Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file contains helper code to handle channel
4 * settings and keeping track of what is possible at
5 * any point in time.
6 *
7 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
8 * Copyright 2013-2014 Intel Mobile Communications GmbH
9 * Copyright 2018-2024 Intel Corporation
10 */
11
12#include <linux/export.h>
13#include <linux/bitfield.h>
14#include <net/cfg80211.h>
15#include "core.h"
16#include "rdev-ops.h"
17
18static bool cfg80211_valid_60g_freq(u32 freq)
19{
20 return freq >= 58320 && freq <= 70200;
21}
22
23void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
24 struct ieee80211_channel *chan,
25 enum nl80211_channel_type chan_type)
26{
27 if (WARN_ON(!chan))
28 return;
29
30 *chandef = (struct cfg80211_chan_def) {
31 .chan = chan,
32 .freq1_offset = chan->freq_offset,
33 };
34
35 switch (chan_type) {
36 case NL80211_CHAN_NO_HT:
37 chandef->width = NL80211_CHAN_WIDTH_20_NOHT;
38 chandef->center_freq1 = chan->center_freq;
39 break;
40 case NL80211_CHAN_HT20:
41 chandef->width = NL80211_CHAN_WIDTH_20;
42 chandef->center_freq1 = chan->center_freq;
43 break;
44 case NL80211_CHAN_HT40PLUS:
45 chandef->width = NL80211_CHAN_WIDTH_40;
46 chandef->center_freq1 = chan->center_freq + 10;
47 break;
48 case NL80211_CHAN_HT40MINUS:
49 chandef->width = NL80211_CHAN_WIDTH_40;
50 chandef->center_freq1 = chan->center_freq - 10;
51 break;
52 default:
53 WARN_ON(1);
54 }
55}
56EXPORT_SYMBOL(cfg80211_chandef_create);
57
58struct cfg80211_per_bw_puncturing_values {
59 u8 len;
60 const u16 *valid_values;
61};
62
63static const u16 puncturing_values_80mhz[] = {
64 0x8, 0x4, 0x2, 0x1
65};
66
67static const u16 puncturing_values_160mhz[] = {
68 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3
69};
70
71static const u16 puncturing_values_320mhz[] = {
72 0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00,
73 0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f,
74 0x300f, 0xc0f, 0x30f, 0xcf, 0x3f
75};
76
77#define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \
78 { \
79 .len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \
80 .valid_values = puncturing_values_ ## _bw ## mhz \
81 }
82
83static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = {
84 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80),
85 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160),
86 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320)
87};
88
89static bool valid_puncturing_bitmap(const struct cfg80211_chan_def *chandef)
90{
91 u32 idx, i, start_freq, primary_center = chandef->chan->center_freq;
92
93 switch (chandef->width) {
94 case NL80211_CHAN_WIDTH_80:
95 idx = 0;
96 start_freq = chandef->center_freq1 - 40;
97 break;
98 case NL80211_CHAN_WIDTH_160:
99 idx = 1;
100 start_freq = chandef->center_freq1 - 80;
101 break;
102 case NL80211_CHAN_WIDTH_320:
103 idx = 2;
104 start_freq = chandef->center_freq1 - 160;
105 break;
106 default:
107 return chandef->punctured == 0;
108 }
109
110 if (!chandef->punctured)
111 return true;
112
113 /* check if primary channel is punctured */
114 if (chandef->punctured & (u16)BIT((primary_center - start_freq) / 20))
115 return false;
116
117 for (i = 0; i < per_bw_puncturing[idx].len; i++) {
118 if (per_bw_puncturing[idx].valid_values[i] == chandef->punctured)
119 return true;
120 }
121
122 return false;
123}
124
125static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef)
126{
127 int max_contiguous = 0;
128 int num_of_enabled = 0;
129 int contiguous = 0;
130 int i;
131
132 if (!chandef->edmg.channels || !chandef->edmg.bw_config)
133 return false;
134
135 if (!cfg80211_valid_60g_freq(chandef->chan->center_freq))
136 return false;
137
138 for (i = 0; i < 6; i++) {
139 if (chandef->edmg.channels & BIT(i)) {
140 contiguous++;
141 num_of_enabled++;
142 } else {
143 contiguous = 0;
144 }
145
146 max_contiguous = max(contiguous, max_contiguous);
147 }
148 /* basic verification of edmg configuration according to
149 * IEEE P802.11ay/D4.0 section 9.4.2.251
150 */
151 /* check bw_config against contiguous edmg channels */
152 switch (chandef->edmg.bw_config) {
153 case IEEE80211_EDMG_BW_CONFIG_4:
154 case IEEE80211_EDMG_BW_CONFIG_8:
155 case IEEE80211_EDMG_BW_CONFIG_12:
156 if (max_contiguous < 1)
157 return false;
158 break;
159 case IEEE80211_EDMG_BW_CONFIG_5:
160 case IEEE80211_EDMG_BW_CONFIG_9:
161 case IEEE80211_EDMG_BW_CONFIG_13:
162 if (max_contiguous < 2)
163 return false;
164 break;
165 case IEEE80211_EDMG_BW_CONFIG_6:
166 case IEEE80211_EDMG_BW_CONFIG_10:
167 case IEEE80211_EDMG_BW_CONFIG_14:
168 if (max_contiguous < 3)
169 return false;
170 break;
171 case IEEE80211_EDMG_BW_CONFIG_7:
172 case IEEE80211_EDMG_BW_CONFIG_11:
173 case IEEE80211_EDMG_BW_CONFIG_15:
174 if (max_contiguous < 4)
175 return false;
176 break;
177
178 default:
179 return false;
180 }
181
182 /* check bw_config against aggregated (non contiguous) edmg channels */
183 switch (chandef->edmg.bw_config) {
184 case IEEE80211_EDMG_BW_CONFIG_4:
185 case IEEE80211_EDMG_BW_CONFIG_5:
186 case IEEE80211_EDMG_BW_CONFIG_6:
187 case IEEE80211_EDMG_BW_CONFIG_7:
188 break;
189 case IEEE80211_EDMG_BW_CONFIG_8:
190 case IEEE80211_EDMG_BW_CONFIG_9:
191 case IEEE80211_EDMG_BW_CONFIG_10:
192 case IEEE80211_EDMG_BW_CONFIG_11:
193 if (num_of_enabled < 2)
194 return false;
195 break;
196 case IEEE80211_EDMG_BW_CONFIG_12:
197 case IEEE80211_EDMG_BW_CONFIG_13:
198 case IEEE80211_EDMG_BW_CONFIG_14:
199 case IEEE80211_EDMG_BW_CONFIG_15:
200 if (num_of_enabled < 4 || max_contiguous < 2)
201 return false;
202 break;
203 default:
204 return false;
205 }
206
207 return true;
208}
209
210int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width)
211{
212 int mhz;
213
214 switch (chan_width) {
215 case NL80211_CHAN_WIDTH_1:
216 mhz = 1;
217 break;
218 case NL80211_CHAN_WIDTH_2:
219 mhz = 2;
220 break;
221 case NL80211_CHAN_WIDTH_4:
222 mhz = 4;
223 break;
224 case NL80211_CHAN_WIDTH_8:
225 mhz = 8;
226 break;
227 case NL80211_CHAN_WIDTH_16:
228 mhz = 16;
229 break;
230 case NL80211_CHAN_WIDTH_5:
231 mhz = 5;
232 break;
233 case NL80211_CHAN_WIDTH_10:
234 mhz = 10;
235 break;
236 case NL80211_CHAN_WIDTH_20:
237 case NL80211_CHAN_WIDTH_20_NOHT:
238 mhz = 20;
239 break;
240 case NL80211_CHAN_WIDTH_40:
241 mhz = 40;
242 break;
243 case NL80211_CHAN_WIDTH_80P80:
244 case NL80211_CHAN_WIDTH_80:
245 mhz = 80;
246 break;
247 case NL80211_CHAN_WIDTH_160:
248 mhz = 160;
249 break;
250 case NL80211_CHAN_WIDTH_320:
251 mhz = 320;
252 break;
253 default:
254 WARN_ON_ONCE(1);
255 return -1;
256 }
257 return mhz;
258}
259EXPORT_SYMBOL(nl80211_chan_width_to_mhz);
260
261static int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c)
262{
263 return nl80211_chan_width_to_mhz(c->width);
264}
265
266static bool cfg80211_valid_center_freq(u32 center,
267 enum nl80211_chan_width width)
268{
269 int bw;
270 int step;
271
272 /* We only do strict verification on 6 GHz */
273 if (center < 5955 || center > 7115)
274 return true;
275
276 bw = nl80211_chan_width_to_mhz(width);
277 if (bw < 0)
278 return false;
279
280 /* Validate that the channels bw is entirely within the 6 GHz band */
281 if (center - bw / 2 < 5945 || center + bw / 2 > 7125)
282 return false;
283
284 /* With 320 MHz the permitted channels overlap */
285 if (bw == 320)
286 step = 160;
287 else
288 step = bw;
289
290 /*
291 * Valid channels are packed from lowest frequency towards higher ones.
292 * So test that the lower frequency aligns with one of these steps.
293 */
294 return (center - bw / 2 - 5945) % step == 0;
295}
296
297bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef)
298{
299 u32 control_freq, oper_freq;
300 int oper_width, control_width;
301
302 if (!chandef->chan)
303 return false;
304
305 if (chandef->freq1_offset >= 1000)
306 return false;
307
308 control_freq = chandef->chan->center_freq;
309
310 switch (chandef->width) {
311 case NL80211_CHAN_WIDTH_5:
312 case NL80211_CHAN_WIDTH_10:
313 case NL80211_CHAN_WIDTH_20:
314 case NL80211_CHAN_WIDTH_20_NOHT:
315 if (ieee80211_chandef_to_khz(chandef) !=
316 ieee80211_channel_to_khz(chandef->chan))
317 return false;
318 if (chandef->center_freq2)
319 return false;
320 break;
321 case NL80211_CHAN_WIDTH_1:
322 case NL80211_CHAN_WIDTH_2:
323 case NL80211_CHAN_WIDTH_4:
324 case NL80211_CHAN_WIDTH_8:
325 case NL80211_CHAN_WIDTH_16:
326 if (chandef->chan->band != NL80211_BAND_S1GHZ)
327 return false;
328
329 control_freq = ieee80211_channel_to_khz(chandef->chan);
330 oper_freq = ieee80211_chandef_to_khz(chandef);
331 control_width = nl80211_chan_width_to_mhz(
332 ieee80211_s1g_channel_width(
333 chandef->chan));
334 oper_width = cfg80211_chandef_get_width(chandef);
335
336 if (oper_width < 0 || control_width < 0)
337 return false;
338 if (chandef->center_freq2)
339 return false;
340
341 if (control_freq + MHZ_TO_KHZ(control_width) / 2 >
342 oper_freq + MHZ_TO_KHZ(oper_width) / 2)
343 return false;
344
345 if (control_freq - MHZ_TO_KHZ(control_width) / 2 <
346 oper_freq - MHZ_TO_KHZ(oper_width) / 2)
347 return false;
348 break;
349 case NL80211_CHAN_WIDTH_80P80:
350 if (!chandef->center_freq2)
351 return false;
352 /* adjacent is not allowed -- that's a 160 MHz channel */
353 if (chandef->center_freq1 - chandef->center_freq2 == 80 ||
354 chandef->center_freq2 - chandef->center_freq1 == 80)
355 return false;
356 break;
357 default:
358 if (chandef->center_freq2)
359 return false;
360 break;
361 }
362
363 switch (chandef->width) {
364 case NL80211_CHAN_WIDTH_5:
365 case NL80211_CHAN_WIDTH_10:
366 case NL80211_CHAN_WIDTH_20:
367 case NL80211_CHAN_WIDTH_20_NOHT:
368 case NL80211_CHAN_WIDTH_1:
369 case NL80211_CHAN_WIDTH_2:
370 case NL80211_CHAN_WIDTH_4:
371 case NL80211_CHAN_WIDTH_8:
372 case NL80211_CHAN_WIDTH_16:
373 /* all checked above */
374 break;
375 case NL80211_CHAN_WIDTH_320:
376 if (chandef->center_freq1 == control_freq + 150 ||
377 chandef->center_freq1 == control_freq + 130 ||
378 chandef->center_freq1 == control_freq + 110 ||
379 chandef->center_freq1 == control_freq + 90 ||
380 chandef->center_freq1 == control_freq - 90 ||
381 chandef->center_freq1 == control_freq - 110 ||
382 chandef->center_freq1 == control_freq - 130 ||
383 chandef->center_freq1 == control_freq - 150)
384 break;
385 fallthrough;
386 case NL80211_CHAN_WIDTH_160:
387 if (chandef->center_freq1 == control_freq + 70 ||
388 chandef->center_freq1 == control_freq + 50 ||
389 chandef->center_freq1 == control_freq - 50 ||
390 chandef->center_freq1 == control_freq - 70)
391 break;
392 fallthrough;
393 case NL80211_CHAN_WIDTH_80P80:
394 case NL80211_CHAN_WIDTH_80:
395 if (chandef->center_freq1 == control_freq + 30 ||
396 chandef->center_freq1 == control_freq - 30)
397 break;
398 fallthrough;
399 case NL80211_CHAN_WIDTH_40:
400 if (chandef->center_freq1 == control_freq + 10 ||
401 chandef->center_freq1 == control_freq - 10)
402 break;
403 fallthrough;
404 default:
405 return false;
406 }
407
408 if (!cfg80211_valid_center_freq(chandef->center_freq1, chandef->width))
409 return false;
410
411 if (chandef->width == NL80211_CHAN_WIDTH_80P80 &&
412 !cfg80211_valid_center_freq(chandef->center_freq2, chandef->width))
413 return false;
414
415 /* channel 14 is only for IEEE 802.11b */
416 if (chandef->center_freq1 == 2484 &&
417 chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
418 return false;
419
420 if (cfg80211_chandef_is_edmg(chandef) &&
421 !cfg80211_edmg_chandef_valid(chandef))
422 return false;
423
424 return valid_puncturing_bitmap(chandef);
425}
426EXPORT_SYMBOL(cfg80211_chandef_valid);
427
428int cfg80211_chandef_primary(const struct cfg80211_chan_def *c,
429 enum nl80211_chan_width primary_chan_width,
430 u16 *punctured)
431{
432 int pri_width = nl80211_chan_width_to_mhz(primary_chan_width);
433 int width = cfg80211_chandef_get_width(c);
434 u32 control = c->chan->center_freq;
435 u32 center = c->center_freq1;
436 u16 _punct = 0;
437
438 if (WARN_ON_ONCE(pri_width < 0 || width < 0))
439 return -1;
440
441 /* not intended to be called this way, can't determine */
442 if (WARN_ON_ONCE(pri_width > width))
443 return -1;
444
445 if (!punctured)
446 punctured = &_punct;
447
448 *punctured = c->punctured;
449
450 while (width > pri_width) {
451 unsigned int bits_to_drop = width / 20 / 2;
452
453 if (control > center) {
454 center += width / 4;
455 *punctured >>= bits_to_drop;
456 } else {
457 center -= width / 4;
458 *punctured &= (1 << bits_to_drop) - 1;
459 }
460 width /= 2;
461 }
462
463 return center;
464}
465EXPORT_SYMBOL(cfg80211_chandef_primary);
466
467static const struct cfg80211_chan_def *
468check_chandef_primary_compat(const struct cfg80211_chan_def *c1,
469 const struct cfg80211_chan_def *c2,
470 enum nl80211_chan_width primary_chan_width)
471{
472 u16 punct_c1 = 0, punct_c2 = 0;
473
474 /* check primary is compatible -> error if not */
475 if (cfg80211_chandef_primary(c1, primary_chan_width, &punct_c1) !=
476 cfg80211_chandef_primary(c2, primary_chan_width, &punct_c2))
477 return ERR_PTR(-EINVAL);
478
479 if (punct_c1 != punct_c2)
480 return ERR_PTR(-EINVAL);
481
482 /* assumes c1 is smaller width, if that was just checked -> done */
483 if (c1->width == primary_chan_width)
484 return c2;
485
486 /* otherwise continue checking the next width */
487 return NULL;
488}
489
490static const struct cfg80211_chan_def *
491_cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
492 const struct cfg80211_chan_def *c2)
493{
494 const struct cfg80211_chan_def *ret;
495
496 /* If they are identical, return */
497 if (cfg80211_chandef_identical(c1, c2))
498 return c2;
499
500 /* otherwise, must have same control channel */
501 if (c1->chan != c2->chan)
502 return NULL;
503
504 /*
505 * If they have the same width, but aren't identical,
506 * then they can't be compatible.
507 */
508 if (c1->width == c2->width)
509 return NULL;
510
511 /*
512 * can't be compatible if one of them is 5/10 MHz or S1G
513 * but they don't have the same width.
514 */
515#define NARROW_OR_S1G(width) ((width) == NL80211_CHAN_WIDTH_5 || \
516 (width) == NL80211_CHAN_WIDTH_10 || \
517 (width) == NL80211_CHAN_WIDTH_1 || \
518 (width) == NL80211_CHAN_WIDTH_2 || \
519 (width) == NL80211_CHAN_WIDTH_4 || \
520 (width) == NL80211_CHAN_WIDTH_8 || \
521 (width) == NL80211_CHAN_WIDTH_16)
522
523 if (NARROW_OR_S1G(c1->width) || NARROW_OR_S1G(c2->width))
524 return NULL;
525
526 /*
527 * Make sure that c1 is always the narrower one, so that later
528 * we either return NULL or c2 and don't have to check both
529 * directions.
530 */
531 if (c1->width > c2->width)
532 swap(c1, c2);
533
534 /*
535 * No further checks needed if the "narrower" one is only 20 MHz.
536 * Here "narrower" includes being a 20 MHz non-HT channel vs. a
537 * 20 MHz HT (or later) one.
538 */
539 if (c1->width <= NL80211_CHAN_WIDTH_20)
540 return c2;
541
542 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_40);
543 if (ret)
544 return ret;
545
546 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_80);
547 if (ret)
548 return ret;
549
550 /*
551 * If c1 is 80+80, then c2 is 160 or higher, but that cannot
552 * match. If c2 was also 80+80 it was already either accepted
553 * or rejected above (identical or not, respectively.)
554 */
555 if (c1->width == NL80211_CHAN_WIDTH_80P80)
556 return NULL;
557
558 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_160);
559 if (ret)
560 return ret;
561
562 /*
563 * Getting here would mean they're both wider than 160, have the
564 * same primary 160, but are not identical - this cannot happen
565 * since they must be 320 (no wider chandefs exist, at least yet.)
566 */
567 WARN_ON_ONCE(1);
568
569 return NULL;
570}
571
572const struct cfg80211_chan_def *
573cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
574 const struct cfg80211_chan_def *c2)
575{
576 const struct cfg80211_chan_def *ret;
577
578 ret = _cfg80211_chandef_compatible(c1, c2);
579 if (IS_ERR(ret))
580 return NULL;
581 return ret;
582}
583EXPORT_SYMBOL(cfg80211_chandef_compatible);
584
585static void cfg80211_set_chans_dfs_state(struct wiphy *wiphy, u32 center_freq,
586 u32 bandwidth,
587 enum nl80211_dfs_state dfs_state)
588{
589 struct ieee80211_channel *c;
590 u32 freq;
591
592 for (freq = center_freq - bandwidth/2 + 10;
593 freq <= center_freq + bandwidth/2 - 10;
594 freq += 20) {
595 c = ieee80211_get_channel(wiphy, freq);
596 if (!c || !(c->flags & IEEE80211_CHAN_RADAR))
597 continue;
598
599 c->dfs_state = dfs_state;
600 c->dfs_state_entered = jiffies;
601 }
602}
603
604void cfg80211_set_dfs_state(struct wiphy *wiphy,
605 const struct cfg80211_chan_def *chandef,
606 enum nl80211_dfs_state dfs_state)
607{
608 int width;
609
610 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
611 return;
612
613 width = cfg80211_chandef_get_width(chandef);
614 if (width < 0)
615 return;
616
617 cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq1,
618 width, dfs_state);
619
620 if (!chandef->center_freq2)
621 return;
622 cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq2,
623 width, dfs_state);
624}
625
626static u32 cfg80211_get_start_freq(u32 center_freq,
627 u32 bandwidth)
628{
629 u32 start_freq;
630
631 bandwidth = MHZ_TO_KHZ(bandwidth);
632 if (bandwidth <= MHZ_TO_KHZ(20))
633 start_freq = center_freq;
634 else
635 start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10);
636
637 return start_freq;
638}
639
640static u32 cfg80211_get_end_freq(u32 center_freq,
641 u32 bandwidth)
642{
643 u32 end_freq;
644
645 bandwidth = MHZ_TO_KHZ(bandwidth);
646 if (bandwidth <= MHZ_TO_KHZ(20))
647 end_freq = center_freq;
648 else
649 end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10);
650
651 return end_freq;
652}
653
654static bool
655cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device *rdev,
656 enum nl80211_iftype iftype,
657 struct wireless_dev *wdev,
658 struct ieee80211_channel *chan)
659{
660 unsigned int link_id;
661
662 for_each_valid_link(wdev, link_id) {
663 struct ieee80211_channel *other_chan = NULL;
664 struct cfg80211_chan_def chandef = {};
665 int ret;
666
667 /* In order to avoid daisy chaining only allow BSS STA */
668 if (wdev->iftype != NL80211_IFTYPE_STATION ||
669 !wdev->links[link_id].client.current_bss)
670 continue;
671
672 other_chan =
673 wdev->links[link_id].client.current_bss->pub.channel;
674
675 if (!other_chan)
676 continue;
677
678 if (chan == other_chan)
679 return true;
680
681 /* continue if we can't get the channel */
682 ret = rdev_get_channel(rdev, wdev, link_id, &chandef);
683 if (ret)
684 continue;
685
686 if (cfg80211_is_sub_chan(&chandef, chan, false))
687 return true;
688 }
689
690 return false;
691}
692
693/*
694 * Check if P2P GO is allowed to operate on a DFS channel
695 */
696static bool cfg80211_dfs_permissive_chan(struct wiphy *wiphy,
697 enum nl80211_iftype iftype,
698 struct ieee80211_channel *chan)
699{
700 struct wireless_dev *wdev;
701 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
702
703 lockdep_assert_held(&rdev->wiphy.mtx);
704
705 if (!wiphy_ext_feature_isset(&rdev->wiphy,
706 NL80211_EXT_FEATURE_DFS_CONCURRENT) ||
707 !(chan->flags & IEEE80211_CHAN_DFS_CONCURRENT))
708 return false;
709
710 /* only valid for P2P GO */
711 if (iftype != NL80211_IFTYPE_P2P_GO)
712 return false;
713
714 /*
715 * Allow only if there's a concurrent BSS
716 */
717 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
718 bool ret = cfg80211_dfs_permissive_check_wdev(rdev, iftype,
719 wdev, chan);
720 if (ret)
721 return ret;
722 }
723
724 return false;
725}
726
727static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy,
728 u32 center_freq,
729 u32 bandwidth,
730 enum nl80211_iftype iftype)
731{
732 struct ieee80211_channel *c;
733 u32 freq, start_freq, end_freq;
734
735 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
736 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
737
738 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
739 c = ieee80211_get_channel_khz(wiphy, freq);
740 if (!c)
741 return -EINVAL;
742
743 if (c->flags & IEEE80211_CHAN_RADAR &&
744 !cfg80211_dfs_permissive_chan(wiphy, iftype, c))
745 return 1;
746 }
747
748 return 0;
749}
750
751
752int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
753 const struct cfg80211_chan_def *chandef,
754 enum nl80211_iftype iftype)
755{
756 int width;
757 int ret;
758
759 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
760 return -EINVAL;
761
762 switch (iftype) {
763 case NL80211_IFTYPE_ADHOC:
764 case NL80211_IFTYPE_AP:
765 case NL80211_IFTYPE_P2P_GO:
766 case NL80211_IFTYPE_MESH_POINT:
767 width = cfg80211_chandef_get_width(chandef);
768 if (width < 0)
769 return -EINVAL;
770
771 ret = cfg80211_get_chans_dfs_required(wiphy,
772 ieee80211_chandef_to_khz(chandef),
773 width, iftype);
774 if (ret < 0)
775 return ret;
776 else if (ret > 0)
777 return BIT(chandef->width);
778
779 if (!chandef->center_freq2)
780 return 0;
781
782 ret = cfg80211_get_chans_dfs_required(wiphy,
783 MHZ_TO_KHZ(chandef->center_freq2),
784 width, iftype);
785 if (ret < 0)
786 return ret;
787 else if (ret > 0)
788 return BIT(chandef->width);
789
790 break;
791 case NL80211_IFTYPE_STATION:
792 case NL80211_IFTYPE_OCB:
793 case NL80211_IFTYPE_P2P_CLIENT:
794 case NL80211_IFTYPE_MONITOR:
795 case NL80211_IFTYPE_AP_VLAN:
796 case NL80211_IFTYPE_P2P_DEVICE:
797 case NL80211_IFTYPE_NAN:
798 break;
799 case NL80211_IFTYPE_WDS:
800 case NL80211_IFTYPE_UNSPECIFIED:
801 case NUM_NL80211_IFTYPES:
802 WARN_ON(1);
803 }
804
805 return 0;
806}
807EXPORT_SYMBOL(cfg80211_chandef_dfs_required);
808
809static int cfg80211_get_chans_dfs_usable(struct wiphy *wiphy,
810 u32 center_freq,
811 u32 bandwidth)
812{
813 struct ieee80211_channel *c;
814 u32 freq, start_freq, end_freq;
815 int count = 0;
816
817 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
818 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
819
820 /*
821 * Check entire range of channels for the bandwidth.
822 * Check all channels are DFS channels (DFS_USABLE or
823 * DFS_AVAILABLE). Return number of usable channels
824 * (require CAC). Allow DFS and non-DFS channel mix.
825 */
826 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
827 c = ieee80211_get_channel_khz(wiphy, freq);
828 if (!c)
829 return -EINVAL;
830
831 if (c->flags & IEEE80211_CHAN_DISABLED)
832 return -EINVAL;
833
834 if (c->flags & IEEE80211_CHAN_RADAR) {
835 if (c->dfs_state == NL80211_DFS_UNAVAILABLE)
836 return -EINVAL;
837
838 if (c->dfs_state == NL80211_DFS_USABLE)
839 count++;
840 }
841 }
842
843 return count;
844}
845
846bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
847 const struct cfg80211_chan_def *chandef)
848{
849 int width;
850 int r1, r2 = 0;
851
852 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
853 return false;
854
855 width = cfg80211_chandef_get_width(chandef);
856 if (width < 0)
857 return false;
858
859 r1 = cfg80211_get_chans_dfs_usable(wiphy,
860 MHZ_TO_KHZ(chandef->center_freq1),
861 width);
862
863 if (r1 < 0)
864 return false;
865
866 switch (chandef->width) {
867 case NL80211_CHAN_WIDTH_80P80:
868 WARN_ON(!chandef->center_freq2);
869 r2 = cfg80211_get_chans_dfs_usable(wiphy,
870 MHZ_TO_KHZ(chandef->center_freq2),
871 width);
872 if (r2 < 0)
873 return false;
874 break;
875 default:
876 WARN_ON(chandef->center_freq2);
877 break;
878 }
879
880 return (r1 + r2 > 0);
881}
882EXPORT_SYMBOL(cfg80211_chandef_dfs_usable);
883
884/*
885 * Checks if center frequency of chan falls with in the bandwidth
886 * range of chandef.
887 */
888bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef,
889 struct ieee80211_channel *chan,
890 bool primary_only)
891{
892 int width;
893 u32 freq;
894
895 if (!chandef->chan)
896 return false;
897
898 if (chandef->chan->center_freq == chan->center_freq)
899 return true;
900
901 if (primary_only)
902 return false;
903
904 width = cfg80211_chandef_get_width(chandef);
905 if (width <= 20)
906 return false;
907
908 for (freq = chandef->center_freq1 - width / 2 + 10;
909 freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) {
910 if (chan->center_freq == freq)
911 return true;
912 }
913
914 if (!chandef->center_freq2)
915 return false;
916
917 for (freq = chandef->center_freq2 - width / 2 + 10;
918 freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) {
919 if (chan->center_freq == freq)
920 return true;
921 }
922
923 return false;
924}
925
926bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev)
927{
928 unsigned int link;
929
930 lockdep_assert_wiphy(wdev->wiphy);
931
932 switch (wdev->iftype) {
933 case NL80211_IFTYPE_AP:
934 case NL80211_IFTYPE_P2P_GO:
935 for_each_valid_link(wdev, link) {
936 if (wdev->links[link].ap.beacon_interval)
937 return true;
938 }
939 break;
940 case NL80211_IFTYPE_ADHOC:
941 if (wdev->u.ibss.ssid_len)
942 return true;
943 break;
944 case NL80211_IFTYPE_MESH_POINT:
945 if (wdev->u.mesh.id_len)
946 return true;
947 break;
948 case NL80211_IFTYPE_STATION:
949 case NL80211_IFTYPE_OCB:
950 case NL80211_IFTYPE_P2P_CLIENT:
951 case NL80211_IFTYPE_MONITOR:
952 case NL80211_IFTYPE_AP_VLAN:
953 case NL80211_IFTYPE_P2P_DEVICE:
954 /* Can NAN type be considered as beaconing interface? */
955 case NL80211_IFTYPE_NAN:
956 break;
957 case NL80211_IFTYPE_UNSPECIFIED:
958 case NL80211_IFTYPE_WDS:
959 case NUM_NL80211_IFTYPES:
960 WARN_ON(1);
961 }
962
963 return false;
964}
965
966bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev,
967 struct ieee80211_channel *chan,
968 bool primary_only)
969{
970 unsigned int link;
971
972 switch (wdev->iftype) {
973 case NL80211_IFTYPE_AP:
974 case NL80211_IFTYPE_P2P_GO:
975 for_each_valid_link(wdev, link) {
976 if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef,
977 chan, primary_only))
978 return true;
979 }
980 break;
981 case NL80211_IFTYPE_ADHOC:
982 return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan,
983 primary_only);
984 case NL80211_IFTYPE_MESH_POINT:
985 return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan,
986 primary_only);
987 default:
988 break;
989 }
990
991 return false;
992}
993
994static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy,
995 struct ieee80211_channel *chan)
996{
997 struct wireless_dev *wdev;
998
999 lockdep_assert_wiphy(wiphy);
1000
1001 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1002 if (!cfg80211_beaconing_iface_active(wdev))
1003 continue;
1004
1005 if (cfg80211_wdev_on_sub_chan(wdev, chan, false))
1006 return true;
1007 }
1008
1009 return false;
1010}
1011
1012static bool
1013cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev,
1014 struct ieee80211_channel *channel)
1015{
1016 if (!rdev->background_radar_wdev)
1017 return false;
1018
1019 if (!cfg80211_chandef_valid(&rdev->background_radar_chandef))
1020 return false;
1021
1022 return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel,
1023 false);
1024}
1025
1026bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy,
1027 struct ieee80211_channel *chan)
1028{
1029 struct cfg80211_registered_device *rdev;
1030
1031 ASSERT_RTNL();
1032
1033 if (!(chan->flags & IEEE80211_CHAN_RADAR))
1034 return false;
1035
1036 for_each_rdev(rdev) {
1037 bool found;
1038
1039 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
1040 continue;
1041
1042 wiphy_lock(&rdev->wiphy);
1043 found = cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan) ||
1044 cfg80211_offchan_chain_is_active(rdev, chan);
1045 wiphy_unlock(&rdev->wiphy);
1046
1047 if (found)
1048 return true;
1049 }
1050
1051 return false;
1052}
1053
1054static bool cfg80211_get_chans_dfs_available(struct wiphy *wiphy,
1055 u32 center_freq,
1056 u32 bandwidth)
1057{
1058 struct ieee80211_channel *c;
1059 u32 freq, start_freq, end_freq;
1060 bool dfs_offload;
1061
1062 dfs_offload = wiphy_ext_feature_isset(wiphy,
1063 NL80211_EXT_FEATURE_DFS_OFFLOAD);
1064
1065 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1066 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1067
1068 /*
1069 * Check entire range of channels for the bandwidth.
1070 * If any channel in between is disabled or has not
1071 * had gone through CAC return false
1072 */
1073 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1074 c = ieee80211_get_channel_khz(wiphy, freq);
1075 if (!c)
1076 return false;
1077
1078 if (c->flags & IEEE80211_CHAN_DISABLED)
1079 return false;
1080
1081 if ((c->flags & IEEE80211_CHAN_RADAR) &&
1082 (c->dfs_state != NL80211_DFS_AVAILABLE) &&
1083 !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload))
1084 return false;
1085 }
1086
1087 return true;
1088}
1089
1090static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy,
1091 const struct cfg80211_chan_def *chandef)
1092{
1093 int width;
1094 int r;
1095
1096 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1097 return false;
1098
1099 width = cfg80211_chandef_get_width(chandef);
1100 if (width < 0)
1101 return false;
1102
1103 r = cfg80211_get_chans_dfs_available(wiphy,
1104 MHZ_TO_KHZ(chandef->center_freq1),
1105 width);
1106
1107 /* If any of channels unavailable for cf1 just return */
1108 if (!r)
1109 return r;
1110
1111 switch (chandef->width) {
1112 case NL80211_CHAN_WIDTH_80P80:
1113 WARN_ON(!chandef->center_freq2);
1114 r = cfg80211_get_chans_dfs_available(wiphy,
1115 MHZ_TO_KHZ(chandef->center_freq2),
1116 width);
1117 break;
1118 default:
1119 WARN_ON(chandef->center_freq2);
1120 break;
1121 }
1122
1123 return r;
1124}
1125
1126static unsigned int cfg80211_get_chans_dfs_cac_time(struct wiphy *wiphy,
1127 u32 center_freq,
1128 u32 bandwidth)
1129{
1130 struct ieee80211_channel *c;
1131 u32 start_freq, end_freq, freq;
1132 unsigned int dfs_cac_ms = 0;
1133
1134 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1135 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1136
1137 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1138 c = ieee80211_get_channel_khz(wiphy, freq);
1139 if (!c)
1140 return 0;
1141
1142 if (c->flags & IEEE80211_CHAN_DISABLED)
1143 return 0;
1144
1145 if (!(c->flags & IEEE80211_CHAN_RADAR))
1146 continue;
1147
1148 if (c->dfs_cac_ms > dfs_cac_ms)
1149 dfs_cac_ms = c->dfs_cac_ms;
1150 }
1151
1152 return dfs_cac_ms;
1153}
1154
1155unsigned int
1156cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1157 const struct cfg80211_chan_def *chandef)
1158{
1159 int width;
1160 unsigned int t1 = 0, t2 = 0;
1161
1162 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1163 return 0;
1164
1165 width = cfg80211_chandef_get_width(chandef);
1166 if (width < 0)
1167 return 0;
1168
1169 t1 = cfg80211_get_chans_dfs_cac_time(wiphy,
1170 MHZ_TO_KHZ(chandef->center_freq1),
1171 width);
1172
1173 if (!chandef->center_freq2)
1174 return t1;
1175
1176 t2 = cfg80211_get_chans_dfs_cac_time(wiphy,
1177 MHZ_TO_KHZ(chandef->center_freq2),
1178 width);
1179
1180 return max(t1, t2);
1181}
1182EXPORT_SYMBOL(cfg80211_chandef_dfs_cac_time);
1183
1184static bool cfg80211_secondary_chans_ok(struct wiphy *wiphy,
1185 u32 center_freq, u32 bandwidth,
1186 u32 prohibited_flags,
1187 u32 permitting_flags)
1188{
1189 struct ieee80211_channel *c;
1190 u32 freq, start_freq, end_freq;
1191
1192 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1193 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1194
1195 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1196 c = ieee80211_get_channel_khz(wiphy, freq);
1197 if (!c)
1198 return false;
1199 if (c->flags & permitting_flags)
1200 continue;
1201 if (c->flags & prohibited_flags)
1202 return false;
1203 }
1204
1205 return true;
1206}
1207
1208/* check if the operating channels are valid and supported */
1209static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels,
1210 enum ieee80211_edmg_bw_config edmg_bw_config,
1211 int primary_channel,
1212 struct ieee80211_edmg *edmg_cap)
1213{
1214 struct ieee80211_channel *chan;
1215 int i, freq;
1216 int channels_counter = 0;
1217
1218 if (!edmg_channels && !edmg_bw_config)
1219 return true;
1220
1221 if ((!edmg_channels && edmg_bw_config) ||
1222 (edmg_channels && !edmg_bw_config))
1223 return false;
1224
1225 if (!(edmg_channels & BIT(primary_channel - 1)))
1226 return false;
1227
1228 /* 60GHz channels 1..6 */
1229 for (i = 0; i < 6; i++) {
1230 if (!(edmg_channels & BIT(i)))
1231 continue;
1232
1233 if (!(edmg_cap->channels & BIT(i)))
1234 return false;
1235
1236 channels_counter++;
1237
1238 freq = ieee80211_channel_to_frequency(i + 1,
1239 NL80211_BAND_60GHZ);
1240 chan = ieee80211_get_channel(wiphy, freq);
1241 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
1242 return false;
1243 }
1244
1245 /* IEEE802.11 allows max 4 channels */
1246 if (channels_counter > 4)
1247 return false;
1248
1249 /* check bw_config is a subset of what driver supports
1250 * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13)
1251 */
1252 if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4))
1253 return false;
1254
1255 if (edmg_bw_config > edmg_cap->bw_config)
1256 return false;
1257
1258 return true;
1259}
1260
1261bool _cfg80211_chandef_usable(struct wiphy *wiphy,
1262 const struct cfg80211_chan_def *chandef,
1263 u32 prohibited_flags,
1264 u32 permitting_flags)
1265{
1266 struct ieee80211_sta_ht_cap *ht_cap;
1267 struct ieee80211_sta_vht_cap *vht_cap;
1268 struct ieee80211_edmg *edmg_cap;
1269 u32 width, control_freq, cap;
1270 bool ext_nss_cap, support_80_80 = false, support_320 = false;
1271 const struct ieee80211_sband_iftype_data *iftd;
1272 struct ieee80211_supported_band *sband;
1273 int i;
1274
1275 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1276 return false;
1277
1278 ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap;
1279 vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap;
1280 edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap;
1281 ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) &
1282 IEEE80211_VHT_EXT_NSS_BW_CAPABLE;
1283
1284 if (edmg_cap->channels &&
1285 !cfg80211_edmg_usable(wiphy,
1286 chandef->edmg.channels,
1287 chandef->edmg.bw_config,
1288 chandef->chan->hw_value,
1289 edmg_cap))
1290 return false;
1291
1292 control_freq = chandef->chan->center_freq;
1293
1294 switch (chandef->width) {
1295 case NL80211_CHAN_WIDTH_1:
1296 width = 1;
1297 break;
1298 case NL80211_CHAN_WIDTH_2:
1299 width = 2;
1300 break;
1301 case NL80211_CHAN_WIDTH_4:
1302 width = 4;
1303 break;
1304 case NL80211_CHAN_WIDTH_8:
1305 width = 8;
1306 break;
1307 case NL80211_CHAN_WIDTH_16:
1308 width = 16;
1309 break;
1310 case NL80211_CHAN_WIDTH_5:
1311 width = 5;
1312 break;
1313 case NL80211_CHAN_WIDTH_10:
1314 prohibited_flags |= IEEE80211_CHAN_NO_10MHZ;
1315 width = 10;
1316 break;
1317 case NL80211_CHAN_WIDTH_20:
1318 if (!ht_cap->ht_supported &&
1319 chandef->chan->band != NL80211_BAND_6GHZ)
1320 return false;
1321 fallthrough;
1322 case NL80211_CHAN_WIDTH_20_NOHT:
1323 prohibited_flags |= IEEE80211_CHAN_NO_20MHZ;
1324 width = 20;
1325 break;
1326 case NL80211_CHAN_WIDTH_40:
1327 width = 40;
1328 if (chandef->chan->band == NL80211_BAND_6GHZ)
1329 break;
1330 if (!ht_cap->ht_supported)
1331 return false;
1332 if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ||
1333 ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT)
1334 return false;
1335 if (chandef->center_freq1 < control_freq &&
1336 chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS)
1337 return false;
1338 if (chandef->center_freq1 > control_freq &&
1339 chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS)
1340 return false;
1341 break;
1342 case NL80211_CHAN_WIDTH_80P80:
1343 cap = vht_cap->cap;
1344 support_80_80 =
1345 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
1346 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1347 cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
1348 (ext_nss_cap &&
1349 u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1);
1350 if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80)
1351 return false;
1352 fallthrough;
1353 case NL80211_CHAN_WIDTH_80:
1354 prohibited_flags |= IEEE80211_CHAN_NO_80MHZ;
1355 width = 80;
1356 if (chandef->chan->band == NL80211_BAND_6GHZ)
1357 break;
1358 if (!vht_cap->vht_supported)
1359 return false;
1360 break;
1361 case NL80211_CHAN_WIDTH_160:
1362 prohibited_flags |= IEEE80211_CHAN_NO_160MHZ;
1363 width = 160;
1364 if (chandef->chan->band == NL80211_BAND_6GHZ)
1365 break;
1366 if (!vht_cap->vht_supported)
1367 return false;
1368 cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK;
1369 if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1370 cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ &&
1371 !(ext_nss_cap &&
1372 (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)))
1373 return false;
1374 break;
1375 case NL80211_CHAN_WIDTH_320:
1376 prohibited_flags |= IEEE80211_CHAN_NO_320MHZ;
1377 width = 320;
1378
1379 if (chandef->chan->band != NL80211_BAND_6GHZ)
1380 return false;
1381
1382 sband = wiphy->bands[NL80211_BAND_6GHZ];
1383 if (!sband)
1384 return false;
1385
1386 for_each_sband_iftype_data(sband, i, iftd) {
1387 if (!iftd->eht_cap.has_eht)
1388 continue;
1389
1390 if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] &
1391 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) {
1392 support_320 = true;
1393 break;
1394 }
1395 }
1396
1397 if (!support_320)
1398 return false;
1399 break;
1400 default:
1401 WARN_ON_ONCE(1);
1402 return false;
1403 }
1404
1405 /*
1406 * TODO: What if there are only certain 80/160/80+80 MHz channels
1407 * allowed by the driver, or only certain combinations?
1408 * For 40 MHz the driver can set the NO_HT40 flags, but for
1409 * 80/160 MHz and in particular 80+80 MHz this isn't really
1410 * feasible and we only have NO_80MHZ/NO_160MHZ so far but
1411 * no way to cover 80+80 MHz or more complex restrictions.
1412 * Note that such restrictions also need to be advertised to
1413 * userspace, for example for P2P channel selection.
1414 */
1415
1416 if (width > 20)
1417 prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1418
1419 /* 5 and 10 MHz are only defined for the OFDM PHY */
1420 if (width < 20)
1421 prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1422
1423
1424 if (!cfg80211_secondary_chans_ok(wiphy,
1425 ieee80211_chandef_to_khz(chandef),
1426 width, prohibited_flags,
1427 permitting_flags))
1428 return false;
1429
1430 if (!chandef->center_freq2)
1431 return true;
1432 return cfg80211_secondary_chans_ok(wiphy,
1433 MHZ_TO_KHZ(chandef->center_freq2),
1434 width, prohibited_flags,
1435 permitting_flags);
1436}
1437
1438bool cfg80211_chandef_usable(struct wiphy *wiphy,
1439 const struct cfg80211_chan_def *chandef,
1440 u32 prohibited_flags)
1441{
1442 return _cfg80211_chandef_usable(wiphy, chandef, prohibited_flags, 0);
1443}
1444EXPORT_SYMBOL(cfg80211_chandef_usable);
1445
1446static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype,
1447 struct wireless_dev *wdev,
1448 struct ieee80211_channel *chan)
1449{
1450 struct ieee80211_channel *other_chan = NULL;
1451 unsigned int link_id;
1452 int r1, r2;
1453
1454 for_each_valid_link(wdev, link_id) {
1455 if (wdev->iftype == NL80211_IFTYPE_STATION &&
1456 wdev->links[link_id].client.current_bss)
1457 other_chan = wdev->links[link_id].client.current_bss->pub.channel;
1458
1459 /*
1460 * If a GO already operates on the same GO_CONCURRENT channel,
1461 * this one (maybe the same one) can beacon as well. We allow
1462 * the operation even if the station we relied on with
1463 * GO_CONCURRENT is disconnected now. But then we must make sure
1464 * we're not outdoor on an indoor-only channel.
1465 */
1466 if (iftype == NL80211_IFTYPE_P2P_GO &&
1467 wdev->iftype == NL80211_IFTYPE_P2P_GO &&
1468 wdev->links[link_id].ap.beacon_interval &&
1469 !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1470 other_chan = wdev->links[link_id].ap.chandef.chan;
1471
1472 if (!other_chan)
1473 continue;
1474
1475 if (chan == other_chan)
1476 return true;
1477
1478 if (chan->band != NL80211_BAND_5GHZ &&
1479 chan->band != NL80211_BAND_6GHZ)
1480 continue;
1481
1482 r1 = cfg80211_get_unii(chan->center_freq);
1483 r2 = cfg80211_get_unii(other_chan->center_freq);
1484
1485 if (r1 != -EINVAL && r1 == r2) {
1486 /*
1487 * At some locations channels 149-165 are considered a
1488 * bundle, but at other locations, e.g., Indonesia,
1489 * channels 149-161 are considered a bundle while
1490 * channel 165 is left out and considered to be in a
1491 * different bundle. Thus, in case that there is a
1492 * station interface connected to an AP on channel 165,
1493 * it is assumed that channels 149-161 are allowed for
1494 * GO operations. However, having a station interface
1495 * connected to an AP on channels 149-161, does not
1496 * allow GO operation on channel 165.
1497 */
1498 if (chan->center_freq == 5825 &&
1499 other_chan->center_freq != 5825)
1500 continue;
1501 return true;
1502 }
1503 }
1504
1505 return false;
1506}
1507
1508/*
1509 * Check if the channel can be used under permissive conditions mandated by
1510 * some regulatory bodies, i.e., the channel is marked with
1511 * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface
1512 * associated to an AP on the same channel or on the same UNII band
1513 * (assuming that the AP is an authorized master).
1514 * In addition allow operation on a channel on which indoor operation is
1515 * allowed, iff we are currently operating in an indoor environment.
1516 */
1517static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy,
1518 enum nl80211_iftype iftype,
1519 struct ieee80211_channel *chan)
1520{
1521 struct wireless_dev *wdev;
1522 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1523
1524 lockdep_assert_held(&rdev->wiphy.mtx);
1525
1526 if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) ||
1527 !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR))
1528 return false;
1529
1530 /* only valid for GO and TDLS off-channel (station/p2p-CL) */
1531 if (iftype != NL80211_IFTYPE_P2P_GO &&
1532 iftype != NL80211_IFTYPE_STATION &&
1533 iftype != NL80211_IFTYPE_P2P_CLIENT)
1534 return false;
1535
1536 if (regulatory_indoor_allowed() &&
1537 (chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1538 return true;
1539
1540 if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT))
1541 return false;
1542
1543 /*
1544 * Generally, it is possible to rely on another device/driver to allow
1545 * the IR concurrent relaxation, however, since the device can further
1546 * enforce the relaxation (by doing a similar verifications as this),
1547 * and thus fail the GO instantiation, consider only the interfaces of
1548 * the current registered device.
1549 */
1550 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1551 bool ret;
1552
1553 ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan);
1554 if (ret)
1555 return ret;
1556 }
1557
1558 return false;
1559}
1560
1561static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy,
1562 struct cfg80211_chan_def *chandef,
1563 enum nl80211_iftype iftype,
1564 u32 prohibited_flags,
1565 u32 permitting_flags)
1566{
1567 bool res, check_radar;
1568 int dfs_required;
1569
1570 trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype,
1571 prohibited_flags,
1572 permitting_flags);
1573
1574 if (!_cfg80211_chandef_usable(wiphy, chandef,
1575 IEEE80211_CHAN_DISABLED, 0))
1576 return false;
1577
1578 dfs_required = cfg80211_chandef_dfs_required(wiphy, chandef, iftype);
1579 check_radar = dfs_required != 0;
1580
1581 if (dfs_required > 0 &&
1582 cfg80211_chandef_dfs_available(wiphy, chandef)) {
1583 /* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */
1584 prohibited_flags &= ~IEEE80211_CHAN_NO_IR;
1585 check_radar = false;
1586 }
1587
1588 if (check_radar &&
1589 !_cfg80211_chandef_usable(wiphy, chandef,
1590 IEEE80211_CHAN_RADAR, 0))
1591 return false;
1592
1593 res = _cfg80211_chandef_usable(wiphy, chandef,
1594 prohibited_flags,
1595 permitting_flags);
1596
1597 trace_cfg80211_return_bool(res);
1598 return res;
1599}
1600
1601bool cfg80211_reg_check_beaconing(struct wiphy *wiphy,
1602 struct cfg80211_chan_def *chandef,
1603 struct cfg80211_beaconing_check_config *cfg)
1604{
1605 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1606 u32 permitting_flags = 0;
1607 bool check_no_ir = true;
1608
1609 /*
1610 * Under certain conditions suggested by some regulatory bodies a
1611 * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag
1612 * only if such relaxations are not enabled and the conditions are not
1613 * met.
1614 */
1615 if (cfg->relax) {
1616 lockdep_assert_held(&rdev->wiphy.mtx);
1617 check_no_ir = !cfg80211_ir_permissive_chan(wiphy, cfg->iftype,
1618 chandef->chan);
1619 }
1620
1621 if (cfg->reg_power == IEEE80211_REG_VLP_AP)
1622 permitting_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1623
1624 return _cfg80211_reg_can_beacon(wiphy, chandef, cfg->iftype,
1625 check_no_ir ? IEEE80211_CHAN_NO_IR : 0,
1626 permitting_flags);
1627}
1628EXPORT_SYMBOL(cfg80211_reg_check_beaconing);
1629
1630int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev,
1631 struct net_device *dev,
1632 struct cfg80211_chan_def *chandef)
1633{
1634 if (!rdev->ops->set_monitor_channel)
1635 return -EOPNOTSUPP;
1636 if (!cfg80211_has_monitors_only(rdev))
1637 return -EBUSY;
1638
1639 return rdev_set_monitor_channel(rdev, dev, chandef);
1640}
1641
1642bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1643 unsigned long sband_mask,
1644 u32 prohibited_flags)
1645{
1646 int idx;
1647
1648 prohibited_flags |= IEEE80211_CHAN_DISABLED;
1649
1650 for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) {
1651 struct ieee80211_supported_band *sband = wiphy->bands[idx];
1652 int chanidx;
1653
1654 if (!sband)
1655 continue;
1656
1657 for (chanidx = 0; chanidx < sband->n_channels; chanidx++) {
1658 struct ieee80211_channel *chan;
1659
1660 chan = &sband->channels[chanidx];
1661
1662 if (chan->flags & prohibited_flags)
1663 continue;
1664
1665 return true;
1666 }
1667 }
1668
1669 return false;
1670}
1671EXPORT_SYMBOL(cfg80211_any_usable_channels);
1672
1673struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
1674 unsigned int link_id)
1675{
1676 lockdep_assert_wiphy(wdev->wiphy);
1677
1678 WARN_ON(wdev->valid_links && !(wdev->valid_links & BIT(link_id)));
1679 WARN_ON(!wdev->valid_links && link_id > 0);
1680
1681 switch (wdev->iftype) {
1682 case NL80211_IFTYPE_MESH_POINT:
1683 return &wdev->u.mesh.chandef;
1684 case NL80211_IFTYPE_ADHOC:
1685 return &wdev->u.ibss.chandef;
1686 case NL80211_IFTYPE_OCB:
1687 return &wdev->u.ocb.chandef;
1688 case NL80211_IFTYPE_AP:
1689 case NL80211_IFTYPE_P2P_GO:
1690 return &wdev->links[link_id].ap.chandef;
1691 default:
1692 return NULL;
1693 }
1694}
1695EXPORT_SYMBOL(wdev_chandef);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file contains helper code to handle channel
4 * settings and keeping track of what is possible at
5 * any point in time.
6 *
7 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
8 * Copyright 2013-2014 Intel Mobile Communications GmbH
9 * Copyright 2018-2024 Intel Corporation
10 */
11
12#include <linux/export.h>
13#include <linux/bitfield.h>
14#include <net/cfg80211.h>
15#include "core.h"
16#include "rdev-ops.h"
17
18static bool cfg80211_valid_60g_freq(u32 freq)
19{
20 return freq >= 58320 && freq <= 70200;
21}
22
23void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
24 struct ieee80211_channel *chan,
25 enum nl80211_channel_type chan_type)
26{
27 if (WARN_ON(!chan))
28 return;
29
30 *chandef = (struct cfg80211_chan_def) {
31 .chan = chan,
32 .freq1_offset = chan->freq_offset,
33 };
34
35 switch (chan_type) {
36 case NL80211_CHAN_NO_HT:
37 chandef->width = NL80211_CHAN_WIDTH_20_NOHT;
38 chandef->center_freq1 = chan->center_freq;
39 break;
40 case NL80211_CHAN_HT20:
41 chandef->width = NL80211_CHAN_WIDTH_20;
42 chandef->center_freq1 = chan->center_freq;
43 break;
44 case NL80211_CHAN_HT40PLUS:
45 chandef->width = NL80211_CHAN_WIDTH_40;
46 chandef->center_freq1 = chan->center_freq + 10;
47 break;
48 case NL80211_CHAN_HT40MINUS:
49 chandef->width = NL80211_CHAN_WIDTH_40;
50 chandef->center_freq1 = chan->center_freq - 10;
51 break;
52 default:
53 WARN_ON(1);
54 }
55}
56EXPORT_SYMBOL(cfg80211_chandef_create);
57
58struct cfg80211_per_bw_puncturing_values {
59 u8 len;
60 const u16 *valid_values;
61};
62
63static const u16 puncturing_values_80mhz[] = {
64 0x8, 0x4, 0x2, 0x1
65};
66
67static const u16 puncturing_values_160mhz[] = {
68 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3
69};
70
71static const u16 puncturing_values_320mhz[] = {
72 0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00,
73 0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f,
74 0x300f, 0xc0f, 0x30f, 0xcf, 0x3f
75};
76
77#define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \
78 { \
79 .len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \
80 .valid_values = puncturing_values_ ## _bw ## mhz \
81 }
82
83static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = {
84 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80),
85 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160),
86 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320)
87};
88
89static bool valid_puncturing_bitmap(const struct cfg80211_chan_def *chandef)
90{
91 u32 idx, i, start_freq, primary_center = chandef->chan->center_freq;
92
93 switch (chandef->width) {
94 case NL80211_CHAN_WIDTH_80:
95 idx = 0;
96 start_freq = chandef->center_freq1 - 40;
97 break;
98 case NL80211_CHAN_WIDTH_160:
99 idx = 1;
100 start_freq = chandef->center_freq1 - 80;
101 break;
102 case NL80211_CHAN_WIDTH_320:
103 idx = 2;
104 start_freq = chandef->center_freq1 - 160;
105 break;
106 default:
107 return chandef->punctured == 0;
108 }
109
110 if (!chandef->punctured)
111 return true;
112
113 /* check if primary channel is punctured */
114 if (chandef->punctured & (u16)BIT((primary_center - start_freq) / 20))
115 return false;
116
117 for (i = 0; i < per_bw_puncturing[idx].len; i++) {
118 if (per_bw_puncturing[idx].valid_values[i] == chandef->punctured)
119 return true;
120 }
121
122 return false;
123}
124
125static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef)
126{
127 int max_contiguous = 0;
128 int num_of_enabled = 0;
129 int contiguous = 0;
130 int i;
131
132 if (!chandef->edmg.channels || !chandef->edmg.bw_config)
133 return false;
134
135 if (!cfg80211_valid_60g_freq(chandef->chan->center_freq))
136 return false;
137
138 for (i = 0; i < 6; i++) {
139 if (chandef->edmg.channels & BIT(i)) {
140 contiguous++;
141 num_of_enabled++;
142 } else {
143 contiguous = 0;
144 }
145
146 max_contiguous = max(contiguous, max_contiguous);
147 }
148 /* basic verification of edmg configuration according to
149 * IEEE P802.11ay/D4.0 section 9.4.2.251
150 */
151 /* check bw_config against contiguous edmg channels */
152 switch (chandef->edmg.bw_config) {
153 case IEEE80211_EDMG_BW_CONFIG_4:
154 case IEEE80211_EDMG_BW_CONFIG_8:
155 case IEEE80211_EDMG_BW_CONFIG_12:
156 if (max_contiguous < 1)
157 return false;
158 break;
159 case IEEE80211_EDMG_BW_CONFIG_5:
160 case IEEE80211_EDMG_BW_CONFIG_9:
161 case IEEE80211_EDMG_BW_CONFIG_13:
162 if (max_contiguous < 2)
163 return false;
164 break;
165 case IEEE80211_EDMG_BW_CONFIG_6:
166 case IEEE80211_EDMG_BW_CONFIG_10:
167 case IEEE80211_EDMG_BW_CONFIG_14:
168 if (max_contiguous < 3)
169 return false;
170 break;
171 case IEEE80211_EDMG_BW_CONFIG_7:
172 case IEEE80211_EDMG_BW_CONFIG_11:
173 case IEEE80211_EDMG_BW_CONFIG_15:
174 if (max_contiguous < 4)
175 return false;
176 break;
177
178 default:
179 return false;
180 }
181
182 /* check bw_config against aggregated (non contiguous) edmg channels */
183 switch (chandef->edmg.bw_config) {
184 case IEEE80211_EDMG_BW_CONFIG_4:
185 case IEEE80211_EDMG_BW_CONFIG_5:
186 case IEEE80211_EDMG_BW_CONFIG_6:
187 case IEEE80211_EDMG_BW_CONFIG_7:
188 break;
189 case IEEE80211_EDMG_BW_CONFIG_8:
190 case IEEE80211_EDMG_BW_CONFIG_9:
191 case IEEE80211_EDMG_BW_CONFIG_10:
192 case IEEE80211_EDMG_BW_CONFIG_11:
193 if (num_of_enabled < 2)
194 return false;
195 break;
196 case IEEE80211_EDMG_BW_CONFIG_12:
197 case IEEE80211_EDMG_BW_CONFIG_13:
198 case IEEE80211_EDMG_BW_CONFIG_14:
199 case IEEE80211_EDMG_BW_CONFIG_15:
200 if (num_of_enabled < 4 || max_contiguous < 2)
201 return false;
202 break;
203 default:
204 return false;
205 }
206
207 return true;
208}
209
210int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width)
211{
212 int mhz;
213
214 switch (chan_width) {
215 case NL80211_CHAN_WIDTH_1:
216 mhz = 1;
217 break;
218 case NL80211_CHAN_WIDTH_2:
219 mhz = 2;
220 break;
221 case NL80211_CHAN_WIDTH_4:
222 mhz = 4;
223 break;
224 case NL80211_CHAN_WIDTH_8:
225 mhz = 8;
226 break;
227 case NL80211_CHAN_WIDTH_16:
228 mhz = 16;
229 break;
230 case NL80211_CHAN_WIDTH_5:
231 mhz = 5;
232 break;
233 case NL80211_CHAN_WIDTH_10:
234 mhz = 10;
235 break;
236 case NL80211_CHAN_WIDTH_20:
237 case NL80211_CHAN_WIDTH_20_NOHT:
238 mhz = 20;
239 break;
240 case NL80211_CHAN_WIDTH_40:
241 mhz = 40;
242 break;
243 case NL80211_CHAN_WIDTH_80P80:
244 case NL80211_CHAN_WIDTH_80:
245 mhz = 80;
246 break;
247 case NL80211_CHAN_WIDTH_160:
248 mhz = 160;
249 break;
250 case NL80211_CHAN_WIDTH_320:
251 mhz = 320;
252 break;
253 default:
254 WARN_ON_ONCE(1);
255 return -1;
256 }
257 return mhz;
258}
259EXPORT_SYMBOL(nl80211_chan_width_to_mhz);
260
261static int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c)
262{
263 return nl80211_chan_width_to_mhz(c->width);
264}
265
266bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef)
267{
268 u32 control_freq, oper_freq;
269 int oper_width, control_width;
270
271 if (!chandef->chan)
272 return false;
273
274 if (chandef->freq1_offset >= 1000)
275 return false;
276
277 control_freq = chandef->chan->center_freq;
278
279 switch (chandef->width) {
280 case NL80211_CHAN_WIDTH_5:
281 case NL80211_CHAN_WIDTH_10:
282 case NL80211_CHAN_WIDTH_20:
283 case NL80211_CHAN_WIDTH_20_NOHT:
284 if (ieee80211_chandef_to_khz(chandef) !=
285 ieee80211_channel_to_khz(chandef->chan))
286 return false;
287 if (chandef->center_freq2)
288 return false;
289 break;
290 case NL80211_CHAN_WIDTH_1:
291 case NL80211_CHAN_WIDTH_2:
292 case NL80211_CHAN_WIDTH_4:
293 case NL80211_CHAN_WIDTH_8:
294 case NL80211_CHAN_WIDTH_16:
295 if (chandef->chan->band != NL80211_BAND_S1GHZ)
296 return false;
297
298 control_freq = ieee80211_channel_to_khz(chandef->chan);
299 oper_freq = ieee80211_chandef_to_khz(chandef);
300 control_width = nl80211_chan_width_to_mhz(
301 ieee80211_s1g_channel_width(
302 chandef->chan));
303 oper_width = cfg80211_chandef_get_width(chandef);
304
305 if (oper_width < 0 || control_width < 0)
306 return false;
307 if (chandef->center_freq2)
308 return false;
309
310 if (control_freq + MHZ_TO_KHZ(control_width) / 2 >
311 oper_freq + MHZ_TO_KHZ(oper_width) / 2)
312 return false;
313
314 if (control_freq - MHZ_TO_KHZ(control_width) / 2 <
315 oper_freq - MHZ_TO_KHZ(oper_width) / 2)
316 return false;
317 break;
318 case NL80211_CHAN_WIDTH_80P80:
319 if (!chandef->center_freq2)
320 return false;
321 /* adjacent is not allowed -- that's a 160 MHz channel */
322 if (chandef->center_freq1 - chandef->center_freq2 == 80 ||
323 chandef->center_freq2 - chandef->center_freq1 == 80)
324 return false;
325 break;
326 default:
327 if (chandef->center_freq2)
328 return false;
329 break;
330 }
331
332 switch (chandef->width) {
333 case NL80211_CHAN_WIDTH_5:
334 case NL80211_CHAN_WIDTH_10:
335 case NL80211_CHAN_WIDTH_20:
336 case NL80211_CHAN_WIDTH_20_NOHT:
337 case NL80211_CHAN_WIDTH_1:
338 case NL80211_CHAN_WIDTH_2:
339 case NL80211_CHAN_WIDTH_4:
340 case NL80211_CHAN_WIDTH_8:
341 case NL80211_CHAN_WIDTH_16:
342 /* all checked above */
343 break;
344 case NL80211_CHAN_WIDTH_320:
345 if (chandef->center_freq1 == control_freq + 150 ||
346 chandef->center_freq1 == control_freq + 130 ||
347 chandef->center_freq1 == control_freq + 110 ||
348 chandef->center_freq1 == control_freq + 90 ||
349 chandef->center_freq1 == control_freq - 90 ||
350 chandef->center_freq1 == control_freq - 110 ||
351 chandef->center_freq1 == control_freq - 130 ||
352 chandef->center_freq1 == control_freq - 150)
353 break;
354 fallthrough;
355 case NL80211_CHAN_WIDTH_160:
356 if (chandef->center_freq1 == control_freq + 70 ||
357 chandef->center_freq1 == control_freq + 50 ||
358 chandef->center_freq1 == control_freq - 50 ||
359 chandef->center_freq1 == control_freq - 70)
360 break;
361 fallthrough;
362 case NL80211_CHAN_WIDTH_80P80:
363 case NL80211_CHAN_WIDTH_80:
364 if (chandef->center_freq1 == control_freq + 30 ||
365 chandef->center_freq1 == control_freq - 30)
366 break;
367 fallthrough;
368 case NL80211_CHAN_WIDTH_40:
369 if (chandef->center_freq1 == control_freq + 10 ||
370 chandef->center_freq1 == control_freq - 10)
371 break;
372 fallthrough;
373 default:
374 return false;
375 }
376
377 /* channel 14 is only for IEEE 802.11b */
378 if (chandef->center_freq1 == 2484 &&
379 chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
380 return false;
381
382 if (cfg80211_chandef_is_edmg(chandef) &&
383 !cfg80211_edmg_chandef_valid(chandef))
384 return false;
385
386 return valid_puncturing_bitmap(chandef);
387}
388EXPORT_SYMBOL(cfg80211_chandef_valid);
389
390int cfg80211_chandef_primary(const struct cfg80211_chan_def *c,
391 enum nl80211_chan_width primary_chan_width,
392 u16 *punctured)
393{
394 int pri_width = nl80211_chan_width_to_mhz(primary_chan_width);
395 int width = cfg80211_chandef_get_width(c);
396 u32 control = c->chan->center_freq;
397 u32 center = c->center_freq1;
398 u16 _punct = 0;
399
400 if (WARN_ON_ONCE(pri_width < 0 || width < 0))
401 return -1;
402
403 /* not intended to be called this way, can't determine */
404 if (WARN_ON_ONCE(pri_width > width))
405 return -1;
406
407 if (!punctured)
408 punctured = &_punct;
409
410 *punctured = c->punctured;
411
412 while (width > pri_width) {
413 unsigned int bits_to_drop = width / 20 / 2;
414
415 if (control > center) {
416 center += width / 4;
417 *punctured >>= bits_to_drop;
418 } else {
419 center -= width / 4;
420 *punctured &= (1 << bits_to_drop) - 1;
421 }
422 width /= 2;
423 }
424
425 return center;
426}
427EXPORT_SYMBOL(cfg80211_chandef_primary);
428
429static const struct cfg80211_chan_def *
430check_chandef_primary_compat(const struct cfg80211_chan_def *c1,
431 const struct cfg80211_chan_def *c2,
432 enum nl80211_chan_width primary_chan_width)
433{
434 u16 punct_c1 = 0, punct_c2 = 0;
435
436 /* check primary is compatible -> error if not */
437 if (cfg80211_chandef_primary(c1, primary_chan_width, &punct_c1) !=
438 cfg80211_chandef_primary(c2, primary_chan_width, &punct_c2))
439 return ERR_PTR(-EINVAL);
440
441 if (punct_c1 != punct_c2)
442 return ERR_PTR(-EINVAL);
443
444 /* assumes c1 is smaller width, if that was just checked -> done */
445 if (c1->width == primary_chan_width)
446 return c2;
447
448 /* otherwise continue checking the next width */
449 return NULL;
450}
451
452static const struct cfg80211_chan_def *
453_cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
454 const struct cfg80211_chan_def *c2)
455{
456 const struct cfg80211_chan_def *ret;
457
458 /* If they are identical, return */
459 if (cfg80211_chandef_identical(c1, c2))
460 return c2;
461
462 /* otherwise, must have same control channel */
463 if (c1->chan != c2->chan)
464 return NULL;
465
466 /*
467 * If they have the same width, but aren't identical,
468 * then they can't be compatible.
469 */
470 if (c1->width == c2->width)
471 return NULL;
472
473 /*
474 * can't be compatible if one of them is 5/10 MHz or S1G
475 * but they don't have the same width.
476 */
477#define NARROW_OR_S1G(width) ((width) == NL80211_CHAN_WIDTH_5 || \
478 (width) == NL80211_CHAN_WIDTH_10 || \
479 (width) == NL80211_CHAN_WIDTH_1 || \
480 (width) == NL80211_CHAN_WIDTH_2 || \
481 (width) == NL80211_CHAN_WIDTH_4 || \
482 (width) == NL80211_CHAN_WIDTH_8 || \
483 (width) == NL80211_CHAN_WIDTH_16)
484
485 if (NARROW_OR_S1G(c1->width) || NARROW_OR_S1G(c2->width))
486 return NULL;
487
488 /*
489 * Make sure that c1 is always the narrower one, so that later
490 * we either return NULL or c2 and don't have to check both
491 * directions.
492 */
493 if (c1->width > c2->width)
494 swap(c1, c2);
495
496 /*
497 * No further checks needed if the "narrower" one is only 20 MHz.
498 * Here "narrower" includes being a 20 MHz non-HT channel vs. a
499 * 20 MHz HT (or later) one.
500 */
501 if (c1->width <= NL80211_CHAN_WIDTH_20)
502 return c2;
503
504 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_40);
505 if (ret)
506 return ret;
507
508 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_80);
509 if (ret)
510 return ret;
511
512 /*
513 * If c1 is 80+80, then c2 is 160 or higher, but that cannot
514 * match. If c2 was also 80+80 it was already either accepted
515 * or rejected above (identical or not, respectively.)
516 */
517 if (c1->width == NL80211_CHAN_WIDTH_80P80)
518 return NULL;
519
520 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_160);
521 if (ret)
522 return ret;
523
524 /*
525 * Getting here would mean they're both wider than 160, have the
526 * same primary 160, but are not identical - this cannot happen
527 * since they must be 320 (no wider chandefs exist, at least yet.)
528 */
529 WARN_ON_ONCE(1);
530
531 return NULL;
532}
533
534const struct cfg80211_chan_def *
535cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
536 const struct cfg80211_chan_def *c2)
537{
538 const struct cfg80211_chan_def *ret;
539
540 ret = _cfg80211_chandef_compatible(c1, c2);
541 if (IS_ERR(ret))
542 return NULL;
543 return ret;
544}
545EXPORT_SYMBOL(cfg80211_chandef_compatible);
546
547static void cfg80211_set_chans_dfs_state(struct wiphy *wiphy, u32 center_freq,
548 u32 bandwidth,
549 enum nl80211_dfs_state dfs_state)
550{
551 struct ieee80211_channel *c;
552 u32 freq;
553
554 for (freq = center_freq - bandwidth/2 + 10;
555 freq <= center_freq + bandwidth/2 - 10;
556 freq += 20) {
557 c = ieee80211_get_channel(wiphy, freq);
558 if (!c || !(c->flags & IEEE80211_CHAN_RADAR))
559 continue;
560
561 c->dfs_state = dfs_state;
562 c->dfs_state_entered = jiffies;
563 }
564}
565
566void cfg80211_set_dfs_state(struct wiphy *wiphy,
567 const struct cfg80211_chan_def *chandef,
568 enum nl80211_dfs_state dfs_state)
569{
570 int width;
571
572 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
573 return;
574
575 width = cfg80211_chandef_get_width(chandef);
576 if (width < 0)
577 return;
578
579 cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq1,
580 width, dfs_state);
581
582 if (!chandef->center_freq2)
583 return;
584 cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq2,
585 width, dfs_state);
586}
587
588static u32 cfg80211_get_start_freq(u32 center_freq,
589 u32 bandwidth)
590{
591 u32 start_freq;
592
593 bandwidth = MHZ_TO_KHZ(bandwidth);
594 if (bandwidth <= MHZ_TO_KHZ(20))
595 start_freq = center_freq;
596 else
597 start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10);
598
599 return start_freq;
600}
601
602static u32 cfg80211_get_end_freq(u32 center_freq,
603 u32 bandwidth)
604{
605 u32 end_freq;
606
607 bandwidth = MHZ_TO_KHZ(bandwidth);
608 if (bandwidth <= MHZ_TO_KHZ(20))
609 end_freq = center_freq;
610 else
611 end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10);
612
613 return end_freq;
614}
615
616static bool
617cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device *rdev,
618 enum nl80211_iftype iftype,
619 struct wireless_dev *wdev,
620 struct ieee80211_channel *chan)
621{
622 unsigned int link_id;
623
624 for_each_valid_link(wdev, link_id) {
625 struct ieee80211_channel *other_chan = NULL;
626 struct cfg80211_chan_def chandef = {};
627 int ret;
628
629 /* In order to avoid daisy chaining only allow BSS STA */
630 if (wdev->iftype != NL80211_IFTYPE_STATION ||
631 !wdev->links[link_id].client.current_bss)
632 continue;
633
634 other_chan =
635 wdev->links[link_id].client.current_bss->pub.channel;
636
637 if (!other_chan)
638 continue;
639
640 if (chan == other_chan)
641 return true;
642
643 /* continue if we can't get the channel */
644 ret = rdev_get_channel(rdev, wdev, link_id, &chandef);
645 if (ret)
646 continue;
647
648 if (cfg80211_is_sub_chan(&chandef, chan, false))
649 return true;
650 }
651
652 return false;
653}
654
655/*
656 * Check if P2P GO is allowed to operate on a DFS channel
657 */
658static bool cfg80211_dfs_permissive_chan(struct wiphy *wiphy,
659 enum nl80211_iftype iftype,
660 struct ieee80211_channel *chan)
661{
662 struct wireless_dev *wdev;
663 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
664
665 lockdep_assert_held(&rdev->wiphy.mtx);
666
667 if (!wiphy_ext_feature_isset(&rdev->wiphy,
668 NL80211_EXT_FEATURE_DFS_CONCURRENT) ||
669 !(chan->flags & IEEE80211_CHAN_DFS_CONCURRENT))
670 return false;
671
672 /* only valid for P2P GO */
673 if (iftype != NL80211_IFTYPE_P2P_GO)
674 return false;
675
676 /*
677 * Allow only if there's a concurrent BSS
678 */
679 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
680 bool ret = cfg80211_dfs_permissive_check_wdev(rdev, iftype,
681 wdev, chan);
682 if (ret)
683 return ret;
684 }
685
686 return false;
687}
688
689static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy,
690 u32 center_freq,
691 u32 bandwidth,
692 enum nl80211_iftype iftype)
693{
694 struct ieee80211_channel *c;
695 u32 freq, start_freq, end_freq;
696
697 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
698 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
699
700 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
701 c = ieee80211_get_channel_khz(wiphy, freq);
702 if (!c)
703 return -EINVAL;
704
705 if (c->flags & IEEE80211_CHAN_RADAR &&
706 !cfg80211_dfs_permissive_chan(wiphy, iftype, c))
707 return 1;
708 }
709
710 return 0;
711}
712
713
714int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
715 const struct cfg80211_chan_def *chandef,
716 enum nl80211_iftype iftype)
717{
718 int width;
719 int ret;
720
721 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
722 return -EINVAL;
723
724 switch (iftype) {
725 case NL80211_IFTYPE_ADHOC:
726 case NL80211_IFTYPE_AP:
727 case NL80211_IFTYPE_P2P_GO:
728 case NL80211_IFTYPE_MESH_POINT:
729 width = cfg80211_chandef_get_width(chandef);
730 if (width < 0)
731 return -EINVAL;
732
733 ret = cfg80211_get_chans_dfs_required(wiphy,
734 ieee80211_chandef_to_khz(chandef),
735 width, iftype);
736 if (ret < 0)
737 return ret;
738 else if (ret > 0)
739 return BIT(chandef->width);
740
741 if (!chandef->center_freq2)
742 return 0;
743
744 ret = cfg80211_get_chans_dfs_required(wiphy,
745 MHZ_TO_KHZ(chandef->center_freq2),
746 width, iftype);
747 if (ret < 0)
748 return ret;
749 else if (ret > 0)
750 return BIT(chandef->width);
751
752 break;
753 case NL80211_IFTYPE_STATION:
754 case NL80211_IFTYPE_OCB:
755 case NL80211_IFTYPE_P2P_CLIENT:
756 case NL80211_IFTYPE_MONITOR:
757 case NL80211_IFTYPE_AP_VLAN:
758 case NL80211_IFTYPE_P2P_DEVICE:
759 case NL80211_IFTYPE_NAN:
760 break;
761 case NL80211_IFTYPE_WDS:
762 case NL80211_IFTYPE_UNSPECIFIED:
763 case NUM_NL80211_IFTYPES:
764 WARN_ON(1);
765 }
766
767 return 0;
768}
769EXPORT_SYMBOL(cfg80211_chandef_dfs_required);
770
771static int cfg80211_get_chans_dfs_usable(struct wiphy *wiphy,
772 u32 center_freq,
773 u32 bandwidth)
774{
775 struct ieee80211_channel *c;
776 u32 freq, start_freq, end_freq;
777 int count = 0;
778
779 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
780 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
781
782 /*
783 * Check entire range of channels for the bandwidth.
784 * Check all channels are DFS channels (DFS_USABLE or
785 * DFS_AVAILABLE). Return number of usable channels
786 * (require CAC). Allow DFS and non-DFS channel mix.
787 */
788 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
789 c = ieee80211_get_channel_khz(wiphy, freq);
790 if (!c)
791 return -EINVAL;
792
793 if (c->flags & IEEE80211_CHAN_DISABLED)
794 return -EINVAL;
795
796 if (c->flags & IEEE80211_CHAN_RADAR) {
797 if (c->dfs_state == NL80211_DFS_UNAVAILABLE)
798 return -EINVAL;
799
800 if (c->dfs_state == NL80211_DFS_USABLE)
801 count++;
802 }
803 }
804
805 return count;
806}
807
808bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
809 const struct cfg80211_chan_def *chandef)
810{
811 int width;
812 int r1, r2 = 0;
813
814 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
815 return false;
816
817 width = cfg80211_chandef_get_width(chandef);
818 if (width < 0)
819 return false;
820
821 r1 = cfg80211_get_chans_dfs_usable(wiphy,
822 MHZ_TO_KHZ(chandef->center_freq1),
823 width);
824
825 if (r1 < 0)
826 return false;
827
828 switch (chandef->width) {
829 case NL80211_CHAN_WIDTH_80P80:
830 WARN_ON(!chandef->center_freq2);
831 r2 = cfg80211_get_chans_dfs_usable(wiphy,
832 MHZ_TO_KHZ(chandef->center_freq2),
833 width);
834 if (r2 < 0)
835 return false;
836 break;
837 default:
838 WARN_ON(chandef->center_freq2);
839 break;
840 }
841
842 return (r1 + r2 > 0);
843}
844EXPORT_SYMBOL(cfg80211_chandef_dfs_usable);
845
846/*
847 * Checks if center frequency of chan falls with in the bandwidth
848 * range of chandef.
849 */
850bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef,
851 struct ieee80211_channel *chan,
852 bool primary_only)
853{
854 int width;
855 u32 freq;
856
857 if (!chandef->chan)
858 return false;
859
860 if (chandef->chan->center_freq == chan->center_freq)
861 return true;
862
863 if (primary_only)
864 return false;
865
866 width = cfg80211_chandef_get_width(chandef);
867 if (width <= 20)
868 return false;
869
870 for (freq = chandef->center_freq1 - width / 2 + 10;
871 freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) {
872 if (chan->center_freq == freq)
873 return true;
874 }
875
876 if (!chandef->center_freq2)
877 return false;
878
879 for (freq = chandef->center_freq2 - width / 2 + 10;
880 freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) {
881 if (chan->center_freq == freq)
882 return true;
883 }
884
885 return false;
886}
887
888bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev)
889{
890 unsigned int link;
891
892 lockdep_assert_wiphy(wdev->wiphy);
893
894 switch (wdev->iftype) {
895 case NL80211_IFTYPE_AP:
896 case NL80211_IFTYPE_P2P_GO:
897 for_each_valid_link(wdev, link) {
898 if (wdev->links[link].ap.beacon_interval)
899 return true;
900 }
901 break;
902 case NL80211_IFTYPE_ADHOC:
903 if (wdev->u.ibss.ssid_len)
904 return true;
905 break;
906 case NL80211_IFTYPE_MESH_POINT:
907 if (wdev->u.mesh.id_len)
908 return true;
909 break;
910 case NL80211_IFTYPE_STATION:
911 case NL80211_IFTYPE_OCB:
912 case NL80211_IFTYPE_P2P_CLIENT:
913 case NL80211_IFTYPE_MONITOR:
914 case NL80211_IFTYPE_AP_VLAN:
915 case NL80211_IFTYPE_P2P_DEVICE:
916 /* Can NAN type be considered as beaconing interface? */
917 case NL80211_IFTYPE_NAN:
918 break;
919 case NL80211_IFTYPE_UNSPECIFIED:
920 case NL80211_IFTYPE_WDS:
921 case NUM_NL80211_IFTYPES:
922 WARN_ON(1);
923 }
924
925 return false;
926}
927
928bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev,
929 struct ieee80211_channel *chan,
930 bool primary_only)
931{
932 unsigned int link;
933
934 switch (wdev->iftype) {
935 case NL80211_IFTYPE_AP:
936 case NL80211_IFTYPE_P2P_GO:
937 for_each_valid_link(wdev, link) {
938 if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef,
939 chan, primary_only))
940 return true;
941 }
942 break;
943 case NL80211_IFTYPE_ADHOC:
944 return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan,
945 primary_only);
946 case NL80211_IFTYPE_MESH_POINT:
947 return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan,
948 primary_only);
949 default:
950 break;
951 }
952
953 return false;
954}
955
956static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy,
957 struct ieee80211_channel *chan)
958{
959 struct wireless_dev *wdev;
960
961 lockdep_assert_wiphy(wiphy);
962
963 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
964 if (!cfg80211_beaconing_iface_active(wdev))
965 continue;
966
967 if (cfg80211_wdev_on_sub_chan(wdev, chan, false))
968 return true;
969 }
970
971 return false;
972}
973
974static bool
975cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev,
976 struct ieee80211_channel *channel)
977{
978 if (!rdev->background_radar_wdev)
979 return false;
980
981 if (!cfg80211_chandef_valid(&rdev->background_radar_chandef))
982 return false;
983
984 return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel,
985 false);
986}
987
988bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy,
989 struct ieee80211_channel *chan)
990{
991 struct cfg80211_registered_device *rdev;
992
993 ASSERT_RTNL();
994
995 if (!(chan->flags & IEEE80211_CHAN_RADAR))
996 return false;
997
998 for_each_rdev(rdev) {
999 bool found;
1000
1001 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
1002 continue;
1003
1004 wiphy_lock(&rdev->wiphy);
1005 found = cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan) ||
1006 cfg80211_offchan_chain_is_active(rdev, chan);
1007 wiphy_unlock(&rdev->wiphy);
1008
1009 if (found)
1010 return true;
1011 }
1012
1013 return false;
1014}
1015
1016static bool cfg80211_get_chans_dfs_available(struct wiphy *wiphy,
1017 u32 center_freq,
1018 u32 bandwidth)
1019{
1020 struct ieee80211_channel *c;
1021 u32 freq, start_freq, end_freq;
1022 bool dfs_offload;
1023
1024 dfs_offload = wiphy_ext_feature_isset(wiphy,
1025 NL80211_EXT_FEATURE_DFS_OFFLOAD);
1026
1027 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1028 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1029
1030 /*
1031 * Check entire range of channels for the bandwidth.
1032 * If any channel in between is disabled or has not
1033 * had gone through CAC return false
1034 */
1035 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1036 c = ieee80211_get_channel_khz(wiphy, freq);
1037 if (!c)
1038 return false;
1039
1040 if (c->flags & IEEE80211_CHAN_DISABLED)
1041 return false;
1042
1043 if ((c->flags & IEEE80211_CHAN_RADAR) &&
1044 (c->dfs_state != NL80211_DFS_AVAILABLE) &&
1045 !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload))
1046 return false;
1047 }
1048
1049 return true;
1050}
1051
1052static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy,
1053 const struct cfg80211_chan_def *chandef)
1054{
1055 int width;
1056 int r;
1057
1058 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1059 return false;
1060
1061 width = cfg80211_chandef_get_width(chandef);
1062 if (width < 0)
1063 return false;
1064
1065 r = cfg80211_get_chans_dfs_available(wiphy,
1066 MHZ_TO_KHZ(chandef->center_freq1),
1067 width);
1068
1069 /* If any of channels unavailable for cf1 just return */
1070 if (!r)
1071 return r;
1072
1073 switch (chandef->width) {
1074 case NL80211_CHAN_WIDTH_80P80:
1075 WARN_ON(!chandef->center_freq2);
1076 r = cfg80211_get_chans_dfs_available(wiphy,
1077 MHZ_TO_KHZ(chandef->center_freq2),
1078 width);
1079 break;
1080 default:
1081 WARN_ON(chandef->center_freq2);
1082 break;
1083 }
1084
1085 return r;
1086}
1087
1088static unsigned int cfg80211_get_chans_dfs_cac_time(struct wiphy *wiphy,
1089 u32 center_freq,
1090 u32 bandwidth)
1091{
1092 struct ieee80211_channel *c;
1093 u32 start_freq, end_freq, freq;
1094 unsigned int dfs_cac_ms = 0;
1095
1096 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1097 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1098
1099 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1100 c = ieee80211_get_channel_khz(wiphy, freq);
1101 if (!c)
1102 return 0;
1103
1104 if (c->flags & IEEE80211_CHAN_DISABLED)
1105 return 0;
1106
1107 if (!(c->flags & IEEE80211_CHAN_RADAR))
1108 continue;
1109
1110 if (c->dfs_cac_ms > dfs_cac_ms)
1111 dfs_cac_ms = c->dfs_cac_ms;
1112 }
1113
1114 return dfs_cac_ms;
1115}
1116
1117unsigned int
1118cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1119 const struct cfg80211_chan_def *chandef)
1120{
1121 int width;
1122 unsigned int t1 = 0, t2 = 0;
1123
1124 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1125 return 0;
1126
1127 width = cfg80211_chandef_get_width(chandef);
1128 if (width < 0)
1129 return 0;
1130
1131 t1 = cfg80211_get_chans_dfs_cac_time(wiphy,
1132 MHZ_TO_KHZ(chandef->center_freq1),
1133 width);
1134
1135 if (!chandef->center_freq2)
1136 return t1;
1137
1138 t2 = cfg80211_get_chans_dfs_cac_time(wiphy,
1139 MHZ_TO_KHZ(chandef->center_freq2),
1140 width);
1141
1142 return max(t1, t2);
1143}
1144EXPORT_SYMBOL(cfg80211_chandef_dfs_cac_time);
1145
1146static bool cfg80211_secondary_chans_ok(struct wiphy *wiphy,
1147 u32 center_freq, u32 bandwidth,
1148 u32 prohibited_flags, bool monitor)
1149{
1150 struct ieee80211_channel *c;
1151 u32 freq, start_freq, end_freq;
1152
1153 start_freq = cfg80211_get_start_freq(center_freq, bandwidth);
1154 end_freq = cfg80211_get_end_freq(center_freq, bandwidth);
1155
1156 for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) {
1157 c = ieee80211_get_channel_khz(wiphy, freq);
1158 if (!c)
1159 return false;
1160 if (monitor && c->flags & IEEE80211_CHAN_CAN_MONITOR)
1161 continue;
1162 if (c->flags & prohibited_flags)
1163 return false;
1164 }
1165
1166 return true;
1167}
1168
1169/* check if the operating channels are valid and supported */
1170static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels,
1171 enum ieee80211_edmg_bw_config edmg_bw_config,
1172 int primary_channel,
1173 struct ieee80211_edmg *edmg_cap)
1174{
1175 struct ieee80211_channel *chan;
1176 int i, freq;
1177 int channels_counter = 0;
1178
1179 if (!edmg_channels && !edmg_bw_config)
1180 return true;
1181
1182 if ((!edmg_channels && edmg_bw_config) ||
1183 (edmg_channels && !edmg_bw_config))
1184 return false;
1185
1186 if (!(edmg_channels & BIT(primary_channel - 1)))
1187 return false;
1188
1189 /* 60GHz channels 1..6 */
1190 for (i = 0; i < 6; i++) {
1191 if (!(edmg_channels & BIT(i)))
1192 continue;
1193
1194 if (!(edmg_cap->channels & BIT(i)))
1195 return false;
1196
1197 channels_counter++;
1198
1199 freq = ieee80211_channel_to_frequency(i + 1,
1200 NL80211_BAND_60GHZ);
1201 chan = ieee80211_get_channel(wiphy, freq);
1202 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
1203 return false;
1204 }
1205
1206 /* IEEE802.11 allows max 4 channels */
1207 if (channels_counter > 4)
1208 return false;
1209
1210 /* check bw_config is a subset of what driver supports
1211 * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13)
1212 */
1213 if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4))
1214 return false;
1215
1216 if (edmg_bw_config > edmg_cap->bw_config)
1217 return false;
1218
1219 return true;
1220}
1221
1222bool _cfg80211_chandef_usable(struct wiphy *wiphy,
1223 const struct cfg80211_chan_def *chandef,
1224 u32 prohibited_flags, bool monitor)
1225{
1226 struct ieee80211_sta_ht_cap *ht_cap;
1227 struct ieee80211_sta_vht_cap *vht_cap;
1228 struct ieee80211_edmg *edmg_cap;
1229 u32 width, control_freq, cap;
1230 bool ext_nss_cap, support_80_80 = false, support_320 = false;
1231 const struct ieee80211_sband_iftype_data *iftd;
1232 struct ieee80211_supported_band *sband;
1233 int i;
1234
1235 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1236 return false;
1237
1238 ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap;
1239 vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap;
1240 edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap;
1241 ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) &
1242 IEEE80211_VHT_EXT_NSS_BW_CAPABLE;
1243
1244 if (edmg_cap->channels &&
1245 !cfg80211_edmg_usable(wiphy,
1246 chandef->edmg.channels,
1247 chandef->edmg.bw_config,
1248 chandef->chan->hw_value,
1249 edmg_cap))
1250 return false;
1251
1252 control_freq = chandef->chan->center_freq;
1253
1254 switch (chandef->width) {
1255 case NL80211_CHAN_WIDTH_1:
1256 width = 1;
1257 break;
1258 case NL80211_CHAN_WIDTH_2:
1259 width = 2;
1260 break;
1261 case NL80211_CHAN_WIDTH_4:
1262 width = 4;
1263 break;
1264 case NL80211_CHAN_WIDTH_8:
1265 width = 8;
1266 break;
1267 case NL80211_CHAN_WIDTH_16:
1268 width = 16;
1269 break;
1270 case NL80211_CHAN_WIDTH_5:
1271 width = 5;
1272 break;
1273 case NL80211_CHAN_WIDTH_10:
1274 prohibited_flags |= IEEE80211_CHAN_NO_10MHZ;
1275 width = 10;
1276 break;
1277 case NL80211_CHAN_WIDTH_20:
1278 if (!ht_cap->ht_supported &&
1279 chandef->chan->band != NL80211_BAND_6GHZ)
1280 return false;
1281 fallthrough;
1282 case NL80211_CHAN_WIDTH_20_NOHT:
1283 prohibited_flags |= IEEE80211_CHAN_NO_20MHZ;
1284 width = 20;
1285 break;
1286 case NL80211_CHAN_WIDTH_40:
1287 width = 40;
1288 if (chandef->chan->band == NL80211_BAND_6GHZ)
1289 break;
1290 if (!ht_cap->ht_supported)
1291 return false;
1292 if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ||
1293 ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT)
1294 return false;
1295 if (chandef->center_freq1 < control_freq &&
1296 chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS)
1297 return false;
1298 if (chandef->center_freq1 > control_freq &&
1299 chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS)
1300 return false;
1301 break;
1302 case NL80211_CHAN_WIDTH_80P80:
1303 cap = vht_cap->cap;
1304 support_80_80 =
1305 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
1306 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1307 cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
1308 (ext_nss_cap &&
1309 u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1);
1310 if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80)
1311 return false;
1312 fallthrough;
1313 case NL80211_CHAN_WIDTH_80:
1314 prohibited_flags |= IEEE80211_CHAN_NO_80MHZ;
1315 width = 80;
1316 if (chandef->chan->band == NL80211_BAND_6GHZ)
1317 break;
1318 if (!vht_cap->vht_supported)
1319 return false;
1320 break;
1321 case NL80211_CHAN_WIDTH_160:
1322 prohibited_flags |= IEEE80211_CHAN_NO_160MHZ;
1323 width = 160;
1324 if (chandef->chan->band == NL80211_BAND_6GHZ)
1325 break;
1326 if (!vht_cap->vht_supported)
1327 return false;
1328 cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK;
1329 if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1330 cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ &&
1331 !(ext_nss_cap &&
1332 (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)))
1333 return false;
1334 break;
1335 case NL80211_CHAN_WIDTH_320:
1336 prohibited_flags |= IEEE80211_CHAN_NO_320MHZ;
1337 width = 320;
1338
1339 if (chandef->chan->band != NL80211_BAND_6GHZ)
1340 return false;
1341
1342 sband = wiphy->bands[NL80211_BAND_6GHZ];
1343 if (!sband)
1344 return false;
1345
1346 for_each_sband_iftype_data(sband, i, iftd) {
1347 if (!iftd->eht_cap.has_eht)
1348 continue;
1349
1350 if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] &
1351 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) {
1352 support_320 = true;
1353 break;
1354 }
1355 }
1356
1357 if (!support_320)
1358 return false;
1359 break;
1360 default:
1361 WARN_ON_ONCE(1);
1362 return false;
1363 }
1364
1365 /*
1366 * TODO: What if there are only certain 80/160/80+80 MHz channels
1367 * allowed by the driver, or only certain combinations?
1368 * For 40 MHz the driver can set the NO_HT40 flags, but for
1369 * 80/160 MHz and in particular 80+80 MHz this isn't really
1370 * feasible and we only have NO_80MHZ/NO_160MHZ so far but
1371 * no way to cover 80+80 MHz or more complex restrictions.
1372 * Note that such restrictions also need to be advertised to
1373 * userspace, for example for P2P channel selection.
1374 */
1375
1376 if (width > 20)
1377 prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1378
1379 /* 5 and 10 MHz are only defined for the OFDM PHY */
1380 if (width < 20)
1381 prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1382
1383
1384 if (!cfg80211_secondary_chans_ok(wiphy,
1385 ieee80211_chandef_to_khz(chandef),
1386 width, prohibited_flags, monitor))
1387 return false;
1388
1389 if (!chandef->center_freq2)
1390 return true;
1391 return cfg80211_secondary_chans_ok(wiphy,
1392 MHZ_TO_KHZ(chandef->center_freq2),
1393 width, prohibited_flags, monitor);
1394}
1395
1396bool cfg80211_chandef_usable(struct wiphy *wiphy,
1397 const struct cfg80211_chan_def *chandef,
1398 u32 prohibited_flags)
1399{
1400 return _cfg80211_chandef_usable(wiphy, chandef, prohibited_flags,
1401 false);
1402}
1403EXPORT_SYMBOL(cfg80211_chandef_usable);
1404
1405static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype,
1406 struct wireless_dev *wdev,
1407 struct ieee80211_channel *chan)
1408{
1409 struct ieee80211_channel *other_chan = NULL;
1410 unsigned int link_id;
1411 int r1, r2;
1412
1413 for_each_valid_link(wdev, link_id) {
1414 if (wdev->iftype == NL80211_IFTYPE_STATION &&
1415 wdev->links[link_id].client.current_bss)
1416 other_chan = wdev->links[link_id].client.current_bss->pub.channel;
1417
1418 /*
1419 * If a GO already operates on the same GO_CONCURRENT channel,
1420 * this one (maybe the same one) can beacon as well. We allow
1421 * the operation even if the station we relied on with
1422 * GO_CONCURRENT is disconnected now. But then we must make sure
1423 * we're not outdoor on an indoor-only channel.
1424 */
1425 if (iftype == NL80211_IFTYPE_P2P_GO &&
1426 wdev->iftype == NL80211_IFTYPE_P2P_GO &&
1427 wdev->links[link_id].ap.beacon_interval &&
1428 !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1429 other_chan = wdev->links[link_id].ap.chandef.chan;
1430
1431 if (!other_chan)
1432 continue;
1433
1434 if (chan == other_chan)
1435 return true;
1436
1437 if (chan->band != NL80211_BAND_5GHZ &&
1438 chan->band != NL80211_BAND_6GHZ)
1439 continue;
1440
1441 r1 = cfg80211_get_unii(chan->center_freq);
1442 r2 = cfg80211_get_unii(other_chan->center_freq);
1443
1444 if (r1 != -EINVAL && r1 == r2) {
1445 /*
1446 * At some locations channels 149-165 are considered a
1447 * bundle, but at other locations, e.g., Indonesia,
1448 * channels 149-161 are considered a bundle while
1449 * channel 165 is left out and considered to be in a
1450 * different bundle. Thus, in case that there is a
1451 * station interface connected to an AP on channel 165,
1452 * it is assumed that channels 149-161 are allowed for
1453 * GO operations. However, having a station interface
1454 * connected to an AP on channels 149-161, does not
1455 * allow GO operation on channel 165.
1456 */
1457 if (chan->center_freq == 5825 &&
1458 other_chan->center_freq != 5825)
1459 continue;
1460 return true;
1461 }
1462 }
1463
1464 return false;
1465}
1466
1467/*
1468 * Check if the channel can be used under permissive conditions mandated by
1469 * some regulatory bodies, i.e., the channel is marked with
1470 * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface
1471 * associated to an AP on the same channel or on the same UNII band
1472 * (assuming that the AP is an authorized master).
1473 * In addition allow operation on a channel on which indoor operation is
1474 * allowed, iff we are currently operating in an indoor environment.
1475 */
1476static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy,
1477 enum nl80211_iftype iftype,
1478 struct ieee80211_channel *chan)
1479{
1480 struct wireless_dev *wdev;
1481 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1482
1483 lockdep_assert_held(&rdev->wiphy.mtx);
1484
1485 if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) ||
1486 !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR))
1487 return false;
1488
1489 /* only valid for GO and TDLS off-channel (station/p2p-CL) */
1490 if (iftype != NL80211_IFTYPE_P2P_GO &&
1491 iftype != NL80211_IFTYPE_STATION &&
1492 iftype != NL80211_IFTYPE_P2P_CLIENT)
1493 return false;
1494
1495 if (regulatory_indoor_allowed() &&
1496 (chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1497 return true;
1498
1499 if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT))
1500 return false;
1501
1502 /*
1503 * Generally, it is possible to rely on another device/driver to allow
1504 * the IR concurrent relaxation, however, since the device can further
1505 * enforce the relaxation (by doing a similar verifications as this),
1506 * and thus fail the GO instantiation, consider only the interfaces of
1507 * the current registered device.
1508 */
1509 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1510 bool ret;
1511
1512 ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan);
1513 if (ret)
1514 return ret;
1515 }
1516
1517 return false;
1518}
1519
1520static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy,
1521 struct cfg80211_chan_def *chandef,
1522 enum nl80211_iftype iftype,
1523 bool check_no_ir)
1524{
1525 bool res;
1526 u32 prohibited_flags = IEEE80211_CHAN_DISABLED;
1527 int dfs_required;
1528
1529 trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir);
1530
1531 if (check_no_ir)
1532 prohibited_flags |= IEEE80211_CHAN_NO_IR;
1533
1534 dfs_required = cfg80211_chandef_dfs_required(wiphy, chandef, iftype);
1535 if (dfs_required != 0)
1536 prohibited_flags |= IEEE80211_CHAN_RADAR;
1537
1538 if (dfs_required > 0 &&
1539 cfg80211_chandef_dfs_available(wiphy, chandef)) {
1540 /* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */
1541 prohibited_flags = IEEE80211_CHAN_DISABLED;
1542 }
1543
1544 res = cfg80211_chandef_usable(wiphy, chandef, prohibited_flags);
1545
1546 trace_cfg80211_return_bool(res);
1547 return res;
1548}
1549
1550bool cfg80211_reg_can_beacon(struct wiphy *wiphy,
1551 struct cfg80211_chan_def *chandef,
1552 enum nl80211_iftype iftype)
1553{
1554 return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, true);
1555}
1556EXPORT_SYMBOL(cfg80211_reg_can_beacon);
1557
1558bool cfg80211_reg_can_beacon_relax(struct wiphy *wiphy,
1559 struct cfg80211_chan_def *chandef,
1560 enum nl80211_iftype iftype)
1561{
1562 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1563 bool check_no_ir;
1564
1565 lockdep_assert_held(&rdev->wiphy.mtx);
1566
1567 /*
1568 * Under certain conditions suggested by some regulatory bodies a
1569 * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag
1570 * only if such relaxations are not enabled and the conditions are not
1571 * met.
1572 */
1573 check_no_ir = !cfg80211_ir_permissive_chan(wiphy, iftype,
1574 chandef->chan);
1575
1576 return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir);
1577}
1578EXPORT_SYMBOL(cfg80211_reg_can_beacon_relax);
1579
1580int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev,
1581 struct cfg80211_chan_def *chandef)
1582{
1583 if (!rdev->ops->set_monitor_channel)
1584 return -EOPNOTSUPP;
1585 if (!cfg80211_has_monitors_only(rdev))
1586 return -EBUSY;
1587
1588 return rdev_set_monitor_channel(rdev, chandef);
1589}
1590
1591bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1592 unsigned long sband_mask,
1593 u32 prohibited_flags)
1594{
1595 int idx;
1596
1597 prohibited_flags |= IEEE80211_CHAN_DISABLED;
1598
1599 for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) {
1600 struct ieee80211_supported_band *sband = wiphy->bands[idx];
1601 int chanidx;
1602
1603 if (!sband)
1604 continue;
1605
1606 for (chanidx = 0; chanidx < sband->n_channels; chanidx++) {
1607 struct ieee80211_channel *chan;
1608
1609 chan = &sband->channels[chanidx];
1610
1611 if (chan->flags & prohibited_flags)
1612 continue;
1613
1614 return true;
1615 }
1616 }
1617
1618 return false;
1619}
1620EXPORT_SYMBOL(cfg80211_any_usable_channels);
1621
1622struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
1623 unsigned int link_id)
1624{
1625 lockdep_assert_wiphy(wdev->wiphy);
1626
1627 WARN_ON(wdev->valid_links && !(wdev->valid_links & BIT(link_id)));
1628 WARN_ON(!wdev->valid_links && link_id > 0);
1629
1630 switch (wdev->iftype) {
1631 case NL80211_IFTYPE_MESH_POINT:
1632 return &wdev->u.mesh.chandef;
1633 case NL80211_IFTYPE_ADHOC:
1634 return &wdev->u.ibss.chandef;
1635 case NL80211_IFTYPE_OCB:
1636 return &wdev->u.ocb.chandef;
1637 case NL80211_IFTYPE_AP:
1638 case NL80211_IFTYPE_P2P_GO:
1639 return &wdev->links[link_id].ap.chandef;
1640 default:
1641 return NULL;
1642 }
1643}
1644EXPORT_SYMBOL(wdev_chandef);