 return true;
1914}
1915
1916/* Returned bss is reference counted and must be cleaned up appropriately. */
1917static struct cfg80211_internal_bss *
1918__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1919 struct cfg80211_internal_bss *tmp,
1920 bool signal_valid, unsigned long ts)
1921{
1922 struct cfg80211_internal_bss *found = NULL;
1923 struct cfg80211_bss_ies *ies;
1924
1925 if (WARN_ON(!tmp->pub.channel))
1926 goto free_ies;
1927
1928 tmp->ts = ts;
1929
1930 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1931 goto free_ies;
1932
1933 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1934
1935 if (found) {
1936 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1937 return NULL;
1938 } else {
1939 struct cfg80211_internal_bss *new;
1940 struct cfg80211_internal_bss *hidden;
1941
1942 /*
1943 * create a copy -- the "res" variable that is passed in
1944 * is allocated on the stack since it's not needed in the
1945 * more common case of an update
1946 */
1947 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1948 GFP_ATOMIC);
1949 if (!new)
1950 goto free_ies;
1951 memcpy(new, tmp, sizeof(*new));
1952 new->refcount = 1;
1953 INIT_LIST_HEAD(&new->hidden_list);
1954 INIT_LIST_HEAD(&new->pub.nontrans_list);
1955 /* we'll set this later if it was non-NULL */
1956 new->pub.transmitted_bss = NULL;
1957
1958 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1959 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1960 if (!hidden)
1961 hidden = rb_find_bss(rdev, tmp,
1962 BSS_CMP_HIDE_NUL);
1963 if (hidden) {
1964 new->pub.hidden_beacon_bss = &hidden->pub;
1965 list_add(&new->hidden_list,
1966 &hidden->hidden_list);
1967 hidden->refcount++;
1968
1969 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1970 rcu_assign_pointer(new->pub.beacon_ies,
1971 hidden->pub.beacon_ies);
1972 if (ies)
1973 kfree_rcu(ies, rcu_head);
1974 }
1975 } else {
1976 /*
1977 * Ok so we found a beacon, and don't have an entry. If
1978 * it's a beacon with hidden SSID, we might be in for an
1979 * expensive search for any probe responses that should
1980 * be grouped with this beacon for updates ...
1981 */
1982 if (!cfg80211_combine_bsses(rdev, new)) {
1983 bss_ref_put(rdev, new);
1984 return NULL;
1985 }
1986 }
1987
1988 if (rdev->bss_entries >= bss_entries_limit &&
1989 !cfg80211_bss_expire_oldest(rdev)) {
1990 bss_ref_put(rdev, new);
1991 return NULL;
1992 }
1993
1994 /* This must be before the call to bss_ref_get */
1995 if (tmp->pub.transmitted_bss) {
1996 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1997 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1998 }
1999
2000 cfg80211_insert_bss(rdev, new);
2001 found = new;
2002 }
2003
2004 rdev->bss_generation++;
2005 bss_ref_get(rdev, found);
2006
2007 return found;
2008
2009free_ies:
2010 ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2011 if (ies)
2012 kfree_rcu(ies, rcu_head);
2013 ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2014 if (ies)
2015 kfree_rcu(ies, rcu_head);
2016
2017 return NULL;
2018}
2019
2020struct cfg80211_internal_bss *
2021cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2022 struct cfg80211_internal_bss *tmp,
2023 bool signal_valid, unsigned long ts)
2024{
2025 struct cfg80211_internal_bss *res;
2026
2027 spin_lock_bh(&rdev->bss_lock);
2028 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2029 spin_unlock_bh(&rdev->bss_lock);
2030
2031 return res;
2032}
2033
2034int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2035 enum nl80211_band band)
2036{
2037 const struct element *tmp;
2038
2039 if (band == NL80211_BAND_6GHZ) {
2040 struct ieee80211_he_operation *he_oper;
2041
2042 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2043 ielen);
2044 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2045 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2046 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2047
2048 he_oper = (void *)&tmp->data[1];
2049
2050 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2051 if (!he_6ghz_oper)
2052 return -1;
2053
2054 return he_6ghz_oper->primary;
2055 }
2056 } else if (band == NL80211_BAND_S1GHZ) {
2057 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2058 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2059 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2060
2061 return s1gop->oper_ch;
2062 }
2063 } else {
2064 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2065 if (tmp && tmp->datalen == 1)
2066 return tmp->data[0];
2067
2068 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2069 if (tmp &&
2070 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2071 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2072
2073 return htop->primary_chan;
2074 }
2075 }
2076
2077 return -1;
2078}
2079EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2080
2081/*
2082 * Update RX channel information based on the available frame payload
2083 * information. This is mainly for the 2.4 GHz band where frames can be received
2084 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2085 * element to indicate the current (transmitting) channel, but this might also
2086 * be needed on other bands if RX frequency does not match with the actual
2087 * operating channel of a BSS, or if the AP reports a different primary channel.
2088 */
2089static struct ieee80211_channel *
2090cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2091 struct ieee80211_channel *channel)
2092{
2093 u32 freq;
2094 int channel_number;
2095 struct ieee80211_channel *alt_channel;
2096
2097 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2098 channel->band);
2099
2100 if (channel_number < 0) {
2101 /* No channel information in frame payload */
2102 return channel;
2103 }
2104
2105 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2106
2107 /*
2108 * Frame info (beacon/prob res) is the same as received channel,
2109 * no need for further processing.
2110 */
2111 if (freq == ieee80211_channel_to_khz(channel))
2112 return channel;
2113
2114 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2115 if (!alt_channel) {
2116 if (channel->band == NL80211_BAND_2GHZ ||
2117 channel->band == NL80211_BAND_6GHZ) {
2118 /*
2119 * Better not allow unexpected channels when that could
2120 * be going beyond the 1-11 range (e.g., discovering
2121 * BSS on channel 12 when radio is configured for
2122 * channel 11) or beyond the 6 GHz channel range.
2123 */
2124 return NULL;
2125 }
2126
2127 /* No match for the payload channel number - ignore it */
2128 return channel;
2129 }
2130
2131 /*
2132 * Use the channel determined through the payload channel number
2133 * instead of the RX channel reported by the driver.
2134 */
2135 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2136 return NULL;
2137 return alt_channel;
2138}
2139
2140struct cfg80211_inform_single_bss_data {
2141 struct cfg80211_inform_bss *drv_data;
2142 enum cfg80211_bss_frame_type ftype;
2143 struct ieee80211_channel *channel;
2144 u8 bssid[ETH_ALEN];
2145 u64 tsf;
2146 u16 capability;
2147 u16 beacon_interval;
2148 const u8 *ie;
2149 size_t ielen;
2150
2151 enum bss_source_type bss_source;
2152 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2153 struct cfg80211_bss *source_bss;
2154 u8 max_bssid_indicator;
2155 u8 bssid_index;
2156
2157 u8 use_for;
2158 u64 cannot_use_reasons;
2159};
2160
2161enum ieee80211_ap_reg_power
2162cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2163{
2164 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2165 struct ieee80211_he_operation *he_oper;
2166 const struct element *tmp;
2167
2168 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2169 elems, elems_len);
2170 if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2171 tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2172 return IEEE80211_REG_UNSET_AP;
2173
2174 he_oper = (void *)&tmp->data[1];
2175 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2176
2177 if (!he_6ghz_oper)
2178 return IEEE80211_REG_UNSET_AP;
2179
2180 switch (u8_get_bits(he_6ghz_oper->control,
2181 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2182 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2183 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2184 return IEEE80211_REG_LPI_AP;
2185 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2186 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2187 return IEEE80211_REG_SP_AP;
2188 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2189 return IEEE80211_REG_VLP_AP;
2190 default:
2191 return IEEE80211_REG_UNSET_AP;
2192 }
2193}
2194
2195static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2196 const u32 flags)
2197{
2198 switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2199 case IEEE80211_REG_LPI_AP:
2200 return true;
2201 case IEEE80211_REG_SP_AP:
2202 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2203 case IEEE80211_REG_VLP_AP:
2204 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2205 default:
2206 return false;
2207 }
2208}
2209
2210/* Returned bss is reference counted and must be cleaned up appropriately. */
2211static struct cfg80211_bss *
2212cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2213 struct cfg80211_inform_single_bss_data *data,
2214 gfp_t gfp)
2215{
2216 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2217 struct cfg80211_inform_bss *drv_data = data->drv_data;
2218 struct cfg80211_bss_ies *ies;
2219 struct ieee80211_channel *channel;
2220 struct cfg80211_internal_bss tmp = {}, *res;
2221 int bss_type;
2222 bool signal_valid;
2223 unsigned long ts;
2224
2225 if (WARN_ON(!wiphy))
2226 return NULL;
2227
2228 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2229 (drv_data->signal < 0 || drv_data->signal > 100)))
2230 return NULL;
2231
2232 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2233 return NULL;
2234
2235 channel = data->channel;
2236 if (!channel)
2237 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2238 drv_data->chan);
2239 if (!channel)
2240 return NULL;
2241
2242 if (channel->band == NL80211_BAND_6GHZ &&
2243 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2244 channel->flags)) {
2245 data->use_for = 0;
2246 data->cannot_use_reasons =
2247 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2248 }
2249
2250 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2251 tmp.pub.channel = channel;
2252 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2253 tmp.pub.signal = drv_data->signal;
2254 else
2255 tmp.pub.signal = 0;
2256 tmp.pub.beacon_interval = data->beacon_interval;
2257 tmp.pub.capability = data->capability;
2258 tmp.ts_boottime = drv_data->boottime_ns;
2259 tmp.parent_tsf = drv_data->parent_tsf;
2260 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2261 tmp.pub.chains = drv_data->chains;
2262 memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2263 IEEE80211_MAX_CHAINS);
2264 tmp.pub.use_for = data->use_for;
2265 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2266 tmp.bss_source = data->bss_source;
2267
2268 switch (data->bss_source) {
2269 case BSS_SOURCE_MBSSID:
2270 tmp.pub.transmitted_bss = data->source_bss;
2271 fallthrough;
2272 case BSS_SOURCE_STA_PROFILE:
2273 ts = bss_from_pub(data->source_bss)->ts;
2274 tmp.pub.bssid_index = data->bssid_index;
2275 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2276 break;
2277 case BSS_SOURCE_DIRECT:
2278 ts = jiffies;
2279
2280 if (channel->band == NL80211_BAND_60GHZ) {
2281 bss_type = data->capability &
2282 WLAN_CAPABILITY_DMG_TYPE_MASK;
2283 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2284 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2285 regulatory_hint_found_beacon(wiphy, channel,
2286 gfp);
2287 } else {
2288 if (data->capability & WLAN_CAPABILITY_ESS)
2289 regulatory_hint_found_beacon(wiphy, channel,
2290 gfp);
2291 }
2292 break;
2293 }
2294
2295 /*
2296 * If we do not know here whether the IEs are from a Beacon or Probe
2297 * Response frame, we need to pick one of the options and only use it
2298 * with the driver that does not provide the full Beacon/Probe Response
2299 * frame. Use Beacon frame pointer to avoid indicating that this should
2300 * override the IEs pointer should we have received an earlier
2301 * indication of Probe Response data.
2302 */
2303 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2304 if (!ies)
2305 return NULL;
2306 ies->len = data->ielen;
2307 ies->tsf = data->tsf;
2308 ies->from_beacon = false;
2309 memcpy(ies->data, data->ie, data->ielen);
2310
2311 switch (data->ftype) {
2312 case CFG80211_BSS_FTYPE_BEACON:
2313 case CFG80211_BSS_FTYPE_S1G_BEACON:
2314 ies->from_beacon = true;
2315 fallthrough;
2316 case CFG80211_BSS_FTYPE_UNKNOWN:
2317 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2318 break;
2319 case CFG80211_BSS_FTYPE_PRESP:
2320 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2321 break;
2322 }
2323 rcu_assign_pointer(tmp.pub.ies, ies);
2324
2325 signal_valid = drv_data->chan == channel;
2326 spin_lock_bh(&rdev->bss_lock);
2327 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2328 if (!res)
2329 goto drop;
2330
2331 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2332
2333 if (data->bss_source == BSS_SOURCE_MBSSID) {
2334 /* this is a nontransmitting bss, we need to add it to
2335 * transmitting bss' list if it is not there
2336 */
2337 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2338 if (__cfg80211_unlink_bss(rdev, res)) {
2339 rdev->bss_generation++;
2340 res = NULL;
2341 }
2342 }
2343
2344 if (!res)
2345 goto drop;
2346 }
2347 spin_unlock_bh(&rdev->bss_lock);
2348
2349 trace_cfg80211_return_bss(&res->pub);
2350 /* __cfg80211_bss_update gives us a referenced result */
2351 return &res->pub;
2352
2353drop:
2354 spin_unlock_bh(&rdev->bss_lock);
2355 return NULL;
2356}
2357
2358static const struct element
2359*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2360 const struct element *mbssid_elem,
2361 const struct element *sub_elem)
2362{
2363 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2364 const struct element *next_mbssid;
2365 const struct element *next_sub;
2366
2367 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2368 mbssid_end,
2369 ielen - (mbssid_end - ie));
2370
2371 /*
2372 * If it is not the last subelement in current MBSSID IE or there isn't
2373 * a next MBSSID IE - profile is complete.
2374 */
2375 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2376 !next_mbssid)
2377 return NULL;
2378
2379 /* For any length error, just return NULL */
2380
2381 if (next_mbssid->datalen < 4)
2382 return NULL;
2383
2384 next_sub = (void *)&next_mbssid->data[1];
2385
2386 if (next_mbssid->data + next_mbssid->datalen <
2387 next_sub->data + next_sub->datalen)
2388 return NULL;
2389
2390 if (next_sub->id != 0 || next_sub->datalen < 2)
2391 return NULL;
2392
2393 /*
2394 * Check if the first element in the next sub element is a start
2395 * of a new profile
2396 */
2397 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2398 NULL : next_mbssid;
2399}
2400
2401size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2402 const struct element *mbssid_elem,
2403 const struct element *sub_elem,
2404 u8 *merged_ie, size_t max_copy_len)
2405{
2406 size_t copied_len = sub_elem->datalen;
2407 const struct element *next_mbssid;
2408
2409 if (sub_elem->datalen > max_copy_len)
2410 return 0;
2411
2412 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2413
2414 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2415 mbssid_elem,
2416 sub_elem))) {
2417 const struct element *next_sub = (void *)&next_mbssid->data[1];
2418
2419 if (copied_len + next_sub->datalen > max_copy_len)
2420 break;
2421 memcpy(merged_ie + copied_len, next_sub->data,
2422 next_sub->datalen);
2423 copied_len += next_sub->datalen;
2424 }
2425
2426 return copied_len;
2427}
2428EXPORT_SYMBOL(cfg80211_merge_profile);
2429
2430static void
2431cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2432 struct cfg80211_inform_single_bss_data *tx_data,
2433 struct cfg80211_bss *source_bss,
2434 gfp_t gfp)
2435{
2436 struct cfg80211_inform_single_bss_data data = {
2437 .drv_data = tx_data->drv_data,
2438 .ftype = tx_data->ftype,
2439 .tsf = tx_data->tsf,
2440 .beacon_interval = tx_data->beacon_interval,
2441 .source_bss = source_bss,
2442 .bss_source = BSS_SOURCE_MBSSID,
2443 .use_for = tx_data->use_for,
2444 .cannot_use_reasons = tx_data->cannot_use_reasons,
2445 };
2446 const u8 *mbssid_index_ie;
2447 const struct element *elem, *sub;
2448 u8 *new_ie, *profile;
2449 u64 seen_indices = 0;
2450 struct cfg80211_bss *bss;
2451
2452 if (!source_bss)
2453 return;
2454 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2455 tx_data->ie, tx_data->ielen))
2456 return;
2457 if (!wiphy->support_mbssid)
2458 return;
2459 if (wiphy->support_only_he_mbssid &&
2460 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2461 tx_data->ie, tx_data->ielen))
2462 return;
2463
2464 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2465 if (!new_ie)
2466 return;
2467
2468 profile = kmalloc(tx_data->ielen, gfp);
2469 if (!profile)
2470 goto out;
2471
2472 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2473 tx_data->ie, tx_data->ielen) {
2474 if (elem->datalen < 4)
2475 continue;
2476 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2477 continue;
2478 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2479 u8 profile_len;
2480
2481 if (sub->id != 0 || sub->datalen < 4) {
2482 /* not a valid BSS profile */
2483 continue;
2484 }
2485
2486 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2487 sub->data[1] != 2) {
2488 /* The first element within the Nontransmitted
2489 * BSSID Profile is not the Nontransmitted
2490 * BSSID Capability element.
2491 */
2492 continue;
2493 }
2494
2495 memset(profile, 0, tx_data->ielen);
2496 profile_len = cfg80211_merge_profile(tx_data->ie,
2497 tx_data->ielen,
2498 elem,
2499 sub,
2500 profile,
2501 tx_data->ielen);
2502
2503 /* found a Nontransmitted BSSID Profile */
2504 mbssid_index_ie = cfg80211_find_ie
2505 (WLAN_EID_MULTI_BSSID_IDX,
2506 profile, profile_len);
2507 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2508 mbssid_index_ie[2] == 0 ||
2509 mbssid_index_ie[2] > 46 ||
2510 mbssid_index_ie[2] >= (1 << elem->data[0])) {
2511 /* No valid Multiple BSSID-Index element */
2512 continue;
2513 }
2514
2515 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2516 /* We don't support legacy split of a profile */
2517 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2518 mbssid_index_ie[2]);
2519
2520 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2521
2522 data.bssid_index = mbssid_index_ie[2];
2523 data.max_bssid_indicator = elem->data[0];
2524
2525 cfg80211_gen_new_bssid(tx_data->bssid,
2526 data.max_bssid_indicator,
2527 data.bssid_index,
2528 data.bssid);
2529
2530 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2531 data.ie = new_ie;
2532 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2533 tx_data->ielen,
2534 profile,
2535 profile_len,
2536 new_ie,
2537 IEEE80211_MAX_DATA_LEN);
2538 if (!data.ielen)
2539 continue;
2540
2541 data.capability = get_unaligned_le16(profile + 2);
2542 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2543 if (!bss)
2544 break;
2545 cfg80211_put_bss(wiphy, bss);
2546 }
2547 }
2548
2549out:
2550 kfree(new_ie);
2551 kfree(profile);
2552}
2553
2554ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2555 size_t ieslen, u8 *data, size_t data_len,
2556 u8 frag_id)
2557{
2558 const struct element *next;
2559 ssize_t copied;
2560 u8 elem_datalen;
2561
2562 if (!elem)
2563 return -EINVAL;
2564
2565 /* elem might be invalid after the memmove */
2566 next = (void *)(elem->data + elem->datalen);
2567 elem_datalen = elem->datalen;
2568
2569 if (elem->id == WLAN_EID_EXTENSION) {
2570 copied = elem->datalen - 1;
2571
2572 if (data) {
2573 if (copied > data_len)
2574 return -ENOSPC;
2575
2576 memmove(data, elem->data + 1, copied);
2577 }
2578 } else {
2579 copied = elem->datalen;
2580
2581 if (data) {
2582 if (copied > data_len)
2583 return -ENOSPC;
2584
2585 memmove(data, elem->data, copied);
2586 }
2587 }
2588
2589 /* Fragmented elements must have 255 bytes */
2590 if (elem_datalen < 255)
2591 return copied;
2592
2593 for (elem = next;
2594 elem->data < ies + ieslen &&
2595 elem->data + elem->datalen <= ies + ieslen;
2596 elem = next) {
2597 /* elem might be invalid after the memmove */
2598 next = (void *)(elem->data + elem->datalen);
2599
2600 if (elem->id != frag_id)
2601 break;
2602
2603 elem_datalen = elem->datalen;
2604
2605 if (data) {
2606 if (copied + elem_datalen > data_len)
2607 return -ENOSPC;
2608
2609 memmove(data + copied, elem->data, elem_datalen);
2610 }
2611
2612 copied += elem_datalen;
2613
2614 /* Only the last fragment may be short */
2615 if (elem_datalen != 255)
2616 break;
2617 }
2618
2619 return copied;
2620}
2621EXPORT_SYMBOL(cfg80211_defragment_element);
2622
2623struct cfg80211_mle {
2624 struct ieee80211_multi_link_elem *mle;
2625 struct ieee80211_mle_per_sta_profile
2626 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2627 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2628
2629 u8 data[];
2630};
2631
2632static struct cfg80211_mle *
2633cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2634 gfp_t gfp)
2635{
2636 const struct element *elem;
2637 struct cfg80211_mle *res;
2638 size_t buf_len;
2639 ssize_t mle_len;
2640 u8 common_size, idx;
2641
2642 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2643 return NULL;
2644
2645 /* Required length for first defragmentation */
2646 buf_len = mle->datalen - 1;
2647 for_each_element(elem, mle->data + mle->datalen,
2648 ielen - sizeof(*mle) + mle->datalen) {
2649 if (elem->id != WLAN_EID_FRAGMENT)
2650 break;
2651
2652 buf_len += elem->datalen;
2653 }
2654
2655 res = kzalloc(struct_size(res, data, buf_len), gfp);
2656 if (!res)
2657 return NULL;
2658
2659 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2660 res->data, buf_len,
2661 WLAN_EID_FRAGMENT);
2662 if (mle_len < 0)
2663 goto error;
2664
2665 res->mle = (void *)res->data;
2666
2667 /* Find the sub-element area in the buffer */
2668 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2669 ie = res->data + common_size;
2670 ielen = mle_len - common_size;
2671
2672 idx = 0;
2673 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2674 ie, ielen) {
2675 res->sta_prof[idx] = (void *)elem->data;
2676 res->sta_prof_len[idx] = elem->datalen;
2677
2678 idx++;
2679 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2680 break;
2681 }
2682 if (!for_each_element_completed(elem, ie, ielen))
2683 goto error;
2684
2685 /* Defragment sta_info in-place */
2686 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2687 idx++) {
2688 if (res->sta_prof_len[idx] < 255)
2689 continue;
2690
2691 elem = (void *)res->sta_prof[idx] - 2;
2692
2693 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2694 res->sta_prof[idx + 1])
2695 buf_len = (u8 *)res->sta_prof[idx + 1] -
2696 (u8 *)res->sta_prof[idx];
2697 else
2698 buf_len = ielen + ie - (u8 *)elem;
2699
2700 res->sta_prof_len[idx] =
2701 cfg80211_defragment_element(elem,
2702 (u8 *)elem, buf_len,
2703 (u8 *)res->sta_prof[idx],
2704 buf_len,
2705 IEEE80211_MLE_SUBELEM_FRAGMENT);
2706 if (res->sta_prof_len[idx] < 0)
2707 goto error;
2708 }
2709
2710 return res;
2711
2712error:
2713 kfree(res);
2714 return NULL;
2715}
2716
2717struct tbtt_info_iter_data {
2718 const struct ieee80211_neighbor_ap_info *ap_info;
2719 u8 param_ch_count;
2720 u32 use_for;
2721 u8 mld_id, link_id;
2722 bool non_tx;
2723};
2724
2725static enum cfg80211_rnr_iter_ret
2726cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2727 const struct ieee80211_neighbor_ap_info *info,
2728 const u8 *tbtt_info, u8 tbtt_info_len)
2729{
2730 const struct ieee80211_rnr_mld_params *mld_params;
2731 struct tbtt_info_iter_data *data = _data;
2732 u8 link_id;
2733 bool non_tx = false;
2734
2735 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2736 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2737 mld_params)) {
2738 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2739 (void *)tbtt_info;
2740
2741 non_tx = (tbtt_info_ge_11->bss_params &
2742 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2743 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2744 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2745 mld_params = &tbtt_info_ge_11->mld_params;
2746 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2747 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2748 mld_params = (void *)tbtt_info;
2749 else
2750 return RNR_ITER_CONTINUE;
2751
2752 link_id = le16_get_bits(mld_params->params,
2753 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2754
2755 if (data->mld_id != mld_params->mld_id)
2756 return RNR_ITER_CONTINUE;
2757
2758 if (data->link_id != link_id)
2759 return RNR_ITER_CONTINUE;
2760
2761 data->ap_info = info;
2762 data->param_ch_count =
2763 le16_get_bits(mld_params->params,
2764 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2765 data->non_tx = non_tx;
2766
2767 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2768 data->use_for = NL80211_BSS_USE_FOR_ALL;
2769 else
2770 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2771 return RNR_ITER_BREAK;
2772}
2773
2774static u8
2775cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2776 const struct ieee80211_neighbor_ap_info **ap_info,
2777 u8 *param_ch_count, bool *non_tx)
2778{
2779 struct tbtt_info_iter_data data = {
2780 .mld_id = mld_id,
2781 .link_id = link_id,
2782 };
2783
2784 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2785
2786 *ap_info = data.ap_info;
2787 *param_ch_count = data.param_ch_count;
2788 *non_tx = data.non_tx;
2789
2790 return data.use_for;
2791}
2792
2793static struct element *
2794cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2795 bool same_mld, u8 link_id, u8 bss_change_count,
2796 gfp_t gfp)
2797{
2798 const struct cfg80211_bss_ies *ies;
2799 struct ieee80211_neighbor_ap_info ap_info;
2800 struct ieee80211_tbtt_info_ge_11 tbtt_info;
2801 u32 short_ssid;
2802 const struct element *elem;
2803 struct element *res;
2804
2805 /*
2806 * We only generate the RNR to permit ML lookups. For that we do not
2807 * need an entry for the corresponding transmitting BSS, lets just skip
2808 * it even though it would be easy to add.
2809 */
2810 if (!same_mld)
2811 return NULL;
2812
2813 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2814 rcu_read_lock();
2815 ies = rcu_dereference(source_bss->ies);
2816
2817 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2818 ap_info.tbtt_info_hdr =
2819 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2820 IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2821 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2822
2823 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2824
2825 /* operating class */
2826 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2827 ies->data, ies->len);
2828 if (elem && elem->datalen >= 1) {
2829 ap_info.op_class = elem->data[0];
2830 } else {
2831 struct cfg80211_chan_def chandef;
2832
2833 /* The AP is not providing us with anything to work with. So
2834 * make up a somewhat reasonable operating class, but don't
2835 * bother with it too much as no one will ever use the
2836 * information.
2837 */
2838 cfg80211_chandef_create(&chandef, source_bss->channel,
2839 NL80211_CHAN_NO_HT);
2840
2841 if (!ieee80211_chandef_to_operating_class(&chandef,
2842 &ap_info.op_class))
2843 goto out_unlock;
2844 }
2845
2846 /* Just set TBTT offset and PSD 20 to invalid/unknown */
2847 tbtt_info.tbtt_offset = 255;
2848 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2849
2850 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2851 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2852 goto out_unlock;
2853
2854 rcu_read_unlock();
2855
2856 tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2857
2858 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2859
2860 if (is_mbssid) {
2861 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2862 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2863 }
2864
2865 tbtt_info.mld_params.mld_id = 0;
2866 tbtt_info.mld_params.params =
2867 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2868 le16_encode_bits(bss_change_count,
2869 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2870
2871 res = kzalloc(struct_size(res, data,
2872 sizeof(ap_info) + ap_info.tbtt_info_len),
2873 gfp);
2874 if (!res)
2875 return NULL;
2876
2877 /* Copy the data */
2878 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2879 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2880 memcpy(res->data, &ap_info, sizeof(ap_info));
2881 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2882
2883 return res;
2884
2885out_unlock:
2886 rcu_read_unlock();
2887 return NULL;
2888}
2889
2890static void
2891cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2892 struct cfg80211_inform_single_bss_data *tx_data,
2893 struct cfg80211_bss *source_bss,
2894 const struct element *elem,
2895 gfp_t gfp)
2896{
2897 struct cfg80211_inform_single_bss_data data = {
2898 .drv_data = tx_data->drv_data,
2899 .ftype = tx_data->ftype,
2900 .source_bss = source_bss,
2901 .bss_source = BSS_SOURCE_STA_PROFILE,
2902 };
2903 struct element *reporter_rnr = NULL;
2904 struct ieee80211_multi_link_elem *ml_elem;
2905 struct cfg80211_mle *mle;
2906 const struct element *ssid_elem;
2907 const u8 *ssid = NULL;
2908 size_t ssid_len = 0;
2909 u16 control;
2910 u8 ml_common_len;
2911 u8 *new_ie = NULL;
2912 struct cfg80211_bss *bss;
2913 u8 mld_id, reporter_link_id, bss_change_count;
2914 u16 seen_links = 0;
2915 u8 i;
2916
2917 if (!ieee80211_mle_type_ok(elem->data + 1,
2918 IEEE80211_ML_CONTROL_TYPE_BASIC,
2919 elem->datalen - 1))
2920 return;
2921
2922 ml_elem = (void *)(elem->data + 1);
2923 control = le16_to_cpu(ml_elem->control);
2924 ml_common_len = ml_elem->variable[0];
2925
2926 /* Must be present when transmitted by an AP (in a probe response) */
2927 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2928 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2929 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2930 return;
2931
2932 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2933 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2934
2935 /*
2936 * The MLD ID of the reporting AP is always zero. It is set if the AP
2937 * is part of an MBSSID set and will be non-zero for ML Elements
2938 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2939 * Draft P802.11be_D3.2, 35.3.4.2)
2940 */
2941 mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2942
2943 /* Fully defrag the ML element for sta information/profile iteration */
2944 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2945 if (!mle)
2946 return;
2947
2948 /* No point in doing anything if there is no per-STA profile */
2949 if (!mle->sta_prof[0])
2950 goto out;
2951
2952 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2953 if (!new_ie)
2954 goto out;
2955
2956 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2957 u16_get_bits(control,
2958 IEEE80211_MLC_BASIC_PRES_MLD_ID),
2959 mld_id == 0, reporter_link_id,
2960 bss_change_count,
2961 gfp);
2962
2963 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
2964 tx_data->ielen);
2965 if (ssid_elem) {
2966 ssid = ssid_elem->data;
2967 ssid_len = ssid_elem->datalen;
2968 }
2969
2970 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2971 const struct ieee80211_neighbor_ap_info *ap_info;
2972 enum nl80211_band band;
2973 u32 freq;
2974 const u8 *profile;
2975 ssize_t profile_len;
2976 u8 param_ch_count;
2977 u8 link_id, use_for;
2978 bool non_tx;
2979
2980 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2981 mle->sta_prof_len[i]))
2982 continue;
2983
2984 control = le16_to_cpu(mle->sta_prof[i]->control);
2985
2986 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2987 continue;
2988
2989 link_id = u16_get_bits(control,
2990 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2991 if (seen_links & BIT(link_id))
2992 break;
2993 seen_links |= BIT(link_id);
2994
2995 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2996 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2997 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2998 continue;
2999
3000 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3001 data.beacon_interval =
3002 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3003 data.tsf = tx_data->tsf +
3004 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3005
3006 /* sta_info_len counts itself */
3007 profile = mle->sta_prof[i]->variable +
3008 mle->sta_prof[i]->sta_info_len - 1;
3009 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3010 profile;
3011
3012 if (profile_len < 2)
3013 continue;
3014
3015 data.capability = get_unaligned_le16(profile);
3016 profile += 2;
3017 profile_len -= 2;
3018
3019 /* Find in RNR to look up channel information */
3020 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3021 tx_data->ielen,
3022 mld_id, link_id,
3023 &ap_info,
3024 ¶m_ch_count,
3025 &non_tx);
3026 if (!use_for)
3027 continue;
3028
3029 /*
3030 * As of 802.11be_D5.0, the specification does not give us any
3031 * way of discovering both the MaxBSSID and the Multiple-BSSID
3032 * Index. It does seem like the Multiple-BSSID Index element
3033 * may be provided, but section 9.4.2.45 explicitly forbids
3034 * including a Multiple-BSSID Element (in this case without any
3035 * subelements).
3036 * Without both pieces of information we cannot calculate the
3037 * reference BSSID, so simply ignore the BSS.
3038 */
3039 if (non_tx)
3040 continue;
3041
3042 /* We could sanity check the BSSID is included */
3043
3044 if (!ieee80211_operating_class_to_band(ap_info->op_class,
3045 &band))
3046 continue;
3047
3048 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3049 data.channel = ieee80211_get_channel_khz(wiphy, freq);
3050
3051 /* Skip if RNR element specifies an unsupported channel */
3052 if (!data.channel)
3053 continue;
3054
3055 /* Skip if BSS entry generated from MBSSID or DIRECT source
3056 * frame data available already.
3057 */
3058 bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3059 ssid_len, IEEE80211_BSS_TYPE_ANY,
3060 IEEE80211_PRIVACY_ANY);
3061 if (bss) {
3062 struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3063
3064 if (data.capability == bss->capability &&
3065 ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3066 cfg80211_put_bss(wiphy, bss);
3067 continue;
3068 }
3069 cfg80211_put_bss(wiphy, bss);
3070 }
3071
3072 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3073 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3074 use_for = 0;
3075 data.cannot_use_reasons =
3076 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3077 }
3078 data.use_for = use_for;
3079
3080 /* Generate new elements */
3081 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3082 data.ie = new_ie;
3083 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3084 profile, profile_len,
3085 new_ie,
3086 IEEE80211_MAX_DATA_LEN);
3087 if (!data.ielen)
3088 continue;
3089
3090 /* The generated elements do not contain:
3091 * - Basic ML element
3092 * - A TBTT entry in the RNR for the transmitting AP
3093 *
3094 * This information is needed both internally and in userspace
3095 * as such, we should append it here.
3096 */
3097 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3098 IEEE80211_MAX_DATA_LEN)
3099 continue;
3100
3101 /* Copy the Basic Multi-Link element including the common
3102 * information, and then fix up the link ID and BSS param
3103 * change count.
3104 * Note that the ML element length has been verified and we
3105 * also checked that it contains the link ID.
3106 */
3107 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3108 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3109 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3110 memcpy(new_ie + data.ielen, ml_elem,
3111 sizeof(*ml_elem) + ml_common_len);
3112
3113 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3114 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3115 param_ch_count;
3116
3117 data.ielen += sizeof(*ml_elem) + ml_common_len;
3118
3119 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3120 if (data.ielen + sizeof(struct element) +
3121 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3122 continue;
3123
3124 memcpy(new_ie + data.ielen, reporter_rnr,
3125 sizeof(struct element) + reporter_rnr->datalen);
3126 data.ielen += sizeof(struct element) +
3127 reporter_rnr->datalen;
3128 }
3129
3130 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3131 if (!bss)
3132 break;
3133 cfg80211_put_bss(wiphy, bss);
3134 }
3135
3136out:
3137 kfree(reporter_rnr);
3138 kfree(new_ie);
3139 kfree(mle);
3140}
3141
3142static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3143 struct cfg80211_inform_single_bss_data *tx_data,
3144 struct cfg80211_bss *source_bss,
3145 gfp_t gfp)
3146{
3147 const struct element *elem;
3148
3149 if (!source_bss)
3150 return;
3151
3152 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3153 return;
3154
3155 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3156 tx_data->ie, tx_data->ielen)
3157 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3158 elem, gfp);
3159}
3160
3161struct cfg80211_bss *
3162cfg80211_inform_bss_data(struct wiphy *wiphy,
3163 struct cfg80211_inform_bss *data,
3164 enum cfg80211_bss_frame_type ftype,
3165 const u8 *bssid, u64 tsf, u16 capability,
3166 u16 beacon_interval, const u8 *ie, size_t ielen,
3167 gfp_t gfp)
3168{
3169 struct cfg80211_inform_single_bss_data inform_data = {
3170 .drv_data = data,
3171 .ftype = ftype,
3172 .tsf = tsf,
3173 .capability = capability,
3174 .beacon_interval = beacon_interval,
3175 .ie = ie,
3176 .ielen = ielen,
3177 .use_for = data->restrict_use ?
3178 data->use_for :
3179 NL80211_BSS_USE_FOR_ALL,
3180 .cannot_use_reasons = data->cannot_use_reasons,
3181 };
3182 struct cfg80211_bss *res;
3183
3184 memcpy(inform_data.bssid, bssid, ETH_ALEN);
3185
3186 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3187 if (!res)
3188 return NULL;
3189
3190 /* don't do any further MBSSID/ML handling for S1G */
3191 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3192 return res;
3193
3194 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3195
3196 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3197
3198 return res;
3199}
3200EXPORT_SYMBOL(cfg80211_inform_bss_data);
3201
3202struct cfg80211_bss *
3203cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3204 struct cfg80211_inform_bss *data,
3205 struct ieee80211_mgmt *mgmt, size_t len,
3206 gfp_t gfp)
3207{
3208 size_t min_hdr_len;
3209 struct ieee80211_ext *ext = NULL;
3210 enum cfg80211_bss_frame_type ftype;
3211 u16 beacon_interval;
3212 const u8 *bssid;
3213 u16 capability;
3214 const u8 *ie;
3215 size_t ielen;
3216 u64 tsf;
3217
3218 if (WARN_ON(!mgmt))
3219 return NULL;
3220
3221 if (WARN_ON(!wiphy))
3222 return NULL;
3223
3224 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3225 offsetof(struct ieee80211_mgmt, u.beacon.variable));
3226
3227 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3228
3229 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3230 ext = (void *) mgmt;
3231 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3232 min_hdr_len = offsetof(struct ieee80211_ext,
3233 u.s1g_short_beacon.variable);
3234 else
3235 min_hdr_len = offsetof(struct ieee80211_ext,
3236 u.s1g_beacon.variable);
3237 } else {
3238 /* same for beacons */
3239 min_hdr_len = offsetof(struct ieee80211_mgmt,
3240 u.probe_resp.variable);
3241 }
3242
3243 if (WARN_ON(len < min_hdr_len))
3244 return NULL;
3245
3246 ielen = len - min_hdr_len;
3247 ie = mgmt->u.probe_resp.variable;
3248 if (ext) {
3249 const struct ieee80211_s1g_bcn_compat_ie *compat;
3250 const struct element *elem;
3251
3252 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3253 ie = ext->u.s1g_short_beacon.variable;
3254 else
3255 ie = ext->u.s1g_beacon.variable;
3256
3257 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3258 if (!elem)
3259 return NULL;
3260 if (elem->datalen < sizeof(*compat))
3261 return NULL;
3262 compat = (void *)elem->data;
3263 bssid = ext->u.s1g_beacon.sa;
3264 capability = le16_to_cpu(compat->compat_info);
3265 beacon_interval = le16_to_cpu(compat->beacon_int);
3266 } else {
3267 bssid = mgmt->bssid;
3268 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3269 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3270 }
3271
3272 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3273
3274 if (ieee80211_is_probe_resp(mgmt->frame_control))
3275 ftype = CFG80211_BSS_FTYPE_PRESP;
3276 else if (ext)
3277 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3278 else
3279 ftype = CFG80211_BSS_FTYPE_BEACON;
3280
3281 return cfg80211_inform_bss_data(wiphy, data, ftype,
3282 bssid, tsf, capability,
3283 beacon_interval, ie, ielen,
3284 gfp);
3285}
3286EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3287
3288void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3289{
3290 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3291
3292 if (!pub)
3293 return;
3294
3295 spin_lock_bh(&rdev->bss_lock);
3296 bss_ref_get(rdev, bss_from_pub(pub));
3297 spin_unlock_bh(&rdev->bss_lock);
3298}
3299EXPORT_SYMBOL(cfg80211_ref_bss);
3300
3301void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3302{
3303 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3304
3305 if (!pub)
3306 return;
3307
3308 spin_lock_bh(&rdev->bss_lock);
3309 bss_ref_put(rdev, bss_from_pub(pub));
3310 spin_unlock_bh(&rdev->bss_lock);
3311}
3312EXPORT_SYMBOL(cfg80211_put_bss);
3313
3314void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3315{
3316 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3317 struct cfg80211_internal_bss *bss, *tmp1;
3318 struct cfg80211_bss *nontrans_bss, *tmp;
3319
3320 if (WARN_ON(!pub))
3321 return;
3322
3323 bss = bss_from_pub(pub);
3324
3325 spin_lock_bh(&rdev->bss_lock);
3326 if (list_empty(&bss->list))
3327 goto out;
3328
3329 list_for_each_entry_safe(nontrans_bss, tmp,
3330 &pub->nontrans_list,
3331 nontrans_list) {
3332 tmp1 = bss_from_pub(nontrans_bss);
3333 if (__cfg80211_unlink_bss(rdev, tmp1))
3334 rdev->bss_generation++;
3335 }
3336
3337 if (__cfg80211_unlink_bss(rdev, bss))
3338 rdev->bss_generation++;
3339out:
3340 spin_unlock_bh(&rdev->bss_lock);
3341}
3342EXPORT_SYMBOL(cfg80211_unlink_bss);
3343
3344void cfg80211_bss_iter(struct wiphy *wiphy,
3345 struct cfg80211_chan_def *chandef,
3346 void (*iter)(struct wiphy *wiphy,
3347 struct cfg80211_bss *bss,
3348 void *data),
3349 void *iter_data)
3350{
3351 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3352 struct cfg80211_internal_bss *bss;
3353
3354 spin_lock_bh(&rdev->bss_lock);
3355
3356 list_for_each_entry(bss, &rdev->bss_list, list) {
3357 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3358 false))
3359 iter(wiphy, &bss->pub, iter_data);
3360 }
3361
3362 spin_unlock_bh(&rdev->bss_lock);
3363}
3364EXPORT_SYMBOL(cfg80211_bss_iter);
3365
3366void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3367 unsigned int link_id,
3368 struct ieee80211_channel *chan)
3369{
3370 struct wiphy *wiphy = wdev->wiphy;
3371 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3372 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3373 struct cfg80211_internal_bss *new = NULL;
3374 struct cfg80211_internal_bss *bss;
3375 struct cfg80211_bss *nontrans_bss;
3376 struct cfg80211_bss *tmp;
3377
3378 spin_lock_bh(&rdev->bss_lock);
3379
3380 /*
3381 * Some APs use CSA also for bandwidth changes, i.e., without actually
3382 * changing the control channel, so no need to update in such a case.
3383 */
3384 if (cbss->pub.channel == chan)
3385 goto done;
3386
3387 /* use transmitting bss */
3388 if (cbss->pub.transmitted_bss)
3389 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3390
3391 cbss->pub.channel = chan;
3392
3393 list_for_each_entry(bss, &rdev->bss_list, list) {
3394 if (!cfg80211_bss_type_match(bss->pub.capability,
3395 bss->pub.channel->band,
3396 wdev->conn_bss_type))
3397 continue;
3398
3399 if (bss == cbss)
3400 continue;
3401
3402 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3403 new = bss;
3404 break;
3405 }
3406 }
3407
3408 if (new) {
3409 /* to save time, update IEs for transmitting bss only */
3410 cfg80211_update_known_bss(rdev, cbss, new, false);
3411 new->pub.proberesp_ies = NULL;
3412 new->pub.beacon_ies = NULL;
3413
3414 list_for_each_entry_safe(nontrans_bss, tmp,
3415 &new->pub.nontrans_list,
3416 nontrans_list) {
3417 bss = bss_from_pub(nontrans_bss);
3418 if (__cfg80211_unlink_bss(rdev, bss))
3419 rdev->bss_generation++;
3420 }
3421
3422 WARN_ON(atomic_read(&new->hold));
3423 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3424 rdev->bss_generation++;
3425 }
3426 cfg80211_rehash_bss(rdev, cbss);
3427
3428 list_for_each_entry_safe(nontrans_bss, tmp,
3429 &cbss->pub.nontrans_list,
3430 nontrans_list) {
3431 bss = bss_from_pub(nontrans_bss);
3432 bss->pub.channel = chan;
3433 cfg80211_rehash_bss(rdev, bss);
3434 }
3435
3436done:
3437 spin_unlock_bh(&rdev->bss_lock);
3438}
3439
3440#ifdef CONFIG_CFG80211_WEXT
3441static struct cfg80211_registered_device *
3442cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3443{
3444 struct cfg80211_registered_device *rdev;
3445 struct net_device *dev;
3446
3447 ASSERT_RTNL();
3448
3449 dev = dev_get_by_index(net, ifindex);
3450 if (!dev)
3451 return ERR_PTR(-ENODEV);
3452 if (dev->ieee80211_ptr)
3453 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3454 else
3455 rdev = ERR_PTR(-ENODEV);
3456 dev_put(dev);
3457 return rdev;
3458}
3459
3460int cfg80211_wext_siwscan(struct net_device *dev,
3461 struct iw_request_info *info,
3462 union iwreq_data *wrqu, char *extra)
3463{
3464 struct cfg80211_registered_device *rdev;
3465 struct wiphy *wiphy;
3466 struct iw_scan_req *wreq = NULL;
3467 struct cfg80211_scan_request *creq;
3468 int i, err, n_channels = 0;
3469 enum nl80211_band band;
3470
3471 if (!netif_running(dev))
3472 return -ENETDOWN;
3473
3474 if (wrqu->data.length == sizeof(struct iw_scan_req))
3475 wreq = (struct iw_scan_req *)extra;
3476
3477 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3478
3479 if (IS_ERR(rdev))
3480 return PTR_ERR(rdev);
3481
3482 if (rdev->scan_req || rdev->scan_msg)
3483 return -EBUSY;
3484
3485 wiphy = &rdev->wiphy;
3486
3487 /* Determine number of channels, needed to allocate creq */
3488 if (wreq && wreq->num_channels) {
3489 /* Passed from userspace so should be checked */
3490 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3491 return -EINVAL;
3492 n_channels = wreq->num_channels;
3493 } else {
3494 n_channels = ieee80211_get_num_supported_channels(wiphy);
3495 }
3496
3497 creq = kzalloc(struct_size(creq, channels, n_channels) +
3498 sizeof(struct cfg80211_ssid),
3499 GFP_ATOMIC);
3500 if (!creq)
3501 return -ENOMEM;
3502
3503 creq->wiphy = wiphy;
3504 creq->wdev = dev->ieee80211_ptr;
3505 /* SSIDs come after channels */
3506 creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
3507 creq->n_channels = n_channels;
3508 creq->n_ssids = 1;
3509 creq->scan_start = jiffies;
3510
3511 /* translate "Scan on frequencies" request */
3512 i = 0;
3513 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3514 int j;
3515
3516 if (!wiphy->bands[band])
3517 continue;
3518
3519 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3520 struct ieee80211_channel *chan;
3521
3522 /* ignore disabled channels */
3523 chan = &wiphy->bands[band]->channels[j];
3524 if (chan->flags & IEEE80211_CHAN_DISABLED ||
3525 !cfg80211_wdev_channel_allowed(creq->wdev, chan))
3526 continue;
3527
3528 /* If we have a wireless request structure and the
3529 * wireless request specifies frequencies, then search
3530 * for the matching hardware channel.
3531 */
3532 if (wreq && wreq->num_channels) {
3533 int k;
3534 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3535 for (k = 0; k < wreq->num_channels; k++) {
3536 struct iw_freq *freq =
3537 &wreq->channel_list[k];
3538 int wext_freq =
3539 cfg80211_wext_freq(freq);
3540
3541 if (wext_freq == wiphy_freq)
3542 goto wext_freq_found;
3543 }
3544 goto wext_freq_not_found;
3545 }
3546
3547 wext_freq_found:
3548 creq->channels[i] = &wiphy->bands[band]->channels[j];
3549 i++;
3550 wext_freq_not_found: ;
3551 }
3552 }
3553 /* No channels found? */
3554 if (!i) {
3555 err = -EINVAL;
3556 goto out;
3557 }
3558
3559 /* Set real number of channels specified in creq->channels[] */
3560 creq->n_channels = i;
3561
3562 /* translate "Scan for SSID" request */
3563 if (wreq) {
3564 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3565 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3566 err = -EINVAL;
3567 goto out;
3568 }
3569 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3570 creq->ssids[0].ssid_len = wreq->essid_len;
3571 }
3572 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3573 creq->ssids = NULL;
3574 creq->n_ssids = 0;
3575 }
3576 }
3577
3578 for (i = 0; i < NUM_NL80211_BANDS; i++)
3579 if (wiphy->bands[i])
3580 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3581
3582 eth_broadcast_addr(creq->bssid);
3583
3584 wiphy_lock(&rdev->wiphy);
3585
3586 rdev->scan_req = creq;
3587 err = rdev_scan(rdev, creq);
3588 if (err) {
3589 rdev->scan_req = NULL;
3590 /* creq will be freed below */
3591 } else {
3592 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3593 /* creq now owned by driver */
3594 creq = NULL;
3595 dev_hold(dev);
3596 }
3597 wiphy_unlock(&rdev->wiphy);
3598 out:
3599 kfree(creq);
3600 return err;
3601}
3602
3603static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3604 const struct cfg80211_bss_ies *ies,
3605 char *current_ev, char *end_buf)
3606{
3607 const u8 *pos, *end, *next;
3608 struct iw_event iwe;
3609
3610 if (!ies)
3611 return current_ev;
3612
3613 /*
3614 * If needed, fragment the IEs buffer (at IE boundaries) into short
3615 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3616 */
3617 pos = ies->data;
3618 end = pos + ies->len;
3619
3620 while (end - pos > IW_GENERIC_IE_MAX) {
3621 next = pos + 2 + pos[1];
3622 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3623 next = next + 2 + next[1];
3624
3625 memset(&iwe, 0, sizeof(iwe));
3626 iwe.cmd = IWEVGENIE;
3627 iwe.u.data.length = next - pos;
3628 current_ev = iwe_stream_add_point_check(info, current_ev,
3629 end_buf, &iwe,
3630 (void *)pos);
3631 if (IS_ERR(current_ev))
3632 return current_ev;
3633 pos = next;
3634 }
3635
3636 if (end > pos) {
3637 memset(&iwe, 0, sizeof(iwe));
3638 iwe.cmd = IWEVGENIE;
3639 iwe.u.data.length = end - pos;
3640 current_ev = iwe_stream_add_point_check(info, current_ev,
3641 end_buf, &iwe,
3642 (void *)pos);
3643 if (IS_ERR(current_ev))
3644 return current_ev;
3645 }
3646
3647 return current_ev;
3648}
3649
3650static char *
3651ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3652 struct cfg80211_internal_bss *bss, char *current_ev,
3653 char *end_buf)
3654{
3655 const struct cfg80211_bss_ies *ies;
3656 struct iw_event iwe;
3657 const u8 *ie;
3658 u8 buf[50];
3659 u8 *cfg, *p, *tmp;
3660 int rem, i, sig;
3661 bool ismesh = false;
3662
3663 memset(&iwe, 0, sizeof(iwe));
3664 iwe.cmd = SIOCGIWAP;
3665 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3666 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3667 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3668 IW_EV_ADDR_LEN);
3669 if (IS_ERR(current_ev))
3670 return current_ev;
3671
3672 memset(&iwe, 0, sizeof(iwe));
3673 iwe.cmd = SIOCGIWFREQ;
3674 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3675 iwe.u.freq.e = 0;
3676 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3677 IW_EV_FREQ_LEN);
3678 if (IS_ERR(current_ev))
3679 return current_ev;
3680
3681 memset(&iwe, 0, sizeof(iwe));
3682 iwe.cmd = SIOCGIWFREQ;
3683 iwe.u.freq.m = bss->pub.channel->center_freq;
3684 iwe.u.freq.e = 6;
3685 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3686 IW_EV_FREQ_LEN);
3687 if (IS_ERR(current_ev))
3688 return current_ev;
3689
3690 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3691 memset(&iwe, 0, sizeof(iwe));
3692 iwe.cmd = IWEVQUAL;
3693 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3694 IW_QUAL_NOISE_INVALID |
3695 IW_QUAL_QUAL_UPDATED;
3696 switch (wiphy->signal_type) {
3697 case CFG80211_SIGNAL_TYPE_MBM:
3698 sig = bss->pub.signal / 100;
3699 iwe.u.qual.level = sig;
3700 iwe.u.qual.updated |= IW_QUAL_DBM;
3701 if (sig < -110) /* rather bad */
3702 sig = -110;
3703 else if (sig > -40) /* perfect */
3704 sig = -40;
3705 /* will give a range of 0 .. 70 */
3706 iwe.u.qual.qual = sig + 110;
3707 break;
3708 case CFG80211_SIGNAL_TYPE_UNSPEC:
3709 iwe.u.qual.level = bss->pub.signal;
3710 /* will give range 0 .. 100 */
3711 iwe.u.qual.qual = bss->pub.signal;
3712 break;
3713 default:
3714 /* not reached */
3715 break;
3716 }
3717 current_ev = iwe_stream_add_event_check(info, current_ev,
3718 end_buf, &iwe,
3719 IW_EV_QUAL_LEN);
3720 if (IS_ERR(current_ev))
3721 return current_ev;
3722 }
3723
3724 memset(&iwe, 0, sizeof(iwe));
3725 iwe.cmd = SIOCGIWENCODE;
3726 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3727 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3728 else
3729 iwe.u.data.flags = IW_ENCODE_DISABLED;
3730 iwe.u.data.length = 0;
3731 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3732 &iwe, "");
3733 if (IS_ERR(current_ev))
3734 return current_ev;
3735
3736 rcu_read_lock();
3737 ies = rcu_dereference(bss->pub.ies);
3738 rem = ies->len;
3739 ie = ies->data;
3740
3741 while (rem >= 2) {
3742 /* invalid data */
3743 if (ie[1] > rem - 2)
3744 break;
3745
3746 switch (ie[0]) {
3747 case WLAN_EID_SSID:
3748 memset(&iwe, 0, sizeof(iwe));
3749 iwe.cmd = SIOCGIWESSID;
3750 iwe.u.data.length = ie[1];
3751 iwe.u.data.flags = 1;
3752 current_ev = iwe_stream_add_point_check(info,
3753 current_ev,
3754 end_buf, &iwe,
3755 (u8 *)ie + 2);
3756 if (IS_ERR(current_ev))
3757 goto unlock;
3758 break;
3759 case WLAN_EID_MESH_ID:
3760 memset(&iwe, 0, sizeof(iwe));
3761 iwe.cmd = SIOCGIWESSID;
3762 iwe.u.data.length = ie[1];
3763 iwe.u.data.flags = 1;
3764 current_ev = iwe_stream_add_point_check(info,
3765 current_ev,
3766 end_buf, &iwe,
3767 (u8 *)ie + 2);
3768 if (IS_ERR(current_ev))
3769 goto unlock;
3770 break;
3771 case WLAN_EID_MESH_CONFIG:
3772 ismesh = true;
3773 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3774 break;
3775 cfg = (u8 *)ie + 2;
3776 memset(&iwe, 0, sizeof(iwe));
3777 iwe.cmd = IWEVCUSTOM;
3778 iwe.u.data.length = sprintf(buf,
3779 "Mesh Network Path Selection Protocol ID: 0x%02X",
3780 cfg[0]);
3781 current_ev = iwe_stream_add_point_check(info,
3782 current_ev,
3783 end_buf,
3784 &iwe, buf);
3785 if (IS_ERR(current_ev))
3786 goto unlock;
3787 iwe.u.data.length = sprintf(buf,
3788 "Path Selection Metric ID: 0x%02X",
3789 cfg[1]);
3790 current_ev = iwe_stream_add_point_check(info,
3791 current_ev,
3792 end_buf,
3793 &iwe, buf);
3794 if (IS_ERR(current_ev))
3795 goto unlock;
3796 iwe.u.data.length = sprintf(buf,
3797 "Congestion Control Mode ID: 0x%02X",
3798 cfg[2]);
3799 current_ev = iwe_stream_add_point_check(info,
3800 current_ev,
3801 end_buf,
3802 &iwe, buf);
3803 if (IS_ERR(current_ev))
3804 goto unlock;
3805 iwe.u.data.length = sprintf(buf,
3806 "Synchronization ID: 0x%02X",
3807 cfg[3]);
3808 current_ev = iwe_stream_add_point_check(info,
3809 current_ev,
3810 end_buf,
3811 &iwe, buf);
3812 if (IS_ERR(current_ev))
3813 goto unlock;
3814 iwe.u.data.length = sprintf(buf,
3815 "Authentication ID: 0x%02X",
3816 cfg[4]);
3817 current_ev = iwe_stream_add_point_check(info,
3818 current_ev,
3819 end_buf,
3820 &iwe, buf);
3821 if (IS_ERR(current_ev))
3822 goto unlock;
3823 iwe.u.data.length = sprintf(buf,
3824 "Formation Info: 0x%02X",
3825 cfg[5]);
3826 current_ev = iwe_stream_add_point_check(info,
3827 current_ev,
3828 end_buf,
3829 &iwe, buf);
3830 if (IS_ERR(current_ev))
3831 goto unlock;
3832 iwe.u.data.length = sprintf(buf,
3833 "Capabilities: 0x%02X",
3834 cfg[6]);
3835 current_ev = iwe_stream_add_point_check(info,
3836 current_ev,
3837 end_buf,
3838 &iwe, buf);
3839 if (IS_ERR(current_ev))
3840 goto unlock;
3841 break;
3842 case WLAN_EID_SUPP_RATES:
3843 case WLAN_EID_EXT_SUPP_RATES:
3844 /* display all supported rates in readable format */
3845 p = current_ev + iwe_stream_lcp_len(info);
3846
3847 memset(&iwe, 0, sizeof(iwe));
3848 iwe.cmd = SIOCGIWRATE;
3849 /* Those two flags are ignored... */
3850 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3851
3852 for (i = 0; i < ie[1]; i++) {
3853 iwe.u.bitrate.value =
3854 ((ie[i + 2] & 0x7f) * 500000);
3855 tmp = p;
3856 p = iwe_stream_add_value(info, current_ev, p,
3857 end_buf, &iwe,
3858 IW_EV_PARAM_LEN);
3859 if (p == tmp) {
3860 current_ev = ERR_PTR(-E2BIG);
3861 goto unlock;
3862 }
3863 }
3864 current_ev = p;
3865 break;
3866 }
3867 rem -= ie[1] + 2;
3868 ie += ie[1] + 2;
3869 }
3870
3871 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3872 ismesh) {
3873 memset(&iwe, 0, sizeof(iwe));
3874 iwe.cmd = SIOCGIWMODE;
3875 if (ismesh)
3876 iwe.u.mode = IW_MODE_MESH;
3877 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3878 iwe.u.mode = IW_MODE_MASTER;
3879 else
3880 iwe.u.mode = IW_MODE_ADHOC;
3881 current_ev = iwe_stream_add_event_check(info, current_ev,
3882 end_buf, &iwe,
3883 IW_EV_UINT_LEN);
3884 if (IS_ERR(current_ev))
3885 goto unlock;
3886 }
3887
3888 memset(&iwe, 0, sizeof(iwe));
3889 iwe.cmd = IWEVCUSTOM;
3890 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3891 (unsigned long long)(ies->tsf));
3892 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3893 &iwe, buf);
3894 if (IS_ERR(current_ev))
3895 goto unlock;
3896 memset(&iwe, 0, sizeof(iwe));
3897 iwe.cmd = IWEVCUSTOM;
3898 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3899 elapsed_jiffies_msecs(bss->ts));
3900 current_ev = iwe_stream_add_point_check(info, current_ev,
3901 end_buf, &iwe, buf);
3902 if (IS_ERR(current_ev))
3903 goto unlock;
3904
3905 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3906
3907 unlock:
3908 rcu_read_unlock();
3909 return current_ev;
3910}
3911
3912
3913static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3914 struct iw_request_info *info,
3915 char *buf, size_t len)
3916{
3917 char *current_ev = buf;
3918 char *end_buf = buf + len;
3919 struct cfg80211_internal_bss *bss;
3920 int err = 0;
3921
3922 spin_lock_bh(&rdev->bss_lock);
3923 cfg80211_bss_expire(rdev);
3924
3925 list_for_each_entry(bss, &rdev->bss_list, list) {
3926 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3927 err = -E2BIG;
3928 break;
3929 }
3930 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3931 current_ev, end_buf);
3932 if (IS_ERR(current_ev)) {
3933 err = PTR_ERR(current_ev);
3934 break;
3935 }
3936 }
3937 spin_unlock_bh(&rdev->bss_lock);
3938
3939 if (err)
3940 return err;
3941 return current_ev - buf;
3942}
3943
3944
3945int cfg80211_wext_giwscan(struct net_device *dev,
3946 struct iw_request_info *info,
3947 union iwreq_data *wrqu, char *extra)
3948{
3949 struct iw_point *data = &wrqu->data;
3950 struct cfg80211_registered_device *rdev;
3951 int res;
3952
3953 if (!netif_running(dev))
3954 return -ENETDOWN;
3955
3956 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3957
3958 if (IS_ERR(rdev))
3959 return PTR_ERR(rdev);
3960
3961 if (rdev->scan_req || rdev->scan_msg)
3962 return -EAGAIN;
3963
3964 res = ieee80211_scan_results(rdev, info, extra, data->length);
3965 data->length = 0;
3966 if (res >= 0) {
3967 data->length = res;
3968 res = 0;
3969 }
3970
3971 return res;
3972}
3973#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2024 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include <kunit/visibility.h>
24#include "core.h"
25#include "nl80211.h"
26#include "wext-compat.h"
27#include "rdev-ops.h"
28
29/**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65/*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73static int bss_entries_limit = 1000;
74module_param(bss_entries_limit, int, 0644);
75MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
80static void bss_free(struct cfg80211_internal_bss *bss)
81{
82 struct cfg80211_bss_ies *ies;
83
84 if (WARN_ON(atomic_read(&bss->hold)))
85 return;
86
87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 if (ies && !bss->pub.hidden_beacon_bss)
89 kfree_rcu(ies, rcu_head);
90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 if (ies)
92 kfree_rcu(ies, rcu_head);
93
94 /*
95 * This happens when the module is removed, it doesn't
96 * really matter any more save for completeness
97 */
98 if (!list_empty(&bss->hidden_list))
99 list_del(&bss->hidden_list);
100
101 kfree(bss);
102}
103
104static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 struct cfg80211_internal_bss *bss)
106{
107 lockdep_assert_held(&rdev->bss_lock);
108
109 bss->refcount++;
110
111 if (bss->pub.hidden_beacon_bss)
112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113
114 if (bss->pub.transmitted_bss)
115 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116}
117
118static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 struct cfg80211_internal_bss *bss)
120{
121 lockdep_assert_held(&rdev->bss_lock);
122
123 if (bss->pub.hidden_beacon_bss) {
124 struct cfg80211_internal_bss *hbss;
125
126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 hbss->refcount--;
128 if (hbss->refcount == 0)
129 bss_free(hbss);
130 }
131
132 if (bss->pub.transmitted_bss) {
133 struct cfg80211_internal_bss *tbss;
134
135 tbss = bss_from_pub(bss->pub.transmitted_bss);
136 tbss->refcount--;
137 if (tbss->refcount == 0)
138 bss_free(tbss);
139 }
140
141 bss->refcount--;
142 if (bss->refcount == 0)
143 bss_free(bss);
144}
145
146static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 struct cfg80211_internal_bss *bss)
148{
149 lockdep_assert_held(&rdev->bss_lock);
150
151 if (!list_empty(&bss->hidden_list)) {
152 /*
153 * don't remove the beacon entry if it has
154 * probe responses associated with it
155 */
156 if (!bss->pub.hidden_beacon_bss)
157 return false;
158 /*
159 * if it's a probe response entry break its
160 * link to the other entries in the group
161 */
162 list_del_init(&bss->hidden_list);
163 }
164
165 list_del_init(&bss->list);
166 list_del_init(&bss->pub.nontrans_list);
167 rb_erase(&bss->rbn, &rdev->bss_tree);
168 rdev->bss_entries--;
169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 rdev->bss_entries, list_empty(&rdev->bss_list));
172 bss_ref_put(rdev, bss);
173 return true;
174}
175
176bool cfg80211_is_element_inherited(const struct element *elem,
177 const struct element *non_inherit_elem)
178{
179 u8 id_len, ext_id_len, i, loop_len, id;
180 const u8 *list;
181
182 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 return false;
184
185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 return false;
188
189 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 return true;
191
192 /*
193 * non inheritance element format is:
194 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 * Both lists are optional. Both lengths are mandatory.
196 * This means valid length is:
197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 */
199 id_len = non_inherit_elem->data[1];
200 if (non_inherit_elem->datalen < 3 + id_len)
201 return true;
202
203 ext_id_len = non_inherit_elem->data[2 + id_len];
204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 return true;
206
207 if (elem->id == WLAN_EID_EXTENSION) {
208 if (!ext_id_len)
209 return true;
210 loop_len = ext_id_len;
211 list = &non_inherit_elem->data[3 + id_len];
212 id = elem->data[0];
213 } else {
214 if (!id_len)
215 return true;
216 loop_len = id_len;
217 list = &non_inherit_elem->data[2];
218 id = elem->id;
219 }
220
221 for (i = 0; i < loop_len; i++) {
222 if (list[i] == id)
223 return false;
224 }
225
226 return true;
227}
228EXPORT_SYMBOL(cfg80211_is_element_inherited);
229
230static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 const u8 *ie, size_t ie_len,
232 u8 **pos, u8 *buf, size_t buf_len)
233{
234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 elem->data + elem->datalen > ie + ie_len))
236 return 0;
237
238 if (elem->datalen + 2 > buf + buf_len - *pos)
239 return 0;
240
241 memcpy(*pos, elem, elem->datalen + 2);
242 *pos += elem->datalen + 2;
243
244 /* Finish if it is not fragmented */
245 if (elem->datalen != 255)
246 return *pos - buf;
247
248 ie_len = ie + ie_len - elem->data - elem->datalen;
249 ie = (const u8 *)elem->data + elem->datalen;
250
251 for_each_element(elem, ie, ie_len) {
252 if (elem->id != WLAN_EID_FRAGMENT)
253 break;
254
255 if (elem->datalen + 2 > buf + buf_len - *pos)
256 return 0;
257
258 memcpy(*pos, elem, elem->datalen + 2);
259 *pos += elem->datalen + 2;
260
261 if (elem->datalen != 255)
262 break;
263 }
264
265 return *pos - buf;
266}
267
268VISIBLE_IF_CFG80211_KUNIT size_t
269cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 const u8 *subie, size_t subie_len,
271 u8 *new_ie, size_t new_ie_len)
272{
273 const struct element *non_inherit_elem, *parent, *sub;
274 u8 *pos = new_ie;
275 u8 id, ext_id;
276 unsigned int match_len;
277
278 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 subie, subie_len);
280
281 /* We copy the elements one by one from the parent to the generated
282 * elements.
283 * If they are not inherited (included in subie or in the non
284 * inheritance element), then we copy all occurrences the first time
285 * we see this element type.
286 */
287 for_each_element(parent, ie, ielen) {
288 if (parent->id == WLAN_EID_FRAGMENT)
289 continue;
290
291 if (parent->id == WLAN_EID_EXTENSION) {
292 if (parent->datalen < 1)
293 continue;
294
295 id = WLAN_EID_EXTENSION;
296 ext_id = parent->data[0];
297 match_len = 1;
298 } else {
299 id = parent->id;
300 match_len = 0;
301 }
302
303 /* Find first occurrence in subie */
304 sub = cfg80211_find_elem_match(id, subie, subie_len,
305 &ext_id, match_len, 0);
306
307 /* Copy from parent if not in subie and inherited */
308 if (!sub &&
309 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 if (!cfg80211_copy_elem_with_frags(parent,
311 ie, ielen,
312 &pos, new_ie,
313 new_ie_len))
314 return 0;
315
316 continue;
317 }
318
319 /* Already copied if an earlier element had the same type */
320 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 &ext_id, match_len, 0))
322 continue;
323
324 /* Not inheriting, copy all similar elements from subie */
325 while (sub) {
326 if (!cfg80211_copy_elem_with_frags(sub,
327 subie, subie_len,
328 &pos, new_ie,
329 new_ie_len))
330 return 0;
331
332 sub = cfg80211_find_elem_match(id,
333 sub->data + sub->datalen,
334 subie_len + subie -
335 (sub->data +
336 sub->datalen),
337 &ext_id, match_len, 0);
338 }
339 }
340
341 /* The above misses elements that are included in subie but not in the
342 * parent, so do a pass over subie and append those.
343 * Skip the non-tx BSSID caps and non-inheritance element.
344 */
345 for_each_element(sub, subie, subie_len) {
346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 continue;
348
349 if (sub->id == WLAN_EID_FRAGMENT)
350 continue;
351
352 if (sub->id == WLAN_EID_EXTENSION) {
353 if (sub->datalen < 1)
354 continue;
355
356 id = WLAN_EID_EXTENSION;
357 ext_id = sub->data[0];
358 match_len = 1;
359
360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 continue;
362 } else {
363 id = sub->id;
364 match_len = 0;
365 }
366
367 /* Processed if one was included in the parent */
368 if (cfg80211_find_elem_match(id, ie, ielen,
369 &ext_id, match_len, 0))
370 continue;
371
372 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 &pos, new_ie, new_ie_len))
374 return 0;
375 }
376
377 return pos - new_ie;
378}
379EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380
381static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 const u8 *ssid, size_t ssid_len)
383{
384 const struct cfg80211_bss_ies *ies;
385 const struct element *ssid_elem;
386
387 if (bssid && !ether_addr_equal(a->bssid, bssid))
388 return false;
389
390 if (!ssid)
391 return true;
392
393 ies = rcu_access_pointer(a->ies);
394 if (!ies)
395 return false;
396 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 if (!ssid_elem)
398 return false;
399 if (ssid_elem->datalen != ssid_len)
400 return false;
401 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402}
403
404static int
405cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 struct cfg80211_bss *nontrans_bss)
407{
408 const struct element *ssid_elem;
409 struct cfg80211_bss *bss = NULL;
410
411 rcu_read_lock();
412 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 if (!ssid_elem) {
414 rcu_read_unlock();
415 return -EINVAL;
416 }
417
418 /* check if nontrans_bss is in the list */
419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 ssid_elem->datalen)) {
422 rcu_read_unlock();
423 return 0;
424 }
425 }
426
427 rcu_read_unlock();
428
429 /*
430 * This is a bit weird - it's not on the list, but already on another
431 * one! The only way that could happen is if there's some BSSID/SSID
432 * shared by multiple APs in their multi-BSSID profiles, potentially
433 * with hidden SSID mixed in ... ignore it.
434 */
435 if (!list_empty(&nontrans_bss->nontrans_list))
436 return -EINVAL;
437
438 /* add to the list */
439 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 return 0;
441}
442
443static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 unsigned long expire_time)
445{
446 struct cfg80211_internal_bss *bss, *tmp;
447 bool expired = false;
448
449 lockdep_assert_held(&rdev->bss_lock);
450
451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 if (atomic_read(&bss->hold))
453 continue;
454 if (!time_after(expire_time, bss->ts))
455 continue;
456
457 if (__cfg80211_unlink_bss(rdev, bss))
458 expired = true;
459 }
460
461 if (expired)
462 rdev->bss_generation++;
463}
464
465static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466{
467 struct cfg80211_internal_bss *bss, *oldest = NULL;
468 bool ret;
469
470 lockdep_assert_held(&rdev->bss_lock);
471
472 list_for_each_entry(bss, &rdev->bss_list, list) {
473 if (atomic_read(&bss->hold))
474 continue;
475
476 if (!list_empty(&bss->hidden_list) &&
477 !bss->pub.hidden_beacon_bss)
478 continue;
479
480 if (oldest && time_before(oldest->ts, bss->ts))
481 continue;
482 oldest = bss;
483 }
484
485 if (WARN_ON(!oldest))
486 return false;
487
488 /*
489 * The callers make sure to increase rdev->bss_generation if anything
490 * gets removed (and a new entry added), so there's no need to also do
491 * it here.
492 */
493
494 ret = __cfg80211_unlink_bss(rdev, oldest);
495 WARN_ON(!ret);
496 return ret;
497}
498
499static u8 cfg80211_parse_bss_param(u8 data,
500 struct cfg80211_colocated_ap *coloc_ap)
501{
502 coloc_ap->oct_recommended =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 coloc_ap->same_ssid =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 coloc_ap->multi_bss =
507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 coloc_ap->transmitted_bssid =
509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 coloc_ap->unsolicited_probe =
511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 coloc_ap->colocated_ess =
513 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514
515 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516}
517
518static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 const struct element **elem, u32 *s_ssid)
520{
521
522 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 return -EINVAL;
525
526 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 return 0;
528}
529
530VISIBLE_IF_CFG80211_KUNIT void
531cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532{
533 struct cfg80211_colocated_ap *ap, *tmp_ap;
534
535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 list_del(&ap->list);
537 kfree(ap);
538 }
539}
540EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541
542static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 const u8 *pos, u8 length,
544 const struct element *ssid_elem,
545 u32 s_ssid_tmp)
546{
547 u8 bss_params;
548
549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550
551 /* The length is already verified by the caller to contain bss_params */
552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554
555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 entry->short_ssid_valid = true;
558
559 bss_params = tbtt_info->bss_params;
560
561 /* Ignore disabled links */
562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 if (le16_get_bits(tbtt_info->mld_params.params,
564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 return -EINVAL;
566 }
567
568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 psd_20))
570 entry->psd_20 = tbtt_info->psd_20;
571 } else {
572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573
574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575
576 bss_params = tbtt_info->bss_params;
577
578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 psd_20))
580 entry->psd_20 = tbtt_info->psd_20;
581 }
582
583 /* ignore entries with invalid BSSID */
584 if (!is_valid_ether_addr(entry->bssid))
585 return -EINVAL;
586
587 /* skip non colocated APs */
588 if (!cfg80211_parse_bss_param(bss_params, entry))
589 return -EINVAL;
590
591 /* no information about the short ssid. Consider the entry valid
592 * for now. It would later be dropped in case there are explicit
593 * SSIDs that need to be matched
594 */
595 if (!entry->same_ssid && !entry->short_ssid_valid)
596 return 0;
597
598 if (entry->same_ssid) {
599 entry->short_ssid = s_ssid_tmp;
600 entry->short_ssid_valid = true;
601
602 /*
603 * This is safe because we validate datalen in
604 * cfg80211_parse_colocated_ap(), before calling this
605 * function.
606 */
607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 entry->ssid_len = ssid_elem->datalen;
609 }
610
611 return 0;
612}
613
614bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 enum cfg80211_rnr_iter_ret
616 (*iter)(void *data, u8 type,
617 const struct ieee80211_neighbor_ap_info *info,
618 const u8 *tbtt_info, u8 tbtt_info_len),
619 void *iter_data)
620{
621 const struct element *rnr;
622 const u8 *pos, *end;
623
624 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 elems, elems_len) {
626 const struct ieee80211_neighbor_ap_info *info;
627
628 pos = rnr->data;
629 end = rnr->data + rnr->datalen;
630
631 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 while (sizeof(*info) <= end - pos) {
633 u8 length, i, count;
634 u8 type;
635
636 info = (void *)pos;
637 count = u8_get_bits(info->tbtt_info_hdr,
638 IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 1;
640 length = info->tbtt_info_len;
641
642 pos += sizeof(*info);
643
644 if (count * length > end - pos)
645 return false;
646
647 type = u8_get_bits(info->tbtt_info_hdr,
648 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649
650 for (i = 0; i < count; i++) {
651 switch (iter(iter_data, type, info,
652 pos, length)) {
653 case RNR_ITER_CONTINUE:
654 break;
655 case RNR_ITER_BREAK:
656 return true;
657 case RNR_ITER_ERROR:
658 return false;
659 }
660
661 pos += length;
662 }
663 }
664
665 if (pos != end)
666 return false;
667 }
668
669 return true;
670}
671EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672
673struct colocated_ap_data {
674 const struct element *ssid_elem;
675 struct list_head ap_list;
676 u32 s_ssid_tmp;
677 int n_coloc;
678};
679
680static enum cfg80211_rnr_iter_ret
681cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 const struct ieee80211_neighbor_ap_info *info,
683 const u8 *tbtt_info, u8 tbtt_info_len)
684{
685 struct colocated_ap_data *data = _data;
686 struct cfg80211_colocated_ap *entry;
687 enum nl80211_band band;
688
689 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 return RNR_ITER_CONTINUE;
691
692 if (!ieee80211_operating_class_to_band(info->op_class, &band))
693 return RNR_ITER_CONTINUE;
694
695 /* TBTT info must include bss param + BSSID + (short SSID or
696 * same_ssid bit to be set). Ignore other options, and move to
697 * the next AP info
698 */
699 if (band != NL80211_BAND_6GHZ ||
700 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 bss_params) ||
702 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 bss_params)))
705 return RNR_ITER_CONTINUE;
706
707 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 if (!entry)
709 return RNR_ITER_ERROR;
710
711 entry->center_freq =
712 ieee80211_channel_to_frequency(info->channel, band);
713
714 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715 data->ssid_elem, data->s_ssid_tmp)) {
716 data->n_coloc++;
717 list_add_tail(&entry->list, &data->ap_list);
718 } else {
719 kfree(entry);
720 }
721
722 return RNR_ITER_CONTINUE;
723}
724
725VISIBLE_IF_CFG80211_KUNIT int
726cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 struct list_head *list)
728{
729 struct colocated_ap_data data = {};
730 int ret;
731
732 INIT_LIST_HEAD(&data.ap_list);
733
734 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735 if (ret)
736 return 0;
737
738 if (!cfg80211_iter_rnr(ies->data, ies->len,
739 cfg80211_parse_colocated_ap_iter, &data)) {
740 cfg80211_free_coloc_ap_list(&data.ap_list);
741 return 0;
742 }
743
744 list_splice_tail(&data.ap_list, list);
745 return data.n_coloc;
746}
747EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748
749static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 struct ieee80211_channel *chan,
751 bool add_to_6ghz)
752{
753 int i;
754 u32 n_channels = request->n_channels;
755 struct cfg80211_scan_6ghz_params *params =
756 &request->scan_6ghz_params[request->n_6ghz_params];
757
758 for (i = 0; i < n_channels; i++) {
759 if (request->channels[i] == chan) {
760 if (add_to_6ghz)
761 params->channel_idx = i;
762 return;
763 }
764 }
765
766 request->channels[n_channels] = chan;
767 if (add_to_6ghz)
768 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
769 n_channels;
770
771 request->n_channels++;
772}
773
774static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
775 struct cfg80211_scan_request *request)
776{
777 int i;
778 u32 s_ssid;
779
780 for (i = 0; i < request->n_ssids; i++) {
781 /* wildcard ssid in the scan request */
782 if (!request->ssids[i].ssid_len) {
783 if (ap->multi_bss && !ap->transmitted_bssid)
784 continue;
785
786 return true;
787 }
788
789 if (ap->ssid_len &&
790 ap->ssid_len == request->ssids[i].ssid_len) {
791 if (!memcmp(request->ssids[i].ssid, ap->ssid,
792 ap->ssid_len))
793 return true;
794 } else if (ap->short_ssid_valid) {
795 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
796 request->ssids[i].ssid_len);
797
798 if (ap->short_ssid == s_ssid)
799 return true;
800 }
801 }
802
803 return false;
804}
805
806static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
807{
808 u8 i;
809 struct cfg80211_colocated_ap *ap;
810 int n_channels, count = 0, err;
811 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
812 LIST_HEAD(coloc_ap_list);
813 bool need_scan_psc = true;
814 const struct ieee80211_sband_iftype_data *iftd;
815
816 rdev_req->scan_6ghz = true;
817
818 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
819 return -EOPNOTSUPP;
820
821 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
822 rdev_req->wdev->iftype);
823 if (!iftd || !iftd->he_cap.has_he)
824 return -EOPNOTSUPP;
825
826 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
827
828 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
829 struct cfg80211_internal_bss *intbss;
830
831 spin_lock_bh(&rdev->bss_lock);
832 list_for_each_entry(intbss, &rdev->bss_list, list) {
833 struct cfg80211_bss *res = &intbss->pub;
834 const struct cfg80211_bss_ies *ies;
835 const struct element *ssid_elem;
836 struct cfg80211_colocated_ap *entry;
837 u32 s_ssid_tmp;
838 int ret;
839
840 ies = rcu_access_pointer(res->ies);
841 count += cfg80211_parse_colocated_ap(ies,
842 &coloc_ap_list);
843
844 /* In case the scan request specified a specific BSSID
845 * and the BSS is found and operating on 6GHz band then
846 * add this AP to the collocated APs list.
847 * This is relevant for ML probe requests when the lower
848 * band APs have not been discovered.
849 */
850 if (is_broadcast_ether_addr(rdev_req->bssid) ||
851 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
852 res->channel->band != NL80211_BAND_6GHZ)
853 continue;
854
855 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
856 &s_ssid_tmp);
857 if (ret)
858 continue;
859
860 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
861 GFP_ATOMIC);
862
863 if (!entry)
864 continue;
865
866 memcpy(entry->bssid, res->bssid, ETH_ALEN);
867 entry->short_ssid = s_ssid_tmp;
868 memcpy(entry->ssid, ssid_elem->data,
869 ssid_elem->datalen);
870 entry->ssid_len = ssid_elem->datalen;
871 entry->short_ssid_valid = true;
872 entry->center_freq = res->channel->center_freq;
873
874 list_add_tail(&entry->list, &coloc_ap_list);
875 count++;
876 }
877 spin_unlock_bh(&rdev->bss_lock);
878 }
879
880 request = kzalloc(struct_size(request, channels, n_channels) +
881 sizeof(*request->scan_6ghz_params) * count +
882 sizeof(*request->ssids) * rdev_req->n_ssids,
883 GFP_KERNEL);
884 if (!request) {
885 cfg80211_free_coloc_ap_list(&coloc_ap_list);
886 return -ENOMEM;
887 }
888
889 *request = *rdev_req;
890 request->n_channels = 0;
891 request->scan_6ghz_params =
892 (void *)&request->channels[n_channels];
893
894 /*
895 * PSC channels should not be scanned in case of direct scan with 1 SSID
896 * and at least one of the reported co-located APs with same SSID
897 * indicating that all APs in the same ESS are co-located
898 */
899 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
900 list_for_each_entry(ap, &coloc_ap_list, list) {
901 if (ap->colocated_ess &&
902 cfg80211_find_ssid_match(ap, request)) {
903 need_scan_psc = false;
904 break;
905 }
906 }
907 }
908
909 /*
910 * add to the scan request the channels that need to be scanned
911 * regardless of the collocated APs (PSC channels or all channels
912 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
913 */
914 for (i = 0; i < rdev_req->n_channels; i++) {
915 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
916 ((need_scan_psc &&
917 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
918 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
919 cfg80211_scan_req_add_chan(request,
920 rdev_req->channels[i],
921 false);
922 }
923 }
924
925 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
926 goto skip;
927
928 list_for_each_entry(ap, &coloc_ap_list, list) {
929 bool found = false;
930 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
931 &request->scan_6ghz_params[request->n_6ghz_params];
932 struct ieee80211_channel *chan =
933 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
934
935 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
936 continue;
937
938 for (i = 0; i < rdev_req->n_channels; i++) {
939 if (rdev_req->channels[i] == chan)
940 found = true;
941 }
942
943 if (!found)
944 continue;
945
946 if (request->n_ssids > 0 &&
947 !cfg80211_find_ssid_match(ap, request))
948 continue;
949
950 if (!is_broadcast_ether_addr(request->bssid) &&
951 !ether_addr_equal(request->bssid, ap->bssid))
952 continue;
953
954 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
955 continue;
956
957 cfg80211_scan_req_add_chan(request, chan, true);
958 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
959 scan_6ghz_params->short_ssid = ap->short_ssid;
960 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
961 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
962 scan_6ghz_params->psd_20 = ap->psd_20;
963
964 /*
965 * If a PSC channel is added to the scan and 'need_scan_psc' is
966 * set to false, then all the APs that the scan logic is
967 * interested with on the channel are collocated and thus there
968 * is no need to perform the initial PSC channel listen.
969 */
970 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
971 scan_6ghz_params->psc_no_listen = true;
972
973 request->n_6ghz_params++;
974 }
975
976skip:
977 cfg80211_free_coloc_ap_list(&coloc_ap_list);
978
979 if (request->n_channels) {
980 struct cfg80211_scan_request *old = rdev->int_scan_req;
981 rdev->int_scan_req = request;
982
983 /*
984 * Add the ssids from the parent scan request to the new scan
985 * request, so the driver would be able to use them in its
986 * probe requests to discover hidden APs on PSC channels.
987 */
988 request->ssids = (void *)&request->channels[request->n_channels];
989 request->n_ssids = rdev_req->n_ssids;
990 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
991 request->n_ssids);
992
993 /*
994 * If this scan follows a previous scan, save the scan start
995 * info from the first part of the scan
996 */
997 if (old)
998 rdev->int_scan_req->info = old->info;
999
1000 err = rdev_scan(rdev, request);
1001 if (err) {
1002 rdev->int_scan_req = old;
1003 kfree(request);
1004 } else {
1005 kfree(old);
1006 }
1007
1008 return err;
1009 }
1010
1011 kfree(request);
1012 return -EINVAL;
1013}
1014
1015int cfg80211_scan(struct cfg80211_registered_device *rdev)
1016{
1017 struct cfg80211_scan_request *request;
1018 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1019 u32 n_channels = 0, idx, i;
1020
1021 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1022 return rdev_scan(rdev, rdev_req);
1023
1024 for (i = 0; i < rdev_req->n_channels; i++) {
1025 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1026 n_channels++;
1027 }
1028
1029 if (!n_channels)
1030 return cfg80211_scan_6ghz(rdev);
1031
1032 request = kzalloc(struct_size(request, channels, n_channels),
1033 GFP_KERNEL);
1034 if (!request)
1035 return -ENOMEM;
1036
1037 *request = *rdev_req;
1038 request->n_channels = n_channels;
1039
1040 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1041 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1042 request->channels[idx++] = rdev_req->channels[i];
1043 }
1044
1045 rdev_req->scan_6ghz = false;
1046 rdev->int_scan_req = request;
1047 return rdev_scan(rdev, request);
1048}
1049
1050void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1051 bool send_message)
1052{
1053 struct cfg80211_scan_request *request, *rdev_req;
1054 struct wireless_dev *wdev;
1055 struct sk_buff *msg;
1056#ifdef CONFIG_CFG80211_WEXT
1057 union iwreq_data wrqu;
1058#endif
1059
1060 lockdep_assert_held(&rdev->wiphy.mtx);
1061
1062 if (rdev->scan_msg) {
1063 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1064 rdev->scan_msg = NULL;
1065 return;
1066 }
1067
1068 rdev_req = rdev->scan_req;
1069 if (!rdev_req)
1070 return;
1071
1072 wdev = rdev_req->wdev;
1073 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1074
1075 if (wdev_running(wdev) &&
1076 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1077 !rdev_req->scan_6ghz && !request->info.aborted &&
1078 !cfg80211_scan_6ghz(rdev))
1079 return;
1080
1081 /*
1082 * This must be before sending the other events!
1083 * Otherwise, wpa_supplicant gets completely confused with
1084 * wext events.
1085 */
1086 if (wdev->netdev)
1087 cfg80211_sme_scan_done(wdev->netdev);
1088
1089 if (!request->info.aborted &&
1090 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1091 /* flush entries from previous scans */
1092 spin_lock_bh(&rdev->bss_lock);
1093 __cfg80211_bss_expire(rdev, request->scan_start);
1094 spin_unlock_bh(&rdev->bss_lock);
1095 }
1096
1097 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1098
1099#ifdef CONFIG_CFG80211_WEXT
1100 if (wdev->netdev && !request->info.aborted) {
1101 memset(&wrqu, 0, sizeof(wrqu));
1102
1103 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1104 }
1105#endif
1106
1107 dev_put(wdev->netdev);
1108
1109 kfree(rdev->int_scan_req);
1110 rdev->int_scan_req = NULL;
1111
1112 kfree(rdev->scan_req);
1113 rdev->scan_req = NULL;
1114
1115 if (!send_message)
1116 rdev->scan_msg = msg;
1117 else
1118 nl80211_send_scan_msg(rdev, msg);
1119}
1120
1121void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1122{
1123 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1124}
1125
1126void cfg80211_scan_done(struct cfg80211_scan_request *request,
1127 struct cfg80211_scan_info *info)
1128{
1129 struct cfg80211_scan_info old_info = request->info;
1130
1131 trace_cfg80211_scan_done(request, info);
1132 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1133 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1134
1135 request->info = *info;
1136
1137 /*
1138 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1139 * be of the first part. In such a case old_info.scan_start_tsf should
1140 * be non zero.
1141 */
1142 if (request->scan_6ghz && old_info.scan_start_tsf) {
1143 request->info.scan_start_tsf = old_info.scan_start_tsf;
1144 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1145 sizeof(request->info.tsf_bssid));
1146 }
1147
1148 request->notified = true;
1149 wiphy_work_queue(request->wiphy,
1150 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1151}
1152EXPORT_SYMBOL(cfg80211_scan_done);
1153
1154void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1155 struct cfg80211_sched_scan_request *req)
1156{
1157 lockdep_assert_held(&rdev->wiphy.mtx);
1158
1159 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1160}
1161
1162static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1163 struct cfg80211_sched_scan_request *req)
1164{
1165 lockdep_assert_held(&rdev->wiphy.mtx);
1166
1167 list_del_rcu(&req->list);
1168 kfree_rcu(req, rcu_head);
1169}
1170
1171static struct cfg80211_sched_scan_request *
1172cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1173{
1174 struct cfg80211_sched_scan_request *pos;
1175
1176 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1177 lockdep_is_held(&rdev->wiphy.mtx)) {
1178 if (pos->reqid == reqid)
1179 return pos;
1180 }
1181 return NULL;
1182}
1183
1184/*
1185 * Determines if a scheduled scan request can be handled. When a legacy
1186 * scheduled scan is running no other scheduled scan is allowed regardless
1187 * whether the request is for legacy or multi-support scan. When a multi-support
1188 * scheduled scan is running a request for legacy scan is not allowed. In this
1189 * case a request for multi-support scan can be handled if resources are
1190 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1191 */
1192int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1193 bool want_multi)
1194{
1195 struct cfg80211_sched_scan_request *pos;
1196 int i = 0;
1197
1198 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1199 /* request id zero means legacy in progress */
1200 if (!i && !pos->reqid)
1201 return -EINPROGRESS;
1202 i++;
1203 }
1204
1205 if (i) {
1206 /* no legacy allowed when multi request(s) are active */
1207 if (!want_multi)
1208 return -EINPROGRESS;
1209
1210 /* resource limit reached */
1211 if (i == rdev->wiphy.max_sched_scan_reqs)
1212 return -ENOSPC;
1213 }
1214 return 0;
1215}
1216
1217void cfg80211_sched_scan_results_wk(struct work_struct *work)
1218{
1219 struct cfg80211_registered_device *rdev;
1220 struct cfg80211_sched_scan_request *req, *tmp;
1221
1222 rdev = container_of(work, struct cfg80211_registered_device,
1223 sched_scan_res_wk);
1224
1225 wiphy_lock(&rdev->wiphy);
1226 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1227 if (req->report_results) {
1228 req->report_results = false;
1229 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1230 /* flush entries from previous scans */
1231 spin_lock_bh(&rdev->bss_lock);
1232 __cfg80211_bss_expire(rdev, req->scan_start);
1233 spin_unlock_bh(&rdev->bss_lock);
1234 req->scan_start = jiffies;
1235 }
1236 nl80211_send_sched_scan(req,
1237 NL80211_CMD_SCHED_SCAN_RESULTS);
1238 }
1239 }
1240 wiphy_unlock(&rdev->wiphy);
1241}
1242
1243void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1244{
1245 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1246 struct cfg80211_sched_scan_request *request;
1247
1248 trace_cfg80211_sched_scan_results(wiphy, reqid);
1249 /* ignore if we're not scanning */
1250
1251 rcu_read_lock();
1252 request = cfg80211_find_sched_scan_req(rdev, reqid);
1253 if (request) {
1254 request->report_results = true;
1255 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1256 }
1257 rcu_read_unlock();
1258}
1259EXPORT_SYMBOL(cfg80211_sched_scan_results);
1260
1261void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1262{
1263 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1264
1265 lockdep_assert_held(&wiphy->mtx);
1266
1267 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1268
1269 __cfg80211_stop_sched_scan(rdev, reqid, true);
1270}
1271EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1272
1273void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1274{
1275 wiphy_lock(wiphy);
1276 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1277 wiphy_unlock(wiphy);
1278}
1279EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1280
1281int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1282 struct cfg80211_sched_scan_request *req,
1283 bool driver_initiated)
1284{
1285 lockdep_assert_held(&rdev->wiphy.mtx);
1286
1287 if (!driver_initiated) {
1288 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1289 if (err)
1290 return err;
1291 }
1292
1293 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1294
1295 cfg80211_del_sched_scan_req(rdev, req);
1296
1297 return 0;
1298}
1299
1300int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1301 u64 reqid, bool driver_initiated)
1302{
1303 struct cfg80211_sched_scan_request *sched_scan_req;
1304
1305 lockdep_assert_held(&rdev->wiphy.mtx);
1306
1307 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1308 if (!sched_scan_req)
1309 return -ENOENT;
1310
1311 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1312 driver_initiated);
1313}
1314
1315void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1316 unsigned long age_secs)
1317{
1318 struct cfg80211_internal_bss *bss;
1319 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1320
1321 spin_lock_bh(&rdev->bss_lock);
1322 list_for_each_entry(bss, &rdev->bss_list, list)
1323 bss->ts -= age_jiffies;
1324 spin_unlock_bh(&rdev->bss_lock);
1325}
1326
1327void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1328{
1329 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1330}
1331
1332void cfg80211_bss_flush(struct wiphy *wiphy)
1333{
1334 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1335
1336 spin_lock_bh(&rdev->bss_lock);
1337 __cfg80211_bss_expire(rdev, jiffies);
1338 spin_unlock_bh(&rdev->bss_lock);
1339}
1340EXPORT_SYMBOL(cfg80211_bss_flush);
1341
1342const struct element *
1343cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1344 const u8 *match, unsigned int match_len,
1345 unsigned int match_offset)
1346{
1347 const struct element *elem;
1348
1349 for_each_element_id(elem, eid, ies, len) {
1350 if (elem->datalen >= match_offset + match_len &&
1351 !memcmp(elem->data + match_offset, match, match_len))
1352 return elem;
1353 }
1354
1355 return NULL;
1356}
1357EXPORT_SYMBOL(cfg80211_find_elem_match);
1358
1359const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1360 const u8 *ies,
1361 unsigned int len)
1362{
1363 const struct element *elem;
1364 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1365 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1366
1367 if (WARN_ON(oui_type > 0xff))
1368 return NULL;
1369
1370 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1371 match, match_len, 0);
1372
1373 if (!elem || elem->datalen < 4)
1374 return NULL;
1375
1376 return elem;
1377}
1378EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1379
1380/**
1381 * enum bss_compare_mode - BSS compare mode
1382 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1383 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1384 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1385 */
1386enum bss_compare_mode {
1387 BSS_CMP_REGULAR,
1388 BSS_CMP_HIDE_ZLEN,
1389 BSS_CMP_HIDE_NUL,
1390};
1391
1392static int cmp_bss(struct cfg80211_bss *a,
1393 struct cfg80211_bss *b,
1394 enum bss_compare_mode mode)
1395{
1396 const struct cfg80211_bss_ies *a_ies, *b_ies;
1397 const u8 *ie1 = NULL;
1398 const u8 *ie2 = NULL;
1399 int i, r;
1400
1401 if (a->channel != b->channel)
1402 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1403 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1404
1405 a_ies = rcu_access_pointer(a->ies);
1406 if (!a_ies)
1407 return -1;
1408 b_ies = rcu_access_pointer(b->ies);
1409 if (!b_ies)
1410 return 1;
1411
1412 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1413 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1414 a_ies->data, a_ies->len);
1415 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1416 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1417 b_ies->data, b_ies->len);
1418 if (ie1 && ie2) {
1419 int mesh_id_cmp;
1420
1421 if (ie1[1] == ie2[1])
1422 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1423 else
1424 mesh_id_cmp = ie2[1] - ie1[1];
1425
1426 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1427 a_ies->data, a_ies->len);
1428 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1429 b_ies->data, b_ies->len);
1430 if (ie1 && ie2) {
1431 if (mesh_id_cmp)
1432 return mesh_id_cmp;
1433 if (ie1[1] != ie2[1])
1434 return ie2[1] - ie1[1];
1435 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1436 }
1437 }
1438
1439 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1440 if (r)
1441 return r;
1442
1443 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1444 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1445
1446 if (!ie1 && !ie2)
1447 return 0;
1448
1449 /*
1450 * Note that with "hide_ssid", the function returns a match if
1451 * the already-present BSS ("b") is a hidden SSID beacon for
1452 * the new BSS ("a").
1453 */
1454
1455 /* sort missing IE before (left of) present IE */
1456 if (!ie1)
1457 return -1;
1458 if (!ie2)
1459 return 1;
1460
1461 switch (mode) {
1462 case BSS_CMP_HIDE_ZLEN:
1463 /*
1464 * In ZLEN mode we assume the BSS entry we're
1465 * looking for has a zero-length SSID. So if
1466 * the one we're looking at right now has that,
1467 * return 0. Otherwise, return the difference
1468 * in length, but since we're looking for the
1469 * 0-length it's really equivalent to returning
1470 * the length of the one we're looking at.
1471 *
1472 * No content comparison is needed as we assume
1473 * the content length is zero.
1474 */
1475 return ie2[1];
1476 case BSS_CMP_REGULAR:
1477 default:
1478 /* sort by length first, then by contents */
1479 if (ie1[1] != ie2[1])
1480 return ie2[1] - ie1[1];
1481 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1482 case BSS_CMP_HIDE_NUL:
1483 if (ie1[1] != ie2[1])
1484 return ie2[1] - ie1[1];
1485 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1486 for (i = 0; i < ie2[1]; i++)
1487 if (ie2[i + 2])
1488 return -1;
1489 return 0;
1490 }
1491}
1492
1493static bool cfg80211_bss_type_match(u16 capability,
1494 enum nl80211_band band,
1495 enum ieee80211_bss_type bss_type)
1496{
1497 bool ret = true;
1498 u16 mask, val;
1499
1500 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1501 return ret;
1502
1503 if (band == NL80211_BAND_60GHZ) {
1504 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1505 switch (bss_type) {
1506 case IEEE80211_BSS_TYPE_ESS:
1507 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1508 break;
1509 case IEEE80211_BSS_TYPE_PBSS:
1510 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1511 break;
1512 case IEEE80211_BSS_TYPE_IBSS:
1513 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1514 break;
1515 default:
1516 return false;
1517 }
1518 } else {
1519 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1520 switch (bss_type) {
1521 case IEEE80211_BSS_TYPE_ESS:
1522 val = WLAN_CAPABILITY_ESS;
1523 break;
1524 case IEEE80211_BSS_TYPE_IBSS:
1525 val = WLAN_CAPABILITY_IBSS;
1526 break;
1527 case IEEE80211_BSS_TYPE_MBSS:
1528 val = 0;
1529 break;
1530 default:
1531 return false;
1532 }
1533 }
1534
1535 ret = ((capability & mask) == val);
1536 return ret;
1537}
1538
1539/* Returned bss is reference counted and must be cleaned up appropriately. */
1540struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1541 struct ieee80211_channel *channel,
1542 const u8 *bssid,
1543 const u8 *ssid, size_t ssid_len,
1544 enum ieee80211_bss_type bss_type,
1545 enum ieee80211_privacy privacy,
1546 u32 use_for)
1547{
1548 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1549 struct cfg80211_internal_bss *bss, *res = NULL;
1550 unsigned long now = jiffies;
1551 int bss_privacy;
1552
1553 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1554 privacy);
1555
1556 spin_lock_bh(&rdev->bss_lock);
1557
1558 list_for_each_entry(bss, &rdev->bss_list, list) {
1559 if (!cfg80211_bss_type_match(bss->pub.capability,
1560 bss->pub.channel->band, bss_type))
1561 continue;
1562
1563 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1564 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1565 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1566 continue;
1567 if (channel && bss->pub.channel != channel)
1568 continue;
1569 if (!is_valid_ether_addr(bss->pub.bssid))
1570 continue;
1571 if ((bss->pub.use_for & use_for) != use_for)
1572 continue;
1573 /* Don't get expired BSS structs */
1574 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1575 !atomic_read(&bss->hold))
1576 continue;
1577 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1578 res = bss;
1579 bss_ref_get(rdev, res);
1580 break;
1581 }
1582 }
1583
1584 spin_unlock_bh(&rdev->bss_lock);
1585 if (!res)
1586 return NULL;
1587 trace_cfg80211_return_bss(&res->pub);
1588 return &res->pub;
1589}
1590EXPORT_SYMBOL(__cfg80211_get_bss);
1591
1592static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1593 struct cfg80211_internal_bss *bss)
1594{
1595 struct rb_node **p = &rdev->bss_tree.rb_node;
1596 struct rb_node *parent = NULL;
1597 struct cfg80211_internal_bss *tbss;
1598 int cmp;
1599
1600 while (*p) {
1601 parent = *p;
1602 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1603
1604 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1605
1606 if (WARN_ON(!cmp)) {
1607 /* will sort of leak this BSS */
1608 return;
1609 }
1610
1611 if (cmp < 0)
1612 p = &(*p)->rb_left;
1613 else
1614 p = &(*p)->rb_right;
1615 }
1616
1617 rb_link_node(&bss->rbn, parent, p);
1618 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1619}
1620
1621static struct cfg80211_internal_bss *
1622rb_find_bss(struct cfg80211_registered_device *rdev,
1623 struct cfg80211_internal_bss *res,
1624 enum bss_compare_mode mode)
1625{
1626 struct rb_node *n = rdev->bss_tree.rb_node;
1627 struct cfg80211_internal_bss *bss;
1628 int r;
1629
1630 while (n) {
1631 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1632 r = cmp_bss(&res->pub, &bss->pub, mode);
1633
1634 if (r == 0)
1635 return bss;
1636 else if (r < 0)
1637 n = n->rb_left;
1638 else
1639 n = n->rb_right;
1640 }
1641
1642 return NULL;
1643}
1644
1645static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1646 struct cfg80211_internal_bss *new)
1647{
1648 const struct cfg80211_bss_ies *ies;
1649 struct cfg80211_internal_bss *bss;
1650 const u8 *ie;
1651 int i, ssidlen;
1652 u8 fold = 0;
1653 u32 n_entries = 0;
1654
1655 ies = rcu_access_pointer(new->pub.beacon_ies);
1656 if (WARN_ON(!ies))
1657 return false;
1658
1659 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1660 if (!ie) {
1661 /* nothing to do */
1662 return true;
1663 }
1664
1665 ssidlen = ie[1];
1666 for (i = 0; i < ssidlen; i++)
1667 fold |= ie[2 + i];
1668
1669 if (fold) {
1670 /* not a hidden SSID */
1671 return true;
1672 }
1673
1674 /* This is the bad part ... */
1675
1676 list_for_each_entry(bss, &rdev->bss_list, list) {
1677 /*
1678 * we're iterating all the entries anyway, so take the
1679 * opportunity to validate the list length accounting
1680 */
1681 n_entries++;
1682
1683 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1684 continue;
1685 if (bss->pub.channel != new->pub.channel)
1686 continue;
1687 if (rcu_access_pointer(bss->pub.beacon_ies))
1688 continue;
1689 ies = rcu_access_pointer(bss->pub.ies);
1690 if (!ies)
1691 continue;
1692 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1693 if (!ie)
1694 continue;
1695 if (ssidlen && ie[1] != ssidlen)
1696 continue;
1697 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1698 continue;
1699 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1700 list_del(&bss->hidden_list);
1701 /* combine them */
1702 list_add(&bss->hidden_list, &new->hidden_list);
1703 bss->pub.hidden_beacon_bss = &new->pub;
1704 new->refcount += bss->refcount;
1705 rcu_assign_pointer(bss->pub.beacon_ies,
1706 new->pub.beacon_ies);
1707 }
1708
1709 WARN_ONCE(n_entries != rdev->bss_entries,
1710 "rdev bss entries[%d]/list[len:%d] corruption\n",
1711 rdev->bss_entries, n_entries);
1712
1713 return true;
1714}
1715
1716static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1717 const struct cfg80211_bss_ies *new_ies,
1718 const struct cfg80211_bss_ies *old_ies)
1719{
1720 struct cfg80211_internal_bss *bss;
1721
1722 /* Assign beacon IEs to all sub entries */
1723 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1724 const struct cfg80211_bss_ies *ies;
1725
1726 ies = rcu_access_pointer(bss->pub.beacon_ies);
1727 WARN_ON(ies != old_ies);
1728
1729 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1730 }
1731}
1732
1733static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1734 struct cfg80211_internal_bss *known,
1735 const struct cfg80211_bss_ies *old)
1736{
1737 const struct ieee80211_ext_chansw_ie *ecsa;
1738 const struct element *elem_new, *elem_old;
1739 const struct cfg80211_bss_ies *new, *bcn;
1740
1741 if (known->pub.proberesp_ecsa_stuck)
1742 return;
1743
1744 new = rcu_dereference_protected(known->pub.proberesp_ies,
1745 lockdep_is_held(&rdev->bss_lock));
1746 if (WARN_ON(!new))
1747 return;
1748
1749 if (new->tsf - old->tsf < USEC_PER_SEC)
1750 return;
1751
1752 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1753 old->data, old->len);
1754 if (!elem_old)
1755 return;
1756
1757 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1758 new->data, new->len);
1759 if (!elem_new)
1760 return;
1761
1762 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1763 lockdep_is_held(&rdev->bss_lock));
1764 if (bcn &&
1765 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1766 bcn->data, bcn->len))
1767 return;
1768
1769 if (elem_new->datalen != elem_old->datalen)
1770 return;
1771 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1772 return;
1773 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1774 return;
1775
1776 ecsa = (void *)elem_new->data;
1777
1778 if (!ecsa->mode)
1779 return;
1780
1781 if (ecsa->new_ch_num !=
1782 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1783 return;
1784
1785 known->pub.proberesp_ecsa_stuck = 1;
1786}
1787
1788static bool
1789cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1790 struct cfg80211_internal_bss *known,
1791 struct cfg80211_internal_bss *new,
1792 bool signal_valid)
1793{
1794 lockdep_assert_held(&rdev->bss_lock);
1795
1796 /* Update IEs */
1797 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1798 const struct cfg80211_bss_ies *old;
1799
1800 old = rcu_access_pointer(known->pub.proberesp_ies);
1801
1802 rcu_assign_pointer(known->pub.proberesp_ies,
1803 new->pub.proberesp_ies);
1804 /* Override possible earlier Beacon frame IEs */
1805 rcu_assign_pointer(known->pub.ies,
1806 new->pub.proberesp_ies);
1807 if (old) {
1808 cfg80211_check_stuck_ecsa(rdev, known, old);
1809 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1810 }
1811 }
1812
1813 if (rcu_access_pointer(new->pub.beacon_ies)) {
1814 const struct cfg80211_bss_ies *old;
1815
1816 if (known->pub.hidden_beacon_bss &&
1817 !list_empty(&known->hidden_list)) {
1818 const struct cfg80211_bss_ies *f;
1819
1820 /* The known BSS struct is one of the probe
1821 * response members of a group, but we're
1822 * receiving a beacon (beacon_ies in the new
1823 * bss is used). This can only mean that the
1824 * AP changed its beacon from not having an
1825 * SSID to showing it, which is confusing so
1826 * drop this information.
1827 */
1828
1829 f = rcu_access_pointer(new->pub.beacon_ies);
1830 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1831 return false;
1832 }
1833
1834 old = rcu_access_pointer(known->pub.beacon_ies);
1835
1836 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1837
1838 /* Override IEs if they were from a beacon before */
1839 if (old == rcu_access_pointer(known->pub.ies))
1840 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1841
1842 cfg80211_update_hidden_bsses(known,
1843 rcu_access_pointer(new->pub.beacon_ies),
1844 old);
1845
1846 if (old)
1847 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1848 }
1849
1850 known->pub.beacon_interval = new->pub.beacon_interval;
1851
1852 /* don't update the signal if beacon was heard on
1853 * adjacent channel.
1854 */
1855 if (signal_valid)
1856 known->pub.signal = new->pub.signal;
1857 known->pub.capability = new->pub.capability;
1858 known->ts = new->ts;
1859 known->ts_boottime = new->ts_boottime;
1860 known->parent_tsf = new->parent_tsf;
1861 known->pub.chains = new->pub.chains;
1862 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1863 IEEE80211_MAX_CHAINS);
1864 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1865 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1866 known->pub.bssid_index = new->pub.bssid_index;
1867 known->pub.use_for &= new->pub.use_for;
1868 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1869
1870 return true;
1871}
1872
1873/* Returned bss is reference counted and must be cleaned up appropriately. */
1874static struct cfg80211_internal_bss *
1875__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1876 struct cfg80211_internal_bss *tmp,
1877 bool signal_valid, unsigned long ts)
1878{
1879 struct cfg80211_internal_bss *found = NULL;
1880 struct cfg80211_bss_ies *ies;
1881
1882 if (WARN_ON(!tmp->pub.channel))
1883 goto free_ies;
1884
1885 tmp->ts = ts;
1886
1887 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1888 goto free_ies;
1889
1890 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1891
1892 if (found) {
1893 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1894 return NULL;
1895 } else {
1896 struct cfg80211_internal_bss *new;
1897 struct cfg80211_internal_bss *hidden;
1898
1899 /*
1900 * create a copy -- the "res" variable that is passed in
1901 * is allocated on the stack since it's not needed in the
1902 * more common case of an update
1903 */
1904 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1905 GFP_ATOMIC);
1906 if (!new)
1907 goto free_ies;
1908 memcpy(new, tmp, sizeof(*new));
1909 new->refcount = 1;
1910 INIT_LIST_HEAD(&new->hidden_list);
1911 INIT_LIST_HEAD(&new->pub.nontrans_list);
1912 /* we'll set this later if it was non-NULL */
1913 new->pub.transmitted_bss = NULL;
1914
1915 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1916 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1917 if (!hidden)
1918 hidden = rb_find_bss(rdev, tmp,
1919 BSS_CMP_HIDE_NUL);
1920 if (hidden) {
1921 new->pub.hidden_beacon_bss = &hidden->pub;
1922 list_add(&new->hidden_list,
1923 &hidden->hidden_list);
1924 hidden->refcount++;
1925
1926 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1927 rcu_assign_pointer(new->pub.beacon_ies,
1928 hidden->pub.beacon_ies);
1929 if (ies)
1930 kfree_rcu(ies, rcu_head);
1931 }
1932 } else {
1933 /*
1934 * Ok so we found a beacon, and don't have an entry. If
1935 * it's a beacon with hidden SSID, we might be in for an
1936 * expensive search for any probe responses that should
1937 * be grouped with this beacon for updates ...
1938 */
1939 if (!cfg80211_combine_bsses(rdev, new)) {
1940 bss_ref_put(rdev, new);
1941 return NULL;
1942 }
1943 }
1944
1945 if (rdev->bss_entries >= bss_entries_limit &&
1946 !cfg80211_bss_expire_oldest(rdev)) {
1947 bss_ref_put(rdev, new);
1948 return NULL;
1949 }
1950
1951 /* This must be before the call to bss_ref_get */
1952 if (tmp->pub.transmitted_bss) {
1953 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1954 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1955 }
1956
1957 list_add_tail(&new->list, &rdev->bss_list);
1958 rdev->bss_entries++;
1959 rb_insert_bss(rdev, new);
1960 found = new;
1961 }
1962
1963 rdev->bss_generation++;
1964 bss_ref_get(rdev, found);
1965
1966 return found;
1967
1968free_ies:
1969 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1970 if (ies)
1971 kfree_rcu(ies, rcu_head);
1972 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1973 if (ies)
1974 kfree_rcu(ies, rcu_head);
1975
1976 return NULL;
1977}
1978
1979struct cfg80211_internal_bss *
1980cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1981 struct cfg80211_internal_bss *tmp,
1982 bool signal_valid, unsigned long ts)
1983{
1984 struct cfg80211_internal_bss *res;
1985
1986 spin_lock_bh(&rdev->bss_lock);
1987 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1988 spin_unlock_bh(&rdev->bss_lock);
1989
1990 return res;
1991}
1992
1993int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1994 enum nl80211_band band)
1995{
1996 const struct element *tmp;
1997
1998 if (band == NL80211_BAND_6GHZ) {
1999 struct ieee80211_he_operation *he_oper;
2000
2001 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2002 ielen);
2003 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2004 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2005 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2006
2007 he_oper = (void *)&tmp->data[1];
2008
2009 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2010 if (!he_6ghz_oper)
2011 return -1;
2012
2013 return he_6ghz_oper->primary;
2014 }
2015 } else if (band == NL80211_BAND_S1GHZ) {
2016 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2017 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2018 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2019
2020 return s1gop->oper_ch;
2021 }
2022 } else {
2023 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2024 if (tmp && tmp->datalen == 1)
2025 return tmp->data[0];
2026
2027 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2028 if (tmp &&
2029 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2030 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2031
2032 return htop->primary_chan;
2033 }
2034 }
2035
2036 return -1;
2037}
2038EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2039
2040/*
2041 * Update RX channel information based on the available frame payload
2042 * information. This is mainly for the 2.4 GHz band where frames can be received
2043 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2044 * element to indicate the current (transmitting) channel, but this might also
2045 * be needed on other bands if RX frequency does not match with the actual
2046 * operating channel of a BSS, or if the AP reports a different primary channel.
2047 */
2048static struct ieee80211_channel *
2049cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2050 struct ieee80211_channel *channel)
2051{
2052 u32 freq;
2053 int channel_number;
2054 struct ieee80211_channel *alt_channel;
2055
2056 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2057 channel->band);
2058
2059 if (channel_number < 0) {
2060 /* No channel information in frame payload */
2061 return channel;
2062 }
2063
2064 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2065
2066 /*
2067 * Frame info (beacon/prob res) is the same as received channel,
2068 * no need for further processing.
2069 */
2070 if (freq == ieee80211_channel_to_khz(channel))
2071 return channel;
2072
2073 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2074 if (!alt_channel) {
2075 if (channel->band == NL80211_BAND_2GHZ ||
2076 channel->band == NL80211_BAND_6GHZ) {
2077 /*
2078 * Better not allow unexpected channels when that could
2079 * be going beyond the 1-11 range (e.g., discovering
2080 * BSS on channel 12 when radio is configured for
2081 * channel 11) or beyond the 6 GHz channel range.
2082 */
2083 return NULL;
2084 }
2085
2086 /* No match for the payload channel number - ignore it */
2087 return channel;
2088 }
2089
2090 /*
2091 * Use the channel determined through the payload channel number
2092 * instead of the RX channel reported by the driver.
2093 */
2094 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2095 return NULL;
2096 return alt_channel;
2097}
2098
2099struct cfg80211_inform_single_bss_data {
2100 struct cfg80211_inform_bss *drv_data;
2101 enum cfg80211_bss_frame_type ftype;
2102 struct ieee80211_channel *channel;
2103 u8 bssid[ETH_ALEN];
2104 u64 tsf;
2105 u16 capability;
2106 u16 beacon_interval;
2107 const u8 *ie;
2108 size_t ielen;
2109
2110 enum {
2111 BSS_SOURCE_DIRECT = 0,
2112 BSS_SOURCE_MBSSID,
2113 BSS_SOURCE_STA_PROFILE,
2114 } bss_source;
2115 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2116 struct cfg80211_bss *source_bss;
2117 u8 max_bssid_indicator;
2118 u8 bssid_index;
2119
2120 u8 use_for;
2121 u64 cannot_use_reasons;
2122};
2123
2124static bool cfg80211_6ghz_power_type_valid(const u8 *ie, size_t ielen,
2125 const u32 flags)
2126{
2127 const struct element *tmp;
2128 struct ieee80211_he_operation *he_oper;
2129
2130 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
2131 if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2132 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2133
2134 he_oper = (void *)&tmp->data[1];
2135 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2136
2137 if (!he_6ghz_oper)
2138 return false;
2139
2140 switch (u8_get_bits(he_6ghz_oper->control,
2141 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2142 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2143 return true;
2144 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2145 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2146 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2147 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2148 }
2149 }
2150 return false;
2151}
2152
2153/* Returned bss is reference counted and must be cleaned up appropriately. */
2154static struct cfg80211_bss *
2155cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2156 struct cfg80211_inform_single_bss_data *data,
2157 gfp_t gfp)
2158{
2159 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2160 struct cfg80211_inform_bss *drv_data = data->drv_data;
2161 struct cfg80211_bss_ies *ies;
2162 struct ieee80211_channel *channel;
2163 struct cfg80211_internal_bss tmp = {}, *res;
2164 int bss_type;
2165 bool signal_valid;
2166 unsigned long ts;
2167
2168 if (WARN_ON(!wiphy))
2169 return NULL;
2170
2171 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2172 (drv_data->signal < 0 || drv_data->signal > 100)))
2173 return NULL;
2174
2175 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2176 return NULL;
2177
2178 channel = data->channel;
2179 if (!channel)
2180 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2181 drv_data->chan);
2182 if (!channel)
2183 return NULL;
2184
2185 if (channel->band == NL80211_BAND_6GHZ &&
2186 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2187 channel->flags)) {
2188 data->use_for = 0;
2189 data->cannot_use_reasons =
2190 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2191 }
2192
2193 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2194 tmp.pub.channel = channel;
2195 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2196 tmp.pub.signal = drv_data->signal;
2197 else
2198 tmp.pub.signal = 0;
2199 tmp.pub.beacon_interval = data->beacon_interval;
2200 tmp.pub.capability = data->capability;
2201 tmp.ts_boottime = drv_data->boottime_ns;
2202 tmp.parent_tsf = drv_data->parent_tsf;
2203 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2204 tmp.pub.chains = drv_data->chains;
2205 memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2206 IEEE80211_MAX_CHAINS);
2207 tmp.pub.use_for = data->use_for;
2208 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2209
2210 switch (data->bss_source) {
2211 case BSS_SOURCE_MBSSID:
2212 tmp.pub.transmitted_bss = data->source_bss;
2213 fallthrough;
2214 case BSS_SOURCE_STA_PROFILE:
2215 ts = bss_from_pub(data->source_bss)->ts;
2216 tmp.pub.bssid_index = data->bssid_index;
2217 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2218 break;
2219 case BSS_SOURCE_DIRECT:
2220 ts = jiffies;
2221
2222 if (channel->band == NL80211_BAND_60GHZ) {
2223 bss_type = data->capability &
2224 WLAN_CAPABILITY_DMG_TYPE_MASK;
2225 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2226 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2227 regulatory_hint_found_beacon(wiphy, channel,
2228 gfp);
2229 } else {
2230 if (data->capability & WLAN_CAPABILITY_ESS)
2231 regulatory_hint_found_beacon(wiphy, channel,
2232 gfp);
2233 }
2234 break;
2235 }
2236
2237 /*
2238 * If we do not know here whether the IEs are from a Beacon or Probe
2239 * Response frame, we need to pick one of the options and only use it
2240 * with the driver that does not provide the full Beacon/Probe Response
2241 * frame. Use Beacon frame pointer to avoid indicating that this should
2242 * override the IEs pointer should we have received an earlier
2243 * indication of Probe Response data.
2244 */
2245 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2246 if (!ies)
2247 return NULL;
2248 ies->len = data->ielen;
2249 ies->tsf = data->tsf;
2250 ies->from_beacon = false;
2251 memcpy(ies->data, data->ie, data->ielen);
2252
2253 switch (data->ftype) {
2254 case CFG80211_BSS_FTYPE_BEACON:
2255 case CFG80211_BSS_FTYPE_S1G_BEACON:
2256 ies->from_beacon = true;
2257 fallthrough;
2258 case CFG80211_BSS_FTYPE_UNKNOWN:
2259 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2260 break;
2261 case CFG80211_BSS_FTYPE_PRESP:
2262 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2263 break;
2264 }
2265 rcu_assign_pointer(tmp.pub.ies, ies);
2266
2267 signal_valid = drv_data->chan == channel;
2268 spin_lock_bh(&rdev->bss_lock);
2269 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2270 if (!res)
2271 goto drop;
2272
2273 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2274
2275 if (data->bss_source == BSS_SOURCE_MBSSID) {
2276 /* this is a nontransmitting bss, we need to add it to
2277 * transmitting bss' list if it is not there
2278 */
2279 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2280 if (__cfg80211_unlink_bss(rdev, res)) {
2281 rdev->bss_generation++;
2282 res = NULL;
2283 }
2284 }
2285
2286 if (!res)
2287 goto drop;
2288 }
2289 spin_unlock_bh(&rdev->bss_lock);
2290
2291 trace_cfg80211_return_bss(&res->pub);
2292 /* __cfg80211_bss_update gives us a referenced result */
2293 return &res->pub;
2294
2295drop:
2296 spin_unlock_bh(&rdev->bss_lock);
2297 return NULL;
2298}
2299
2300static const struct element
2301*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2302 const struct element *mbssid_elem,
2303 const struct element *sub_elem)
2304{
2305 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2306 const struct element *next_mbssid;
2307 const struct element *next_sub;
2308
2309 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2310 mbssid_end,
2311 ielen - (mbssid_end - ie));
2312
2313 /*
2314 * If it is not the last subelement in current MBSSID IE or there isn't
2315 * a next MBSSID IE - profile is complete.
2316 */
2317 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2318 !next_mbssid)
2319 return NULL;
2320
2321 /* For any length error, just return NULL */
2322
2323 if (next_mbssid->datalen < 4)
2324 return NULL;
2325
2326 next_sub = (void *)&next_mbssid->data[1];
2327
2328 if (next_mbssid->data + next_mbssid->datalen <
2329 next_sub->data + next_sub->datalen)
2330 return NULL;
2331
2332 if (next_sub->id != 0 || next_sub->datalen < 2)
2333 return NULL;
2334
2335 /*
2336 * Check if the first element in the next sub element is a start
2337 * of a new profile
2338 */
2339 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2340 NULL : next_mbssid;
2341}
2342
2343size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2344 const struct element *mbssid_elem,
2345 const struct element *sub_elem,
2346 u8 *merged_ie, size_t max_copy_len)
2347{
2348 size_t copied_len = sub_elem->datalen;
2349 const struct element *next_mbssid;
2350
2351 if (sub_elem->datalen > max_copy_len)
2352 return 0;
2353
2354 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2355
2356 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2357 mbssid_elem,
2358 sub_elem))) {
2359 const struct element *next_sub = (void *)&next_mbssid->data[1];
2360
2361 if (copied_len + next_sub->datalen > max_copy_len)
2362 break;
2363 memcpy(merged_ie + copied_len, next_sub->data,
2364 next_sub->datalen);
2365 copied_len += next_sub->datalen;
2366 }
2367
2368 return copied_len;
2369}
2370EXPORT_SYMBOL(cfg80211_merge_profile);
2371
2372static void
2373cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2374 struct cfg80211_inform_single_bss_data *tx_data,
2375 struct cfg80211_bss *source_bss,
2376 gfp_t gfp)
2377{
2378 struct cfg80211_inform_single_bss_data data = {
2379 .drv_data = tx_data->drv_data,
2380 .ftype = tx_data->ftype,
2381 .tsf = tx_data->tsf,
2382 .beacon_interval = tx_data->beacon_interval,
2383 .source_bss = source_bss,
2384 .bss_source = BSS_SOURCE_MBSSID,
2385 .use_for = tx_data->use_for,
2386 .cannot_use_reasons = tx_data->cannot_use_reasons,
2387 };
2388 const u8 *mbssid_index_ie;
2389 const struct element *elem, *sub;
2390 u8 *new_ie, *profile;
2391 u64 seen_indices = 0;
2392 struct cfg80211_bss *bss;
2393
2394 if (!source_bss)
2395 return;
2396 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2397 tx_data->ie, tx_data->ielen))
2398 return;
2399 if (!wiphy->support_mbssid)
2400 return;
2401 if (wiphy->support_only_he_mbssid &&
2402 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2403 tx_data->ie, tx_data->ielen))
2404 return;
2405
2406 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2407 if (!new_ie)
2408 return;
2409
2410 profile = kmalloc(tx_data->ielen, gfp);
2411 if (!profile)
2412 goto out;
2413
2414 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2415 tx_data->ie, tx_data->ielen) {
2416 if (elem->datalen < 4)
2417 continue;
2418 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2419 continue;
2420 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2421 u8 profile_len;
2422
2423 if (sub->id != 0 || sub->datalen < 4) {
2424 /* not a valid BSS profile */
2425 continue;
2426 }
2427
2428 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2429 sub->data[1] != 2) {
2430 /* The first element within the Nontransmitted
2431 * BSSID Profile is not the Nontransmitted
2432 * BSSID Capability element.
2433 */
2434 continue;
2435 }
2436
2437 memset(profile, 0, tx_data->ielen);
2438 profile_len = cfg80211_merge_profile(tx_data->ie,
2439 tx_data->ielen,
2440 elem,
2441 sub,
2442 profile,
2443 tx_data->ielen);
2444
2445 /* found a Nontransmitted BSSID Profile */
2446 mbssid_index_ie = cfg80211_find_ie
2447 (WLAN_EID_MULTI_BSSID_IDX,
2448 profile, profile_len);
2449 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2450 mbssid_index_ie[2] == 0 ||
2451 mbssid_index_ie[2] > 46) {
2452 /* No valid Multiple BSSID-Index element */
2453 continue;
2454 }
2455
2456 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2457 /* We don't support legacy split of a profile */
2458 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2459 mbssid_index_ie[2]);
2460
2461 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2462
2463 data.bssid_index = mbssid_index_ie[2];
2464 data.max_bssid_indicator = elem->data[0];
2465
2466 cfg80211_gen_new_bssid(tx_data->bssid,
2467 data.max_bssid_indicator,
2468 data.bssid_index,
2469 data.bssid);
2470
2471 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2472 data.ie = new_ie;
2473 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2474 tx_data->ielen,
2475 profile,
2476 profile_len,
2477 new_ie,
2478 IEEE80211_MAX_DATA_LEN);
2479 if (!data.ielen)
2480 continue;
2481
2482 data.capability = get_unaligned_le16(profile + 2);
2483 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2484 if (!bss)
2485 break;
2486 cfg80211_put_bss(wiphy, bss);
2487 }
2488 }
2489
2490out:
2491 kfree(new_ie);
2492 kfree(profile);
2493}
2494
2495ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2496 size_t ieslen, u8 *data, size_t data_len,
2497 u8 frag_id)
2498{
2499 const struct element *next;
2500 ssize_t copied;
2501 u8 elem_datalen;
2502
2503 if (!elem)
2504 return -EINVAL;
2505
2506 /* elem might be invalid after the memmove */
2507 next = (void *)(elem->data + elem->datalen);
2508 elem_datalen = elem->datalen;
2509
2510 if (elem->id == WLAN_EID_EXTENSION) {
2511 copied = elem->datalen - 1;
2512
2513 if (data) {
2514 if (copied > data_len)
2515 return -ENOSPC;
2516
2517 memmove(data, elem->data + 1, copied);
2518 }
2519 } else {
2520 copied = elem->datalen;
2521
2522 if (data) {
2523 if (copied > data_len)
2524 return -ENOSPC;
2525
2526 memmove(data, elem->data, copied);
2527 }
2528 }
2529
2530 /* Fragmented elements must have 255 bytes */
2531 if (elem_datalen < 255)
2532 return copied;
2533
2534 for (elem = next;
2535 elem->data < ies + ieslen &&
2536 elem->data + elem->datalen <= ies + ieslen;
2537 elem = next) {
2538 /* elem might be invalid after the memmove */
2539 next = (void *)(elem->data + elem->datalen);
2540
2541 if (elem->id != frag_id)
2542 break;
2543
2544 elem_datalen = elem->datalen;
2545
2546 if (data) {
2547 if (copied + elem_datalen > data_len)
2548 return -ENOSPC;
2549
2550 memmove(data + copied, elem->data, elem_datalen);
2551 }
2552
2553 copied += elem_datalen;
2554
2555 /* Only the last fragment may be short */
2556 if (elem_datalen != 255)
2557 break;
2558 }
2559
2560 return copied;
2561}
2562EXPORT_SYMBOL(cfg80211_defragment_element);
2563
2564struct cfg80211_mle {
2565 struct ieee80211_multi_link_elem *mle;
2566 struct ieee80211_mle_per_sta_profile
2567 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2568 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2569
2570 u8 data[];
2571};
2572
2573static struct cfg80211_mle *
2574cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2575 gfp_t gfp)
2576{
2577 const struct element *elem;
2578 struct cfg80211_mle *res;
2579 size_t buf_len;
2580 ssize_t mle_len;
2581 u8 common_size, idx;
2582
2583 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2584 return NULL;
2585
2586 /* Required length for first defragmentation */
2587 buf_len = mle->datalen - 1;
2588 for_each_element(elem, mle->data + mle->datalen,
2589 ielen - sizeof(*mle) + mle->datalen) {
2590 if (elem->id != WLAN_EID_FRAGMENT)
2591 break;
2592
2593 buf_len += elem->datalen;
2594 }
2595
2596 res = kzalloc(struct_size(res, data, buf_len), gfp);
2597 if (!res)
2598 return NULL;
2599
2600 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2601 res->data, buf_len,
2602 WLAN_EID_FRAGMENT);
2603 if (mle_len < 0)
2604 goto error;
2605
2606 res->mle = (void *)res->data;
2607
2608 /* Find the sub-element area in the buffer */
2609 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2610 ie = res->data + common_size;
2611 ielen = mle_len - common_size;
2612
2613 idx = 0;
2614 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2615 ie, ielen) {
2616 res->sta_prof[idx] = (void *)elem->data;
2617 res->sta_prof_len[idx] = elem->datalen;
2618
2619 idx++;
2620 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2621 break;
2622 }
2623 if (!for_each_element_completed(elem, ie, ielen))
2624 goto error;
2625
2626 /* Defragment sta_info in-place */
2627 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2628 idx++) {
2629 if (res->sta_prof_len[idx] < 255)
2630 continue;
2631
2632 elem = (void *)res->sta_prof[idx] - 2;
2633
2634 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2635 res->sta_prof[idx + 1])
2636 buf_len = (u8 *)res->sta_prof[idx + 1] -
2637 (u8 *)res->sta_prof[idx];
2638 else
2639 buf_len = ielen + ie - (u8 *)elem;
2640
2641 res->sta_prof_len[idx] =
2642 cfg80211_defragment_element(elem,
2643 (u8 *)elem, buf_len,
2644 (u8 *)res->sta_prof[idx],
2645 buf_len,
2646 IEEE80211_MLE_SUBELEM_FRAGMENT);
2647 if (res->sta_prof_len[idx] < 0)
2648 goto error;
2649 }
2650
2651 return res;
2652
2653error:
2654 kfree(res);
2655 return NULL;
2656}
2657
2658struct tbtt_info_iter_data {
2659 const struct ieee80211_neighbor_ap_info *ap_info;
2660 u8 param_ch_count;
2661 u32 use_for;
2662 u8 mld_id, link_id;
2663 bool non_tx;
2664};
2665
2666static enum cfg80211_rnr_iter_ret
2667cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2668 const struct ieee80211_neighbor_ap_info *info,
2669 const u8 *tbtt_info, u8 tbtt_info_len)
2670{
2671 const struct ieee80211_rnr_mld_params *mld_params;
2672 struct tbtt_info_iter_data *data = _data;
2673 u8 link_id;
2674 bool non_tx = false;
2675
2676 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2677 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2678 mld_params)) {
2679 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2680 (void *)tbtt_info;
2681
2682 non_tx = (tbtt_info_ge_11->bss_params &
2683 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2684 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2685 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2686 mld_params = &tbtt_info_ge_11->mld_params;
2687 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2688 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2689 mld_params = (void *)tbtt_info;
2690 else
2691 return RNR_ITER_CONTINUE;
2692
2693 link_id = le16_get_bits(mld_params->params,
2694 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2695
2696 if (data->mld_id != mld_params->mld_id)
2697 return RNR_ITER_CONTINUE;
2698
2699 if (data->link_id != link_id)
2700 return RNR_ITER_CONTINUE;
2701
2702 data->ap_info = info;
2703 data->param_ch_count =
2704 le16_get_bits(mld_params->params,
2705 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2706 data->non_tx = non_tx;
2707
2708 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2709 data->use_for = NL80211_BSS_USE_FOR_ALL;
2710 else
2711 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2712 return RNR_ITER_BREAK;
2713}
2714
2715static u8
2716cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2717 const struct ieee80211_neighbor_ap_info **ap_info,
2718 u8 *param_ch_count, bool *non_tx)
2719{
2720 struct tbtt_info_iter_data data = {
2721 .mld_id = mld_id,
2722 .link_id = link_id,
2723 };
2724
2725 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2726
2727 *ap_info = data.ap_info;
2728 *param_ch_count = data.param_ch_count;
2729 *non_tx = data.non_tx;
2730
2731 return data.use_for;
2732}
2733
2734static struct element *
2735cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2736 bool same_mld, u8 link_id, u8 bss_change_count,
2737 gfp_t gfp)
2738{
2739 const struct cfg80211_bss_ies *ies;
2740 struct ieee80211_neighbor_ap_info ap_info;
2741 struct ieee80211_tbtt_info_ge_11 tbtt_info;
2742 u32 short_ssid;
2743 const struct element *elem;
2744 struct element *res;
2745
2746 /*
2747 * We only generate the RNR to permit ML lookups. For that we do not
2748 * need an entry for the corresponding transmitting BSS, lets just skip
2749 * it even though it would be easy to add.
2750 */
2751 if (!same_mld)
2752 return NULL;
2753
2754 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2755 rcu_read_lock();
2756 ies = rcu_dereference(source_bss->ies);
2757
2758 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2759 ap_info.tbtt_info_hdr =
2760 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2761 IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2762 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2763
2764 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2765
2766 /* operating class */
2767 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2768 ies->data, ies->len);
2769 if (elem && elem->datalen >= 1) {
2770 ap_info.op_class = elem->data[0];
2771 } else {
2772 struct cfg80211_chan_def chandef;
2773
2774 /* The AP is not providing us with anything to work with. So
2775 * make up a somewhat reasonable operating class, but don't
2776 * bother with it too much as no one will ever use the
2777 * information.
2778 */
2779 cfg80211_chandef_create(&chandef, source_bss->channel,
2780 NL80211_CHAN_NO_HT);
2781
2782 if (!ieee80211_chandef_to_operating_class(&chandef,
2783 &ap_info.op_class))
2784 goto out_unlock;
2785 }
2786
2787 /* Just set TBTT offset and PSD 20 to invalid/unknown */
2788 tbtt_info.tbtt_offset = 255;
2789 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2790
2791 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2792 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2793 goto out_unlock;
2794
2795 rcu_read_unlock();
2796
2797 tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2798
2799 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2800
2801 if (is_mbssid) {
2802 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2803 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2804 }
2805
2806 tbtt_info.mld_params.mld_id = 0;
2807 tbtt_info.mld_params.params =
2808 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2809 le16_encode_bits(bss_change_count,
2810 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2811
2812 res = kzalloc(struct_size(res, data,
2813 sizeof(ap_info) + ap_info.tbtt_info_len),
2814 gfp);
2815 if (!res)
2816 return NULL;
2817
2818 /* Copy the data */
2819 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2820 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2821 memcpy(res->data, &ap_info, sizeof(ap_info));
2822 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2823
2824 return res;
2825
2826out_unlock:
2827 rcu_read_unlock();
2828 return NULL;
2829}
2830
2831static void
2832cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2833 struct cfg80211_inform_single_bss_data *tx_data,
2834 struct cfg80211_bss *source_bss,
2835 const struct element *elem,
2836 gfp_t gfp)
2837{
2838 struct cfg80211_inform_single_bss_data data = {
2839 .drv_data = tx_data->drv_data,
2840 .ftype = tx_data->ftype,
2841 .source_bss = source_bss,
2842 .bss_source = BSS_SOURCE_STA_PROFILE,
2843 };
2844 struct element *reporter_rnr = NULL;
2845 struct ieee80211_multi_link_elem *ml_elem;
2846 struct cfg80211_mle *mle;
2847 u16 control;
2848 u8 ml_common_len;
2849 u8 *new_ie = NULL;
2850 struct cfg80211_bss *bss;
2851 u8 mld_id, reporter_link_id, bss_change_count;
2852 u16 seen_links = 0;
2853 u8 i;
2854
2855 if (!ieee80211_mle_type_ok(elem->data + 1,
2856 IEEE80211_ML_CONTROL_TYPE_BASIC,
2857 elem->datalen - 1))
2858 return;
2859
2860 ml_elem = (void *)(elem->data + 1);
2861 control = le16_to_cpu(ml_elem->control);
2862 ml_common_len = ml_elem->variable[0];
2863
2864 /* Must be present when transmitted by an AP (in a probe response) */
2865 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2866 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2867 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2868 return;
2869
2870 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2871 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2872
2873 /*
2874 * The MLD ID of the reporting AP is always zero. It is set if the AP
2875 * is part of an MBSSID set and will be non-zero for ML Elements
2876 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2877 * Draft P802.11be_D3.2, 35.3.4.2)
2878 */
2879 mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2880
2881 /* Fully defrag the ML element for sta information/profile iteration */
2882 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2883 if (!mle)
2884 return;
2885
2886 /* No point in doing anything if there is no per-STA profile */
2887 if (!mle->sta_prof[0])
2888 goto out;
2889
2890 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2891 if (!new_ie)
2892 goto out;
2893
2894 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2895 u16_get_bits(control,
2896 IEEE80211_MLC_BASIC_PRES_MLD_ID),
2897 mld_id == 0, reporter_link_id,
2898 bss_change_count,
2899 gfp);
2900
2901 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2902 const struct ieee80211_neighbor_ap_info *ap_info;
2903 enum nl80211_band band;
2904 u32 freq;
2905 const u8 *profile;
2906 ssize_t profile_len;
2907 u8 param_ch_count;
2908 u8 link_id, use_for;
2909 bool non_tx;
2910
2911 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2912 mle->sta_prof_len[i]))
2913 continue;
2914
2915 control = le16_to_cpu(mle->sta_prof[i]->control);
2916
2917 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2918 continue;
2919
2920 link_id = u16_get_bits(control,
2921 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2922 if (seen_links & BIT(link_id))
2923 break;
2924 seen_links |= BIT(link_id);
2925
2926 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2927 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2928 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2929 continue;
2930
2931 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2932 data.beacon_interval =
2933 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2934 data.tsf = tx_data->tsf +
2935 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2936
2937 /* sta_info_len counts itself */
2938 profile = mle->sta_prof[i]->variable +
2939 mle->sta_prof[i]->sta_info_len - 1;
2940 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2941 profile;
2942
2943 if (profile_len < 2)
2944 continue;
2945
2946 data.capability = get_unaligned_le16(profile);
2947 profile += 2;
2948 profile_len -= 2;
2949
2950 /* Find in RNR to look up channel information */
2951 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
2952 tx_data->ielen,
2953 mld_id, link_id,
2954 &ap_info,
2955 ¶m_ch_count,
2956 &non_tx);
2957 if (!use_for)
2958 continue;
2959
2960 /*
2961 * As of 802.11be_D5.0, the specification does not give us any
2962 * way of discovering both the MaxBSSID and the Multiple-BSSID
2963 * Index. It does seem like the Multiple-BSSID Index element
2964 * may be provided, but section 9.4.2.45 explicitly forbids
2965 * including a Multiple-BSSID Element (in this case without any
2966 * subelements).
2967 * Without both pieces of information we cannot calculate the
2968 * reference BSSID, so simply ignore the BSS.
2969 */
2970 if (non_tx)
2971 continue;
2972
2973 /* We could sanity check the BSSID is included */
2974
2975 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2976 &band))
2977 continue;
2978
2979 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2980 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2981
2982 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2983 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2984 use_for = 0;
2985 data.cannot_use_reasons =
2986 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2987 }
2988 data.use_for = use_for;
2989
2990 /* Generate new elements */
2991 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2992 data.ie = new_ie;
2993 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2994 profile, profile_len,
2995 new_ie,
2996 IEEE80211_MAX_DATA_LEN);
2997 if (!data.ielen)
2998 continue;
2999
3000 /* The generated elements do not contain:
3001 * - Basic ML element
3002 * - A TBTT entry in the RNR for the transmitting AP
3003 *
3004 * This information is needed both internally and in userspace
3005 * as such, we should append it here.
3006 */
3007 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3008 IEEE80211_MAX_DATA_LEN)
3009 continue;
3010
3011 /* Copy the Basic Multi-Link element including the common
3012 * information, and then fix up the link ID and BSS param
3013 * change count.
3014 * Note that the ML element length has been verified and we
3015 * also checked that it contains the link ID.
3016 */
3017 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3018 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3019 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3020 memcpy(new_ie + data.ielen, ml_elem,
3021 sizeof(*ml_elem) + ml_common_len);
3022
3023 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3024 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3025 param_ch_count;
3026
3027 data.ielen += sizeof(*ml_elem) + ml_common_len;
3028
3029 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3030 if (data.ielen + sizeof(struct element) +
3031 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3032 continue;
3033
3034 memcpy(new_ie + data.ielen, reporter_rnr,
3035 sizeof(struct element) + reporter_rnr->datalen);
3036 data.ielen += sizeof(struct element) +
3037 reporter_rnr->datalen;
3038 }
3039
3040 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3041 if (!bss)
3042 break;
3043 cfg80211_put_bss(wiphy, bss);
3044 }
3045
3046out:
3047 kfree(reporter_rnr);
3048 kfree(new_ie);
3049 kfree(mle);
3050}
3051
3052static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3053 struct cfg80211_inform_single_bss_data *tx_data,
3054 struct cfg80211_bss *source_bss,
3055 gfp_t gfp)
3056{
3057 const struct element *elem;
3058
3059 if (!source_bss)
3060 return;
3061
3062 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3063 return;
3064
3065 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3066 tx_data->ie, tx_data->ielen)
3067 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3068 elem, gfp);
3069}
3070
3071struct cfg80211_bss *
3072cfg80211_inform_bss_data(struct wiphy *wiphy,
3073 struct cfg80211_inform_bss *data,
3074 enum cfg80211_bss_frame_type ftype,
3075 const u8 *bssid, u64 tsf, u16 capability,
3076 u16 beacon_interval, const u8 *ie, size_t ielen,
3077 gfp_t gfp)
3078{
3079 struct cfg80211_inform_single_bss_data inform_data = {
3080 .drv_data = data,
3081 .ftype = ftype,
3082 .tsf = tsf,
3083 .capability = capability,
3084 .beacon_interval = beacon_interval,
3085 .ie = ie,
3086 .ielen = ielen,
3087 .use_for = data->restrict_use ?
3088 data->use_for :
3089 NL80211_BSS_USE_FOR_ALL,
3090 .cannot_use_reasons = data->cannot_use_reasons,
3091 };
3092 struct cfg80211_bss *res;
3093
3094 memcpy(inform_data.bssid, bssid, ETH_ALEN);
3095
3096 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3097 if (!res)
3098 return NULL;
3099
3100 /* don't do any further MBSSID/ML handling for S1G */
3101 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3102 return res;
3103
3104 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3105
3106 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3107
3108 return res;
3109}
3110EXPORT_SYMBOL(cfg80211_inform_bss_data);
3111
3112struct cfg80211_bss *
3113cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3114 struct cfg80211_inform_bss *data,
3115 struct ieee80211_mgmt *mgmt, size_t len,
3116 gfp_t gfp)
3117{
3118 size_t min_hdr_len = offsetof(struct ieee80211_mgmt,
3119 u.probe_resp.variable);
3120 struct ieee80211_ext *ext = NULL;
3121 enum cfg80211_bss_frame_type ftype;
3122 u16 beacon_interval;
3123 const u8 *bssid;
3124 u16 capability;
3125 const u8 *ie;
3126 size_t ielen;
3127 u64 tsf;
3128
3129 if (WARN_ON(!mgmt))
3130 return NULL;
3131
3132 if (WARN_ON(!wiphy))
3133 return NULL;
3134
3135 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3136 offsetof(struct ieee80211_mgmt, u.beacon.variable));
3137
3138 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3139
3140 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3141 ext = (void *) mgmt;
3142 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
3143 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3144 min_hdr_len = offsetof(struct ieee80211_ext,
3145 u.s1g_short_beacon.variable);
3146 }
3147
3148 if (WARN_ON(len < min_hdr_len))
3149 return NULL;
3150
3151 ielen = len - min_hdr_len;
3152 ie = mgmt->u.probe_resp.variable;
3153 if (ext) {
3154 const struct ieee80211_s1g_bcn_compat_ie *compat;
3155 const struct element *elem;
3156
3157 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3158 ie = ext->u.s1g_short_beacon.variable;
3159 else
3160 ie = ext->u.s1g_beacon.variable;
3161
3162 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3163 if (!elem)
3164 return NULL;
3165 if (elem->datalen < sizeof(*compat))
3166 return NULL;
3167 compat = (void *)elem->data;
3168 bssid = ext->u.s1g_beacon.sa;
3169 capability = le16_to_cpu(compat->compat_info);
3170 beacon_interval = le16_to_cpu(compat->beacon_int);
3171 } else {
3172 bssid = mgmt->bssid;
3173 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3174 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3175 }
3176
3177 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3178
3179 if (ieee80211_is_probe_resp(mgmt->frame_control))
3180 ftype = CFG80211_BSS_FTYPE_PRESP;
3181 else if (ext)
3182 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3183 else
3184 ftype = CFG80211_BSS_FTYPE_BEACON;
3185
3186 return cfg80211_inform_bss_data(wiphy, data, ftype,
3187 bssid, tsf, capability,
3188 beacon_interval, ie, ielen,
3189 gfp);
3190}
3191EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3192
3193void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3194{
3195 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3196
3197 if (!pub)
3198 return;
3199
3200 spin_lock_bh(&rdev->bss_lock);
3201 bss_ref_get(rdev, bss_from_pub(pub));
3202 spin_unlock_bh(&rdev->bss_lock);
3203}
3204EXPORT_SYMBOL(cfg80211_ref_bss);
3205
3206void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3207{
3208 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3209
3210 if (!pub)
3211 return;
3212
3213 spin_lock_bh(&rdev->bss_lock);
3214 bss_ref_put(rdev, bss_from_pub(pub));
3215 spin_unlock_bh(&rdev->bss_lock);
3216}
3217EXPORT_SYMBOL(cfg80211_put_bss);
3218
3219void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3220{
3221 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3222 struct cfg80211_internal_bss *bss, *tmp1;
3223 struct cfg80211_bss *nontrans_bss, *tmp;
3224
3225 if (WARN_ON(!pub))
3226 return;
3227
3228 bss = bss_from_pub(pub);
3229
3230 spin_lock_bh(&rdev->bss_lock);
3231 if (list_empty(&bss->list))
3232 goto out;
3233
3234 list_for_each_entry_safe(nontrans_bss, tmp,
3235 &pub->nontrans_list,
3236 nontrans_list) {
3237 tmp1 = bss_from_pub(nontrans_bss);
3238 if (__cfg80211_unlink_bss(rdev, tmp1))
3239 rdev->bss_generation++;
3240 }
3241
3242 if (__cfg80211_unlink_bss(rdev, bss))
3243 rdev->bss_generation++;
3244out:
3245 spin_unlock_bh(&rdev->bss_lock);
3246}
3247EXPORT_SYMBOL(cfg80211_unlink_bss);
3248
3249void cfg80211_bss_iter(struct wiphy *wiphy,
3250 struct cfg80211_chan_def *chandef,
3251 void (*iter)(struct wiphy *wiphy,
3252 struct cfg80211_bss *bss,
3253 void *data),
3254 void *iter_data)
3255{
3256 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3257 struct cfg80211_internal_bss *bss;
3258
3259 spin_lock_bh(&rdev->bss_lock);
3260
3261 list_for_each_entry(bss, &rdev->bss_list, list) {
3262 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3263 false))
3264 iter(wiphy, &bss->pub, iter_data);
3265 }
3266
3267 spin_unlock_bh(&rdev->bss_lock);
3268}
3269EXPORT_SYMBOL(cfg80211_bss_iter);
3270
3271void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3272 unsigned int link_id,
3273 struct ieee80211_channel *chan)
3274{
3275 struct wiphy *wiphy = wdev->wiphy;
3276 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3277 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3278 struct cfg80211_internal_bss *new = NULL;
3279 struct cfg80211_internal_bss *bss;
3280 struct cfg80211_bss *nontrans_bss;
3281 struct cfg80211_bss *tmp;
3282
3283 spin_lock_bh(&rdev->bss_lock);
3284
3285 /*
3286 * Some APs use CSA also for bandwidth changes, i.e., without actually
3287 * changing the control channel, so no need to update in such a case.
3288 */
3289 if (cbss->pub.channel == chan)
3290 goto done;
3291
3292 /* use transmitting bss */
3293 if (cbss->pub.transmitted_bss)
3294 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3295
3296 cbss->pub.channel = chan;
3297
3298 list_for_each_entry(bss, &rdev->bss_list, list) {
3299 if (!cfg80211_bss_type_match(bss->pub.capability,
3300 bss->pub.channel->band,
3301 wdev->conn_bss_type))
3302 continue;
3303
3304 if (bss == cbss)
3305 continue;
3306
3307 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3308 new = bss;
3309 break;
3310 }
3311 }
3312
3313 if (new) {
3314 /* to save time, update IEs for transmitting bss only */
3315 cfg80211_update_known_bss(rdev, cbss, new, false);
3316 new->pub.proberesp_ies = NULL;
3317 new->pub.beacon_ies = NULL;
3318
3319 list_for_each_entry_safe(nontrans_bss, tmp,
3320 &new->pub.nontrans_list,
3321 nontrans_list) {
3322 bss = bss_from_pub(nontrans_bss);
3323 if (__cfg80211_unlink_bss(rdev, bss))
3324 rdev->bss_generation++;
3325 }
3326
3327 WARN_ON(atomic_read(&new->hold));
3328 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3329 rdev->bss_generation++;
3330 }
3331
3332 rb_erase(&cbss->rbn, &rdev->bss_tree);
3333 rb_insert_bss(rdev, cbss);
3334 rdev->bss_generation++;
3335
3336 list_for_each_entry_safe(nontrans_bss, tmp,
3337 &cbss->pub.nontrans_list,
3338 nontrans_list) {
3339 bss = bss_from_pub(nontrans_bss);
3340 bss->pub.channel = chan;
3341 rb_erase(&bss->rbn, &rdev->bss_tree);
3342 rb_insert_bss(rdev, bss);
3343 rdev->bss_generation++;
3344 }
3345
3346done:
3347 spin_unlock_bh(&rdev->bss_lock);
3348}
3349
3350#ifdef CONFIG_CFG80211_WEXT
3351static struct cfg80211_registered_device *
3352cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3353{
3354 struct cfg80211_registered_device *rdev;
3355 struct net_device *dev;
3356
3357 ASSERT_RTNL();
3358
3359 dev = dev_get_by_index(net, ifindex);
3360 if (!dev)
3361 return ERR_PTR(-ENODEV);
3362 if (dev->ieee80211_ptr)
3363 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3364 else
3365 rdev = ERR_PTR(-ENODEV);
3366 dev_put(dev);
3367 return rdev;
3368}
3369
3370int cfg80211_wext_siwscan(struct net_device *dev,
3371 struct iw_request_info *info,
3372 union iwreq_data *wrqu, char *extra)
3373{
3374 struct cfg80211_registered_device *rdev;
3375 struct wiphy *wiphy;
3376 struct iw_scan_req *wreq = NULL;
3377 struct cfg80211_scan_request *creq;
3378 int i, err, n_channels = 0;
3379 enum nl80211_band band;
3380
3381 if (!netif_running(dev))
3382 return -ENETDOWN;
3383
3384 if (wrqu->data.length == sizeof(struct iw_scan_req))
3385 wreq = (struct iw_scan_req *)extra;
3386
3387 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3388
3389 if (IS_ERR(rdev))
3390 return PTR_ERR(rdev);
3391
3392 if (rdev->scan_req || rdev->scan_msg)
3393 return -EBUSY;
3394
3395 wiphy = &rdev->wiphy;
3396
3397 /* Determine number of channels, needed to allocate creq */
3398 if (wreq && wreq->num_channels)
3399 n_channels = wreq->num_channels;
3400 else
3401 n_channels = ieee80211_get_num_supported_channels(wiphy);
3402
3403 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3404 n_channels * sizeof(void *),
3405 GFP_ATOMIC);
3406 if (!creq)
3407 return -ENOMEM;
3408
3409 creq->wiphy = wiphy;
3410 creq->wdev = dev->ieee80211_ptr;
3411 /* SSIDs come after channels */
3412 creq->ssids = (void *)&creq->channels[n_channels];
3413 creq->n_channels = n_channels;
3414 creq->n_ssids = 1;
3415 creq->scan_start = jiffies;
3416
3417 /* translate "Scan on frequencies" request */
3418 i = 0;
3419 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3420 int j;
3421
3422 if (!wiphy->bands[band])
3423 continue;
3424
3425 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3426 /* ignore disabled channels */
3427 if (wiphy->bands[band]->channels[j].flags &
3428 IEEE80211_CHAN_DISABLED)
3429 continue;
3430
3431 /* If we have a wireless request structure and the
3432 * wireless request specifies frequencies, then search
3433 * for the matching hardware channel.
3434 */
3435 if (wreq && wreq->num_channels) {
3436 int k;
3437 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3438 for (k = 0; k < wreq->num_channels; k++) {
3439 struct iw_freq *freq =
3440 &wreq->channel_list[k];
3441 int wext_freq =
3442 cfg80211_wext_freq(freq);
3443
3444 if (wext_freq == wiphy_freq)
3445 goto wext_freq_found;
3446 }
3447 goto wext_freq_not_found;
3448 }
3449
3450 wext_freq_found:
3451 creq->channels[i] = &wiphy->bands[band]->channels[j];
3452 i++;
3453 wext_freq_not_found: ;
3454 }
3455 }
3456 /* No channels found? */
3457 if (!i) {
3458 err = -EINVAL;
3459 goto out;
3460 }
3461
3462 /* Set real number of channels specified in creq->channels[] */
3463 creq->n_channels = i;
3464
3465 /* translate "Scan for SSID" request */
3466 if (wreq) {
3467 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3468 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3469 err = -EINVAL;
3470 goto out;
3471 }
3472 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3473 creq->ssids[0].ssid_len = wreq->essid_len;
3474 }
3475 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3476 creq->n_ssids = 0;
3477 }
3478
3479 for (i = 0; i < NUM_NL80211_BANDS; i++)
3480 if (wiphy->bands[i])
3481 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3482
3483 eth_broadcast_addr(creq->bssid);
3484
3485 wiphy_lock(&rdev->wiphy);
3486
3487 rdev->scan_req = creq;
3488 err = rdev_scan(rdev, creq);
3489 if (err) {
3490 rdev->scan_req = NULL;
3491 /* creq will be freed below */
3492 } else {
3493 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3494 /* creq now owned by driver */
3495 creq = NULL;
3496 dev_hold(dev);
3497 }
3498 wiphy_unlock(&rdev->wiphy);
3499 out:
3500 kfree(creq);
3501 return err;
3502}
3503EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3504
3505static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3506 const struct cfg80211_bss_ies *ies,
3507 char *current_ev, char *end_buf)
3508{
3509 const u8 *pos, *end, *next;
3510 struct iw_event iwe;
3511
3512 if (!ies)
3513 return current_ev;
3514
3515 /*
3516 * If needed, fragment the IEs buffer (at IE boundaries) into short
3517 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3518 */
3519 pos = ies->data;
3520 end = pos + ies->len;
3521
3522 while (end - pos > IW_GENERIC_IE_MAX) {
3523 next = pos + 2 + pos[1];
3524 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3525 next = next + 2 + next[1];
3526
3527 memset(&iwe, 0, sizeof(iwe));
3528 iwe.cmd = IWEVGENIE;
3529 iwe.u.data.length = next - pos;
3530 current_ev = iwe_stream_add_point_check(info, current_ev,
3531 end_buf, &iwe,
3532 (void *)pos);
3533 if (IS_ERR(current_ev))
3534 return current_ev;
3535 pos = next;
3536 }
3537
3538 if (end > pos) {
3539 memset(&iwe, 0, sizeof(iwe));
3540 iwe.cmd = IWEVGENIE;
3541 iwe.u.data.length = end - pos;
3542 current_ev = iwe_stream_add_point_check(info, current_ev,
3543 end_buf, &iwe,
3544 (void *)pos);
3545 if (IS_ERR(current_ev))
3546 return current_ev;
3547 }
3548
3549 return current_ev;
3550}
3551
3552static char *
3553ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3554 struct cfg80211_internal_bss *bss, char *current_ev,
3555 char *end_buf)
3556{
3557 const struct cfg80211_bss_ies *ies;
3558 struct iw_event iwe;
3559 const u8 *ie;
3560 u8 buf[50];
3561 u8 *cfg, *p, *tmp;
3562 int rem, i, sig;
3563 bool ismesh = false;
3564
3565 memset(&iwe, 0, sizeof(iwe));
3566 iwe.cmd = SIOCGIWAP;
3567 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3568 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3569 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3570 IW_EV_ADDR_LEN);
3571 if (IS_ERR(current_ev))
3572 return current_ev;
3573
3574 memset(&iwe, 0, sizeof(iwe));
3575 iwe.cmd = SIOCGIWFREQ;
3576 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3577 iwe.u.freq.e = 0;
3578 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3579 IW_EV_FREQ_LEN);
3580 if (IS_ERR(current_ev))
3581 return current_ev;
3582
3583 memset(&iwe, 0, sizeof(iwe));
3584 iwe.cmd = SIOCGIWFREQ;
3585 iwe.u.freq.m = bss->pub.channel->center_freq;
3586 iwe.u.freq.e = 6;
3587 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3588 IW_EV_FREQ_LEN);
3589 if (IS_ERR(current_ev))
3590 return current_ev;
3591
3592 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3593 memset(&iwe, 0, sizeof(iwe));
3594 iwe.cmd = IWEVQUAL;
3595 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3596 IW_QUAL_NOISE_INVALID |
3597 IW_QUAL_QUAL_UPDATED;
3598 switch (wiphy->signal_type) {
3599 case CFG80211_SIGNAL_TYPE_MBM:
3600 sig = bss->pub.signal / 100;
3601 iwe.u.qual.level = sig;
3602 iwe.u.qual.updated |= IW_QUAL_DBM;
3603 if (sig < -110) /* rather bad */
3604 sig = -110;
3605 else if (sig > -40) /* perfect */
3606 sig = -40;
3607 /* will give a range of 0 .. 70 */
3608 iwe.u.qual.qual = sig + 110;
3609 break;
3610 case CFG80211_SIGNAL_TYPE_UNSPEC:
3611 iwe.u.qual.level = bss->pub.signal;
3612 /* will give range 0 .. 100 */
3613 iwe.u.qual.qual = bss->pub.signal;
3614 break;
3615 default:
3616 /* not reached */
3617 break;
3618 }
3619 current_ev = iwe_stream_add_event_check(info, current_ev,
3620 end_buf, &iwe,
3621 IW_EV_QUAL_LEN);
3622 if (IS_ERR(current_ev))
3623 return current_ev;
3624 }
3625
3626 memset(&iwe, 0, sizeof(iwe));
3627 iwe.cmd = SIOCGIWENCODE;
3628 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3629 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3630 else
3631 iwe.u.data.flags = IW_ENCODE_DISABLED;
3632 iwe.u.data.length = 0;
3633 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3634 &iwe, "");
3635 if (IS_ERR(current_ev))
3636 return current_ev;
3637
3638 rcu_read_lock();
3639 ies = rcu_dereference(bss->pub.ies);
3640 rem = ies->len;
3641 ie = ies->data;
3642
3643 while (rem >= 2) {
3644 /* invalid data */
3645 if (ie[1] > rem - 2)
3646 break;
3647
3648 switch (ie[0]) {
3649 case WLAN_EID_SSID:
3650 memset(&iwe, 0, sizeof(iwe));
3651 iwe.cmd = SIOCGIWESSID;
3652 iwe.u.data.length = ie[1];
3653 iwe.u.data.flags = 1;
3654 current_ev = iwe_stream_add_point_check(info,
3655 current_ev,
3656 end_buf, &iwe,
3657 (u8 *)ie + 2);
3658 if (IS_ERR(current_ev))
3659 goto unlock;
3660 break;
3661 case WLAN_EID_MESH_ID:
3662 memset(&iwe, 0, sizeof(iwe));
3663 iwe.cmd = SIOCGIWESSID;
3664 iwe.u.data.length = ie[1];
3665 iwe.u.data.flags = 1;
3666 current_ev = iwe_stream_add_point_check(info,
3667 current_ev,
3668 end_buf, &iwe,
3669 (u8 *)ie + 2);
3670 if (IS_ERR(current_ev))
3671 goto unlock;
3672 break;
3673 case WLAN_EID_MESH_CONFIG:
3674 ismesh = true;
3675 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3676 break;
3677 cfg = (u8 *)ie + 2;
3678 memset(&iwe, 0, sizeof(iwe));
3679 iwe.cmd = IWEVCUSTOM;
3680 iwe.u.data.length = sprintf(buf,
3681 "Mesh Network Path Selection Protocol ID: 0x%02X",
3682 cfg[0]);
3683 current_ev = iwe_stream_add_point_check(info,
3684 current_ev,
3685 end_buf,
3686 &iwe, buf);
3687 if (IS_ERR(current_ev))
3688 goto unlock;
3689 iwe.u.data.length = sprintf(buf,
3690 "Path Selection Metric ID: 0x%02X",
3691 cfg[1]);
3692 current_ev = iwe_stream_add_point_check(info,
3693 current_ev,
3694 end_buf,
3695 &iwe, buf);
3696 if (IS_ERR(current_ev))
3697 goto unlock;
3698 iwe.u.data.length = sprintf(buf,
3699 "Congestion Control Mode ID: 0x%02X",
3700 cfg[2]);
3701 current_ev = iwe_stream_add_point_check(info,
3702 current_ev,
3703 end_buf,
3704 &iwe, buf);
3705 if (IS_ERR(current_ev))
3706 goto unlock;
3707 iwe.u.data.length = sprintf(buf,
3708 "Synchronization ID: 0x%02X",
3709 cfg[3]);
3710 current_ev = iwe_stream_add_point_check(info,
3711 current_ev,
3712 end_buf,
3713 &iwe, buf);
3714 if (IS_ERR(current_ev))
3715 goto unlock;
3716 iwe.u.data.length = sprintf(buf,
3717 "Authentication ID: 0x%02X",
3718 cfg[4]);
3719 current_ev = iwe_stream_add_point_check(info,
3720 current_ev,
3721 end_buf,
3722 &iwe, buf);
3723 if (IS_ERR(current_ev))
3724 goto unlock;
3725 iwe.u.data.length = sprintf(buf,
3726 "Formation Info: 0x%02X",
3727 cfg[5]);
3728 current_ev = iwe_stream_add_point_check(info,
3729 current_ev,
3730 end_buf,
3731 &iwe, buf);
3732 if (IS_ERR(current_ev))
3733 goto unlock;
3734 iwe.u.data.length = sprintf(buf,
3735 "Capabilities: 0x%02X",
3736 cfg[6]);
3737 current_ev = iwe_stream_add_point_check(info,
3738 current_ev,
3739 end_buf,
3740 &iwe, buf);
3741 if (IS_ERR(current_ev))
3742 goto unlock;
3743 break;
3744 case WLAN_EID_SUPP_RATES:
3745 case WLAN_EID_EXT_SUPP_RATES:
3746 /* display all supported rates in readable format */
3747 p = current_ev + iwe_stream_lcp_len(info);
3748
3749 memset(&iwe, 0, sizeof(iwe));
3750 iwe.cmd = SIOCGIWRATE;
3751 /* Those two flags are ignored... */
3752 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3753
3754 for (i = 0; i < ie[1]; i++) {
3755 iwe.u.bitrate.value =
3756 ((ie[i + 2] & 0x7f) * 500000);
3757 tmp = p;
3758 p = iwe_stream_add_value(info, current_ev, p,
3759 end_buf, &iwe,
3760 IW_EV_PARAM_LEN);
3761 if (p == tmp) {
3762 current_ev = ERR_PTR(-E2BIG);
3763 goto unlock;
3764 }
3765 }
3766 current_ev = p;
3767 break;
3768 }
3769 rem -= ie[1] + 2;
3770 ie += ie[1] + 2;
3771 }
3772
3773 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3774 ismesh) {
3775 memset(&iwe, 0, sizeof(iwe));
3776 iwe.cmd = SIOCGIWMODE;
3777 if (ismesh)
3778 iwe.u.mode = IW_MODE_MESH;
3779 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3780 iwe.u.mode = IW_MODE_MASTER;
3781 else
3782 iwe.u.mode = IW_MODE_ADHOC;
3783 current_ev = iwe_stream_add_event_check(info, current_ev,
3784 end_buf, &iwe,
3785 IW_EV_UINT_LEN);
3786 if (IS_ERR(current_ev))
3787 goto unlock;
3788 }
3789
3790 memset(&iwe, 0, sizeof(iwe));
3791 iwe.cmd = IWEVCUSTOM;
3792 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3793 (unsigned long long)(ies->tsf));
3794 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3795 &iwe, buf);
3796 if (IS_ERR(current_ev))
3797 goto unlock;
3798 memset(&iwe, 0, sizeof(iwe));
3799 iwe.cmd = IWEVCUSTOM;
3800 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3801 elapsed_jiffies_msecs(bss->ts));
3802 current_ev = iwe_stream_add_point_check(info, current_ev,
3803 end_buf, &iwe, buf);
3804 if (IS_ERR(current_ev))
3805 goto unlock;
3806
3807 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3808
3809 unlock:
3810 rcu_read_unlock();
3811 return current_ev;
3812}
3813
3814
3815static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3816 struct iw_request_info *info,
3817 char *buf, size_t len)
3818{
3819 char *current_ev = buf;
3820 char *end_buf = buf + len;
3821 struct cfg80211_internal_bss *bss;
3822 int err = 0;
3823
3824 spin_lock_bh(&rdev->bss_lock);
3825 cfg80211_bss_expire(rdev);
3826
3827 list_for_each_entry(bss, &rdev->bss_list, list) {
3828 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3829 err = -E2BIG;
3830 break;
3831 }
3832 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3833 current_ev, end_buf);
3834 if (IS_ERR(current_ev)) {
3835 err = PTR_ERR(current_ev);
3836 break;
3837 }
3838 }
3839 spin_unlock_bh(&rdev->bss_lock);
3840
3841 if (err)
3842 return err;
3843 return current_ev - buf;
3844}
3845
3846
3847int cfg80211_wext_giwscan(struct net_device *dev,
3848 struct iw_request_info *info,
3849 union iwreq_data *wrqu, char *extra)
3850{
3851 struct iw_point *data = &wrqu->data;
3852 struct cfg80211_registered_device *rdev;
3853 int res;
3854
3855 if (!netif_running(dev))
3856 return -ENETDOWN;
3857
3858 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3859
3860 if (IS_ERR(rdev))
3861 return PTR_ERR(rdev);
3862
3863 if (rdev->scan_req || rdev->scan_msg)
3864 return -EAGAIN;
3865
3866 res = ieee80211_scan_results(rdev, info, extra, data->length);
3867 data->length = 0;
3868 if (res >= 0) {
3869 data->length = res;
3870 res = 0;
3871 }
3872
3873 return res;
3874}
3875EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3876#endif