Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002		Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010		SUSE Linux Products GmbH
  16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/interrupt.h>
  33#include <linux/signal.h>
  34#include <linux/completion.h>
  35#include <linux/workqueue.h>
  36#include <linux/slab.h>
  37#include <linux/cpu.h>
  38#include <linux/notifier.h>
  39#include <linux/kthread.h>
  40#include <linux/hardirq.h>
  41#include <linux/mempolicy.h>
  42#include <linux/freezer.h>
  43#include <linux/debug_locks.h>
  44#include <linux/lockdep.h>
  45#include <linux/idr.h>
  46#include <linux/jhash.h>
  47#include <linux/hashtable.h>
  48#include <linux/rculist.h>
  49#include <linux/nodemask.h>
  50#include <linux/moduleparam.h>
  51#include <linux/uaccess.h>
  52#include <linux/sched/isolation.h>
  53#include <linux/sched/debug.h>
  54#include <linux/nmi.h>
  55#include <linux/kvm_para.h>
  56#include <linux/delay.h>
  57#include <linux/irq_work.h>
  58
  59#include "workqueue_internal.h"
  60
  61enum worker_pool_flags {
  62	/*
  63	 * worker_pool flags
  64	 *
  65	 * A bound pool is either associated or disassociated with its CPU.
  66	 * While associated (!DISASSOCIATED), all workers are bound to the
  67	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  68	 * is in effect.
  69	 *
  70	 * While DISASSOCIATED, the cpu may be offline and all workers have
  71	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  72	 * be executing on any CPU.  The pool behaves as an unbound one.
  73	 *
  74	 * Note that DISASSOCIATED should be flipped only while holding
  75	 * wq_pool_attach_mutex to avoid changing binding state while
  76	 * worker_attach_to_pool() is in progress.
  77	 *
  78	 * As there can only be one concurrent BH execution context per CPU, a
  79	 * BH pool is per-CPU and always DISASSOCIATED.
  80	 */
  81	POOL_BH			= 1 << 0,	/* is a BH pool */
  82	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
  83	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  84	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
  85};
  86
  87enum worker_flags {
  88	/* worker flags */
  89	WORKER_DIE		= 1 << 1,	/* die die die */
  90	WORKER_IDLE		= 1 << 2,	/* is idle */
  91	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  92	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  93	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  94	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  95
  96	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  97				  WORKER_UNBOUND | WORKER_REBOUND,
  98};
  99
 100enum work_cancel_flags {
 101	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
 102	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
 103};
 104
 105enum wq_internal_consts {
 106	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
 107
 108	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
 109	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
 110
 111	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
 112	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
 113
 114	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
 115						/* call for help after 10ms
 116						   (min two ticks) */
 117	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
 118	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 119
 120	/*
 121	 * Rescue workers are used only on emergencies and shared by
 122	 * all cpus.  Give MIN_NICE.
 123	 */
 124	RESCUER_NICE_LEVEL	= MIN_NICE,
 125	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 126
 127	WQ_NAME_LEN		= 32,
 128	WORKER_ID_LEN		= 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
 129};
 130
 131/*
 132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
 133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
 134 * msecs_to_jiffies() can't be an initializer.
 135 */
 136#define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
 137#define BH_WORKER_RESTARTS	10
 138
 139/*
 140 * Structure fields follow one of the following exclusion rules.
 141 *
 142 * I: Modifiable by initialization/destruction paths and read-only for
 143 *    everyone else.
 144 *
 145 * P: Preemption protected.  Disabling preemption is enough and should
 146 *    only be modified and accessed from the local cpu.
 147 *
 148 * L: pool->lock protected.  Access with pool->lock held.
 149 *
 150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
 151 *     reads.
 152 *
 153 * K: Only modified by worker while holding pool->lock. Can be safely read by
 154 *    self, while holding pool->lock or from IRQ context if %current is the
 155 *    kworker.
 156 *
 157 * S: Only modified by worker self.
 158 *
 159 * A: wq_pool_attach_mutex protected.
 160 *
 161 * PL: wq_pool_mutex protected.
 162 *
 163 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 164 *
 165 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 166 *
 167 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 168 *      RCU for reads.
 169 *
 170 * WQ: wq->mutex protected.
 171 *
 172 * WR: wq->mutex protected for writes.  RCU protected for reads.
 173 *
 174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
 175 *     with READ_ONCE() without locking.
 176 *
 177 * MD: wq_mayday_lock protected.
 178 *
 179 * WD: Used internally by the watchdog.
 180 */
 181
 182/* struct worker is defined in workqueue_internal.h */
 183
 184struct worker_pool {
 185	raw_spinlock_t		lock;		/* the pool lock */
 186	int			cpu;		/* I: the associated cpu */
 187	int			node;		/* I: the associated node ID */
 188	int			id;		/* I: pool ID */
 189	unsigned int		flags;		/* L: flags */
 190
 191	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 192	bool			cpu_stall;	/* WD: stalled cpu bound pool */
 193
 194	/*
 195	 * The counter is incremented in a process context on the associated CPU
 196	 * w/ preemption disabled, and decremented or reset in the same context
 197	 * but w/ pool->lock held. The readers grab pool->lock and are
 198	 * guaranteed to see if the counter reached zero.
 199	 */
 200	int			nr_running;
 201
 202	struct list_head	worklist;	/* L: list of pending works */
 203
 204	int			nr_workers;	/* L: total number of workers */
 205	int			nr_idle;	/* L: currently idle workers */
 206
 207	struct list_head	idle_list;	/* L: list of idle workers */
 208	struct timer_list	idle_timer;	/* L: worker idle timeout */
 209	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
 210
 211	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
 212
 213	/* a workers is either on busy_hash or idle_list, or the manager */
 214	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 215						/* L: hash of busy workers */
 216
 217	struct worker		*manager;	/* L: purely informational */
 218	struct list_head	workers;	/* A: attached workers */
 
 
 219
 220	struct ida		worker_ida;	/* worker IDs for task name */
 221
 222	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 223	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 224	int			refcnt;		/* PL: refcnt for unbound pools */
 225
 226	/*
 227	 * Destruction of pool is RCU protected to allow dereferences
 228	 * from get_work_pool().
 229	 */
 230	struct rcu_head		rcu;
 231};
 232
 233/*
 234 * Per-pool_workqueue statistics. These can be monitored using
 235 * tools/workqueue/wq_monitor.py.
 236 */
 237enum pool_workqueue_stats {
 238	PWQ_STAT_STARTED,	/* work items started execution */
 239	PWQ_STAT_COMPLETED,	/* work items completed execution */
 240	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
 241	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
 242	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
 243	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
 244	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
 245	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
 246
 247	PWQ_NR_STATS,
 248};
 249
 250/*
 251 * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
 252 * of work_struct->data are used for flags and the remaining high bits
 253 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 254 * number of flag bits.
 255 */
 256struct pool_workqueue {
 257	struct worker_pool	*pool;		/* I: the associated pool */
 258	struct workqueue_struct *wq;		/* I: the owning workqueue */
 259	int			work_color;	/* L: current color */
 260	int			flush_color;	/* L: flushing color */
 261	int			refcnt;		/* L: reference count */
 262	int			nr_in_flight[WORK_NR_COLORS];
 263						/* L: nr of in_flight works */
 264	bool			plugged;	/* L: execution suspended */
 265
 266	/*
 267	 * nr_active management and WORK_STRUCT_INACTIVE:
 268	 *
 269	 * When pwq->nr_active >= max_active, new work item is queued to
 270	 * pwq->inactive_works instead of pool->worklist and marked with
 271	 * WORK_STRUCT_INACTIVE.
 272	 *
 273	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
 274	 * nr_active and all work items in pwq->inactive_works are marked with
 275	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
 276	 * in pwq->inactive_works. Some of them are ready to run in
 277	 * pool->worklist or worker->scheduled. Those work itmes are only struct
 278	 * wq_barrier which is used for flush_work() and should not participate
 279	 * in nr_active. For non-barrier work item, it is marked with
 280	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
 281	 */
 282	int			nr_active;	/* L: nr of active works */
 283	struct list_head	inactive_works;	/* L: inactive works */
 284	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
 285	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 286	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 287
 288	u64			stats[PWQ_NR_STATS];
 289
 290	/*
 291	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
 292	 * and pwq_release_workfn() for details. pool_workqueue itself is also
 293	 * RCU protected so that the first pwq can be determined without
 294	 * grabbing wq->mutex.
 295	 */
 296	struct kthread_work	release_work;
 297	struct rcu_head		rcu;
 298} __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
 299
 300/*
 301 * Structure used to wait for workqueue flush.
 302 */
 303struct wq_flusher {
 304	struct list_head	list;		/* WQ: list of flushers */
 305	int			flush_color;	/* WQ: flush color waiting for */
 306	struct completion	done;		/* flush completion */
 307};
 308
 309struct wq_device;
 310
 311/*
 312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
 313 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
 314 * As sharing a single nr_active across multiple sockets can be very expensive,
 315 * the counting and enforcement is per NUMA node.
 316 *
 317 * The following struct is used to enforce per-node max_active. When a pwq wants
 318 * to start executing a work item, it should increment ->nr using
 319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
 320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
 321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
 322 * round-robin order.
 323 */
 324struct wq_node_nr_active {
 325	int			max;		/* per-node max_active */
 326	atomic_t		nr;		/* per-node nr_active */
 327	raw_spinlock_t		lock;		/* nests inside pool locks */
 328	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
 329};
 330
 331/*
 332 * The externally visible workqueue.  It relays the issued work items to
 333 * the appropriate worker_pool through its pool_workqueues.
 334 */
 335struct workqueue_struct {
 336	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 337	struct list_head	list;		/* PR: list of all workqueues */
 338
 339	struct mutex		mutex;		/* protects this wq */
 340	int			work_color;	/* WQ: current work color */
 341	int			flush_color;	/* WQ: current flush color */
 342	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 343	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 344	struct list_head	flusher_queue;	/* WQ: flush waiters */
 345	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 346
 347	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 348	struct worker		*rescuer;	/* MD: rescue worker */
 349
 350	int			nr_drainers;	/* WQ: drain in progress */
 351
 352	/* See alloc_workqueue() function comment for info on min/max_active */
 353	int			max_active;	/* WO: max active works */
 354	int			min_active;	/* WO: min active works */
 355	int			saved_max_active; /* WQ: saved max_active */
 356	int			saved_min_active; /* WQ: saved min_active */
 357
 358	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 359	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
 360
 361#ifdef CONFIG_SYSFS
 362	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 363#endif
 364#ifdef CONFIG_LOCKDEP
 365	char			*lock_name;
 366	struct lock_class_key	key;
 367	struct lockdep_map	__lockdep_map;
 368	struct lockdep_map	*lockdep_map;
 369#endif
 370	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 371
 372	/*
 373	 * Destruction of workqueue_struct is RCU protected to allow walking
 374	 * the workqueues list without grabbing wq_pool_mutex.
 375	 * This is used to dump all workqueues from sysrq.
 376	 */
 377	struct rcu_head		rcu;
 378
 379	/* hot fields used during command issue, aligned to cacheline */
 380	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 381	struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
 382	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
 383};
 384
 385/*
 386 * Each pod type describes how CPUs should be grouped for unbound workqueues.
 387 * See the comment above workqueue_attrs->affn_scope.
 388 */
 389struct wq_pod_type {
 390	int			nr_pods;	/* number of pods */
 391	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
 392	int			*pod_node;	/* pod -> node */
 393	int			*cpu_pod;	/* cpu -> pod */
 394};
 395
 396struct work_offq_data {
 397	u32			pool_id;
 398	u32			disable;
 399	u32			flags;
 400};
 401
 402static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
 403	[WQ_AFFN_DFL]		= "default",
 404	[WQ_AFFN_CPU]		= "cpu",
 405	[WQ_AFFN_SMT]		= "smt",
 406	[WQ_AFFN_CACHE]		= "cache",
 407	[WQ_AFFN_NUMA]		= "numa",
 408	[WQ_AFFN_SYSTEM]	= "system",
 409};
 410
 411/*
 412 * Per-cpu work items which run for longer than the following threshold are
 413 * automatically considered CPU intensive and excluded from concurrency
 414 * management to prevent them from noticeably delaying other per-cpu work items.
 415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
 416 * The actual value is initialized in wq_cpu_intensive_thresh_init().
 417 */
 418static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
 419module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
 420#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
 421static unsigned int wq_cpu_intensive_warning_thresh = 4;
 422module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
 423#endif
 424
 425/* see the comment above the definition of WQ_POWER_EFFICIENT */
 426static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 427module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 428
 429static bool wq_online;			/* can kworkers be created yet? */
 430static bool wq_topo_initialized __read_mostly = false;
 431
 432static struct kmem_cache *pwq_cache;
 433
 434static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
 435static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
 436
 437/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
 438static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
 439
 440static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 441static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 442static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 443/* wait for manager to go away */
 444static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
 445
 446static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 447static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 448
 449/* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
 450static cpumask_var_t wq_online_cpumask;
 451
 452/* PL&A: allowable cpus for unbound wqs and work items */
 453static cpumask_var_t wq_unbound_cpumask;
 454
 455/* PL: user requested unbound cpumask via sysfs */
 456static cpumask_var_t wq_requested_unbound_cpumask;
 457
 458/* PL: isolated cpumask to be excluded from unbound cpumask */
 459static cpumask_var_t wq_isolated_cpumask;
 460
 461/* for further constrain wq_unbound_cpumask by cmdline parameter*/
 462static struct cpumask wq_cmdline_cpumask __initdata;
 463
 464/* CPU where unbound work was last round robin scheduled from this CPU */
 465static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 466
 467/*
 468 * Local execution of unbound work items is no longer guaranteed.  The
 469 * following always forces round-robin CPU selection on unbound work items
 470 * to uncover usages which depend on it.
 471 */
 472#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 473static bool wq_debug_force_rr_cpu = true;
 474#else
 475static bool wq_debug_force_rr_cpu = false;
 476#endif
 477module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 478
 479/* to raise softirq for the BH worker pools on other CPUs */
 480static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
 
 481
 482/* the BH worker pools */
 483static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
 
 484
 485/* the per-cpu worker pools */
 486static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 
 487
 488static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 489
 490/* PL: hash of all unbound pools keyed by pool->attrs */
 491static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 492
 493/* I: attributes used when instantiating standard unbound pools on demand */
 494static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 495
 496/* I: attributes used when instantiating ordered pools on demand */
 497static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 498
 499/*
 
 
 
 
 
 
 500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
 501 * process context while holding a pool lock. Bounce to a dedicated kthread
 502 * worker to avoid A-A deadlocks.
 503 */
 504static struct kthread_worker *pwq_release_worker __ro_after_init;
 505
 506struct workqueue_struct *system_wq __ro_after_init;
 507EXPORT_SYMBOL(system_wq);
 508struct workqueue_struct *system_highpri_wq __ro_after_init;
 509EXPORT_SYMBOL_GPL(system_highpri_wq);
 510struct workqueue_struct *system_long_wq __ro_after_init;
 511EXPORT_SYMBOL_GPL(system_long_wq);
 512struct workqueue_struct *system_unbound_wq __ro_after_init;
 513EXPORT_SYMBOL_GPL(system_unbound_wq);
 514struct workqueue_struct *system_freezable_wq __ro_after_init;
 515EXPORT_SYMBOL_GPL(system_freezable_wq);
 516struct workqueue_struct *system_power_efficient_wq __ro_after_init;
 517EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 518struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
 519EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 520struct workqueue_struct *system_bh_wq;
 521EXPORT_SYMBOL_GPL(system_bh_wq);
 522struct workqueue_struct *system_bh_highpri_wq;
 523EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
 524
 525static int worker_thread(void *__worker);
 526static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 527static void show_pwq(struct pool_workqueue *pwq);
 528static void show_one_worker_pool(struct worker_pool *pool);
 529
 530#define CREATE_TRACE_POINTS
 531#include <trace/events/workqueue.h>
 532
 533#define assert_rcu_or_pool_mutex()					\
 534	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
 535			 !lockdep_is_held(&wq_pool_mutex),		\
 536			 "RCU or wq_pool_mutex should be held")
 537
 538#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 539	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
 540			 !lockdep_is_held(&wq->mutex) &&		\
 541			 !lockdep_is_held(&wq_pool_mutex),		\
 542			 "RCU, wq->mutex or wq_pool_mutex should be held")
 543
 544#define for_each_bh_worker_pool(pool, cpu)				\
 545	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
 546	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 547	     (pool)++)
 548
 549#define for_each_cpu_worker_pool(pool, cpu)				\
 550	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 551	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 552	     (pool)++)
 553
 554/**
 555 * for_each_pool - iterate through all worker_pools in the system
 556 * @pool: iteration cursor
 557 * @pi: integer used for iteration
 558 *
 559 * This must be called either with wq_pool_mutex held or RCU read
 560 * locked.  If the pool needs to be used beyond the locking in effect, the
 561 * caller is responsible for guaranteeing that the pool stays online.
 562 *
 563 * The if/else clause exists only for the lockdep assertion and can be
 564 * ignored.
 565 */
 566#define for_each_pool(pool, pi)						\
 567	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 568		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 569		else
 570
 571/**
 572 * for_each_pool_worker - iterate through all workers of a worker_pool
 573 * @worker: iteration cursor
 574 * @pool: worker_pool to iterate workers of
 575 *
 576 * This must be called with wq_pool_attach_mutex.
 577 *
 578 * The if/else clause exists only for the lockdep assertion and can be
 579 * ignored.
 580 */
 581#define for_each_pool_worker(worker, pool)				\
 582	list_for_each_entry((worker), &(pool)->workers, node)		\
 583		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 584		else
 585
 586/**
 587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 588 * @pwq: iteration cursor
 589 * @wq: the target workqueue
 590 *
 591 * This must be called either with wq->mutex held or RCU read locked.
 592 * If the pwq needs to be used beyond the locking in effect, the caller is
 593 * responsible for guaranteeing that the pwq stays online.
 594 *
 595 * The if/else clause exists only for the lockdep assertion and can be
 596 * ignored.
 597 */
 598#define for_each_pwq(pwq, wq)						\
 599	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
 600				 lockdep_is_held(&(wq->mutex)))
 601
 602#ifdef CONFIG_DEBUG_OBJECTS_WORK
 603
 604static const struct debug_obj_descr work_debug_descr;
 605
 606static void *work_debug_hint(void *addr)
 607{
 608	return ((struct work_struct *) addr)->func;
 609}
 610
 611static bool work_is_static_object(void *addr)
 612{
 613	struct work_struct *work = addr;
 614
 615	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 616}
 617
 618/*
 619 * fixup_init is called when:
 620 * - an active object is initialized
 621 */
 622static bool work_fixup_init(void *addr, enum debug_obj_state state)
 623{
 624	struct work_struct *work = addr;
 625
 626	switch (state) {
 627	case ODEBUG_STATE_ACTIVE:
 628		cancel_work_sync(work);
 629		debug_object_init(work, &work_debug_descr);
 630		return true;
 631	default:
 632		return false;
 633	}
 634}
 635
 636/*
 637 * fixup_free is called when:
 638 * - an active object is freed
 639 */
 640static bool work_fixup_free(void *addr, enum debug_obj_state state)
 641{
 642	struct work_struct *work = addr;
 643
 644	switch (state) {
 645	case ODEBUG_STATE_ACTIVE:
 646		cancel_work_sync(work);
 647		debug_object_free(work, &work_debug_descr);
 648		return true;
 649	default:
 650		return false;
 651	}
 652}
 653
 654static const struct debug_obj_descr work_debug_descr = {
 655	.name		= "work_struct",
 656	.debug_hint	= work_debug_hint,
 657	.is_static_object = work_is_static_object,
 658	.fixup_init	= work_fixup_init,
 659	.fixup_free	= work_fixup_free,
 660};
 661
 662static inline void debug_work_activate(struct work_struct *work)
 663{
 664	debug_object_activate(work, &work_debug_descr);
 665}
 666
 667static inline void debug_work_deactivate(struct work_struct *work)
 668{
 669	debug_object_deactivate(work, &work_debug_descr);
 670}
 671
 672void __init_work(struct work_struct *work, int onstack)
 673{
 674	if (onstack)
 675		debug_object_init_on_stack(work, &work_debug_descr);
 676	else
 677		debug_object_init(work, &work_debug_descr);
 678}
 679EXPORT_SYMBOL_GPL(__init_work);
 680
 681void destroy_work_on_stack(struct work_struct *work)
 682{
 683	debug_object_free(work, &work_debug_descr);
 684}
 685EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 686
 687void destroy_delayed_work_on_stack(struct delayed_work *work)
 688{
 689	destroy_timer_on_stack(&work->timer);
 690	debug_object_free(&work->work, &work_debug_descr);
 691}
 692EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 693
 694#else
 695static inline void debug_work_activate(struct work_struct *work) { }
 696static inline void debug_work_deactivate(struct work_struct *work) { }
 697#endif
 698
 699/**
 700 * worker_pool_assign_id - allocate ID and assign it to @pool
 701 * @pool: the pool pointer of interest
 702 *
 703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 704 * successfully, -errno on failure.
 705 */
 706static int worker_pool_assign_id(struct worker_pool *pool)
 707{
 708	int ret;
 709
 710	lockdep_assert_held(&wq_pool_mutex);
 711
 712	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 713			GFP_KERNEL);
 714	if (ret >= 0) {
 715		pool->id = ret;
 716		return 0;
 717	}
 718	return ret;
 719}
 720
 721static struct pool_workqueue __rcu **
 722unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
 723{
 724       if (cpu >= 0)
 725               return per_cpu_ptr(wq->cpu_pwq, cpu);
 726       else
 727               return &wq->dfl_pwq;
 728}
 729
 730/* @cpu < 0 for dfl_pwq */
 731static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
 732{
 733	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
 734				     lockdep_is_held(&wq_pool_mutex) ||
 735				     lockdep_is_held(&wq->mutex));
 736}
 737
 738/**
 739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
 740 * @wq: workqueue of interest
 741 *
 742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
 743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
 744 * default pwq is always mapped to the pool with the current effective cpumask.
 745 */
 746static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
 747{
 748	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
 749}
 750
 751static unsigned int work_color_to_flags(int color)
 752{
 753	return color << WORK_STRUCT_COLOR_SHIFT;
 754}
 755
 756static int get_work_color(unsigned long work_data)
 757{
 758	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
 759		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 760}
 761
 762static int work_next_color(int color)
 763{
 764	return (color + 1) % WORK_NR_COLORS;
 765}
 766
 767static unsigned long pool_offq_flags(struct worker_pool *pool)
 768{
 769	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
 770}
 771
 772/*
 773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 774 * contain the pointer to the queued pwq.  Once execution starts, the flag
 775 * is cleared and the high bits contain OFFQ flags and pool ID.
 776 *
 777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
 778 * can be used to set the pwq, pool or clear work->data. These functions should
 779 * only be called while the work is owned - ie. while the PENDING bit is set.
 780 *
 781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 782 * corresponding to a work.  Pool is available once the work has been
 783 * queued anywhere after initialization until it is sync canceled.  pwq is
 784 * available only while the work item is queued.
 
 
 
 
 
 785 */
 786static inline void set_work_data(struct work_struct *work, unsigned long data)
 787{
 788	WARN_ON_ONCE(!work_pending(work));
 789	atomic_long_set(&work->data, data | work_static(work));
 790}
 791
 792static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 793			 unsigned long flags)
 794{
 795	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
 796		      WORK_STRUCT_PWQ | flags);
 797}
 798
 799static void set_work_pool_and_keep_pending(struct work_struct *work,
 800					   int pool_id, unsigned long flags)
 801{
 802	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
 803		      WORK_STRUCT_PENDING | flags);
 804}
 805
 806static void set_work_pool_and_clear_pending(struct work_struct *work,
 807					    int pool_id, unsigned long flags)
 808{
 809	/*
 810	 * The following wmb is paired with the implied mb in
 811	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 812	 * here are visible to and precede any updates by the next PENDING
 813	 * owner.
 814	 */
 815	smp_wmb();
 816	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
 817		      flags);
 818	/*
 819	 * The following mb guarantees that previous clear of a PENDING bit
 820	 * will not be reordered with any speculative LOADS or STORES from
 821	 * work->current_func, which is executed afterwards.  This possible
 822	 * reordering can lead to a missed execution on attempt to queue
 823	 * the same @work.  E.g. consider this case:
 824	 *
 825	 *   CPU#0                         CPU#1
 826	 *   ----------------------------  --------------------------------
 827	 *
 828	 * 1  STORE event_indicated
 829	 * 2  queue_work_on() {
 830	 * 3    test_and_set_bit(PENDING)
 831	 * 4 }                             set_..._and_clear_pending() {
 832	 * 5                                 set_work_data() # clear bit
 833	 * 6                                 smp_mb()
 834	 * 7                               work->current_func() {
 835	 * 8				      LOAD event_indicated
 836	 *				   }
 837	 *
 838	 * Without an explicit full barrier speculative LOAD on line 8 can
 839	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 840	 * CPU#0 observes the PENDING bit is still set and new execution of
 841	 * a @work is not queued in a hope, that CPU#1 will eventually
 842	 * finish the queued @work.  Meanwhile CPU#1 does not see
 843	 * event_indicated is set, because speculative LOAD was executed
 844	 * before actual STORE.
 845	 */
 846	smp_mb();
 847}
 848
 849static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
 850{
 851	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
 852}
 853
 854static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 855{
 856	unsigned long data = atomic_long_read(&work->data);
 857
 858	if (data & WORK_STRUCT_PWQ)
 859		return work_struct_pwq(data);
 860	else
 861		return NULL;
 862}
 863
 864/**
 865 * get_work_pool - return the worker_pool a given work was associated with
 866 * @work: the work item of interest
 867 *
 868 * Pools are created and destroyed under wq_pool_mutex, and allows read
 869 * access under RCU read lock.  As such, this function should be
 870 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 871 *
 872 * All fields of the returned pool are accessible as long as the above
 873 * mentioned locking is in effect.  If the returned pool needs to be used
 874 * beyond the critical section, the caller is responsible for ensuring the
 875 * returned pool is and stays online.
 876 *
 877 * Return: The worker_pool @work was last associated with.  %NULL if none.
 878 */
 879static struct worker_pool *get_work_pool(struct work_struct *work)
 880{
 881	unsigned long data = atomic_long_read(&work->data);
 882	int pool_id;
 883
 884	assert_rcu_or_pool_mutex();
 885
 886	if (data & WORK_STRUCT_PWQ)
 887		return work_struct_pwq(data)->pool;
 888
 889	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 890	if (pool_id == WORK_OFFQ_POOL_NONE)
 891		return NULL;
 892
 893	return idr_find(&worker_pool_idr, pool_id);
 894}
 895
 896static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
 
 
 
 
 
 
 
 897{
 898	return (v >> shift) & ((1U << bits) - 1);
 
 
 
 
 
 899}
 900
 901static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
 902{
 903	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
 904
 905	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
 906					WORK_OFFQ_POOL_BITS);
 907	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
 908					WORK_OFFQ_DISABLE_BITS);
 909	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
 910}
 911
 912static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
 913{
 914	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
 915		((unsigned long)offqd->flags);
 
 916}
 917
 918/*
 919 * Policy functions.  These define the policies on how the global worker
 920 * pools are managed.  Unless noted otherwise, these functions assume that
 921 * they're being called with pool->lock held.
 922 */
 923
 924/*
 925 * Need to wake up a worker?  Called from anything but currently
 926 * running workers.
 927 *
 928 * Note that, because unbound workers never contribute to nr_running, this
 929 * function will always return %true for unbound pools as long as the
 930 * worklist isn't empty.
 931 */
 932static bool need_more_worker(struct worker_pool *pool)
 933{
 934	return !list_empty(&pool->worklist) && !pool->nr_running;
 935}
 936
 937/* Can I start working?  Called from busy but !running workers. */
 938static bool may_start_working(struct worker_pool *pool)
 939{
 940	return pool->nr_idle;
 941}
 942
 943/* Do I need to keep working?  Called from currently running workers. */
 944static bool keep_working(struct worker_pool *pool)
 945{
 946	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
 947}
 948
 949/* Do we need a new worker?  Called from manager. */
 950static bool need_to_create_worker(struct worker_pool *pool)
 951{
 952	return need_more_worker(pool) && !may_start_working(pool);
 953}
 954
 955/* Do we have too many workers and should some go away? */
 956static bool too_many_workers(struct worker_pool *pool)
 957{
 958	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 959	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 960	int nr_busy = pool->nr_workers - nr_idle;
 961
 962	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 963}
 964
 965/**
 966 * worker_set_flags - set worker flags and adjust nr_running accordingly
 967 * @worker: self
 968 * @flags: flags to set
 969 *
 970 * Set @flags in @worker->flags and adjust nr_running accordingly.
 971 */
 972static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 973{
 974	struct worker_pool *pool = worker->pool;
 975
 976	lockdep_assert_held(&pool->lock);
 977
 978	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 979	if ((flags & WORKER_NOT_RUNNING) &&
 980	    !(worker->flags & WORKER_NOT_RUNNING)) {
 981		pool->nr_running--;
 982	}
 983
 984	worker->flags |= flags;
 985}
 986
 987/**
 988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 989 * @worker: self
 990 * @flags: flags to clear
 991 *
 992 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 993 */
 994static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 995{
 996	struct worker_pool *pool = worker->pool;
 997	unsigned int oflags = worker->flags;
 998
 999	lockdep_assert_held(&pool->lock);
1000
1001	worker->flags &= ~flags;
1002
1003	/*
1004	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1005	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1006	 * of multiple flags, not a single flag.
1007	 */
1008	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009		if (!(worker->flags & WORKER_NOT_RUNNING))
1010			pool->nr_running++;
1011}
1012
1013/* Return the first idle worker.  Called with pool->lock held. */
1014static struct worker *first_idle_worker(struct worker_pool *pool)
1015{
1016	if (unlikely(list_empty(&pool->idle_list)))
1017		return NULL;
1018
1019	return list_first_entry(&pool->idle_list, struct worker, entry);
1020}
1021
1022/**
1023 * worker_enter_idle - enter idle state
1024 * @worker: worker which is entering idle state
1025 *
1026 * @worker is entering idle state.  Update stats and idle timer if
1027 * necessary.
1028 *
1029 * LOCKING:
1030 * raw_spin_lock_irq(pool->lock).
1031 */
1032static void worker_enter_idle(struct worker *worker)
1033{
1034	struct worker_pool *pool = worker->pool;
1035
1036	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038			 (worker->hentry.next || worker->hentry.pprev)))
1039		return;
1040
1041	/* can't use worker_set_flags(), also called from create_worker() */
1042	worker->flags |= WORKER_IDLE;
1043	pool->nr_idle++;
1044	worker->last_active = jiffies;
1045
1046	/* idle_list is LIFO */
1047	list_add(&worker->entry, &pool->idle_list);
1048
1049	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051
1052	/* Sanity check nr_running. */
1053	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054}
1055
1056/**
1057 * worker_leave_idle - leave idle state
1058 * @worker: worker which is leaving idle state
1059 *
1060 * @worker is leaving idle state.  Update stats.
1061 *
1062 * LOCKING:
1063 * raw_spin_lock_irq(pool->lock).
1064 */
1065static void worker_leave_idle(struct worker *worker)
1066{
1067	struct worker_pool *pool = worker->pool;
1068
1069	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070		return;
1071	worker_clr_flags(worker, WORKER_IDLE);
1072	pool->nr_idle--;
1073	list_del_init(&worker->entry);
1074}
1075
1076/**
1077 * find_worker_executing_work - find worker which is executing a work
1078 * @pool: pool of interest
1079 * @work: work to find worker for
1080 *
1081 * Find a worker which is executing @work on @pool by searching
1082 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1083 * to match, its current execution should match the address of @work and
1084 * its work function.  This is to avoid unwanted dependency between
1085 * unrelated work executions through a work item being recycled while still
1086 * being executed.
1087 *
1088 * This is a bit tricky.  A work item may be freed once its execution
1089 * starts and nothing prevents the freed area from being recycled for
1090 * another work item.  If the same work item address ends up being reused
1091 * before the original execution finishes, workqueue will identify the
1092 * recycled work item as currently executing and make it wait until the
1093 * current execution finishes, introducing an unwanted dependency.
1094 *
1095 * This function checks the work item address and work function to avoid
1096 * false positives.  Note that this isn't complete as one may construct a
1097 * work function which can introduce dependency onto itself through a
1098 * recycled work item.  Well, if somebody wants to shoot oneself in the
1099 * foot that badly, there's only so much we can do, and if such deadlock
1100 * actually occurs, it should be easy to locate the culprit work function.
1101 *
1102 * CONTEXT:
1103 * raw_spin_lock_irq(pool->lock).
1104 *
1105 * Return:
1106 * Pointer to worker which is executing @work if found, %NULL
1107 * otherwise.
1108 */
1109static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110						 struct work_struct *work)
1111{
1112	struct worker *worker;
1113
1114	hash_for_each_possible(pool->busy_hash, worker, hentry,
1115			       (unsigned long)work)
1116		if (worker->current_work == work &&
1117		    worker->current_func == work->func)
1118			return worker;
1119
1120	return NULL;
1121}
1122
1123/**
1124 * move_linked_works - move linked works to a list
1125 * @work: start of series of works to be scheduled
1126 * @head: target list to append @work to
1127 * @nextp: out parameter for nested worklist walking
1128 *
1129 * Schedule linked works starting from @work to @head. Work series to be
1130 * scheduled starts at @work and includes any consecutive work with
1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132 * @nextp.
1133 *
1134 * CONTEXT:
1135 * raw_spin_lock_irq(pool->lock).
1136 */
1137static void move_linked_works(struct work_struct *work, struct list_head *head,
1138			      struct work_struct **nextp)
1139{
1140	struct work_struct *n;
1141
1142	/*
1143	 * Linked worklist will always end before the end of the list,
1144	 * use NULL for list head.
1145	 */
1146	list_for_each_entry_safe_from(work, n, NULL, entry) {
1147		list_move_tail(&work->entry, head);
1148		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149			break;
1150	}
1151
1152	/*
1153	 * If we're already inside safe list traversal and have moved
1154	 * multiple works to the scheduled queue, the next position
1155	 * needs to be updated.
1156	 */
1157	if (nextp)
1158		*nextp = n;
1159}
1160
1161/**
1162 * assign_work - assign a work item and its linked work items to a worker
1163 * @work: work to assign
1164 * @worker: worker to assign to
1165 * @nextp: out parameter for nested worklist walking
1166 *
1167 * Assign @work and its linked work items to @worker. If @work is already being
1168 * executed by another worker in the same pool, it'll be punted there.
1169 *
1170 * If @nextp is not NULL, it's updated to point to the next work of the last
1171 * scheduled work. This allows assign_work() to be nested inside
1172 * list_for_each_entry_safe().
1173 *
1174 * Returns %true if @work was successfully assigned to @worker. %false if @work
1175 * was punted to another worker already executing it.
1176 */
1177static bool assign_work(struct work_struct *work, struct worker *worker,
1178			struct work_struct **nextp)
1179{
1180	struct worker_pool *pool = worker->pool;
1181	struct worker *collision;
1182
1183	lockdep_assert_held(&pool->lock);
1184
1185	/*
1186	 * A single work shouldn't be executed concurrently by multiple workers.
1187	 * __queue_work() ensures that @work doesn't jump to a different pool
1188	 * while still running in the previous pool. Here, we should ensure that
1189	 * @work is not executed concurrently by multiple workers from the same
1190	 * pool. Check whether anyone is already processing the work. If so,
1191	 * defer the work to the currently executing one.
1192	 */
1193	collision = find_worker_executing_work(pool, work);
1194	if (unlikely(collision)) {
1195		move_linked_works(work, &collision->scheduled, nextp);
1196		return false;
1197	}
1198
1199	move_linked_works(work, &worker->scheduled, nextp);
1200	return true;
1201}
1202
1203static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204{
1205	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206
1207	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208}
1209
1210static void kick_bh_pool(struct worker_pool *pool)
1211{
1212#ifdef CONFIG_SMP
1213	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1214	if (unlikely(pool->cpu != smp_processor_id() &&
1215		     !(pool->flags & POOL_BH_DRAINING))) {
1216		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217		return;
1218	}
1219#endif
1220	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221		raise_softirq_irqoff(HI_SOFTIRQ);
1222	else
1223		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224}
1225
1226/**
1227 * kick_pool - wake up an idle worker if necessary
1228 * @pool: pool to kick
1229 *
1230 * @pool may have pending work items. Wake up worker if necessary. Returns
1231 * whether a worker was woken up.
1232 */
1233static bool kick_pool(struct worker_pool *pool)
1234{
1235	struct worker *worker = first_idle_worker(pool);
1236	struct task_struct *p;
1237
1238	lockdep_assert_held(&pool->lock);
1239
1240	if (!need_more_worker(pool) || !worker)
1241		return false;
1242
1243	if (pool->flags & POOL_BH) {
1244		kick_bh_pool(pool);
1245		return true;
1246	}
1247
1248	p = worker->task;
1249
1250#ifdef CONFIG_SMP
1251	/*
1252	 * Idle @worker is about to execute @work and waking up provides an
1253	 * opportunity to migrate @worker at a lower cost by setting the task's
1254	 * wake_cpu field. Let's see if we want to move @worker to improve
1255	 * execution locality.
1256	 *
1257	 * We're waking the worker that went idle the latest and there's some
1258	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260	 * optimization and the race window is narrow, let's leave as-is for
1261	 * now. If this becomes pronounced, we can skip over workers which are
1262	 * still on cpu when picking an idle worker.
1263	 *
1264	 * If @pool has non-strict affinity, @worker might have ended up outside
1265	 * its affinity scope. Repatriate.
1266	 */
1267	if (!pool->attrs->affn_strict &&
1268	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269		struct work_struct *work = list_first_entry(&pool->worklist,
1270						struct work_struct, entry);
1271		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1272							  cpu_online_mask);
1273		if (wake_cpu < nr_cpu_ids) {
1274			p->wake_cpu = wake_cpu;
1275			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1276		}
1277	}
1278#endif
1279	wake_up_process(p);
1280	return true;
1281}
1282
1283#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1284
1285/*
1286 * Concurrency-managed per-cpu work items that hog CPU for longer than
1287 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1288 * which prevents them from stalling other concurrency-managed work items. If a
1289 * work function keeps triggering this mechanism, it's likely that the work item
1290 * should be using an unbound workqueue instead.
1291 *
1292 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1293 * and report them so that they can be examined and converted to use unbound
1294 * workqueues as appropriate. To avoid flooding the console, each violating work
1295 * function is tracked and reported with exponential backoff.
1296 */
1297#define WCI_MAX_ENTS 128
1298
1299struct wci_ent {
1300	work_func_t		func;
1301	atomic64_t		cnt;
1302	struct hlist_node	hash_node;
1303};
1304
1305static struct wci_ent wci_ents[WCI_MAX_ENTS];
1306static int wci_nr_ents;
1307static DEFINE_RAW_SPINLOCK(wci_lock);
1308static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1309
1310static struct wci_ent *wci_find_ent(work_func_t func)
1311{
1312	struct wci_ent *ent;
1313
1314	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1315				   (unsigned long)func) {
1316		if (ent->func == func)
1317			return ent;
1318	}
1319	return NULL;
1320}
1321
1322static void wq_cpu_intensive_report(work_func_t func)
1323{
1324	struct wci_ent *ent;
1325
1326restart:
1327	ent = wci_find_ent(func);
1328	if (ent) {
1329		u64 cnt;
1330
1331		/*
1332		 * Start reporting from the warning_thresh and back off
1333		 * exponentially.
1334		 */
1335		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1336		if (wq_cpu_intensive_warning_thresh &&
1337		    cnt >= wq_cpu_intensive_warning_thresh &&
1338		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1339			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1340					ent->func, wq_cpu_intensive_thresh_us,
1341					atomic64_read(&ent->cnt));
1342		return;
1343	}
1344
1345	/*
1346	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1347	 * is exhausted, something went really wrong and we probably made enough
1348	 * noise already.
1349	 */
1350	if (wci_nr_ents >= WCI_MAX_ENTS)
1351		return;
1352
1353	raw_spin_lock(&wci_lock);
1354
1355	if (wci_nr_ents >= WCI_MAX_ENTS) {
1356		raw_spin_unlock(&wci_lock);
1357		return;
1358	}
1359
1360	if (wci_find_ent(func)) {
1361		raw_spin_unlock(&wci_lock);
1362		goto restart;
1363	}
1364
1365	ent = &wci_ents[wci_nr_ents++];
1366	ent->func = func;
1367	atomic64_set(&ent->cnt, 0);
1368	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1369
1370	raw_spin_unlock(&wci_lock);
1371
1372	goto restart;
1373}
1374
1375#else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1376static void wq_cpu_intensive_report(work_func_t func) {}
1377#endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378
1379/**
1380 * wq_worker_running - a worker is running again
1381 * @task: task waking up
1382 *
1383 * This function is called when a worker returns from schedule()
1384 */
1385void wq_worker_running(struct task_struct *task)
1386{
1387	struct worker *worker = kthread_data(task);
1388
1389	if (!READ_ONCE(worker->sleeping))
1390		return;
1391
1392	/*
1393	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1394	 * and the nr_running increment below, we may ruin the nr_running reset
1395	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1396	 * pool. Protect against such race.
1397	 */
1398	preempt_disable();
1399	if (!(worker->flags & WORKER_NOT_RUNNING))
1400		worker->pool->nr_running++;
1401	preempt_enable();
1402
1403	/*
1404	 * CPU intensive auto-detection cares about how long a work item hogged
1405	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1406	 */
1407	worker->current_at = worker->task->se.sum_exec_runtime;
1408
1409	WRITE_ONCE(worker->sleeping, 0);
1410}
1411
1412/**
1413 * wq_worker_sleeping - a worker is going to sleep
1414 * @task: task going to sleep
1415 *
1416 * This function is called from schedule() when a busy worker is
1417 * going to sleep.
1418 */
1419void wq_worker_sleeping(struct task_struct *task)
1420{
1421	struct worker *worker = kthread_data(task);
1422	struct worker_pool *pool;
1423
1424	/*
1425	 * Rescuers, which may not have all the fields set up like normal
1426	 * workers, also reach here, let's not access anything before
1427	 * checking NOT_RUNNING.
1428	 */
1429	if (worker->flags & WORKER_NOT_RUNNING)
1430		return;
1431
1432	pool = worker->pool;
1433
1434	/* Return if preempted before wq_worker_running() was reached */
1435	if (READ_ONCE(worker->sleeping))
1436		return;
1437
1438	WRITE_ONCE(worker->sleeping, 1);
1439	raw_spin_lock_irq(&pool->lock);
1440
1441	/*
1442	 * Recheck in case unbind_workers() preempted us. We don't
1443	 * want to decrement nr_running after the worker is unbound
1444	 * and nr_running has been reset.
1445	 */
1446	if (worker->flags & WORKER_NOT_RUNNING) {
1447		raw_spin_unlock_irq(&pool->lock);
1448		return;
1449	}
1450
1451	pool->nr_running--;
1452	if (kick_pool(pool))
1453		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1454
1455	raw_spin_unlock_irq(&pool->lock);
1456}
1457
1458/**
1459 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1460 * @task: task currently running
1461 *
1462 * Called from sched_tick(). We're in the IRQ context and the current
1463 * worker's fields which follow the 'K' locking rule can be accessed safely.
1464 */
1465void wq_worker_tick(struct task_struct *task)
1466{
1467	struct worker *worker = kthread_data(task);
1468	struct pool_workqueue *pwq = worker->current_pwq;
1469	struct worker_pool *pool = worker->pool;
1470
1471	if (!pwq)
1472		return;
1473
1474	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1475
1476	if (!wq_cpu_intensive_thresh_us)
1477		return;
1478
1479	/*
1480	 * If the current worker is concurrency managed and hogged the CPU for
1481	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1482	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1483	 *
1484	 * Set @worker->sleeping means that @worker is in the process of
1485	 * switching out voluntarily and won't be contributing to
1486	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1487	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1488	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1489	 * We probably want to make this prettier in the future.
1490	 */
1491	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1492	    worker->task->se.sum_exec_runtime - worker->current_at <
1493	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1494		return;
1495
1496	raw_spin_lock(&pool->lock);
1497
1498	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1499	wq_cpu_intensive_report(worker->current_func);
1500	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1501
1502	if (kick_pool(pool))
1503		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1504
1505	raw_spin_unlock(&pool->lock);
1506}
1507
1508/**
1509 * wq_worker_last_func - retrieve worker's last work function
1510 * @task: Task to retrieve last work function of.
1511 *
1512 * Determine the last function a worker executed. This is called from
1513 * the scheduler to get a worker's last known identity.
1514 *
1515 * CONTEXT:
1516 * raw_spin_lock_irq(rq->lock)
1517 *
1518 * This function is called during schedule() when a kworker is going
1519 * to sleep. It's used by psi to identify aggregation workers during
1520 * dequeuing, to allow periodic aggregation to shut-off when that
1521 * worker is the last task in the system or cgroup to go to sleep.
1522 *
1523 * As this function doesn't involve any workqueue-related locking, it
1524 * only returns stable values when called from inside the scheduler's
1525 * queuing and dequeuing paths, when @task, which must be a kworker,
1526 * is guaranteed to not be processing any works.
1527 *
1528 * Return:
1529 * The last work function %current executed as a worker, NULL if it
1530 * hasn't executed any work yet.
1531 */
1532work_func_t wq_worker_last_func(struct task_struct *task)
1533{
1534	struct worker *worker = kthread_data(task);
1535
1536	return worker->last_func;
1537}
1538
1539/**
1540 * wq_node_nr_active - Determine wq_node_nr_active to use
1541 * @wq: workqueue of interest
1542 * @node: NUMA node, can be %NUMA_NO_NODE
1543 *
1544 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1545 *
1546 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1547 *
1548 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1549 *
1550 * - Otherwise, node_nr_active[@node].
1551 */
1552static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1553						   int node)
1554{
1555	if (!(wq->flags & WQ_UNBOUND))
1556		return NULL;
1557
1558	if (node == NUMA_NO_NODE)
1559		node = nr_node_ids;
1560
1561	return wq->node_nr_active[node];
1562}
1563
1564/**
1565 * wq_update_node_max_active - Update per-node max_actives to use
1566 * @wq: workqueue to update
1567 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1568 *
1569 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1570 * distributed among nodes according to the proportions of numbers of online
1571 * cpus. The result is always between @wq->min_active and max_active.
1572 */
1573static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1574{
1575	struct cpumask *effective = unbound_effective_cpumask(wq);
1576	int min_active = READ_ONCE(wq->min_active);
1577	int max_active = READ_ONCE(wq->max_active);
1578	int total_cpus, node;
1579
1580	lockdep_assert_held(&wq->mutex);
1581
1582	if (!wq_topo_initialized)
1583		return;
1584
1585	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1586		off_cpu = -1;
1587
1588	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1589	if (off_cpu >= 0)
1590		total_cpus--;
1591
1592	/* If all CPUs of the wq get offline, use the default values */
1593	if (unlikely(!total_cpus)) {
1594		for_each_node(node)
1595			wq_node_nr_active(wq, node)->max = min_active;
1596
1597		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1598		return;
1599	}
1600
1601	for_each_node(node) {
1602		int node_cpus;
1603
1604		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1605		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1606			node_cpus--;
1607
1608		wq_node_nr_active(wq, node)->max =
1609			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1610			      min_active, max_active);
1611	}
1612
1613	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1614}
1615
1616/**
1617 * get_pwq - get an extra reference on the specified pool_workqueue
1618 * @pwq: pool_workqueue to get
1619 *
1620 * Obtain an extra reference on @pwq.  The caller should guarantee that
1621 * @pwq has positive refcnt and be holding the matching pool->lock.
1622 */
1623static void get_pwq(struct pool_workqueue *pwq)
1624{
1625	lockdep_assert_held(&pwq->pool->lock);
1626	WARN_ON_ONCE(pwq->refcnt <= 0);
1627	pwq->refcnt++;
1628}
1629
1630/**
1631 * put_pwq - put a pool_workqueue reference
1632 * @pwq: pool_workqueue to put
1633 *
1634 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1635 * destruction.  The caller should be holding the matching pool->lock.
1636 */
1637static void put_pwq(struct pool_workqueue *pwq)
1638{
1639	lockdep_assert_held(&pwq->pool->lock);
1640	if (likely(--pwq->refcnt))
1641		return;
1642	/*
1643	 * @pwq can't be released under pool->lock, bounce to a dedicated
1644	 * kthread_worker to avoid A-A deadlocks.
1645	 */
1646	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1647}
1648
1649/**
1650 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1651 * @pwq: pool_workqueue to put (can be %NULL)
1652 *
1653 * put_pwq() with locking.  This function also allows %NULL @pwq.
1654 */
1655static void put_pwq_unlocked(struct pool_workqueue *pwq)
1656{
1657	if (pwq) {
1658		/*
1659		 * As both pwqs and pools are RCU protected, the
1660		 * following lock operations are safe.
1661		 */
1662		raw_spin_lock_irq(&pwq->pool->lock);
1663		put_pwq(pwq);
1664		raw_spin_unlock_irq(&pwq->pool->lock);
1665	}
1666}
1667
1668static bool pwq_is_empty(struct pool_workqueue *pwq)
1669{
1670	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1671}
1672
1673static void __pwq_activate_work(struct pool_workqueue *pwq,
1674				struct work_struct *work)
1675{
1676	unsigned long *wdb = work_data_bits(work);
1677
1678	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1679	trace_workqueue_activate_work(work);
1680	if (list_empty(&pwq->pool->worklist))
1681		pwq->pool->watchdog_ts = jiffies;
1682	move_linked_works(work, &pwq->pool->worklist, NULL);
1683	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1684}
1685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1686static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1687{
1688	int max = READ_ONCE(nna->max);
1689
1690	while (true) {
1691		int old, tmp;
1692
1693		old = atomic_read(&nna->nr);
1694		if (old >= max)
1695			return false;
1696		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1697		if (tmp == old)
1698			return true;
1699	}
1700}
1701
1702/**
1703 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1704 * @pwq: pool_workqueue of interest
1705 * @fill: max_active may have increased, try to increase concurrency level
1706 *
1707 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1708 * successfully obtained. %false otherwise.
1709 */
1710static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1711{
1712	struct workqueue_struct *wq = pwq->wq;
1713	struct worker_pool *pool = pwq->pool;
1714	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1715	bool obtained = false;
1716
1717	lockdep_assert_held(&pool->lock);
1718
1719	if (!nna) {
1720		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1721		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1722		goto out;
1723	}
1724
1725	if (unlikely(pwq->plugged))
1726		return false;
1727
1728	/*
1729	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1730	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1731	 * concurrency level. Don't jump the line.
1732	 *
1733	 * We need to ignore the pending test after max_active has increased as
1734	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1735	 * increase it. This is indicated by @fill.
1736	 */
1737	if (!list_empty(&pwq->pending_node) && likely(!fill))
1738		goto out;
1739
1740	obtained = tryinc_node_nr_active(nna);
1741	if (obtained)
1742		goto out;
1743
1744	/*
1745	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1746	 * and try again. The smp_mb() is paired with the implied memory barrier
1747	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1748	 * we see the decremented $nna->nr or they see non-empty
1749	 * $nna->pending_pwqs.
1750	 */
1751	raw_spin_lock(&nna->lock);
1752
1753	if (list_empty(&pwq->pending_node))
1754		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1755	else if (likely(!fill))
1756		goto out_unlock;
1757
1758	smp_mb();
1759
1760	obtained = tryinc_node_nr_active(nna);
1761
1762	/*
1763	 * If @fill, @pwq might have already been pending. Being spuriously
1764	 * pending in cold paths doesn't affect anything. Let's leave it be.
1765	 */
1766	if (obtained && likely(!fill))
1767		list_del_init(&pwq->pending_node);
1768
1769out_unlock:
1770	raw_spin_unlock(&nna->lock);
1771out:
1772	if (obtained)
1773		pwq->nr_active++;
1774	return obtained;
1775}
1776
1777/**
1778 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1779 * @pwq: pool_workqueue of interest
1780 * @fill: max_active may have increased, try to increase concurrency level
1781 *
1782 * Activate the first inactive work item of @pwq if available and allowed by
1783 * max_active limit.
1784 *
1785 * Returns %true if an inactive work item has been activated. %false if no
1786 * inactive work item is found or max_active limit is reached.
1787 */
1788static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1789{
1790	struct work_struct *work =
1791		list_first_entry_or_null(&pwq->inactive_works,
1792					 struct work_struct, entry);
1793
1794	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1795		__pwq_activate_work(pwq, work);
1796		return true;
1797	} else {
1798		return false;
1799	}
1800}
1801
1802/**
1803 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1804 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1805 *
1806 * This function should only be called for ordered workqueues where only the
1807 * oldest pwq is unplugged, the others are plugged to suspend execution to
1808 * ensure proper work item ordering::
1809 *
1810 *    dfl_pwq --------------+     [P] - plugged
1811 *                          |
1812 *                          v
1813 *    pwqs -> A -> B [P] -> C [P] (newest)
1814 *            |    |        |
1815 *            1    3        5
1816 *            |    |        |
1817 *            2    4        6
1818 *
1819 * When the oldest pwq is drained and removed, this function should be called
1820 * to unplug the next oldest one to start its work item execution. Note that
1821 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1822 * the list is the oldest.
1823 */
1824static void unplug_oldest_pwq(struct workqueue_struct *wq)
1825{
1826	struct pool_workqueue *pwq;
1827
1828	lockdep_assert_held(&wq->mutex);
1829
1830	/* Caller should make sure that pwqs isn't empty before calling */
1831	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1832				       pwqs_node);
1833	raw_spin_lock_irq(&pwq->pool->lock);
1834	if (pwq->plugged) {
1835		pwq->plugged = false;
1836		if (pwq_activate_first_inactive(pwq, true))
1837			kick_pool(pwq->pool);
1838	}
1839	raw_spin_unlock_irq(&pwq->pool->lock);
1840}
1841
1842/**
1843 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1844 * @nna: wq_node_nr_active to activate a pending pwq for
1845 * @caller_pool: worker_pool the caller is locking
1846 *
1847 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1848 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1849 */
1850static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1851				      struct worker_pool *caller_pool)
1852{
1853	struct worker_pool *locked_pool = caller_pool;
1854	struct pool_workqueue *pwq;
1855	struct work_struct *work;
1856
1857	lockdep_assert_held(&caller_pool->lock);
1858
1859	raw_spin_lock(&nna->lock);
1860retry:
1861	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1862				       struct pool_workqueue, pending_node);
1863	if (!pwq)
1864		goto out_unlock;
1865
1866	/*
1867	 * If @pwq is for a different pool than @locked_pool, we need to lock
1868	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1869	 * / lock dance. For that, we also need to release @nna->lock as it's
1870	 * nested inside pool locks.
1871	 */
1872	if (pwq->pool != locked_pool) {
1873		raw_spin_unlock(&locked_pool->lock);
1874		locked_pool = pwq->pool;
1875		if (!raw_spin_trylock(&locked_pool->lock)) {
1876			raw_spin_unlock(&nna->lock);
1877			raw_spin_lock(&locked_pool->lock);
1878			raw_spin_lock(&nna->lock);
1879			goto retry;
1880		}
1881	}
1882
1883	/*
1884	 * $pwq may not have any inactive work items due to e.g. cancellations.
1885	 * Drop it from pending_pwqs and see if there's another one.
1886	 */
1887	work = list_first_entry_or_null(&pwq->inactive_works,
1888					struct work_struct, entry);
1889	if (!work) {
1890		list_del_init(&pwq->pending_node);
1891		goto retry;
1892	}
1893
1894	/*
1895	 * Acquire an nr_active count and activate the inactive work item. If
1896	 * $pwq still has inactive work items, rotate it to the end of the
1897	 * pending_pwqs so that we round-robin through them. This means that
1898	 * inactive work items are not activated in queueing order which is fine
1899	 * given that there has never been any ordering across different pwqs.
1900	 */
1901	if (likely(tryinc_node_nr_active(nna))) {
1902		pwq->nr_active++;
1903		__pwq_activate_work(pwq, work);
1904
1905		if (list_empty(&pwq->inactive_works))
1906			list_del_init(&pwq->pending_node);
1907		else
1908			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1909
1910		/* if activating a foreign pool, make sure it's running */
1911		if (pwq->pool != caller_pool)
1912			kick_pool(pwq->pool);
1913	}
1914
1915out_unlock:
1916	raw_spin_unlock(&nna->lock);
1917	if (locked_pool != caller_pool) {
1918		raw_spin_unlock(&locked_pool->lock);
1919		raw_spin_lock(&caller_pool->lock);
1920	}
1921}
1922
1923/**
1924 * pwq_dec_nr_active - Retire an active count
1925 * @pwq: pool_workqueue of interest
1926 *
1927 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1928 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1929 */
1930static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1931{
1932	struct worker_pool *pool = pwq->pool;
1933	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1934
1935	lockdep_assert_held(&pool->lock);
1936
1937	/*
1938	 * @pwq->nr_active should be decremented for both percpu and unbound
1939	 * workqueues.
1940	 */
1941	pwq->nr_active--;
1942
1943	/*
1944	 * For a percpu workqueue, it's simple. Just need to kick the first
1945	 * inactive work item on @pwq itself.
1946	 */
1947	if (!nna) {
1948		pwq_activate_first_inactive(pwq, false);
1949		return;
1950	}
1951
1952	/*
1953	 * If @pwq is for an unbound workqueue, it's more complicated because
1954	 * multiple pwqs and pools may be sharing the nr_active count. When a
1955	 * pwq needs to wait for an nr_active count, it puts itself on
1956	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1957	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1958	 * guarantee that either we see non-empty pending_pwqs or they see
1959	 * decremented $nna->nr.
1960	 *
1961	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1962	 * max_active gets updated. However, it is guaranteed to be equal to or
1963	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1964	 * This maintains the forward progress guarantee.
1965	 */
1966	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1967		return;
1968
1969	if (!list_empty(&nna->pending_pwqs))
1970		node_activate_pending_pwq(nna, pool);
1971}
1972
1973/**
1974 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1975 * @pwq: pwq of interest
1976 * @work_data: work_data of work which left the queue
1977 *
1978 * A work either has completed or is removed from pending queue,
1979 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1980 *
1981 * NOTE:
1982 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1983 * and thus should be called after all other state updates for the in-flight
1984 * work item is complete.
1985 *
1986 * CONTEXT:
1987 * raw_spin_lock_irq(pool->lock).
1988 */
1989static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1990{
1991	int color = get_work_color(work_data);
1992
1993	if (!(work_data & WORK_STRUCT_INACTIVE))
1994		pwq_dec_nr_active(pwq);
1995
1996	pwq->nr_in_flight[color]--;
1997
1998	/* is flush in progress and are we at the flushing tip? */
1999	if (likely(pwq->flush_color != color))
2000		goto out_put;
2001
2002	/* are there still in-flight works? */
2003	if (pwq->nr_in_flight[color])
2004		goto out_put;
2005
2006	/* this pwq is done, clear flush_color */
2007	pwq->flush_color = -1;
2008
2009	/*
2010	 * If this was the last pwq, wake up the first flusher.  It
2011	 * will handle the rest.
2012	 */
2013	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2014		complete(&pwq->wq->first_flusher->done);
2015out_put:
2016	put_pwq(pwq);
2017}
2018
2019/**
2020 * try_to_grab_pending - steal work item from worklist and disable irq
2021 * @work: work item to steal
2022 * @cflags: %WORK_CANCEL_ flags
2023 * @irq_flags: place to store irq state
2024 *
2025 * Try to grab PENDING bit of @work.  This function can handle @work in any
2026 * stable state - idle, on timer or on worklist.
2027 *
2028 * Return:
2029 *
2030 *  ========	================================================================
2031 *  1		if @work was pending and we successfully stole PENDING
2032 *  0		if @work was idle and we claimed PENDING
2033 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
 
 
2034 *  ========	================================================================
2035 *
2036 * Note:
2037 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2038 * interrupted while holding PENDING and @work off queue, irq must be
2039 * disabled on entry.  This, combined with delayed_work->timer being
2040 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2041 *
2042 * On successful return, >= 0, irq is disabled and the caller is
2043 * responsible for releasing it using local_irq_restore(*@irq_flags).
2044 *
2045 * This function is safe to call from any context including IRQ handler.
2046 */
2047static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2048			       unsigned long *irq_flags)
2049{
2050	struct worker_pool *pool;
2051	struct pool_workqueue *pwq;
2052
2053	local_irq_save(*irq_flags);
2054
2055	/* try to steal the timer if it exists */
2056	if (cflags & WORK_CANCEL_DELAYED) {
2057		struct delayed_work *dwork = to_delayed_work(work);
2058
2059		/*
2060		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2061		 * guaranteed that the timer is not queued anywhere and not
2062		 * running on the local CPU.
2063		 */
2064		if (likely(del_timer(&dwork->timer)))
2065			return 1;
2066	}
2067
2068	/* try to claim PENDING the normal way */
2069	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2070		return 0;
2071
2072	rcu_read_lock();
2073	/*
2074	 * The queueing is in progress, or it is already queued. Try to
2075	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2076	 */
2077	pool = get_work_pool(work);
2078	if (!pool)
2079		goto fail;
2080
2081	raw_spin_lock(&pool->lock);
2082	/*
2083	 * work->data is guaranteed to point to pwq only while the work
2084	 * item is queued on pwq->wq, and both updating work->data to point
2085	 * to pwq on queueing and to pool on dequeueing are done under
2086	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2087	 * points to pwq which is associated with a locked pool, the work
2088	 * item is currently queued on that pool.
2089	 */
2090	pwq = get_work_pwq(work);
2091	if (pwq && pwq->pool == pool) {
2092		unsigned long work_data = *work_data_bits(work);
2093
2094		debug_work_deactivate(work);
2095
2096		/*
2097		 * A cancelable inactive work item must be in the
2098		 * pwq->inactive_works since a queued barrier can't be
2099		 * canceled (see the comments in insert_wq_barrier()).
2100		 *
2101		 * An inactive work item cannot be deleted directly because
2102		 * it might have linked barrier work items which, if left
2103		 * on the inactive_works list, will confuse pwq->nr_active
2104		 * management later on and cause stall.  Move the linked
2105		 * barrier work items to the worklist when deleting the grabbed
2106		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2107		 * it doesn't participate in nr_active management in later
2108		 * pwq_dec_nr_in_flight().
2109		 */
2110		if (work_data & WORK_STRUCT_INACTIVE)
2111			move_linked_works(work, &pwq->pool->worklist, NULL);
2112
2113		list_del_init(&work->entry);
2114
2115		/*
2116		 * work->data points to pwq iff queued. Let's point to pool. As
2117		 * this destroys work->data needed by the next step, stash it.
2118		 */
2119		set_work_pool_and_keep_pending(work, pool->id,
2120					       pool_offq_flags(pool));
2121
2122		/* must be the last step, see the function comment */
2123		pwq_dec_nr_in_flight(pwq, work_data);
2124
2125		raw_spin_unlock(&pool->lock);
2126		rcu_read_unlock();
2127		return 1;
2128	}
2129	raw_spin_unlock(&pool->lock);
2130fail:
2131	rcu_read_unlock();
2132	local_irq_restore(*irq_flags);
 
 
 
2133	return -EAGAIN;
2134}
2135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2136/**
2137 * work_grab_pending - steal work item from worklist and disable irq
2138 * @work: work item to steal
2139 * @cflags: %WORK_CANCEL_ flags
2140 * @irq_flags: place to store IRQ state
2141 *
2142 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2143 * or on worklist.
2144 *
2145 * Can be called from any context. IRQ is disabled on return with IRQ state
2146 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2147 * local_irq_restore().
2148 *
2149 * Returns %true if @work was pending. %false if idle.
2150 */
2151static bool work_grab_pending(struct work_struct *work, u32 cflags,
2152			      unsigned long *irq_flags)
2153{
 
2154	int ret;
2155
2156	while (true) {
2157		ret = try_to_grab_pending(work, cflags, irq_flags);
2158		if (ret >= 0)
2159			return ret;
2160		cpu_relax();
2161	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2162}
2163
2164/**
2165 * insert_work - insert a work into a pool
2166 * @pwq: pwq @work belongs to
2167 * @work: work to insert
2168 * @head: insertion point
2169 * @extra_flags: extra WORK_STRUCT_* flags to set
2170 *
2171 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2172 * work_struct flags.
2173 *
2174 * CONTEXT:
2175 * raw_spin_lock_irq(pool->lock).
2176 */
2177static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2178			struct list_head *head, unsigned int extra_flags)
2179{
2180	debug_work_activate(work);
2181
2182	/* record the work call stack in order to print it in KASAN reports */
2183	kasan_record_aux_stack_noalloc(work);
2184
2185	/* we own @work, set data and link */
2186	set_work_pwq(work, pwq, extra_flags);
2187	list_add_tail(&work->entry, head);
2188	get_pwq(pwq);
2189}
2190
2191/*
2192 * Test whether @work is being queued from another work executing on the
2193 * same workqueue.
2194 */
2195static bool is_chained_work(struct workqueue_struct *wq)
2196{
2197	struct worker *worker;
2198
2199	worker = current_wq_worker();
2200	/*
2201	 * Return %true iff I'm a worker executing a work item on @wq.  If
2202	 * I'm @worker, it's safe to dereference it without locking.
2203	 */
2204	return worker && worker->current_pwq->wq == wq;
2205}
2206
2207/*
2208 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2209 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2210 * avoid perturbing sensitive tasks.
2211 */
2212static int wq_select_unbound_cpu(int cpu)
2213{
2214	int new_cpu;
2215
2216	if (likely(!wq_debug_force_rr_cpu)) {
2217		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2218			return cpu;
2219	} else {
2220		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2221	}
2222
2223	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2224	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2225	if (unlikely(new_cpu >= nr_cpu_ids)) {
2226		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2227		if (unlikely(new_cpu >= nr_cpu_ids))
2228			return cpu;
2229	}
2230	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2231
2232	return new_cpu;
2233}
2234
2235static void __queue_work(int cpu, struct workqueue_struct *wq,
2236			 struct work_struct *work)
2237{
2238	struct pool_workqueue *pwq;
2239	struct worker_pool *last_pool, *pool;
2240	unsigned int work_flags;
2241	unsigned int req_cpu = cpu;
2242
2243	/*
2244	 * While a work item is PENDING && off queue, a task trying to
2245	 * steal the PENDING will busy-loop waiting for it to either get
2246	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2247	 * happen with IRQ disabled.
2248	 */
2249	lockdep_assert_irqs_disabled();
2250
2251	/*
2252	 * For a draining wq, only works from the same workqueue are
2253	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2254	 * queues a new work item to a wq after destroy_workqueue(wq).
2255	 */
2256	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2257		     WARN_ON_ONCE(!is_chained_work(wq))))
2258		return;
2259	rcu_read_lock();
2260retry:
2261	/* pwq which will be used unless @work is executing elsewhere */
2262	if (req_cpu == WORK_CPU_UNBOUND) {
2263		if (wq->flags & WQ_UNBOUND)
2264			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2265		else
2266			cpu = raw_smp_processor_id();
2267	}
2268
2269	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2270	pool = pwq->pool;
2271
2272	/*
2273	 * If @work was previously on a different pool, it might still be
2274	 * running there, in which case the work needs to be queued on that
2275	 * pool to guarantee non-reentrancy.
2276	 *
2277	 * For ordered workqueue, work items must be queued on the newest pwq
2278	 * for accurate order management.  Guaranteed order also guarantees
2279	 * non-reentrancy.  See the comments above unplug_oldest_pwq().
2280	 */
2281	last_pool = get_work_pool(work);
2282	if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2283		struct worker *worker;
2284
2285		raw_spin_lock(&last_pool->lock);
2286
2287		worker = find_worker_executing_work(last_pool, work);
2288
2289		if (worker && worker->current_pwq->wq == wq) {
2290			pwq = worker->current_pwq;
2291			pool = pwq->pool;
2292			WARN_ON_ONCE(pool != last_pool);
2293		} else {
2294			/* meh... not running there, queue here */
2295			raw_spin_unlock(&last_pool->lock);
2296			raw_spin_lock(&pool->lock);
2297		}
2298	} else {
2299		raw_spin_lock(&pool->lock);
2300	}
2301
2302	/*
2303	 * pwq is determined and locked. For unbound pools, we could have raced
2304	 * with pwq release and it could already be dead. If its refcnt is zero,
2305	 * repeat pwq selection. Note that unbound pwqs never die without
2306	 * another pwq replacing it in cpu_pwq or while work items are executing
2307	 * on it, so the retrying is guaranteed to make forward-progress.
2308	 */
2309	if (unlikely(!pwq->refcnt)) {
2310		if (wq->flags & WQ_UNBOUND) {
2311			raw_spin_unlock(&pool->lock);
2312			cpu_relax();
2313			goto retry;
2314		}
2315		/* oops */
2316		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2317			  wq->name, cpu);
2318	}
2319
2320	/* pwq determined, queue */
2321	trace_workqueue_queue_work(req_cpu, pwq, work);
2322
2323	if (WARN_ON(!list_empty(&work->entry)))
2324		goto out;
2325
2326	pwq->nr_in_flight[pwq->work_color]++;
2327	work_flags = work_color_to_flags(pwq->work_color);
2328
2329	/*
2330	 * Limit the number of concurrently active work items to max_active.
2331	 * @work must also queue behind existing inactive work items to maintain
2332	 * ordering when max_active changes. See wq_adjust_max_active().
2333	 */
2334	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2335		if (list_empty(&pool->worklist))
2336			pool->watchdog_ts = jiffies;
2337
2338		trace_workqueue_activate_work(work);
2339		insert_work(pwq, work, &pool->worklist, work_flags);
2340		kick_pool(pool);
2341	} else {
2342		work_flags |= WORK_STRUCT_INACTIVE;
2343		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2344	}
2345
2346out:
2347	raw_spin_unlock(&pool->lock);
2348	rcu_read_unlock();
2349}
2350
2351static bool clear_pending_if_disabled(struct work_struct *work)
2352{
2353	unsigned long data = *work_data_bits(work);
2354	struct work_offq_data offqd;
2355
2356	if (likely((data & WORK_STRUCT_PWQ) ||
2357		   !(data & WORK_OFFQ_DISABLE_MASK)))
2358		return false;
2359
2360	work_offqd_unpack(&offqd, data);
2361	set_work_pool_and_clear_pending(work, offqd.pool_id,
2362					work_offqd_pack_flags(&offqd));
2363	return true;
2364}
2365
2366/**
2367 * queue_work_on - queue work on specific cpu
2368 * @cpu: CPU number to execute work on
2369 * @wq: workqueue to use
2370 * @work: work to queue
2371 *
2372 * We queue the work to a specific CPU, the caller must ensure it
2373 * can't go away.  Callers that fail to ensure that the specified
2374 * CPU cannot go away will execute on a randomly chosen CPU.
2375 * But note well that callers specifying a CPU that never has been
2376 * online will get a splat.
2377 *
2378 * Return: %false if @work was already on a queue, %true otherwise.
2379 */
2380bool queue_work_on(int cpu, struct workqueue_struct *wq,
2381		   struct work_struct *work)
2382{
2383	bool ret = false;
2384	unsigned long irq_flags;
2385
2386	local_irq_save(irq_flags);
2387
2388	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2389	    !clear_pending_if_disabled(work)) {
2390		__queue_work(cpu, wq, work);
2391		ret = true;
2392	}
2393
2394	local_irq_restore(irq_flags);
2395	return ret;
2396}
2397EXPORT_SYMBOL(queue_work_on);
2398
2399/**
2400 * select_numa_node_cpu - Select a CPU based on NUMA node
2401 * @node: NUMA node ID that we want to select a CPU from
2402 *
2403 * This function will attempt to find a "random" cpu available on a given
2404 * node. If there are no CPUs available on the given node it will return
2405 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2406 * available CPU if we need to schedule this work.
2407 */
2408static int select_numa_node_cpu(int node)
2409{
2410	int cpu;
2411
2412	/* Delay binding to CPU if node is not valid or online */
2413	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2414		return WORK_CPU_UNBOUND;
2415
2416	/* Use local node/cpu if we are already there */
2417	cpu = raw_smp_processor_id();
2418	if (node == cpu_to_node(cpu))
2419		return cpu;
2420
2421	/* Use "random" otherwise know as "first" online CPU of node */
2422	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2423
2424	/* If CPU is valid return that, otherwise just defer */
2425	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2426}
2427
2428/**
2429 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2430 * @node: NUMA node that we are targeting the work for
2431 * @wq: workqueue to use
2432 * @work: work to queue
2433 *
2434 * We queue the work to a "random" CPU within a given NUMA node. The basic
2435 * idea here is to provide a way to somehow associate work with a given
2436 * NUMA node.
2437 *
2438 * This function will only make a best effort attempt at getting this onto
2439 * the right NUMA node. If no node is requested or the requested node is
2440 * offline then we just fall back to standard queue_work behavior.
2441 *
2442 * Currently the "random" CPU ends up being the first available CPU in the
2443 * intersection of cpu_online_mask and the cpumask of the node, unless we
2444 * are running on the node. In that case we just use the current CPU.
2445 *
2446 * Return: %false if @work was already on a queue, %true otherwise.
2447 */
2448bool queue_work_node(int node, struct workqueue_struct *wq,
2449		     struct work_struct *work)
2450{
2451	unsigned long irq_flags;
2452	bool ret = false;
2453
2454	/*
2455	 * This current implementation is specific to unbound workqueues.
2456	 * Specifically we only return the first available CPU for a given
2457	 * node instead of cycling through individual CPUs within the node.
2458	 *
2459	 * If this is used with a per-cpu workqueue then the logic in
2460	 * workqueue_select_cpu_near would need to be updated to allow for
2461	 * some round robin type logic.
2462	 */
2463	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2464
2465	local_irq_save(irq_flags);
2466
2467	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2468	    !clear_pending_if_disabled(work)) {
2469		int cpu = select_numa_node_cpu(node);
2470
2471		__queue_work(cpu, wq, work);
2472		ret = true;
2473	}
2474
2475	local_irq_restore(irq_flags);
2476	return ret;
2477}
2478EXPORT_SYMBOL_GPL(queue_work_node);
2479
2480void delayed_work_timer_fn(struct timer_list *t)
2481{
2482	struct delayed_work *dwork = from_timer(dwork, t, timer);
2483
2484	/* should have been called from irqsafe timer with irq already off */
2485	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2486}
2487EXPORT_SYMBOL(delayed_work_timer_fn);
2488
2489static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2490				struct delayed_work *dwork, unsigned long delay)
2491{
2492	struct timer_list *timer = &dwork->timer;
2493	struct work_struct *work = &dwork->work;
2494
2495	WARN_ON_ONCE(!wq);
2496	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2497	WARN_ON_ONCE(timer_pending(timer));
2498	WARN_ON_ONCE(!list_empty(&work->entry));
2499
2500	/*
2501	 * If @delay is 0, queue @dwork->work immediately.  This is for
2502	 * both optimization and correctness.  The earliest @timer can
2503	 * expire is on the closest next tick and delayed_work users depend
2504	 * on that there's no such delay when @delay is 0.
2505	 */
2506	if (!delay) {
2507		__queue_work(cpu, wq, &dwork->work);
2508		return;
2509	}
2510
2511	WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu));
2512	dwork->wq = wq;
2513	dwork->cpu = cpu;
2514	timer->expires = jiffies + delay;
2515
2516	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2517		/* If the current cpu is a housekeeping cpu, use it. */
2518		cpu = smp_processor_id();
2519		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2520			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2521		add_timer_on(timer, cpu);
2522	} else {
2523		if (likely(cpu == WORK_CPU_UNBOUND))
2524			add_timer_global(timer);
2525		else
2526			add_timer_on(timer, cpu);
2527	}
2528}
2529
2530/**
2531 * queue_delayed_work_on - queue work on specific CPU after delay
2532 * @cpu: CPU number to execute work on
2533 * @wq: workqueue to use
2534 * @dwork: work to queue
2535 * @delay: number of jiffies to wait before queueing
2536 *
2537 * We queue the delayed_work to a specific CPU, for non-zero delays the
2538 * caller must ensure it is online and can't go away. Callers that fail
2539 * to ensure this, may get @dwork->timer queued to an offlined CPU and
2540 * this will prevent queueing of @dwork->work unless the offlined CPU
2541 * becomes online again.
2542 *
2543 * Return: %false if @work was already on a queue, %true otherwise.  If
2544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2545 * execution.
2546 */
2547bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2548			   struct delayed_work *dwork, unsigned long delay)
2549{
2550	struct work_struct *work = &dwork->work;
2551	bool ret = false;
2552	unsigned long irq_flags;
2553
2554	/* read the comment in __queue_work() */
2555	local_irq_save(irq_flags);
2556
2557	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2558	    !clear_pending_if_disabled(work)) {
2559		__queue_delayed_work(cpu, wq, dwork, delay);
2560		ret = true;
2561	}
2562
2563	local_irq_restore(irq_flags);
2564	return ret;
2565}
2566EXPORT_SYMBOL(queue_delayed_work_on);
2567
2568/**
2569 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2570 * @cpu: CPU number to execute work on
2571 * @wq: workqueue to use
2572 * @dwork: work to queue
2573 * @delay: number of jiffies to wait before queueing
2574 *
2575 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2576 * modify @dwork's timer so that it expires after @delay.  If @delay is
2577 * zero, @work is guaranteed to be scheduled immediately regardless of its
2578 * current state.
2579 *
2580 * Return: %false if @dwork was idle and queued, %true if @dwork was
2581 * pending and its timer was modified.
2582 *
2583 * This function is safe to call from any context including IRQ handler.
2584 * See try_to_grab_pending() for details.
2585 */
2586bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2587			 struct delayed_work *dwork, unsigned long delay)
2588{
2589	unsigned long irq_flags;
2590	bool ret;
2591
2592	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
 
 
 
2593
2594	if (!clear_pending_if_disabled(&dwork->work))
2595		__queue_delayed_work(cpu, wq, dwork, delay);
 
 
2596
2597	local_irq_restore(irq_flags);
2598	return ret;
2599}
2600EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2601
2602static void rcu_work_rcufn(struct rcu_head *rcu)
2603{
2604	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2605
2606	/* read the comment in __queue_work() */
2607	local_irq_disable();
2608	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2609	local_irq_enable();
2610}
2611
2612/**
2613 * queue_rcu_work - queue work after a RCU grace period
2614 * @wq: workqueue to use
2615 * @rwork: work to queue
2616 *
2617 * Return: %false if @rwork was already pending, %true otherwise.  Note
2618 * that a full RCU grace period is guaranteed only after a %true return.
2619 * While @rwork is guaranteed to be executed after a %false return, the
2620 * execution may happen before a full RCU grace period has passed.
2621 */
2622bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2623{
2624	struct work_struct *work = &rwork->work;
2625
2626	/*
2627	 * rcu_work can't be canceled or disabled. Warn if the user reached
2628	 * inside @rwork and disabled the inner work.
2629	 */
2630	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2631	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2632		rwork->wq = wq;
2633		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2634		return true;
2635	}
2636
2637	return false;
2638}
2639EXPORT_SYMBOL(queue_rcu_work);
2640
2641static struct worker *alloc_worker(int node)
2642{
2643	struct worker *worker;
2644
2645	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2646	if (worker) {
2647		INIT_LIST_HEAD(&worker->entry);
2648		INIT_LIST_HEAD(&worker->scheduled);
2649		INIT_LIST_HEAD(&worker->node);
2650		/* on creation a worker is in !idle && prep state */
2651		worker->flags = WORKER_PREP;
2652	}
2653	return worker;
2654}
2655
2656static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2657{
2658	if (pool->cpu < 0 && pool->attrs->affn_strict)
2659		return pool->attrs->__pod_cpumask;
2660	else
2661		return pool->attrs->cpumask;
2662}
2663
2664/**
2665 * worker_attach_to_pool() - attach a worker to a pool
2666 * @worker: worker to be attached
2667 * @pool: the target pool
2668 *
2669 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2670 * cpu-binding of @worker are kept coordinated with the pool across
2671 * cpu-[un]hotplugs.
2672 */
2673static void worker_attach_to_pool(struct worker *worker,
2674				  struct worker_pool *pool)
2675{
2676	mutex_lock(&wq_pool_attach_mutex);
2677
2678	/*
2679	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2680	 * across this function. See the comments above the flag definition for
2681	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2682	 */
2683	if (pool->flags & POOL_DISASSOCIATED) {
2684		worker->flags |= WORKER_UNBOUND;
2685	} else {
2686		WARN_ON_ONCE(pool->flags & POOL_BH);
2687		kthread_set_per_cpu(worker->task, pool->cpu);
2688	}
2689
2690	if (worker->rescue_wq)
2691		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2692
2693	list_add_tail(&worker->node, &pool->workers);
2694	worker->pool = pool;
2695
2696	mutex_unlock(&wq_pool_attach_mutex);
2697}
2698
2699static void unbind_worker(struct worker *worker)
2700{
2701	lockdep_assert_held(&wq_pool_attach_mutex);
2702
2703	kthread_set_per_cpu(worker->task, -1);
2704	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2705		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2706	else
2707		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2708}
2709
2710
2711static void detach_worker(struct worker *worker)
2712{
2713	lockdep_assert_held(&wq_pool_attach_mutex);
2714
2715	unbind_worker(worker);
2716	list_del(&worker->node);
2717}
2718
2719/**
2720 * worker_detach_from_pool() - detach a worker from its pool
2721 * @worker: worker which is attached to its pool
2722 *
2723 * Undo the attaching which had been done in worker_attach_to_pool().  The
2724 * caller worker shouldn't access to the pool after detached except it has
2725 * other reference to the pool.
2726 */
2727static void worker_detach_from_pool(struct worker *worker)
2728{
2729	struct worker_pool *pool = worker->pool;
 
2730
2731	/* there is one permanent BH worker per CPU which should never detach */
2732	WARN_ON_ONCE(pool->flags & POOL_BH);
2733
2734	mutex_lock(&wq_pool_attach_mutex);
2735	detach_worker(worker);
 
 
2736	worker->pool = NULL;
 
 
 
2737	mutex_unlock(&wq_pool_attach_mutex);
2738
2739	/* clear leftover flags without pool->lock after it is detached */
2740	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2741}
2742
2743static int format_worker_id(char *buf, size_t size, struct worker *worker,
2744			    struct worker_pool *pool)
2745{
2746	if (worker->rescue_wq)
2747		return scnprintf(buf, size, "kworker/R-%s",
2748				 worker->rescue_wq->name);
2749
2750	if (pool) {
2751		if (pool->cpu >= 0)
2752			return scnprintf(buf, size, "kworker/%d:%d%s",
2753					 pool->cpu, worker->id,
2754					 pool->attrs->nice < 0  ? "H" : "");
2755		else
2756			return scnprintf(buf, size, "kworker/u%d:%d",
2757					 pool->id, worker->id);
2758	} else {
2759		return scnprintf(buf, size, "kworker/dying");
2760	}
2761}
2762
2763/**
2764 * create_worker - create a new workqueue worker
2765 * @pool: pool the new worker will belong to
2766 *
2767 * Create and start a new worker which is attached to @pool.
2768 *
2769 * CONTEXT:
2770 * Might sleep.  Does GFP_KERNEL allocations.
2771 *
2772 * Return:
2773 * Pointer to the newly created worker.
2774 */
2775static struct worker *create_worker(struct worker_pool *pool)
2776{
2777	struct worker *worker;
2778	int id;
 
2779
2780	/* ID is needed to determine kthread name */
2781	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2782	if (id < 0) {
2783		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2784			    ERR_PTR(id));
2785		return NULL;
2786	}
2787
2788	worker = alloc_worker(pool->node);
2789	if (!worker) {
2790		pr_err_once("workqueue: Failed to allocate a worker\n");
2791		goto fail;
2792	}
2793
2794	worker->id = id;
2795
2796	if (!(pool->flags & POOL_BH)) {
2797		char id_buf[WORKER_ID_LEN];
 
 
 
 
2798
2799		format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2800		worker->task = kthread_create_on_node(worker_thread, worker,
2801						      pool->node, "%s", id_buf);
2802		if (IS_ERR(worker->task)) {
2803			if (PTR_ERR(worker->task) == -EINTR) {
2804				pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2805				       id_buf);
2806			} else {
2807				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2808					    worker->task);
2809			}
2810			goto fail;
2811		}
2812
2813		set_user_nice(worker->task, pool->attrs->nice);
2814		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2815	}
2816
2817	/* successful, attach the worker to the pool */
2818	worker_attach_to_pool(worker, pool);
2819
2820	/* start the newly created worker */
2821	raw_spin_lock_irq(&pool->lock);
2822
2823	worker->pool->nr_workers++;
2824	worker_enter_idle(worker);
2825
2826	/*
2827	 * @worker is waiting on a completion in kthread() and will trigger hung
2828	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2829	 * wake it up explicitly.
2830	 */
2831	if (worker->task)
2832		wake_up_process(worker->task);
2833
2834	raw_spin_unlock_irq(&pool->lock);
2835
2836	return worker;
2837
2838fail:
2839	ida_free(&pool->worker_ida, id);
2840	kfree(worker);
2841	return NULL;
2842}
2843
2844static void detach_dying_workers(struct list_head *cull_list)
2845{
2846	struct worker *worker;
2847
2848	list_for_each_entry(worker, cull_list, entry)
2849		detach_worker(worker);
 
 
 
2850}
2851
2852static void reap_dying_workers(struct list_head *cull_list)
2853{
2854	struct worker *worker, *tmp;
2855
2856	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2857		list_del_init(&worker->entry);
2858		kthread_stop_put(worker->task);
2859		kfree(worker);
 
 
 
 
 
 
 
 
 
 
2860	}
2861}
2862
2863/**
2864 * set_worker_dying - Tag a worker for destruction
2865 * @worker: worker to be destroyed
2866 * @list: transfer worker away from its pool->idle_list and into list
2867 *
2868 * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2869 * should be idle.
2870 *
2871 * CONTEXT:
2872 * raw_spin_lock_irq(pool->lock).
2873 */
2874static void set_worker_dying(struct worker *worker, struct list_head *list)
2875{
2876	struct worker_pool *pool = worker->pool;
2877
2878	lockdep_assert_held(&pool->lock);
2879	lockdep_assert_held(&wq_pool_attach_mutex);
2880
2881	/* sanity check frenzy */
2882	if (WARN_ON(worker->current_work) ||
2883	    WARN_ON(!list_empty(&worker->scheduled)) ||
2884	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2885		return;
2886
2887	pool->nr_workers--;
2888	pool->nr_idle--;
2889
2890	worker->flags |= WORKER_DIE;
2891
2892	list_move(&worker->entry, list);
2893
2894	/* get an extra task struct reference for later kthread_stop_put() */
2895	get_task_struct(worker->task);
2896}
2897
2898/**
2899 * idle_worker_timeout - check if some idle workers can now be deleted.
2900 * @t: The pool's idle_timer that just expired
2901 *
2902 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2903 * worker_leave_idle(), as a worker flicking between idle and active while its
2904 * pool is at the too_many_workers() tipping point would cause too much timer
2905 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2906 * it expire and re-evaluate things from there.
2907 */
2908static void idle_worker_timeout(struct timer_list *t)
2909{
2910	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2911	bool do_cull = false;
2912
2913	if (work_pending(&pool->idle_cull_work))
2914		return;
2915
2916	raw_spin_lock_irq(&pool->lock);
2917
2918	if (too_many_workers(pool)) {
2919		struct worker *worker;
2920		unsigned long expires;
2921
2922		/* idle_list is kept in LIFO order, check the last one */
2923		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2924		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2925		do_cull = !time_before(jiffies, expires);
2926
2927		if (!do_cull)
2928			mod_timer(&pool->idle_timer, expires);
2929	}
2930	raw_spin_unlock_irq(&pool->lock);
2931
2932	if (do_cull)
2933		queue_work(system_unbound_wq, &pool->idle_cull_work);
2934}
2935
2936/**
2937 * idle_cull_fn - cull workers that have been idle for too long.
2938 * @work: the pool's work for handling these idle workers
2939 *
2940 * This goes through a pool's idle workers and gets rid of those that have been
2941 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2942 *
2943 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2944 * culled, so this also resets worker affinity. This requires a sleepable
2945 * context, hence the split between timer callback and work item.
2946 */
2947static void idle_cull_fn(struct work_struct *work)
2948{
2949	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2950	LIST_HEAD(cull_list);
2951
2952	/*
2953	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2954	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2955	 * This is required as a previously-preempted worker could run after
2956	 * set_worker_dying() has happened but before detach_dying_workers() did.
2957	 */
2958	mutex_lock(&wq_pool_attach_mutex);
2959	raw_spin_lock_irq(&pool->lock);
2960
2961	while (too_many_workers(pool)) {
2962		struct worker *worker;
2963		unsigned long expires;
2964
2965		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2966		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2967
2968		if (time_before(jiffies, expires)) {
2969			mod_timer(&pool->idle_timer, expires);
2970			break;
2971		}
2972
2973		set_worker_dying(worker, &cull_list);
2974	}
2975
2976	raw_spin_unlock_irq(&pool->lock);
2977	detach_dying_workers(&cull_list);
2978	mutex_unlock(&wq_pool_attach_mutex);
2979
2980	reap_dying_workers(&cull_list);
2981}
2982
2983static void send_mayday(struct work_struct *work)
2984{
2985	struct pool_workqueue *pwq = get_work_pwq(work);
2986	struct workqueue_struct *wq = pwq->wq;
2987
2988	lockdep_assert_held(&wq_mayday_lock);
2989
2990	if (!wq->rescuer)
2991		return;
2992
2993	/* mayday mayday mayday */
2994	if (list_empty(&pwq->mayday_node)) {
2995		/*
2996		 * If @pwq is for an unbound wq, its base ref may be put at
2997		 * any time due to an attribute change.  Pin @pwq until the
2998		 * rescuer is done with it.
2999		 */
3000		get_pwq(pwq);
3001		list_add_tail(&pwq->mayday_node, &wq->maydays);
3002		wake_up_process(wq->rescuer->task);
3003		pwq->stats[PWQ_STAT_MAYDAY]++;
3004	}
3005}
3006
3007static void pool_mayday_timeout(struct timer_list *t)
3008{
3009	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3010	struct work_struct *work;
3011
3012	raw_spin_lock_irq(&pool->lock);
3013	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3014
3015	if (need_to_create_worker(pool)) {
3016		/*
3017		 * We've been trying to create a new worker but
3018		 * haven't been successful.  We might be hitting an
3019		 * allocation deadlock.  Send distress signals to
3020		 * rescuers.
3021		 */
3022		list_for_each_entry(work, &pool->worklist, entry)
3023			send_mayday(work);
3024	}
3025
3026	raw_spin_unlock(&wq_mayday_lock);
3027	raw_spin_unlock_irq(&pool->lock);
3028
3029	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3030}
3031
3032/**
3033 * maybe_create_worker - create a new worker if necessary
3034 * @pool: pool to create a new worker for
3035 *
3036 * Create a new worker for @pool if necessary.  @pool is guaranteed to
3037 * have at least one idle worker on return from this function.  If
3038 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3039 * sent to all rescuers with works scheduled on @pool to resolve
3040 * possible allocation deadlock.
3041 *
3042 * On return, need_to_create_worker() is guaranteed to be %false and
3043 * may_start_working() %true.
3044 *
3045 * LOCKING:
3046 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3047 * multiple times.  Does GFP_KERNEL allocations.  Called only from
3048 * manager.
3049 */
3050static void maybe_create_worker(struct worker_pool *pool)
3051__releases(&pool->lock)
3052__acquires(&pool->lock)
3053{
3054restart:
3055	raw_spin_unlock_irq(&pool->lock);
3056
3057	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3058	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3059
3060	while (true) {
3061		if (create_worker(pool) || !need_to_create_worker(pool))
3062			break;
3063
3064		schedule_timeout_interruptible(CREATE_COOLDOWN);
3065
3066		if (!need_to_create_worker(pool))
3067			break;
3068	}
3069
3070	del_timer_sync(&pool->mayday_timer);
3071	raw_spin_lock_irq(&pool->lock);
3072	/*
3073	 * This is necessary even after a new worker was just successfully
3074	 * created as @pool->lock was dropped and the new worker might have
3075	 * already become busy.
3076	 */
3077	if (need_to_create_worker(pool))
3078		goto restart;
3079}
3080
3081/**
3082 * manage_workers - manage worker pool
3083 * @worker: self
3084 *
3085 * Assume the manager role and manage the worker pool @worker belongs
3086 * to.  At any given time, there can be only zero or one manager per
3087 * pool.  The exclusion is handled automatically by this function.
3088 *
3089 * The caller can safely start processing works on false return.  On
3090 * true return, it's guaranteed that need_to_create_worker() is false
3091 * and may_start_working() is true.
3092 *
3093 * CONTEXT:
3094 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3095 * multiple times.  Does GFP_KERNEL allocations.
3096 *
3097 * Return:
3098 * %false if the pool doesn't need management and the caller can safely
3099 * start processing works, %true if management function was performed and
3100 * the conditions that the caller verified before calling the function may
3101 * no longer be true.
3102 */
3103static bool manage_workers(struct worker *worker)
3104{
3105	struct worker_pool *pool = worker->pool;
3106
3107	if (pool->flags & POOL_MANAGER_ACTIVE)
3108		return false;
3109
3110	pool->flags |= POOL_MANAGER_ACTIVE;
3111	pool->manager = worker;
3112
3113	maybe_create_worker(pool);
3114
3115	pool->manager = NULL;
3116	pool->flags &= ~POOL_MANAGER_ACTIVE;
3117	rcuwait_wake_up(&manager_wait);
3118	return true;
3119}
3120
3121/**
3122 * process_one_work - process single work
3123 * @worker: self
3124 * @work: work to process
3125 *
3126 * Process @work.  This function contains all the logics necessary to
3127 * process a single work including synchronization against and
3128 * interaction with other workers on the same cpu, queueing and
3129 * flushing.  As long as context requirement is met, any worker can
3130 * call this function to process a work.
3131 *
3132 * CONTEXT:
3133 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3134 */
3135static void process_one_work(struct worker *worker, struct work_struct *work)
3136__releases(&pool->lock)
3137__acquires(&pool->lock)
3138{
3139	struct pool_workqueue *pwq = get_work_pwq(work);
3140	struct worker_pool *pool = worker->pool;
3141	unsigned long work_data;
3142	int lockdep_start_depth, rcu_start_depth;
3143	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3144#ifdef CONFIG_LOCKDEP
3145	/*
3146	 * It is permissible to free the struct work_struct from
3147	 * inside the function that is called from it, this we need to
3148	 * take into account for lockdep too.  To avoid bogus "held
3149	 * lock freed" warnings as well as problems when looking into
3150	 * work->lockdep_map, make a copy and use that here.
3151	 */
3152	struct lockdep_map lockdep_map;
3153
3154	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3155#endif
3156	/* ensure we're on the correct CPU */
3157	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3158		     raw_smp_processor_id() != pool->cpu);
3159
3160	/* claim and dequeue */
3161	debug_work_deactivate(work);
3162	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3163	worker->current_work = work;
3164	worker->current_func = work->func;
3165	worker->current_pwq = pwq;
3166	if (worker->task)
3167		worker->current_at = worker->task->se.sum_exec_runtime;
3168	work_data = *work_data_bits(work);
3169	worker->current_color = get_work_color(work_data);
3170
3171	/*
3172	 * Record wq name for cmdline and debug reporting, may get
3173	 * overridden through set_worker_desc().
3174	 */
3175	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3176
3177	list_del_init(&work->entry);
3178
3179	/*
3180	 * CPU intensive works don't participate in concurrency management.
3181	 * They're the scheduler's responsibility.  This takes @worker out
3182	 * of concurrency management and the next code block will chain
3183	 * execution of the pending work items.
3184	 */
3185	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3186		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3187
3188	/*
3189	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3190	 * since nr_running would always be >= 1 at this point. This is used to
3191	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3192	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3193	 */
3194	kick_pool(pool);
3195
3196	/*
3197	 * Record the last pool and clear PENDING which should be the last
3198	 * update to @work.  Also, do this inside @pool->lock so that
3199	 * PENDING and queued state changes happen together while IRQ is
3200	 * disabled.
3201	 */
3202	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3203
3204	pwq->stats[PWQ_STAT_STARTED]++;
3205	raw_spin_unlock_irq(&pool->lock);
3206
3207	rcu_start_depth = rcu_preempt_depth();
3208	lockdep_start_depth = lockdep_depth(current);
3209	/* see drain_dead_softirq_workfn() */
3210	if (!bh_draining)
3211		lock_map_acquire(pwq->wq->lockdep_map);
3212	lock_map_acquire(&lockdep_map);
3213	/*
3214	 * Strictly speaking we should mark the invariant state without holding
3215	 * any locks, that is, before these two lock_map_acquire()'s.
3216	 *
3217	 * However, that would result in:
3218	 *
3219	 *   A(W1)
3220	 *   WFC(C)
3221	 *		A(W1)
3222	 *		C(C)
3223	 *
3224	 * Which would create W1->C->W1 dependencies, even though there is no
3225	 * actual deadlock possible. There are two solutions, using a
3226	 * read-recursive acquire on the work(queue) 'locks', but this will then
3227	 * hit the lockdep limitation on recursive locks, or simply discard
3228	 * these locks.
3229	 *
3230	 * AFAICT there is no possible deadlock scenario between the
3231	 * flush_work() and complete() primitives (except for single-threaded
3232	 * workqueues), so hiding them isn't a problem.
3233	 */
3234	lockdep_invariant_state(true);
3235	trace_workqueue_execute_start(work);
3236	worker->current_func(work);
3237	/*
3238	 * While we must be careful to not use "work" after this, the trace
3239	 * point will only record its address.
3240	 */
3241	trace_workqueue_execute_end(work, worker->current_func);
3242	pwq->stats[PWQ_STAT_COMPLETED]++;
3243	lock_map_release(&lockdep_map);
3244	if (!bh_draining)
3245		lock_map_release(pwq->wq->lockdep_map);
3246
3247	if (unlikely((worker->task && in_atomic()) ||
3248		     lockdep_depth(current) != lockdep_start_depth ||
3249		     rcu_preempt_depth() != rcu_start_depth)) {
3250		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3251		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3252		       current->comm, task_pid_nr(current), preempt_count(),
3253		       lockdep_start_depth, lockdep_depth(current),
3254		       rcu_start_depth, rcu_preempt_depth(),
3255		       worker->current_func);
3256		debug_show_held_locks(current);
3257		dump_stack();
3258	}
3259
3260	/*
3261	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3262	 * kernels, where a requeueing work item waiting for something to
3263	 * happen could deadlock with stop_machine as such work item could
3264	 * indefinitely requeue itself while all other CPUs are trapped in
3265	 * stop_machine. At the same time, report a quiescent RCU state so
3266	 * the same condition doesn't freeze RCU.
3267	 */
3268	if (worker->task)
3269		cond_resched();
3270
3271	raw_spin_lock_irq(&pool->lock);
3272
3273	/*
3274	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3275	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3276	 * wq_cpu_intensive_thresh_us. Clear it.
3277	 */
3278	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3279
3280	/* tag the worker for identification in schedule() */
3281	worker->last_func = worker->current_func;
3282
3283	/* we're done with it, release */
3284	hash_del(&worker->hentry);
3285	worker->current_work = NULL;
3286	worker->current_func = NULL;
3287	worker->current_pwq = NULL;
3288	worker->current_color = INT_MAX;
3289
3290	/* must be the last step, see the function comment */
3291	pwq_dec_nr_in_flight(pwq, work_data);
3292}
3293
3294/**
3295 * process_scheduled_works - process scheduled works
3296 * @worker: self
3297 *
3298 * Process all scheduled works.  Please note that the scheduled list
3299 * may change while processing a work, so this function repeatedly
3300 * fetches a work from the top and executes it.
3301 *
3302 * CONTEXT:
3303 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3304 * multiple times.
3305 */
3306static void process_scheduled_works(struct worker *worker)
3307{
3308	struct work_struct *work;
3309	bool first = true;
3310
3311	while ((work = list_first_entry_or_null(&worker->scheduled,
3312						struct work_struct, entry))) {
3313		if (first) {
3314			worker->pool->watchdog_ts = jiffies;
3315			first = false;
3316		}
3317		process_one_work(worker, work);
3318	}
3319}
3320
3321static void set_pf_worker(bool val)
3322{
3323	mutex_lock(&wq_pool_attach_mutex);
3324	if (val)
3325		current->flags |= PF_WQ_WORKER;
3326	else
3327		current->flags &= ~PF_WQ_WORKER;
3328	mutex_unlock(&wq_pool_attach_mutex);
3329}
3330
3331/**
3332 * worker_thread - the worker thread function
3333 * @__worker: self
3334 *
3335 * The worker thread function.  All workers belong to a worker_pool -
3336 * either a per-cpu one or dynamic unbound one.  These workers process all
3337 * work items regardless of their specific target workqueue.  The only
3338 * exception is work items which belong to workqueues with a rescuer which
3339 * will be explained in rescuer_thread().
3340 *
3341 * Return: 0
3342 */
3343static int worker_thread(void *__worker)
3344{
3345	struct worker *worker = __worker;
3346	struct worker_pool *pool = worker->pool;
3347
3348	/* tell the scheduler that this is a workqueue worker */
3349	set_pf_worker(true);
3350woke_up:
3351	raw_spin_lock_irq(&pool->lock);
3352
3353	/* am I supposed to die? */
3354	if (unlikely(worker->flags & WORKER_DIE)) {
3355		raw_spin_unlock_irq(&pool->lock);
3356		set_pf_worker(false);
3357		/*
3358		 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3359		 * shouldn't be accessed, reset it to NULL in case otherwise.
3360		 */
3361		worker->pool = NULL;
3362		ida_free(&pool->worker_ida, worker->id);
 
 
 
3363		return 0;
3364	}
3365
3366	worker_leave_idle(worker);
3367recheck:
3368	/* no more worker necessary? */
3369	if (!need_more_worker(pool))
3370		goto sleep;
3371
3372	/* do we need to manage? */
3373	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3374		goto recheck;
3375
3376	/*
3377	 * ->scheduled list can only be filled while a worker is
3378	 * preparing to process a work or actually processing it.
3379	 * Make sure nobody diddled with it while I was sleeping.
3380	 */
3381	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3382
3383	/*
3384	 * Finish PREP stage.  We're guaranteed to have at least one idle
3385	 * worker or that someone else has already assumed the manager
3386	 * role.  This is where @worker starts participating in concurrency
3387	 * management if applicable and concurrency management is restored
3388	 * after being rebound.  See rebind_workers() for details.
3389	 */
3390	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3391
3392	do {
3393		struct work_struct *work =
3394			list_first_entry(&pool->worklist,
3395					 struct work_struct, entry);
3396
3397		if (assign_work(work, worker, NULL))
3398			process_scheduled_works(worker);
3399	} while (keep_working(pool));
3400
3401	worker_set_flags(worker, WORKER_PREP);
3402sleep:
3403	/*
3404	 * pool->lock is held and there's no work to process and no need to
3405	 * manage, sleep.  Workers are woken up only while holding
3406	 * pool->lock or from local cpu, so setting the current state
3407	 * before releasing pool->lock is enough to prevent losing any
3408	 * event.
3409	 */
3410	worker_enter_idle(worker);
3411	__set_current_state(TASK_IDLE);
3412	raw_spin_unlock_irq(&pool->lock);
3413	schedule();
3414	goto woke_up;
3415}
3416
3417/**
3418 * rescuer_thread - the rescuer thread function
3419 * @__rescuer: self
3420 *
3421 * Workqueue rescuer thread function.  There's one rescuer for each
3422 * workqueue which has WQ_MEM_RECLAIM set.
3423 *
3424 * Regular work processing on a pool may block trying to create a new
3425 * worker which uses GFP_KERNEL allocation which has slight chance of
3426 * developing into deadlock if some works currently on the same queue
3427 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3428 * the problem rescuer solves.
3429 *
3430 * When such condition is possible, the pool summons rescuers of all
3431 * workqueues which have works queued on the pool and let them process
3432 * those works so that forward progress can be guaranteed.
3433 *
3434 * This should happen rarely.
3435 *
3436 * Return: 0
3437 */
3438static int rescuer_thread(void *__rescuer)
3439{
3440	struct worker *rescuer = __rescuer;
3441	struct workqueue_struct *wq = rescuer->rescue_wq;
3442	bool should_stop;
3443
3444	set_user_nice(current, RESCUER_NICE_LEVEL);
3445
3446	/*
3447	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3448	 * doesn't participate in concurrency management.
3449	 */
3450	set_pf_worker(true);
3451repeat:
3452	set_current_state(TASK_IDLE);
3453
3454	/*
3455	 * By the time the rescuer is requested to stop, the workqueue
3456	 * shouldn't have any work pending, but @wq->maydays may still have
3457	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3458	 * all the work items before the rescuer got to them.  Go through
3459	 * @wq->maydays processing before acting on should_stop so that the
3460	 * list is always empty on exit.
3461	 */
3462	should_stop = kthread_should_stop();
3463
3464	/* see whether any pwq is asking for help */
3465	raw_spin_lock_irq(&wq_mayday_lock);
3466
3467	while (!list_empty(&wq->maydays)) {
3468		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3469					struct pool_workqueue, mayday_node);
3470		struct worker_pool *pool = pwq->pool;
3471		struct work_struct *work, *n;
3472
3473		__set_current_state(TASK_RUNNING);
3474		list_del_init(&pwq->mayday_node);
3475
3476		raw_spin_unlock_irq(&wq_mayday_lock);
3477
3478		worker_attach_to_pool(rescuer, pool);
3479
3480		raw_spin_lock_irq(&pool->lock);
3481
3482		/*
3483		 * Slurp in all works issued via this workqueue and
3484		 * process'em.
3485		 */
3486		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3487		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3488			if (get_work_pwq(work) == pwq &&
3489			    assign_work(work, rescuer, &n))
3490				pwq->stats[PWQ_STAT_RESCUED]++;
3491		}
3492
3493		if (!list_empty(&rescuer->scheduled)) {
3494			process_scheduled_works(rescuer);
3495
3496			/*
3497			 * The above execution of rescued work items could
3498			 * have created more to rescue through
3499			 * pwq_activate_first_inactive() or chained
3500			 * queueing.  Let's put @pwq back on mayday list so
3501			 * that such back-to-back work items, which may be
3502			 * being used to relieve memory pressure, don't
3503			 * incur MAYDAY_INTERVAL delay inbetween.
3504			 */
3505			if (pwq->nr_active && need_to_create_worker(pool)) {
3506				raw_spin_lock(&wq_mayday_lock);
3507				/*
3508				 * Queue iff we aren't racing destruction
3509				 * and somebody else hasn't queued it already.
3510				 */
3511				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3512					get_pwq(pwq);
3513					list_add_tail(&pwq->mayday_node, &wq->maydays);
3514				}
3515				raw_spin_unlock(&wq_mayday_lock);
3516			}
3517		}
3518
3519		/*
 
 
 
 
 
 
3520		 * Leave this pool. Notify regular workers; otherwise, we end up
3521		 * with 0 concurrency and stalling the execution.
3522		 */
3523		kick_pool(pool);
3524
3525		raw_spin_unlock_irq(&pool->lock);
3526
3527		worker_detach_from_pool(rescuer);
3528
3529		/*
3530		 * Put the reference grabbed by send_mayday().  @pool might
3531		 * go away any time after it.
3532		 */
3533		put_pwq_unlocked(pwq);
3534
3535		raw_spin_lock_irq(&wq_mayday_lock);
3536	}
3537
3538	raw_spin_unlock_irq(&wq_mayday_lock);
3539
3540	if (should_stop) {
3541		__set_current_state(TASK_RUNNING);
3542		set_pf_worker(false);
3543		return 0;
3544	}
3545
3546	/* rescuers should never participate in concurrency management */
3547	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3548	schedule();
3549	goto repeat;
3550}
3551
3552static void bh_worker(struct worker *worker)
3553{
3554	struct worker_pool *pool = worker->pool;
3555	int nr_restarts = BH_WORKER_RESTARTS;
3556	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3557
3558	raw_spin_lock_irq(&pool->lock);
3559	worker_leave_idle(worker);
3560
3561	/*
3562	 * This function follows the structure of worker_thread(). See there for
3563	 * explanations on each step.
3564	 */
3565	if (!need_more_worker(pool))
3566		goto done;
3567
3568	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3569	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3570
3571	do {
3572		struct work_struct *work =
3573			list_first_entry(&pool->worklist,
3574					 struct work_struct, entry);
3575
3576		if (assign_work(work, worker, NULL))
3577			process_scheduled_works(worker);
3578	} while (keep_working(pool) &&
3579		 --nr_restarts && time_before(jiffies, end));
3580
3581	worker_set_flags(worker, WORKER_PREP);
3582done:
3583	worker_enter_idle(worker);
3584	kick_pool(pool);
3585	raw_spin_unlock_irq(&pool->lock);
3586}
3587
3588/*
3589 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3590 *
3591 * This is currently called from tasklet[_hi]action() and thus is also called
3592 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3593 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3594 * can be dropped.
3595 *
3596 * After full conversion, we'll add worker->softirq_action, directly use the
3597 * softirq action and obtain the worker pointer from the softirq_action pointer.
3598 */
3599void workqueue_softirq_action(bool highpri)
3600{
3601	struct worker_pool *pool =
3602		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3603	if (need_more_worker(pool))
3604		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3605}
3606
3607struct wq_drain_dead_softirq_work {
3608	struct work_struct	work;
3609	struct worker_pool	*pool;
3610	struct completion	done;
3611};
3612
3613static void drain_dead_softirq_workfn(struct work_struct *work)
3614{
3615	struct wq_drain_dead_softirq_work *dead_work =
3616		container_of(work, struct wq_drain_dead_softirq_work, work);
3617	struct worker_pool *pool = dead_work->pool;
3618	bool repeat;
3619
3620	/*
3621	 * @pool's CPU is dead and we want to execute its still pending work
3622	 * items from this BH work item which is running on a different CPU. As
3623	 * its CPU is dead, @pool can't be kicked and, as work execution path
3624	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3625	 * @pool with %POOL_BH_DRAINING for the special treatments.
3626	 */
3627	raw_spin_lock_irq(&pool->lock);
3628	pool->flags |= POOL_BH_DRAINING;
3629	raw_spin_unlock_irq(&pool->lock);
3630
3631	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3632
3633	raw_spin_lock_irq(&pool->lock);
3634	pool->flags &= ~POOL_BH_DRAINING;
3635	repeat = need_more_worker(pool);
3636	raw_spin_unlock_irq(&pool->lock);
3637
3638	/*
3639	 * bh_worker() might hit consecutive execution limit and bail. If there
3640	 * still are pending work items, reschedule self and return so that we
3641	 * don't hog this CPU's BH.
3642	 */
3643	if (repeat) {
3644		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3645			queue_work(system_bh_highpri_wq, work);
3646		else
3647			queue_work(system_bh_wq, work);
3648	} else {
3649		complete(&dead_work->done);
3650	}
3651}
3652
3653/*
3654 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3655 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3656 * have to worry about draining overlapping with CPU coming back online or
3657 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3658 * on). Let's keep it simple and drain them synchronously. These are BH work
3659 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3660 */
3661void workqueue_softirq_dead(unsigned int cpu)
3662{
3663	int i;
3664
3665	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3666		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3667		struct wq_drain_dead_softirq_work dead_work;
3668
3669		if (!need_more_worker(pool))
3670			continue;
3671
3672		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3673		dead_work.pool = pool;
3674		init_completion(&dead_work.done);
3675
3676		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3677			queue_work(system_bh_highpri_wq, &dead_work.work);
3678		else
3679			queue_work(system_bh_wq, &dead_work.work);
3680
3681		wait_for_completion(&dead_work.done);
3682		destroy_work_on_stack(&dead_work.work);
3683	}
3684}
3685
3686/**
3687 * check_flush_dependency - check for flush dependency sanity
3688 * @target_wq: workqueue being flushed
3689 * @target_work: work item being flushed (NULL for workqueue flushes)
3690 * @from_cancel: are we called from the work cancel path
3691 *
3692 * %current is trying to flush the whole @target_wq or @target_work on it.
3693 * If this is not the cancel path (which implies work being flushed is either
3694 * already running, or will not be at all), check if @target_wq doesn't have
3695 * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running
3696 * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward-
3697 * progress guarantee leading to a deadlock.
3698 */
3699static void check_flush_dependency(struct workqueue_struct *target_wq,
3700				   struct work_struct *target_work,
3701				   bool from_cancel)
3702{
3703	work_func_t target_func;
3704	struct worker *worker;
3705
3706	if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM)
3707		return;
3708
3709	worker = current_wq_worker();
3710	target_func = target_work ? target_work->func : NULL;
3711
3712	WARN_ONCE(current->flags & PF_MEMALLOC,
3713		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3714		  current->pid, current->comm, target_wq->name, target_func);
3715	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3716			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3717		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3718		  worker->current_pwq->wq->name, worker->current_func,
3719		  target_wq->name, target_func);
3720}
3721
3722struct wq_barrier {
3723	struct work_struct	work;
3724	struct completion	done;
3725	struct task_struct	*task;	/* purely informational */
3726};
3727
3728static void wq_barrier_func(struct work_struct *work)
3729{
3730	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3731	complete(&barr->done);
3732}
3733
3734/**
3735 * insert_wq_barrier - insert a barrier work
3736 * @pwq: pwq to insert barrier into
3737 * @barr: wq_barrier to insert
3738 * @target: target work to attach @barr to
3739 * @worker: worker currently executing @target, NULL if @target is not executing
3740 *
3741 * @barr is linked to @target such that @barr is completed only after
3742 * @target finishes execution.  Please note that the ordering
3743 * guarantee is observed only with respect to @target and on the local
3744 * cpu.
3745 *
3746 * Currently, a queued barrier can't be canceled.  This is because
3747 * try_to_grab_pending() can't determine whether the work to be
3748 * grabbed is at the head of the queue and thus can't clear LINKED
3749 * flag of the previous work while there must be a valid next work
3750 * after a work with LINKED flag set.
3751 *
3752 * Note that when @worker is non-NULL, @target may be modified
3753 * underneath us, so we can't reliably determine pwq from @target.
3754 *
3755 * CONTEXT:
3756 * raw_spin_lock_irq(pool->lock).
3757 */
3758static void insert_wq_barrier(struct pool_workqueue *pwq,
3759			      struct wq_barrier *barr,
3760			      struct work_struct *target, struct worker *worker)
3761{
3762	static __maybe_unused struct lock_class_key bh_key, thr_key;
3763	unsigned int work_flags = 0;
3764	unsigned int work_color;
3765	struct list_head *head;
3766
3767	/*
3768	 * debugobject calls are safe here even with pool->lock locked
3769	 * as we know for sure that this will not trigger any of the
3770	 * checks and call back into the fixup functions where we
3771	 * might deadlock.
3772	 *
3773	 * BH and threaded workqueues need separate lockdep keys to avoid
3774	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3775	 * usage".
3776	 */
3777	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3778			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3779	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3780
3781	init_completion_map(&barr->done, &target->lockdep_map);
3782
3783	barr->task = current;
3784
3785	/* The barrier work item does not participate in nr_active. */
3786	work_flags |= WORK_STRUCT_INACTIVE;
3787
3788	/*
3789	 * If @target is currently being executed, schedule the
3790	 * barrier to the worker; otherwise, put it after @target.
3791	 */
3792	if (worker) {
3793		head = worker->scheduled.next;
3794		work_color = worker->current_color;
3795	} else {
3796		unsigned long *bits = work_data_bits(target);
3797
3798		head = target->entry.next;
3799		/* there can already be other linked works, inherit and set */
3800		work_flags |= *bits & WORK_STRUCT_LINKED;
3801		work_color = get_work_color(*bits);
3802		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3803	}
3804
3805	pwq->nr_in_flight[work_color]++;
3806	work_flags |= work_color_to_flags(work_color);
3807
3808	insert_work(pwq, &barr->work, head, work_flags);
3809}
3810
3811/**
3812 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3813 * @wq: workqueue being flushed
3814 * @flush_color: new flush color, < 0 for no-op
3815 * @work_color: new work color, < 0 for no-op
3816 *
3817 * Prepare pwqs for workqueue flushing.
3818 *
3819 * If @flush_color is non-negative, flush_color on all pwqs should be
3820 * -1.  If no pwq has in-flight commands at the specified color, all
3821 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3822 * has in flight commands, its pwq->flush_color is set to
3823 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3824 * wakeup logic is armed and %true is returned.
3825 *
3826 * The caller should have initialized @wq->first_flusher prior to
3827 * calling this function with non-negative @flush_color.  If
3828 * @flush_color is negative, no flush color update is done and %false
3829 * is returned.
3830 *
3831 * If @work_color is non-negative, all pwqs should have the same
3832 * work_color which is previous to @work_color and all will be
3833 * advanced to @work_color.
3834 *
3835 * CONTEXT:
3836 * mutex_lock(wq->mutex).
3837 *
3838 * Return:
3839 * %true if @flush_color >= 0 and there's something to flush.  %false
3840 * otherwise.
3841 */
3842static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3843				      int flush_color, int work_color)
3844{
3845	bool wait = false;
3846	struct pool_workqueue *pwq;
3847	struct worker_pool *current_pool = NULL;
3848
3849	if (flush_color >= 0) {
3850		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3851		atomic_set(&wq->nr_pwqs_to_flush, 1);
3852	}
3853
3854	/*
3855	 * For unbound workqueue, pwqs will map to only a few pools.
3856	 * Most of the time, pwqs within the same pool will be linked
3857	 * sequentially to wq->pwqs by cpu index. So in the majority
3858	 * of pwq iters, the pool is the same, only doing lock/unlock
3859	 * if the pool has changed. This can largely reduce expensive
3860	 * lock operations.
3861	 */
3862	for_each_pwq(pwq, wq) {
3863		if (current_pool != pwq->pool) {
3864			if (likely(current_pool))
3865				raw_spin_unlock_irq(&current_pool->lock);
3866			current_pool = pwq->pool;
3867			raw_spin_lock_irq(&current_pool->lock);
3868		}
3869
3870		if (flush_color >= 0) {
3871			WARN_ON_ONCE(pwq->flush_color != -1);
3872
3873			if (pwq->nr_in_flight[flush_color]) {
3874				pwq->flush_color = flush_color;
3875				atomic_inc(&wq->nr_pwqs_to_flush);
3876				wait = true;
3877			}
3878		}
3879
3880		if (work_color >= 0) {
3881			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3882			pwq->work_color = work_color;
3883		}
3884
 
3885	}
3886
3887	if (current_pool)
3888		raw_spin_unlock_irq(&current_pool->lock);
3889
3890	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3891		complete(&wq->first_flusher->done);
3892
3893	return wait;
3894}
3895
3896static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3897{
3898#ifdef CONFIG_LOCKDEP
3899	if (unlikely(!wq->lockdep_map))
3900		return;
3901
3902	if (wq->flags & WQ_BH)
3903		local_bh_disable();
3904
3905	lock_map_acquire(wq->lockdep_map);
3906	lock_map_release(wq->lockdep_map);
3907
3908	if (wq->flags & WQ_BH)
3909		local_bh_enable();
3910#endif
3911}
3912
3913static void touch_work_lockdep_map(struct work_struct *work,
3914				   struct workqueue_struct *wq)
3915{
3916#ifdef CONFIG_LOCKDEP
3917	if (wq->flags & WQ_BH)
3918		local_bh_disable();
3919
3920	lock_map_acquire(&work->lockdep_map);
3921	lock_map_release(&work->lockdep_map);
3922
3923	if (wq->flags & WQ_BH)
3924		local_bh_enable();
3925#endif
3926}
3927
3928/**
3929 * __flush_workqueue - ensure that any scheduled work has run to completion.
3930 * @wq: workqueue to flush
3931 *
3932 * This function sleeps until all work items which were queued on entry
3933 * have finished execution, but it is not livelocked by new incoming ones.
3934 */
3935void __flush_workqueue(struct workqueue_struct *wq)
3936{
3937	struct wq_flusher this_flusher = {
3938		.list = LIST_HEAD_INIT(this_flusher.list),
3939		.flush_color = -1,
3940		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3941	};
3942	int next_color;
3943
3944	if (WARN_ON(!wq_online))
3945		return;
3946
3947	touch_wq_lockdep_map(wq);
3948
3949	mutex_lock(&wq->mutex);
3950
3951	/*
3952	 * Start-to-wait phase
3953	 */
3954	next_color = work_next_color(wq->work_color);
3955
3956	if (next_color != wq->flush_color) {
3957		/*
3958		 * Color space is not full.  The current work_color
3959		 * becomes our flush_color and work_color is advanced
3960		 * by one.
3961		 */
3962		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3963		this_flusher.flush_color = wq->work_color;
3964		wq->work_color = next_color;
3965
3966		if (!wq->first_flusher) {
3967			/* no flush in progress, become the first flusher */
3968			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3969
3970			wq->first_flusher = &this_flusher;
3971
3972			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3973						       wq->work_color)) {
3974				/* nothing to flush, done */
3975				wq->flush_color = next_color;
3976				wq->first_flusher = NULL;
3977				goto out_unlock;
3978			}
3979		} else {
3980			/* wait in queue */
3981			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3982			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3983			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3984		}
3985	} else {
3986		/*
3987		 * Oops, color space is full, wait on overflow queue.
3988		 * The next flush completion will assign us
3989		 * flush_color and transfer to flusher_queue.
3990		 */
3991		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3992	}
3993
3994	check_flush_dependency(wq, NULL, false);
3995
3996	mutex_unlock(&wq->mutex);
3997
3998	wait_for_completion(&this_flusher.done);
3999
4000	/*
4001	 * Wake-up-and-cascade phase
4002	 *
4003	 * First flushers are responsible for cascading flushes and
4004	 * handling overflow.  Non-first flushers can simply return.
4005	 */
4006	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4007		return;
4008
4009	mutex_lock(&wq->mutex);
4010
4011	/* we might have raced, check again with mutex held */
4012	if (wq->first_flusher != &this_flusher)
4013		goto out_unlock;
4014
4015	WRITE_ONCE(wq->first_flusher, NULL);
4016
4017	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4018	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4019
4020	while (true) {
4021		struct wq_flusher *next, *tmp;
4022
4023		/* complete all the flushers sharing the current flush color */
4024		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4025			if (next->flush_color != wq->flush_color)
4026				break;
4027			list_del_init(&next->list);
4028			complete(&next->done);
4029		}
4030
4031		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4032			     wq->flush_color != work_next_color(wq->work_color));
4033
4034		/* this flush_color is finished, advance by one */
4035		wq->flush_color = work_next_color(wq->flush_color);
4036
4037		/* one color has been freed, handle overflow queue */
4038		if (!list_empty(&wq->flusher_overflow)) {
4039			/*
4040			 * Assign the same color to all overflowed
4041			 * flushers, advance work_color and append to
4042			 * flusher_queue.  This is the start-to-wait
4043			 * phase for these overflowed flushers.
4044			 */
4045			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4046				tmp->flush_color = wq->work_color;
4047
4048			wq->work_color = work_next_color(wq->work_color);
4049
4050			list_splice_tail_init(&wq->flusher_overflow,
4051					      &wq->flusher_queue);
4052			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4053		}
4054
4055		if (list_empty(&wq->flusher_queue)) {
4056			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4057			break;
4058		}
4059
4060		/*
4061		 * Need to flush more colors.  Make the next flusher
4062		 * the new first flusher and arm pwqs.
4063		 */
4064		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4065		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4066
4067		list_del_init(&next->list);
4068		wq->first_flusher = next;
4069
4070		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4071			break;
4072
4073		/*
4074		 * Meh... this color is already done, clear first
4075		 * flusher and repeat cascading.
4076		 */
4077		wq->first_flusher = NULL;
4078	}
4079
4080out_unlock:
4081	mutex_unlock(&wq->mutex);
4082}
4083EXPORT_SYMBOL(__flush_workqueue);
4084
4085/**
4086 * drain_workqueue - drain a workqueue
4087 * @wq: workqueue to drain
4088 *
4089 * Wait until the workqueue becomes empty.  While draining is in progress,
4090 * only chain queueing is allowed.  IOW, only currently pending or running
4091 * work items on @wq can queue further work items on it.  @wq is flushed
4092 * repeatedly until it becomes empty.  The number of flushing is determined
4093 * by the depth of chaining and should be relatively short.  Whine if it
4094 * takes too long.
4095 */
4096void drain_workqueue(struct workqueue_struct *wq)
4097{
4098	unsigned int flush_cnt = 0;
4099	struct pool_workqueue *pwq;
4100
4101	/*
4102	 * __queue_work() needs to test whether there are drainers, is much
4103	 * hotter than drain_workqueue() and already looks at @wq->flags.
4104	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4105	 */
4106	mutex_lock(&wq->mutex);
4107	if (!wq->nr_drainers++)
4108		wq->flags |= __WQ_DRAINING;
4109	mutex_unlock(&wq->mutex);
4110reflush:
4111	__flush_workqueue(wq);
4112
4113	mutex_lock(&wq->mutex);
4114
4115	for_each_pwq(pwq, wq) {
4116		bool drained;
4117
4118		raw_spin_lock_irq(&pwq->pool->lock);
4119		drained = pwq_is_empty(pwq);
4120		raw_spin_unlock_irq(&pwq->pool->lock);
4121
4122		if (drained)
4123			continue;
4124
4125		if (++flush_cnt == 10 ||
4126		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4127			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4128				wq->name, __func__, flush_cnt);
4129
4130		mutex_unlock(&wq->mutex);
4131		goto reflush;
4132	}
4133
4134	if (!--wq->nr_drainers)
4135		wq->flags &= ~__WQ_DRAINING;
4136	mutex_unlock(&wq->mutex);
4137}
4138EXPORT_SYMBOL_GPL(drain_workqueue);
4139
4140static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4141			     bool from_cancel)
4142{
4143	struct worker *worker = NULL;
4144	struct worker_pool *pool;
4145	struct pool_workqueue *pwq;
4146	struct workqueue_struct *wq;
4147
 
 
4148	rcu_read_lock();
4149	pool = get_work_pool(work);
4150	if (!pool) {
4151		rcu_read_unlock();
4152		return false;
4153	}
4154
4155	raw_spin_lock_irq(&pool->lock);
4156	/* see the comment in try_to_grab_pending() with the same code */
4157	pwq = get_work_pwq(work);
4158	if (pwq) {
4159		if (unlikely(pwq->pool != pool))
4160			goto already_gone;
4161	} else {
4162		worker = find_worker_executing_work(pool, work);
4163		if (!worker)
4164			goto already_gone;
4165		pwq = worker->current_pwq;
4166	}
4167
4168	wq = pwq->wq;
4169	check_flush_dependency(wq, work, from_cancel);
4170
4171	insert_wq_barrier(pwq, barr, work, worker);
4172	raw_spin_unlock_irq(&pool->lock);
4173
4174	touch_work_lockdep_map(work, wq);
4175
4176	/*
4177	 * Force a lock recursion deadlock when using flush_work() inside a
4178	 * single-threaded or rescuer equipped workqueue.
4179	 *
4180	 * For single threaded workqueues the deadlock happens when the work
4181	 * is after the work issuing the flush_work(). For rescuer equipped
4182	 * workqueues the deadlock happens when the rescuer stalls, blocking
4183	 * forward progress.
4184	 */
4185	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4186		touch_wq_lockdep_map(wq);
4187
4188	rcu_read_unlock();
4189	return true;
4190already_gone:
4191	raw_spin_unlock_irq(&pool->lock);
4192	rcu_read_unlock();
4193	return false;
4194}
4195
4196static bool __flush_work(struct work_struct *work, bool from_cancel)
4197{
4198	struct wq_barrier barr;
4199
4200	if (WARN_ON(!wq_online))
4201		return false;
4202
4203	if (WARN_ON(!work->func))
4204		return false;
4205
4206	if (!start_flush_work(work, &barr, from_cancel))
 
 
 
 
4207		return false;
4208
4209	/*
4210	 * start_flush_work() returned %true. If @from_cancel is set, we know
4211	 * that @work must have been executing during start_flush_work() and
4212	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4213	 * was queued on a BH workqueue, we also know that it was running in the
4214	 * BH context and thus can be busy-waited.
4215	 */
4216	if (from_cancel) {
4217		unsigned long data = *work_data_bits(work);
4218
4219		if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4220		    (data & WORK_OFFQ_BH)) {
4221			/*
4222			 * On RT, prevent a live lock when %current preempted
4223			 * soft interrupt processing or prevents ksoftirqd from
4224			 * running by keeping flipping BH. If the BH work item
4225			 * runs on a different CPU then this has no effect other
4226			 * than doing the BH disable/enable dance for nothing.
4227			 * This is copied from
4228			 * kernel/softirq.c::tasklet_unlock_spin_wait().
4229			 */
4230			while (!try_wait_for_completion(&barr.done)) {
4231				if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4232					local_bh_disable();
4233					local_bh_enable();
4234				} else {
4235					cpu_relax();
4236				}
4237			}
4238			goto out_destroy;
4239		}
4240	}
4241
4242	wait_for_completion(&barr.done);
4243
4244out_destroy:
4245	destroy_work_on_stack(&barr.work);
4246	return true;
4247}
4248
4249/**
4250 * flush_work - wait for a work to finish executing the last queueing instance
4251 * @work: the work to flush
4252 *
4253 * Wait until @work has finished execution.  @work is guaranteed to be idle
4254 * on return if it hasn't been requeued since flush started.
4255 *
4256 * Return:
4257 * %true if flush_work() waited for the work to finish execution,
4258 * %false if it was already idle.
4259 */
4260bool flush_work(struct work_struct *work)
4261{
4262	might_sleep();
4263	return __flush_work(work, false);
4264}
4265EXPORT_SYMBOL_GPL(flush_work);
4266
4267/**
4268 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4269 * @dwork: the delayed work to flush
4270 *
4271 * Delayed timer is cancelled and the pending work is queued for
4272 * immediate execution.  Like flush_work(), this function only
4273 * considers the last queueing instance of @dwork.
4274 *
4275 * Return:
4276 * %true if flush_work() waited for the work to finish execution,
4277 * %false if it was already idle.
4278 */
4279bool flush_delayed_work(struct delayed_work *dwork)
4280{
4281	local_irq_disable();
4282	if (del_timer_sync(&dwork->timer))
4283		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4284	local_irq_enable();
4285	return flush_work(&dwork->work);
4286}
4287EXPORT_SYMBOL(flush_delayed_work);
4288
4289/**
4290 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4291 * @rwork: the rcu work to flush
4292 *
4293 * Return:
4294 * %true if flush_rcu_work() waited for the work to finish execution,
4295 * %false if it was already idle.
4296 */
4297bool flush_rcu_work(struct rcu_work *rwork)
4298{
4299	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4300		rcu_barrier();
4301		flush_work(&rwork->work);
4302		return true;
4303	} else {
4304		return flush_work(&rwork->work);
4305	}
4306}
4307EXPORT_SYMBOL(flush_rcu_work);
4308
4309static void work_offqd_disable(struct work_offq_data *offqd)
4310{
4311	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4312
4313	if (likely(offqd->disable < max))
4314		offqd->disable++;
4315	else
4316		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4317}
4318
4319static void work_offqd_enable(struct work_offq_data *offqd)
4320{
4321	if (likely(offqd->disable > 0))
4322		offqd->disable--;
4323	else
4324		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4325}
4326
4327static bool __cancel_work(struct work_struct *work, u32 cflags)
4328{
4329	struct work_offq_data offqd;
4330	unsigned long irq_flags;
4331	int ret;
4332
4333	ret = work_grab_pending(work, cflags, &irq_flags);
4334
4335	work_offqd_unpack(&offqd, *work_data_bits(work));
4336
4337	if (cflags & WORK_CANCEL_DISABLE)
4338		work_offqd_disable(&offqd);
4339
4340	set_work_pool_and_clear_pending(work, offqd.pool_id,
4341					work_offqd_pack_flags(&offqd));
4342	local_irq_restore(irq_flags);
4343	return ret;
4344}
4345
4346static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4347{
 
4348	bool ret;
4349
4350	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4351
4352	if (*work_data_bits(work) & WORK_OFFQ_BH)
4353		WARN_ON_ONCE(in_hardirq());
4354	else
4355		might_sleep();
4356
4357	/*
4358	 * Skip __flush_work() during early boot when we know that @work isn't
4359	 * executing. This allows canceling during early boot.
4360	 */
4361	if (wq_online)
4362		__flush_work(work, true);
4363
4364	if (!(cflags & WORK_CANCEL_DISABLE))
4365		enable_work(work);
 
 
 
 
 
 
 
4366
4367	return ret;
4368}
4369
4370/*
4371 * See cancel_delayed_work()
4372 */
4373bool cancel_work(struct work_struct *work)
4374{
4375	return __cancel_work(work, 0);
4376}
4377EXPORT_SYMBOL(cancel_work);
4378
4379/**
4380 * cancel_work_sync - cancel a work and wait for it to finish
4381 * @work: the work to cancel
4382 *
4383 * Cancel @work and wait for its execution to finish. This function can be used
4384 * even if the work re-queues itself or migrates to another workqueue. On return
4385 * from this function, @work is guaranteed to be not pending or executing on any
4386 * CPU as long as there aren't racing enqueues.
4387 *
4388 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4389 * Use cancel_delayed_work_sync() instead.
4390 *
4391 * Must be called from a sleepable context if @work was last queued on a non-BH
4392 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4393 * if @work was last queued on a BH workqueue.
4394 *
4395 * Returns %true if @work was pending, %false otherwise.
 
 
 
 
 
 
 
4396 */
4397bool cancel_work_sync(struct work_struct *work)
4398{
4399	return __cancel_work_sync(work, 0);
4400}
4401EXPORT_SYMBOL_GPL(cancel_work_sync);
4402
4403/**
4404 * cancel_delayed_work - cancel a delayed work
4405 * @dwork: delayed_work to cancel
4406 *
4407 * Kill off a pending delayed_work.
4408 *
4409 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4410 * pending.
4411 *
4412 * Note:
4413 * The work callback function may still be running on return, unless
4414 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4415 * use cancel_delayed_work_sync() to wait on it.
4416 *
4417 * This function is safe to call from any context including IRQ handler.
4418 */
4419bool cancel_delayed_work(struct delayed_work *dwork)
4420{
4421	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4422}
4423EXPORT_SYMBOL(cancel_delayed_work);
4424
4425/**
4426 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4427 * @dwork: the delayed work cancel
4428 *
4429 * This is cancel_work_sync() for delayed works.
4430 *
4431 * Return:
4432 * %true if @dwork was pending, %false otherwise.
4433 */
4434bool cancel_delayed_work_sync(struct delayed_work *dwork)
4435{
4436	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4437}
4438EXPORT_SYMBOL(cancel_delayed_work_sync);
4439
4440/**
4441 * disable_work - Disable and cancel a work item
4442 * @work: work item to disable
4443 *
4444 * Disable @work by incrementing its disable count and cancel it if currently
4445 * pending. As long as the disable count is non-zero, any attempt to queue @work
4446 * will fail and return %false. The maximum supported disable depth is 2 to the
4447 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4448 *
4449 * Can be called from any context. Returns %true if @work was pending, %false
4450 * otherwise.
4451 */
4452bool disable_work(struct work_struct *work)
4453{
4454	return __cancel_work(work, WORK_CANCEL_DISABLE);
4455}
4456EXPORT_SYMBOL_GPL(disable_work);
4457
4458/**
4459 * disable_work_sync - Disable, cancel and drain a work item
4460 * @work: work item to disable
4461 *
4462 * Similar to disable_work() but also wait for @work to finish if currently
4463 * executing.
4464 *
4465 * Must be called from a sleepable context if @work was last queued on a non-BH
4466 * workqueue. Can also be called from non-hardirq atomic contexts including BH
4467 * if @work was last queued on a BH workqueue.
4468 *
4469 * Returns %true if @work was pending, %false otherwise.
4470 */
4471bool disable_work_sync(struct work_struct *work)
4472{
4473	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4474}
4475EXPORT_SYMBOL_GPL(disable_work_sync);
4476
4477/**
4478 * enable_work - Enable a work item
4479 * @work: work item to enable
4480 *
4481 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4482 * only be queued if its disable count is 0.
4483 *
4484 * Can be called from any context. Returns %true if the disable count reached 0.
4485 * Otherwise, %false.
4486 */
4487bool enable_work(struct work_struct *work)
4488{
4489	struct work_offq_data offqd;
4490	unsigned long irq_flags;
4491
4492	work_grab_pending(work, 0, &irq_flags);
4493
4494	work_offqd_unpack(&offqd, *work_data_bits(work));
4495	work_offqd_enable(&offqd);
4496	set_work_pool_and_clear_pending(work, offqd.pool_id,
4497					work_offqd_pack_flags(&offqd));
4498	local_irq_restore(irq_flags);
4499
4500	return !offqd.disable;
4501}
4502EXPORT_SYMBOL_GPL(enable_work);
4503
4504/**
4505 * disable_delayed_work - Disable and cancel a delayed work item
4506 * @dwork: delayed work item to disable
4507 *
4508 * disable_work() for delayed work items.
4509 */
4510bool disable_delayed_work(struct delayed_work *dwork)
4511{
4512	return __cancel_work(&dwork->work,
4513			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4514}
4515EXPORT_SYMBOL_GPL(disable_delayed_work);
4516
4517/**
4518 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4519 * @dwork: delayed work item to disable
4520 *
4521 * disable_work_sync() for delayed work items.
4522 */
4523bool disable_delayed_work_sync(struct delayed_work *dwork)
4524{
4525	return __cancel_work_sync(&dwork->work,
4526				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4527}
4528EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4529
4530/**
4531 * enable_delayed_work - Enable a delayed work item
4532 * @dwork: delayed work item to enable
4533 *
4534 * enable_work() for delayed work items.
4535 */
4536bool enable_delayed_work(struct delayed_work *dwork)
4537{
4538	return enable_work(&dwork->work);
4539}
4540EXPORT_SYMBOL_GPL(enable_delayed_work);
4541
4542/**
4543 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4544 * @func: the function to call
4545 *
4546 * schedule_on_each_cpu() executes @func on each online CPU using the
4547 * system workqueue and blocks until all CPUs have completed.
4548 * schedule_on_each_cpu() is very slow.
4549 *
4550 * Return:
4551 * 0 on success, -errno on failure.
4552 */
4553int schedule_on_each_cpu(work_func_t func)
4554{
4555	int cpu;
4556	struct work_struct __percpu *works;
4557
4558	works = alloc_percpu(struct work_struct);
4559	if (!works)
4560		return -ENOMEM;
4561
4562	cpus_read_lock();
4563
4564	for_each_online_cpu(cpu) {
4565		struct work_struct *work = per_cpu_ptr(works, cpu);
4566
4567		INIT_WORK(work, func);
4568		schedule_work_on(cpu, work);
4569	}
4570
4571	for_each_online_cpu(cpu)
4572		flush_work(per_cpu_ptr(works, cpu));
4573
4574	cpus_read_unlock();
4575	free_percpu(works);
4576	return 0;
4577}
4578
4579/**
4580 * execute_in_process_context - reliably execute the routine with user context
4581 * @fn:		the function to execute
4582 * @ew:		guaranteed storage for the execute work structure (must
4583 *		be available when the work executes)
4584 *
4585 * Executes the function immediately if process context is available,
4586 * otherwise schedules the function for delayed execution.
4587 *
4588 * Return:	0 - function was executed
4589 *		1 - function was scheduled for execution
4590 */
4591int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4592{
4593	if (!in_interrupt()) {
4594		fn(&ew->work);
4595		return 0;
4596	}
4597
4598	INIT_WORK(&ew->work, fn);
4599	schedule_work(&ew->work);
4600
4601	return 1;
4602}
4603EXPORT_SYMBOL_GPL(execute_in_process_context);
4604
4605/**
4606 * free_workqueue_attrs - free a workqueue_attrs
4607 * @attrs: workqueue_attrs to free
4608 *
4609 * Undo alloc_workqueue_attrs().
4610 */
4611void free_workqueue_attrs(struct workqueue_attrs *attrs)
4612{
4613	if (attrs) {
4614		free_cpumask_var(attrs->cpumask);
4615		free_cpumask_var(attrs->__pod_cpumask);
4616		kfree(attrs);
4617	}
4618}
4619
4620/**
4621 * alloc_workqueue_attrs - allocate a workqueue_attrs
4622 *
4623 * Allocate a new workqueue_attrs, initialize with default settings and
4624 * return it.
4625 *
4626 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4627 */
4628struct workqueue_attrs *alloc_workqueue_attrs(void)
4629{
4630	struct workqueue_attrs *attrs;
4631
4632	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4633	if (!attrs)
4634		goto fail;
4635	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4636		goto fail;
4637	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4638		goto fail;
4639
4640	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4641	attrs->affn_scope = WQ_AFFN_DFL;
4642	return attrs;
4643fail:
4644	free_workqueue_attrs(attrs);
4645	return NULL;
4646}
4647
4648static void copy_workqueue_attrs(struct workqueue_attrs *to,
4649				 const struct workqueue_attrs *from)
4650{
4651	to->nice = from->nice;
4652	cpumask_copy(to->cpumask, from->cpumask);
4653	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4654	to->affn_strict = from->affn_strict;
4655
4656	/*
4657	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4658	 * fields as copying is used for both pool and wq attrs. Instead,
4659	 * get_unbound_pool() explicitly clears the fields.
4660	 */
4661	to->affn_scope = from->affn_scope;
4662	to->ordered = from->ordered;
4663}
4664
4665/*
4666 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4667 * comments in 'struct workqueue_attrs' definition.
4668 */
4669static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4670{
4671	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4672	attrs->ordered = false;
4673	if (attrs->affn_strict)
4674		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4675}
4676
4677/* hash value of the content of @attr */
4678static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4679{
4680	u32 hash = 0;
4681
4682	hash = jhash_1word(attrs->nice, hash);
4683	hash = jhash_1word(attrs->affn_strict, hash);
 
4684	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4685		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4686	if (!attrs->affn_strict)
4687		hash = jhash(cpumask_bits(attrs->cpumask),
4688			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4689	return hash;
4690}
4691
4692/* content equality test */
4693static bool wqattrs_equal(const struct workqueue_attrs *a,
4694			  const struct workqueue_attrs *b)
4695{
4696	if (a->nice != b->nice)
4697		return false;
4698	if (a->affn_strict != b->affn_strict)
4699		return false;
4700	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4701		return false;
4702	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4703		return false;
4704	return true;
4705}
4706
4707/* Update @attrs with actually available CPUs */
4708static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4709				      const cpumask_t *unbound_cpumask)
4710{
4711	/*
4712	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4713	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4714	 * @unbound_cpumask.
4715	 */
4716	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4717	if (unlikely(cpumask_empty(attrs->cpumask)))
4718		cpumask_copy(attrs->cpumask, unbound_cpumask);
4719}
4720
4721/* find wq_pod_type to use for @attrs */
4722static const struct wq_pod_type *
4723wqattrs_pod_type(const struct workqueue_attrs *attrs)
4724{
4725	enum wq_affn_scope scope;
4726	struct wq_pod_type *pt;
4727
4728	/* to synchronize access to wq_affn_dfl */
4729	lockdep_assert_held(&wq_pool_mutex);
4730
4731	if (attrs->affn_scope == WQ_AFFN_DFL)
4732		scope = wq_affn_dfl;
4733	else
4734		scope = attrs->affn_scope;
4735
4736	pt = &wq_pod_types[scope];
4737
4738	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4739	    likely(pt->nr_pods))
4740		return pt;
4741
4742	/*
4743	 * Before workqueue_init_topology(), only SYSTEM is available which is
4744	 * initialized in workqueue_init_early().
4745	 */
4746	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4747	BUG_ON(!pt->nr_pods);
4748	return pt;
4749}
4750
4751/**
4752 * init_worker_pool - initialize a newly zalloc'd worker_pool
4753 * @pool: worker_pool to initialize
4754 *
4755 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4756 *
4757 * Return: 0 on success, -errno on failure.  Even on failure, all fields
4758 * inside @pool proper are initialized and put_unbound_pool() can be called
4759 * on @pool safely to release it.
4760 */
4761static int init_worker_pool(struct worker_pool *pool)
4762{
4763	raw_spin_lock_init(&pool->lock);
4764	pool->id = -1;
4765	pool->cpu = -1;
4766	pool->node = NUMA_NO_NODE;
4767	pool->flags |= POOL_DISASSOCIATED;
4768	pool->watchdog_ts = jiffies;
4769	INIT_LIST_HEAD(&pool->worklist);
4770	INIT_LIST_HEAD(&pool->idle_list);
4771	hash_init(pool->busy_hash);
4772
4773	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4774	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4775
4776	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4777
4778	INIT_LIST_HEAD(&pool->workers);
 
4779
4780	ida_init(&pool->worker_ida);
4781	INIT_HLIST_NODE(&pool->hash_node);
4782	pool->refcnt = 1;
4783
4784	/* shouldn't fail above this point */
4785	pool->attrs = alloc_workqueue_attrs();
4786	if (!pool->attrs)
4787		return -ENOMEM;
4788
4789	wqattrs_clear_for_pool(pool->attrs);
4790
4791	return 0;
4792}
4793
4794#ifdef CONFIG_LOCKDEP
4795static void wq_init_lockdep(struct workqueue_struct *wq)
4796{
4797	char *lock_name;
4798
4799	lockdep_register_key(&wq->key);
4800	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4801	if (!lock_name)
4802		lock_name = wq->name;
4803
4804	wq->lock_name = lock_name;
4805	wq->lockdep_map = &wq->__lockdep_map;
4806	lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4807}
4808
4809static void wq_unregister_lockdep(struct workqueue_struct *wq)
4810{
4811	if (wq->lockdep_map != &wq->__lockdep_map)
4812		return;
4813
4814	lockdep_unregister_key(&wq->key);
4815}
4816
4817static void wq_free_lockdep(struct workqueue_struct *wq)
4818{
4819	if (wq->lockdep_map != &wq->__lockdep_map)
4820		return;
4821
4822	if (wq->lock_name != wq->name)
4823		kfree(wq->lock_name);
4824}
4825#else
4826static void wq_init_lockdep(struct workqueue_struct *wq)
4827{
4828}
4829
4830static void wq_unregister_lockdep(struct workqueue_struct *wq)
4831{
4832}
4833
4834static void wq_free_lockdep(struct workqueue_struct *wq)
4835{
4836}
4837#endif
4838
4839static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4840{
4841	int node;
4842
4843	for_each_node(node) {
4844		kfree(nna_ar[node]);
4845		nna_ar[node] = NULL;
4846	}
4847
4848	kfree(nna_ar[nr_node_ids]);
4849	nna_ar[nr_node_ids] = NULL;
4850}
4851
4852static void init_node_nr_active(struct wq_node_nr_active *nna)
4853{
4854	nna->max = WQ_DFL_MIN_ACTIVE;
4855	atomic_set(&nna->nr, 0);
4856	raw_spin_lock_init(&nna->lock);
4857	INIT_LIST_HEAD(&nna->pending_pwqs);
4858}
4859
4860/*
4861 * Each node's nr_active counter will be accessed mostly from its own node and
4862 * should be allocated in the node.
4863 */
4864static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4865{
4866	struct wq_node_nr_active *nna;
4867	int node;
4868
4869	for_each_node(node) {
4870		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4871		if (!nna)
4872			goto err_free;
4873		init_node_nr_active(nna);
4874		nna_ar[node] = nna;
4875	}
4876
4877	/* [nr_node_ids] is used as the fallback */
4878	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4879	if (!nna)
4880		goto err_free;
4881	init_node_nr_active(nna);
4882	nna_ar[nr_node_ids] = nna;
4883
4884	return 0;
4885
4886err_free:
4887	free_node_nr_active(nna_ar);
4888	return -ENOMEM;
4889}
4890
4891static void rcu_free_wq(struct rcu_head *rcu)
4892{
4893	struct workqueue_struct *wq =
4894		container_of(rcu, struct workqueue_struct, rcu);
4895
4896	if (wq->flags & WQ_UNBOUND)
4897		free_node_nr_active(wq->node_nr_active);
4898
4899	wq_free_lockdep(wq);
4900	free_percpu(wq->cpu_pwq);
4901	free_workqueue_attrs(wq->unbound_attrs);
4902	kfree(wq);
4903}
4904
4905static void rcu_free_pool(struct rcu_head *rcu)
4906{
4907	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4908
4909	ida_destroy(&pool->worker_ida);
4910	free_workqueue_attrs(pool->attrs);
4911	kfree(pool);
4912}
4913
4914/**
4915 * put_unbound_pool - put a worker_pool
4916 * @pool: worker_pool to put
4917 *
4918 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4919 * safe manner.  get_unbound_pool() calls this function on its failure path
4920 * and this function should be able to release pools which went through,
4921 * successfully or not, init_worker_pool().
4922 *
4923 * Should be called with wq_pool_mutex held.
4924 */
4925static void put_unbound_pool(struct worker_pool *pool)
4926{
 
4927	struct worker *worker;
4928	LIST_HEAD(cull_list);
4929
4930	lockdep_assert_held(&wq_pool_mutex);
4931
4932	if (--pool->refcnt)
4933		return;
4934
4935	/* sanity checks */
4936	if (WARN_ON(!(pool->cpu < 0)) ||
4937	    WARN_ON(!list_empty(&pool->worklist)))
4938		return;
4939
4940	/* release id and unhash */
4941	if (pool->id >= 0)
4942		idr_remove(&worker_pool_idr, pool->id);
4943	hash_del(&pool->hash_node);
4944
4945	/*
4946	 * Become the manager and destroy all workers.  This prevents
4947	 * @pool's workers from blocking on attach_mutex.  We're the last
4948	 * manager and @pool gets freed with the flag set.
4949	 *
4950	 * Having a concurrent manager is quite unlikely to happen as we can
4951	 * only get here with
4952	 *   pwq->refcnt == pool->refcnt == 0
4953	 * which implies no work queued to the pool, which implies no worker can
4954	 * become the manager. However a worker could have taken the role of
4955	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4956	 * drops pool->lock
4957	 */
4958	while (true) {
4959		rcuwait_wait_event(&manager_wait,
4960				   !(pool->flags & POOL_MANAGER_ACTIVE),
4961				   TASK_UNINTERRUPTIBLE);
4962
4963		mutex_lock(&wq_pool_attach_mutex);
4964		raw_spin_lock_irq(&pool->lock);
4965		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4966			pool->flags |= POOL_MANAGER_ACTIVE;
4967			break;
4968		}
4969		raw_spin_unlock_irq(&pool->lock);
4970		mutex_unlock(&wq_pool_attach_mutex);
4971	}
4972
4973	while ((worker = first_idle_worker(pool)))
4974		set_worker_dying(worker, &cull_list);
4975	WARN_ON(pool->nr_workers || pool->nr_idle);
4976	raw_spin_unlock_irq(&pool->lock);
4977
4978	detach_dying_workers(&cull_list);
4979
 
 
4980	mutex_unlock(&wq_pool_attach_mutex);
4981
4982	reap_dying_workers(&cull_list);
 
4983
4984	/* shut down the timers */
4985	del_timer_sync(&pool->idle_timer);
4986	cancel_work_sync(&pool->idle_cull_work);
4987	del_timer_sync(&pool->mayday_timer);
4988
4989	/* RCU protected to allow dereferences from get_work_pool() */
4990	call_rcu(&pool->rcu, rcu_free_pool);
4991}
4992
4993/**
4994 * get_unbound_pool - get a worker_pool with the specified attributes
4995 * @attrs: the attributes of the worker_pool to get
4996 *
4997 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4998 * reference count and return it.  If there already is a matching
4999 * worker_pool, it will be used; otherwise, this function attempts to
5000 * create a new one.
5001 *
5002 * Should be called with wq_pool_mutex held.
5003 *
5004 * Return: On success, a worker_pool with the same attributes as @attrs.
5005 * On failure, %NULL.
5006 */
5007static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
5008{
5009	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
5010	u32 hash = wqattrs_hash(attrs);
5011	struct worker_pool *pool;
5012	int pod, node = NUMA_NO_NODE;
5013
5014	lockdep_assert_held(&wq_pool_mutex);
5015
5016	/* do we already have a matching pool? */
5017	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5018		if (wqattrs_equal(pool->attrs, attrs)) {
5019			pool->refcnt++;
5020			return pool;
5021		}
5022	}
5023
5024	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5025	for (pod = 0; pod < pt->nr_pods; pod++) {
5026		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5027			node = pt->pod_node[pod];
5028			break;
5029		}
5030	}
5031
5032	/* nope, create a new one */
5033	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5034	if (!pool || init_worker_pool(pool) < 0)
5035		goto fail;
5036
5037	pool->node = node;
5038	copy_workqueue_attrs(pool->attrs, attrs);
5039	wqattrs_clear_for_pool(pool->attrs);
5040
5041	if (worker_pool_assign_id(pool) < 0)
5042		goto fail;
5043
5044	/* create and start the initial worker */
5045	if (wq_online && !create_worker(pool))
5046		goto fail;
5047
5048	/* install */
5049	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5050
5051	return pool;
5052fail:
5053	if (pool)
5054		put_unbound_pool(pool);
5055	return NULL;
5056}
5057
 
 
 
 
 
 
5058/*
5059 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5060 * refcnt and needs to be destroyed.
5061 */
5062static void pwq_release_workfn(struct kthread_work *work)
5063{
5064	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5065						  release_work);
5066	struct workqueue_struct *wq = pwq->wq;
5067	struct worker_pool *pool = pwq->pool;
5068	bool is_last = false;
5069
5070	/*
5071	 * When @pwq is not linked, it doesn't hold any reference to the
5072	 * @wq, and @wq is invalid to access.
5073	 */
5074	if (!list_empty(&pwq->pwqs_node)) {
5075		mutex_lock(&wq->mutex);
5076		list_del_rcu(&pwq->pwqs_node);
5077		is_last = list_empty(&wq->pwqs);
5078
5079		/*
5080		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5081		 */
5082		if (!is_last && (wq->flags & __WQ_ORDERED))
5083			unplug_oldest_pwq(wq);
5084
5085		mutex_unlock(&wq->mutex);
5086	}
5087
5088	if (wq->flags & WQ_UNBOUND) {
5089		mutex_lock(&wq_pool_mutex);
5090		put_unbound_pool(pool);
5091		mutex_unlock(&wq_pool_mutex);
5092	}
5093
5094	if (!list_empty(&pwq->pending_node)) {
5095		struct wq_node_nr_active *nna =
5096			wq_node_nr_active(pwq->wq, pwq->pool->node);
5097
5098		raw_spin_lock_irq(&nna->lock);
5099		list_del_init(&pwq->pending_node);
5100		raw_spin_unlock_irq(&nna->lock);
5101	}
5102
5103	kfree_rcu(pwq, rcu);
5104
5105	/*
5106	 * If we're the last pwq going away, @wq is already dead and no one
5107	 * is gonna access it anymore.  Schedule RCU free.
5108	 */
5109	if (is_last) {
5110		wq_unregister_lockdep(wq);
5111		call_rcu(&wq->rcu, rcu_free_wq);
5112	}
5113}
5114
5115/* initialize newly allocated @pwq which is associated with @wq and @pool */
5116static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5117		     struct worker_pool *pool)
5118{
5119	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5120
5121	memset(pwq, 0, sizeof(*pwq));
5122
5123	pwq->pool = pool;
5124	pwq->wq = wq;
5125	pwq->flush_color = -1;
5126	pwq->refcnt = 1;
5127	INIT_LIST_HEAD(&pwq->inactive_works);
5128	INIT_LIST_HEAD(&pwq->pending_node);
5129	INIT_LIST_HEAD(&pwq->pwqs_node);
5130	INIT_LIST_HEAD(&pwq->mayday_node);
5131	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5132}
5133
5134/* sync @pwq with the current state of its associated wq and link it */
5135static void link_pwq(struct pool_workqueue *pwq)
5136{
5137	struct workqueue_struct *wq = pwq->wq;
5138
5139	lockdep_assert_held(&wq->mutex);
5140
5141	/* may be called multiple times, ignore if already linked */
5142	if (!list_empty(&pwq->pwqs_node))
5143		return;
5144
5145	/* set the matching work_color */
5146	pwq->work_color = wq->work_color;
5147
5148	/* link in @pwq */
5149	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5150}
5151
5152/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5153static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5154					const struct workqueue_attrs *attrs)
5155{
5156	struct worker_pool *pool;
5157	struct pool_workqueue *pwq;
5158
5159	lockdep_assert_held(&wq_pool_mutex);
5160
5161	pool = get_unbound_pool(attrs);
5162	if (!pool)
5163		return NULL;
5164
5165	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5166	if (!pwq) {
5167		put_unbound_pool(pool);
5168		return NULL;
5169	}
5170
5171	init_pwq(pwq, wq, pool);
5172	return pwq;
5173}
5174
5175static void apply_wqattrs_lock(void)
5176{
5177	mutex_lock(&wq_pool_mutex);
5178}
5179
5180static void apply_wqattrs_unlock(void)
5181{
5182	mutex_unlock(&wq_pool_mutex);
5183}
5184
5185/**
5186 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5187 * @attrs: the wq_attrs of the default pwq of the target workqueue
5188 * @cpu: the target CPU
 
5189 *
5190 * Calculate the cpumask a workqueue with @attrs should use on @pod.
 
5191 * The result is stored in @attrs->__pod_cpumask.
5192 *
5193 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5194 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5195 * intersection of the possible CPUs of @pod and @attrs->cpumask.
5196 *
5197 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5198 */
5199static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
 
5200{
5201	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5202	int pod = pt->cpu_pod[cpu];
5203
5204	/* calculate possible CPUs in @pod that @attrs wants */
5205	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5206	/* does @pod have any online CPUs @attrs wants? */
5207	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
 
 
 
 
 
5208		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5209		return;
5210	}
 
 
 
 
 
 
 
5211}
5212
5213/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5214static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5215					int cpu, struct pool_workqueue *pwq)
5216{
5217	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5218	struct pool_workqueue *old_pwq;
5219
5220	lockdep_assert_held(&wq_pool_mutex);
5221	lockdep_assert_held(&wq->mutex);
5222
5223	/* link_pwq() can handle duplicate calls */
5224	link_pwq(pwq);
5225
5226	old_pwq = rcu_access_pointer(*slot);
5227	rcu_assign_pointer(*slot, pwq);
5228	return old_pwq;
5229}
5230
5231/* context to store the prepared attrs & pwqs before applying */
5232struct apply_wqattrs_ctx {
5233	struct workqueue_struct	*wq;		/* target workqueue */
5234	struct workqueue_attrs	*attrs;		/* attrs to apply */
5235	struct list_head	list;		/* queued for batching commit */
5236	struct pool_workqueue	*dfl_pwq;
5237	struct pool_workqueue	*pwq_tbl[];
5238};
5239
5240/* free the resources after success or abort */
5241static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5242{
5243	if (ctx) {
5244		int cpu;
5245
5246		for_each_possible_cpu(cpu)
5247			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5248		put_pwq_unlocked(ctx->dfl_pwq);
5249
5250		free_workqueue_attrs(ctx->attrs);
5251
5252		kfree(ctx);
5253	}
5254}
5255
5256/* allocate the attrs and pwqs for later installation */
5257static struct apply_wqattrs_ctx *
5258apply_wqattrs_prepare(struct workqueue_struct *wq,
5259		      const struct workqueue_attrs *attrs,
5260		      const cpumask_var_t unbound_cpumask)
5261{
5262	struct apply_wqattrs_ctx *ctx;
5263	struct workqueue_attrs *new_attrs;
5264	int cpu;
5265
5266	lockdep_assert_held(&wq_pool_mutex);
5267
5268	if (WARN_ON(attrs->affn_scope < 0 ||
5269		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5270		return ERR_PTR(-EINVAL);
5271
5272	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5273
5274	new_attrs = alloc_workqueue_attrs();
5275	if (!ctx || !new_attrs)
5276		goto out_free;
5277
5278	/*
5279	 * If something goes wrong during CPU up/down, we'll fall back to
5280	 * the default pwq covering whole @attrs->cpumask.  Always create
5281	 * it even if we don't use it immediately.
5282	 */
5283	copy_workqueue_attrs(new_attrs, attrs);
5284	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5285	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5286	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5287	if (!ctx->dfl_pwq)
5288		goto out_free;
5289
5290	for_each_possible_cpu(cpu) {
5291		if (new_attrs->ordered) {
5292			ctx->dfl_pwq->refcnt++;
5293			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5294		} else {
5295			wq_calc_pod_cpumask(new_attrs, cpu);
5296			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5297			if (!ctx->pwq_tbl[cpu])
5298				goto out_free;
5299		}
5300	}
5301
5302	/* save the user configured attrs and sanitize it. */
5303	copy_workqueue_attrs(new_attrs, attrs);
5304	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5305	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5306	ctx->attrs = new_attrs;
5307
5308	/*
5309	 * For initialized ordered workqueues, there should only be one pwq
5310	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5311	 * of newly queued work items until execution of older work items in
5312	 * the old pwq's have completed.
5313	 */
5314	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5315		ctx->dfl_pwq->plugged = true;
5316
5317	ctx->wq = wq;
5318	return ctx;
5319
5320out_free:
5321	free_workqueue_attrs(new_attrs);
5322	apply_wqattrs_cleanup(ctx);
5323	return ERR_PTR(-ENOMEM);
5324}
5325
5326/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5327static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5328{
5329	int cpu;
5330
5331	/* all pwqs have been created successfully, let's install'em */
5332	mutex_lock(&ctx->wq->mutex);
5333
5334	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5335
5336	/* save the previous pwqs and install the new ones */
5337	for_each_possible_cpu(cpu)
5338		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5339							ctx->pwq_tbl[cpu]);
5340	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5341
5342	/* update node_nr_active->max */
5343	wq_update_node_max_active(ctx->wq, -1);
5344
5345	/* rescuer needs to respect wq cpumask changes */
5346	if (ctx->wq->rescuer)
5347		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5348				     unbound_effective_cpumask(ctx->wq));
5349
5350	mutex_unlock(&ctx->wq->mutex);
5351}
5352
5353static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5354					const struct workqueue_attrs *attrs)
5355{
5356	struct apply_wqattrs_ctx *ctx;
5357
5358	/* only unbound workqueues can change attributes */
5359	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5360		return -EINVAL;
5361
5362	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5363	if (IS_ERR(ctx))
5364		return PTR_ERR(ctx);
5365
5366	/* the ctx has been prepared successfully, let's commit it */
5367	apply_wqattrs_commit(ctx);
5368	apply_wqattrs_cleanup(ctx);
5369
5370	return 0;
5371}
5372
5373/**
5374 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5375 * @wq: the target workqueue
5376 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5377 *
5378 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5379 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5380 * work items are affine to the pod it was issued on. Older pwqs are released as
5381 * in-flight work items finish. Note that a work item which repeatedly requeues
5382 * itself back-to-back will stay on its current pwq.
5383 *
5384 * Performs GFP_KERNEL allocations.
5385 *
 
 
5386 * Return: 0 on success and -errno on failure.
5387 */
5388int apply_workqueue_attrs(struct workqueue_struct *wq,
5389			  const struct workqueue_attrs *attrs)
5390{
5391	int ret;
5392
 
 
5393	mutex_lock(&wq_pool_mutex);
5394	ret = apply_workqueue_attrs_locked(wq, attrs);
5395	mutex_unlock(&wq_pool_mutex);
5396
5397	return ret;
5398}
5399
5400/**
5401 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5402 * @wq: the target workqueue
5403 * @cpu: the CPU to update the pwq slot for
 
 
5404 *
5405 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5406 * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
 
5407 *
5408 *
5409 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5410 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5411 *
5412 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5413 * with a cpumask spanning multiple pods, the workers which were already
5414 * executing the work items for the workqueue will lose their CPU affinity and
5415 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5416 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5417 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5418 */
5419static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
 
5420{
 
5421	struct pool_workqueue *old_pwq = NULL, *pwq;
5422	struct workqueue_attrs *target_attrs;
5423
5424	lockdep_assert_held(&wq_pool_mutex);
5425
5426	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5427		return;
5428
5429	/*
5430	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5431	 * Let's use a preallocated one.  The following buf is protected by
5432	 * CPU hotplug exclusion.
5433	 */
5434	target_attrs = unbound_wq_update_pwq_attrs_buf;
5435
5436	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5437	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5438
5439	/* nothing to do if the target cpumask matches the current pwq */
5440	wq_calc_pod_cpumask(target_attrs, cpu);
5441	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5442		return;
5443
5444	/* create a new pwq */
5445	pwq = alloc_unbound_pwq(wq, target_attrs);
5446	if (!pwq) {
5447		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5448			wq->name);
5449		goto use_dfl_pwq;
5450	}
5451
5452	/* Install the new pwq. */
5453	mutex_lock(&wq->mutex);
5454	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5455	goto out_unlock;
5456
5457use_dfl_pwq:
5458	mutex_lock(&wq->mutex);
5459	pwq = unbound_pwq(wq, -1);
5460	raw_spin_lock_irq(&pwq->pool->lock);
5461	get_pwq(pwq);
5462	raw_spin_unlock_irq(&pwq->pool->lock);
5463	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5464out_unlock:
5465	mutex_unlock(&wq->mutex);
5466	put_pwq_unlocked(old_pwq);
5467}
5468
5469static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5470{
5471	bool highpri = wq->flags & WQ_HIGHPRI;
5472	int cpu, ret;
5473
5474	lockdep_assert_held(&wq_pool_mutex);
5475
5476	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5477	if (!wq->cpu_pwq)
5478		goto enomem;
5479
5480	if (!(wq->flags & WQ_UNBOUND)) {
5481		struct worker_pool __percpu *pools;
5482
5483		if (wq->flags & WQ_BH)
5484			pools = bh_worker_pools;
5485		else
5486			pools = cpu_worker_pools;
5487
5488		for_each_possible_cpu(cpu) {
5489			struct pool_workqueue **pwq_p;
 
5490			struct worker_pool *pool;
5491
 
 
 
 
 
5492			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5493			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5494
5495			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5496						       pool->node);
5497			if (!*pwq_p)
5498				goto enomem;
5499
5500			init_pwq(*pwq_p, wq, pool);
5501
5502			mutex_lock(&wq->mutex);
5503			link_pwq(*pwq_p);
5504			mutex_unlock(&wq->mutex);
5505		}
5506		return 0;
5507	}
5508
 
5509	if (wq->flags & __WQ_ORDERED) {
5510		struct pool_workqueue *dfl_pwq;
5511
5512		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5513		/* there should only be single pwq for ordering guarantee */
5514		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5515		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5516			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5517		     "ordering guarantee broken for workqueue %s\n", wq->name);
5518	} else {
5519		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5520	}
 
 
 
 
 
 
 
5521
5522	return ret;
5523
5524enomem:
5525	if (wq->cpu_pwq) {
5526		for_each_possible_cpu(cpu) {
5527			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5528
5529			if (pwq)
5530				kmem_cache_free(pwq_cache, pwq);
5531		}
5532		free_percpu(wq->cpu_pwq);
5533		wq->cpu_pwq = NULL;
5534	}
5535	return -ENOMEM;
5536}
5537
5538static int wq_clamp_max_active(int max_active, unsigned int flags,
5539			       const char *name)
5540{
5541	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5542		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5543			max_active, name, 1, WQ_MAX_ACTIVE);
5544
5545	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5546}
5547
5548/*
5549 * Workqueues which may be used during memory reclaim should have a rescuer
5550 * to guarantee forward progress.
5551 */
5552static int init_rescuer(struct workqueue_struct *wq)
5553{
5554	struct worker *rescuer;
5555	char id_buf[WORKER_ID_LEN];
5556	int ret;
5557
5558	lockdep_assert_held(&wq_pool_mutex);
5559
5560	if (!(wq->flags & WQ_MEM_RECLAIM))
5561		return 0;
5562
5563	rescuer = alloc_worker(NUMA_NO_NODE);
5564	if (!rescuer) {
5565		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5566		       wq->name);
5567		return -ENOMEM;
5568	}
5569
5570	rescuer->rescue_wq = wq;
5571	format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5572
5573	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5574	if (IS_ERR(rescuer->task)) {
5575		ret = PTR_ERR(rescuer->task);
5576		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5577		       wq->name, ERR_PTR(ret));
5578		kfree(rescuer);
5579		return ret;
5580	}
5581
5582	wq->rescuer = rescuer;
5583	if (wq->flags & WQ_UNBOUND)
5584		kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5585	else
5586		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5587	wake_up_process(rescuer->task);
5588
5589	return 0;
5590}
5591
5592/**
5593 * wq_adjust_max_active - update a wq's max_active to the current setting
5594 * @wq: target workqueue
5595 *
5596 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5597 * activate inactive work items accordingly. If @wq is freezing, clear
5598 * @wq->max_active to zero.
5599 */
5600static void wq_adjust_max_active(struct workqueue_struct *wq)
5601{
5602	bool activated;
5603	int new_max, new_min;
5604
5605	lockdep_assert_held(&wq->mutex);
5606
5607	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5608		new_max = 0;
5609		new_min = 0;
5610	} else {
5611		new_max = wq->saved_max_active;
5612		new_min = wq->saved_min_active;
5613	}
5614
5615	if (wq->max_active == new_max && wq->min_active == new_min)
5616		return;
5617
5618	/*
5619	 * Update @wq->max/min_active and then kick inactive work items if more
5620	 * active work items are allowed. This doesn't break work item ordering
5621	 * because new work items are always queued behind existing inactive
5622	 * work items if there are any.
5623	 */
5624	WRITE_ONCE(wq->max_active, new_max);
5625	WRITE_ONCE(wq->min_active, new_min);
5626
5627	if (wq->flags & WQ_UNBOUND)
5628		wq_update_node_max_active(wq, -1);
5629
5630	if (new_max == 0)
5631		return;
5632
5633	/*
5634	 * Round-robin through pwq's activating the first inactive work item
5635	 * until max_active is filled.
5636	 */
5637	do {
5638		struct pool_workqueue *pwq;
5639
5640		activated = false;
5641		for_each_pwq(pwq, wq) {
5642			unsigned long irq_flags;
5643
5644			/* can be called during early boot w/ irq disabled */
5645			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5646			if (pwq_activate_first_inactive(pwq, true)) {
5647				activated = true;
5648				kick_pool(pwq->pool);
5649			}
5650			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5651		}
5652	} while (activated);
5653}
5654
5655__printf(1, 0)
5656static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5657						  unsigned int flags,
5658						  int max_active, va_list args)
5659{
 
5660	struct workqueue_struct *wq;
5661	size_t wq_size;
5662	int name_len;
5663
5664	if (flags & WQ_BH) {
5665		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5666			return NULL;
5667		if (WARN_ON_ONCE(max_active))
5668			return NULL;
5669	}
5670
5671	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5672	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5673		flags |= WQ_UNBOUND;
5674
5675	/* allocate wq and format name */
5676	if (flags & WQ_UNBOUND)
5677		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5678	else
5679		wq_size = sizeof(*wq);
5680
5681	wq = kzalloc(wq_size, GFP_KERNEL);
5682	if (!wq)
5683		return NULL;
5684
5685	if (flags & WQ_UNBOUND) {
5686		wq->unbound_attrs = alloc_workqueue_attrs();
5687		if (!wq->unbound_attrs)
5688			goto err_free_wq;
5689	}
5690
 
5691	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
 
5692
5693	if (name_len >= WQ_NAME_LEN)
5694		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5695			     wq->name);
5696
5697	if (flags & WQ_BH) {
5698		/*
5699		 * BH workqueues always share a single execution context per CPU
5700		 * and don't impose any max_active limit.
5701		 */
5702		max_active = INT_MAX;
5703	} else {
5704		max_active = max_active ?: WQ_DFL_ACTIVE;
5705		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5706	}
5707
5708	/* init wq */
5709	wq->flags = flags;
5710	wq->max_active = max_active;
5711	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5712	wq->saved_max_active = wq->max_active;
5713	wq->saved_min_active = wq->min_active;
5714	mutex_init(&wq->mutex);
5715	atomic_set(&wq->nr_pwqs_to_flush, 0);
5716	INIT_LIST_HEAD(&wq->pwqs);
5717	INIT_LIST_HEAD(&wq->flusher_queue);
5718	INIT_LIST_HEAD(&wq->flusher_overflow);
5719	INIT_LIST_HEAD(&wq->maydays);
5720
 
5721	INIT_LIST_HEAD(&wq->list);
5722
5723	if (flags & WQ_UNBOUND) {
5724		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5725			goto err_free_wq;
5726	}
5727
 
 
 
 
 
 
 
 
 
5728	/*
5729	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5730	 * and the global freeze state.
 
5731	 */
5732	apply_wqattrs_lock();
5733
5734	if (alloc_and_link_pwqs(wq) < 0)
5735		goto err_unlock_free_node_nr_active;
5736
5737	mutex_lock(&wq->mutex);
5738	wq_adjust_max_active(wq);
5739	mutex_unlock(&wq->mutex);
5740
5741	list_add_tail_rcu(&wq->list, &workqueues);
5742
5743	if (wq_online && init_rescuer(wq) < 0)
5744		goto err_unlock_destroy;
5745
5746	apply_wqattrs_unlock();
5747
5748	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5749		goto err_destroy;
5750
5751	return wq;
5752
5753err_unlock_free_node_nr_active:
5754	apply_wqattrs_unlock();
5755	/*
5756	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5757	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5758	 * completes before calling kfree(wq).
5759	 */
5760	if (wq->flags & WQ_UNBOUND) {
5761		kthread_flush_worker(pwq_release_worker);
5762		free_node_nr_active(wq->node_nr_active);
5763	}
 
 
5764err_free_wq:
5765	free_workqueue_attrs(wq->unbound_attrs);
5766	kfree(wq);
5767	return NULL;
5768err_unlock_destroy:
5769	apply_wqattrs_unlock();
5770err_destroy:
5771	destroy_workqueue(wq);
5772	return NULL;
5773}
5774
5775__printf(1, 4)
5776struct workqueue_struct *alloc_workqueue(const char *fmt,
5777					 unsigned int flags,
5778					 int max_active, ...)
5779{
5780	struct workqueue_struct *wq;
5781	va_list args;
5782
5783	va_start(args, max_active);
5784	wq = __alloc_workqueue(fmt, flags, max_active, args);
5785	va_end(args);
5786	if (!wq)
5787		return NULL;
5788
5789	wq_init_lockdep(wq);
5790
5791	return wq;
5792}
5793EXPORT_SYMBOL_GPL(alloc_workqueue);
5794
5795#ifdef CONFIG_LOCKDEP
5796__printf(1, 5)
5797struct workqueue_struct *
5798alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5799			    int max_active, struct lockdep_map *lockdep_map, ...)
5800{
5801	struct workqueue_struct *wq;
5802	va_list args;
5803
5804	va_start(args, lockdep_map);
5805	wq = __alloc_workqueue(fmt, flags, max_active, args);
5806	va_end(args);
5807	if (!wq)
5808		return NULL;
5809
5810	wq->lockdep_map = lockdep_map;
5811
5812	return wq;
5813}
5814EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5815#endif
5816
5817static bool pwq_busy(struct pool_workqueue *pwq)
5818{
5819	int i;
5820
5821	for (i = 0; i < WORK_NR_COLORS; i++)
5822		if (pwq->nr_in_flight[i])
5823			return true;
5824
5825	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5826		return true;
5827	if (!pwq_is_empty(pwq))
5828		return true;
5829
5830	return false;
5831}
5832
5833/**
5834 * destroy_workqueue - safely terminate a workqueue
5835 * @wq: target workqueue
5836 *
5837 * Safely destroy a workqueue. All work currently pending will be done first.
5838 */
5839void destroy_workqueue(struct workqueue_struct *wq)
5840{
5841	struct pool_workqueue *pwq;
5842	int cpu;
5843
5844	/*
5845	 * Remove it from sysfs first so that sanity check failure doesn't
5846	 * lead to sysfs name conflicts.
5847	 */
5848	workqueue_sysfs_unregister(wq);
5849
5850	/* mark the workqueue destruction is in progress */
5851	mutex_lock(&wq->mutex);
5852	wq->flags |= __WQ_DESTROYING;
5853	mutex_unlock(&wq->mutex);
5854
5855	/* drain it before proceeding with destruction */
5856	drain_workqueue(wq);
5857
5858	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5859	if (wq->rescuer) {
5860		struct worker *rescuer = wq->rescuer;
5861
5862		/* this prevents new queueing */
5863		raw_spin_lock_irq(&wq_mayday_lock);
5864		wq->rescuer = NULL;
5865		raw_spin_unlock_irq(&wq_mayday_lock);
5866
5867		/* rescuer will empty maydays list before exiting */
5868		kthread_stop(rescuer->task);
5869		kfree(rescuer);
5870	}
5871
5872	/*
5873	 * Sanity checks - grab all the locks so that we wait for all
5874	 * in-flight operations which may do put_pwq().
5875	 */
5876	mutex_lock(&wq_pool_mutex);
5877	mutex_lock(&wq->mutex);
5878	for_each_pwq(pwq, wq) {
5879		raw_spin_lock_irq(&pwq->pool->lock);
5880		if (WARN_ON(pwq_busy(pwq))) {
5881			pr_warn("%s: %s has the following busy pwq\n",
5882				__func__, wq->name);
5883			show_pwq(pwq);
5884			raw_spin_unlock_irq(&pwq->pool->lock);
5885			mutex_unlock(&wq->mutex);
5886			mutex_unlock(&wq_pool_mutex);
5887			show_one_workqueue(wq);
5888			return;
5889		}
5890		raw_spin_unlock_irq(&pwq->pool->lock);
5891	}
5892	mutex_unlock(&wq->mutex);
5893
5894	/*
5895	 * wq list is used to freeze wq, remove from list after
5896	 * flushing is complete in case freeze races us.
5897	 */
5898	list_del_rcu(&wq->list);
5899	mutex_unlock(&wq_pool_mutex);
5900
5901	/*
5902	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5903	 * to put the base refs. @wq will be auto-destroyed from the last
5904	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5905	 */
5906	rcu_read_lock();
5907
5908	for_each_possible_cpu(cpu) {
5909		put_pwq_unlocked(unbound_pwq(wq, cpu));
5910		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5911	}
5912
5913	put_pwq_unlocked(unbound_pwq(wq, -1));
5914	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5915
5916	rcu_read_unlock();
5917}
5918EXPORT_SYMBOL_GPL(destroy_workqueue);
5919
5920/**
5921 * workqueue_set_max_active - adjust max_active of a workqueue
5922 * @wq: target workqueue
5923 * @max_active: new max_active value.
5924 *
5925 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5926 * comment.
5927 *
5928 * CONTEXT:
5929 * Don't call from IRQ context.
5930 */
5931void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5932{
5933	/* max_active doesn't mean anything for BH workqueues */
5934	if (WARN_ON(wq->flags & WQ_BH))
5935		return;
5936	/* disallow meddling with max_active for ordered workqueues */
5937	if (WARN_ON(wq->flags & __WQ_ORDERED))
5938		return;
5939
5940	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5941
5942	mutex_lock(&wq->mutex);
5943
5944	wq->saved_max_active = max_active;
5945	if (wq->flags & WQ_UNBOUND)
5946		wq->saved_min_active = min(wq->saved_min_active, max_active);
5947
5948	wq_adjust_max_active(wq);
5949
5950	mutex_unlock(&wq->mutex);
5951}
5952EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5953
5954/**
5955 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5956 * @wq: target unbound workqueue
5957 * @min_active: new min_active value
5958 *
5959 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5960 * unbound workqueue is not guaranteed to be able to process max_active
5961 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5962 * able to process min_active number of interdependent work items which is
5963 * %WQ_DFL_MIN_ACTIVE by default.
5964 *
5965 * Use this function to adjust the min_active value between 0 and the current
5966 * max_active.
5967 */
5968void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5969{
5970	/* min_active is only meaningful for non-ordered unbound workqueues */
5971	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5972		    WQ_UNBOUND))
5973		return;
5974
5975	mutex_lock(&wq->mutex);
5976	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5977	wq_adjust_max_active(wq);
5978	mutex_unlock(&wq->mutex);
5979}
5980
5981/**
5982 * current_work - retrieve %current task's work struct
5983 *
5984 * Determine if %current task is a workqueue worker and what it's working on.
5985 * Useful to find out the context that the %current task is running in.
5986 *
5987 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5988 */
5989struct work_struct *current_work(void)
5990{
5991	struct worker *worker = current_wq_worker();
5992
5993	return worker ? worker->current_work : NULL;
5994}
5995EXPORT_SYMBOL(current_work);
5996
5997/**
5998 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5999 *
6000 * Determine whether %current is a workqueue rescuer.  Can be used from
6001 * work functions to determine whether it's being run off the rescuer task.
6002 *
6003 * Return: %true if %current is a workqueue rescuer. %false otherwise.
6004 */
6005bool current_is_workqueue_rescuer(void)
6006{
6007	struct worker *worker = current_wq_worker();
6008
6009	return worker && worker->rescue_wq;
6010}
6011
6012/**
6013 * workqueue_congested - test whether a workqueue is congested
6014 * @cpu: CPU in question
6015 * @wq: target workqueue
6016 *
6017 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
6018 * no synchronization around this function and the test result is
6019 * unreliable and only useful as advisory hints or for debugging.
6020 *
6021 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6022 *
6023 * With the exception of ordered workqueues, all workqueues have per-cpu
6024 * pool_workqueues, each with its own congested state. A workqueue being
6025 * congested on one CPU doesn't mean that the workqueue is contested on any
6026 * other CPUs.
6027 *
6028 * Return:
6029 * %true if congested, %false otherwise.
6030 */
6031bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6032{
6033	struct pool_workqueue *pwq;
6034	bool ret;
6035
6036	rcu_read_lock();
6037	preempt_disable();
6038
6039	if (cpu == WORK_CPU_UNBOUND)
6040		cpu = smp_processor_id();
6041
6042	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6043	ret = !list_empty(&pwq->inactive_works);
6044
6045	preempt_enable();
6046	rcu_read_unlock();
6047
6048	return ret;
6049}
6050EXPORT_SYMBOL_GPL(workqueue_congested);
6051
6052/**
6053 * work_busy - test whether a work is currently pending or running
6054 * @work: the work to be tested
6055 *
6056 * Test whether @work is currently pending or running.  There is no
6057 * synchronization around this function and the test result is
6058 * unreliable and only useful as advisory hints or for debugging.
6059 *
6060 * Return:
6061 * OR'd bitmask of WORK_BUSY_* bits.
6062 */
6063unsigned int work_busy(struct work_struct *work)
6064{
6065	struct worker_pool *pool;
6066	unsigned long irq_flags;
6067	unsigned int ret = 0;
6068
6069	if (work_pending(work))
6070		ret |= WORK_BUSY_PENDING;
6071
6072	rcu_read_lock();
6073	pool = get_work_pool(work);
6074	if (pool) {
6075		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6076		if (find_worker_executing_work(pool, work))
6077			ret |= WORK_BUSY_RUNNING;
6078		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6079	}
6080	rcu_read_unlock();
6081
6082	return ret;
6083}
6084EXPORT_SYMBOL_GPL(work_busy);
6085
6086/**
6087 * set_worker_desc - set description for the current work item
6088 * @fmt: printf-style format string
6089 * @...: arguments for the format string
6090 *
6091 * This function can be called by a running work function to describe what
6092 * the work item is about.  If the worker task gets dumped, this
6093 * information will be printed out together to help debugging.  The
6094 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6095 */
6096void set_worker_desc(const char *fmt, ...)
6097{
6098	struct worker *worker = current_wq_worker();
6099	va_list args;
6100
6101	if (worker) {
6102		va_start(args, fmt);
6103		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6104		va_end(args);
6105	}
6106}
6107EXPORT_SYMBOL_GPL(set_worker_desc);
6108
6109/**
6110 * print_worker_info - print out worker information and description
6111 * @log_lvl: the log level to use when printing
6112 * @task: target task
6113 *
6114 * If @task is a worker and currently executing a work item, print out the
6115 * name of the workqueue being serviced and worker description set with
6116 * set_worker_desc() by the currently executing work item.
6117 *
6118 * This function can be safely called on any task as long as the
6119 * task_struct itself is accessible.  While safe, this function isn't
6120 * synchronized and may print out mixups or garbages of limited length.
6121 */
6122void print_worker_info(const char *log_lvl, struct task_struct *task)
6123{
6124	work_func_t *fn = NULL;
6125	char name[WQ_NAME_LEN] = { };
6126	char desc[WORKER_DESC_LEN] = { };
6127	struct pool_workqueue *pwq = NULL;
6128	struct workqueue_struct *wq = NULL;
6129	struct worker *worker;
6130
6131	if (!(task->flags & PF_WQ_WORKER))
6132		return;
6133
6134	/*
6135	 * This function is called without any synchronization and @task
6136	 * could be in any state.  Be careful with dereferences.
6137	 */
6138	worker = kthread_probe_data(task);
6139
6140	/*
6141	 * Carefully copy the associated workqueue's workfn, name and desc.
6142	 * Keep the original last '\0' in case the original is garbage.
6143	 */
6144	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6145	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6146	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6147	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6148	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6149
6150	if (fn || name[0] || desc[0]) {
6151		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6152		if (strcmp(name, desc))
6153			pr_cont(" (%s)", desc);
6154		pr_cont("\n");
6155	}
6156}
6157
6158static void pr_cont_pool_info(struct worker_pool *pool)
6159{
6160	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6161	if (pool->node != NUMA_NO_NODE)
6162		pr_cont(" node=%d", pool->node);
6163	pr_cont(" flags=0x%x", pool->flags);
6164	if (pool->flags & POOL_BH)
6165		pr_cont(" bh%s",
6166			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6167	else
6168		pr_cont(" nice=%d", pool->attrs->nice);
6169}
6170
6171static void pr_cont_worker_id(struct worker *worker)
6172{
6173	struct worker_pool *pool = worker->pool;
6174
6175	if (pool->flags & WQ_BH)
6176		pr_cont("bh%s",
6177			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6178	else
6179		pr_cont("%d%s", task_pid_nr(worker->task),
6180			worker->rescue_wq ? "(RESCUER)" : "");
6181}
6182
6183struct pr_cont_work_struct {
6184	bool comma;
6185	work_func_t func;
6186	long ctr;
6187};
6188
6189static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6190{
6191	if (!pcwsp->ctr)
6192		goto out_record;
6193	if (func == pcwsp->func) {
6194		pcwsp->ctr++;
6195		return;
6196	}
6197	if (pcwsp->ctr == 1)
6198		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6199	else
6200		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6201	pcwsp->ctr = 0;
6202out_record:
6203	if ((long)func == -1L)
6204		return;
6205	pcwsp->comma = comma;
6206	pcwsp->func = func;
6207	pcwsp->ctr = 1;
6208}
6209
6210static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6211{
6212	if (work->func == wq_barrier_func) {
6213		struct wq_barrier *barr;
6214
6215		barr = container_of(work, struct wq_barrier, work);
6216
6217		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6218		pr_cont("%s BAR(%d)", comma ? "," : "",
6219			task_pid_nr(barr->task));
6220	} else {
6221		if (!comma)
6222			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6223		pr_cont_work_flush(comma, work->func, pcwsp);
6224	}
6225}
6226
6227static void show_pwq(struct pool_workqueue *pwq)
6228{
6229	struct pr_cont_work_struct pcws = { .ctr = 0, };
6230	struct worker_pool *pool = pwq->pool;
6231	struct work_struct *work;
6232	struct worker *worker;
6233	bool has_in_flight = false, has_pending = false;
6234	int bkt;
6235
6236	pr_info("  pwq %d:", pool->id);
6237	pr_cont_pool_info(pool);
6238
6239	pr_cont(" active=%d refcnt=%d%s\n",
6240		pwq->nr_active, pwq->refcnt,
6241		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6242
6243	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6244		if (worker->current_pwq == pwq) {
6245			has_in_flight = true;
6246			break;
6247		}
6248	}
6249	if (has_in_flight) {
6250		bool comma = false;
6251
6252		pr_info("    in-flight:");
6253		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6254			if (worker->current_pwq != pwq)
6255				continue;
6256
6257			pr_cont(" %s", comma ? "," : "");
6258			pr_cont_worker_id(worker);
6259			pr_cont(":%ps", worker->current_func);
6260			list_for_each_entry(work, &worker->scheduled, entry)
6261				pr_cont_work(false, work, &pcws);
6262			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6263			comma = true;
6264		}
6265		pr_cont("\n");
6266	}
6267
6268	list_for_each_entry(work, &pool->worklist, entry) {
6269		if (get_work_pwq(work) == pwq) {
6270			has_pending = true;
6271			break;
6272		}
6273	}
6274	if (has_pending) {
6275		bool comma = false;
6276
6277		pr_info("    pending:");
6278		list_for_each_entry(work, &pool->worklist, entry) {
6279			if (get_work_pwq(work) != pwq)
6280				continue;
6281
6282			pr_cont_work(comma, work, &pcws);
6283			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6284		}
6285		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6286		pr_cont("\n");
6287	}
6288
6289	if (!list_empty(&pwq->inactive_works)) {
6290		bool comma = false;
6291
6292		pr_info("    inactive:");
6293		list_for_each_entry(work, &pwq->inactive_works, entry) {
6294			pr_cont_work(comma, work, &pcws);
6295			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6296		}
6297		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6298		pr_cont("\n");
6299	}
6300}
6301
6302/**
6303 * show_one_workqueue - dump state of specified workqueue
6304 * @wq: workqueue whose state will be printed
6305 */
6306void show_one_workqueue(struct workqueue_struct *wq)
6307{
6308	struct pool_workqueue *pwq;
6309	bool idle = true;
6310	unsigned long irq_flags;
6311
6312	for_each_pwq(pwq, wq) {
6313		if (!pwq_is_empty(pwq)) {
6314			idle = false;
6315			break;
6316		}
6317	}
6318	if (idle) /* Nothing to print for idle workqueue */
6319		return;
6320
6321	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6322
6323	for_each_pwq(pwq, wq) {
6324		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6325		if (!pwq_is_empty(pwq)) {
6326			/*
6327			 * Defer printing to avoid deadlocks in console
6328			 * drivers that queue work while holding locks
6329			 * also taken in their write paths.
6330			 */
6331			printk_deferred_enter();
6332			show_pwq(pwq);
6333			printk_deferred_exit();
6334		}
6335		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6336		/*
6337		 * We could be printing a lot from atomic context, e.g.
6338		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6339		 * hard lockup.
6340		 */
6341		touch_nmi_watchdog();
6342	}
6343
6344}
6345
6346/**
6347 * show_one_worker_pool - dump state of specified worker pool
6348 * @pool: worker pool whose state will be printed
6349 */
6350static void show_one_worker_pool(struct worker_pool *pool)
6351{
6352	struct worker *worker;
6353	bool first = true;
6354	unsigned long irq_flags;
6355	unsigned long hung = 0;
6356
6357	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6358	if (pool->nr_workers == pool->nr_idle)
6359		goto next_pool;
6360
6361	/* How long the first pending work is waiting for a worker. */
6362	if (!list_empty(&pool->worklist))
6363		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6364
6365	/*
6366	 * Defer printing to avoid deadlocks in console drivers that
6367	 * queue work while holding locks also taken in their write
6368	 * paths.
6369	 */
6370	printk_deferred_enter();
6371	pr_info("pool %d:", pool->id);
6372	pr_cont_pool_info(pool);
6373	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6374	if (pool->manager)
6375		pr_cont(" manager: %d",
6376			task_pid_nr(pool->manager->task));
6377	list_for_each_entry(worker, &pool->idle_list, entry) {
6378		pr_cont(" %s", first ? "idle: " : "");
6379		pr_cont_worker_id(worker);
6380		first = false;
6381	}
6382	pr_cont("\n");
6383	printk_deferred_exit();
6384next_pool:
6385	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6386	/*
6387	 * We could be printing a lot from atomic context, e.g.
6388	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6389	 * hard lockup.
6390	 */
6391	touch_nmi_watchdog();
6392
6393}
6394
6395/**
6396 * show_all_workqueues - dump workqueue state
6397 *
6398 * Called from a sysrq handler and prints out all busy workqueues and pools.
6399 */
6400void show_all_workqueues(void)
6401{
6402	struct workqueue_struct *wq;
6403	struct worker_pool *pool;
6404	int pi;
6405
6406	rcu_read_lock();
6407
6408	pr_info("Showing busy workqueues and worker pools:\n");
6409
6410	list_for_each_entry_rcu(wq, &workqueues, list)
6411		show_one_workqueue(wq);
6412
6413	for_each_pool(pool, pi)
6414		show_one_worker_pool(pool);
6415
6416	rcu_read_unlock();
6417}
6418
6419/**
6420 * show_freezable_workqueues - dump freezable workqueue state
6421 *
6422 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6423 * still busy.
6424 */
6425void show_freezable_workqueues(void)
6426{
6427	struct workqueue_struct *wq;
6428
6429	rcu_read_lock();
6430
6431	pr_info("Showing freezable workqueues that are still busy:\n");
6432
6433	list_for_each_entry_rcu(wq, &workqueues, list) {
6434		if (!(wq->flags & WQ_FREEZABLE))
6435			continue;
6436		show_one_workqueue(wq);
6437	}
6438
6439	rcu_read_unlock();
6440}
6441
6442/* used to show worker information through /proc/PID/{comm,stat,status} */
6443void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6444{
 
 
 
 
 
 
 
6445	/* stabilize PF_WQ_WORKER and worker pool association */
6446	mutex_lock(&wq_pool_attach_mutex);
6447
6448	if (task->flags & PF_WQ_WORKER) {
6449		struct worker *worker = kthread_data(task);
6450		struct worker_pool *pool = worker->pool;
6451		int off;
6452
6453		off = format_worker_id(buf, size, worker, pool);
6454
6455		if (pool) {
6456			raw_spin_lock_irq(&pool->lock);
6457			/*
6458			 * ->desc tracks information (wq name or
6459			 * set_worker_desc()) for the latest execution.  If
6460			 * current, prepend '+', otherwise '-'.
6461			 */
6462			if (worker->desc[0] != '\0') {
6463				if (worker->current_work)
6464					scnprintf(buf + off, size - off, "+%s",
6465						  worker->desc);
6466				else
6467					scnprintf(buf + off, size - off, "-%s",
6468						  worker->desc);
6469			}
6470			raw_spin_unlock_irq(&pool->lock);
6471		}
6472	} else {
6473		strscpy(buf, task->comm, size);
6474	}
6475
6476	mutex_unlock(&wq_pool_attach_mutex);
6477}
6478
6479#ifdef CONFIG_SMP
6480
6481/*
6482 * CPU hotplug.
6483 *
6484 * There are two challenges in supporting CPU hotplug.  Firstly, there
6485 * are a lot of assumptions on strong associations among work, pwq and
6486 * pool which make migrating pending and scheduled works very
6487 * difficult to implement without impacting hot paths.  Secondly,
6488 * worker pools serve mix of short, long and very long running works making
6489 * blocked draining impractical.
6490 *
6491 * This is solved by allowing the pools to be disassociated from the CPU
6492 * running as an unbound one and allowing it to be reattached later if the
6493 * cpu comes back online.
6494 */
6495
6496static void unbind_workers(int cpu)
6497{
6498	struct worker_pool *pool;
6499	struct worker *worker;
6500
6501	for_each_cpu_worker_pool(pool, cpu) {
6502		mutex_lock(&wq_pool_attach_mutex);
6503		raw_spin_lock_irq(&pool->lock);
6504
6505		/*
6506		 * We've blocked all attach/detach operations. Make all workers
6507		 * unbound and set DISASSOCIATED.  Before this, all workers
6508		 * must be on the cpu.  After this, they may become diasporas.
6509		 * And the preemption disabled section in their sched callbacks
6510		 * are guaranteed to see WORKER_UNBOUND since the code here
6511		 * is on the same cpu.
6512		 */
6513		for_each_pool_worker(worker, pool)
6514			worker->flags |= WORKER_UNBOUND;
6515
6516		pool->flags |= POOL_DISASSOCIATED;
6517
6518		/*
6519		 * The handling of nr_running in sched callbacks are disabled
6520		 * now.  Zap nr_running.  After this, nr_running stays zero and
6521		 * need_more_worker() and keep_working() are always true as
6522		 * long as the worklist is not empty.  This pool now behaves as
6523		 * an unbound (in terms of concurrency management) pool which
6524		 * are served by workers tied to the pool.
6525		 */
6526		pool->nr_running = 0;
6527
6528		/*
6529		 * With concurrency management just turned off, a busy
6530		 * worker blocking could lead to lengthy stalls.  Kick off
6531		 * unbound chain execution of currently pending work items.
6532		 */
6533		kick_pool(pool);
6534
6535		raw_spin_unlock_irq(&pool->lock);
6536
6537		for_each_pool_worker(worker, pool)
6538			unbind_worker(worker);
6539
6540		mutex_unlock(&wq_pool_attach_mutex);
6541	}
6542}
6543
6544/**
6545 * rebind_workers - rebind all workers of a pool to the associated CPU
6546 * @pool: pool of interest
6547 *
6548 * @pool->cpu is coming online.  Rebind all workers to the CPU.
6549 */
6550static void rebind_workers(struct worker_pool *pool)
6551{
6552	struct worker *worker;
6553
6554	lockdep_assert_held(&wq_pool_attach_mutex);
6555
6556	/*
6557	 * Restore CPU affinity of all workers.  As all idle workers should
6558	 * be on the run-queue of the associated CPU before any local
6559	 * wake-ups for concurrency management happen, restore CPU affinity
6560	 * of all workers first and then clear UNBOUND.  As we're called
6561	 * from CPU_ONLINE, the following shouldn't fail.
6562	 */
6563	for_each_pool_worker(worker, pool) {
6564		kthread_set_per_cpu(worker->task, pool->cpu);
6565		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6566						  pool_allowed_cpus(pool)) < 0);
6567	}
6568
6569	raw_spin_lock_irq(&pool->lock);
6570
6571	pool->flags &= ~POOL_DISASSOCIATED;
6572
6573	for_each_pool_worker(worker, pool) {
6574		unsigned int worker_flags = worker->flags;
6575
6576		/*
6577		 * We want to clear UNBOUND but can't directly call
6578		 * worker_clr_flags() or adjust nr_running.  Atomically
6579		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6580		 * @worker will clear REBOUND using worker_clr_flags() when
6581		 * it initiates the next execution cycle thus restoring
6582		 * concurrency management.  Note that when or whether
6583		 * @worker clears REBOUND doesn't affect correctness.
6584		 *
6585		 * WRITE_ONCE() is necessary because @worker->flags may be
6586		 * tested without holding any lock in
6587		 * wq_worker_running().  Without it, NOT_RUNNING test may
6588		 * fail incorrectly leading to premature concurrency
6589		 * management operations.
6590		 */
6591		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6592		worker_flags |= WORKER_REBOUND;
6593		worker_flags &= ~WORKER_UNBOUND;
6594		WRITE_ONCE(worker->flags, worker_flags);
6595	}
6596
6597	raw_spin_unlock_irq(&pool->lock);
6598}
6599
6600/**
6601 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6602 * @pool: unbound pool of interest
6603 * @cpu: the CPU which is coming up
6604 *
6605 * An unbound pool may end up with a cpumask which doesn't have any online
6606 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6607 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6608 * online CPU before, cpus_allowed of all its workers should be restored.
6609 */
6610static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6611{
6612	static cpumask_t cpumask;
6613	struct worker *worker;
6614
6615	lockdep_assert_held(&wq_pool_attach_mutex);
6616
6617	/* is @cpu allowed for @pool? */
6618	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6619		return;
6620
6621	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6622
6623	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6624	for_each_pool_worker(worker, pool)
6625		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6626}
6627
6628int workqueue_prepare_cpu(unsigned int cpu)
6629{
6630	struct worker_pool *pool;
6631
6632	for_each_cpu_worker_pool(pool, cpu) {
6633		if (pool->nr_workers)
6634			continue;
6635		if (!create_worker(pool))
6636			return -ENOMEM;
6637	}
6638	return 0;
6639}
6640
6641int workqueue_online_cpu(unsigned int cpu)
6642{
6643	struct worker_pool *pool;
6644	struct workqueue_struct *wq;
6645	int pi;
6646
6647	mutex_lock(&wq_pool_mutex);
6648
6649	cpumask_set_cpu(cpu, wq_online_cpumask);
6650
6651	for_each_pool(pool, pi) {
6652		/* BH pools aren't affected by hotplug */
6653		if (pool->flags & POOL_BH)
6654			continue;
6655
6656		mutex_lock(&wq_pool_attach_mutex);
6657		if (pool->cpu == cpu)
6658			rebind_workers(pool);
6659		else if (pool->cpu < 0)
6660			restore_unbound_workers_cpumask(pool, cpu);
6661		mutex_unlock(&wq_pool_attach_mutex);
6662	}
6663
6664	/* update pod affinity of unbound workqueues */
6665	list_for_each_entry(wq, &workqueues, list) {
6666		struct workqueue_attrs *attrs = wq->unbound_attrs;
6667
6668		if (attrs) {
6669			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6670			int tcpu;
6671
6672			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6673				unbound_wq_update_pwq(wq, tcpu);
6674
6675			mutex_lock(&wq->mutex);
6676			wq_update_node_max_active(wq, -1);
6677			mutex_unlock(&wq->mutex);
6678		}
6679	}
6680
6681	mutex_unlock(&wq_pool_mutex);
6682	return 0;
6683}
6684
6685int workqueue_offline_cpu(unsigned int cpu)
6686{
6687	struct workqueue_struct *wq;
6688
6689	/* unbinding per-cpu workers should happen on the local CPU */
6690	if (WARN_ON(cpu != smp_processor_id()))
6691		return -1;
6692
6693	unbind_workers(cpu);
6694
6695	/* update pod affinity of unbound workqueues */
6696	mutex_lock(&wq_pool_mutex);
6697
6698	cpumask_clear_cpu(cpu, wq_online_cpumask);
6699
6700	list_for_each_entry(wq, &workqueues, list) {
6701		struct workqueue_attrs *attrs = wq->unbound_attrs;
6702
6703		if (attrs) {
6704			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6705			int tcpu;
6706
6707			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6708				unbound_wq_update_pwq(wq, tcpu);
6709
6710			mutex_lock(&wq->mutex);
6711			wq_update_node_max_active(wq, cpu);
6712			mutex_unlock(&wq->mutex);
6713		}
6714	}
6715	mutex_unlock(&wq_pool_mutex);
6716
6717	return 0;
6718}
6719
6720struct work_for_cpu {
6721	struct work_struct work;
6722	long (*fn)(void *);
6723	void *arg;
6724	long ret;
6725};
6726
6727static void work_for_cpu_fn(struct work_struct *work)
6728{
6729	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6730
6731	wfc->ret = wfc->fn(wfc->arg);
6732}
6733
6734/**
6735 * work_on_cpu_key - run a function in thread context on a particular cpu
6736 * @cpu: the cpu to run on
6737 * @fn: the function to run
6738 * @arg: the function arg
6739 * @key: The lock class key for lock debugging purposes
6740 *
6741 * It is up to the caller to ensure that the cpu doesn't go offline.
6742 * The caller must not hold any locks which would prevent @fn from completing.
6743 *
6744 * Return: The value @fn returns.
6745 */
6746long work_on_cpu_key(int cpu, long (*fn)(void *),
6747		     void *arg, struct lock_class_key *key)
6748{
6749	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6750
6751	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6752	schedule_work_on(cpu, &wfc.work);
6753	flush_work(&wfc.work);
6754	destroy_work_on_stack(&wfc.work);
6755	return wfc.ret;
6756}
6757EXPORT_SYMBOL_GPL(work_on_cpu_key);
6758
6759/**
6760 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6761 * @cpu: the cpu to run on
6762 * @fn:  the function to run
6763 * @arg: the function argument
6764 * @key: The lock class key for lock debugging purposes
6765 *
6766 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6767 * any locks which would prevent @fn from completing.
6768 *
6769 * Return: The value @fn returns.
6770 */
6771long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6772			  void *arg, struct lock_class_key *key)
6773{
6774	long ret = -ENODEV;
6775
6776	cpus_read_lock();
6777	if (cpu_online(cpu))
6778		ret = work_on_cpu_key(cpu, fn, arg, key);
6779	cpus_read_unlock();
6780	return ret;
6781}
6782EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6783#endif /* CONFIG_SMP */
6784
6785#ifdef CONFIG_FREEZER
6786
6787/**
6788 * freeze_workqueues_begin - begin freezing workqueues
6789 *
6790 * Start freezing workqueues.  After this function returns, all freezable
6791 * workqueues will queue new works to their inactive_works list instead of
6792 * pool->worklist.
6793 *
6794 * CONTEXT:
6795 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6796 */
6797void freeze_workqueues_begin(void)
6798{
6799	struct workqueue_struct *wq;
6800
6801	mutex_lock(&wq_pool_mutex);
6802
6803	WARN_ON_ONCE(workqueue_freezing);
6804	workqueue_freezing = true;
6805
6806	list_for_each_entry(wq, &workqueues, list) {
6807		mutex_lock(&wq->mutex);
6808		wq_adjust_max_active(wq);
6809		mutex_unlock(&wq->mutex);
6810	}
6811
6812	mutex_unlock(&wq_pool_mutex);
6813}
6814
6815/**
6816 * freeze_workqueues_busy - are freezable workqueues still busy?
6817 *
6818 * Check whether freezing is complete.  This function must be called
6819 * between freeze_workqueues_begin() and thaw_workqueues().
6820 *
6821 * CONTEXT:
6822 * Grabs and releases wq_pool_mutex.
6823 *
6824 * Return:
6825 * %true if some freezable workqueues are still busy.  %false if freezing
6826 * is complete.
6827 */
6828bool freeze_workqueues_busy(void)
6829{
6830	bool busy = false;
6831	struct workqueue_struct *wq;
6832	struct pool_workqueue *pwq;
6833
6834	mutex_lock(&wq_pool_mutex);
6835
6836	WARN_ON_ONCE(!workqueue_freezing);
6837
6838	list_for_each_entry(wq, &workqueues, list) {
6839		if (!(wq->flags & WQ_FREEZABLE))
6840			continue;
6841		/*
6842		 * nr_active is monotonically decreasing.  It's safe
6843		 * to peek without lock.
6844		 */
6845		rcu_read_lock();
6846		for_each_pwq(pwq, wq) {
6847			WARN_ON_ONCE(pwq->nr_active < 0);
6848			if (pwq->nr_active) {
6849				busy = true;
6850				rcu_read_unlock();
6851				goto out_unlock;
6852			}
6853		}
6854		rcu_read_unlock();
6855	}
6856out_unlock:
6857	mutex_unlock(&wq_pool_mutex);
6858	return busy;
6859}
6860
6861/**
6862 * thaw_workqueues - thaw workqueues
6863 *
6864 * Thaw workqueues.  Normal queueing is restored and all collected
6865 * frozen works are transferred to their respective pool worklists.
6866 *
6867 * CONTEXT:
6868 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6869 */
6870void thaw_workqueues(void)
6871{
6872	struct workqueue_struct *wq;
6873
6874	mutex_lock(&wq_pool_mutex);
6875
6876	if (!workqueue_freezing)
6877		goto out_unlock;
6878
6879	workqueue_freezing = false;
6880
6881	/* restore max_active and repopulate worklist */
6882	list_for_each_entry(wq, &workqueues, list) {
6883		mutex_lock(&wq->mutex);
6884		wq_adjust_max_active(wq);
6885		mutex_unlock(&wq->mutex);
6886	}
6887
6888out_unlock:
6889	mutex_unlock(&wq_pool_mutex);
6890}
6891#endif /* CONFIG_FREEZER */
6892
6893static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6894{
6895	LIST_HEAD(ctxs);
6896	int ret = 0;
6897	struct workqueue_struct *wq;
6898	struct apply_wqattrs_ctx *ctx, *n;
6899
6900	lockdep_assert_held(&wq_pool_mutex);
6901
6902	list_for_each_entry(wq, &workqueues, list) {
6903		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6904			continue;
6905
6906		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6907		if (IS_ERR(ctx)) {
6908			ret = PTR_ERR(ctx);
6909			break;
6910		}
6911
6912		list_add_tail(&ctx->list, &ctxs);
6913	}
6914
6915	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6916		if (!ret)
6917			apply_wqattrs_commit(ctx);
6918		apply_wqattrs_cleanup(ctx);
6919	}
6920
6921	if (!ret) {
6922		mutex_lock(&wq_pool_attach_mutex);
6923		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6924		mutex_unlock(&wq_pool_attach_mutex);
6925	}
6926	return ret;
6927}
6928
6929/**
6930 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6931 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6932 *
6933 * This function can be called from cpuset code to provide a set of isolated
6934 * CPUs that should be excluded from wq_unbound_cpumask.
 
6935 */
6936int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6937{
6938	cpumask_var_t cpumask;
6939	int ret = 0;
6940
6941	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6942		return -ENOMEM;
6943
 
6944	mutex_lock(&wq_pool_mutex);
6945
 
 
 
6946	/*
6947	 * If the operation fails, it will fall back to
6948	 * wq_requested_unbound_cpumask which is initially set to
6949	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6950	 * by any subsequent write to workqueue/cpumask sysfs file.
6951	 */
6952	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6953		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6954	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6955		ret = workqueue_apply_unbound_cpumask(cpumask);
6956
6957	/* Save the current isolated cpumask & export it via sysfs */
6958	if (!ret)
6959		cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6960
6961	mutex_unlock(&wq_pool_mutex);
6962	free_cpumask_var(cpumask);
6963	return ret;
6964}
6965
6966static int parse_affn_scope(const char *val)
6967{
6968	int i;
6969
6970	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6971		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6972			return i;
6973	}
6974	return -EINVAL;
6975}
6976
6977static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6978{
6979	struct workqueue_struct *wq;
6980	int affn, cpu;
6981
6982	affn = parse_affn_scope(val);
6983	if (affn < 0)
6984		return affn;
6985	if (affn == WQ_AFFN_DFL)
6986		return -EINVAL;
6987
6988	cpus_read_lock();
6989	mutex_lock(&wq_pool_mutex);
6990
6991	wq_affn_dfl = affn;
6992
6993	list_for_each_entry(wq, &workqueues, list) {
6994		for_each_online_cpu(cpu)
6995			unbound_wq_update_pwq(wq, cpu);
 
6996	}
6997
6998	mutex_unlock(&wq_pool_mutex);
6999	cpus_read_unlock();
7000
7001	return 0;
7002}
7003
7004static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
7005{
7006	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
7007}
7008
7009static const struct kernel_param_ops wq_affn_dfl_ops = {
7010	.set	= wq_affn_dfl_set,
7011	.get	= wq_affn_dfl_get,
7012};
7013
7014module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7015
7016#ifdef CONFIG_SYSFS
7017/*
7018 * Workqueues with WQ_SYSFS flag set is visible to userland via
7019 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
7020 * following attributes.
7021 *
7022 *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
7023 *  max_active		RW int	: maximum number of in-flight work items
7024 *
7025 * Unbound workqueues have the following extra attributes.
7026 *
7027 *  nice		RW int	: nice value of the workers
7028 *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
7029 *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
7030 *  affinity_strict	RW bool : worker CPU affinity is strict
7031 */
7032struct wq_device {
7033	struct workqueue_struct		*wq;
7034	struct device			dev;
7035};
7036
7037static struct workqueue_struct *dev_to_wq(struct device *dev)
7038{
7039	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7040
7041	return wq_dev->wq;
7042}
7043
7044static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7045			    char *buf)
7046{
7047	struct workqueue_struct *wq = dev_to_wq(dev);
7048
7049	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7050}
7051static DEVICE_ATTR_RO(per_cpu);
7052
7053static ssize_t max_active_show(struct device *dev,
7054			       struct device_attribute *attr, char *buf)
7055{
7056	struct workqueue_struct *wq = dev_to_wq(dev);
7057
7058	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7059}
7060
7061static ssize_t max_active_store(struct device *dev,
7062				struct device_attribute *attr, const char *buf,
7063				size_t count)
7064{
7065	struct workqueue_struct *wq = dev_to_wq(dev);
7066	int val;
7067
7068	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7069		return -EINVAL;
7070
7071	workqueue_set_max_active(wq, val);
7072	return count;
7073}
7074static DEVICE_ATTR_RW(max_active);
7075
7076static struct attribute *wq_sysfs_attrs[] = {
7077	&dev_attr_per_cpu.attr,
7078	&dev_attr_max_active.attr,
7079	NULL,
7080};
7081ATTRIBUTE_GROUPS(wq_sysfs);
7082
 
 
 
 
 
 
 
 
 
 
 
 
 
7083static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7084			    char *buf)
7085{
7086	struct workqueue_struct *wq = dev_to_wq(dev);
7087	int written;
7088
7089	mutex_lock(&wq->mutex);
7090	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7091	mutex_unlock(&wq->mutex);
7092
7093	return written;
7094}
7095
7096/* prepare workqueue_attrs for sysfs store operations */
7097static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7098{
7099	struct workqueue_attrs *attrs;
7100
7101	lockdep_assert_held(&wq_pool_mutex);
7102
7103	attrs = alloc_workqueue_attrs();
7104	if (!attrs)
7105		return NULL;
7106
7107	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7108	return attrs;
7109}
7110
7111static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7112			     const char *buf, size_t count)
7113{
7114	struct workqueue_struct *wq = dev_to_wq(dev);
7115	struct workqueue_attrs *attrs;
7116	int ret = -ENOMEM;
7117
7118	apply_wqattrs_lock();
7119
7120	attrs = wq_sysfs_prep_attrs(wq);
7121	if (!attrs)
7122		goto out_unlock;
7123
7124	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7125	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7126		ret = apply_workqueue_attrs_locked(wq, attrs);
7127	else
7128		ret = -EINVAL;
7129
7130out_unlock:
7131	apply_wqattrs_unlock();
7132	free_workqueue_attrs(attrs);
7133	return ret ?: count;
7134}
7135
7136static ssize_t wq_cpumask_show(struct device *dev,
7137			       struct device_attribute *attr, char *buf)
7138{
7139	struct workqueue_struct *wq = dev_to_wq(dev);
7140	int written;
7141
7142	mutex_lock(&wq->mutex);
7143	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7144			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7145	mutex_unlock(&wq->mutex);
7146	return written;
7147}
7148
7149static ssize_t wq_cpumask_store(struct device *dev,
7150				struct device_attribute *attr,
7151				const char *buf, size_t count)
7152{
7153	struct workqueue_struct *wq = dev_to_wq(dev);
7154	struct workqueue_attrs *attrs;
7155	int ret = -ENOMEM;
7156
7157	apply_wqattrs_lock();
7158
7159	attrs = wq_sysfs_prep_attrs(wq);
7160	if (!attrs)
7161		goto out_unlock;
7162
7163	ret = cpumask_parse(buf, attrs->cpumask);
7164	if (!ret)
7165		ret = apply_workqueue_attrs_locked(wq, attrs);
7166
7167out_unlock:
7168	apply_wqattrs_unlock();
7169	free_workqueue_attrs(attrs);
7170	return ret ?: count;
7171}
7172
7173static ssize_t wq_affn_scope_show(struct device *dev,
7174				  struct device_attribute *attr, char *buf)
7175{
7176	struct workqueue_struct *wq = dev_to_wq(dev);
7177	int written;
7178
7179	mutex_lock(&wq->mutex);
7180	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7181		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7182				    wq_affn_names[WQ_AFFN_DFL],
7183				    wq_affn_names[wq_affn_dfl]);
7184	else
7185		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7186				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7187	mutex_unlock(&wq->mutex);
7188
7189	return written;
7190}
7191
7192static ssize_t wq_affn_scope_store(struct device *dev,
7193				   struct device_attribute *attr,
7194				   const char *buf, size_t count)
7195{
7196	struct workqueue_struct *wq = dev_to_wq(dev);
7197	struct workqueue_attrs *attrs;
7198	int affn, ret = -ENOMEM;
7199
7200	affn = parse_affn_scope(buf);
7201	if (affn < 0)
7202		return affn;
7203
7204	apply_wqattrs_lock();
7205	attrs = wq_sysfs_prep_attrs(wq);
7206	if (attrs) {
7207		attrs->affn_scope = affn;
7208		ret = apply_workqueue_attrs_locked(wq, attrs);
7209	}
7210	apply_wqattrs_unlock();
7211	free_workqueue_attrs(attrs);
7212	return ret ?: count;
7213}
7214
7215static ssize_t wq_affinity_strict_show(struct device *dev,
7216				       struct device_attribute *attr, char *buf)
7217{
7218	struct workqueue_struct *wq = dev_to_wq(dev);
7219
7220	return scnprintf(buf, PAGE_SIZE, "%d\n",
7221			 wq->unbound_attrs->affn_strict);
7222}
7223
7224static ssize_t wq_affinity_strict_store(struct device *dev,
7225					struct device_attribute *attr,
7226					const char *buf, size_t count)
7227{
7228	struct workqueue_struct *wq = dev_to_wq(dev);
7229	struct workqueue_attrs *attrs;
7230	int v, ret = -ENOMEM;
7231
7232	if (sscanf(buf, "%d", &v) != 1)
7233		return -EINVAL;
7234
7235	apply_wqattrs_lock();
7236	attrs = wq_sysfs_prep_attrs(wq);
7237	if (attrs) {
7238		attrs->affn_strict = (bool)v;
7239		ret = apply_workqueue_attrs_locked(wq, attrs);
7240	}
7241	apply_wqattrs_unlock();
7242	free_workqueue_attrs(attrs);
7243	return ret ?: count;
7244}
7245
7246static struct device_attribute wq_sysfs_unbound_attrs[] = {
7247	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7248	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7249	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7250	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7251	__ATTR_NULL,
7252};
7253
7254static const struct bus_type wq_subsys = {
7255	.name				= "workqueue",
7256	.dev_groups			= wq_sysfs_groups,
7257};
7258
7259/**
7260 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7261 *  @cpumask: the cpumask to set
7262 *
7263 *  The low-level workqueues cpumask is a global cpumask that limits
7264 *  the affinity of all unbound workqueues.  This function check the @cpumask
7265 *  and apply it to all unbound workqueues and updates all pwqs of them.
7266 *
7267 *  Return:	0	- Success
7268 *		-EINVAL	- Invalid @cpumask
7269 *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7270 */
7271static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7272{
7273	int ret = -EINVAL;
7274
7275	/*
7276	 * Not excluding isolated cpus on purpose.
7277	 * If the user wishes to include them, we allow that.
7278	 */
7279	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7280	if (!cpumask_empty(cpumask)) {
7281		ret = 0;
7282		apply_wqattrs_lock();
7283		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7284			ret = workqueue_apply_unbound_cpumask(cpumask);
7285		if (!ret)
7286			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
 
 
 
 
 
7287		apply_wqattrs_unlock();
7288	}
7289
7290	return ret;
7291}
7292
7293static ssize_t __wq_cpumask_show(struct device *dev,
7294		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7295{
7296	int written;
7297
7298	mutex_lock(&wq_pool_mutex);
7299	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7300	mutex_unlock(&wq_pool_mutex);
7301
7302	return written;
7303}
7304
7305static ssize_t cpumask_requested_show(struct device *dev,
7306		struct device_attribute *attr, char *buf)
7307{
7308	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7309}
7310static DEVICE_ATTR_RO(cpumask_requested);
7311
7312static ssize_t cpumask_isolated_show(struct device *dev,
7313		struct device_attribute *attr, char *buf)
7314{
7315	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7316}
7317static DEVICE_ATTR_RO(cpumask_isolated);
7318
7319static ssize_t cpumask_show(struct device *dev,
7320		struct device_attribute *attr, char *buf)
7321{
7322	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7323}
7324
7325static ssize_t cpumask_store(struct device *dev,
7326		struct device_attribute *attr, const char *buf, size_t count)
7327{
7328	cpumask_var_t cpumask;
7329	int ret;
7330
7331	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7332		return -ENOMEM;
7333
7334	ret = cpumask_parse(buf, cpumask);
7335	if (!ret)
7336		ret = workqueue_set_unbound_cpumask(cpumask);
7337
7338	free_cpumask_var(cpumask);
7339	return ret ? ret : count;
7340}
7341static DEVICE_ATTR_RW(cpumask);
7342
7343static struct attribute *wq_sysfs_cpumask_attrs[] = {
7344	&dev_attr_cpumask.attr,
7345	&dev_attr_cpumask_requested.attr,
7346	&dev_attr_cpumask_isolated.attr,
7347	NULL,
 
7348};
7349ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7350
7351static int __init wq_sysfs_init(void)
7352{
7353	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7354}
7355core_initcall(wq_sysfs_init);
7356
7357static void wq_device_release(struct device *dev)
7358{
7359	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7360
7361	kfree(wq_dev);
7362}
7363
7364/**
7365 * workqueue_sysfs_register - make a workqueue visible in sysfs
7366 * @wq: the workqueue to register
7367 *
7368 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7369 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7370 * which is the preferred method.
7371 *
7372 * Workqueue user should use this function directly iff it wants to apply
7373 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7374 * apply_workqueue_attrs() may race against userland updating the
7375 * attributes.
7376 *
7377 * Return: 0 on success, -errno on failure.
7378 */
7379int workqueue_sysfs_register(struct workqueue_struct *wq)
7380{
7381	struct wq_device *wq_dev;
7382	int ret;
7383
7384	/*
7385	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7386	 * ordered workqueues.
7387	 */
7388	if (WARN_ON(wq->flags & __WQ_ORDERED))
7389		return -EINVAL;
7390
7391	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7392	if (!wq_dev)
7393		return -ENOMEM;
7394
7395	wq_dev->wq = wq;
7396	wq_dev->dev.bus = &wq_subsys;
7397	wq_dev->dev.release = wq_device_release;
7398	dev_set_name(&wq_dev->dev, "%s", wq->name);
7399
7400	/*
7401	 * unbound_attrs are created separately.  Suppress uevent until
7402	 * everything is ready.
7403	 */
7404	dev_set_uevent_suppress(&wq_dev->dev, true);
7405
7406	ret = device_register(&wq_dev->dev);
7407	if (ret) {
7408		put_device(&wq_dev->dev);
7409		wq->wq_dev = NULL;
7410		return ret;
7411	}
7412
7413	if (wq->flags & WQ_UNBOUND) {
7414		struct device_attribute *attr;
7415
7416		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7417			ret = device_create_file(&wq_dev->dev, attr);
7418			if (ret) {
7419				device_unregister(&wq_dev->dev);
7420				wq->wq_dev = NULL;
7421				return ret;
7422			}
7423		}
7424	}
7425
7426	dev_set_uevent_suppress(&wq_dev->dev, false);
7427	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7428	return 0;
7429}
7430
7431/**
7432 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7433 * @wq: the workqueue to unregister
7434 *
7435 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7436 */
7437static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7438{
7439	struct wq_device *wq_dev = wq->wq_dev;
7440
7441	if (!wq->wq_dev)
7442		return;
7443
7444	wq->wq_dev = NULL;
7445	device_unregister(&wq_dev->dev);
7446}
7447#else	/* CONFIG_SYSFS */
7448static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7449#endif	/* CONFIG_SYSFS */
7450
7451/*
7452 * Workqueue watchdog.
7453 *
7454 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7455 * flush dependency, a concurrency managed work item which stays RUNNING
7456 * indefinitely.  Workqueue stalls can be very difficult to debug as the
7457 * usual warning mechanisms don't trigger and internal workqueue state is
7458 * largely opaque.
7459 *
7460 * Workqueue watchdog monitors all worker pools periodically and dumps
7461 * state if some pools failed to make forward progress for a while where
7462 * forward progress is defined as the first item on ->worklist changing.
7463 *
7464 * This mechanism is controlled through the kernel parameter
7465 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7466 * corresponding sysfs parameter file.
7467 */
7468#ifdef CONFIG_WQ_WATCHDOG
7469
7470static unsigned long wq_watchdog_thresh = 30;
7471static struct timer_list wq_watchdog_timer;
7472
7473static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7474static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7475
7476static unsigned int wq_panic_on_stall;
7477module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7478
7479/*
7480 * Show workers that might prevent the processing of pending work items.
7481 * The only candidates are CPU-bound workers in the running state.
7482 * Pending work items should be handled by another idle worker
7483 * in all other situations.
7484 */
7485static void show_cpu_pool_hog(struct worker_pool *pool)
7486{
7487	struct worker *worker;
7488	unsigned long irq_flags;
7489	int bkt;
7490
7491	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7492
7493	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7494		if (task_is_running(worker->task)) {
7495			/*
7496			 * Defer printing to avoid deadlocks in console
7497			 * drivers that queue work while holding locks
7498			 * also taken in their write paths.
7499			 */
7500			printk_deferred_enter();
7501
7502			pr_info("pool %d:\n", pool->id);
7503			sched_show_task(worker->task);
7504
7505			printk_deferred_exit();
7506		}
7507	}
7508
7509	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7510}
7511
7512static void show_cpu_pools_hogs(void)
7513{
7514	struct worker_pool *pool;
7515	int pi;
7516
7517	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7518
7519	rcu_read_lock();
7520
7521	for_each_pool(pool, pi) {
7522		if (pool->cpu_stall)
7523			show_cpu_pool_hog(pool);
7524
7525	}
7526
7527	rcu_read_unlock();
7528}
7529
7530static void panic_on_wq_watchdog(void)
7531{
7532	static unsigned int wq_stall;
7533
7534	if (wq_panic_on_stall) {
7535		wq_stall++;
7536		BUG_ON(wq_stall >= wq_panic_on_stall);
7537	}
7538}
7539
7540static void wq_watchdog_reset_touched(void)
7541{
7542	int cpu;
7543
7544	wq_watchdog_touched = jiffies;
7545	for_each_possible_cpu(cpu)
7546		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7547}
7548
7549static void wq_watchdog_timer_fn(struct timer_list *unused)
7550{
7551	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7552	bool lockup_detected = false;
7553	bool cpu_pool_stall = false;
7554	unsigned long now = jiffies;
7555	struct worker_pool *pool;
7556	int pi;
7557
7558	if (!thresh)
7559		return;
7560
7561	rcu_read_lock();
7562
7563	for_each_pool(pool, pi) {
7564		unsigned long pool_ts, touched, ts;
7565
7566		pool->cpu_stall = false;
7567		if (list_empty(&pool->worklist))
7568			continue;
7569
7570		/*
7571		 * If a virtual machine is stopped by the host it can look to
7572		 * the watchdog like a stall.
7573		 */
7574		kvm_check_and_clear_guest_paused();
7575
7576		/* get the latest of pool and touched timestamps */
7577		if (pool->cpu >= 0)
7578			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7579		else
7580			touched = READ_ONCE(wq_watchdog_touched);
7581		pool_ts = READ_ONCE(pool->watchdog_ts);
7582
7583		if (time_after(pool_ts, touched))
7584			ts = pool_ts;
7585		else
7586			ts = touched;
7587
7588		/* did we stall? */
7589		if (time_after(now, ts + thresh)) {
7590			lockup_detected = true;
7591			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7592				pool->cpu_stall = true;
7593				cpu_pool_stall = true;
7594			}
7595			pr_emerg("BUG: workqueue lockup - pool");
7596			pr_cont_pool_info(pool);
7597			pr_cont(" stuck for %us!\n",
7598				jiffies_to_msecs(now - pool_ts) / 1000);
7599		}
7600
7601
7602	}
7603
7604	rcu_read_unlock();
7605
7606	if (lockup_detected)
7607		show_all_workqueues();
7608
7609	if (cpu_pool_stall)
7610		show_cpu_pools_hogs();
7611
7612	if (lockup_detected)
7613		panic_on_wq_watchdog();
7614
7615	wq_watchdog_reset_touched();
7616	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7617}
7618
7619notrace void wq_watchdog_touch(int cpu)
7620{
7621	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7622	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7623	unsigned long now = jiffies;
7624
7625	if (cpu >= 0)
7626		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7627	else
7628		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7629
7630	/* Don't unnecessarily store to global cacheline */
7631	if (time_after(now, touch_ts + thresh / 4))
7632		WRITE_ONCE(wq_watchdog_touched, jiffies);
7633}
7634
7635static void wq_watchdog_set_thresh(unsigned long thresh)
7636{
7637	wq_watchdog_thresh = 0;
7638	del_timer_sync(&wq_watchdog_timer);
7639
7640	if (thresh) {
7641		wq_watchdog_thresh = thresh;
7642		wq_watchdog_reset_touched();
7643		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7644	}
7645}
7646
7647static int wq_watchdog_param_set_thresh(const char *val,
7648					const struct kernel_param *kp)
7649{
7650	unsigned long thresh;
7651	int ret;
7652
7653	ret = kstrtoul(val, 0, &thresh);
7654	if (ret)
7655		return ret;
7656
7657	if (system_wq)
7658		wq_watchdog_set_thresh(thresh);
7659	else
7660		wq_watchdog_thresh = thresh;
7661
7662	return 0;
7663}
7664
7665static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7666	.set	= wq_watchdog_param_set_thresh,
7667	.get	= param_get_ulong,
7668};
7669
7670module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7671		0644);
7672
7673static void wq_watchdog_init(void)
7674{
7675	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7676	wq_watchdog_set_thresh(wq_watchdog_thresh);
7677}
7678
7679#else	/* CONFIG_WQ_WATCHDOG */
7680
7681static inline void wq_watchdog_init(void) { }
7682
7683#endif	/* CONFIG_WQ_WATCHDOG */
7684
7685static void bh_pool_kick_normal(struct irq_work *irq_work)
7686{
7687	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7688}
7689
7690static void bh_pool_kick_highpri(struct irq_work *irq_work)
7691{
7692	raise_softirq_irqoff(HI_SOFTIRQ);
7693}
7694
7695static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7696{
7697	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7698		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7699			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7700		return;
7701	}
7702
7703	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7704}
7705
7706static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7707{
7708	BUG_ON(init_worker_pool(pool));
7709	pool->cpu = cpu;
7710	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7711	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7712	pool->attrs->nice = nice;
7713	pool->attrs->affn_strict = true;
7714	pool->node = cpu_to_node(cpu);
7715
7716	/* alloc pool ID */
7717	mutex_lock(&wq_pool_mutex);
7718	BUG_ON(worker_pool_assign_id(pool));
7719	mutex_unlock(&wq_pool_mutex);
7720}
7721
7722/**
7723 * workqueue_init_early - early init for workqueue subsystem
7724 *
7725 * This is the first step of three-staged workqueue subsystem initialization and
7726 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7727 * up. It sets up all the data structures and system workqueues and allows early
7728 * boot code to create workqueues and queue/cancel work items. Actual work item
7729 * execution starts only after kthreads can be created and scheduled right
7730 * before early initcalls.
7731 */
7732void __init workqueue_init_early(void)
7733{
7734	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7735	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7736	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7737						       bh_pool_kick_highpri };
7738	int i, cpu;
7739
7740	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7741
7742	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7743	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7744	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7745	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7746
7747	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7748	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7749	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7750	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7751	if (!cpumask_empty(&wq_cmdline_cpumask))
7752		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7753
7754	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7755
7756	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7757
7758	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7759	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7760
7761	/*
7762	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7763	 * This allows workqueue items to be moved to HK CPUs.
7764	 */
7765	if (housekeeping_enabled(HK_TYPE_TICK))
7766		wq_power_efficient = true;
7767
7768	/* initialize WQ_AFFN_SYSTEM pods */
7769	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7770	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7771	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7772	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7773
7774	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7775
7776	pt->nr_pods = 1;
7777	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7778	pt->pod_node[0] = NUMA_NO_NODE;
7779	pt->cpu_pod[0] = 0;
7780
7781	/* initialize BH and CPU pools */
7782	for_each_possible_cpu(cpu) {
7783		struct worker_pool *pool;
7784
7785		i = 0;
7786		for_each_bh_worker_pool(pool, cpu) {
7787			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7788			pool->flags |= POOL_BH;
7789			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7790			i++;
7791		}
7792
7793		i = 0;
7794		for_each_cpu_worker_pool(pool, cpu)
7795			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7796	}
7797
7798	/* create default unbound and ordered wq attrs */
7799	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7800		struct workqueue_attrs *attrs;
7801
7802		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7803		attrs->nice = std_nice[i];
7804		unbound_std_wq_attrs[i] = attrs;
7805
7806		/*
7807		 * An ordered wq should have only one pwq as ordering is
7808		 * guaranteed by max_active which is enforced by pwqs.
7809		 */
7810		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7811		attrs->nice = std_nice[i];
7812		attrs->ordered = true;
7813		ordered_wq_attrs[i] = attrs;
7814	}
7815
7816	system_wq = alloc_workqueue("events", 0, 0);
7817	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7818	system_long_wq = alloc_workqueue("events_long", 0, 0);
7819	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7820					    WQ_MAX_ACTIVE);
7821	system_freezable_wq = alloc_workqueue("events_freezable",
7822					      WQ_FREEZABLE, 0);
7823	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7824					      WQ_POWER_EFFICIENT, 0);
7825	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7826					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7827					      0);
7828	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7829	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7830					       WQ_BH | WQ_HIGHPRI, 0);
7831	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7832	       !system_unbound_wq || !system_freezable_wq ||
7833	       !system_power_efficient_wq ||
7834	       !system_freezable_power_efficient_wq ||
7835	       !system_bh_wq || !system_bh_highpri_wq);
7836}
7837
7838static void __init wq_cpu_intensive_thresh_init(void)
7839{
7840	unsigned long thresh;
7841	unsigned long bogo;
7842
7843	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7844	BUG_ON(IS_ERR(pwq_release_worker));
7845
7846	/* if the user set it to a specific value, keep it */
7847	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7848		return;
7849
7850	/*
7851	 * The default of 10ms is derived from the fact that most modern (as of
7852	 * 2023) processors can do a lot in 10ms and that it's just below what
7853	 * most consider human-perceivable. However, the kernel also runs on a
7854	 * lot slower CPUs including microcontrollers where the threshold is way
7855	 * too low.
7856	 *
7857	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7858	 * This is by no means accurate but it doesn't have to be. The mechanism
7859	 * is still useful even when the threshold is fully scaled up. Also, as
7860	 * the reports would usually be applicable to everyone, some machines
7861	 * operating on longer thresholds won't significantly diminish their
7862	 * usefulness.
7863	 */
7864	thresh = 10 * USEC_PER_MSEC;
7865
7866	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7867	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7868	if (bogo < 4000)
7869		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7870
7871	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7872		 loops_per_jiffy, bogo, thresh);
7873
7874	wq_cpu_intensive_thresh_us = thresh;
7875}
7876
7877/**
7878 * workqueue_init - bring workqueue subsystem fully online
7879 *
7880 * This is the second step of three-staged workqueue subsystem initialization
7881 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7882 * been created and work items queued on them, but there are no kworkers
7883 * executing the work items yet. Populate the worker pools with the initial
7884 * workers and enable future kworker creations.
7885 */
7886void __init workqueue_init(void)
7887{
7888	struct workqueue_struct *wq;
7889	struct worker_pool *pool;
7890	int cpu, bkt;
7891
7892	wq_cpu_intensive_thresh_init();
7893
7894	mutex_lock(&wq_pool_mutex);
7895
7896	/*
7897	 * Per-cpu pools created earlier could be missing node hint. Fix them
7898	 * up. Also, create a rescuer for workqueues that requested it.
7899	 */
7900	for_each_possible_cpu(cpu) {
7901		for_each_bh_worker_pool(pool, cpu)
7902			pool->node = cpu_to_node(cpu);
7903		for_each_cpu_worker_pool(pool, cpu)
7904			pool->node = cpu_to_node(cpu);
7905	}
7906
7907	list_for_each_entry(wq, &workqueues, list) {
7908		WARN(init_rescuer(wq),
7909		     "workqueue: failed to create early rescuer for %s",
7910		     wq->name);
7911	}
7912
7913	mutex_unlock(&wq_pool_mutex);
7914
7915	/*
7916	 * Create the initial workers. A BH pool has one pseudo worker that
7917	 * represents the shared BH execution context and thus doesn't get
7918	 * affected by hotplug events. Create the BH pseudo workers for all
7919	 * possible CPUs here.
7920	 */
7921	for_each_possible_cpu(cpu)
7922		for_each_bh_worker_pool(pool, cpu)
7923			BUG_ON(!create_worker(pool));
7924
7925	for_each_online_cpu(cpu) {
7926		for_each_cpu_worker_pool(pool, cpu) {
7927			pool->flags &= ~POOL_DISASSOCIATED;
7928			BUG_ON(!create_worker(pool));
7929		}
7930	}
7931
7932	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7933		BUG_ON(!create_worker(pool));
7934
7935	wq_online = true;
7936	wq_watchdog_init();
7937}
7938
7939/*
7940 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7941 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7942 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7943 */
7944static void __init init_pod_type(struct wq_pod_type *pt,
7945				 bool (*cpus_share_pod)(int, int))
7946{
7947	int cur, pre, cpu, pod;
7948
7949	pt->nr_pods = 0;
7950
7951	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7952	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7953	BUG_ON(!pt->cpu_pod);
7954
7955	for_each_possible_cpu(cur) {
7956		for_each_possible_cpu(pre) {
7957			if (pre >= cur) {
7958				pt->cpu_pod[cur] = pt->nr_pods++;
7959				break;
7960			}
7961			if (cpus_share_pod(cur, pre)) {
7962				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7963				break;
7964			}
7965		}
7966	}
7967
7968	/* init the rest to match @pt->cpu_pod[] */
7969	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7970	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7971	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7972
7973	for (pod = 0; pod < pt->nr_pods; pod++)
7974		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7975
7976	for_each_possible_cpu(cpu) {
7977		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7978		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7979	}
7980}
7981
7982static bool __init cpus_dont_share(int cpu0, int cpu1)
7983{
7984	return false;
7985}
7986
7987static bool __init cpus_share_smt(int cpu0, int cpu1)
7988{
7989#ifdef CONFIG_SCHED_SMT
7990	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7991#else
7992	return false;
7993#endif
7994}
7995
7996static bool __init cpus_share_numa(int cpu0, int cpu1)
7997{
7998	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7999}
8000
8001/**
8002 * workqueue_init_topology - initialize CPU pods for unbound workqueues
8003 *
8004 * This is the third step of three-staged workqueue subsystem initialization and
8005 * invoked after SMP and topology information are fully initialized. It
8006 * initializes the unbound CPU pods accordingly.
8007 */
8008void __init workqueue_init_topology(void)
8009{
8010	struct workqueue_struct *wq;
8011	int cpu;
8012
8013	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8014	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8015	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8016	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8017
8018	wq_topo_initialized = true;
8019
8020	mutex_lock(&wq_pool_mutex);
8021
8022	/*
8023	 * Workqueues allocated earlier would have all CPUs sharing the default
8024	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8025	 * and CPU combinations to apply per-pod sharing.
8026	 */
8027	list_for_each_entry(wq, &workqueues, list) {
8028		for_each_online_cpu(cpu)
8029			unbound_wq_update_pwq(wq, cpu);
8030		if (wq->flags & WQ_UNBOUND) {
8031			mutex_lock(&wq->mutex);
8032			wq_update_node_max_active(wq, -1);
8033			mutex_unlock(&wq->mutex);
8034		}
8035	}
8036
8037	mutex_unlock(&wq_pool_mutex);
8038}
8039
8040void __warn_flushing_systemwide_wq(void)
8041{
8042	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8043	dump_stack();
8044}
8045EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8046
8047static int __init workqueue_unbound_cpus_setup(char *str)
8048{
8049	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8050		cpumask_clear(&wq_cmdline_cpumask);
8051		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8052	}
8053
8054	return 1;
8055}
8056__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002		Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010		SUSE Linux Products GmbH
  16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/interrupt.h>
  33#include <linux/signal.h>
  34#include <linux/completion.h>
  35#include <linux/workqueue.h>
  36#include <linux/slab.h>
  37#include <linux/cpu.h>
  38#include <linux/notifier.h>
  39#include <linux/kthread.h>
  40#include <linux/hardirq.h>
  41#include <linux/mempolicy.h>
  42#include <linux/freezer.h>
  43#include <linux/debug_locks.h>
  44#include <linux/lockdep.h>
  45#include <linux/idr.h>
  46#include <linux/jhash.h>
  47#include <linux/hashtable.h>
  48#include <linux/rculist.h>
  49#include <linux/nodemask.h>
  50#include <linux/moduleparam.h>
  51#include <linux/uaccess.h>
  52#include <linux/sched/isolation.h>
  53#include <linux/sched/debug.h>
  54#include <linux/nmi.h>
  55#include <linux/kvm_para.h>
  56#include <linux/delay.h>
  57#include <linux/irq_work.h>
  58
  59#include "workqueue_internal.h"
  60
  61enum worker_pool_flags {
  62	/*
  63	 * worker_pool flags
  64	 *
  65	 * A bound pool is either associated or disassociated with its CPU.
  66	 * While associated (!DISASSOCIATED), all workers are bound to the
  67	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  68	 * is in effect.
  69	 *
  70	 * While DISASSOCIATED, the cpu may be offline and all workers have
  71	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  72	 * be executing on any CPU.  The pool behaves as an unbound one.
  73	 *
  74	 * Note that DISASSOCIATED should be flipped only while holding
  75	 * wq_pool_attach_mutex to avoid changing binding state while
  76	 * worker_attach_to_pool() is in progress.
  77	 *
  78	 * As there can only be one concurrent BH execution context per CPU, a
  79	 * BH pool is per-CPU and always DISASSOCIATED.
  80	 */
  81	POOL_BH			= 1 << 0,	/* is a BH pool */
  82	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
  83	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  84	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
  85};
  86
  87enum worker_flags {
  88	/* worker flags */
  89	WORKER_DIE		= 1 << 1,	/* die die die */
  90	WORKER_IDLE		= 1 << 2,	/* is idle */
  91	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  92	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  93	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  94	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  95
  96	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  97				  WORKER_UNBOUND | WORKER_REBOUND,
  98};
  99
 100enum work_cancel_flags {
 101	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
 
 102};
 103
 104enum wq_internal_consts {
 105	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
 106
 107	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
 108	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
 109
 110	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
 111	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
 112
 113	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
 114						/* call for help after 10ms
 115						   (min two ticks) */
 116	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
 117	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 118
 119	/*
 120	 * Rescue workers are used only on emergencies and shared by
 121	 * all cpus.  Give MIN_NICE.
 122	 */
 123	RESCUER_NICE_LEVEL	= MIN_NICE,
 124	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 125
 126	WQ_NAME_LEN		= 32,
 
 127};
 128
 129/*
 130 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
 131 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
 132 * msecs_to_jiffies() can't be an initializer.
 133 */
 134#define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
 135#define BH_WORKER_RESTARTS	10
 136
 137/*
 138 * Structure fields follow one of the following exclusion rules.
 139 *
 140 * I: Modifiable by initialization/destruction paths and read-only for
 141 *    everyone else.
 142 *
 143 * P: Preemption protected.  Disabling preemption is enough and should
 144 *    only be modified and accessed from the local cpu.
 145 *
 146 * L: pool->lock protected.  Access with pool->lock held.
 147 *
 148 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
 149 *     reads.
 150 *
 151 * K: Only modified by worker while holding pool->lock. Can be safely read by
 152 *    self, while holding pool->lock or from IRQ context if %current is the
 153 *    kworker.
 154 *
 155 * S: Only modified by worker self.
 156 *
 157 * A: wq_pool_attach_mutex protected.
 158 *
 159 * PL: wq_pool_mutex protected.
 160 *
 161 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 162 *
 163 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 164 *
 165 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 166 *      RCU for reads.
 167 *
 168 * WQ: wq->mutex protected.
 169 *
 170 * WR: wq->mutex protected for writes.  RCU protected for reads.
 171 *
 172 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
 173 *     with READ_ONCE() without locking.
 174 *
 175 * MD: wq_mayday_lock protected.
 176 *
 177 * WD: Used internally by the watchdog.
 178 */
 179
 180/* struct worker is defined in workqueue_internal.h */
 181
 182struct worker_pool {
 183	raw_spinlock_t		lock;		/* the pool lock */
 184	int			cpu;		/* I: the associated cpu */
 185	int			node;		/* I: the associated node ID */
 186	int			id;		/* I: pool ID */
 187	unsigned int		flags;		/* L: flags */
 188
 189	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 190	bool			cpu_stall;	/* WD: stalled cpu bound pool */
 191
 192	/*
 193	 * The counter is incremented in a process context on the associated CPU
 194	 * w/ preemption disabled, and decremented or reset in the same context
 195	 * but w/ pool->lock held. The readers grab pool->lock and are
 196	 * guaranteed to see if the counter reached zero.
 197	 */
 198	int			nr_running;
 199
 200	struct list_head	worklist;	/* L: list of pending works */
 201
 202	int			nr_workers;	/* L: total number of workers */
 203	int			nr_idle;	/* L: currently idle workers */
 204
 205	struct list_head	idle_list;	/* L: list of idle workers */
 206	struct timer_list	idle_timer;	/* L: worker idle timeout */
 207	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
 208
 209	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
 210
 211	/* a workers is either on busy_hash or idle_list, or the manager */
 212	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 213						/* L: hash of busy workers */
 214
 215	struct worker		*manager;	/* L: purely informational */
 216	struct list_head	workers;	/* A: attached workers */
 217	struct list_head        dying_workers;  /* A: workers about to die */
 218	struct completion	*detach_completion; /* all workers detached */
 219
 220	struct ida		worker_ida;	/* worker IDs for task name */
 221
 222	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 223	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 224	int			refcnt;		/* PL: refcnt for unbound pools */
 225
 226	/*
 227	 * Destruction of pool is RCU protected to allow dereferences
 228	 * from get_work_pool().
 229	 */
 230	struct rcu_head		rcu;
 231};
 232
 233/*
 234 * Per-pool_workqueue statistics. These can be monitored using
 235 * tools/workqueue/wq_monitor.py.
 236 */
 237enum pool_workqueue_stats {
 238	PWQ_STAT_STARTED,	/* work items started execution */
 239	PWQ_STAT_COMPLETED,	/* work items completed execution */
 240	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
 241	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
 242	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
 243	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
 244	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
 245	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
 246
 247	PWQ_NR_STATS,
 248};
 249
 250/*
 251 * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
 252 * of work_struct->data are used for flags and the remaining high bits
 253 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 254 * number of flag bits.
 255 */
 256struct pool_workqueue {
 257	struct worker_pool	*pool;		/* I: the associated pool */
 258	struct workqueue_struct *wq;		/* I: the owning workqueue */
 259	int			work_color;	/* L: current color */
 260	int			flush_color;	/* L: flushing color */
 261	int			refcnt;		/* L: reference count */
 262	int			nr_in_flight[WORK_NR_COLORS];
 263						/* L: nr of in_flight works */
 264	bool			plugged;	/* L: execution suspended */
 265
 266	/*
 267	 * nr_active management and WORK_STRUCT_INACTIVE:
 268	 *
 269	 * When pwq->nr_active >= max_active, new work item is queued to
 270	 * pwq->inactive_works instead of pool->worklist and marked with
 271	 * WORK_STRUCT_INACTIVE.
 272	 *
 273	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
 274	 * nr_active and all work items in pwq->inactive_works are marked with
 275	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
 276	 * in pwq->inactive_works. Some of them are ready to run in
 277	 * pool->worklist or worker->scheduled. Those work itmes are only struct
 278	 * wq_barrier which is used for flush_work() and should not participate
 279	 * in nr_active. For non-barrier work item, it is marked with
 280	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
 281	 */
 282	int			nr_active;	/* L: nr of active works */
 283	struct list_head	inactive_works;	/* L: inactive works */
 284	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
 285	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 286	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 287
 288	u64			stats[PWQ_NR_STATS];
 289
 290	/*
 291	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
 292	 * and pwq_release_workfn() for details. pool_workqueue itself is also
 293	 * RCU protected so that the first pwq can be determined without
 294	 * grabbing wq->mutex.
 295	 */
 296	struct kthread_work	release_work;
 297	struct rcu_head		rcu;
 298} __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
 299
 300/*
 301 * Structure used to wait for workqueue flush.
 302 */
 303struct wq_flusher {
 304	struct list_head	list;		/* WQ: list of flushers */
 305	int			flush_color;	/* WQ: flush color waiting for */
 306	struct completion	done;		/* flush completion */
 307};
 308
 309struct wq_device;
 310
 311/*
 312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
 313 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
 314 * As sharing a single nr_active across multiple sockets can be very expensive,
 315 * the counting and enforcement is per NUMA node.
 316 *
 317 * The following struct is used to enforce per-node max_active. When a pwq wants
 318 * to start executing a work item, it should increment ->nr using
 319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
 320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
 321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
 322 * round-robin order.
 323 */
 324struct wq_node_nr_active {
 325	int			max;		/* per-node max_active */
 326	atomic_t		nr;		/* per-node nr_active */
 327	raw_spinlock_t		lock;		/* nests inside pool locks */
 328	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
 329};
 330
 331/*
 332 * The externally visible workqueue.  It relays the issued work items to
 333 * the appropriate worker_pool through its pool_workqueues.
 334 */
 335struct workqueue_struct {
 336	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 337	struct list_head	list;		/* PR: list of all workqueues */
 338
 339	struct mutex		mutex;		/* protects this wq */
 340	int			work_color;	/* WQ: current work color */
 341	int			flush_color;	/* WQ: current flush color */
 342	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 343	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 344	struct list_head	flusher_queue;	/* WQ: flush waiters */
 345	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 346
 347	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 348	struct worker		*rescuer;	/* MD: rescue worker */
 349
 350	int			nr_drainers;	/* WQ: drain in progress */
 351
 352	/* See alloc_workqueue() function comment for info on min/max_active */
 353	int			max_active;	/* WO: max active works */
 354	int			min_active;	/* WO: min active works */
 355	int			saved_max_active; /* WQ: saved max_active */
 356	int			saved_min_active; /* WQ: saved min_active */
 357
 358	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 359	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
 360
 361#ifdef CONFIG_SYSFS
 362	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 363#endif
 364#ifdef CONFIG_LOCKDEP
 365	char			*lock_name;
 366	struct lock_class_key	key;
 367	struct lockdep_map	lockdep_map;
 
 368#endif
 369	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 370
 371	/*
 372	 * Destruction of workqueue_struct is RCU protected to allow walking
 373	 * the workqueues list without grabbing wq_pool_mutex.
 374	 * This is used to dump all workqueues from sysrq.
 375	 */
 376	struct rcu_head		rcu;
 377
 378	/* hot fields used during command issue, aligned to cacheline */
 379	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 380	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
 381	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
 382};
 383
 384/*
 385 * Each pod type describes how CPUs should be grouped for unbound workqueues.
 386 * See the comment above workqueue_attrs->affn_scope.
 387 */
 388struct wq_pod_type {
 389	int			nr_pods;	/* number of pods */
 390	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
 391	int			*pod_node;	/* pod -> node */
 392	int			*cpu_pod;	/* cpu -> pod */
 393};
 394
 
 
 
 
 
 
 395static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
 396	[WQ_AFFN_DFL]		= "default",
 397	[WQ_AFFN_CPU]		= "cpu",
 398	[WQ_AFFN_SMT]		= "smt",
 399	[WQ_AFFN_CACHE]		= "cache",
 400	[WQ_AFFN_NUMA]		= "numa",
 401	[WQ_AFFN_SYSTEM]	= "system",
 402};
 403
 404/*
 405 * Per-cpu work items which run for longer than the following threshold are
 406 * automatically considered CPU intensive and excluded from concurrency
 407 * management to prevent them from noticeably delaying other per-cpu work items.
 408 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
 409 * The actual value is initialized in wq_cpu_intensive_thresh_init().
 410 */
 411static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
 412module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
 413#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
 414static unsigned int wq_cpu_intensive_warning_thresh = 4;
 415module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
 416#endif
 417
 418/* see the comment above the definition of WQ_POWER_EFFICIENT */
 419static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 420module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 421
 422static bool wq_online;			/* can kworkers be created yet? */
 423static bool wq_topo_initialized __read_mostly = false;
 424
 425static struct kmem_cache *pwq_cache;
 426
 427static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
 428static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
 429
 430/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
 431static struct workqueue_attrs *wq_update_pod_attrs_buf;
 432
 433static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 434static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 435static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 436/* wait for manager to go away */
 437static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
 438
 439static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 440static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 441
 
 
 
 442/* PL&A: allowable cpus for unbound wqs and work items */
 443static cpumask_var_t wq_unbound_cpumask;
 444
 445/* PL: user requested unbound cpumask via sysfs */
 446static cpumask_var_t wq_requested_unbound_cpumask;
 447
 448/* PL: isolated cpumask to be excluded from unbound cpumask */
 449static cpumask_var_t wq_isolated_cpumask;
 450
 451/* for further constrain wq_unbound_cpumask by cmdline parameter*/
 452static struct cpumask wq_cmdline_cpumask __initdata;
 453
 454/* CPU where unbound work was last round robin scheduled from this CPU */
 455static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 456
 457/*
 458 * Local execution of unbound work items is no longer guaranteed.  The
 459 * following always forces round-robin CPU selection on unbound work items
 460 * to uncover usages which depend on it.
 461 */
 462#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 463static bool wq_debug_force_rr_cpu = true;
 464#else
 465static bool wq_debug_force_rr_cpu = false;
 466#endif
 467module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 468
 469/* to raise softirq for the BH worker pools on other CPUs */
 470static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
 471				     bh_pool_irq_works);
 472
 473/* the BH worker pools */
 474static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
 475				     bh_worker_pools);
 476
 477/* the per-cpu worker pools */
 478static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
 479				     cpu_worker_pools);
 480
 481static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 482
 483/* PL: hash of all unbound pools keyed by pool->attrs */
 484static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 485
 486/* I: attributes used when instantiating standard unbound pools on demand */
 487static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 488
 489/* I: attributes used when instantiating ordered pools on demand */
 490static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 491
 492/*
 493 * Used to synchronize multiple cancel_sync attempts on the same work item. See
 494 * work_grab_pending() and __cancel_work_sync().
 495 */
 496static DECLARE_WAIT_QUEUE_HEAD(wq_cancel_waitq);
 497
 498/*
 499 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
 500 * process context while holding a pool lock. Bounce to a dedicated kthread
 501 * worker to avoid A-A deadlocks.
 502 */
 503static struct kthread_worker *pwq_release_worker __ro_after_init;
 504
 505struct workqueue_struct *system_wq __ro_after_init;
 506EXPORT_SYMBOL(system_wq);
 507struct workqueue_struct *system_highpri_wq __ro_after_init;
 508EXPORT_SYMBOL_GPL(system_highpri_wq);
 509struct workqueue_struct *system_long_wq __ro_after_init;
 510EXPORT_SYMBOL_GPL(system_long_wq);
 511struct workqueue_struct *system_unbound_wq __ro_after_init;
 512EXPORT_SYMBOL_GPL(system_unbound_wq);
 513struct workqueue_struct *system_freezable_wq __ro_after_init;
 514EXPORT_SYMBOL_GPL(system_freezable_wq);
 515struct workqueue_struct *system_power_efficient_wq __ro_after_init;
 516EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 517struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
 518EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 519struct workqueue_struct *system_bh_wq;
 520EXPORT_SYMBOL_GPL(system_bh_wq);
 521struct workqueue_struct *system_bh_highpri_wq;
 522EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
 523
 524static int worker_thread(void *__worker);
 525static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 526static void show_pwq(struct pool_workqueue *pwq);
 527static void show_one_worker_pool(struct worker_pool *pool);
 528
 529#define CREATE_TRACE_POINTS
 530#include <trace/events/workqueue.h>
 531
 532#define assert_rcu_or_pool_mutex()					\
 533	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
 534			 !lockdep_is_held(&wq_pool_mutex),		\
 535			 "RCU or wq_pool_mutex should be held")
 536
 537#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 538	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
 539			 !lockdep_is_held(&wq->mutex) &&		\
 540			 !lockdep_is_held(&wq_pool_mutex),		\
 541			 "RCU, wq->mutex or wq_pool_mutex should be held")
 542
 543#define for_each_bh_worker_pool(pool, cpu)				\
 544	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
 545	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 546	     (pool)++)
 547
 548#define for_each_cpu_worker_pool(pool, cpu)				\
 549	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 550	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 551	     (pool)++)
 552
 553/**
 554 * for_each_pool - iterate through all worker_pools in the system
 555 * @pool: iteration cursor
 556 * @pi: integer used for iteration
 557 *
 558 * This must be called either with wq_pool_mutex held or RCU read
 559 * locked.  If the pool needs to be used beyond the locking in effect, the
 560 * caller is responsible for guaranteeing that the pool stays online.
 561 *
 562 * The if/else clause exists only for the lockdep assertion and can be
 563 * ignored.
 564 */
 565#define for_each_pool(pool, pi)						\
 566	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 567		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 568		else
 569
 570/**
 571 * for_each_pool_worker - iterate through all workers of a worker_pool
 572 * @worker: iteration cursor
 573 * @pool: worker_pool to iterate workers of
 574 *
 575 * This must be called with wq_pool_attach_mutex.
 576 *
 577 * The if/else clause exists only for the lockdep assertion and can be
 578 * ignored.
 579 */
 580#define for_each_pool_worker(worker, pool)				\
 581	list_for_each_entry((worker), &(pool)->workers, node)		\
 582		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 583		else
 584
 585/**
 586 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 587 * @pwq: iteration cursor
 588 * @wq: the target workqueue
 589 *
 590 * This must be called either with wq->mutex held or RCU read locked.
 591 * If the pwq needs to be used beyond the locking in effect, the caller is
 592 * responsible for guaranteeing that the pwq stays online.
 593 *
 594 * The if/else clause exists only for the lockdep assertion and can be
 595 * ignored.
 596 */
 597#define for_each_pwq(pwq, wq)						\
 598	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
 599				 lockdep_is_held(&(wq->mutex)))
 600
 601#ifdef CONFIG_DEBUG_OBJECTS_WORK
 602
 603static const struct debug_obj_descr work_debug_descr;
 604
 605static void *work_debug_hint(void *addr)
 606{
 607	return ((struct work_struct *) addr)->func;
 608}
 609
 610static bool work_is_static_object(void *addr)
 611{
 612	struct work_struct *work = addr;
 613
 614	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 615}
 616
 617/*
 618 * fixup_init is called when:
 619 * - an active object is initialized
 620 */
 621static bool work_fixup_init(void *addr, enum debug_obj_state state)
 622{
 623	struct work_struct *work = addr;
 624
 625	switch (state) {
 626	case ODEBUG_STATE_ACTIVE:
 627		cancel_work_sync(work);
 628		debug_object_init(work, &work_debug_descr);
 629		return true;
 630	default:
 631		return false;
 632	}
 633}
 634
 635/*
 636 * fixup_free is called when:
 637 * - an active object is freed
 638 */
 639static bool work_fixup_free(void *addr, enum debug_obj_state state)
 640{
 641	struct work_struct *work = addr;
 642
 643	switch (state) {
 644	case ODEBUG_STATE_ACTIVE:
 645		cancel_work_sync(work);
 646		debug_object_free(work, &work_debug_descr);
 647		return true;
 648	default:
 649		return false;
 650	}
 651}
 652
 653static const struct debug_obj_descr work_debug_descr = {
 654	.name		= "work_struct",
 655	.debug_hint	= work_debug_hint,
 656	.is_static_object = work_is_static_object,
 657	.fixup_init	= work_fixup_init,
 658	.fixup_free	= work_fixup_free,
 659};
 660
 661static inline void debug_work_activate(struct work_struct *work)
 662{
 663	debug_object_activate(work, &work_debug_descr);
 664}
 665
 666static inline void debug_work_deactivate(struct work_struct *work)
 667{
 668	debug_object_deactivate(work, &work_debug_descr);
 669}
 670
 671void __init_work(struct work_struct *work, int onstack)
 672{
 673	if (onstack)
 674		debug_object_init_on_stack(work, &work_debug_descr);
 675	else
 676		debug_object_init(work, &work_debug_descr);
 677}
 678EXPORT_SYMBOL_GPL(__init_work);
 679
 680void destroy_work_on_stack(struct work_struct *work)
 681{
 682	debug_object_free(work, &work_debug_descr);
 683}
 684EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 685
 686void destroy_delayed_work_on_stack(struct delayed_work *work)
 687{
 688	destroy_timer_on_stack(&work->timer);
 689	debug_object_free(&work->work, &work_debug_descr);
 690}
 691EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 692
 693#else
 694static inline void debug_work_activate(struct work_struct *work) { }
 695static inline void debug_work_deactivate(struct work_struct *work) { }
 696#endif
 697
 698/**
 699 * worker_pool_assign_id - allocate ID and assign it to @pool
 700 * @pool: the pool pointer of interest
 701 *
 702 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 703 * successfully, -errno on failure.
 704 */
 705static int worker_pool_assign_id(struct worker_pool *pool)
 706{
 707	int ret;
 708
 709	lockdep_assert_held(&wq_pool_mutex);
 710
 711	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 712			GFP_KERNEL);
 713	if (ret >= 0) {
 714		pool->id = ret;
 715		return 0;
 716	}
 717	return ret;
 718}
 719
 720static struct pool_workqueue __rcu **
 721unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
 722{
 723       if (cpu >= 0)
 724               return per_cpu_ptr(wq->cpu_pwq, cpu);
 725       else
 726               return &wq->dfl_pwq;
 727}
 728
 729/* @cpu < 0 for dfl_pwq */
 730static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
 731{
 732	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
 733				     lockdep_is_held(&wq_pool_mutex) ||
 734				     lockdep_is_held(&wq->mutex));
 735}
 736
 737/**
 738 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
 739 * @wq: workqueue of interest
 740 *
 741 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
 742 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
 743 * default pwq is always mapped to the pool with the current effective cpumask.
 744 */
 745static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
 746{
 747	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
 748}
 749
 750static unsigned int work_color_to_flags(int color)
 751{
 752	return color << WORK_STRUCT_COLOR_SHIFT;
 753}
 754
 755static int get_work_color(unsigned long work_data)
 756{
 757	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
 758		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 759}
 760
 761static int work_next_color(int color)
 762{
 763	return (color + 1) % WORK_NR_COLORS;
 764}
 765
 
 
 
 
 
 766/*
 767 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 768 * contain the pointer to the queued pwq.  Once execution starts, the flag
 769 * is cleared and the high bits contain OFFQ flags and pool ID.
 770 *
 771 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
 772 * can be used to set the pwq, pool or clear work->data. These functions should
 773 * only be called while the work is owned - ie. while the PENDING bit is set.
 774 *
 775 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 776 * corresponding to a work.  Pool is available once the work has been
 777 * queued anywhere after initialization until it is sync canceled.  pwq is
 778 * available only while the work item is queued.
 779 *
 780 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 781 * canceled.  While being canceled, a work item may have its PENDING set
 782 * but stay off timer and worklist for arbitrarily long and nobody should
 783 * try to steal the PENDING bit.
 784 */
 785static inline void set_work_data(struct work_struct *work, unsigned long data)
 786{
 787	WARN_ON_ONCE(!work_pending(work));
 788	atomic_long_set(&work->data, data | work_static(work));
 789}
 790
 791static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 792			 unsigned long flags)
 793{
 794	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
 795		      WORK_STRUCT_PWQ | flags);
 796}
 797
 798static void set_work_pool_and_keep_pending(struct work_struct *work,
 799					   int pool_id, unsigned long flags)
 800{
 801	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
 802		      WORK_STRUCT_PENDING | flags);
 803}
 804
 805static void set_work_pool_and_clear_pending(struct work_struct *work,
 806					    int pool_id, unsigned long flags)
 807{
 808	/*
 809	 * The following wmb is paired with the implied mb in
 810	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 811	 * here are visible to and precede any updates by the next PENDING
 812	 * owner.
 813	 */
 814	smp_wmb();
 815	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
 816		      flags);
 817	/*
 818	 * The following mb guarantees that previous clear of a PENDING bit
 819	 * will not be reordered with any speculative LOADS or STORES from
 820	 * work->current_func, which is executed afterwards.  This possible
 821	 * reordering can lead to a missed execution on attempt to queue
 822	 * the same @work.  E.g. consider this case:
 823	 *
 824	 *   CPU#0                         CPU#1
 825	 *   ----------------------------  --------------------------------
 826	 *
 827	 * 1  STORE event_indicated
 828	 * 2  queue_work_on() {
 829	 * 3    test_and_set_bit(PENDING)
 830	 * 4 }                             set_..._and_clear_pending() {
 831	 * 5                                 set_work_data() # clear bit
 832	 * 6                                 smp_mb()
 833	 * 7                               work->current_func() {
 834	 * 8				      LOAD event_indicated
 835	 *				   }
 836	 *
 837	 * Without an explicit full barrier speculative LOAD on line 8 can
 838	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 839	 * CPU#0 observes the PENDING bit is still set and new execution of
 840	 * a @work is not queued in a hope, that CPU#1 will eventually
 841	 * finish the queued @work.  Meanwhile CPU#1 does not see
 842	 * event_indicated is set, because speculative LOAD was executed
 843	 * before actual STORE.
 844	 */
 845	smp_mb();
 846}
 847
 848static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
 849{
 850	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
 851}
 852
 853static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 854{
 855	unsigned long data = atomic_long_read(&work->data);
 856
 857	if (data & WORK_STRUCT_PWQ)
 858		return work_struct_pwq(data);
 859	else
 860		return NULL;
 861}
 862
 863/**
 864 * get_work_pool - return the worker_pool a given work was associated with
 865 * @work: the work item of interest
 866 *
 867 * Pools are created and destroyed under wq_pool_mutex, and allows read
 868 * access under RCU read lock.  As such, this function should be
 869 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 870 *
 871 * All fields of the returned pool are accessible as long as the above
 872 * mentioned locking is in effect.  If the returned pool needs to be used
 873 * beyond the critical section, the caller is responsible for ensuring the
 874 * returned pool is and stays online.
 875 *
 876 * Return: The worker_pool @work was last associated with.  %NULL if none.
 877 */
 878static struct worker_pool *get_work_pool(struct work_struct *work)
 879{
 880	unsigned long data = atomic_long_read(&work->data);
 881	int pool_id;
 882
 883	assert_rcu_or_pool_mutex();
 884
 885	if (data & WORK_STRUCT_PWQ)
 886		return work_struct_pwq(data)->pool;
 887
 888	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 889	if (pool_id == WORK_OFFQ_POOL_NONE)
 890		return NULL;
 891
 892	return idr_find(&worker_pool_idr, pool_id);
 893}
 894
 895/**
 896 * get_work_pool_id - return the worker pool ID a given work is associated with
 897 * @work: the work item of interest
 898 *
 899 * Return: The worker_pool ID @work was last associated with.
 900 * %WORK_OFFQ_POOL_NONE if none.
 901 */
 902static int get_work_pool_id(struct work_struct *work)
 903{
 904	unsigned long data = atomic_long_read(&work->data);
 905
 906	if (data & WORK_STRUCT_PWQ)
 907		return work_struct_pwq(data)->pool->id;
 908
 909	return data >> WORK_OFFQ_POOL_SHIFT;
 910}
 911
 912static void mark_work_canceling(struct work_struct *work)
 913{
 914	unsigned long pool_id = get_work_pool_id(work);
 915
 916	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 917	set_work_data(work, pool_id | WORK_STRUCT_PENDING | WORK_OFFQ_CANCELING);
 
 
 
 918}
 919
 920static bool work_is_canceling(struct work_struct *work)
 921{
 922	unsigned long data = atomic_long_read(&work->data);
 923
 924	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 925}
 926
 927/*
 928 * Policy functions.  These define the policies on how the global worker
 929 * pools are managed.  Unless noted otherwise, these functions assume that
 930 * they're being called with pool->lock held.
 931 */
 932
 933/*
 934 * Need to wake up a worker?  Called from anything but currently
 935 * running workers.
 936 *
 937 * Note that, because unbound workers never contribute to nr_running, this
 938 * function will always return %true for unbound pools as long as the
 939 * worklist isn't empty.
 940 */
 941static bool need_more_worker(struct worker_pool *pool)
 942{
 943	return !list_empty(&pool->worklist) && !pool->nr_running;
 944}
 945
 946/* Can I start working?  Called from busy but !running workers. */
 947static bool may_start_working(struct worker_pool *pool)
 948{
 949	return pool->nr_idle;
 950}
 951
 952/* Do I need to keep working?  Called from currently running workers. */
 953static bool keep_working(struct worker_pool *pool)
 954{
 955	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
 956}
 957
 958/* Do we need a new worker?  Called from manager. */
 959static bool need_to_create_worker(struct worker_pool *pool)
 960{
 961	return need_more_worker(pool) && !may_start_working(pool);
 962}
 963
 964/* Do we have too many workers and should some go away? */
 965static bool too_many_workers(struct worker_pool *pool)
 966{
 967	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 968	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 969	int nr_busy = pool->nr_workers - nr_idle;
 970
 971	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 972}
 973
 974/**
 975 * worker_set_flags - set worker flags and adjust nr_running accordingly
 976 * @worker: self
 977 * @flags: flags to set
 978 *
 979 * Set @flags in @worker->flags and adjust nr_running accordingly.
 980 */
 981static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 982{
 983	struct worker_pool *pool = worker->pool;
 984
 985	lockdep_assert_held(&pool->lock);
 986
 987	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 988	if ((flags & WORKER_NOT_RUNNING) &&
 989	    !(worker->flags & WORKER_NOT_RUNNING)) {
 990		pool->nr_running--;
 991	}
 992
 993	worker->flags |= flags;
 994}
 995
 996/**
 997 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 998 * @worker: self
 999 * @flags: flags to clear
1000 *
1001 * Clear @flags in @worker->flags and adjust nr_running accordingly.
1002 */
1003static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1004{
1005	struct worker_pool *pool = worker->pool;
1006	unsigned int oflags = worker->flags;
1007
1008	lockdep_assert_held(&pool->lock);
1009
1010	worker->flags &= ~flags;
1011
1012	/*
1013	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1014	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1015	 * of multiple flags, not a single flag.
1016	 */
1017	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1018		if (!(worker->flags & WORKER_NOT_RUNNING))
1019			pool->nr_running++;
1020}
1021
1022/* Return the first idle worker.  Called with pool->lock held. */
1023static struct worker *first_idle_worker(struct worker_pool *pool)
1024{
1025	if (unlikely(list_empty(&pool->idle_list)))
1026		return NULL;
1027
1028	return list_first_entry(&pool->idle_list, struct worker, entry);
1029}
1030
1031/**
1032 * worker_enter_idle - enter idle state
1033 * @worker: worker which is entering idle state
1034 *
1035 * @worker is entering idle state.  Update stats and idle timer if
1036 * necessary.
1037 *
1038 * LOCKING:
1039 * raw_spin_lock_irq(pool->lock).
1040 */
1041static void worker_enter_idle(struct worker *worker)
1042{
1043	struct worker_pool *pool = worker->pool;
1044
1045	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1046	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1047			 (worker->hentry.next || worker->hentry.pprev)))
1048		return;
1049
1050	/* can't use worker_set_flags(), also called from create_worker() */
1051	worker->flags |= WORKER_IDLE;
1052	pool->nr_idle++;
1053	worker->last_active = jiffies;
1054
1055	/* idle_list is LIFO */
1056	list_add(&worker->entry, &pool->idle_list);
1057
1058	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1059		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1060
1061	/* Sanity check nr_running. */
1062	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1063}
1064
1065/**
1066 * worker_leave_idle - leave idle state
1067 * @worker: worker which is leaving idle state
1068 *
1069 * @worker is leaving idle state.  Update stats.
1070 *
1071 * LOCKING:
1072 * raw_spin_lock_irq(pool->lock).
1073 */
1074static void worker_leave_idle(struct worker *worker)
1075{
1076	struct worker_pool *pool = worker->pool;
1077
1078	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1079		return;
1080	worker_clr_flags(worker, WORKER_IDLE);
1081	pool->nr_idle--;
1082	list_del_init(&worker->entry);
1083}
1084
1085/**
1086 * find_worker_executing_work - find worker which is executing a work
1087 * @pool: pool of interest
1088 * @work: work to find worker for
1089 *
1090 * Find a worker which is executing @work on @pool by searching
1091 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1092 * to match, its current execution should match the address of @work and
1093 * its work function.  This is to avoid unwanted dependency between
1094 * unrelated work executions through a work item being recycled while still
1095 * being executed.
1096 *
1097 * This is a bit tricky.  A work item may be freed once its execution
1098 * starts and nothing prevents the freed area from being recycled for
1099 * another work item.  If the same work item address ends up being reused
1100 * before the original execution finishes, workqueue will identify the
1101 * recycled work item as currently executing and make it wait until the
1102 * current execution finishes, introducing an unwanted dependency.
1103 *
1104 * This function checks the work item address and work function to avoid
1105 * false positives.  Note that this isn't complete as one may construct a
1106 * work function which can introduce dependency onto itself through a
1107 * recycled work item.  Well, if somebody wants to shoot oneself in the
1108 * foot that badly, there's only so much we can do, and if such deadlock
1109 * actually occurs, it should be easy to locate the culprit work function.
1110 *
1111 * CONTEXT:
1112 * raw_spin_lock_irq(pool->lock).
1113 *
1114 * Return:
1115 * Pointer to worker which is executing @work if found, %NULL
1116 * otherwise.
1117 */
1118static struct worker *find_worker_executing_work(struct worker_pool *pool,
1119						 struct work_struct *work)
1120{
1121	struct worker *worker;
1122
1123	hash_for_each_possible(pool->busy_hash, worker, hentry,
1124			       (unsigned long)work)
1125		if (worker->current_work == work &&
1126		    worker->current_func == work->func)
1127			return worker;
1128
1129	return NULL;
1130}
1131
1132/**
1133 * move_linked_works - move linked works to a list
1134 * @work: start of series of works to be scheduled
1135 * @head: target list to append @work to
1136 * @nextp: out parameter for nested worklist walking
1137 *
1138 * Schedule linked works starting from @work to @head. Work series to be
1139 * scheduled starts at @work and includes any consecutive work with
1140 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1141 * @nextp.
1142 *
1143 * CONTEXT:
1144 * raw_spin_lock_irq(pool->lock).
1145 */
1146static void move_linked_works(struct work_struct *work, struct list_head *head,
1147			      struct work_struct **nextp)
1148{
1149	struct work_struct *n;
1150
1151	/*
1152	 * Linked worklist will always end before the end of the list,
1153	 * use NULL for list head.
1154	 */
1155	list_for_each_entry_safe_from(work, n, NULL, entry) {
1156		list_move_tail(&work->entry, head);
1157		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1158			break;
1159	}
1160
1161	/*
1162	 * If we're already inside safe list traversal and have moved
1163	 * multiple works to the scheduled queue, the next position
1164	 * needs to be updated.
1165	 */
1166	if (nextp)
1167		*nextp = n;
1168}
1169
1170/**
1171 * assign_work - assign a work item and its linked work items to a worker
1172 * @work: work to assign
1173 * @worker: worker to assign to
1174 * @nextp: out parameter for nested worklist walking
1175 *
1176 * Assign @work and its linked work items to @worker. If @work is already being
1177 * executed by another worker in the same pool, it'll be punted there.
1178 *
1179 * If @nextp is not NULL, it's updated to point to the next work of the last
1180 * scheduled work. This allows assign_work() to be nested inside
1181 * list_for_each_entry_safe().
1182 *
1183 * Returns %true if @work was successfully assigned to @worker. %false if @work
1184 * was punted to another worker already executing it.
1185 */
1186static bool assign_work(struct work_struct *work, struct worker *worker,
1187			struct work_struct **nextp)
1188{
1189	struct worker_pool *pool = worker->pool;
1190	struct worker *collision;
1191
1192	lockdep_assert_held(&pool->lock);
1193
1194	/*
1195	 * A single work shouldn't be executed concurrently by multiple workers.
1196	 * __queue_work() ensures that @work doesn't jump to a different pool
1197	 * while still running in the previous pool. Here, we should ensure that
1198	 * @work is not executed concurrently by multiple workers from the same
1199	 * pool. Check whether anyone is already processing the work. If so,
1200	 * defer the work to the currently executing one.
1201	 */
1202	collision = find_worker_executing_work(pool, work);
1203	if (unlikely(collision)) {
1204		move_linked_works(work, &collision->scheduled, nextp);
1205		return false;
1206	}
1207
1208	move_linked_works(work, &worker->scheduled, nextp);
1209	return true;
1210}
1211
1212static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1213{
1214	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1215
1216	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1217}
1218
1219static void kick_bh_pool(struct worker_pool *pool)
1220{
1221#ifdef CONFIG_SMP
1222	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1223	if (unlikely(pool->cpu != smp_processor_id() &&
1224		     !(pool->flags & POOL_BH_DRAINING))) {
1225		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1226		return;
1227	}
1228#endif
1229	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1230		raise_softirq_irqoff(HI_SOFTIRQ);
1231	else
1232		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1233}
1234
1235/**
1236 * kick_pool - wake up an idle worker if necessary
1237 * @pool: pool to kick
1238 *
1239 * @pool may have pending work items. Wake up worker if necessary. Returns
1240 * whether a worker was woken up.
1241 */
1242static bool kick_pool(struct worker_pool *pool)
1243{
1244	struct worker *worker = first_idle_worker(pool);
1245	struct task_struct *p;
1246
1247	lockdep_assert_held(&pool->lock);
1248
1249	if (!need_more_worker(pool) || !worker)
1250		return false;
1251
1252	if (pool->flags & POOL_BH) {
1253		kick_bh_pool(pool);
1254		return true;
1255	}
1256
1257	p = worker->task;
1258
1259#ifdef CONFIG_SMP
1260	/*
1261	 * Idle @worker is about to execute @work and waking up provides an
1262	 * opportunity to migrate @worker at a lower cost by setting the task's
1263	 * wake_cpu field. Let's see if we want to move @worker to improve
1264	 * execution locality.
1265	 *
1266	 * We're waking the worker that went idle the latest and there's some
1267	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1268	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1269	 * optimization and the race window is narrow, let's leave as-is for
1270	 * now. If this becomes pronounced, we can skip over workers which are
1271	 * still on cpu when picking an idle worker.
1272	 *
1273	 * If @pool has non-strict affinity, @worker might have ended up outside
1274	 * its affinity scope. Repatriate.
1275	 */
1276	if (!pool->attrs->affn_strict &&
1277	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1278		struct work_struct *work = list_first_entry(&pool->worklist,
1279						struct work_struct, entry);
1280		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1281							  cpu_online_mask);
1282		if (wake_cpu < nr_cpu_ids) {
1283			p->wake_cpu = wake_cpu;
1284			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1285		}
1286	}
1287#endif
1288	wake_up_process(p);
1289	return true;
1290}
1291
1292#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1293
1294/*
1295 * Concurrency-managed per-cpu work items that hog CPU for longer than
1296 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1297 * which prevents them from stalling other concurrency-managed work items. If a
1298 * work function keeps triggering this mechanism, it's likely that the work item
1299 * should be using an unbound workqueue instead.
1300 *
1301 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1302 * and report them so that they can be examined and converted to use unbound
1303 * workqueues as appropriate. To avoid flooding the console, each violating work
1304 * function is tracked and reported with exponential backoff.
1305 */
1306#define WCI_MAX_ENTS 128
1307
1308struct wci_ent {
1309	work_func_t		func;
1310	atomic64_t		cnt;
1311	struct hlist_node	hash_node;
1312};
1313
1314static struct wci_ent wci_ents[WCI_MAX_ENTS];
1315static int wci_nr_ents;
1316static DEFINE_RAW_SPINLOCK(wci_lock);
1317static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1318
1319static struct wci_ent *wci_find_ent(work_func_t func)
1320{
1321	struct wci_ent *ent;
1322
1323	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1324				   (unsigned long)func) {
1325		if (ent->func == func)
1326			return ent;
1327	}
1328	return NULL;
1329}
1330
1331static void wq_cpu_intensive_report(work_func_t func)
1332{
1333	struct wci_ent *ent;
1334
1335restart:
1336	ent = wci_find_ent(func);
1337	if (ent) {
1338		u64 cnt;
1339
1340		/*
1341		 * Start reporting from the warning_thresh and back off
1342		 * exponentially.
1343		 */
1344		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1345		if (wq_cpu_intensive_warning_thresh &&
1346		    cnt >= wq_cpu_intensive_warning_thresh &&
1347		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1348			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1349					ent->func, wq_cpu_intensive_thresh_us,
1350					atomic64_read(&ent->cnt));
1351		return;
1352	}
1353
1354	/*
1355	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1356	 * is exhausted, something went really wrong and we probably made enough
1357	 * noise already.
1358	 */
1359	if (wci_nr_ents >= WCI_MAX_ENTS)
1360		return;
1361
1362	raw_spin_lock(&wci_lock);
1363
1364	if (wci_nr_ents >= WCI_MAX_ENTS) {
1365		raw_spin_unlock(&wci_lock);
1366		return;
1367	}
1368
1369	if (wci_find_ent(func)) {
1370		raw_spin_unlock(&wci_lock);
1371		goto restart;
1372	}
1373
1374	ent = &wci_ents[wci_nr_ents++];
1375	ent->func = func;
1376	atomic64_set(&ent->cnt, 0);
1377	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1378
1379	raw_spin_unlock(&wci_lock);
1380
1381	goto restart;
1382}
1383
1384#else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1385static void wq_cpu_intensive_report(work_func_t func) {}
1386#endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1387
1388/**
1389 * wq_worker_running - a worker is running again
1390 * @task: task waking up
1391 *
1392 * This function is called when a worker returns from schedule()
1393 */
1394void wq_worker_running(struct task_struct *task)
1395{
1396	struct worker *worker = kthread_data(task);
1397
1398	if (!READ_ONCE(worker->sleeping))
1399		return;
1400
1401	/*
1402	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1403	 * and the nr_running increment below, we may ruin the nr_running reset
1404	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1405	 * pool. Protect against such race.
1406	 */
1407	preempt_disable();
1408	if (!(worker->flags & WORKER_NOT_RUNNING))
1409		worker->pool->nr_running++;
1410	preempt_enable();
1411
1412	/*
1413	 * CPU intensive auto-detection cares about how long a work item hogged
1414	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1415	 */
1416	worker->current_at = worker->task->se.sum_exec_runtime;
1417
1418	WRITE_ONCE(worker->sleeping, 0);
1419}
1420
1421/**
1422 * wq_worker_sleeping - a worker is going to sleep
1423 * @task: task going to sleep
1424 *
1425 * This function is called from schedule() when a busy worker is
1426 * going to sleep.
1427 */
1428void wq_worker_sleeping(struct task_struct *task)
1429{
1430	struct worker *worker = kthread_data(task);
1431	struct worker_pool *pool;
1432
1433	/*
1434	 * Rescuers, which may not have all the fields set up like normal
1435	 * workers, also reach here, let's not access anything before
1436	 * checking NOT_RUNNING.
1437	 */
1438	if (worker->flags & WORKER_NOT_RUNNING)
1439		return;
1440
1441	pool = worker->pool;
1442
1443	/* Return if preempted before wq_worker_running() was reached */
1444	if (READ_ONCE(worker->sleeping))
1445		return;
1446
1447	WRITE_ONCE(worker->sleeping, 1);
1448	raw_spin_lock_irq(&pool->lock);
1449
1450	/*
1451	 * Recheck in case unbind_workers() preempted us. We don't
1452	 * want to decrement nr_running after the worker is unbound
1453	 * and nr_running has been reset.
1454	 */
1455	if (worker->flags & WORKER_NOT_RUNNING) {
1456		raw_spin_unlock_irq(&pool->lock);
1457		return;
1458	}
1459
1460	pool->nr_running--;
1461	if (kick_pool(pool))
1462		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1463
1464	raw_spin_unlock_irq(&pool->lock);
1465}
1466
1467/**
1468 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1469 * @task: task currently running
1470 *
1471 * Called from scheduler_tick(). We're in the IRQ context and the current
1472 * worker's fields which follow the 'K' locking rule can be accessed safely.
1473 */
1474void wq_worker_tick(struct task_struct *task)
1475{
1476	struct worker *worker = kthread_data(task);
1477	struct pool_workqueue *pwq = worker->current_pwq;
1478	struct worker_pool *pool = worker->pool;
1479
1480	if (!pwq)
1481		return;
1482
1483	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1484
1485	if (!wq_cpu_intensive_thresh_us)
1486		return;
1487
1488	/*
1489	 * If the current worker is concurrency managed and hogged the CPU for
1490	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1491	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1492	 *
1493	 * Set @worker->sleeping means that @worker is in the process of
1494	 * switching out voluntarily and won't be contributing to
1495	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1496	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1497	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1498	 * We probably want to make this prettier in the future.
1499	 */
1500	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1501	    worker->task->se.sum_exec_runtime - worker->current_at <
1502	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1503		return;
1504
1505	raw_spin_lock(&pool->lock);
1506
1507	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1508	wq_cpu_intensive_report(worker->current_func);
1509	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1510
1511	if (kick_pool(pool))
1512		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1513
1514	raw_spin_unlock(&pool->lock);
1515}
1516
1517/**
1518 * wq_worker_last_func - retrieve worker's last work function
1519 * @task: Task to retrieve last work function of.
1520 *
1521 * Determine the last function a worker executed. This is called from
1522 * the scheduler to get a worker's last known identity.
1523 *
1524 * CONTEXT:
1525 * raw_spin_lock_irq(rq->lock)
1526 *
1527 * This function is called during schedule() when a kworker is going
1528 * to sleep. It's used by psi to identify aggregation workers during
1529 * dequeuing, to allow periodic aggregation to shut-off when that
1530 * worker is the last task in the system or cgroup to go to sleep.
1531 *
1532 * As this function doesn't involve any workqueue-related locking, it
1533 * only returns stable values when called from inside the scheduler's
1534 * queuing and dequeuing paths, when @task, which must be a kworker,
1535 * is guaranteed to not be processing any works.
1536 *
1537 * Return:
1538 * The last work function %current executed as a worker, NULL if it
1539 * hasn't executed any work yet.
1540 */
1541work_func_t wq_worker_last_func(struct task_struct *task)
1542{
1543	struct worker *worker = kthread_data(task);
1544
1545	return worker->last_func;
1546}
1547
1548/**
1549 * wq_node_nr_active - Determine wq_node_nr_active to use
1550 * @wq: workqueue of interest
1551 * @node: NUMA node, can be %NUMA_NO_NODE
1552 *
1553 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1554 *
1555 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1556 *
1557 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1558 *
1559 * - Otherwise, node_nr_active[@node].
1560 */
1561static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1562						   int node)
1563{
1564	if (!(wq->flags & WQ_UNBOUND))
1565		return NULL;
1566
1567	if (node == NUMA_NO_NODE)
1568		node = nr_node_ids;
1569
1570	return wq->node_nr_active[node];
1571}
1572
1573/**
1574 * wq_update_node_max_active - Update per-node max_actives to use
1575 * @wq: workqueue to update
1576 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1577 *
1578 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1579 * distributed among nodes according to the proportions of numbers of online
1580 * cpus. The result is always between @wq->min_active and max_active.
1581 */
1582static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1583{
1584	struct cpumask *effective = unbound_effective_cpumask(wq);
1585	int min_active = READ_ONCE(wq->min_active);
1586	int max_active = READ_ONCE(wq->max_active);
1587	int total_cpus, node;
1588
1589	lockdep_assert_held(&wq->mutex);
1590
1591	if (!wq_topo_initialized)
1592		return;
1593
1594	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1595		off_cpu = -1;
1596
1597	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1598	if (off_cpu >= 0)
1599		total_cpus--;
1600
1601	/* If all CPUs of the wq get offline, use the default values */
1602	if (unlikely(!total_cpus)) {
1603		for_each_node(node)
1604			wq_node_nr_active(wq, node)->max = min_active;
1605
1606		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1607		return;
1608	}
1609
1610	for_each_node(node) {
1611		int node_cpus;
1612
1613		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1614		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1615			node_cpus--;
1616
1617		wq_node_nr_active(wq, node)->max =
1618			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1619			      min_active, max_active);
1620	}
1621
1622	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1623}
1624
1625/**
1626 * get_pwq - get an extra reference on the specified pool_workqueue
1627 * @pwq: pool_workqueue to get
1628 *
1629 * Obtain an extra reference on @pwq.  The caller should guarantee that
1630 * @pwq has positive refcnt and be holding the matching pool->lock.
1631 */
1632static void get_pwq(struct pool_workqueue *pwq)
1633{
1634	lockdep_assert_held(&pwq->pool->lock);
1635	WARN_ON_ONCE(pwq->refcnt <= 0);
1636	pwq->refcnt++;
1637}
1638
1639/**
1640 * put_pwq - put a pool_workqueue reference
1641 * @pwq: pool_workqueue to put
1642 *
1643 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1644 * destruction.  The caller should be holding the matching pool->lock.
1645 */
1646static void put_pwq(struct pool_workqueue *pwq)
1647{
1648	lockdep_assert_held(&pwq->pool->lock);
1649	if (likely(--pwq->refcnt))
1650		return;
1651	/*
1652	 * @pwq can't be released under pool->lock, bounce to a dedicated
1653	 * kthread_worker to avoid A-A deadlocks.
1654	 */
1655	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1656}
1657
1658/**
1659 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1660 * @pwq: pool_workqueue to put (can be %NULL)
1661 *
1662 * put_pwq() with locking.  This function also allows %NULL @pwq.
1663 */
1664static void put_pwq_unlocked(struct pool_workqueue *pwq)
1665{
1666	if (pwq) {
1667		/*
1668		 * As both pwqs and pools are RCU protected, the
1669		 * following lock operations are safe.
1670		 */
1671		raw_spin_lock_irq(&pwq->pool->lock);
1672		put_pwq(pwq);
1673		raw_spin_unlock_irq(&pwq->pool->lock);
1674	}
1675}
1676
1677static bool pwq_is_empty(struct pool_workqueue *pwq)
1678{
1679	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1680}
1681
1682static void __pwq_activate_work(struct pool_workqueue *pwq,
1683				struct work_struct *work)
1684{
1685	unsigned long *wdb = work_data_bits(work);
1686
1687	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1688	trace_workqueue_activate_work(work);
1689	if (list_empty(&pwq->pool->worklist))
1690		pwq->pool->watchdog_ts = jiffies;
1691	move_linked_works(work, &pwq->pool->worklist, NULL);
1692	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1693}
1694
1695/**
1696 * pwq_activate_work - Activate a work item if inactive
1697 * @pwq: pool_workqueue @work belongs to
1698 * @work: work item to activate
1699 *
1700 * Returns %true if activated. %false if already active.
1701 */
1702static bool pwq_activate_work(struct pool_workqueue *pwq,
1703			      struct work_struct *work)
1704{
1705	struct worker_pool *pool = pwq->pool;
1706	struct wq_node_nr_active *nna;
1707
1708	lockdep_assert_held(&pool->lock);
1709
1710	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1711		return false;
1712
1713	nna = wq_node_nr_active(pwq->wq, pool->node);
1714	if (nna)
1715		atomic_inc(&nna->nr);
1716
1717	pwq->nr_active++;
1718	__pwq_activate_work(pwq, work);
1719	return true;
1720}
1721
1722static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1723{
1724	int max = READ_ONCE(nna->max);
1725
1726	while (true) {
1727		int old, tmp;
1728
1729		old = atomic_read(&nna->nr);
1730		if (old >= max)
1731			return false;
1732		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1733		if (tmp == old)
1734			return true;
1735	}
1736}
1737
1738/**
1739 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1740 * @pwq: pool_workqueue of interest
1741 * @fill: max_active may have increased, try to increase concurrency level
1742 *
1743 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1744 * successfully obtained. %false otherwise.
1745 */
1746static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1747{
1748	struct workqueue_struct *wq = pwq->wq;
1749	struct worker_pool *pool = pwq->pool;
1750	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1751	bool obtained = false;
1752
1753	lockdep_assert_held(&pool->lock);
1754
1755	if (!nna) {
1756		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1757		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1758		goto out;
1759	}
1760
1761	if (unlikely(pwq->plugged))
1762		return false;
1763
1764	/*
1765	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1766	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1767	 * concurrency level. Don't jump the line.
1768	 *
1769	 * We need to ignore the pending test after max_active has increased as
1770	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1771	 * increase it. This is indicated by @fill.
1772	 */
1773	if (!list_empty(&pwq->pending_node) && likely(!fill))
1774		goto out;
1775
1776	obtained = tryinc_node_nr_active(nna);
1777	if (obtained)
1778		goto out;
1779
1780	/*
1781	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1782	 * and try again. The smp_mb() is paired with the implied memory barrier
1783	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1784	 * we see the decremented $nna->nr or they see non-empty
1785	 * $nna->pending_pwqs.
1786	 */
1787	raw_spin_lock(&nna->lock);
1788
1789	if (list_empty(&pwq->pending_node))
1790		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1791	else if (likely(!fill))
1792		goto out_unlock;
1793
1794	smp_mb();
1795
1796	obtained = tryinc_node_nr_active(nna);
1797
1798	/*
1799	 * If @fill, @pwq might have already been pending. Being spuriously
1800	 * pending in cold paths doesn't affect anything. Let's leave it be.
1801	 */
1802	if (obtained && likely(!fill))
1803		list_del_init(&pwq->pending_node);
1804
1805out_unlock:
1806	raw_spin_unlock(&nna->lock);
1807out:
1808	if (obtained)
1809		pwq->nr_active++;
1810	return obtained;
1811}
1812
1813/**
1814 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1815 * @pwq: pool_workqueue of interest
1816 * @fill: max_active may have increased, try to increase concurrency level
1817 *
1818 * Activate the first inactive work item of @pwq if available and allowed by
1819 * max_active limit.
1820 *
1821 * Returns %true if an inactive work item has been activated. %false if no
1822 * inactive work item is found or max_active limit is reached.
1823 */
1824static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1825{
1826	struct work_struct *work =
1827		list_first_entry_or_null(&pwq->inactive_works,
1828					 struct work_struct, entry);
1829
1830	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1831		__pwq_activate_work(pwq, work);
1832		return true;
1833	} else {
1834		return false;
1835	}
1836}
1837
1838/**
1839 * unplug_oldest_pwq - unplug the oldest pool_workqueue
1840 * @wq: workqueue_struct where its oldest pwq is to be unplugged
1841 *
1842 * This function should only be called for ordered workqueues where only the
1843 * oldest pwq is unplugged, the others are plugged to suspend execution to
1844 * ensure proper work item ordering::
1845 *
1846 *    dfl_pwq --------------+     [P] - plugged
1847 *                          |
1848 *                          v
1849 *    pwqs -> A -> B [P] -> C [P] (newest)
1850 *            |    |        |
1851 *            1    3        5
1852 *            |    |        |
1853 *            2    4        6
1854 *
1855 * When the oldest pwq is drained and removed, this function should be called
1856 * to unplug the next oldest one to start its work item execution. Note that
1857 * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1858 * the list is the oldest.
1859 */
1860static void unplug_oldest_pwq(struct workqueue_struct *wq)
1861{
1862	struct pool_workqueue *pwq;
1863
1864	lockdep_assert_held(&wq->mutex);
1865
1866	/* Caller should make sure that pwqs isn't empty before calling */
1867	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1868				       pwqs_node);
1869	raw_spin_lock_irq(&pwq->pool->lock);
1870	if (pwq->plugged) {
1871		pwq->plugged = false;
1872		if (pwq_activate_first_inactive(pwq, true))
1873			kick_pool(pwq->pool);
1874	}
1875	raw_spin_unlock_irq(&pwq->pool->lock);
1876}
1877
1878/**
1879 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1880 * @nna: wq_node_nr_active to activate a pending pwq for
1881 * @caller_pool: worker_pool the caller is locking
1882 *
1883 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1884 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1885 */
1886static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1887				      struct worker_pool *caller_pool)
1888{
1889	struct worker_pool *locked_pool = caller_pool;
1890	struct pool_workqueue *pwq;
1891	struct work_struct *work;
1892
1893	lockdep_assert_held(&caller_pool->lock);
1894
1895	raw_spin_lock(&nna->lock);
1896retry:
1897	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1898				       struct pool_workqueue, pending_node);
1899	if (!pwq)
1900		goto out_unlock;
1901
1902	/*
1903	 * If @pwq is for a different pool than @locked_pool, we need to lock
1904	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1905	 * / lock dance. For that, we also need to release @nna->lock as it's
1906	 * nested inside pool locks.
1907	 */
1908	if (pwq->pool != locked_pool) {
1909		raw_spin_unlock(&locked_pool->lock);
1910		locked_pool = pwq->pool;
1911		if (!raw_spin_trylock(&locked_pool->lock)) {
1912			raw_spin_unlock(&nna->lock);
1913			raw_spin_lock(&locked_pool->lock);
1914			raw_spin_lock(&nna->lock);
1915			goto retry;
1916		}
1917	}
1918
1919	/*
1920	 * $pwq may not have any inactive work items due to e.g. cancellations.
1921	 * Drop it from pending_pwqs and see if there's another one.
1922	 */
1923	work = list_first_entry_or_null(&pwq->inactive_works,
1924					struct work_struct, entry);
1925	if (!work) {
1926		list_del_init(&pwq->pending_node);
1927		goto retry;
1928	}
1929
1930	/*
1931	 * Acquire an nr_active count and activate the inactive work item. If
1932	 * $pwq still has inactive work items, rotate it to the end of the
1933	 * pending_pwqs so that we round-robin through them. This means that
1934	 * inactive work items are not activated in queueing order which is fine
1935	 * given that there has never been any ordering across different pwqs.
1936	 */
1937	if (likely(tryinc_node_nr_active(nna))) {
1938		pwq->nr_active++;
1939		__pwq_activate_work(pwq, work);
1940
1941		if (list_empty(&pwq->inactive_works))
1942			list_del_init(&pwq->pending_node);
1943		else
1944			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1945
1946		/* if activating a foreign pool, make sure it's running */
1947		if (pwq->pool != caller_pool)
1948			kick_pool(pwq->pool);
1949	}
1950
1951out_unlock:
1952	raw_spin_unlock(&nna->lock);
1953	if (locked_pool != caller_pool) {
1954		raw_spin_unlock(&locked_pool->lock);
1955		raw_spin_lock(&caller_pool->lock);
1956	}
1957}
1958
1959/**
1960 * pwq_dec_nr_active - Retire an active count
1961 * @pwq: pool_workqueue of interest
1962 *
1963 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1964 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1965 */
1966static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1967{
1968	struct worker_pool *pool = pwq->pool;
1969	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1970
1971	lockdep_assert_held(&pool->lock);
1972
1973	/*
1974	 * @pwq->nr_active should be decremented for both percpu and unbound
1975	 * workqueues.
1976	 */
1977	pwq->nr_active--;
1978
1979	/*
1980	 * For a percpu workqueue, it's simple. Just need to kick the first
1981	 * inactive work item on @pwq itself.
1982	 */
1983	if (!nna) {
1984		pwq_activate_first_inactive(pwq, false);
1985		return;
1986	}
1987
1988	/*
1989	 * If @pwq is for an unbound workqueue, it's more complicated because
1990	 * multiple pwqs and pools may be sharing the nr_active count. When a
1991	 * pwq needs to wait for an nr_active count, it puts itself on
1992	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1993	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1994	 * guarantee that either we see non-empty pending_pwqs or they see
1995	 * decremented $nna->nr.
1996	 *
1997	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1998	 * max_active gets updated. However, it is guaranteed to be equal to or
1999	 * larger than @pwq->wq->min_active which is above zero unless freezing.
2000	 * This maintains the forward progress guarantee.
2001	 */
2002	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
2003		return;
2004
2005	if (!list_empty(&nna->pending_pwqs))
2006		node_activate_pending_pwq(nna, pool);
2007}
2008
2009/**
2010 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
2011 * @pwq: pwq of interest
2012 * @work_data: work_data of work which left the queue
2013 *
2014 * A work either has completed or is removed from pending queue,
2015 * decrement nr_in_flight of its pwq and handle workqueue flushing.
2016 *
2017 * NOTE:
2018 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
2019 * and thus should be called after all other state updates for the in-flight
2020 * work item is complete.
2021 *
2022 * CONTEXT:
2023 * raw_spin_lock_irq(pool->lock).
2024 */
2025static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
2026{
2027	int color = get_work_color(work_data);
2028
2029	if (!(work_data & WORK_STRUCT_INACTIVE))
2030		pwq_dec_nr_active(pwq);
2031
2032	pwq->nr_in_flight[color]--;
2033
2034	/* is flush in progress and are we at the flushing tip? */
2035	if (likely(pwq->flush_color != color))
2036		goto out_put;
2037
2038	/* are there still in-flight works? */
2039	if (pwq->nr_in_flight[color])
2040		goto out_put;
2041
2042	/* this pwq is done, clear flush_color */
2043	pwq->flush_color = -1;
2044
2045	/*
2046	 * If this was the last pwq, wake up the first flusher.  It
2047	 * will handle the rest.
2048	 */
2049	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2050		complete(&pwq->wq->first_flusher->done);
2051out_put:
2052	put_pwq(pwq);
2053}
2054
2055/**
2056 * try_to_grab_pending - steal work item from worklist and disable irq
2057 * @work: work item to steal
2058 * @cflags: %WORK_CANCEL_ flags
2059 * @irq_flags: place to store irq state
2060 *
2061 * Try to grab PENDING bit of @work.  This function can handle @work in any
2062 * stable state - idle, on timer or on worklist.
2063 *
2064 * Return:
2065 *
2066 *  ========	================================================================
2067 *  1		if @work was pending and we successfully stole PENDING
2068 *  0		if @work was idle and we claimed PENDING
2069 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2070 *  -ENOENT	if someone else is canceling @work, this state may persist
2071 *		for arbitrarily long
2072 *  ========	================================================================
2073 *
2074 * Note:
2075 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2076 * interrupted while holding PENDING and @work off queue, irq must be
2077 * disabled on entry.  This, combined with delayed_work->timer being
2078 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2079 *
2080 * On successful return, >= 0, irq is disabled and the caller is
2081 * responsible for releasing it using local_irq_restore(*@irq_flags).
2082 *
2083 * This function is safe to call from any context including IRQ handler.
2084 */
2085static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2086			       unsigned long *irq_flags)
2087{
2088	struct worker_pool *pool;
2089	struct pool_workqueue *pwq;
2090
2091	local_irq_save(*irq_flags);
2092
2093	/* try to steal the timer if it exists */
2094	if (cflags & WORK_CANCEL_DELAYED) {
2095		struct delayed_work *dwork = to_delayed_work(work);
2096
2097		/*
2098		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2099		 * guaranteed that the timer is not queued anywhere and not
2100		 * running on the local CPU.
2101		 */
2102		if (likely(del_timer(&dwork->timer)))
2103			return 1;
2104	}
2105
2106	/* try to claim PENDING the normal way */
2107	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2108		return 0;
2109
2110	rcu_read_lock();
2111	/*
2112	 * The queueing is in progress, or it is already queued. Try to
2113	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2114	 */
2115	pool = get_work_pool(work);
2116	if (!pool)
2117		goto fail;
2118
2119	raw_spin_lock(&pool->lock);
2120	/*
2121	 * work->data is guaranteed to point to pwq only while the work
2122	 * item is queued on pwq->wq, and both updating work->data to point
2123	 * to pwq on queueing and to pool on dequeueing are done under
2124	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2125	 * points to pwq which is associated with a locked pool, the work
2126	 * item is currently queued on that pool.
2127	 */
2128	pwq = get_work_pwq(work);
2129	if (pwq && pwq->pool == pool) {
2130		unsigned long work_data;
2131
2132		debug_work_deactivate(work);
2133
2134		/*
2135		 * A cancelable inactive work item must be in the
2136		 * pwq->inactive_works since a queued barrier can't be
2137		 * canceled (see the comments in insert_wq_barrier()).
2138		 *
2139		 * An inactive work item cannot be grabbed directly because
2140		 * it might have linked barrier work items which, if left
2141		 * on the inactive_works list, will confuse pwq->nr_active
2142		 * management later on and cause stall.  Make sure the work
2143		 * item is activated before grabbing.
 
 
 
2144		 */
2145		pwq_activate_work(pwq, work);
 
2146
2147		list_del_init(&work->entry);
2148
2149		/*
2150		 * work->data points to pwq iff queued. Let's point to pool. As
2151		 * this destroys work->data needed by the next step, stash it.
2152		 */
2153		work_data = *work_data_bits(work);
2154		set_work_pool_and_keep_pending(work, pool->id, 0);
2155
2156		/* must be the last step, see the function comment */
2157		pwq_dec_nr_in_flight(pwq, work_data);
2158
2159		raw_spin_unlock(&pool->lock);
2160		rcu_read_unlock();
2161		return 1;
2162	}
2163	raw_spin_unlock(&pool->lock);
2164fail:
2165	rcu_read_unlock();
2166	local_irq_restore(*irq_flags);
2167	if (work_is_canceling(work))
2168		return -ENOENT;
2169	cpu_relax();
2170	return -EAGAIN;
2171}
2172
2173struct cwt_wait {
2174	wait_queue_entry_t	wait;
2175	struct work_struct	*work;
2176};
2177
2178static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2179{
2180	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2181
2182	if (cwait->work != key)
2183		return 0;
2184	return autoremove_wake_function(wait, mode, sync, key);
2185}
2186
2187/**
2188 * work_grab_pending - steal work item from worklist and disable irq
2189 * @work: work item to steal
2190 * @cflags: %WORK_CANCEL_ flags
2191 * @irq_flags: place to store IRQ state
2192 *
2193 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2194 * or on worklist.
2195 *
2196 * Must be called in process context. IRQ is disabled on return with IRQ state
2197 * stored in *@irq_flags. The caller is responsible for re-enabling it using
2198 * local_irq_restore().
2199 *
2200 * Returns %true if @work was pending. %false if idle.
2201 */
2202static bool work_grab_pending(struct work_struct *work, u32 cflags,
2203			      unsigned long *irq_flags)
2204{
2205	struct cwt_wait cwait;
2206	int ret;
2207
2208	might_sleep();
2209repeat:
2210	ret = try_to_grab_pending(work, cflags, irq_flags);
2211	if (likely(ret >= 0))
2212		return ret;
2213	if (ret != -ENOENT)
2214		goto repeat;
2215
2216	/*
2217	 * Someone is already canceling. Wait for it to finish. flush_work()
2218	 * doesn't work for PREEMPT_NONE because we may get woken up between
2219	 * @work's completion and the other canceling task resuming and clearing
2220	 * CANCELING - flush_work() will return false immediately as @work is no
2221	 * longer busy, try_to_grab_pending() will return -ENOENT as @work is
2222	 * still being canceled and the other canceling task won't be able to
2223	 * clear CANCELING as we're hogging the CPU.
2224	 *
2225	 * Let's wait for completion using a waitqueue. As this may lead to the
2226	 * thundering herd problem, use a custom wake function which matches
2227	 * @work along with exclusive wait and wakeup.
2228	 */
2229	init_wait(&cwait.wait);
2230	cwait.wait.func = cwt_wakefn;
2231	cwait.work = work;
2232
2233	prepare_to_wait_exclusive(&wq_cancel_waitq, &cwait.wait,
2234				  TASK_UNINTERRUPTIBLE);
2235	if (work_is_canceling(work))
2236		schedule();
2237	finish_wait(&wq_cancel_waitq, &cwait.wait);
2238
2239	goto repeat;
2240}
2241
2242/**
2243 * insert_work - insert a work into a pool
2244 * @pwq: pwq @work belongs to
2245 * @work: work to insert
2246 * @head: insertion point
2247 * @extra_flags: extra WORK_STRUCT_* flags to set
2248 *
2249 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2250 * work_struct flags.
2251 *
2252 * CONTEXT:
2253 * raw_spin_lock_irq(pool->lock).
2254 */
2255static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2256			struct list_head *head, unsigned int extra_flags)
2257{
2258	debug_work_activate(work);
2259
2260	/* record the work call stack in order to print it in KASAN reports */
2261	kasan_record_aux_stack_noalloc(work);
2262
2263	/* we own @work, set data and link */
2264	set_work_pwq(work, pwq, extra_flags);
2265	list_add_tail(&work->entry, head);
2266	get_pwq(pwq);
2267}
2268
2269/*
2270 * Test whether @work is being queued from another work executing on the
2271 * same workqueue.
2272 */
2273static bool is_chained_work(struct workqueue_struct *wq)
2274{
2275	struct worker *worker;
2276
2277	worker = current_wq_worker();
2278	/*
2279	 * Return %true iff I'm a worker executing a work item on @wq.  If
2280	 * I'm @worker, it's safe to dereference it without locking.
2281	 */
2282	return worker && worker->current_pwq->wq == wq;
2283}
2284
2285/*
2286 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2287 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2288 * avoid perturbing sensitive tasks.
2289 */
2290static int wq_select_unbound_cpu(int cpu)
2291{
2292	int new_cpu;
2293
2294	if (likely(!wq_debug_force_rr_cpu)) {
2295		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2296			return cpu;
2297	} else {
2298		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2299	}
2300
2301	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2302	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2303	if (unlikely(new_cpu >= nr_cpu_ids)) {
2304		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2305		if (unlikely(new_cpu >= nr_cpu_ids))
2306			return cpu;
2307	}
2308	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2309
2310	return new_cpu;
2311}
2312
2313static void __queue_work(int cpu, struct workqueue_struct *wq,
2314			 struct work_struct *work)
2315{
2316	struct pool_workqueue *pwq;
2317	struct worker_pool *last_pool, *pool;
2318	unsigned int work_flags;
2319	unsigned int req_cpu = cpu;
2320
2321	/*
2322	 * While a work item is PENDING && off queue, a task trying to
2323	 * steal the PENDING will busy-loop waiting for it to either get
2324	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2325	 * happen with IRQ disabled.
2326	 */
2327	lockdep_assert_irqs_disabled();
2328
2329	/*
2330	 * For a draining wq, only works from the same workqueue are
2331	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2332	 * queues a new work item to a wq after destroy_workqueue(wq).
2333	 */
2334	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2335		     WARN_ON_ONCE(!is_chained_work(wq))))
2336		return;
2337	rcu_read_lock();
2338retry:
2339	/* pwq which will be used unless @work is executing elsewhere */
2340	if (req_cpu == WORK_CPU_UNBOUND) {
2341		if (wq->flags & WQ_UNBOUND)
2342			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2343		else
2344			cpu = raw_smp_processor_id();
2345	}
2346
2347	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2348	pool = pwq->pool;
2349
2350	/*
2351	 * If @work was previously on a different pool, it might still be
2352	 * running there, in which case the work needs to be queued on that
2353	 * pool to guarantee non-reentrancy.
 
 
 
 
2354	 */
2355	last_pool = get_work_pool(work);
2356	if (last_pool && last_pool != pool) {
2357		struct worker *worker;
2358
2359		raw_spin_lock(&last_pool->lock);
2360
2361		worker = find_worker_executing_work(last_pool, work);
2362
2363		if (worker && worker->current_pwq->wq == wq) {
2364			pwq = worker->current_pwq;
2365			pool = pwq->pool;
2366			WARN_ON_ONCE(pool != last_pool);
2367		} else {
2368			/* meh... not running there, queue here */
2369			raw_spin_unlock(&last_pool->lock);
2370			raw_spin_lock(&pool->lock);
2371		}
2372	} else {
2373		raw_spin_lock(&pool->lock);
2374	}
2375
2376	/*
2377	 * pwq is determined and locked. For unbound pools, we could have raced
2378	 * with pwq release and it could already be dead. If its refcnt is zero,
2379	 * repeat pwq selection. Note that unbound pwqs never die without
2380	 * another pwq replacing it in cpu_pwq or while work items are executing
2381	 * on it, so the retrying is guaranteed to make forward-progress.
2382	 */
2383	if (unlikely(!pwq->refcnt)) {
2384		if (wq->flags & WQ_UNBOUND) {
2385			raw_spin_unlock(&pool->lock);
2386			cpu_relax();
2387			goto retry;
2388		}
2389		/* oops */
2390		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2391			  wq->name, cpu);
2392	}
2393
2394	/* pwq determined, queue */
2395	trace_workqueue_queue_work(req_cpu, pwq, work);
2396
2397	if (WARN_ON(!list_empty(&work->entry)))
2398		goto out;
2399
2400	pwq->nr_in_flight[pwq->work_color]++;
2401	work_flags = work_color_to_flags(pwq->work_color);
2402
2403	/*
2404	 * Limit the number of concurrently active work items to max_active.
2405	 * @work must also queue behind existing inactive work items to maintain
2406	 * ordering when max_active changes. See wq_adjust_max_active().
2407	 */
2408	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2409		if (list_empty(&pool->worklist))
2410			pool->watchdog_ts = jiffies;
2411
2412		trace_workqueue_activate_work(work);
2413		insert_work(pwq, work, &pool->worklist, work_flags);
2414		kick_pool(pool);
2415	} else {
2416		work_flags |= WORK_STRUCT_INACTIVE;
2417		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2418	}
2419
2420out:
2421	raw_spin_unlock(&pool->lock);
2422	rcu_read_unlock();
2423}
2424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2425/**
2426 * queue_work_on - queue work on specific cpu
2427 * @cpu: CPU number to execute work on
2428 * @wq: workqueue to use
2429 * @work: work to queue
2430 *
2431 * We queue the work to a specific CPU, the caller must ensure it
2432 * can't go away.  Callers that fail to ensure that the specified
2433 * CPU cannot go away will execute on a randomly chosen CPU.
2434 * But note well that callers specifying a CPU that never has been
2435 * online will get a splat.
2436 *
2437 * Return: %false if @work was already on a queue, %true otherwise.
2438 */
2439bool queue_work_on(int cpu, struct workqueue_struct *wq,
2440		   struct work_struct *work)
2441{
2442	bool ret = false;
2443	unsigned long irq_flags;
2444
2445	local_irq_save(irq_flags);
2446
2447	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
 
2448		__queue_work(cpu, wq, work);
2449		ret = true;
2450	}
2451
2452	local_irq_restore(irq_flags);
2453	return ret;
2454}
2455EXPORT_SYMBOL(queue_work_on);
2456
2457/**
2458 * select_numa_node_cpu - Select a CPU based on NUMA node
2459 * @node: NUMA node ID that we want to select a CPU from
2460 *
2461 * This function will attempt to find a "random" cpu available on a given
2462 * node. If there are no CPUs available on the given node it will return
2463 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2464 * available CPU if we need to schedule this work.
2465 */
2466static int select_numa_node_cpu(int node)
2467{
2468	int cpu;
2469
2470	/* Delay binding to CPU if node is not valid or online */
2471	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2472		return WORK_CPU_UNBOUND;
2473
2474	/* Use local node/cpu if we are already there */
2475	cpu = raw_smp_processor_id();
2476	if (node == cpu_to_node(cpu))
2477		return cpu;
2478
2479	/* Use "random" otherwise know as "first" online CPU of node */
2480	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2481
2482	/* If CPU is valid return that, otherwise just defer */
2483	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2484}
2485
2486/**
2487 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2488 * @node: NUMA node that we are targeting the work for
2489 * @wq: workqueue to use
2490 * @work: work to queue
2491 *
2492 * We queue the work to a "random" CPU within a given NUMA node. The basic
2493 * idea here is to provide a way to somehow associate work with a given
2494 * NUMA node.
2495 *
2496 * This function will only make a best effort attempt at getting this onto
2497 * the right NUMA node. If no node is requested or the requested node is
2498 * offline then we just fall back to standard queue_work behavior.
2499 *
2500 * Currently the "random" CPU ends up being the first available CPU in the
2501 * intersection of cpu_online_mask and the cpumask of the node, unless we
2502 * are running on the node. In that case we just use the current CPU.
2503 *
2504 * Return: %false if @work was already on a queue, %true otherwise.
2505 */
2506bool queue_work_node(int node, struct workqueue_struct *wq,
2507		     struct work_struct *work)
2508{
2509	unsigned long irq_flags;
2510	bool ret = false;
2511
2512	/*
2513	 * This current implementation is specific to unbound workqueues.
2514	 * Specifically we only return the first available CPU for a given
2515	 * node instead of cycling through individual CPUs within the node.
2516	 *
2517	 * If this is used with a per-cpu workqueue then the logic in
2518	 * workqueue_select_cpu_near would need to be updated to allow for
2519	 * some round robin type logic.
2520	 */
2521	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2522
2523	local_irq_save(irq_flags);
2524
2525	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
 
2526		int cpu = select_numa_node_cpu(node);
2527
2528		__queue_work(cpu, wq, work);
2529		ret = true;
2530	}
2531
2532	local_irq_restore(irq_flags);
2533	return ret;
2534}
2535EXPORT_SYMBOL_GPL(queue_work_node);
2536
2537void delayed_work_timer_fn(struct timer_list *t)
2538{
2539	struct delayed_work *dwork = from_timer(dwork, t, timer);
2540
2541	/* should have been called from irqsafe timer with irq already off */
2542	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2543}
2544EXPORT_SYMBOL(delayed_work_timer_fn);
2545
2546static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2547				struct delayed_work *dwork, unsigned long delay)
2548{
2549	struct timer_list *timer = &dwork->timer;
2550	struct work_struct *work = &dwork->work;
2551
2552	WARN_ON_ONCE(!wq);
2553	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2554	WARN_ON_ONCE(timer_pending(timer));
2555	WARN_ON_ONCE(!list_empty(&work->entry));
2556
2557	/*
2558	 * If @delay is 0, queue @dwork->work immediately.  This is for
2559	 * both optimization and correctness.  The earliest @timer can
2560	 * expire is on the closest next tick and delayed_work users depend
2561	 * on that there's no such delay when @delay is 0.
2562	 */
2563	if (!delay) {
2564		__queue_work(cpu, wq, &dwork->work);
2565		return;
2566	}
2567
 
2568	dwork->wq = wq;
2569	dwork->cpu = cpu;
2570	timer->expires = jiffies + delay;
2571
2572	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2573		/* If the current cpu is a housekeeping cpu, use it. */
2574		cpu = smp_processor_id();
2575		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2576			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2577		add_timer_on(timer, cpu);
2578	} else {
2579		if (likely(cpu == WORK_CPU_UNBOUND))
2580			add_timer_global(timer);
2581		else
2582			add_timer_on(timer, cpu);
2583	}
2584}
2585
2586/**
2587 * queue_delayed_work_on - queue work on specific CPU after delay
2588 * @cpu: CPU number to execute work on
2589 * @wq: workqueue to use
2590 * @dwork: work to queue
2591 * @delay: number of jiffies to wait before queueing
2592 *
 
 
 
 
 
 
2593 * Return: %false if @work was already on a queue, %true otherwise.  If
2594 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2595 * execution.
2596 */
2597bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2598			   struct delayed_work *dwork, unsigned long delay)
2599{
2600	struct work_struct *work = &dwork->work;
2601	bool ret = false;
2602	unsigned long irq_flags;
2603
2604	/* read the comment in __queue_work() */
2605	local_irq_save(irq_flags);
2606
2607	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
 
2608		__queue_delayed_work(cpu, wq, dwork, delay);
2609		ret = true;
2610	}
2611
2612	local_irq_restore(irq_flags);
2613	return ret;
2614}
2615EXPORT_SYMBOL(queue_delayed_work_on);
2616
2617/**
2618 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2619 * @cpu: CPU number to execute work on
2620 * @wq: workqueue to use
2621 * @dwork: work to queue
2622 * @delay: number of jiffies to wait before queueing
2623 *
2624 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2625 * modify @dwork's timer so that it expires after @delay.  If @delay is
2626 * zero, @work is guaranteed to be scheduled immediately regardless of its
2627 * current state.
2628 *
2629 * Return: %false if @dwork was idle and queued, %true if @dwork was
2630 * pending and its timer was modified.
2631 *
2632 * This function is safe to call from any context including IRQ handler.
2633 * See try_to_grab_pending() for details.
2634 */
2635bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2636			 struct delayed_work *dwork, unsigned long delay)
2637{
2638	unsigned long irq_flags;
2639	int ret;
2640
2641	do {
2642		ret = try_to_grab_pending(&dwork->work, WORK_CANCEL_DELAYED,
2643					  &irq_flags);
2644	} while (unlikely(ret == -EAGAIN));
2645
2646	if (likely(ret >= 0)) {
2647		__queue_delayed_work(cpu, wq, dwork, delay);
2648		local_irq_restore(irq_flags);
2649	}
2650
2651	/* -ENOENT from try_to_grab_pending() becomes %true */
2652	return ret;
2653}
2654EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2655
2656static void rcu_work_rcufn(struct rcu_head *rcu)
2657{
2658	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2659
2660	/* read the comment in __queue_work() */
2661	local_irq_disable();
2662	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2663	local_irq_enable();
2664}
2665
2666/**
2667 * queue_rcu_work - queue work after a RCU grace period
2668 * @wq: workqueue to use
2669 * @rwork: work to queue
2670 *
2671 * Return: %false if @rwork was already pending, %true otherwise.  Note
2672 * that a full RCU grace period is guaranteed only after a %true return.
2673 * While @rwork is guaranteed to be executed after a %false return, the
2674 * execution may happen before a full RCU grace period has passed.
2675 */
2676bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2677{
2678	struct work_struct *work = &rwork->work;
2679
2680	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
 
 
 
 
 
2681		rwork->wq = wq;
2682		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2683		return true;
2684	}
2685
2686	return false;
2687}
2688EXPORT_SYMBOL(queue_rcu_work);
2689
2690static struct worker *alloc_worker(int node)
2691{
2692	struct worker *worker;
2693
2694	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2695	if (worker) {
2696		INIT_LIST_HEAD(&worker->entry);
2697		INIT_LIST_HEAD(&worker->scheduled);
2698		INIT_LIST_HEAD(&worker->node);
2699		/* on creation a worker is in !idle && prep state */
2700		worker->flags = WORKER_PREP;
2701	}
2702	return worker;
2703}
2704
2705static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2706{
2707	if (pool->cpu < 0 && pool->attrs->affn_strict)
2708		return pool->attrs->__pod_cpumask;
2709	else
2710		return pool->attrs->cpumask;
2711}
2712
2713/**
2714 * worker_attach_to_pool() - attach a worker to a pool
2715 * @worker: worker to be attached
2716 * @pool: the target pool
2717 *
2718 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2719 * cpu-binding of @worker are kept coordinated with the pool across
2720 * cpu-[un]hotplugs.
2721 */
2722static void worker_attach_to_pool(struct worker *worker,
2723				  struct worker_pool *pool)
2724{
2725	mutex_lock(&wq_pool_attach_mutex);
2726
2727	/*
2728	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2729	 * across this function. See the comments above the flag definition for
2730	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2731	 */
2732	if (pool->flags & POOL_DISASSOCIATED) {
2733		worker->flags |= WORKER_UNBOUND;
2734	} else {
2735		WARN_ON_ONCE(pool->flags & POOL_BH);
2736		kthread_set_per_cpu(worker->task, pool->cpu);
2737	}
2738
2739	if (worker->rescue_wq)
2740		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2741
2742	list_add_tail(&worker->node, &pool->workers);
2743	worker->pool = pool;
2744
2745	mutex_unlock(&wq_pool_attach_mutex);
2746}
2747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2748/**
2749 * worker_detach_from_pool() - detach a worker from its pool
2750 * @worker: worker which is attached to its pool
2751 *
2752 * Undo the attaching which had been done in worker_attach_to_pool().  The
2753 * caller worker shouldn't access to the pool after detached except it has
2754 * other reference to the pool.
2755 */
2756static void worker_detach_from_pool(struct worker *worker)
2757{
2758	struct worker_pool *pool = worker->pool;
2759	struct completion *detach_completion = NULL;
2760
2761	/* there is one permanent BH worker per CPU which should never detach */
2762	WARN_ON_ONCE(pool->flags & POOL_BH);
2763
2764	mutex_lock(&wq_pool_attach_mutex);
2765
2766	kthread_set_per_cpu(worker->task, -1);
2767	list_del(&worker->node);
2768	worker->pool = NULL;
2769
2770	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2771		detach_completion = pool->detach_completion;
2772	mutex_unlock(&wq_pool_attach_mutex);
2773
2774	/* clear leftover flags without pool->lock after it is detached */
2775	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
 
 
 
 
 
 
 
 
2776
2777	if (detach_completion)
2778		complete(detach_completion);
 
 
 
 
 
 
 
 
 
2779}
2780
2781/**
2782 * create_worker - create a new workqueue worker
2783 * @pool: pool the new worker will belong to
2784 *
2785 * Create and start a new worker which is attached to @pool.
2786 *
2787 * CONTEXT:
2788 * Might sleep.  Does GFP_KERNEL allocations.
2789 *
2790 * Return:
2791 * Pointer to the newly created worker.
2792 */
2793static struct worker *create_worker(struct worker_pool *pool)
2794{
2795	struct worker *worker;
2796	int id;
2797	char id_buf[23];
2798
2799	/* ID is needed to determine kthread name */
2800	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2801	if (id < 0) {
2802		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2803			    ERR_PTR(id));
2804		return NULL;
2805	}
2806
2807	worker = alloc_worker(pool->node);
2808	if (!worker) {
2809		pr_err_once("workqueue: Failed to allocate a worker\n");
2810		goto fail;
2811	}
2812
2813	worker->id = id;
2814
2815	if (!(pool->flags & POOL_BH)) {
2816		if (pool->cpu >= 0)
2817			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2818				 pool->attrs->nice < 0  ? "H" : "");
2819		else
2820			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2821
 
2822		worker->task = kthread_create_on_node(worker_thread, worker,
2823					pool->node, "kworker/%s", id_buf);
2824		if (IS_ERR(worker->task)) {
2825			if (PTR_ERR(worker->task) == -EINTR) {
2826				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2827				       id_buf);
2828			} else {
2829				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2830					    worker->task);
2831			}
2832			goto fail;
2833		}
2834
2835		set_user_nice(worker->task, pool->attrs->nice);
2836		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2837	}
2838
2839	/* successful, attach the worker to the pool */
2840	worker_attach_to_pool(worker, pool);
2841
2842	/* start the newly created worker */
2843	raw_spin_lock_irq(&pool->lock);
2844
2845	worker->pool->nr_workers++;
2846	worker_enter_idle(worker);
2847
2848	/*
2849	 * @worker is waiting on a completion in kthread() and will trigger hung
2850	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2851	 * wake it up explicitly.
2852	 */
2853	if (worker->task)
2854		wake_up_process(worker->task);
2855
2856	raw_spin_unlock_irq(&pool->lock);
2857
2858	return worker;
2859
2860fail:
2861	ida_free(&pool->worker_ida, id);
2862	kfree(worker);
2863	return NULL;
2864}
2865
2866static void unbind_worker(struct worker *worker)
2867{
2868	lockdep_assert_held(&wq_pool_attach_mutex);
2869
2870	kthread_set_per_cpu(worker->task, -1);
2871	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2872		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2873	else
2874		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2875}
2876
2877static void wake_dying_workers(struct list_head *cull_list)
2878{
2879	struct worker *worker, *tmp;
2880
2881	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2882		list_del_init(&worker->entry);
2883		unbind_worker(worker);
2884		/*
2885		 * If the worker was somehow already running, then it had to be
2886		 * in pool->idle_list when set_worker_dying() happened or we
2887		 * wouldn't have gotten here.
2888		 *
2889		 * Thus, the worker must either have observed the WORKER_DIE
2890		 * flag, or have set its state to TASK_IDLE. Either way, the
2891		 * below will be observed by the worker and is safe to do
2892		 * outside of pool->lock.
2893		 */
2894		wake_up_process(worker->task);
2895	}
2896}
2897
2898/**
2899 * set_worker_dying - Tag a worker for destruction
2900 * @worker: worker to be destroyed
2901 * @list: transfer worker away from its pool->idle_list and into list
2902 *
2903 * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2904 * should be idle.
2905 *
2906 * CONTEXT:
2907 * raw_spin_lock_irq(pool->lock).
2908 */
2909static void set_worker_dying(struct worker *worker, struct list_head *list)
2910{
2911	struct worker_pool *pool = worker->pool;
2912
2913	lockdep_assert_held(&pool->lock);
2914	lockdep_assert_held(&wq_pool_attach_mutex);
2915
2916	/* sanity check frenzy */
2917	if (WARN_ON(worker->current_work) ||
2918	    WARN_ON(!list_empty(&worker->scheduled)) ||
2919	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2920		return;
2921
2922	pool->nr_workers--;
2923	pool->nr_idle--;
2924
2925	worker->flags |= WORKER_DIE;
2926
2927	list_move(&worker->entry, list);
2928	list_move(&worker->node, &pool->dying_workers);
 
 
2929}
2930
2931/**
2932 * idle_worker_timeout - check if some idle workers can now be deleted.
2933 * @t: The pool's idle_timer that just expired
2934 *
2935 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2936 * worker_leave_idle(), as a worker flicking between idle and active while its
2937 * pool is at the too_many_workers() tipping point would cause too much timer
2938 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2939 * it expire and re-evaluate things from there.
2940 */
2941static void idle_worker_timeout(struct timer_list *t)
2942{
2943	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2944	bool do_cull = false;
2945
2946	if (work_pending(&pool->idle_cull_work))
2947		return;
2948
2949	raw_spin_lock_irq(&pool->lock);
2950
2951	if (too_many_workers(pool)) {
2952		struct worker *worker;
2953		unsigned long expires;
2954
2955		/* idle_list is kept in LIFO order, check the last one */
2956		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2957		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2958		do_cull = !time_before(jiffies, expires);
2959
2960		if (!do_cull)
2961			mod_timer(&pool->idle_timer, expires);
2962	}
2963	raw_spin_unlock_irq(&pool->lock);
2964
2965	if (do_cull)
2966		queue_work(system_unbound_wq, &pool->idle_cull_work);
2967}
2968
2969/**
2970 * idle_cull_fn - cull workers that have been idle for too long.
2971 * @work: the pool's work for handling these idle workers
2972 *
2973 * This goes through a pool's idle workers and gets rid of those that have been
2974 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2975 *
2976 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2977 * culled, so this also resets worker affinity. This requires a sleepable
2978 * context, hence the split between timer callback and work item.
2979 */
2980static void idle_cull_fn(struct work_struct *work)
2981{
2982	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2983	LIST_HEAD(cull_list);
2984
2985	/*
2986	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2987	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2988	 * path. This is required as a previously-preempted worker could run after
2989	 * set_worker_dying() has happened but before wake_dying_workers() did.
2990	 */
2991	mutex_lock(&wq_pool_attach_mutex);
2992	raw_spin_lock_irq(&pool->lock);
2993
2994	while (too_many_workers(pool)) {
2995		struct worker *worker;
2996		unsigned long expires;
2997
2998		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2999		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
3000
3001		if (time_before(jiffies, expires)) {
3002			mod_timer(&pool->idle_timer, expires);
3003			break;
3004		}
3005
3006		set_worker_dying(worker, &cull_list);
3007	}
3008
3009	raw_spin_unlock_irq(&pool->lock);
3010	wake_dying_workers(&cull_list);
3011	mutex_unlock(&wq_pool_attach_mutex);
 
 
3012}
3013
3014static void send_mayday(struct work_struct *work)
3015{
3016	struct pool_workqueue *pwq = get_work_pwq(work);
3017	struct workqueue_struct *wq = pwq->wq;
3018
3019	lockdep_assert_held(&wq_mayday_lock);
3020
3021	if (!wq->rescuer)
3022		return;
3023
3024	/* mayday mayday mayday */
3025	if (list_empty(&pwq->mayday_node)) {
3026		/*
3027		 * If @pwq is for an unbound wq, its base ref may be put at
3028		 * any time due to an attribute change.  Pin @pwq until the
3029		 * rescuer is done with it.
3030		 */
3031		get_pwq(pwq);
3032		list_add_tail(&pwq->mayday_node, &wq->maydays);
3033		wake_up_process(wq->rescuer->task);
3034		pwq->stats[PWQ_STAT_MAYDAY]++;
3035	}
3036}
3037
3038static void pool_mayday_timeout(struct timer_list *t)
3039{
3040	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3041	struct work_struct *work;
3042
3043	raw_spin_lock_irq(&pool->lock);
3044	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3045
3046	if (need_to_create_worker(pool)) {
3047		/*
3048		 * We've been trying to create a new worker but
3049		 * haven't been successful.  We might be hitting an
3050		 * allocation deadlock.  Send distress signals to
3051		 * rescuers.
3052		 */
3053		list_for_each_entry(work, &pool->worklist, entry)
3054			send_mayday(work);
3055	}
3056
3057	raw_spin_unlock(&wq_mayday_lock);
3058	raw_spin_unlock_irq(&pool->lock);
3059
3060	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3061}
3062
3063/**
3064 * maybe_create_worker - create a new worker if necessary
3065 * @pool: pool to create a new worker for
3066 *
3067 * Create a new worker for @pool if necessary.  @pool is guaranteed to
3068 * have at least one idle worker on return from this function.  If
3069 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3070 * sent to all rescuers with works scheduled on @pool to resolve
3071 * possible allocation deadlock.
3072 *
3073 * On return, need_to_create_worker() is guaranteed to be %false and
3074 * may_start_working() %true.
3075 *
3076 * LOCKING:
3077 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3078 * multiple times.  Does GFP_KERNEL allocations.  Called only from
3079 * manager.
3080 */
3081static void maybe_create_worker(struct worker_pool *pool)
3082__releases(&pool->lock)
3083__acquires(&pool->lock)
3084{
3085restart:
3086	raw_spin_unlock_irq(&pool->lock);
3087
3088	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3089	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3090
3091	while (true) {
3092		if (create_worker(pool) || !need_to_create_worker(pool))
3093			break;
3094
3095		schedule_timeout_interruptible(CREATE_COOLDOWN);
3096
3097		if (!need_to_create_worker(pool))
3098			break;
3099	}
3100
3101	del_timer_sync(&pool->mayday_timer);
3102	raw_spin_lock_irq(&pool->lock);
3103	/*
3104	 * This is necessary even after a new worker was just successfully
3105	 * created as @pool->lock was dropped and the new worker might have
3106	 * already become busy.
3107	 */
3108	if (need_to_create_worker(pool))
3109		goto restart;
3110}
3111
3112/**
3113 * manage_workers - manage worker pool
3114 * @worker: self
3115 *
3116 * Assume the manager role and manage the worker pool @worker belongs
3117 * to.  At any given time, there can be only zero or one manager per
3118 * pool.  The exclusion is handled automatically by this function.
3119 *
3120 * The caller can safely start processing works on false return.  On
3121 * true return, it's guaranteed that need_to_create_worker() is false
3122 * and may_start_working() is true.
3123 *
3124 * CONTEXT:
3125 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3126 * multiple times.  Does GFP_KERNEL allocations.
3127 *
3128 * Return:
3129 * %false if the pool doesn't need management and the caller can safely
3130 * start processing works, %true if management function was performed and
3131 * the conditions that the caller verified before calling the function may
3132 * no longer be true.
3133 */
3134static bool manage_workers(struct worker *worker)
3135{
3136	struct worker_pool *pool = worker->pool;
3137
3138	if (pool->flags & POOL_MANAGER_ACTIVE)
3139		return false;
3140
3141	pool->flags |= POOL_MANAGER_ACTIVE;
3142	pool->manager = worker;
3143
3144	maybe_create_worker(pool);
3145
3146	pool->manager = NULL;
3147	pool->flags &= ~POOL_MANAGER_ACTIVE;
3148	rcuwait_wake_up(&manager_wait);
3149	return true;
3150}
3151
3152/**
3153 * process_one_work - process single work
3154 * @worker: self
3155 * @work: work to process
3156 *
3157 * Process @work.  This function contains all the logics necessary to
3158 * process a single work including synchronization against and
3159 * interaction with other workers on the same cpu, queueing and
3160 * flushing.  As long as context requirement is met, any worker can
3161 * call this function to process a work.
3162 *
3163 * CONTEXT:
3164 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3165 */
3166static void process_one_work(struct worker *worker, struct work_struct *work)
3167__releases(&pool->lock)
3168__acquires(&pool->lock)
3169{
3170	struct pool_workqueue *pwq = get_work_pwq(work);
3171	struct worker_pool *pool = worker->pool;
3172	unsigned long work_data;
3173	int lockdep_start_depth, rcu_start_depth;
3174	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3175#ifdef CONFIG_LOCKDEP
3176	/*
3177	 * It is permissible to free the struct work_struct from
3178	 * inside the function that is called from it, this we need to
3179	 * take into account for lockdep too.  To avoid bogus "held
3180	 * lock freed" warnings as well as problems when looking into
3181	 * work->lockdep_map, make a copy and use that here.
3182	 */
3183	struct lockdep_map lockdep_map;
3184
3185	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3186#endif
3187	/* ensure we're on the correct CPU */
3188	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3189		     raw_smp_processor_id() != pool->cpu);
3190
3191	/* claim and dequeue */
3192	debug_work_deactivate(work);
3193	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3194	worker->current_work = work;
3195	worker->current_func = work->func;
3196	worker->current_pwq = pwq;
3197	if (worker->task)
3198		worker->current_at = worker->task->se.sum_exec_runtime;
3199	work_data = *work_data_bits(work);
3200	worker->current_color = get_work_color(work_data);
3201
3202	/*
3203	 * Record wq name for cmdline and debug reporting, may get
3204	 * overridden through set_worker_desc().
3205	 */
3206	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3207
3208	list_del_init(&work->entry);
3209
3210	/*
3211	 * CPU intensive works don't participate in concurrency management.
3212	 * They're the scheduler's responsibility.  This takes @worker out
3213	 * of concurrency management and the next code block will chain
3214	 * execution of the pending work items.
3215	 */
3216	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3217		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3218
3219	/*
3220	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3221	 * since nr_running would always be >= 1 at this point. This is used to
3222	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3223	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3224	 */
3225	kick_pool(pool);
3226
3227	/*
3228	 * Record the last pool and clear PENDING which should be the last
3229	 * update to @work.  Also, do this inside @pool->lock so that
3230	 * PENDING and queued state changes happen together while IRQ is
3231	 * disabled.
3232	 */
3233	set_work_pool_and_clear_pending(work, pool->id, 0);
3234
3235	pwq->stats[PWQ_STAT_STARTED]++;
3236	raw_spin_unlock_irq(&pool->lock);
3237
3238	rcu_start_depth = rcu_preempt_depth();
3239	lockdep_start_depth = lockdep_depth(current);
3240	/* see drain_dead_softirq_workfn() */
3241	if (!bh_draining)
3242		lock_map_acquire(&pwq->wq->lockdep_map);
3243	lock_map_acquire(&lockdep_map);
3244	/*
3245	 * Strictly speaking we should mark the invariant state without holding
3246	 * any locks, that is, before these two lock_map_acquire()'s.
3247	 *
3248	 * However, that would result in:
3249	 *
3250	 *   A(W1)
3251	 *   WFC(C)
3252	 *		A(W1)
3253	 *		C(C)
3254	 *
3255	 * Which would create W1->C->W1 dependencies, even though there is no
3256	 * actual deadlock possible. There are two solutions, using a
3257	 * read-recursive acquire on the work(queue) 'locks', but this will then
3258	 * hit the lockdep limitation on recursive locks, or simply discard
3259	 * these locks.
3260	 *
3261	 * AFAICT there is no possible deadlock scenario between the
3262	 * flush_work() and complete() primitives (except for single-threaded
3263	 * workqueues), so hiding them isn't a problem.
3264	 */
3265	lockdep_invariant_state(true);
3266	trace_workqueue_execute_start(work);
3267	worker->current_func(work);
3268	/*
3269	 * While we must be careful to not use "work" after this, the trace
3270	 * point will only record its address.
3271	 */
3272	trace_workqueue_execute_end(work, worker->current_func);
3273	pwq->stats[PWQ_STAT_COMPLETED]++;
3274	lock_map_release(&lockdep_map);
3275	if (!bh_draining)
3276		lock_map_release(&pwq->wq->lockdep_map);
3277
3278	if (unlikely((worker->task && in_atomic()) ||
3279		     lockdep_depth(current) != lockdep_start_depth ||
3280		     rcu_preempt_depth() != rcu_start_depth)) {
3281		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3282		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3283		       current->comm, task_pid_nr(current), preempt_count(),
3284		       lockdep_start_depth, lockdep_depth(current),
3285		       rcu_start_depth, rcu_preempt_depth(),
3286		       worker->current_func);
3287		debug_show_held_locks(current);
3288		dump_stack();
3289	}
3290
3291	/*
3292	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3293	 * kernels, where a requeueing work item waiting for something to
3294	 * happen could deadlock with stop_machine as such work item could
3295	 * indefinitely requeue itself while all other CPUs are trapped in
3296	 * stop_machine. At the same time, report a quiescent RCU state so
3297	 * the same condition doesn't freeze RCU.
3298	 */
3299	if (worker->task)
3300		cond_resched();
3301
3302	raw_spin_lock_irq(&pool->lock);
3303
3304	/*
3305	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3306	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3307	 * wq_cpu_intensive_thresh_us. Clear it.
3308	 */
3309	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3310
3311	/* tag the worker for identification in schedule() */
3312	worker->last_func = worker->current_func;
3313
3314	/* we're done with it, release */
3315	hash_del(&worker->hentry);
3316	worker->current_work = NULL;
3317	worker->current_func = NULL;
3318	worker->current_pwq = NULL;
3319	worker->current_color = INT_MAX;
3320
3321	/* must be the last step, see the function comment */
3322	pwq_dec_nr_in_flight(pwq, work_data);
3323}
3324
3325/**
3326 * process_scheduled_works - process scheduled works
3327 * @worker: self
3328 *
3329 * Process all scheduled works.  Please note that the scheduled list
3330 * may change while processing a work, so this function repeatedly
3331 * fetches a work from the top and executes it.
3332 *
3333 * CONTEXT:
3334 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3335 * multiple times.
3336 */
3337static void process_scheduled_works(struct worker *worker)
3338{
3339	struct work_struct *work;
3340	bool first = true;
3341
3342	while ((work = list_first_entry_or_null(&worker->scheduled,
3343						struct work_struct, entry))) {
3344		if (first) {
3345			worker->pool->watchdog_ts = jiffies;
3346			first = false;
3347		}
3348		process_one_work(worker, work);
3349	}
3350}
3351
3352static void set_pf_worker(bool val)
3353{
3354	mutex_lock(&wq_pool_attach_mutex);
3355	if (val)
3356		current->flags |= PF_WQ_WORKER;
3357	else
3358		current->flags &= ~PF_WQ_WORKER;
3359	mutex_unlock(&wq_pool_attach_mutex);
3360}
3361
3362/**
3363 * worker_thread - the worker thread function
3364 * @__worker: self
3365 *
3366 * The worker thread function.  All workers belong to a worker_pool -
3367 * either a per-cpu one or dynamic unbound one.  These workers process all
3368 * work items regardless of their specific target workqueue.  The only
3369 * exception is work items which belong to workqueues with a rescuer which
3370 * will be explained in rescuer_thread().
3371 *
3372 * Return: 0
3373 */
3374static int worker_thread(void *__worker)
3375{
3376	struct worker *worker = __worker;
3377	struct worker_pool *pool = worker->pool;
3378
3379	/* tell the scheduler that this is a workqueue worker */
3380	set_pf_worker(true);
3381woke_up:
3382	raw_spin_lock_irq(&pool->lock);
3383
3384	/* am I supposed to die? */
3385	if (unlikely(worker->flags & WORKER_DIE)) {
3386		raw_spin_unlock_irq(&pool->lock);
3387		set_pf_worker(false);
3388
3389		set_task_comm(worker->task, "kworker/dying");
 
 
 
3390		ida_free(&pool->worker_ida, worker->id);
3391		worker_detach_from_pool(worker);
3392		WARN_ON_ONCE(!list_empty(&worker->entry));
3393		kfree(worker);
3394		return 0;
3395	}
3396
3397	worker_leave_idle(worker);
3398recheck:
3399	/* no more worker necessary? */
3400	if (!need_more_worker(pool))
3401		goto sleep;
3402
3403	/* do we need to manage? */
3404	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3405		goto recheck;
3406
3407	/*
3408	 * ->scheduled list can only be filled while a worker is
3409	 * preparing to process a work or actually processing it.
3410	 * Make sure nobody diddled with it while I was sleeping.
3411	 */
3412	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3413
3414	/*
3415	 * Finish PREP stage.  We're guaranteed to have at least one idle
3416	 * worker or that someone else has already assumed the manager
3417	 * role.  This is where @worker starts participating in concurrency
3418	 * management if applicable and concurrency management is restored
3419	 * after being rebound.  See rebind_workers() for details.
3420	 */
3421	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3422
3423	do {
3424		struct work_struct *work =
3425			list_first_entry(&pool->worklist,
3426					 struct work_struct, entry);
3427
3428		if (assign_work(work, worker, NULL))
3429			process_scheduled_works(worker);
3430	} while (keep_working(pool));
3431
3432	worker_set_flags(worker, WORKER_PREP);
3433sleep:
3434	/*
3435	 * pool->lock is held and there's no work to process and no need to
3436	 * manage, sleep.  Workers are woken up only while holding
3437	 * pool->lock or from local cpu, so setting the current state
3438	 * before releasing pool->lock is enough to prevent losing any
3439	 * event.
3440	 */
3441	worker_enter_idle(worker);
3442	__set_current_state(TASK_IDLE);
3443	raw_spin_unlock_irq(&pool->lock);
3444	schedule();
3445	goto woke_up;
3446}
3447
3448/**
3449 * rescuer_thread - the rescuer thread function
3450 * @__rescuer: self
3451 *
3452 * Workqueue rescuer thread function.  There's one rescuer for each
3453 * workqueue which has WQ_MEM_RECLAIM set.
3454 *
3455 * Regular work processing on a pool may block trying to create a new
3456 * worker which uses GFP_KERNEL allocation which has slight chance of
3457 * developing into deadlock if some works currently on the same queue
3458 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3459 * the problem rescuer solves.
3460 *
3461 * When such condition is possible, the pool summons rescuers of all
3462 * workqueues which have works queued on the pool and let them process
3463 * those works so that forward progress can be guaranteed.
3464 *
3465 * This should happen rarely.
3466 *
3467 * Return: 0
3468 */
3469static int rescuer_thread(void *__rescuer)
3470{
3471	struct worker *rescuer = __rescuer;
3472	struct workqueue_struct *wq = rescuer->rescue_wq;
3473	bool should_stop;
3474
3475	set_user_nice(current, RESCUER_NICE_LEVEL);
3476
3477	/*
3478	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3479	 * doesn't participate in concurrency management.
3480	 */
3481	set_pf_worker(true);
3482repeat:
3483	set_current_state(TASK_IDLE);
3484
3485	/*
3486	 * By the time the rescuer is requested to stop, the workqueue
3487	 * shouldn't have any work pending, but @wq->maydays may still have
3488	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3489	 * all the work items before the rescuer got to them.  Go through
3490	 * @wq->maydays processing before acting on should_stop so that the
3491	 * list is always empty on exit.
3492	 */
3493	should_stop = kthread_should_stop();
3494
3495	/* see whether any pwq is asking for help */
3496	raw_spin_lock_irq(&wq_mayday_lock);
3497
3498	while (!list_empty(&wq->maydays)) {
3499		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3500					struct pool_workqueue, mayday_node);
3501		struct worker_pool *pool = pwq->pool;
3502		struct work_struct *work, *n;
3503
3504		__set_current_state(TASK_RUNNING);
3505		list_del_init(&pwq->mayday_node);
3506
3507		raw_spin_unlock_irq(&wq_mayday_lock);
3508
3509		worker_attach_to_pool(rescuer, pool);
3510
3511		raw_spin_lock_irq(&pool->lock);
3512
3513		/*
3514		 * Slurp in all works issued via this workqueue and
3515		 * process'em.
3516		 */
3517		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3518		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3519			if (get_work_pwq(work) == pwq &&
3520			    assign_work(work, rescuer, &n))
3521				pwq->stats[PWQ_STAT_RESCUED]++;
3522		}
3523
3524		if (!list_empty(&rescuer->scheduled)) {
3525			process_scheduled_works(rescuer);
3526
3527			/*
3528			 * The above execution of rescued work items could
3529			 * have created more to rescue through
3530			 * pwq_activate_first_inactive() or chained
3531			 * queueing.  Let's put @pwq back on mayday list so
3532			 * that such back-to-back work items, which may be
3533			 * being used to relieve memory pressure, don't
3534			 * incur MAYDAY_INTERVAL delay inbetween.
3535			 */
3536			if (pwq->nr_active && need_to_create_worker(pool)) {
3537				raw_spin_lock(&wq_mayday_lock);
3538				/*
3539				 * Queue iff we aren't racing destruction
3540				 * and somebody else hasn't queued it already.
3541				 */
3542				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3543					get_pwq(pwq);
3544					list_add_tail(&pwq->mayday_node, &wq->maydays);
3545				}
3546				raw_spin_unlock(&wq_mayday_lock);
3547			}
3548		}
3549
3550		/*
3551		 * Put the reference grabbed by send_mayday().  @pool won't
3552		 * go away while we're still attached to it.
3553		 */
3554		put_pwq(pwq);
3555
3556		/*
3557		 * Leave this pool. Notify regular workers; otherwise, we end up
3558		 * with 0 concurrency and stalling the execution.
3559		 */
3560		kick_pool(pool);
3561
3562		raw_spin_unlock_irq(&pool->lock);
3563
3564		worker_detach_from_pool(rescuer);
3565
 
 
 
 
 
 
3566		raw_spin_lock_irq(&wq_mayday_lock);
3567	}
3568
3569	raw_spin_unlock_irq(&wq_mayday_lock);
3570
3571	if (should_stop) {
3572		__set_current_state(TASK_RUNNING);
3573		set_pf_worker(false);
3574		return 0;
3575	}
3576
3577	/* rescuers should never participate in concurrency management */
3578	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3579	schedule();
3580	goto repeat;
3581}
3582
3583static void bh_worker(struct worker *worker)
3584{
3585	struct worker_pool *pool = worker->pool;
3586	int nr_restarts = BH_WORKER_RESTARTS;
3587	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3588
3589	raw_spin_lock_irq(&pool->lock);
3590	worker_leave_idle(worker);
3591
3592	/*
3593	 * This function follows the structure of worker_thread(). See there for
3594	 * explanations on each step.
3595	 */
3596	if (!need_more_worker(pool))
3597		goto done;
3598
3599	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3600	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3601
3602	do {
3603		struct work_struct *work =
3604			list_first_entry(&pool->worklist,
3605					 struct work_struct, entry);
3606
3607		if (assign_work(work, worker, NULL))
3608			process_scheduled_works(worker);
3609	} while (keep_working(pool) &&
3610		 --nr_restarts && time_before(jiffies, end));
3611
3612	worker_set_flags(worker, WORKER_PREP);
3613done:
3614	worker_enter_idle(worker);
3615	kick_pool(pool);
3616	raw_spin_unlock_irq(&pool->lock);
3617}
3618
3619/*
3620 * TODO: Convert all tasklet users to workqueue and use softirq directly.
3621 *
3622 * This is currently called from tasklet[_hi]action() and thus is also called
3623 * whenever there are tasklets to run. Let's do an early exit if there's nothing
3624 * queued. Once conversion from tasklet is complete, the need_more_worker() test
3625 * can be dropped.
3626 *
3627 * After full conversion, we'll add worker->softirq_action, directly use the
3628 * softirq action and obtain the worker pointer from the softirq_action pointer.
3629 */
3630void workqueue_softirq_action(bool highpri)
3631{
3632	struct worker_pool *pool =
3633		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3634	if (need_more_worker(pool))
3635		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3636}
3637
3638struct wq_drain_dead_softirq_work {
3639	struct work_struct	work;
3640	struct worker_pool	*pool;
3641	struct completion	done;
3642};
3643
3644static void drain_dead_softirq_workfn(struct work_struct *work)
3645{
3646	struct wq_drain_dead_softirq_work *dead_work =
3647		container_of(work, struct wq_drain_dead_softirq_work, work);
3648	struct worker_pool *pool = dead_work->pool;
3649	bool repeat;
3650
3651	/*
3652	 * @pool's CPU is dead and we want to execute its still pending work
3653	 * items from this BH work item which is running on a different CPU. As
3654	 * its CPU is dead, @pool can't be kicked and, as work execution path
3655	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3656	 * @pool with %POOL_BH_DRAINING for the special treatments.
3657	 */
3658	raw_spin_lock_irq(&pool->lock);
3659	pool->flags |= POOL_BH_DRAINING;
3660	raw_spin_unlock_irq(&pool->lock);
3661
3662	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3663
3664	raw_spin_lock_irq(&pool->lock);
3665	pool->flags &= ~POOL_BH_DRAINING;
3666	repeat = need_more_worker(pool);
3667	raw_spin_unlock_irq(&pool->lock);
3668
3669	/*
3670	 * bh_worker() might hit consecutive execution limit and bail. If there
3671	 * still are pending work items, reschedule self and return so that we
3672	 * don't hog this CPU's BH.
3673	 */
3674	if (repeat) {
3675		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3676			queue_work(system_bh_highpri_wq, work);
3677		else
3678			queue_work(system_bh_wq, work);
3679	} else {
3680		complete(&dead_work->done);
3681	}
3682}
3683
3684/*
3685 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3686 * possible to allocate dead_work per CPU and avoid flushing. However, then we
3687 * have to worry about draining overlapping with CPU coming back online or
3688 * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3689 * on). Let's keep it simple and drain them synchronously. These are BH work
3690 * items which shouldn't be requeued on the same pool. Shouldn't take long.
3691 */
3692void workqueue_softirq_dead(unsigned int cpu)
3693{
3694	int i;
3695
3696	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3697		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3698		struct wq_drain_dead_softirq_work dead_work;
3699
3700		if (!need_more_worker(pool))
3701			continue;
3702
3703		INIT_WORK(&dead_work.work, drain_dead_softirq_workfn);
3704		dead_work.pool = pool;
3705		init_completion(&dead_work.done);
3706
3707		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3708			queue_work(system_bh_highpri_wq, &dead_work.work);
3709		else
3710			queue_work(system_bh_wq, &dead_work.work);
3711
3712		wait_for_completion(&dead_work.done);
 
3713	}
3714}
3715
3716/**
3717 * check_flush_dependency - check for flush dependency sanity
3718 * @target_wq: workqueue being flushed
3719 * @target_work: work item being flushed (NULL for workqueue flushes)
 
3720 *
3721 * %current is trying to flush the whole @target_wq or @target_work on it.
3722 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3723 * reclaiming memory or running on a workqueue which doesn't have
3724 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3725 * a deadlock.
 
3726 */
3727static void check_flush_dependency(struct workqueue_struct *target_wq,
3728				   struct work_struct *target_work)
 
3729{
3730	work_func_t target_func = target_work ? target_work->func : NULL;
3731	struct worker *worker;
3732
3733	if (target_wq->flags & WQ_MEM_RECLAIM)
3734		return;
3735
3736	worker = current_wq_worker();
 
3737
3738	WARN_ONCE(current->flags & PF_MEMALLOC,
3739		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3740		  current->pid, current->comm, target_wq->name, target_func);
3741	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3742			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3743		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3744		  worker->current_pwq->wq->name, worker->current_func,
3745		  target_wq->name, target_func);
3746}
3747
3748struct wq_barrier {
3749	struct work_struct	work;
3750	struct completion	done;
3751	struct task_struct	*task;	/* purely informational */
3752};
3753
3754static void wq_barrier_func(struct work_struct *work)
3755{
3756	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3757	complete(&barr->done);
3758}
3759
3760/**
3761 * insert_wq_barrier - insert a barrier work
3762 * @pwq: pwq to insert barrier into
3763 * @barr: wq_barrier to insert
3764 * @target: target work to attach @barr to
3765 * @worker: worker currently executing @target, NULL if @target is not executing
3766 *
3767 * @barr is linked to @target such that @barr is completed only after
3768 * @target finishes execution.  Please note that the ordering
3769 * guarantee is observed only with respect to @target and on the local
3770 * cpu.
3771 *
3772 * Currently, a queued barrier can't be canceled.  This is because
3773 * try_to_grab_pending() can't determine whether the work to be
3774 * grabbed is at the head of the queue and thus can't clear LINKED
3775 * flag of the previous work while there must be a valid next work
3776 * after a work with LINKED flag set.
3777 *
3778 * Note that when @worker is non-NULL, @target may be modified
3779 * underneath us, so we can't reliably determine pwq from @target.
3780 *
3781 * CONTEXT:
3782 * raw_spin_lock_irq(pool->lock).
3783 */
3784static void insert_wq_barrier(struct pool_workqueue *pwq,
3785			      struct wq_barrier *barr,
3786			      struct work_struct *target, struct worker *worker)
3787{
3788	static __maybe_unused struct lock_class_key bh_key, thr_key;
3789	unsigned int work_flags = 0;
3790	unsigned int work_color;
3791	struct list_head *head;
3792
3793	/*
3794	 * debugobject calls are safe here even with pool->lock locked
3795	 * as we know for sure that this will not trigger any of the
3796	 * checks and call back into the fixup functions where we
3797	 * might deadlock.
3798	 *
3799	 * BH and threaded workqueues need separate lockdep keys to avoid
3800	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3801	 * usage".
3802	 */
3803	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3804			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3805	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3806
3807	init_completion_map(&barr->done, &target->lockdep_map);
3808
3809	barr->task = current;
3810
3811	/* The barrier work item does not participate in nr_active. */
3812	work_flags |= WORK_STRUCT_INACTIVE;
3813
3814	/*
3815	 * If @target is currently being executed, schedule the
3816	 * barrier to the worker; otherwise, put it after @target.
3817	 */
3818	if (worker) {
3819		head = worker->scheduled.next;
3820		work_color = worker->current_color;
3821	} else {
3822		unsigned long *bits = work_data_bits(target);
3823
3824		head = target->entry.next;
3825		/* there can already be other linked works, inherit and set */
3826		work_flags |= *bits & WORK_STRUCT_LINKED;
3827		work_color = get_work_color(*bits);
3828		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3829	}
3830
3831	pwq->nr_in_flight[work_color]++;
3832	work_flags |= work_color_to_flags(work_color);
3833
3834	insert_work(pwq, &barr->work, head, work_flags);
3835}
3836
3837/**
3838 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3839 * @wq: workqueue being flushed
3840 * @flush_color: new flush color, < 0 for no-op
3841 * @work_color: new work color, < 0 for no-op
3842 *
3843 * Prepare pwqs for workqueue flushing.
3844 *
3845 * If @flush_color is non-negative, flush_color on all pwqs should be
3846 * -1.  If no pwq has in-flight commands at the specified color, all
3847 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3848 * has in flight commands, its pwq->flush_color is set to
3849 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3850 * wakeup logic is armed and %true is returned.
3851 *
3852 * The caller should have initialized @wq->first_flusher prior to
3853 * calling this function with non-negative @flush_color.  If
3854 * @flush_color is negative, no flush color update is done and %false
3855 * is returned.
3856 *
3857 * If @work_color is non-negative, all pwqs should have the same
3858 * work_color which is previous to @work_color and all will be
3859 * advanced to @work_color.
3860 *
3861 * CONTEXT:
3862 * mutex_lock(wq->mutex).
3863 *
3864 * Return:
3865 * %true if @flush_color >= 0 and there's something to flush.  %false
3866 * otherwise.
3867 */
3868static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3869				      int flush_color, int work_color)
3870{
3871	bool wait = false;
3872	struct pool_workqueue *pwq;
 
3873
3874	if (flush_color >= 0) {
3875		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3876		atomic_set(&wq->nr_pwqs_to_flush, 1);
3877	}
3878
 
 
 
 
 
 
 
 
3879	for_each_pwq(pwq, wq) {
3880		struct worker_pool *pool = pwq->pool;
3881
3882		raw_spin_lock_irq(&pool->lock);
 
 
 
3883
3884		if (flush_color >= 0) {
3885			WARN_ON_ONCE(pwq->flush_color != -1);
3886
3887			if (pwq->nr_in_flight[flush_color]) {
3888				pwq->flush_color = flush_color;
3889				atomic_inc(&wq->nr_pwqs_to_flush);
3890				wait = true;
3891			}
3892		}
3893
3894		if (work_color >= 0) {
3895			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3896			pwq->work_color = work_color;
3897		}
3898
3899		raw_spin_unlock_irq(&pool->lock);
3900	}
3901
 
 
 
3902	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3903		complete(&wq->first_flusher->done);
3904
3905	return wait;
3906}
3907
3908static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3909{
3910#ifdef CONFIG_LOCKDEP
 
 
 
3911	if (wq->flags & WQ_BH)
3912		local_bh_disable();
3913
3914	lock_map_acquire(&wq->lockdep_map);
3915	lock_map_release(&wq->lockdep_map);
3916
3917	if (wq->flags & WQ_BH)
3918		local_bh_enable();
3919#endif
3920}
3921
3922static void touch_work_lockdep_map(struct work_struct *work,
3923				   struct workqueue_struct *wq)
3924{
3925#ifdef CONFIG_LOCKDEP
3926	if (wq->flags & WQ_BH)
3927		local_bh_disable();
3928
3929	lock_map_acquire(&work->lockdep_map);
3930	lock_map_release(&work->lockdep_map);
3931
3932	if (wq->flags & WQ_BH)
3933		local_bh_enable();
3934#endif
3935}
3936
3937/**
3938 * __flush_workqueue - ensure that any scheduled work has run to completion.
3939 * @wq: workqueue to flush
3940 *
3941 * This function sleeps until all work items which were queued on entry
3942 * have finished execution, but it is not livelocked by new incoming ones.
3943 */
3944void __flush_workqueue(struct workqueue_struct *wq)
3945{
3946	struct wq_flusher this_flusher = {
3947		.list = LIST_HEAD_INIT(this_flusher.list),
3948		.flush_color = -1,
3949		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3950	};
3951	int next_color;
3952
3953	if (WARN_ON(!wq_online))
3954		return;
3955
3956	touch_wq_lockdep_map(wq);
3957
3958	mutex_lock(&wq->mutex);
3959
3960	/*
3961	 * Start-to-wait phase
3962	 */
3963	next_color = work_next_color(wq->work_color);
3964
3965	if (next_color != wq->flush_color) {
3966		/*
3967		 * Color space is not full.  The current work_color
3968		 * becomes our flush_color and work_color is advanced
3969		 * by one.
3970		 */
3971		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3972		this_flusher.flush_color = wq->work_color;
3973		wq->work_color = next_color;
3974
3975		if (!wq->first_flusher) {
3976			/* no flush in progress, become the first flusher */
3977			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3978
3979			wq->first_flusher = &this_flusher;
3980
3981			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3982						       wq->work_color)) {
3983				/* nothing to flush, done */
3984				wq->flush_color = next_color;
3985				wq->first_flusher = NULL;
3986				goto out_unlock;
3987			}
3988		} else {
3989			/* wait in queue */
3990			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3991			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3992			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3993		}
3994	} else {
3995		/*
3996		 * Oops, color space is full, wait on overflow queue.
3997		 * The next flush completion will assign us
3998		 * flush_color and transfer to flusher_queue.
3999		 */
4000		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
4001	}
4002
4003	check_flush_dependency(wq, NULL);
4004
4005	mutex_unlock(&wq->mutex);
4006
4007	wait_for_completion(&this_flusher.done);
4008
4009	/*
4010	 * Wake-up-and-cascade phase
4011	 *
4012	 * First flushers are responsible for cascading flushes and
4013	 * handling overflow.  Non-first flushers can simply return.
4014	 */
4015	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4016		return;
4017
4018	mutex_lock(&wq->mutex);
4019
4020	/* we might have raced, check again with mutex held */
4021	if (wq->first_flusher != &this_flusher)
4022		goto out_unlock;
4023
4024	WRITE_ONCE(wq->first_flusher, NULL);
4025
4026	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4027	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4028
4029	while (true) {
4030		struct wq_flusher *next, *tmp;
4031
4032		/* complete all the flushers sharing the current flush color */
4033		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4034			if (next->flush_color != wq->flush_color)
4035				break;
4036			list_del_init(&next->list);
4037			complete(&next->done);
4038		}
4039
4040		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4041			     wq->flush_color != work_next_color(wq->work_color));
4042
4043		/* this flush_color is finished, advance by one */
4044		wq->flush_color = work_next_color(wq->flush_color);
4045
4046		/* one color has been freed, handle overflow queue */
4047		if (!list_empty(&wq->flusher_overflow)) {
4048			/*
4049			 * Assign the same color to all overflowed
4050			 * flushers, advance work_color and append to
4051			 * flusher_queue.  This is the start-to-wait
4052			 * phase for these overflowed flushers.
4053			 */
4054			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4055				tmp->flush_color = wq->work_color;
4056
4057			wq->work_color = work_next_color(wq->work_color);
4058
4059			list_splice_tail_init(&wq->flusher_overflow,
4060					      &wq->flusher_queue);
4061			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4062		}
4063
4064		if (list_empty(&wq->flusher_queue)) {
4065			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4066			break;
4067		}
4068
4069		/*
4070		 * Need to flush more colors.  Make the next flusher
4071		 * the new first flusher and arm pwqs.
4072		 */
4073		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4074		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4075
4076		list_del_init(&next->list);
4077		wq->first_flusher = next;
4078
4079		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4080			break;
4081
4082		/*
4083		 * Meh... this color is already done, clear first
4084		 * flusher and repeat cascading.
4085		 */
4086		wq->first_flusher = NULL;
4087	}
4088
4089out_unlock:
4090	mutex_unlock(&wq->mutex);
4091}
4092EXPORT_SYMBOL(__flush_workqueue);
4093
4094/**
4095 * drain_workqueue - drain a workqueue
4096 * @wq: workqueue to drain
4097 *
4098 * Wait until the workqueue becomes empty.  While draining is in progress,
4099 * only chain queueing is allowed.  IOW, only currently pending or running
4100 * work items on @wq can queue further work items on it.  @wq is flushed
4101 * repeatedly until it becomes empty.  The number of flushing is determined
4102 * by the depth of chaining and should be relatively short.  Whine if it
4103 * takes too long.
4104 */
4105void drain_workqueue(struct workqueue_struct *wq)
4106{
4107	unsigned int flush_cnt = 0;
4108	struct pool_workqueue *pwq;
4109
4110	/*
4111	 * __queue_work() needs to test whether there are drainers, is much
4112	 * hotter than drain_workqueue() and already looks at @wq->flags.
4113	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4114	 */
4115	mutex_lock(&wq->mutex);
4116	if (!wq->nr_drainers++)
4117		wq->flags |= __WQ_DRAINING;
4118	mutex_unlock(&wq->mutex);
4119reflush:
4120	__flush_workqueue(wq);
4121
4122	mutex_lock(&wq->mutex);
4123
4124	for_each_pwq(pwq, wq) {
4125		bool drained;
4126
4127		raw_spin_lock_irq(&pwq->pool->lock);
4128		drained = pwq_is_empty(pwq);
4129		raw_spin_unlock_irq(&pwq->pool->lock);
4130
4131		if (drained)
4132			continue;
4133
4134		if (++flush_cnt == 10 ||
4135		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4136			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4137				wq->name, __func__, flush_cnt);
4138
4139		mutex_unlock(&wq->mutex);
4140		goto reflush;
4141	}
4142
4143	if (!--wq->nr_drainers)
4144		wq->flags &= ~__WQ_DRAINING;
4145	mutex_unlock(&wq->mutex);
4146}
4147EXPORT_SYMBOL_GPL(drain_workqueue);
4148
4149static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4150			     bool from_cancel)
4151{
4152	struct worker *worker = NULL;
4153	struct worker_pool *pool;
4154	struct pool_workqueue *pwq;
4155	struct workqueue_struct *wq;
4156
4157	might_sleep();
4158
4159	rcu_read_lock();
4160	pool = get_work_pool(work);
4161	if (!pool) {
4162		rcu_read_unlock();
4163		return false;
4164	}
4165
4166	raw_spin_lock_irq(&pool->lock);
4167	/* see the comment in try_to_grab_pending() with the same code */
4168	pwq = get_work_pwq(work);
4169	if (pwq) {
4170		if (unlikely(pwq->pool != pool))
4171			goto already_gone;
4172	} else {
4173		worker = find_worker_executing_work(pool, work);
4174		if (!worker)
4175			goto already_gone;
4176		pwq = worker->current_pwq;
4177	}
4178
4179	wq = pwq->wq;
4180	check_flush_dependency(wq, work);
4181
4182	insert_wq_barrier(pwq, barr, work, worker);
4183	raw_spin_unlock_irq(&pool->lock);
4184
4185	touch_work_lockdep_map(work, wq);
4186
4187	/*
4188	 * Force a lock recursion deadlock when using flush_work() inside a
4189	 * single-threaded or rescuer equipped workqueue.
4190	 *
4191	 * For single threaded workqueues the deadlock happens when the work
4192	 * is after the work issuing the flush_work(). For rescuer equipped
4193	 * workqueues the deadlock happens when the rescuer stalls, blocking
4194	 * forward progress.
4195	 */
4196	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4197		touch_wq_lockdep_map(wq);
4198
4199	rcu_read_unlock();
4200	return true;
4201already_gone:
4202	raw_spin_unlock_irq(&pool->lock);
4203	rcu_read_unlock();
4204	return false;
4205}
4206
4207static bool __flush_work(struct work_struct *work, bool from_cancel)
4208{
4209	struct wq_barrier barr;
4210
4211	if (WARN_ON(!wq_online))
4212		return false;
4213
4214	if (WARN_ON(!work->func))
4215		return false;
4216
4217	if (start_flush_work(work, &barr, from_cancel)) {
4218		wait_for_completion(&barr.done);
4219		destroy_work_on_stack(&barr.work);
4220		return true;
4221	} else {
4222		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4223	}
 
 
 
 
 
 
4224}
4225
4226/**
4227 * flush_work - wait for a work to finish executing the last queueing instance
4228 * @work: the work to flush
4229 *
4230 * Wait until @work has finished execution.  @work is guaranteed to be idle
4231 * on return if it hasn't been requeued since flush started.
4232 *
4233 * Return:
4234 * %true if flush_work() waited for the work to finish execution,
4235 * %false if it was already idle.
4236 */
4237bool flush_work(struct work_struct *work)
4238{
 
4239	return __flush_work(work, false);
4240}
4241EXPORT_SYMBOL_GPL(flush_work);
4242
4243/**
4244 * flush_delayed_work - wait for a dwork to finish executing the last queueing
4245 * @dwork: the delayed work to flush
4246 *
4247 * Delayed timer is cancelled and the pending work is queued for
4248 * immediate execution.  Like flush_work(), this function only
4249 * considers the last queueing instance of @dwork.
4250 *
4251 * Return:
4252 * %true if flush_work() waited for the work to finish execution,
4253 * %false if it was already idle.
4254 */
4255bool flush_delayed_work(struct delayed_work *dwork)
4256{
4257	local_irq_disable();
4258	if (del_timer_sync(&dwork->timer))
4259		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4260	local_irq_enable();
4261	return flush_work(&dwork->work);
4262}
4263EXPORT_SYMBOL(flush_delayed_work);
4264
4265/**
4266 * flush_rcu_work - wait for a rwork to finish executing the last queueing
4267 * @rwork: the rcu work to flush
4268 *
4269 * Return:
4270 * %true if flush_rcu_work() waited for the work to finish execution,
4271 * %false if it was already idle.
4272 */
4273bool flush_rcu_work(struct rcu_work *rwork)
4274{
4275	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4276		rcu_barrier();
4277		flush_work(&rwork->work);
4278		return true;
4279	} else {
4280		return flush_work(&rwork->work);
4281	}
4282}
4283EXPORT_SYMBOL(flush_rcu_work);
4284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4285static bool __cancel_work(struct work_struct *work, u32 cflags)
4286{
 
4287	unsigned long irq_flags;
4288	int ret;
4289
4290	do {
4291		ret = try_to_grab_pending(work, cflags, &irq_flags);
4292	} while (unlikely(ret == -EAGAIN));
4293
4294	if (unlikely(ret < 0))
4295		return false;
4296
4297	set_work_pool_and_clear_pending(work, get_work_pool_id(work), 0);
 
4298	local_irq_restore(irq_flags);
4299	return ret;
4300}
4301
4302static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4303{
4304	unsigned long irq_flags;
4305	bool ret;
4306
4307	/* claim @work and tell other tasks trying to grab @work to back off */
4308	ret = work_grab_pending(work, cflags, &irq_flags);
4309	mark_work_canceling(work);
4310	local_irq_restore(irq_flags);
 
 
4311
4312	/*
4313	 * Skip __flush_work() during early boot when we know that @work isn't
4314	 * executing. This allows canceling during early boot.
4315	 */
4316	if (wq_online)
4317		__flush_work(work, true);
4318
4319	/*
4320	 * smp_mb() at the end of set_work_pool_and_clear_pending() is paired
4321	 * with prepare_to_wait() above so that either waitqueue_active() is
4322	 * visible here or !work_is_canceling() is visible there.
4323	 */
4324	set_work_pool_and_clear_pending(work, WORK_OFFQ_POOL_NONE, 0);
4325
4326	if (waitqueue_active(&wq_cancel_waitq))
4327		__wake_up(&wq_cancel_waitq, TASK_NORMAL, 1, work);
4328
4329	return ret;
4330}
4331
4332/*
4333 * See cancel_delayed_work()
4334 */
4335bool cancel_work(struct work_struct *work)
4336{
4337	return __cancel_work(work, 0);
4338}
4339EXPORT_SYMBOL(cancel_work);
4340
4341/**
4342 * cancel_work_sync - cancel a work and wait for it to finish
4343 * @work: the work to cancel
4344 *
4345 * Cancel @work and wait for its execution to finish.  This function
4346 * can be used even if the work re-queues itself or migrates to
4347 * another workqueue.  On return from this function, @work is
4348 * guaranteed to be not pending or executing on any CPU.
 
 
 
 
 
 
 
4349 *
4350 * cancel_work_sync(&delayed_work->work) must not be used for
4351 * delayed_work's.  Use cancel_delayed_work_sync() instead.
4352 *
4353 * The caller must ensure that the workqueue on which @work was last
4354 * queued can't be destroyed before this function returns.
4355 *
4356 * Return:
4357 * %true if @work was pending, %false otherwise.
4358 */
4359bool cancel_work_sync(struct work_struct *work)
4360{
4361	return __cancel_work_sync(work, 0);
4362}
4363EXPORT_SYMBOL_GPL(cancel_work_sync);
4364
4365/**
4366 * cancel_delayed_work - cancel a delayed work
4367 * @dwork: delayed_work to cancel
4368 *
4369 * Kill off a pending delayed_work.
4370 *
4371 * Return: %true if @dwork was pending and canceled; %false if it wasn't
4372 * pending.
4373 *
4374 * Note:
4375 * The work callback function may still be running on return, unless
4376 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4377 * use cancel_delayed_work_sync() to wait on it.
4378 *
4379 * This function is safe to call from any context including IRQ handler.
4380 */
4381bool cancel_delayed_work(struct delayed_work *dwork)
4382{
4383	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4384}
4385EXPORT_SYMBOL(cancel_delayed_work);
4386
4387/**
4388 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4389 * @dwork: the delayed work cancel
4390 *
4391 * This is cancel_work_sync() for delayed works.
4392 *
4393 * Return:
4394 * %true if @dwork was pending, %false otherwise.
4395 */
4396bool cancel_delayed_work_sync(struct delayed_work *dwork)
4397{
4398	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4399}
4400EXPORT_SYMBOL(cancel_delayed_work_sync);
4401
4402/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4403 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4404 * @func: the function to call
4405 *
4406 * schedule_on_each_cpu() executes @func on each online CPU using the
4407 * system workqueue and blocks until all CPUs have completed.
4408 * schedule_on_each_cpu() is very slow.
4409 *
4410 * Return:
4411 * 0 on success, -errno on failure.
4412 */
4413int schedule_on_each_cpu(work_func_t func)
4414{
4415	int cpu;
4416	struct work_struct __percpu *works;
4417
4418	works = alloc_percpu(struct work_struct);
4419	if (!works)
4420		return -ENOMEM;
4421
4422	cpus_read_lock();
4423
4424	for_each_online_cpu(cpu) {
4425		struct work_struct *work = per_cpu_ptr(works, cpu);
4426
4427		INIT_WORK(work, func);
4428		schedule_work_on(cpu, work);
4429	}
4430
4431	for_each_online_cpu(cpu)
4432		flush_work(per_cpu_ptr(works, cpu));
4433
4434	cpus_read_unlock();
4435	free_percpu(works);
4436	return 0;
4437}
4438
4439/**
4440 * execute_in_process_context - reliably execute the routine with user context
4441 * @fn:		the function to execute
4442 * @ew:		guaranteed storage for the execute work structure (must
4443 *		be available when the work executes)
4444 *
4445 * Executes the function immediately if process context is available,
4446 * otherwise schedules the function for delayed execution.
4447 *
4448 * Return:	0 - function was executed
4449 *		1 - function was scheduled for execution
4450 */
4451int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4452{
4453	if (!in_interrupt()) {
4454		fn(&ew->work);
4455		return 0;
4456	}
4457
4458	INIT_WORK(&ew->work, fn);
4459	schedule_work(&ew->work);
4460
4461	return 1;
4462}
4463EXPORT_SYMBOL_GPL(execute_in_process_context);
4464
4465/**
4466 * free_workqueue_attrs - free a workqueue_attrs
4467 * @attrs: workqueue_attrs to free
4468 *
4469 * Undo alloc_workqueue_attrs().
4470 */
4471void free_workqueue_attrs(struct workqueue_attrs *attrs)
4472{
4473	if (attrs) {
4474		free_cpumask_var(attrs->cpumask);
4475		free_cpumask_var(attrs->__pod_cpumask);
4476		kfree(attrs);
4477	}
4478}
4479
4480/**
4481 * alloc_workqueue_attrs - allocate a workqueue_attrs
4482 *
4483 * Allocate a new workqueue_attrs, initialize with default settings and
4484 * return it.
4485 *
4486 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4487 */
4488struct workqueue_attrs *alloc_workqueue_attrs(void)
4489{
4490	struct workqueue_attrs *attrs;
4491
4492	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4493	if (!attrs)
4494		goto fail;
4495	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4496		goto fail;
4497	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4498		goto fail;
4499
4500	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4501	attrs->affn_scope = WQ_AFFN_DFL;
4502	return attrs;
4503fail:
4504	free_workqueue_attrs(attrs);
4505	return NULL;
4506}
4507
4508static void copy_workqueue_attrs(struct workqueue_attrs *to,
4509				 const struct workqueue_attrs *from)
4510{
4511	to->nice = from->nice;
4512	cpumask_copy(to->cpumask, from->cpumask);
4513	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4514	to->affn_strict = from->affn_strict;
4515
4516	/*
4517	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4518	 * fields as copying is used for both pool and wq attrs. Instead,
4519	 * get_unbound_pool() explicitly clears the fields.
4520	 */
4521	to->affn_scope = from->affn_scope;
4522	to->ordered = from->ordered;
4523}
4524
4525/*
4526 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4527 * comments in 'struct workqueue_attrs' definition.
4528 */
4529static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4530{
4531	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4532	attrs->ordered = false;
 
 
4533}
4534
4535/* hash value of the content of @attr */
4536static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4537{
4538	u32 hash = 0;
4539
4540	hash = jhash_1word(attrs->nice, hash);
4541	hash = jhash(cpumask_bits(attrs->cpumask),
4542		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4543	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4544		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4545	hash = jhash_1word(attrs->affn_strict, hash);
 
 
4546	return hash;
4547}
4548
4549/* content equality test */
4550static bool wqattrs_equal(const struct workqueue_attrs *a,
4551			  const struct workqueue_attrs *b)
4552{
4553	if (a->nice != b->nice)
4554		return false;
4555	if (!cpumask_equal(a->cpumask, b->cpumask))
4556		return false;
4557	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4558		return false;
4559	if (a->affn_strict != b->affn_strict)
4560		return false;
4561	return true;
4562}
4563
4564/* Update @attrs with actually available CPUs */
4565static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4566				      const cpumask_t *unbound_cpumask)
4567{
4568	/*
4569	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4570	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4571	 * @unbound_cpumask.
4572	 */
4573	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4574	if (unlikely(cpumask_empty(attrs->cpumask)))
4575		cpumask_copy(attrs->cpumask, unbound_cpumask);
4576}
4577
4578/* find wq_pod_type to use for @attrs */
4579static const struct wq_pod_type *
4580wqattrs_pod_type(const struct workqueue_attrs *attrs)
4581{
4582	enum wq_affn_scope scope;
4583	struct wq_pod_type *pt;
4584
4585	/* to synchronize access to wq_affn_dfl */
4586	lockdep_assert_held(&wq_pool_mutex);
4587
4588	if (attrs->affn_scope == WQ_AFFN_DFL)
4589		scope = wq_affn_dfl;
4590	else
4591		scope = attrs->affn_scope;
4592
4593	pt = &wq_pod_types[scope];
4594
4595	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4596	    likely(pt->nr_pods))
4597		return pt;
4598
4599	/*
4600	 * Before workqueue_init_topology(), only SYSTEM is available which is
4601	 * initialized in workqueue_init_early().
4602	 */
4603	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4604	BUG_ON(!pt->nr_pods);
4605	return pt;
4606}
4607
4608/**
4609 * init_worker_pool - initialize a newly zalloc'd worker_pool
4610 * @pool: worker_pool to initialize
4611 *
4612 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4613 *
4614 * Return: 0 on success, -errno on failure.  Even on failure, all fields
4615 * inside @pool proper are initialized and put_unbound_pool() can be called
4616 * on @pool safely to release it.
4617 */
4618static int init_worker_pool(struct worker_pool *pool)
4619{
4620	raw_spin_lock_init(&pool->lock);
4621	pool->id = -1;
4622	pool->cpu = -1;
4623	pool->node = NUMA_NO_NODE;
4624	pool->flags |= POOL_DISASSOCIATED;
4625	pool->watchdog_ts = jiffies;
4626	INIT_LIST_HEAD(&pool->worklist);
4627	INIT_LIST_HEAD(&pool->idle_list);
4628	hash_init(pool->busy_hash);
4629
4630	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4631	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4632
4633	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4634
4635	INIT_LIST_HEAD(&pool->workers);
4636	INIT_LIST_HEAD(&pool->dying_workers);
4637
4638	ida_init(&pool->worker_ida);
4639	INIT_HLIST_NODE(&pool->hash_node);
4640	pool->refcnt = 1;
4641
4642	/* shouldn't fail above this point */
4643	pool->attrs = alloc_workqueue_attrs();
4644	if (!pool->attrs)
4645		return -ENOMEM;
4646
4647	wqattrs_clear_for_pool(pool->attrs);
4648
4649	return 0;
4650}
4651
4652#ifdef CONFIG_LOCKDEP
4653static void wq_init_lockdep(struct workqueue_struct *wq)
4654{
4655	char *lock_name;
4656
4657	lockdep_register_key(&wq->key);
4658	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4659	if (!lock_name)
4660		lock_name = wq->name;
4661
4662	wq->lock_name = lock_name;
4663	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
 
4664}
4665
4666static void wq_unregister_lockdep(struct workqueue_struct *wq)
4667{
 
 
 
4668	lockdep_unregister_key(&wq->key);
4669}
4670
4671static void wq_free_lockdep(struct workqueue_struct *wq)
4672{
 
 
 
4673	if (wq->lock_name != wq->name)
4674		kfree(wq->lock_name);
4675}
4676#else
4677static void wq_init_lockdep(struct workqueue_struct *wq)
4678{
4679}
4680
4681static void wq_unregister_lockdep(struct workqueue_struct *wq)
4682{
4683}
4684
4685static void wq_free_lockdep(struct workqueue_struct *wq)
4686{
4687}
4688#endif
4689
4690static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4691{
4692	int node;
4693
4694	for_each_node(node) {
4695		kfree(nna_ar[node]);
4696		nna_ar[node] = NULL;
4697	}
4698
4699	kfree(nna_ar[nr_node_ids]);
4700	nna_ar[nr_node_ids] = NULL;
4701}
4702
4703static void init_node_nr_active(struct wq_node_nr_active *nna)
4704{
4705	nna->max = WQ_DFL_MIN_ACTIVE;
4706	atomic_set(&nna->nr, 0);
4707	raw_spin_lock_init(&nna->lock);
4708	INIT_LIST_HEAD(&nna->pending_pwqs);
4709}
4710
4711/*
4712 * Each node's nr_active counter will be accessed mostly from its own node and
4713 * should be allocated in the node.
4714 */
4715static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4716{
4717	struct wq_node_nr_active *nna;
4718	int node;
4719
4720	for_each_node(node) {
4721		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4722		if (!nna)
4723			goto err_free;
4724		init_node_nr_active(nna);
4725		nna_ar[node] = nna;
4726	}
4727
4728	/* [nr_node_ids] is used as the fallback */
4729	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4730	if (!nna)
4731		goto err_free;
4732	init_node_nr_active(nna);
4733	nna_ar[nr_node_ids] = nna;
4734
4735	return 0;
4736
4737err_free:
4738	free_node_nr_active(nna_ar);
4739	return -ENOMEM;
4740}
4741
4742static void rcu_free_wq(struct rcu_head *rcu)
4743{
4744	struct workqueue_struct *wq =
4745		container_of(rcu, struct workqueue_struct, rcu);
4746
4747	if (wq->flags & WQ_UNBOUND)
4748		free_node_nr_active(wq->node_nr_active);
4749
4750	wq_free_lockdep(wq);
4751	free_percpu(wq->cpu_pwq);
4752	free_workqueue_attrs(wq->unbound_attrs);
4753	kfree(wq);
4754}
4755
4756static void rcu_free_pool(struct rcu_head *rcu)
4757{
4758	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4759
4760	ida_destroy(&pool->worker_ida);
4761	free_workqueue_attrs(pool->attrs);
4762	kfree(pool);
4763}
4764
4765/**
4766 * put_unbound_pool - put a worker_pool
4767 * @pool: worker_pool to put
4768 *
4769 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4770 * safe manner.  get_unbound_pool() calls this function on its failure path
4771 * and this function should be able to release pools which went through,
4772 * successfully or not, init_worker_pool().
4773 *
4774 * Should be called with wq_pool_mutex held.
4775 */
4776static void put_unbound_pool(struct worker_pool *pool)
4777{
4778	DECLARE_COMPLETION_ONSTACK(detach_completion);
4779	struct worker *worker;
4780	LIST_HEAD(cull_list);
4781
4782	lockdep_assert_held(&wq_pool_mutex);
4783
4784	if (--pool->refcnt)
4785		return;
4786
4787	/* sanity checks */
4788	if (WARN_ON(!(pool->cpu < 0)) ||
4789	    WARN_ON(!list_empty(&pool->worklist)))
4790		return;
4791
4792	/* release id and unhash */
4793	if (pool->id >= 0)
4794		idr_remove(&worker_pool_idr, pool->id);
4795	hash_del(&pool->hash_node);
4796
4797	/*
4798	 * Become the manager and destroy all workers.  This prevents
4799	 * @pool's workers from blocking on attach_mutex.  We're the last
4800	 * manager and @pool gets freed with the flag set.
4801	 *
4802	 * Having a concurrent manager is quite unlikely to happen as we can
4803	 * only get here with
4804	 *   pwq->refcnt == pool->refcnt == 0
4805	 * which implies no work queued to the pool, which implies no worker can
4806	 * become the manager. However a worker could have taken the role of
4807	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4808	 * drops pool->lock
4809	 */
4810	while (true) {
4811		rcuwait_wait_event(&manager_wait,
4812				   !(pool->flags & POOL_MANAGER_ACTIVE),
4813				   TASK_UNINTERRUPTIBLE);
4814
4815		mutex_lock(&wq_pool_attach_mutex);
4816		raw_spin_lock_irq(&pool->lock);
4817		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4818			pool->flags |= POOL_MANAGER_ACTIVE;
4819			break;
4820		}
4821		raw_spin_unlock_irq(&pool->lock);
4822		mutex_unlock(&wq_pool_attach_mutex);
4823	}
4824
4825	while ((worker = first_idle_worker(pool)))
4826		set_worker_dying(worker, &cull_list);
4827	WARN_ON(pool->nr_workers || pool->nr_idle);
4828	raw_spin_unlock_irq(&pool->lock);
4829
4830	wake_dying_workers(&cull_list);
4831
4832	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4833		pool->detach_completion = &detach_completion;
4834	mutex_unlock(&wq_pool_attach_mutex);
4835
4836	if (pool->detach_completion)
4837		wait_for_completion(pool->detach_completion);
4838
4839	/* shut down the timers */
4840	del_timer_sync(&pool->idle_timer);
4841	cancel_work_sync(&pool->idle_cull_work);
4842	del_timer_sync(&pool->mayday_timer);
4843
4844	/* RCU protected to allow dereferences from get_work_pool() */
4845	call_rcu(&pool->rcu, rcu_free_pool);
4846}
4847
4848/**
4849 * get_unbound_pool - get a worker_pool with the specified attributes
4850 * @attrs: the attributes of the worker_pool to get
4851 *
4852 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4853 * reference count and return it.  If there already is a matching
4854 * worker_pool, it will be used; otherwise, this function attempts to
4855 * create a new one.
4856 *
4857 * Should be called with wq_pool_mutex held.
4858 *
4859 * Return: On success, a worker_pool with the same attributes as @attrs.
4860 * On failure, %NULL.
4861 */
4862static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4863{
4864	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4865	u32 hash = wqattrs_hash(attrs);
4866	struct worker_pool *pool;
4867	int pod, node = NUMA_NO_NODE;
4868
4869	lockdep_assert_held(&wq_pool_mutex);
4870
4871	/* do we already have a matching pool? */
4872	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4873		if (wqattrs_equal(pool->attrs, attrs)) {
4874			pool->refcnt++;
4875			return pool;
4876		}
4877	}
4878
4879	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4880	for (pod = 0; pod < pt->nr_pods; pod++) {
4881		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4882			node = pt->pod_node[pod];
4883			break;
4884		}
4885	}
4886
4887	/* nope, create a new one */
4888	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4889	if (!pool || init_worker_pool(pool) < 0)
4890		goto fail;
4891
4892	pool->node = node;
4893	copy_workqueue_attrs(pool->attrs, attrs);
4894	wqattrs_clear_for_pool(pool->attrs);
4895
4896	if (worker_pool_assign_id(pool) < 0)
4897		goto fail;
4898
4899	/* create and start the initial worker */
4900	if (wq_online && !create_worker(pool))
4901		goto fail;
4902
4903	/* install */
4904	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4905
4906	return pool;
4907fail:
4908	if (pool)
4909		put_unbound_pool(pool);
4910	return NULL;
4911}
4912
4913static void rcu_free_pwq(struct rcu_head *rcu)
4914{
4915	kmem_cache_free(pwq_cache,
4916			container_of(rcu, struct pool_workqueue, rcu));
4917}
4918
4919/*
4920 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4921 * refcnt and needs to be destroyed.
4922 */
4923static void pwq_release_workfn(struct kthread_work *work)
4924{
4925	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4926						  release_work);
4927	struct workqueue_struct *wq = pwq->wq;
4928	struct worker_pool *pool = pwq->pool;
4929	bool is_last = false;
4930
4931	/*
4932	 * When @pwq is not linked, it doesn't hold any reference to the
4933	 * @wq, and @wq is invalid to access.
4934	 */
4935	if (!list_empty(&pwq->pwqs_node)) {
4936		mutex_lock(&wq->mutex);
4937		list_del_rcu(&pwq->pwqs_node);
4938		is_last = list_empty(&wq->pwqs);
4939
4940		/*
4941		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
4942		 */
4943		if (!is_last && (wq->flags & __WQ_ORDERED))
4944			unplug_oldest_pwq(wq);
4945
4946		mutex_unlock(&wq->mutex);
4947	}
4948
4949	if (wq->flags & WQ_UNBOUND) {
4950		mutex_lock(&wq_pool_mutex);
4951		put_unbound_pool(pool);
4952		mutex_unlock(&wq_pool_mutex);
4953	}
4954
4955	if (!list_empty(&pwq->pending_node)) {
4956		struct wq_node_nr_active *nna =
4957			wq_node_nr_active(pwq->wq, pwq->pool->node);
4958
4959		raw_spin_lock_irq(&nna->lock);
4960		list_del_init(&pwq->pending_node);
4961		raw_spin_unlock_irq(&nna->lock);
4962	}
4963
4964	call_rcu(&pwq->rcu, rcu_free_pwq);
4965
4966	/*
4967	 * If we're the last pwq going away, @wq is already dead and no one
4968	 * is gonna access it anymore.  Schedule RCU free.
4969	 */
4970	if (is_last) {
4971		wq_unregister_lockdep(wq);
4972		call_rcu(&wq->rcu, rcu_free_wq);
4973	}
4974}
4975
4976/* initialize newly allocated @pwq which is associated with @wq and @pool */
4977static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4978		     struct worker_pool *pool)
4979{
4980	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
4981
4982	memset(pwq, 0, sizeof(*pwq));
4983
4984	pwq->pool = pool;
4985	pwq->wq = wq;
4986	pwq->flush_color = -1;
4987	pwq->refcnt = 1;
4988	INIT_LIST_HEAD(&pwq->inactive_works);
4989	INIT_LIST_HEAD(&pwq->pending_node);
4990	INIT_LIST_HEAD(&pwq->pwqs_node);
4991	INIT_LIST_HEAD(&pwq->mayday_node);
4992	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4993}
4994
4995/* sync @pwq with the current state of its associated wq and link it */
4996static void link_pwq(struct pool_workqueue *pwq)
4997{
4998	struct workqueue_struct *wq = pwq->wq;
4999
5000	lockdep_assert_held(&wq->mutex);
5001
5002	/* may be called multiple times, ignore if already linked */
5003	if (!list_empty(&pwq->pwqs_node))
5004		return;
5005
5006	/* set the matching work_color */
5007	pwq->work_color = wq->work_color;
5008
5009	/* link in @pwq */
5010	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5011}
5012
5013/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5014static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5015					const struct workqueue_attrs *attrs)
5016{
5017	struct worker_pool *pool;
5018	struct pool_workqueue *pwq;
5019
5020	lockdep_assert_held(&wq_pool_mutex);
5021
5022	pool = get_unbound_pool(attrs);
5023	if (!pool)
5024		return NULL;
5025
5026	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5027	if (!pwq) {
5028		put_unbound_pool(pool);
5029		return NULL;
5030	}
5031
5032	init_pwq(pwq, wq, pool);
5033	return pwq;
5034}
5035
 
 
 
 
 
 
 
 
 
 
5036/**
5037 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5038 * @attrs: the wq_attrs of the default pwq of the target workqueue
5039 * @cpu: the target CPU
5040 * @cpu_going_down: if >= 0, the CPU to consider as offline
5041 *
5042 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
5043 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
5044 * The result is stored in @attrs->__pod_cpumask.
5045 *
5046 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5047 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5048 * intersection of the possible CPUs of @pod and @attrs->cpumask.
5049 *
5050 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5051 */
5052static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
5053				int cpu_going_down)
5054{
5055	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5056	int pod = pt->cpu_pod[cpu];
5057
 
 
5058	/* does @pod have any online CPUs @attrs wants? */
5059	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5060	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
5061	if (cpu_going_down >= 0)
5062		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
5063
5064	if (cpumask_empty(attrs->__pod_cpumask)) {
5065		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5066		return;
5067	}
5068
5069	/* yeap, return possible CPUs in @pod that @attrs wants */
5070	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
5071
5072	if (cpumask_empty(attrs->__pod_cpumask))
5073		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
5074				"possible intersect\n");
5075}
5076
5077/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5078static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5079					int cpu, struct pool_workqueue *pwq)
5080{
5081	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5082	struct pool_workqueue *old_pwq;
5083
5084	lockdep_assert_held(&wq_pool_mutex);
5085	lockdep_assert_held(&wq->mutex);
5086
5087	/* link_pwq() can handle duplicate calls */
5088	link_pwq(pwq);
5089
5090	old_pwq = rcu_access_pointer(*slot);
5091	rcu_assign_pointer(*slot, pwq);
5092	return old_pwq;
5093}
5094
5095/* context to store the prepared attrs & pwqs before applying */
5096struct apply_wqattrs_ctx {
5097	struct workqueue_struct	*wq;		/* target workqueue */
5098	struct workqueue_attrs	*attrs;		/* attrs to apply */
5099	struct list_head	list;		/* queued for batching commit */
5100	struct pool_workqueue	*dfl_pwq;
5101	struct pool_workqueue	*pwq_tbl[];
5102};
5103
5104/* free the resources after success or abort */
5105static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5106{
5107	if (ctx) {
5108		int cpu;
5109
5110		for_each_possible_cpu(cpu)
5111			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5112		put_pwq_unlocked(ctx->dfl_pwq);
5113
5114		free_workqueue_attrs(ctx->attrs);
5115
5116		kfree(ctx);
5117	}
5118}
5119
5120/* allocate the attrs and pwqs for later installation */
5121static struct apply_wqattrs_ctx *
5122apply_wqattrs_prepare(struct workqueue_struct *wq,
5123		      const struct workqueue_attrs *attrs,
5124		      const cpumask_var_t unbound_cpumask)
5125{
5126	struct apply_wqattrs_ctx *ctx;
5127	struct workqueue_attrs *new_attrs;
5128	int cpu;
5129
5130	lockdep_assert_held(&wq_pool_mutex);
5131
5132	if (WARN_ON(attrs->affn_scope < 0 ||
5133		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5134		return ERR_PTR(-EINVAL);
5135
5136	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5137
5138	new_attrs = alloc_workqueue_attrs();
5139	if (!ctx || !new_attrs)
5140		goto out_free;
5141
5142	/*
5143	 * If something goes wrong during CPU up/down, we'll fall back to
5144	 * the default pwq covering whole @attrs->cpumask.  Always create
5145	 * it even if we don't use it immediately.
5146	 */
5147	copy_workqueue_attrs(new_attrs, attrs);
5148	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5149	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5150	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5151	if (!ctx->dfl_pwq)
5152		goto out_free;
5153
5154	for_each_possible_cpu(cpu) {
5155		if (new_attrs->ordered) {
5156			ctx->dfl_pwq->refcnt++;
5157			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5158		} else {
5159			wq_calc_pod_cpumask(new_attrs, cpu, -1);
5160			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5161			if (!ctx->pwq_tbl[cpu])
5162				goto out_free;
5163		}
5164	}
5165
5166	/* save the user configured attrs and sanitize it. */
5167	copy_workqueue_attrs(new_attrs, attrs);
5168	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5169	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5170	ctx->attrs = new_attrs;
5171
5172	/*
5173	 * For initialized ordered workqueues, there should only be one pwq
5174	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5175	 * of newly queued work items until execution of older work items in
5176	 * the old pwq's have completed.
5177	 */
5178	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5179		ctx->dfl_pwq->plugged = true;
5180
5181	ctx->wq = wq;
5182	return ctx;
5183
5184out_free:
5185	free_workqueue_attrs(new_attrs);
5186	apply_wqattrs_cleanup(ctx);
5187	return ERR_PTR(-ENOMEM);
5188}
5189
5190/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5191static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5192{
5193	int cpu;
5194
5195	/* all pwqs have been created successfully, let's install'em */
5196	mutex_lock(&ctx->wq->mutex);
5197
5198	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5199
5200	/* save the previous pwqs and install the new ones */
5201	for_each_possible_cpu(cpu)
5202		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5203							ctx->pwq_tbl[cpu]);
5204	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5205
5206	/* update node_nr_active->max */
5207	wq_update_node_max_active(ctx->wq, -1);
5208
5209	/* rescuer needs to respect wq cpumask changes */
5210	if (ctx->wq->rescuer)
5211		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5212				     unbound_effective_cpumask(ctx->wq));
5213
5214	mutex_unlock(&ctx->wq->mutex);
5215}
5216
5217static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5218					const struct workqueue_attrs *attrs)
5219{
5220	struct apply_wqattrs_ctx *ctx;
5221
5222	/* only unbound workqueues can change attributes */
5223	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5224		return -EINVAL;
5225
5226	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5227	if (IS_ERR(ctx))
5228		return PTR_ERR(ctx);
5229
5230	/* the ctx has been prepared successfully, let's commit it */
5231	apply_wqattrs_commit(ctx);
5232	apply_wqattrs_cleanup(ctx);
5233
5234	return 0;
5235}
5236
5237/**
5238 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5239 * @wq: the target workqueue
5240 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5241 *
5242 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5243 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5244 * work items are affine to the pod it was issued on. Older pwqs are released as
5245 * in-flight work items finish. Note that a work item which repeatedly requeues
5246 * itself back-to-back will stay on its current pwq.
5247 *
5248 * Performs GFP_KERNEL allocations.
5249 *
5250 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5251 *
5252 * Return: 0 on success and -errno on failure.
5253 */
5254int apply_workqueue_attrs(struct workqueue_struct *wq,
5255			  const struct workqueue_attrs *attrs)
5256{
5257	int ret;
5258
5259	lockdep_assert_cpus_held();
5260
5261	mutex_lock(&wq_pool_mutex);
5262	ret = apply_workqueue_attrs_locked(wq, attrs);
5263	mutex_unlock(&wq_pool_mutex);
5264
5265	return ret;
5266}
5267
5268/**
5269 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
5270 * @wq: the target workqueue
5271 * @cpu: the CPU to update pool association for
5272 * @hotplug_cpu: the CPU coming up or going down
5273 * @online: whether @cpu is coming up or going down
5274 *
5275 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5276 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
5277 * @wq accordingly.
5278 *
5279 *
5280 * If pod affinity can't be adjusted due to memory allocation failure, it falls
5281 * back to @wq->dfl_pwq which may not be optimal but is always correct.
5282 *
5283 * Note that when the last allowed CPU of a pod goes offline for a workqueue
5284 * with a cpumask spanning multiple pods, the workers which were already
5285 * executing the work items for the workqueue will lose their CPU affinity and
5286 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5287 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5288 * responsibility to flush the work item from CPU_DOWN_PREPARE.
5289 */
5290static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5291			  int hotplug_cpu, bool online)
5292{
5293	int off_cpu = online ? -1 : hotplug_cpu;
5294	struct pool_workqueue *old_pwq = NULL, *pwq;
5295	struct workqueue_attrs *target_attrs;
5296
5297	lockdep_assert_held(&wq_pool_mutex);
5298
5299	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5300		return;
5301
5302	/*
5303	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5304	 * Let's use a preallocated one.  The following buf is protected by
5305	 * CPU hotplug exclusion.
5306	 */
5307	target_attrs = wq_update_pod_attrs_buf;
5308
5309	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5310	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5311
5312	/* nothing to do if the target cpumask matches the current pwq */
5313	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
5314	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5315		return;
5316
5317	/* create a new pwq */
5318	pwq = alloc_unbound_pwq(wq, target_attrs);
5319	if (!pwq) {
5320		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5321			wq->name);
5322		goto use_dfl_pwq;
5323	}
5324
5325	/* Install the new pwq. */
5326	mutex_lock(&wq->mutex);
5327	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5328	goto out_unlock;
5329
5330use_dfl_pwq:
5331	mutex_lock(&wq->mutex);
5332	pwq = unbound_pwq(wq, -1);
5333	raw_spin_lock_irq(&pwq->pool->lock);
5334	get_pwq(pwq);
5335	raw_spin_unlock_irq(&pwq->pool->lock);
5336	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5337out_unlock:
5338	mutex_unlock(&wq->mutex);
5339	put_pwq_unlocked(old_pwq);
5340}
5341
5342static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5343{
5344	bool highpri = wq->flags & WQ_HIGHPRI;
5345	int cpu, ret;
5346
 
 
5347	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5348	if (!wq->cpu_pwq)
5349		goto enomem;
5350
5351	if (!(wq->flags & WQ_UNBOUND)) {
 
 
 
 
 
 
 
5352		for_each_possible_cpu(cpu) {
5353			struct pool_workqueue **pwq_p;
5354			struct worker_pool __percpu *pools;
5355			struct worker_pool *pool;
5356
5357			if (wq->flags & WQ_BH)
5358				pools = bh_worker_pools;
5359			else
5360				pools = cpu_worker_pools;
5361
5362			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5363			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5364
5365			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5366						       pool->node);
5367			if (!*pwq_p)
5368				goto enomem;
5369
5370			init_pwq(*pwq_p, wq, pool);
5371
5372			mutex_lock(&wq->mutex);
5373			link_pwq(*pwq_p);
5374			mutex_unlock(&wq->mutex);
5375		}
5376		return 0;
5377	}
5378
5379	cpus_read_lock();
5380	if (wq->flags & __WQ_ORDERED) {
5381		struct pool_workqueue *dfl_pwq;
5382
5383		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5384		/* there should only be single pwq for ordering guarantee */
5385		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5386		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5387			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5388		     "ordering guarantee broken for workqueue %s\n", wq->name);
5389	} else {
5390		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5391	}
5392	cpus_read_unlock();
5393
5394	/* for unbound pwq, flush the pwq_release_worker ensures that the
5395	 * pwq_release_workfn() completes before calling kfree(wq).
5396	 */
5397	if (ret)
5398		kthread_flush_worker(pwq_release_worker);
5399
5400	return ret;
5401
5402enomem:
5403	if (wq->cpu_pwq) {
5404		for_each_possible_cpu(cpu) {
5405			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5406
5407			if (pwq)
5408				kmem_cache_free(pwq_cache, pwq);
5409		}
5410		free_percpu(wq->cpu_pwq);
5411		wq->cpu_pwq = NULL;
5412	}
5413	return -ENOMEM;
5414}
5415
5416static int wq_clamp_max_active(int max_active, unsigned int flags,
5417			       const char *name)
5418{
5419	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5420		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5421			max_active, name, 1, WQ_MAX_ACTIVE);
5422
5423	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5424}
5425
5426/*
5427 * Workqueues which may be used during memory reclaim should have a rescuer
5428 * to guarantee forward progress.
5429 */
5430static int init_rescuer(struct workqueue_struct *wq)
5431{
5432	struct worker *rescuer;
 
5433	int ret;
5434
 
 
5435	if (!(wq->flags & WQ_MEM_RECLAIM))
5436		return 0;
5437
5438	rescuer = alloc_worker(NUMA_NO_NODE);
5439	if (!rescuer) {
5440		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5441		       wq->name);
5442		return -ENOMEM;
5443	}
5444
5445	rescuer->rescue_wq = wq;
5446	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
 
 
5447	if (IS_ERR(rescuer->task)) {
5448		ret = PTR_ERR(rescuer->task);
5449		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5450		       wq->name, ERR_PTR(ret));
5451		kfree(rescuer);
5452		return ret;
5453	}
5454
5455	wq->rescuer = rescuer;
5456	if (wq->flags & WQ_UNBOUND)
5457		kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
5458	else
5459		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5460	wake_up_process(rescuer->task);
5461
5462	return 0;
5463}
5464
5465/**
5466 * wq_adjust_max_active - update a wq's max_active to the current setting
5467 * @wq: target workqueue
5468 *
5469 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5470 * activate inactive work items accordingly. If @wq is freezing, clear
5471 * @wq->max_active to zero.
5472 */
5473static void wq_adjust_max_active(struct workqueue_struct *wq)
5474{
5475	bool activated;
5476	int new_max, new_min;
5477
5478	lockdep_assert_held(&wq->mutex);
5479
5480	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5481		new_max = 0;
5482		new_min = 0;
5483	} else {
5484		new_max = wq->saved_max_active;
5485		new_min = wq->saved_min_active;
5486	}
5487
5488	if (wq->max_active == new_max && wq->min_active == new_min)
5489		return;
5490
5491	/*
5492	 * Update @wq->max/min_active and then kick inactive work items if more
5493	 * active work items are allowed. This doesn't break work item ordering
5494	 * because new work items are always queued behind existing inactive
5495	 * work items if there are any.
5496	 */
5497	WRITE_ONCE(wq->max_active, new_max);
5498	WRITE_ONCE(wq->min_active, new_min);
5499
5500	if (wq->flags & WQ_UNBOUND)
5501		wq_update_node_max_active(wq, -1);
5502
5503	if (new_max == 0)
5504		return;
5505
5506	/*
5507	 * Round-robin through pwq's activating the first inactive work item
5508	 * until max_active is filled.
5509	 */
5510	do {
5511		struct pool_workqueue *pwq;
5512
5513		activated = false;
5514		for_each_pwq(pwq, wq) {
5515			unsigned long irq_flags;
5516
5517			/* can be called during early boot w/ irq disabled */
5518			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5519			if (pwq_activate_first_inactive(pwq, true)) {
5520				activated = true;
5521				kick_pool(pwq->pool);
5522			}
5523			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5524		}
5525	} while (activated);
5526}
5527
5528__printf(1, 4)
5529struct workqueue_struct *alloc_workqueue(const char *fmt,
5530					 unsigned int flags,
5531					 int max_active, ...)
5532{
5533	va_list args;
5534	struct workqueue_struct *wq;
5535	size_t wq_size;
5536	int name_len;
5537
5538	if (flags & WQ_BH) {
5539		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5540			return NULL;
5541		if (WARN_ON_ONCE(max_active))
5542			return NULL;
5543	}
5544
5545	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5546	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5547		flags |= WQ_UNBOUND;
5548
5549	/* allocate wq and format name */
5550	if (flags & WQ_UNBOUND)
5551		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5552	else
5553		wq_size = sizeof(*wq);
5554
5555	wq = kzalloc(wq_size, GFP_KERNEL);
5556	if (!wq)
5557		return NULL;
5558
5559	if (flags & WQ_UNBOUND) {
5560		wq->unbound_attrs = alloc_workqueue_attrs();
5561		if (!wq->unbound_attrs)
5562			goto err_free_wq;
5563	}
5564
5565	va_start(args, max_active);
5566	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5567	va_end(args);
5568
5569	if (name_len >= WQ_NAME_LEN)
5570		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5571			     wq->name);
5572
5573	if (flags & WQ_BH) {
5574		/*
5575		 * BH workqueues always share a single execution context per CPU
5576		 * and don't impose any max_active limit.
5577		 */
5578		max_active = INT_MAX;
5579	} else {
5580		max_active = max_active ?: WQ_DFL_ACTIVE;
5581		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5582	}
5583
5584	/* init wq */
5585	wq->flags = flags;
5586	wq->max_active = max_active;
5587	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5588	wq->saved_max_active = wq->max_active;
5589	wq->saved_min_active = wq->min_active;
5590	mutex_init(&wq->mutex);
5591	atomic_set(&wq->nr_pwqs_to_flush, 0);
5592	INIT_LIST_HEAD(&wq->pwqs);
5593	INIT_LIST_HEAD(&wq->flusher_queue);
5594	INIT_LIST_HEAD(&wq->flusher_overflow);
5595	INIT_LIST_HEAD(&wq->maydays);
5596
5597	wq_init_lockdep(wq);
5598	INIT_LIST_HEAD(&wq->list);
5599
5600	if (flags & WQ_UNBOUND) {
5601		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5602			goto err_unreg_lockdep;
5603	}
5604
5605	if (alloc_and_link_pwqs(wq) < 0)
5606		goto err_free_node_nr_active;
5607
5608	if (wq_online && init_rescuer(wq) < 0)
5609		goto err_destroy;
5610
5611	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5612		goto err_destroy;
5613
5614	/*
5615	 * wq_pool_mutex protects global freeze state and workqueues list.
5616	 * Grab it, adjust max_active and add the new @wq to workqueues
5617	 * list.
5618	 */
5619	mutex_lock(&wq_pool_mutex);
 
 
 
5620
5621	mutex_lock(&wq->mutex);
5622	wq_adjust_max_active(wq);
5623	mutex_unlock(&wq->mutex);
5624
5625	list_add_tail_rcu(&wq->list, &workqueues);
5626
5627	mutex_unlock(&wq_pool_mutex);
 
 
 
 
 
 
5628
5629	return wq;
5630
5631err_free_node_nr_active:
5632	if (wq->flags & WQ_UNBOUND)
 
 
 
 
 
 
 
5633		free_node_nr_active(wq->node_nr_active);
5634err_unreg_lockdep:
5635	wq_unregister_lockdep(wq);
5636	wq_free_lockdep(wq);
5637err_free_wq:
5638	free_workqueue_attrs(wq->unbound_attrs);
5639	kfree(wq);
5640	return NULL;
 
 
5641err_destroy:
5642	destroy_workqueue(wq);
5643	return NULL;
5644}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5645EXPORT_SYMBOL_GPL(alloc_workqueue);
5646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5647static bool pwq_busy(struct pool_workqueue *pwq)
5648{
5649	int i;
5650
5651	for (i = 0; i < WORK_NR_COLORS; i++)
5652		if (pwq->nr_in_flight[i])
5653			return true;
5654
5655	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5656		return true;
5657	if (!pwq_is_empty(pwq))
5658		return true;
5659
5660	return false;
5661}
5662
5663/**
5664 * destroy_workqueue - safely terminate a workqueue
5665 * @wq: target workqueue
5666 *
5667 * Safely destroy a workqueue. All work currently pending will be done first.
5668 */
5669void destroy_workqueue(struct workqueue_struct *wq)
5670{
5671	struct pool_workqueue *pwq;
5672	int cpu;
5673
5674	/*
5675	 * Remove it from sysfs first so that sanity check failure doesn't
5676	 * lead to sysfs name conflicts.
5677	 */
5678	workqueue_sysfs_unregister(wq);
5679
5680	/* mark the workqueue destruction is in progress */
5681	mutex_lock(&wq->mutex);
5682	wq->flags |= __WQ_DESTROYING;
5683	mutex_unlock(&wq->mutex);
5684
5685	/* drain it before proceeding with destruction */
5686	drain_workqueue(wq);
5687
5688	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5689	if (wq->rescuer) {
5690		struct worker *rescuer = wq->rescuer;
5691
5692		/* this prevents new queueing */
5693		raw_spin_lock_irq(&wq_mayday_lock);
5694		wq->rescuer = NULL;
5695		raw_spin_unlock_irq(&wq_mayday_lock);
5696
5697		/* rescuer will empty maydays list before exiting */
5698		kthread_stop(rescuer->task);
5699		kfree(rescuer);
5700	}
5701
5702	/*
5703	 * Sanity checks - grab all the locks so that we wait for all
5704	 * in-flight operations which may do put_pwq().
5705	 */
5706	mutex_lock(&wq_pool_mutex);
5707	mutex_lock(&wq->mutex);
5708	for_each_pwq(pwq, wq) {
5709		raw_spin_lock_irq(&pwq->pool->lock);
5710		if (WARN_ON(pwq_busy(pwq))) {
5711			pr_warn("%s: %s has the following busy pwq\n",
5712				__func__, wq->name);
5713			show_pwq(pwq);
5714			raw_spin_unlock_irq(&pwq->pool->lock);
5715			mutex_unlock(&wq->mutex);
5716			mutex_unlock(&wq_pool_mutex);
5717			show_one_workqueue(wq);
5718			return;
5719		}
5720		raw_spin_unlock_irq(&pwq->pool->lock);
5721	}
5722	mutex_unlock(&wq->mutex);
5723
5724	/*
5725	 * wq list is used to freeze wq, remove from list after
5726	 * flushing is complete in case freeze races us.
5727	 */
5728	list_del_rcu(&wq->list);
5729	mutex_unlock(&wq_pool_mutex);
5730
5731	/*
5732	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5733	 * to put the base refs. @wq will be auto-destroyed from the last
5734	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5735	 */
5736	rcu_read_lock();
5737
5738	for_each_possible_cpu(cpu) {
5739		put_pwq_unlocked(unbound_pwq(wq, cpu));
5740		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5741	}
5742
5743	put_pwq_unlocked(unbound_pwq(wq, -1));
5744	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5745
5746	rcu_read_unlock();
5747}
5748EXPORT_SYMBOL_GPL(destroy_workqueue);
5749
5750/**
5751 * workqueue_set_max_active - adjust max_active of a workqueue
5752 * @wq: target workqueue
5753 * @max_active: new max_active value.
5754 *
5755 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5756 * comment.
5757 *
5758 * CONTEXT:
5759 * Don't call from IRQ context.
5760 */
5761void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5762{
5763	/* max_active doesn't mean anything for BH workqueues */
5764	if (WARN_ON(wq->flags & WQ_BH))
5765		return;
5766	/* disallow meddling with max_active for ordered workqueues */
5767	if (WARN_ON(wq->flags & __WQ_ORDERED))
5768		return;
5769
5770	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5771
5772	mutex_lock(&wq->mutex);
5773
5774	wq->saved_max_active = max_active;
5775	if (wq->flags & WQ_UNBOUND)
5776		wq->saved_min_active = min(wq->saved_min_active, max_active);
5777
5778	wq_adjust_max_active(wq);
5779
5780	mutex_unlock(&wq->mutex);
5781}
5782EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5783
5784/**
5785 * workqueue_set_min_active - adjust min_active of an unbound workqueue
5786 * @wq: target unbound workqueue
5787 * @min_active: new min_active value
5788 *
5789 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5790 * unbound workqueue is not guaranteed to be able to process max_active
5791 * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5792 * able to process min_active number of interdependent work items which is
5793 * %WQ_DFL_MIN_ACTIVE by default.
5794 *
5795 * Use this function to adjust the min_active value between 0 and the current
5796 * max_active.
5797 */
5798void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5799{
5800	/* min_active is only meaningful for non-ordered unbound workqueues */
5801	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5802		    WQ_UNBOUND))
5803		return;
5804
5805	mutex_lock(&wq->mutex);
5806	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5807	wq_adjust_max_active(wq);
5808	mutex_unlock(&wq->mutex);
5809}
5810
5811/**
5812 * current_work - retrieve %current task's work struct
5813 *
5814 * Determine if %current task is a workqueue worker and what it's working on.
5815 * Useful to find out the context that the %current task is running in.
5816 *
5817 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5818 */
5819struct work_struct *current_work(void)
5820{
5821	struct worker *worker = current_wq_worker();
5822
5823	return worker ? worker->current_work : NULL;
5824}
5825EXPORT_SYMBOL(current_work);
5826
5827/**
5828 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5829 *
5830 * Determine whether %current is a workqueue rescuer.  Can be used from
5831 * work functions to determine whether it's being run off the rescuer task.
5832 *
5833 * Return: %true if %current is a workqueue rescuer. %false otherwise.
5834 */
5835bool current_is_workqueue_rescuer(void)
5836{
5837	struct worker *worker = current_wq_worker();
5838
5839	return worker && worker->rescue_wq;
5840}
5841
5842/**
5843 * workqueue_congested - test whether a workqueue is congested
5844 * @cpu: CPU in question
5845 * @wq: target workqueue
5846 *
5847 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5848 * no synchronization around this function and the test result is
5849 * unreliable and only useful as advisory hints or for debugging.
5850 *
5851 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5852 *
5853 * With the exception of ordered workqueues, all workqueues have per-cpu
5854 * pool_workqueues, each with its own congested state. A workqueue being
5855 * congested on one CPU doesn't mean that the workqueue is contested on any
5856 * other CPUs.
5857 *
5858 * Return:
5859 * %true if congested, %false otherwise.
5860 */
5861bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5862{
5863	struct pool_workqueue *pwq;
5864	bool ret;
5865
5866	rcu_read_lock();
5867	preempt_disable();
5868
5869	if (cpu == WORK_CPU_UNBOUND)
5870		cpu = smp_processor_id();
5871
5872	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5873	ret = !list_empty(&pwq->inactive_works);
5874
5875	preempt_enable();
5876	rcu_read_unlock();
5877
5878	return ret;
5879}
5880EXPORT_SYMBOL_GPL(workqueue_congested);
5881
5882/**
5883 * work_busy - test whether a work is currently pending or running
5884 * @work: the work to be tested
5885 *
5886 * Test whether @work is currently pending or running.  There is no
5887 * synchronization around this function and the test result is
5888 * unreliable and only useful as advisory hints or for debugging.
5889 *
5890 * Return:
5891 * OR'd bitmask of WORK_BUSY_* bits.
5892 */
5893unsigned int work_busy(struct work_struct *work)
5894{
5895	struct worker_pool *pool;
5896	unsigned long irq_flags;
5897	unsigned int ret = 0;
5898
5899	if (work_pending(work))
5900		ret |= WORK_BUSY_PENDING;
5901
5902	rcu_read_lock();
5903	pool = get_work_pool(work);
5904	if (pool) {
5905		raw_spin_lock_irqsave(&pool->lock, irq_flags);
5906		if (find_worker_executing_work(pool, work))
5907			ret |= WORK_BUSY_RUNNING;
5908		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
5909	}
5910	rcu_read_unlock();
5911
5912	return ret;
5913}
5914EXPORT_SYMBOL_GPL(work_busy);
5915
5916/**
5917 * set_worker_desc - set description for the current work item
5918 * @fmt: printf-style format string
5919 * @...: arguments for the format string
5920 *
5921 * This function can be called by a running work function to describe what
5922 * the work item is about.  If the worker task gets dumped, this
5923 * information will be printed out together to help debugging.  The
5924 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5925 */
5926void set_worker_desc(const char *fmt, ...)
5927{
5928	struct worker *worker = current_wq_worker();
5929	va_list args;
5930
5931	if (worker) {
5932		va_start(args, fmt);
5933		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5934		va_end(args);
5935	}
5936}
5937EXPORT_SYMBOL_GPL(set_worker_desc);
5938
5939/**
5940 * print_worker_info - print out worker information and description
5941 * @log_lvl: the log level to use when printing
5942 * @task: target task
5943 *
5944 * If @task is a worker and currently executing a work item, print out the
5945 * name of the workqueue being serviced and worker description set with
5946 * set_worker_desc() by the currently executing work item.
5947 *
5948 * This function can be safely called on any task as long as the
5949 * task_struct itself is accessible.  While safe, this function isn't
5950 * synchronized and may print out mixups or garbages of limited length.
5951 */
5952void print_worker_info(const char *log_lvl, struct task_struct *task)
5953{
5954	work_func_t *fn = NULL;
5955	char name[WQ_NAME_LEN] = { };
5956	char desc[WORKER_DESC_LEN] = { };
5957	struct pool_workqueue *pwq = NULL;
5958	struct workqueue_struct *wq = NULL;
5959	struct worker *worker;
5960
5961	if (!(task->flags & PF_WQ_WORKER))
5962		return;
5963
5964	/*
5965	 * This function is called without any synchronization and @task
5966	 * could be in any state.  Be careful with dereferences.
5967	 */
5968	worker = kthread_probe_data(task);
5969
5970	/*
5971	 * Carefully copy the associated workqueue's workfn, name and desc.
5972	 * Keep the original last '\0' in case the original is garbage.
5973	 */
5974	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5975	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5976	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5977	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5978	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5979
5980	if (fn || name[0] || desc[0]) {
5981		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5982		if (strcmp(name, desc))
5983			pr_cont(" (%s)", desc);
5984		pr_cont("\n");
5985	}
5986}
5987
5988static void pr_cont_pool_info(struct worker_pool *pool)
5989{
5990	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5991	if (pool->node != NUMA_NO_NODE)
5992		pr_cont(" node=%d", pool->node);
5993	pr_cont(" flags=0x%x", pool->flags);
5994	if (pool->flags & POOL_BH)
5995		pr_cont(" bh%s",
5996			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5997	else
5998		pr_cont(" nice=%d", pool->attrs->nice);
5999}
6000
6001static void pr_cont_worker_id(struct worker *worker)
6002{
6003	struct worker_pool *pool = worker->pool;
6004
6005	if (pool->flags & WQ_BH)
6006		pr_cont("bh%s",
6007			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6008	else
6009		pr_cont("%d%s", task_pid_nr(worker->task),
6010			worker->rescue_wq ? "(RESCUER)" : "");
6011}
6012
6013struct pr_cont_work_struct {
6014	bool comma;
6015	work_func_t func;
6016	long ctr;
6017};
6018
6019static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6020{
6021	if (!pcwsp->ctr)
6022		goto out_record;
6023	if (func == pcwsp->func) {
6024		pcwsp->ctr++;
6025		return;
6026	}
6027	if (pcwsp->ctr == 1)
6028		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6029	else
6030		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6031	pcwsp->ctr = 0;
6032out_record:
6033	if ((long)func == -1L)
6034		return;
6035	pcwsp->comma = comma;
6036	pcwsp->func = func;
6037	pcwsp->ctr = 1;
6038}
6039
6040static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6041{
6042	if (work->func == wq_barrier_func) {
6043		struct wq_barrier *barr;
6044
6045		barr = container_of(work, struct wq_barrier, work);
6046
6047		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6048		pr_cont("%s BAR(%d)", comma ? "," : "",
6049			task_pid_nr(barr->task));
6050	} else {
6051		if (!comma)
6052			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6053		pr_cont_work_flush(comma, work->func, pcwsp);
6054	}
6055}
6056
6057static void show_pwq(struct pool_workqueue *pwq)
6058{
6059	struct pr_cont_work_struct pcws = { .ctr = 0, };
6060	struct worker_pool *pool = pwq->pool;
6061	struct work_struct *work;
6062	struct worker *worker;
6063	bool has_in_flight = false, has_pending = false;
6064	int bkt;
6065
6066	pr_info("  pwq %d:", pool->id);
6067	pr_cont_pool_info(pool);
6068
6069	pr_cont(" active=%d refcnt=%d%s\n",
6070		pwq->nr_active, pwq->refcnt,
6071		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6072
6073	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6074		if (worker->current_pwq == pwq) {
6075			has_in_flight = true;
6076			break;
6077		}
6078	}
6079	if (has_in_flight) {
6080		bool comma = false;
6081
6082		pr_info("    in-flight:");
6083		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6084			if (worker->current_pwq != pwq)
6085				continue;
6086
6087			pr_cont(" %s", comma ? "," : "");
6088			pr_cont_worker_id(worker);
6089			pr_cont(":%ps", worker->current_func);
6090			list_for_each_entry(work, &worker->scheduled, entry)
6091				pr_cont_work(false, work, &pcws);
6092			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6093			comma = true;
6094		}
6095		pr_cont("\n");
6096	}
6097
6098	list_for_each_entry(work, &pool->worklist, entry) {
6099		if (get_work_pwq(work) == pwq) {
6100			has_pending = true;
6101			break;
6102		}
6103	}
6104	if (has_pending) {
6105		bool comma = false;
6106
6107		pr_info("    pending:");
6108		list_for_each_entry(work, &pool->worklist, entry) {
6109			if (get_work_pwq(work) != pwq)
6110				continue;
6111
6112			pr_cont_work(comma, work, &pcws);
6113			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6114		}
6115		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6116		pr_cont("\n");
6117	}
6118
6119	if (!list_empty(&pwq->inactive_works)) {
6120		bool comma = false;
6121
6122		pr_info("    inactive:");
6123		list_for_each_entry(work, &pwq->inactive_works, entry) {
6124			pr_cont_work(comma, work, &pcws);
6125			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6126		}
6127		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6128		pr_cont("\n");
6129	}
6130}
6131
6132/**
6133 * show_one_workqueue - dump state of specified workqueue
6134 * @wq: workqueue whose state will be printed
6135 */
6136void show_one_workqueue(struct workqueue_struct *wq)
6137{
6138	struct pool_workqueue *pwq;
6139	bool idle = true;
6140	unsigned long irq_flags;
6141
6142	for_each_pwq(pwq, wq) {
6143		if (!pwq_is_empty(pwq)) {
6144			idle = false;
6145			break;
6146		}
6147	}
6148	if (idle) /* Nothing to print for idle workqueue */
6149		return;
6150
6151	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6152
6153	for_each_pwq(pwq, wq) {
6154		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6155		if (!pwq_is_empty(pwq)) {
6156			/*
6157			 * Defer printing to avoid deadlocks in console
6158			 * drivers that queue work while holding locks
6159			 * also taken in their write paths.
6160			 */
6161			printk_deferred_enter();
6162			show_pwq(pwq);
6163			printk_deferred_exit();
6164		}
6165		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6166		/*
6167		 * We could be printing a lot from atomic context, e.g.
6168		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6169		 * hard lockup.
6170		 */
6171		touch_nmi_watchdog();
6172	}
6173
6174}
6175
6176/**
6177 * show_one_worker_pool - dump state of specified worker pool
6178 * @pool: worker pool whose state will be printed
6179 */
6180static void show_one_worker_pool(struct worker_pool *pool)
6181{
6182	struct worker *worker;
6183	bool first = true;
6184	unsigned long irq_flags;
6185	unsigned long hung = 0;
6186
6187	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6188	if (pool->nr_workers == pool->nr_idle)
6189		goto next_pool;
6190
6191	/* How long the first pending work is waiting for a worker. */
6192	if (!list_empty(&pool->worklist))
6193		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6194
6195	/*
6196	 * Defer printing to avoid deadlocks in console drivers that
6197	 * queue work while holding locks also taken in their write
6198	 * paths.
6199	 */
6200	printk_deferred_enter();
6201	pr_info("pool %d:", pool->id);
6202	pr_cont_pool_info(pool);
6203	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6204	if (pool->manager)
6205		pr_cont(" manager: %d",
6206			task_pid_nr(pool->manager->task));
6207	list_for_each_entry(worker, &pool->idle_list, entry) {
6208		pr_cont(" %s", first ? "idle: " : "");
6209		pr_cont_worker_id(worker);
6210		first = false;
6211	}
6212	pr_cont("\n");
6213	printk_deferred_exit();
6214next_pool:
6215	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6216	/*
6217	 * We could be printing a lot from atomic context, e.g.
6218	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6219	 * hard lockup.
6220	 */
6221	touch_nmi_watchdog();
6222
6223}
6224
6225/**
6226 * show_all_workqueues - dump workqueue state
6227 *
6228 * Called from a sysrq handler and prints out all busy workqueues and pools.
6229 */
6230void show_all_workqueues(void)
6231{
6232	struct workqueue_struct *wq;
6233	struct worker_pool *pool;
6234	int pi;
6235
6236	rcu_read_lock();
6237
6238	pr_info("Showing busy workqueues and worker pools:\n");
6239
6240	list_for_each_entry_rcu(wq, &workqueues, list)
6241		show_one_workqueue(wq);
6242
6243	for_each_pool(pool, pi)
6244		show_one_worker_pool(pool);
6245
6246	rcu_read_unlock();
6247}
6248
6249/**
6250 * show_freezable_workqueues - dump freezable workqueue state
6251 *
6252 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6253 * still busy.
6254 */
6255void show_freezable_workqueues(void)
6256{
6257	struct workqueue_struct *wq;
6258
6259	rcu_read_lock();
6260
6261	pr_info("Showing freezable workqueues that are still busy:\n");
6262
6263	list_for_each_entry_rcu(wq, &workqueues, list) {
6264		if (!(wq->flags & WQ_FREEZABLE))
6265			continue;
6266		show_one_workqueue(wq);
6267	}
6268
6269	rcu_read_unlock();
6270}
6271
6272/* used to show worker information through /proc/PID/{comm,stat,status} */
6273void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6274{
6275	int off;
6276
6277	/* always show the actual comm */
6278	off = strscpy(buf, task->comm, size);
6279	if (off < 0)
6280		return;
6281
6282	/* stabilize PF_WQ_WORKER and worker pool association */
6283	mutex_lock(&wq_pool_attach_mutex);
6284
6285	if (task->flags & PF_WQ_WORKER) {
6286		struct worker *worker = kthread_data(task);
6287		struct worker_pool *pool = worker->pool;
 
 
 
6288
6289		if (pool) {
6290			raw_spin_lock_irq(&pool->lock);
6291			/*
6292			 * ->desc tracks information (wq name or
6293			 * set_worker_desc()) for the latest execution.  If
6294			 * current, prepend '+', otherwise '-'.
6295			 */
6296			if (worker->desc[0] != '\0') {
6297				if (worker->current_work)
6298					scnprintf(buf + off, size - off, "+%s",
6299						  worker->desc);
6300				else
6301					scnprintf(buf + off, size - off, "-%s",
6302						  worker->desc);
6303			}
6304			raw_spin_unlock_irq(&pool->lock);
6305		}
 
 
6306	}
6307
6308	mutex_unlock(&wq_pool_attach_mutex);
6309}
6310
6311#ifdef CONFIG_SMP
6312
6313/*
6314 * CPU hotplug.
6315 *
6316 * There are two challenges in supporting CPU hotplug.  Firstly, there
6317 * are a lot of assumptions on strong associations among work, pwq and
6318 * pool which make migrating pending and scheduled works very
6319 * difficult to implement without impacting hot paths.  Secondly,
6320 * worker pools serve mix of short, long and very long running works making
6321 * blocked draining impractical.
6322 *
6323 * This is solved by allowing the pools to be disassociated from the CPU
6324 * running as an unbound one and allowing it to be reattached later if the
6325 * cpu comes back online.
6326 */
6327
6328static void unbind_workers(int cpu)
6329{
6330	struct worker_pool *pool;
6331	struct worker *worker;
6332
6333	for_each_cpu_worker_pool(pool, cpu) {
6334		mutex_lock(&wq_pool_attach_mutex);
6335		raw_spin_lock_irq(&pool->lock);
6336
6337		/*
6338		 * We've blocked all attach/detach operations. Make all workers
6339		 * unbound and set DISASSOCIATED.  Before this, all workers
6340		 * must be on the cpu.  After this, they may become diasporas.
6341		 * And the preemption disabled section in their sched callbacks
6342		 * are guaranteed to see WORKER_UNBOUND since the code here
6343		 * is on the same cpu.
6344		 */
6345		for_each_pool_worker(worker, pool)
6346			worker->flags |= WORKER_UNBOUND;
6347
6348		pool->flags |= POOL_DISASSOCIATED;
6349
6350		/*
6351		 * The handling of nr_running in sched callbacks are disabled
6352		 * now.  Zap nr_running.  After this, nr_running stays zero and
6353		 * need_more_worker() and keep_working() are always true as
6354		 * long as the worklist is not empty.  This pool now behaves as
6355		 * an unbound (in terms of concurrency management) pool which
6356		 * are served by workers tied to the pool.
6357		 */
6358		pool->nr_running = 0;
6359
6360		/*
6361		 * With concurrency management just turned off, a busy
6362		 * worker blocking could lead to lengthy stalls.  Kick off
6363		 * unbound chain execution of currently pending work items.
6364		 */
6365		kick_pool(pool);
6366
6367		raw_spin_unlock_irq(&pool->lock);
6368
6369		for_each_pool_worker(worker, pool)
6370			unbind_worker(worker);
6371
6372		mutex_unlock(&wq_pool_attach_mutex);
6373	}
6374}
6375
6376/**
6377 * rebind_workers - rebind all workers of a pool to the associated CPU
6378 * @pool: pool of interest
6379 *
6380 * @pool->cpu is coming online.  Rebind all workers to the CPU.
6381 */
6382static void rebind_workers(struct worker_pool *pool)
6383{
6384	struct worker *worker;
6385
6386	lockdep_assert_held(&wq_pool_attach_mutex);
6387
6388	/*
6389	 * Restore CPU affinity of all workers.  As all idle workers should
6390	 * be on the run-queue of the associated CPU before any local
6391	 * wake-ups for concurrency management happen, restore CPU affinity
6392	 * of all workers first and then clear UNBOUND.  As we're called
6393	 * from CPU_ONLINE, the following shouldn't fail.
6394	 */
6395	for_each_pool_worker(worker, pool) {
6396		kthread_set_per_cpu(worker->task, pool->cpu);
6397		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6398						  pool_allowed_cpus(pool)) < 0);
6399	}
6400
6401	raw_spin_lock_irq(&pool->lock);
6402
6403	pool->flags &= ~POOL_DISASSOCIATED;
6404
6405	for_each_pool_worker(worker, pool) {
6406		unsigned int worker_flags = worker->flags;
6407
6408		/*
6409		 * We want to clear UNBOUND but can't directly call
6410		 * worker_clr_flags() or adjust nr_running.  Atomically
6411		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6412		 * @worker will clear REBOUND using worker_clr_flags() when
6413		 * it initiates the next execution cycle thus restoring
6414		 * concurrency management.  Note that when or whether
6415		 * @worker clears REBOUND doesn't affect correctness.
6416		 *
6417		 * WRITE_ONCE() is necessary because @worker->flags may be
6418		 * tested without holding any lock in
6419		 * wq_worker_running().  Without it, NOT_RUNNING test may
6420		 * fail incorrectly leading to premature concurrency
6421		 * management operations.
6422		 */
6423		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6424		worker_flags |= WORKER_REBOUND;
6425		worker_flags &= ~WORKER_UNBOUND;
6426		WRITE_ONCE(worker->flags, worker_flags);
6427	}
6428
6429	raw_spin_unlock_irq(&pool->lock);
6430}
6431
6432/**
6433 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6434 * @pool: unbound pool of interest
6435 * @cpu: the CPU which is coming up
6436 *
6437 * An unbound pool may end up with a cpumask which doesn't have any online
6438 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6439 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6440 * online CPU before, cpus_allowed of all its workers should be restored.
6441 */
6442static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6443{
6444	static cpumask_t cpumask;
6445	struct worker *worker;
6446
6447	lockdep_assert_held(&wq_pool_attach_mutex);
6448
6449	/* is @cpu allowed for @pool? */
6450	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6451		return;
6452
6453	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6454
6455	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6456	for_each_pool_worker(worker, pool)
6457		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6458}
6459
6460int workqueue_prepare_cpu(unsigned int cpu)
6461{
6462	struct worker_pool *pool;
6463
6464	for_each_cpu_worker_pool(pool, cpu) {
6465		if (pool->nr_workers)
6466			continue;
6467		if (!create_worker(pool))
6468			return -ENOMEM;
6469	}
6470	return 0;
6471}
6472
6473int workqueue_online_cpu(unsigned int cpu)
6474{
6475	struct worker_pool *pool;
6476	struct workqueue_struct *wq;
6477	int pi;
6478
6479	mutex_lock(&wq_pool_mutex);
6480
 
 
6481	for_each_pool(pool, pi) {
6482		/* BH pools aren't affected by hotplug */
6483		if (pool->flags & POOL_BH)
6484			continue;
6485
6486		mutex_lock(&wq_pool_attach_mutex);
6487		if (pool->cpu == cpu)
6488			rebind_workers(pool);
6489		else if (pool->cpu < 0)
6490			restore_unbound_workers_cpumask(pool, cpu);
6491		mutex_unlock(&wq_pool_attach_mutex);
6492	}
6493
6494	/* update pod affinity of unbound workqueues */
6495	list_for_each_entry(wq, &workqueues, list) {
6496		struct workqueue_attrs *attrs = wq->unbound_attrs;
6497
6498		if (attrs) {
6499			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6500			int tcpu;
6501
6502			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6503				wq_update_pod(wq, tcpu, cpu, true);
6504
6505			mutex_lock(&wq->mutex);
6506			wq_update_node_max_active(wq, -1);
6507			mutex_unlock(&wq->mutex);
6508		}
6509	}
6510
6511	mutex_unlock(&wq_pool_mutex);
6512	return 0;
6513}
6514
6515int workqueue_offline_cpu(unsigned int cpu)
6516{
6517	struct workqueue_struct *wq;
6518
6519	/* unbinding per-cpu workers should happen on the local CPU */
6520	if (WARN_ON(cpu != smp_processor_id()))
6521		return -1;
6522
6523	unbind_workers(cpu);
6524
6525	/* update pod affinity of unbound workqueues */
6526	mutex_lock(&wq_pool_mutex);
 
 
 
6527	list_for_each_entry(wq, &workqueues, list) {
6528		struct workqueue_attrs *attrs = wq->unbound_attrs;
6529
6530		if (attrs) {
6531			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6532			int tcpu;
6533
6534			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6535				wq_update_pod(wq, tcpu, cpu, false);
6536
6537			mutex_lock(&wq->mutex);
6538			wq_update_node_max_active(wq, cpu);
6539			mutex_unlock(&wq->mutex);
6540		}
6541	}
6542	mutex_unlock(&wq_pool_mutex);
6543
6544	return 0;
6545}
6546
6547struct work_for_cpu {
6548	struct work_struct work;
6549	long (*fn)(void *);
6550	void *arg;
6551	long ret;
6552};
6553
6554static void work_for_cpu_fn(struct work_struct *work)
6555{
6556	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6557
6558	wfc->ret = wfc->fn(wfc->arg);
6559}
6560
6561/**
6562 * work_on_cpu_key - run a function in thread context on a particular cpu
6563 * @cpu: the cpu to run on
6564 * @fn: the function to run
6565 * @arg: the function arg
6566 * @key: The lock class key for lock debugging purposes
6567 *
6568 * It is up to the caller to ensure that the cpu doesn't go offline.
6569 * The caller must not hold any locks which would prevent @fn from completing.
6570 *
6571 * Return: The value @fn returns.
6572 */
6573long work_on_cpu_key(int cpu, long (*fn)(void *),
6574		     void *arg, struct lock_class_key *key)
6575{
6576	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6577
6578	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6579	schedule_work_on(cpu, &wfc.work);
6580	flush_work(&wfc.work);
6581	destroy_work_on_stack(&wfc.work);
6582	return wfc.ret;
6583}
6584EXPORT_SYMBOL_GPL(work_on_cpu_key);
6585
6586/**
6587 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6588 * @cpu: the cpu to run on
6589 * @fn:  the function to run
6590 * @arg: the function argument
6591 * @key: The lock class key for lock debugging purposes
6592 *
6593 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6594 * any locks which would prevent @fn from completing.
6595 *
6596 * Return: The value @fn returns.
6597 */
6598long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6599			  void *arg, struct lock_class_key *key)
6600{
6601	long ret = -ENODEV;
6602
6603	cpus_read_lock();
6604	if (cpu_online(cpu))
6605		ret = work_on_cpu_key(cpu, fn, arg, key);
6606	cpus_read_unlock();
6607	return ret;
6608}
6609EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6610#endif /* CONFIG_SMP */
6611
6612#ifdef CONFIG_FREEZER
6613
6614/**
6615 * freeze_workqueues_begin - begin freezing workqueues
6616 *
6617 * Start freezing workqueues.  After this function returns, all freezable
6618 * workqueues will queue new works to their inactive_works list instead of
6619 * pool->worklist.
6620 *
6621 * CONTEXT:
6622 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6623 */
6624void freeze_workqueues_begin(void)
6625{
6626	struct workqueue_struct *wq;
6627
6628	mutex_lock(&wq_pool_mutex);
6629
6630	WARN_ON_ONCE(workqueue_freezing);
6631	workqueue_freezing = true;
6632
6633	list_for_each_entry(wq, &workqueues, list) {
6634		mutex_lock(&wq->mutex);
6635		wq_adjust_max_active(wq);
6636		mutex_unlock(&wq->mutex);
6637	}
6638
6639	mutex_unlock(&wq_pool_mutex);
6640}
6641
6642/**
6643 * freeze_workqueues_busy - are freezable workqueues still busy?
6644 *
6645 * Check whether freezing is complete.  This function must be called
6646 * between freeze_workqueues_begin() and thaw_workqueues().
6647 *
6648 * CONTEXT:
6649 * Grabs and releases wq_pool_mutex.
6650 *
6651 * Return:
6652 * %true if some freezable workqueues are still busy.  %false if freezing
6653 * is complete.
6654 */
6655bool freeze_workqueues_busy(void)
6656{
6657	bool busy = false;
6658	struct workqueue_struct *wq;
6659	struct pool_workqueue *pwq;
6660
6661	mutex_lock(&wq_pool_mutex);
6662
6663	WARN_ON_ONCE(!workqueue_freezing);
6664
6665	list_for_each_entry(wq, &workqueues, list) {
6666		if (!(wq->flags & WQ_FREEZABLE))
6667			continue;
6668		/*
6669		 * nr_active is monotonically decreasing.  It's safe
6670		 * to peek without lock.
6671		 */
6672		rcu_read_lock();
6673		for_each_pwq(pwq, wq) {
6674			WARN_ON_ONCE(pwq->nr_active < 0);
6675			if (pwq->nr_active) {
6676				busy = true;
6677				rcu_read_unlock();
6678				goto out_unlock;
6679			}
6680		}
6681		rcu_read_unlock();
6682	}
6683out_unlock:
6684	mutex_unlock(&wq_pool_mutex);
6685	return busy;
6686}
6687
6688/**
6689 * thaw_workqueues - thaw workqueues
6690 *
6691 * Thaw workqueues.  Normal queueing is restored and all collected
6692 * frozen works are transferred to their respective pool worklists.
6693 *
6694 * CONTEXT:
6695 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6696 */
6697void thaw_workqueues(void)
6698{
6699	struct workqueue_struct *wq;
6700
6701	mutex_lock(&wq_pool_mutex);
6702
6703	if (!workqueue_freezing)
6704		goto out_unlock;
6705
6706	workqueue_freezing = false;
6707
6708	/* restore max_active and repopulate worklist */
6709	list_for_each_entry(wq, &workqueues, list) {
6710		mutex_lock(&wq->mutex);
6711		wq_adjust_max_active(wq);
6712		mutex_unlock(&wq->mutex);
6713	}
6714
6715out_unlock:
6716	mutex_unlock(&wq_pool_mutex);
6717}
6718#endif /* CONFIG_FREEZER */
6719
6720static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6721{
6722	LIST_HEAD(ctxs);
6723	int ret = 0;
6724	struct workqueue_struct *wq;
6725	struct apply_wqattrs_ctx *ctx, *n;
6726
6727	lockdep_assert_held(&wq_pool_mutex);
6728
6729	list_for_each_entry(wq, &workqueues, list) {
6730		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6731			continue;
6732
6733		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6734		if (IS_ERR(ctx)) {
6735			ret = PTR_ERR(ctx);
6736			break;
6737		}
6738
6739		list_add_tail(&ctx->list, &ctxs);
6740	}
6741
6742	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6743		if (!ret)
6744			apply_wqattrs_commit(ctx);
6745		apply_wqattrs_cleanup(ctx);
6746	}
6747
6748	if (!ret) {
6749		mutex_lock(&wq_pool_attach_mutex);
6750		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6751		mutex_unlock(&wq_pool_attach_mutex);
6752	}
6753	return ret;
6754}
6755
6756/**
6757 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6758 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6759 *
6760 * This function can be called from cpuset code to provide a set of isolated
6761 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6762 * either cpus_read_lock or cpus_write_lock.
6763 */
6764int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6765{
6766	cpumask_var_t cpumask;
6767	int ret = 0;
6768
6769	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6770		return -ENOMEM;
6771
6772	lockdep_assert_cpus_held();
6773	mutex_lock(&wq_pool_mutex);
6774
6775	/* Save the current isolated cpumask & export it via sysfs */
6776	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6777
6778	/*
6779	 * If the operation fails, it will fall back to
6780	 * wq_requested_unbound_cpumask which is initially set to
6781	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6782	 * by any subsequent write to workqueue/cpumask sysfs file.
6783	 */
6784	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6785		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6786	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6787		ret = workqueue_apply_unbound_cpumask(cpumask);
6788
 
 
 
 
6789	mutex_unlock(&wq_pool_mutex);
6790	free_cpumask_var(cpumask);
6791	return ret;
6792}
6793
6794static int parse_affn_scope(const char *val)
6795{
6796	int i;
6797
6798	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6799		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6800			return i;
6801	}
6802	return -EINVAL;
6803}
6804
6805static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6806{
6807	struct workqueue_struct *wq;
6808	int affn, cpu;
6809
6810	affn = parse_affn_scope(val);
6811	if (affn < 0)
6812		return affn;
6813	if (affn == WQ_AFFN_DFL)
6814		return -EINVAL;
6815
6816	cpus_read_lock();
6817	mutex_lock(&wq_pool_mutex);
6818
6819	wq_affn_dfl = affn;
6820
6821	list_for_each_entry(wq, &workqueues, list) {
6822		for_each_online_cpu(cpu) {
6823			wq_update_pod(wq, cpu, cpu, true);
6824		}
6825	}
6826
6827	mutex_unlock(&wq_pool_mutex);
6828	cpus_read_unlock();
6829
6830	return 0;
6831}
6832
6833static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6834{
6835	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6836}
6837
6838static const struct kernel_param_ops wq_affn_dfl_ops = {
6839	.set	= wq_affn_dfl_set,
6840	.get	= wq_affn_dfl_get,
6841};
6842
6843module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6844
6845#ifdef CONFIG_SYSFS
6846/*
6847 * Workqueues with WQ_SYSFS flag set is visible to userland via
6848 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6849 * following attributes.
6850 *
6851 *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6852 *  max_active		RW int	: maximum number of in-flight work items
6853 *
6854 * Unbound workqueues have the following extra attributes.
6855 *
6856 *  nice		RW int	: nice value of the workers
6857 *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6858 *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6859 *  affinity_strict	RW bool : worker CPU affinity is strict
6860 */
6861struct wq_device {
6862	struct workqueue_struct		*wq;
6863	struct device			dev;
6864};
6865
6866static struct workqueue_struct *dev_to_wq(struct device *dev)
6867{
6868	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6869
6870	return wq_dev->wq;
6871}
6872
6873static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6874			    char *buf)
6875{
6876	struct workqueue_struct *wq = dev_to_wq(dev);
6877
6878	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6879}
6880static DEVICE_ATTR_RO(per_cpu);
6881
6882static ssize_t max_active_show(struct device *dev,
6883			       struct device_attribute *attr, char *buf)
6884{
6885	struct workqueue_struct *wq = dev_to_wq(dev);
6886
6887	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6888}
6889
6890static ssize_t max_active_store(struct device *dev,
6891				struct device_attribute *attr, const char *buf,
6892				size_t count)
6893{
6894	struct workqueue_struct *wq = dev_to_wq(dev);
6895	int val;
6896
6897	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6898		return -EINVAL;
6899
6900	workqueue_set_max_active(wq, val);
6901	return count;
6902}
6903static DEVICE_ATTR_RW(max_active);
6904
6905static struct attribute *wq_sysfs_attrs[] = {
6906	&dev_attr_per_cpu.attr,
6907	&dev_attr_max_active.attr,
6908	NULL,
6909};
6910ATTRIBUTE_GROUPS(wq_sysfs);
6911
6912static void apply_wqattrs_lock(void)
6913{
6914	/* CPUs should stay stable across pwq creations and installations */
6915	cpus_read_lock();
6916	mutex_lock(&wq_pool_mutex);
6917}
6918
6919static void apply_wqattrs_unlock(void)
6920{
6921	mutex_unlock(&wq_pool_mutex);
6922	cpus_read_unlock();
6923}
6924
6925static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6926			    char *buf)
6927{
6928	struct workqueue_struct *wq = dev_to_wq(dev);
6929	int written;
6930
6931	mutex_lock(&wq->mutex);
6932	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6933	mutex_unlock(&wq->mutex);
6934
6935	return written;
6936}
6937
6938/* prepare workqueue_attrs for sysfs store operations */
6939static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6940{
6941	struct workqueue_attrs *attrs;
6942
6943	lockdep_assert_held(&wq_pool_mutex);
6944
6945	attrs = alloc_workqueue_attrs();
6946	if (!attrs)
6947		return NULL;
6948
6949	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6950	return attrs;
6951}
6952
6953static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6954			     const char *buf, size_t count)
6955{
6956	struct workqueue_struct *wq = dev_to_wq(dev);
6957	struct workqueue_attrs *attrs;
6958	int ret = -ENOMEM;
6959
6960	apply_wqattrs_lock();
6961
6962	attrs = wq_sysfs_prep_attrs(wq);
6963	if (!attrs)
6964		goto out_unlock;
6965
6966	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6967	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6968		ret = apply_workqueue_attrs_locked(wq, attrs);
6969	else
6970		ret = -EINVAL;
6971
6972out_unlock:
6973	apply_wqattrs_unlock();
6974	free_workqueue_attrs(attrs);
6975	return ret ?: count;
6976}
6977
6978static ssize_t wq_cpumask_show(struct device *dev,
6979			       struct device_attribute *attr, char *buf)
6980{
6981	struct workqueue_struct *wq = dev_to_wq(dev);
6982	int written;
6983
6984	mutex_lock(&wq->mutex);
6985	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6986			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6987	mutex_unlock(&wq->mutex);
6988	return written;
6989}
6990
6991static ssize_t wq_cpumask_store(struct device *dev,
6992				struct device_attribute *attr,
6993				const char *buf, size_t count)
6994{
6995	struct workqueue_struct *wq = dev_to_wq(dev);
6996	struct workqueue_attrs *attrs;
6997	int ret = -ENOMEM;
6998
6999	apply_wqattrs_lock();
7000
7001	attrs = wq_sysfs_prep_attrs(wq);
7002	if (!attrs)
7003		goto out_unlock;
7004
7005	ret = cpumask_parse(buf, attrs->cpumask);
7006	if (!ret)
7007		ret = apply_workqueue_attrs_locked(wq, attrs);
7008
7009out_unlock:
7010	apply_wqattrs_unlock();
7011	free_workqueue_attrs(attrs);
7012	return ret ?: count;
7013}
7014
7015static ssize_t wq_affn_scope_show(struct device *dev,
7016				  struct device_attribute *attr, char *buf)
7017{
7018	struct workqueue_struct *wq = dev_to_wq(dev);
7019	int written;
7020
7021	mutex_lock(&wq->mutex);
7022	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7023		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7024				    wq_affn_names[WQ_AFFN_DFL],
7025				    wq_affn_names[wq_affn_dfl]);
7026	else
7027		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7028				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7029	mutex_unlock(&wq->mutex);
7030
7031	return written;
7032}
7033
7034static ssize_t wq_affn_scope_store(struct device *dev,
7035				   struct device_attribute *attr,
7036				   const char *buf, size_t count)
7037{
7038	struct workqueue_struct *wq = dev_to_wq(dev);
7039	struct workqueue_attrs *attrs;
7040	int affn, ret = -ENOMEM;
7041
7042	affn = parse_affn_scope(buf);
7043	if (affn < 0)
7044		return affn;
7045
7046	apply_wqattrs_lock();
7047	attrs = wq_sysfs_prep_attrs(wq);
7048	if (attrs) {
7049		attrs->affn_scope = affn;
7050		ret = apply_workqueue_attrs_locked(wq, attrs);
7051	}
7052	apply_wqattrs_unlock();
7053	free_workqueue_attrs(attrs);
7054	return ret ?: count;
7055}
7056
7057static ssize_t wq_affinity_strict_show(struct device *dev,
7058				       struct device_attribute *attr, char *buf)
7059{
7060	struct workqueue_struct *wq = dev_to_wq(dev);
7061
7062	return scnprintf(buf, PAGE_SIZE, "%d\n",
7063			 wq->unbound_attrs->affn_strict);
7064}
7065
7066static ssize_t wq_affinity_strict_store(struct device *dev,
7067					struct device_attribute *attr,
7068					const char *buf, size_t count)
7069{
7070	struct workqueue_struct *wq = dev_to_wq(dev);
7071	struct workqueue_attrs *attrs;
7072	int v, ret = -ENOMEM;
7073
7074	if (sscanf(buf, "%d", &v) != 1)
7075		return -EINVAL;
7076
7077	apply_wqattrs_lock();
7078	attrs = wq_sysfs_prep_attrs(wq);
7079	if (attrs) {
7080		attrs->affn_strict = (bool)v;
7081		ret = apply_workqueue_attrs_locked(wq, attrs);
7082	}
7083	apply_wqattrs_unlock();
7084	free_workqueue_attrs(attrs);
7085	return ret ?: count;
7086}
7087
7088static struct device_attribute wq_sysfs_unbound_attrs[] = {
7089	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7090	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7091	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7092	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7093	__ATTR_NULL,
7094};
7095
7096static const struct bus_type wq_subsys = {
7097	.name				= "workqueue",
7098	.dev_groups			= wq_sysfs_groups,
7099};
7100
7101/**
7102 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7103 *  @cpumask: the cpumask to set
7104 *
7105 *  The low-level workqueues cpumask is a global cpumask that limits
7106 *  the affinity of all unbound workqueues.  This function check the @cpumask
7107 *  and apply it to all unbound workqueues and updates all pwqs of them.
7108 *
7109 *  Return:	0	- Success
7110 *		-EINVAL	- Invalid @cpumask
7111 *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7112 */
7113static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7114{
7115	int ret = -EINVAL;
7116
7117	/*
7118	 * Not excluding isolated cpus on purpose.
7119	 * If the user wishes to include them, we allow that.
7120	 */
7121	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7122	if (!cpumask_empty(cpumask)) {
 
7123		apply_wqattrs_lock();
7124		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7125		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
7126			ret = 0;
7127			goto out_unlock;
7128		}
7129
7130		ret = workqueue_apply_unbound_cpumask(cpumask);
7131
7132out_unlock:
7133		apply_wqattrs_unlock();
7134	}
7135
7136	return ret;
7137}
7138
7139static ssize_t __wq_cpumask_show(struct device *dev,
7140		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7141{
7142	int written;
7143
7144	mutex_lock(&wq_pool_mutex);
7145	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7146	mutex_unlock(&wq_pool_mutex);
7147
7148	return written;
7149}
7150
7151static ssize_t wq_unbound_cpumask_show(struct device *dev,
7152		struct device_attribute *attr, char *buf)
7153{
7154	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7155}
 
7156
7157static ssize_t wq_requested_cpumask_show(struct device *dev,
7158		struct device_attribute *attr, char *buf)
7159{
7160	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7161}
 
7162
7163static ssize_t wq_isolated_cpumask_show(struct device *dev,
7164		struct device_attribute *attr, char *buf)
7165{
7166	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7167}
7168
7169static ssize_t wq_unbound_cpumask_store(struct device *dev,
7170		struct device_attribute *attr, const char *buf, size_t count)
7171{
7172	cpumask_var_t cpumask;
7173	int ret;
7174
7175	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7176		return -ENOMEM;
7177
7178	ret = cpumask_parse(buf, cpumask);
7179	if (!ret)
7180		ret = workqueue_set_unbound_cpumask(cpumask);
7181
7182	free_cpumask_var(cpumask);
7183	return ret ? ret : count;
7184}
 
7185
7186static struct device_attribute wq_sysfs_cpumask_attrs[] = {
7187	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
7188	       wq_unbound_cpumask_store),
7189	__ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
7190	__ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
7191	__ATTR_NULL,
7192};
 
7193
7194static int __init wq_sysfs_init(void)
7195{
7196	struct device *dev_root;
7197	int err;
7198
7199	err = subsys_virtual_register(&wq_subsys, NULL);
7200	if (err)
7201		return err;
7202
7203	dev_root = bus_get_dev_root(&wq_subsys);
7204	if (dev_root) {
7205		struct device_attribute *attr;
7206
7207		for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
7208			err = device_create_file(dev_root, attr);
7209			if (err)
7210				break;
7211		}
7212		put_device(dev_root);
7213	}
7214	return err;
7215}
7216core_initcall(wq_sysfs_init);
7217
7218static void wq_device_release(struct device *dev)
7219{
7220	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7221
7222	kfree(wq_dev);
7223}
7224
7225/**
7226 * workqueue_sysfs_register - make a workqueue visible in sysfs
7227 * @wq: the workqueue to register
7228 *
7229 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7230 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7231 * which is the preferred method.
7232 *
7233 * Workqueue user should use this function directly iff it wants to apply
7234 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7235 * apply_workqueue_attrs() may race against userland updating the
7236 * attributes.
7237 *
7238 * Return: 0 on success, -errno on failure.
7239 */
7240int workqueue_sysfs_register(struct workqueue_struct *wq)
7241{
7242	struct wq_device *wq_dev;
7243	int ret;
7244
7245	/*
7246	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7247	 * ordered workqueues.
7248	 */
7249	if (WARN_ON(wq->flags & __WQ_ORDERED))
7250		return -EINVAL;
7251
7252	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7253	if (!wq_dev)
7254		return -ENOMEM;
7255
7256	wq_dev->wq = wq;
7257	wq_dev->dev.bus = &wq_subsys;
7258	wq_dev->dev.release = wq_device_release;
7259	dev_set_name(&wq_dev->dev, "%s", wq->name);
7260
7261	/*
7262	 * unbound_attrs are created separately.  Suppress uevent until
7263	 * everything is ready.
7264	 */
7265	dev_set_uevent_suppress(&wq_dev->dev, true);
7266
7267	ret = device_register(&wq_dev->dev);
7268	if (ret) {
7269		put_device(&wq_dev->dev);
7270		wq->wq_dev = NULL;
7271		return ret;
7272	}
7273
7274	if (wq->flags & WQ_UNBOUND) {
7275		struct device_attribute *attr;
7276
7277		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7278			ret = device_create_file(&wq_dev->dev, attr);
7279			if (ret) {
7280				device_unregister(&wq_dev->dev);
7281				wq->wq_dev = NULL;
7282				return ret;
7283			}
7284		}
7285	}
7286
7287	dev_set_uevent_suppress(&wq_dev->dev, false);
7288	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7289	return 0;
7290}
7291
7292/**
7293 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7294 * @wq: the workqueue to unregister
7295 *
7296 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7297 */
7298static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7299{
7300	struct wq_device *wq_dev = wq->wq_dev;
7301
7302	if (!wq->wq_dev)
7303		return;
7304
7305	wq->wq_dev = NULL;
7306	device_unregister(&wq_dev->dev);
7307}
7308#else	/* CONFIG_SYSFS */
7309static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7310#endif	/* CONFIG_SYSFS */
7311
7312/*
7313 * Workqueue watchdog.
7314 *
7315 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7316 * flush dependency, a concurrency managed work item which stays RUNNING
7317 * indefinitely.  Workqueue stalls can be very difficult to debug as the
7318 * usual warning mechanisms don't trigger and internal workqueue state is
7319 * largely opaque.
7320 *
7321 * Workqueue watchdog monitors all worker pools periodically and dumps
7322 * state if some pools failed to make forward progress for a while where
7323 * forward progress is defined as the first item on ->worklist changing.
7324 *
7325 * This mechanism is controlled through the kernel parameter
7326 * "workqueue.watchdog_thresh" which can be updated at runtime through the
7327 * corresponding sysfs parameter file.
7328 */
7329#ifdef CONFIG_WQ_WATCHDOG
7330
7331static unsigned long wq_watchdog_thresh = 30;
7332static struct timer_list wq_watchdog_timer;
7333
7334static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7335static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7336
 
 
 
7337/*
7338 * Show workers that might prevent the processing of pending work items.
7339 * The only candidates are CPU-bound workers in the running state.
7340 * Pending work items should be handled by another idle worker
7341 * in all other situations.
7342 */
7343static void show_cpu_pool_hog(struct worker_pool *pool)
7344{
7345	struct worker *worker;
7346	unsigned long irq_flags;
7347	int bkt;
7348
7349	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7350
7351	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7352		if (task_is_running(worker->task)) {
7353			/*
7354			 * Defer printing to avoid deadlocks in console
7355			 * drivers that queue work while holding locks
7356			 * also taken in their write paths.
7357			 */
7358			printk_deferred_enter();
7359
7360			pr_info("pool %d:\n", pool->id);
7361			sched_show_task(worker->task);
7362
7363			printk_deferred_exit();
7364		}
7365	}
7366
7367	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7368}
7369
7370static void show_cpu_pools_hogs(void)
7371{
7372	struct worker_pool *pool;
7373	int pi;
7374
7375	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7376
7377	rcu_read_lock();
7378
7379	for_each_pool(pool, pi) {
7380		if (pool->cpu_stall)
7381			show_cpu_pool_hog(pool);
7382
7383	}
7384
7385	rcu_read_unlock();
7386}
7387
 
 
 
 
 
 
 
 
 
 
7388static void wq_watchdog_reset_touched(void)
7389{
7390	int cpu;
7391
7392	wq_watchdog_touched = jiffies;
7393	for_each_possible_cpu(cpu)
7394		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7395}
7396
7397static void wq_watchdog_timer_fn(struct timer_list *unused)
7398{
7399	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7400	bool lockup_detected = false;
7401	bool cpu_pool_stall = false;
7402	unsigned long now = jiffies;
7403	struct worker_pool *pool;
7404	int pi;
7405
7406	if (!thresh)
7407		return;
7408
7409	rcu_read_lock();
7410
7411	for_each_pool(pool, pi) {
7412		unsigned long pool_ts, touched, ts;
7413
7414		pool->cpu_stall = false;
7415		if (list_empty(&pool->worklist))
7416			continue;
7417
7418		/*
7419		 * If a virtual machine is stopped by the host it can look to
7420		 * the watchdog like a stall.
7421		 */
7422		kvm_check_and_clear_guest_paused();
7423
7424		/* get the latest of pool and touched timestamps */
7425		if (pool->cpu >= 0)
7426			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7427		else
7428			touched = READ_ONCE(wq_watchdog_touched);
7429		pool_ts = READ_ONCE(pool->watchdog_ts);
7430
7431		if (time_after(pool_ts, touched))
7432			ts = pool_ts;
7433		else
7434			ts = touched;
7435
7436		/* did we stall? */
7437		if (time_after(now, ts + thresh)) {
7438			lockup_detected = true;
7439			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7440				pool->cpu_stall = true;
7441				cpu_pool_stall = true;
7442			}
7443			pr_emerg("BUG: workqueue lockup - pool");
7444			pr_cont_pool_info(pool);
7445			pr_cont(" stuck for %us!\n",
7446				jiffies_to_msecs(now - pool_ts) / 1000);
7447		}
7448
7449
7450	}
7451
7452	rcu_read_unlock();
7453
7454	if (lockup_detected)
7455		show_all_workqueues();
7456
7457	if (cpu_pool_stall)
7458		show_cpu_pools_hogs();
7459
 
 
 
7460	wq_watchdog_reset_touched();
7461	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7462}
7463
7464notrace void wq_watchdog_touch(int cpu)
7465{
 
 
 
 
7466	if (cpu >= 0)
7467		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
 
 
7468
7469	wq_watchdog_touched = jiffies;
 
 
7470}
7471
7472static void wq_watchdog_set_thresh(unsigned long thresh)
7473{
7474	wq_watchdog_thresh = 0;
7475	del_timer_sync(&wq_watchdog_timer);
7476
7477	if (thresh) {
7478		wq_watchdog_thresh = thresh;
7479		wq_watchdog_reset_touched();
7480		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7481	}
7482}
7483
7484static int wq_watchdog_param_set_thresh(const char *val,
7485					const struct kernel_param *kp)
7486{
7487	unsigned long thresh;
7488	int ret;
7489
7490	ret = kstrtoul(val, 0, &thresh);
7491	if (ret)
7492		return ret;
7493
7494	if (system_wq)
7495		wq_watchdog_set_thresh(thresh);
7496	else
7497		wq_watchdog_thresh = thresh;
7498
7499	return 0;
7500}
7501
7502static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7503	.set	= wq_watchdog_param_set_thresh,
7504	.get	= param_get_ulong,
7505};
7506
7507module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7508		0644);
7509
7510static void wq_watchdog_init(void)
7511{
7512	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7513	wq_watchdog_set_thresh(wq_watchdog_thresh);
7514}
7515
7516#else	/* CONFIG_WQ_WATCHDOG */
7517
7518static inline void wq_watchdog_init(void) { }
7519
7520#endif	/* CONFIG_WQ_WATCHDOG */
7521
7522static void bh_pool_kick_normal(struct irq_work *irq_work)
7523{
7524	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7525}
7526
7527static void bh_pool_kick_highpri(struct irq_work *irq_work)
7528{
7529	raise_softirq_irqoff(HI_SOFTIRQ);
7530}
7531
7532static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7533{
7534	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7535		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7536			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7537		return;
7538	}
7539
7540	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7541}
7542
7543static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7544{
7545	BUG_ON(init_worker_pool(pool));
7546	pool->cpu = cpu;
7547	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7548	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7549	pool->attrs->nice = nice;
7550	pool->attrs->affn_strict = true;
7551	pool->node = cpu_to_node(cpu);
7552
7553	/* alloc pool ID */
7554	mutex_lock(&wq_pool_mutex);
7555	BUG_ON(worker_pool_assign_id(pool));
7556	mutex_unlock(&wq_pool_mutex);
7557}
7558
7559/**
7560 * workqueue_init_early - early init for workqueue subsystem
7561 *
7562 * This is the first step of three-staged workqueue subsystem initialization and
7563 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7564 * up. It sets up all the data structures and system workqueues and allows early
7565 * boot code to create workqueues and queue/cancel work items. Actual work item
7566 * execution starts only after kthreads can be created and scheduled right
7567 * before early initcalls.
7568 */
7569void __init workqueue_init_early(void)
7570{
7571	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7572	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7573	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7574						       bh_pool_kick_highpri };
7575	int i, cpu;
7576
7577	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7578
 
7579	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7580	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7581	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7582
 
7583	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7584	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7585	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7586	if (!cpumask_empty(&wq_cmdline_cpumask))
7587		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7588
7589	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7590
7591	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7592
7593	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7594	BUG_ON(!wq_update_pod_attrs_buf);
7595
7596	/*
7597	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7598	 * This allows workqueue items to be moved to HK CPUs.
7599	 */
7600	if (housekeeping_enabled(HK_TYPE_TICK))
7601		wq_power_efficient = true;
7602
7603	/* initialize WQ_AFFN_SYSTEM pods */
7604	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7605	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7606	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7607	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7608
7609	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7610
7611	pt->nr_pods = 1;
7612	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7613	pt->pod_node[0] = NUMA_NO_NODE;
7614	pt->cpu_pod[0] = 0;
7615
7616	/* initialize BH and CPU pools */
7617	for_each_possible_cpu(cpu) {
7618		struct worker_pool *pool;
7619
7620		i = 0;
7621		for_each_bh_worker_pool(pool, cpu) {
7622			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7623			pool->flags |= POOL_BH;
7624			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7625			i++;
7626		}
7627
7628		i = 0;
7629		for_each_cpu_worker_pool(pool, cpu)
7630			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7631	}
7632
7633	/* create default unbound and ordered wq attrs */
7634	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7635		struct workqueue_attrs *attrs;
7636
7637		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7638		attrs->nice = std_nice[i];
7639		unbound_std_wq_attrs[i] = attrs;
7640
7641		/*
7642		 * An ordered wq should have only one pwq as ordering is
7643		 * guaranteed by max_active which is enforced by pwqs.
7644		 */
7645		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7646		attrs->nice = std_nice[i];
7647		attrs->ordered = true;
7648		ordered_wq_attrs[i] = attrs;
7649	}
7650
7651	system_wq = alloc_workqueue("events", 0, 0);
7652	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7653	system_long_wq = alloc_workqueue("events_long", 0, 0);
7654	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7655					    WQ_MAX_ACTIVE);
7656	system_freezable_wq = alloc_workqueue("events_freezable",
7657					      WQ_FREEZABLE, 0);
7658	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7659					      WQ_POWER_EFFICIENT, 0);
7660	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7661					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7662					      0);
7663	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7664	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7665					       WQ_BH | WQ_HIGHPRI, 0);
7666	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7667	       !system_unbound_wq || !system_freezable_wq ||
7668	       !system_power_efficient_wq ||
7669	       !system_freezable_power_efficient_wq ||
7670	       !system_bh_wq || !system_bh_highpri_wq);
7671}
7672
7673static void __init wq_cpu_intensive_thresh_init(void)
7674{
7675	unsigned long thresh;
7676	unsigned long bogo;
7677
7678	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7679	BUG_ON(IS_ERR(pwq_release_worker));
7680
7681	/* if the user set it to a specific value, keep it */
7682	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7683		return;
7684
7685	/*
7686	 * The default of 10ms is derived from the fact that most modern (as of
7687	 * 2023) processors can do a lot in 10ms and that it's just below what
7688	 * most consider human-perceivable. However, the kernel also runs on a
7689	 * lot slower CPUs including microcontrollers where the threshold is way
7690	 * too low.
7691	 *
7692	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7693	 * This is by no means accurate but it doesn't have to be. The mechanism
7694	 * is still useful even when the threshold is fully scaled up. Also, as
7695	 * the reports would usually be applicable to everyone, some machines
7696	 * operating on longer thresholds won't significantly diminish their
7697	 * usefulness.
7698	 */
7699	thresh = 10 * USEC_PER_MSEC;
7700
7701	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7702	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7703	if (bogo < 4000)
7704		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7705
7706	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7707		 loops_per_jiffy, bogo, thresh);
7708
7709	wq_cpu_intensive_thresh_us = thresh;
7710}
7711
7712/**
7713 * workqueue_init - bring workqueue subsystem fully online
7714 *
7715 * This is the second step of three-staged workqueue subsystem initialization
7716 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7717 * been created and work items queued on them, but there are no kworkers
7718 * executing the work items yet. Populate the worker pools with the initial
7719 * workers and enable future kworker creations.
7720 */
7721void __init workqueue_init(void)
7722{
7723	struct workqueue_struct *wq;
7724	struct worker_pool *pool;
7725	int cpu, bkt;
7726
7727	wq_cpu_intensive_thresh_init();
7728
7729	mutex_lock(&wq_pool_mutex);
7730
7731	/*
7732	 * Per-cpu pools created earlier could be missing node hint. Fix them
7733	 * up. Also, create a rescuer for workqueues that requested it.
7734	 */
7735	for_each_possible_cpu(cpu) {
7736		for_each_bh_worker_pool(pool, cpu)
7737			pool->node = cpu_to_node(cpu);
7738		for_each_cpu_worker_pool(pool, cpu)
7739			pool->node = cpu_to_node(cpu);
7740	}
7741
7742	list_for_each_entry(wq, &workqueues, list) {
7743		WARN(init_rescuer(wq),
7744		     "workqueue: failed to create early rescuer for %s",
7745		     wq->name);
7746	}
7747
7748	mutex_unlock(&wq_pool_mutex);
7749
7750	/*
7751	 * Create the initial workers. A BH pool has one pseudo worker that
7752	 * represents the shared BH execution context and thus doesn't get
7753	 * affected by hotplug events. Create the BH pseudo workers for all
7754	 * possible CPUs here.
7755	 */
7756	for_each_possible_cpu(cpu)
7757		for_each_bh_worker_pool(pool, cpu)
7758			BUG_ON(!create_worker(pool));
7759
7760	for_each_online_cpu(cpu) {
7761		for_each_cpu_worker_pool(pool, cpu) {
7762			pool->flags &= ~POOL_DISASSOCIATED;
7763			BUG_ON(!create_worker(pool));
7764		}
7765	}
7766
7767	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7768		BUG_ON(!create_worker(pool));
7769
7770	wq_online = true;
7771	wq_watchdog_init();
7772}
7773
7774/*
7775 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7776 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7777 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7778 */
7779static void __init init_pod_type(struct wq_pod_type *pt,
7780				 bool (*cpus_share_pod)(int, int))
7781{
7782	int cur, pre, cpu, pod;
7783
7784	pt->nr_pods = 0;
7785
7786	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7787	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7788	BUG_ON(!pt->cpu_pod);
7789
7790	for_each_possible_cpu(cur) {
7791		for_each_possible_cpu(pre) {
7792			if (pre >= cur) {
7793				pt->cpu_pod[cur] = pt->nr_pods++;
7794				break;
7795			}
7796			if (cpus_share_pod(cur, pre)) {
7797				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7798				break;
7799			}
7800		}
7801	}
7802
7803	/* init the rest to match @pt->cpu_pod[] */
7804	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7805	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7806	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7807
7808	for (pod = 0; pod < pt->nr_pods; pod++)
7809		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7810
7811	for_each_possible_cpu(cpu) {
7812		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7813		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7814	}
7815}
7816
7817static bool __init cpus_dont_share(int cpu0, int cpu1)
7818{
7819	return false;
7820}
7821
7822static bool __init cpus_share_smt(int cpu0, int cpu1)
7823{
7824#ifdef CONFIG_SCHED_SMT
7825	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7826#else
7827	return false;
7828#endif
7829}
7830
7831static bool __init cpus_share_numa(int cpu0, int cpu1)
7832{
7833	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7834}
7835
7836/**
7837 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7838 *
7839 * This is the third step of three-staged workqueue subsystem initialization and
7840 * invoked after SMP and topology information are fully initialized. It
7841 * initializes the unbound CPU pods accordingly.
7842 */
7843void __init workqueue_init_topology(void)
7844{
7845	struct workqueue_struct *wq;
7846	int cpu;
7847
7848	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7849	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7850	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7851	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7852
7853	wq_topo_initialized = true;
7854
7855	mutex_lock(&wq_pool_mutex);
7856
7857	/*
7858	 * Workqueues allocated earlier would have all CPUs sharing the default
7859	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7860	 * combinations to apply per-pod sharing.
7861	 */
7862	list_for_each_entry(wq, &workqueues, list) {
7863		for_each_online_cpu(cpu)
7864			wq_update_pod(wq, cpu, cpu, true);
7865		if (wq->flags & WQ_UNBOUND) {
7866			mutex_lock(&wq->mutex);
7867			wq_update_node_max_active(wq, -1);
7868			mutex_unlock(&wq->mutex);
7869		}
7870	}
7871
7872	mutex_unlock(&wq_pool_mutex);
7873}
7874
7875void __warn_flushing_systemwide_wq(void)
7876{
7877	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7878	dump_stack();
7879}
7880EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7881
7882static int __init workqueue_unbound_cpus_setup(char *str)
7883{
7884	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7885		cpumask_clear(&wq_cmdline_cpumask);
7886		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7887	}
7888
7889	return 1;
7890}
7891__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);