Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_format.h"
   9#include "xfs_log_format.h"
  10#include "xfs_trans_resv.h"
  11#include "xfs_bit.h"
  12#include "xfs_shared.h"
  13#include "xfs_mount.h"
  14#include "xfs_ag.h"
  15#include "xfs_defer.h"
  16#include "xfs_trans.h"
  17#include "xfs_trans_priv.h"
  18#include "xfs_extfree_item.h"
  19#include "xfs_log.h"
  20#include "xfs_btree.h"
  21#include "xfs_rmap.h"
  22#include "xfs_alloc.h"
  23#include "xfs_bmap.h"
  24#include "xfs_trace.h"
  25#include "xfs_error.h"
  26#include "xfs_log_priv.h"
  27#include "xfs_log_recover.h"
  28#include "xfs_rtalloc.h"
  29#include "xfs_inode.h"
  30#include "xfs_rtbitmap.h"
  31#include "xfs_rtgroup.h"
  32
  33struct kmem_cache	*xfs_efi_cache;
  34struct kmem_cache	*xfs_efd_cache;
  35
  36static const struct xfs_item_ops xfs_efi_item_ops;
  37
  38static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
  39{
  40	return container_of(lip, struct xfs_efi_log_item, efi_item);
  41}
  42
  43STATIC void
  44xfs_efi_item_free(
  45	struct xfs_efi_log_item	*efip)
  46{
  47	kvfree(efip->efi_item.li_lv_shadow);
  48	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
  49		kfree(efip);
  50	else
  51		kmem_cache_free(xfs_efi_cache, efip);
  52}
  53
  54/*
  55 * Freeing the efi requires that we remove it from the AIL if it has already
  56 * been placed there. However, the EFI may not yet have been placed in the AIL
  57 * when called by xfs_efi_release() from EFD processing due to the ordering of
  58 * committed vs unpin operations in bulk insert operations. Hence the reference
  59 * count to ensure only the last caller frees the EFI.
  60 */
  61STATIC void
  62xfs_efi_release(
  63	struct xfs_efi_log_item	*efip)
  64{
  65	ASSERT(atomic_read(&efip->efi_refcount) > 0);
  66	if (!atomic_dec_and_test(&efip->efi_refcount))
  67		return;
  68
  69	xfs_trans_ail_delete(&efip->efi_item, 0);
  70	xfs_efi_item_free(efip);
  71}
  72
  73STATIC void
  74xfs_efi_item_size(
  75	struct xfs_log_item	*lip,
  76	int			*nvecs,
  77	int			*nbytes)
  78{
  79	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
  80
  81	*nvecs += 1;
  82	*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
  83}
  84
  85/*
  86 * This is called to fill in the vector of log iovecs for the
  87 * given efi log item. We use only 1 iovec, and we point that
  88 * at the efi_log_format structure embedded in the efi item.
  89 * It is at this point that we assert that all of the extent
  90 * slots in the efi item have been filled.
  91 */
  92STATIC void
  93xfs_efi_item_format(
  94	struct xfs_log_item	*lip,
  95	struct xfs_log_vec	*lv)
  96{
  97	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
  98	struct xfs_log_iovec	*vecp = NULL;
  99
 100	ASSERT(atomic_read(&efip->efi_next_extent) ==
 101				efip->efi_format.efi_nextents);
 102	ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT);
 103
 104	efip->efi_format.efi_type = lip->li_type;
 105	efip->efi_format.efi_size = 1;
 106
 107	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, &efip->efi_format,
 
 108			xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
 109}
 110
 
 111/*
 112 * The unpin operation is the last place an EFI is manipulated in the log. It is
 113 * either inserted in the AIL or aborted in the event of a log I/O error. In
 114 * either case, the EFI transaction has been successfully committed to make it
 115 * this far. Therefore, we expect whoever committed the EFI to either construct
 116 * and commit the EFD or drop the EFD's reference in the event of error. Simply
 117 * drop the log's EFI reference now that the log is done with it.
 118 */
 119STATIC void
 120xfs_efi_item_unpin(
 121	struct xfs_log_item	*lip,
 122	int			remove)
 123{
 124	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
 125	xfs_efi_release(efip);
 126}
 127
 128/*
 129 * The EFI has been either committed or aborted if the transaction has been
 130 * cancelled. If the transaction was cancelled, an EFD isn't going to be
 131 * constructed and thus we free the EFI here directly.
 132 */
 133STATIC void
 134xfs_efi_item_release(
 135	struct xfs_log_item	*lip)
 136{
 137	xfs_efi_release(EFI_ITEM(lip));
 138}
 139
 140/*
 141 * Allocate and initialize an efi item with the given number of extents.
 142 */
 143STATIC struct xfs_efi_log_item *
 144xfs_efi_init(
 145	struct xfs_mount	*mp,
 146	unsigned short		item_type,
 147	uint			nextents)
 
 148{
 149	struct xfs_efi_log_item	*efip;
 150
 151	ASSERT(item_type == XFS_LI_EFI || item_type == XFS_LI_EFI_RT);
 152	ASSERT(nextents > 0);
 153
 154	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
 155		efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
 156				GFP_KERNEL | __GFP_NOFAIL);
 157	} else {
 158		efip = kmem_cache_zalloc(xfs_efi_cache,
 159					 GFP_KERNEL | __GFP_NOFAIL);
 160	}
 161
 162	xfs_log_item_init(mp, &efip->efi_item, item_type, &xfs_efi_item_ops);
 163	efip->efi_format.efi_nextents = nextents;
 164	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
 165	atomic_set(&efip->efi_next_extent, 0);
 166	atomic_set(&efip->efi_refcount, 2);
 167
 168	return efip;
 169}
 170
 171/*
 172 * Copy an EFI format buffer from the given buf, and into the destination
 173 * EFI format structure.
 174 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
 175 * one of which will be the native format for this kernel.
 176 * It will handle the conversion of formats if necessary.
 177 */
 178STATIC int
 179xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
 180{
 181	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
 182	uint i;
 183	uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
 184	uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
 185	uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
 186
 187	if (buf->i_len == len) {
 188		memcpy(dst_efi_fmt, src_efi_fmt,
 189		       offsetof(struct xfs_efi_log_format, efi_extents));
 190		for (i = 0; i < src_efi_fmt->efi_nextents; i++)
 191			memcpy(&dst_efi_fmt->efi_extents[i],
 192			       &src_efi_fmt->efi_extents[i],
 193			       sizeof(struct xfs_extent));
 194		return 0;
 195	} else if (buf->i_len == len32) {
 196		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
 197
 198		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
 199		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
 200		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
 201		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
 202		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 203			dst_efi_fmt->efi_extents[i].ext_start =
 204				src_efi_fmt_32->efi_extents[i].ext_start;
 205			dst_efi_fmt->efi_extents[i].ext_len =
 206				src_efi_fmt_32->efi_extents[i].ext_len;
 207		}
 208		return 0;
 209	} else if (buf->i_len == len64) {
 210		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
 211
 212		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
 213		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
 214		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
 215		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
 216		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
 217			dst_efi_fmt->efi_extents[i].ext_start =
 218				src_efi_fmt_64->efi_extents[i].ext_start;
 219			dst_efi_fmt->efi_extents[i].ext_len =
 220				src_efi_fmt_64->efi_extents[i].ext_len;
 221		}
 222		return 0;
 223	}
 224	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
 225			buf->i_len);
 226	return -EFSCORRUPTED;
 227}
 228
 229static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
 230{
 231	return container_of(lip, struct xfs_efd_log_item, efd_item);
 232}
 233
 234STATIC void
 235xfs_efd_item_free(struct xfs_efd_log_item *efdp)
 236{
 237	kvfree(efdp->efd_item.li_lv_shadow);
 238	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
 239		kfree(efdp);
 240	else
 241		kmem_cache_free(xfs_efd_cache, efdp);
 242}
 243
 244STATIC void
 245xfs_efd_item_size(
 246	struct xfs_log_item	*lip,
 247	int			*nvecs,
 248	int			*nbytes)
 249{
 250	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
 251
 252	*nvecs += 1;
 253	*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
 254}
 255
 256/*
 257 * This is called to fill in the vector of log iovecs for the
 258 * given efd log item. We use only 1 iovec, and we point that
 259 * at the efd_log_format structure embedded in the efd item.
 260 * It is at this point that we assert that all of the extent
 261 * slots in the efd item have been filled.
 262 */
 263STATIC void
 264xfs_efd_item_format(
 265	struct xfs_log_item	*lip,
 266	struct xfs_log_vec	*lv)
 267{
 268	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
 269	struct xfs_log_iovec	*vecp = NULL;
 270
 271	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
 272	ASSERT(lip->li_type == XFS_LI_EFD || lip->li_type == XFS_LI_EFD_RT);
 273
 274	efdp->efd_format.efd_type = lip->li_type;
 275	efdp->efd_format.efd_size = 1;
 276
 277	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, &efdp->efd_format,
 
 278			xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
 279}
 280
 281/*
 282 * The EFD is either committed or aborted if the transaction is cancelled. If
 283 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
 284 */
 285STATIC void
 286xfs_efd_item_release(
 287	struct xfs_log_item	*lip)
 288{
 289	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
 290
 291	xfs_efi_release(efdp->efd_efip);
 292	xfs_efd_item_free(efdp);
 293}
 294
 295static struct xfs_log_item *
 296xfs_efd_item_intent(
 297	struct xfs_log_item	*lip)
 298{
 299	return &EFD_ITEM(lip)->efd_efip->efi_item;
 300}
 301
 302static const struct xfs_item_ops xfs_efd_item_ops = {
 303	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
 304			  XFS_ITEM_INTENT_DONE,
 305	.iop_size	= xfs_efd_item_size,
 306	.iop_format	= xfs_efd_item_format,
 307	.iop_release	= xfs_efd_item_release,
 308	.iop_intent	= xfs_efd_item_intent,
 309};
 310
 311static inline struct xfs_extent_free_item *xefi_entry(const struct list_head *e)
 312{
 313	return list_entry(e, struct xfs_extent_free_item, xefi_list);
 314}
 315
 316static inline bool
 317xfs_efi_item_isrt(const struct xfs_log_item *lip)
 318{
 319	ASSERT(lip->li_type == XFS_LI_EFI || lip->li_type == XFS_LI_EFI_RT);
 320
 321	return lip->li_type == XFS_LI_EFI_RT;
 322}
 323
 324/*
 325 * Fill the EFD with all extents from the EFI when we need to roll the
 326 * transaction and continue with a new EFI.
 327 *
 328 * This simply copies all the extents in the EFI to the EFD rather than make
 329 * assumptions about which extents in the EFI have already been processed. We
 330 * currently keep the xefi list in the same order as the EFI extent list, but
 331 * that may not always be the case. Copying everything avoids leaving a landmine
 332 * were we fail to cancel all the extents in an EFI if the xefi list is
 333 * processed in a different order to the extents in the EFI.
 334 */
 335static void
 336xfs_efd_from_efi(
 337	struct xfs_efd_log_item	*efdp)
 338{
 339	struct xfs_efi_log_item *efip = efdp->efd_efip;
 340	uint                    i;
 341
 342	ASSERT(efip->efi_format.efi_nextents > 0);
 343	ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
 344
 345	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 346	       efdp->efd_format.efd_extents[i] =
 347		       efip->efi_format.efi_extents[i];
 348	}
 349	efdp->efd_next_extent = efip->efi_format.efi_nextents;
 350}
 351
 352static void
 353xfs_efd_add_extent(
 354	struct xfs_efd_log_item		*efdp,
 355	struct xfs_extent_free_item	*xefi)
 356{
 357	struct xfs_extent		*extp;
 358
 359	ASSERT(efdp->efd_next_extent < efdp->efd_format.efd_nextents);
 360
 361	extp = &efdp->efd_format.efd_extents[efdp->efd_next_extent];
 362	extp->ext_start = xefi->xefi_startblock;
 363	extp->ext_len = xefi->xefi_blockcount;
 364
 365	efdp->efd_next_extent++;
 366}
 367
 368/* Sort bmap items by AG. */
 369static int
 370xfs_extent_free_diff_items(
 371	void				*priv,
 372	const struct list_head		*a,
 373	const struct list_head		*b)
 374{
 375	struct xfs_extent_free_item	*ra = xefi_entry(a);
 376	struct xfs_extent_free_item	*rb = xefi_entry(b);
 
 
 
 377
 378	return ra->xefi_group->xg_gno - rb->xefi_group->xg_gno;
 379}
 380
 381/* Log a free extent to the intent item. */
 382STATIC void
 383xfs_extent_free_log_item(
 384	struct xfs_trans		*tp,
 385	struct xfs_efi_log_item		*efip,
 386	struct xfs_extent_free_item	*xefi)
 387{
 388	uint				next_extent;
 389	struct xfs_extent		*extp;
 390
 391	/*
 392	 * atomic_inc_return gives us the value after the increment;
 393	 * we want to use it as an array index so we need to subtract 1 from
 394	 * it.
 395	 */
 396	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
 397	ASSERT(next_extent < efip->efi_format.efi_nextents);
 398	extp = &efip->efi_format.efi_extents[next_extent];
 399	extp->ext_start = xefi->xefi_startblock;
 400	extp->ext_len = xefi->xefi_blockcount;
 401}
 402
 403static struct xfs_log_item *
 404__xfs_extent_free_create_intent(
 405	struct xfs_trans		*tp,
 406	struct list_head		*items,
 407	unsigned int			count,
 408	bool				sort,
 409	unsigned short			item_type)
 410{
 411	struct xfs_mount		*mp = tp->t_mountp;
 412	struct xfs_efi_log_item		*efip;
 413	struct xfs_extent_free_item	*xefi;
 414
 415	ASSERT(count > 0);
 416
 417	efip = xfs_efi_init(mp, item_type, count);
 418	if (sort)
 419		list_sort(mp, items, xfs_extent_free_diff_items);
 420	list_for_each_entry(xefi, items, xefi_list)
 421		xfs_extent_free_log_item(tp, efip, xefi);
 422	return &efip->efi_item;
 423}
 424
 425static struct xfs_log_item *
 426xfs_extent_free_create_intent(
 427	struct xfs_trans		*tp,
 428	struct list_head		*items,
 429	unsigned int			count,
 430	bool				sort)
 431{
 432	return __xfs_extent_free_create_intent(tp, items, count, sort,
 433			XFS_LI_EFI);
 434}
 435
 436static inline unsigned short
 437xfs_efd_type_from_efi(const struct xfs_efi_log_item *efip)
 438{
 439	return xfs_efi_item_isrt(&efip->efi_item) ?  XFS_LI_EFD_RT : XFS_LI_EFD;
 440}
 441
 442/* Get an EFD so we can process all the free extents. */
 443static struct xfs_log_item *
 444xfs_extent_free_create_done(
 445	struct xfs_trans		*tp,
 446	struct xfs_log_item		*intent,
 447	unsigned int			count)
 448{
 449	struct xfs_efi_log_item		*efip = EFI_ITEM(intent);
 450	struct xfs_efd_log_item		*efdp;
 451
 452	ASSERT(count > 0);
 453
 454	if (count > XFS_EFD_MAX_FAST_EXTENTS) {
 455		efdp = kzalloc(xfs_efd_log_item_sizeof(count),
 456				GFP_KERNEL | __GFP_NOFAIL);
 457	} else {
 458		efdp = kmem_cache_zalloc(xfs_efd_cache,
 459					GFP_KERNEL | __GFP_NOFAIL);
 460	}
 461
 462	xfs_log_item_init(tp->t_mountp, &efdp->efd_item,
 463			xfs_efd_type_from_efi(efip), &xfs_efd_item_ops);
 464	efdp->efd_efip = efip;
 465	efdp->efd_format.efd_nextents = count;
 466	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
 467
 468	return &efdp->efd_item;
 469}
 470
 471static inline const struct xfs_defer_op_type *
 472xefi_ops(
 473	struct xfs_extent_free_item	*xefi)
 474{
 475	if (xfs_efi_is_realtime(xefi))
 476		return &xfs_rtextent_free_defer_type;
 477	if (xefi->xefi_agresv == XFS_AG_RESV_AGFL)
 478		return &xfs_agfl_free_defer_type;
 479	return &xfs_extent_free_defer_type;
 480}
 481
 482/* Add this deferred EFI to the transaction. */
 483void
 484xfs_extent_free_defer_add(
 485	struct xfs_trans		*tp,
 486	struct xfs_extent_free_item	*xefi,
 487	struct xfs_defer_pending	**dfpp)
 488{
 489	struct xfs_mount		*mp = tp->t_mountp;
 490
 491	xefi->xefi_group = xfs_group_intent_get(mp, xefi->xefi_startblock,
 492			xfs_efi_is_realtime(xefi) ? XG_TYPE_RTG : XG_TYPE_AG);
 493
 494	trace_xfs_extent_free_defer(mp, xefi);
 495	*dfpp = xfs_defer_add(tp, &xefi->xefi_list, xefi_ops(xefi));
 496}
 497
 498/* Cancel a free extent. */
 499STATIC void
 500xfs_extent_free_cancel_item(
 501	struct list_head		*item)
 502{
 503	struct xfs_extent_free_item	*xefi = xefi_entry(item);
 504
 505	xfs_group_intent_put(xefi->xefi_group);
 506	kmem_cache_free(xfs_extfree_item_cache, xefi);
 507}
 508
 509/* Process a free extent. */
 510STATIC int
 511xfs_extent_free_finish_item(
 512	struct xfs_trans		*tp,
 513	struct xfs_log_item		*done,
 514	struct list_head		*item,
 515	struct xfs_btree_cur		**state)
 516{
 517	struct xfs_owner_info		oinfo = { };
 518	struct xfs_extent_free_item	*xefi = xefi_entry(item);
 519	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
 520	struct xfs_mount		*mp = tp->t_mountp;
 
 
 521	xfs_agblock_t			agbno;
 522	int				error = 0;
 523
 
 524	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
 525
 526	oinfo.oi_owner = xefi->xefi_owner;
 527	if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
 528		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
 529	if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
 530		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
 531
 532	trace_xfs_extent_free_deferred(mp, xefi);
 
 533
 534	/*
 535	 * If we need a new transaction to make progress, the caller will log a
 536	 * new EFI with the current contents. It will also log an EFD to cancel
 537	 * the existing EFI, and so we need to copy all the unprocessed extents
 538	 * in this EFI to the EFD so this works correctly.
 539	 */
 540	if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
 541		error = __xfs_free_extent(tp, to_perag(xefi->xefi_group), agbno,
 542				xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
 543				xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
 544	if (error == -EAGAIN) {
 545		xfs_efd_from_efi(efdp);
 546		return error;
 547	}
 548
 549	xfs_efd_add_extent(efdp, xefi);
 550	xfs_extent_free_cancel_item(item);
 
 
 
 
 
 
 
 
 551	return error;
 552}
 553
 554/* Abort all pending EFIs. */
 555STATIC void
 556xfs_extent_free_abort_intent(
 557	struct xfs_log_item		*intent)
 558{
 559	xfs_efi_release(EFI_ITEM(intent));
 560}
 561
 
 
 
 
 
 
 
 
 
 
 
 
 
 562/*
 563 * AGFL blocks are accounted differently in the reserve pools and are not
 564 * inserted into the busy extent list.
 565 */
 566STATIC int
 567xfs_agfl_free_finish_item(
 568	struct xfs_trans		*tp,
 569	struct xfs_log_item		*done,
 570	struct list_head		*item,
 571	struct xfs_btree_cur		**state)
 572{
 573	struct xfs_owner_info		oinfo = { };
 574	struct xfs_mount		*mp = tp->t_mountp;
 575	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
 576	struct xfs_extent_free_item	*xefi = xefi_entry(item);
 
 577	struct xfs_buf			*agbp;
 578	int				error;
 579	xfs_agblock_t			agbno;
 
 580
 
 581	ASSERT(xefi->xefi_blockcount == 1);
 582	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
 583	oinfo.oi_owner = xefi->xefi_owner;
 584
 585	trace_xfs_agfl_free_deferred(mp, xefi);
 
 586
 587	error = xfs_alloc_read_agf(to_perag(xefi->xefi_group), tp, 0, &agbp);
 588	if (!error)
 589		error = xfs_free_ag_extent(tp, agbp, agbno, 1, &oinfo,
 590				XFS_AG_RESV_AGFL);
 
 
 
 
 
 
 
 591
 592	xfs_efd_add_extent(efdp, xefi);
 593	xfs_extent_free_cancel_item(&xefi->xefi_list);
 594	return error;
 595}
 596
 597/* Is this recovered EFI ok? */
 598static inline bool
 599xfs_efi_validate_ext(
 600	struct xfs_mount		*mp,
 601	bool				isrt,
 602	struct xfs_extent		*extp)
 603{
 604	if (isrt)
 605		return xfs_verify_rtbext(mp, extp->ext_start, extp->ext_len);
 606
 607	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
 608}
 609
 610static inline void
 611xfs_efi_recover_work(
 612	struct xfs_mount		*mp,
 613	struct xfs_defer_pending	*dfp,
 614	bool				isrt,
 615	struct xfs_extent		*extp)
 616{
 617	struct xfs_extent_free_item	*xefi;
 618
 619	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
 620			       GFP_KERNEL | __GFP_NOFAIL);
 621	xefi->xefi_startblock = extp->ext_start;
 622	xefi->xefi_blockcount = extp->ext_len;
 623	xefi->xefi_agresv = XFS_AG_RESV_NONE;
 624	xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
 625	xefi->xefi_group = xfs_group_intent_get(mp, extp->ext_start,
 626			isrt ? XG_TYPE_RTG : XG_TYPE_AG);
 627	if (isrt)
 628		xefi->xefi_flags |= XFS_EFI_REALTIME;
 629
 630	xfs_defer_add_item(dfp, &xefi->xefi_list);
 631}
 632
 633/*
 634 * Process an extent free intent item that was recovered from
 635 * the log.  We need to free the extents that it describes.
 636 */
 637STATIC int
 638xfs_extent_free_recover_work(
 639	struct xfs_defer_pending	*dfp,
 640	struct list_head		*capture_list)
 641{
 642	struct xfs_trans_res		resv;
 643	struct xfs_log_item		*lip = dfp->dfp_intent;
 644	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
 645	struct xfs_mount		*mp = lip->li_log->l_mp;
 646	struct xfs_trans		*tp;
 647	int				i;
 648	int				error = 0;
 649	bool				isrt = xfs_efi_item_isrt(lip);
 650
 651	/*
 652	 * First check the validity of the extents described by the EFI.  If
 653	 * any are bad, then assume that all are bad and just toss the EFI.
 654	 * Mixing RT and non-RT extents in the same EFI item is not allowed.
 655	 */
 656	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
 657		if (!xfs_efi_validate_ext(mp, isrt,
 658					&efip->efi_format.efi_extents[i])) {
 659			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
 660					&efip->efi_format,
 661					sizeof(efip->efi_format));
 662			return -EFSCORRUPTED;
 663		}
 664
 665		xfs_efi_recover_work(mp, dfp, isrt,
 666				&efip->efi_format.efi_extents[i]);
 667	}
 668
 669	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
 670	error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
 671	if (error)
 672		return error;
 673
 674	error = xlog_recover_finish_intent(tp, dfp);
 675	if (error == -EFSCORRUPTED)
 676		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
 677				&efip->efi_format,
 678				sizeof(efip->efi_format));
 679	if (error)
 680		goto abort_error;
 681
 682	return xfs_defer_ops_capture_and_commit(tp, capture_list);
 683
 684abort_error:
 685	xfs_trans_cancel(tp);
 686	return error;
 687}
 688
 689/* Relog an intent item to push the log tail forward. */
 690static struct xfs_log_item *
 691xfs_extent_free_relog_intent(
 692	struct xfs_trans		*tp,
 693	struct xfs_log_item		*intent,
 694	struct xfs_log_item		*done_item)
 695{
 696	struct xfs_efd_log_item		*efdp = EFD_ITEM(done_item);
 697	struct xfs_efi_log_item		*efip;
 698	struct xfs_extent		*extp;
 699	unsigned int			count;
 700
 701	count = EFI_ITEM(intent)->efi_format.efi_nextents;
 702	extp = EFI_ITEM(intent)->efi_format.efi_extents;
 703
 704	ASSERT(intent->li_type == XFS_LI_EFI || intent->li_type == XFS_LI_EFI_RT);
 705
 706	efdp->efd_next_extent = count;
 707	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
 708
 709	efip = xfs_efi_init(tp->t_mountp, intent->li_type, count);
 710	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
 711	atomic_set(&efip->efi_next_extent, count);
 712
 713	return &efip->efi_item;
 714}
 715
 716const struct xfs_defer_op_type xfs_extent_free_defer_type = {
 717	.name		= "extent_free",
 718	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
 719	.create_intent	= xfs_extent_free_create_intent,
 720	.abort_intent	= xfs_extent_free_abort_intent,
 721	.create_done	= xfs_extent_free_create_done,
 722	.finish_item	= xfs_extent_free_finish_item,
 723	.cancel_item	= xfs_extent_free_cancel_item,
 724	.recover_work	= xfs_extent_free_recover_work,
 725	.relog_intent	= xfs_extent_free_relog_intent,
 726};
 727
 728/* sub-type with special handling for AGFL deferred frees */
 729const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
 730	.name		= "agfl_free",
 731	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
 732	.create_intent	= xfs_extent_free_create_intent,
 733	.abort_intent	= xfs_extent_free_abort_intent,
 734	.create_done	= xfs_extent_free_create_done,
 735	.finish_item	= xfs_agfl_free_finish_item,
 736	.cancel_item	= xfs_extent_free_cancel_item,
 737	.recover_work	= xfs_extent_free_recover_work,
 738	.relog_intent	= xfs_extent_free_relog_intent,
 739};
 740
 741#ifdef CONFIG_XFS_RT
 742/* Create a realtime extent freeing */
 743static struct xfs_log_item *
 744xfs_rtextent_free_create_intent(
 745	struct xfs_trans		*tp,
 746	struct list_head		*items,
 747	unsigned int			count,
 748	bool				sort)
 749{
 750	return __xfs_extent_free_create_intent(tp, items, count, sort,
 751			XFS_LI_EFI_RT);
 752}
 753
 754/* Process a free realtime extent. */
 755STATIC int
 756xfs_rtextent_free_finish_item(
 757	struct xfs_trans		*tp,
 758	struct xfs_log_item		*done,
 759	struct list_head		*item,
 760	struct xfs_btree_cur		**state)
 761{
 762	struct xfs_mount		*mp = tp->t_mountp;
 763	struct xfs_extent_free_item	*xefi = xefi_entry(item);
 764	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
 765	struct xfs_rtgroup		**rtgp = (struct xfs_rtgroup **)state;
 766	int				error = 0;
 767
 768	trace_xfs_extent_free_deferred(mp, xefi);
 769
 770	if (!(xefi->xefi_flags & XFS_EFI_CANCELLED)) {
 771		if (*rtgp != to_rtg(xefi->xefi_group)) {
 772			*rtgp = to_rtg(xefi->xefi_group);
 773			xfs_rtgroup_lock(*rtgp, XFS_RTGLOCK_BITMAP);
 774			xfs_rtgroup_trans_join(tp, *rtgp,
 775					XFS_RTGLOCK_BITMAP);
 776		}
 777		error = xfs_rtfree_blocks(tp, *rtgp,
 778				xefi->xefi_startblock, xefi->xefi_blockcount);
 779	}
 780	if (error == -EAGAIN) {
 781		xfs_efd_from_efi(efdp);
 782		return error;
 783	}
 784
 785	xfs_efd_add_extent(efdp, xefi);
 786	xfs_extent_free_cancel_item(item);
 787	return error;
 788}
 789
 790const struct xfs_defer_op_type xfs_rtextent_free_defer_type = {
 791	.name		= "rtextent_free",
 792	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
 793	.create_intent	= xfs_rtextent_free_create_intent,
 794	.abort_intent	= xfs_extent_free_abort_intent,
 795	.create_done	= xfs_extent_free_create_done,
 796	.finish_item	= xfs_rtextent_free_finish_item,
 797	.cancel_item	= xfs_extent_free_cancel_item,
 798	.recover_work	= xfs_extent_free_recover_work,
 799	.relog_intent	= xfs_extent_free_relog_intent,
 800};
 801#else
 802const struct xfs_defer_op_type xfs_rtextent_free_defer_type = {
 803	.name		= "rtextent_free",
 804};
 805#endif /* CONFIG_XFS_RT */
 806
 807STATIC bool
 808xfs_efi_item_match(
 809	struct xfs_log_item	*lip,
 810	uint64_t		intent_id)
 811{
 812	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
 813}
 814
 815static const struct xfs_item_ops xfs_efi_item_ops = {
 816	.flags		= XFS_ITEM_INTENT,
 817	.iop_size	= xfs_efi_item_size,
 818	.iop_format	= xfs_efi_item_format,
 819	.iop_unpin	= xfs_efi_item_unpin,
 820	.iop_release	= xfs_efi_item_release,
 821	.iop_match	= xfs_efi_item_match,
 822};
 823
 824/*
 825 * This routine is called to create an in-core extent free intent
 826 * item from the efi format structure which was logged on disk.
 827 * It allocates an in-core efi, copies the extents from the format
 828 * structure into it, and adds the efi to the AIL with the given
 829 * LSN.
 830 */
 831STATIC int
 832xlog_recover_efi_commit_pass2(
 833	struct xlog			*log,
 834	struct list_head		*buffer_list,
 835	struct xlog_recover_item	*item,
 836	xfs_lsn_t			lsn)
 837{
 838	struct xfs_mount		*mp = log->l_mp;
 839	struct xfs_efi_log_item		*efip;
 840	struct xfs_efi_log_format	*efi_formatp;
 841	int				error;
 842
 843	efi_formatp = item->ri_buf[0].i_addr;
 844
 845	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
 846		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
 847				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
 848		return -EFSCORRUPTED;
 849	}
 850
 851	efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents);
 852	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
 853	if (error) {
 854		xfs_efi_item_free(efip);
 855		return error;
 856	}
 857	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
 858
 859	xlog_recover_intent_item(log, &efip->efi_item, lsn,
 860			&xfs_extent_free_defer_type);
 861	return 0;
 862}
 863
 864const struct xlog_recover_item_ops xlog_efi_item_ops = {
 865	.item_type		= XFS_LI_EFI,
 866	.commit_pass2		= xlog_recover_efi_commit_pass2,
 867};
 868
 869#ifdef CONFIG_XFS_RT
 870STATIC int
 871xlog_recover_rtefi_commit_pass2(
 872	struct xlog			*log,
 873	struct list_head		*buffer_list,
 874	struct xlog_recover_item	*item,
 875	xfs_lsn_t			lsn)
 876{
 877	struct xfs_mount		*mp = log->l_mp;
 878	struct xfs_efi_log_item		*efip;
 879	struct xfs_efi_log_format	*efi_formatp;
 880	int				error;
 881
 882	efi_formatp = item->ri_buf[0].i_addr;
 883
 884	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
 885		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
 886				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
 887		return -EFSCORRUPTED;
 888	}
 889
 890	efip = xfs_efi_init(mp, ITEM_TYPE(item), efi_formatp->efi_nextents);
 891	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
 892	if (error) {
 893		xfs_efi_item_free(efip);
 894		return error;
 895	}
 896	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
 897
 898	xlog_recover_intent_item(log, &efip->efi_item, lsn,
 899			&xfs_rtextent_free_defer_type);
 900	return 0;
 901}
 902#else
 903STATIC int
 904xlog_recover_rtefi_commit_pass2(
 905	struct xlog			*log,
 906	struct list_head		*buffer_list,
 907	struct xlog_recover_item	*item,
 908	xfs_lsn_t			lsn)
 909{
 910	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
 911			item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
 912	return -EFSCORRUPTED;
 913}
 914#endif
 915
 916const struct xlog_recover_item_ops xlog_rtefi_item_ops = {
 917	.item_type		= XFS_LI_EFI_RT,
 918	.commit_pass2		= xlog_recover_rtefi_commit_pass2,
 919};
 920
 921/*
 922 * This routine is called when an EFD format structure is found in a committed
 923 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
 924 * was still in the log. To do this it searches the AIL for the EFI with an id
 925 * equal to that in the EFD format structure. If we find it we drop the EFD
 926 * reference, which removes the EFI from the AIL and frees it.
 927 */
 928STATIC int
 929xlog_recover_efd_commit_pass2(
 930	struct xlog			*log,
 931	struct list_head		*buffer_list,
 932	struct xlog_recover_item	*item,
 933	xfs_lsn_t			lsn)
 934{
 935	struct xfs_efd_log_format	*efd_formatp;
 936	int				buflen = item->ri_buf[0].i_len;
 937
 938	efd_formatp = item->ri_buf[0].i_addr;
 939
 940	if (buflen < sizeof(struct xfs_efd_log_format)) {
 941		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
 942				efd_formatp, buflen);
 943		return -EFSCORRUPTED;
 944	}
 945
 946	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
 947						efd_formatp->efd_nextents) &&
 948	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
 949						efd_formatp->efd_nextents)) {
 950		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
 951				efd_formatp, buflen);
 952		return -EFSCORRUPTED;
 953	}
 954
 955	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
 956	return 0;
 957}
 958
 959const struct xlog_recover_item_ops xlog_efd_item_ops = {
 960	.item_type		= XFS_LI_EFD,
 961	.commit_pass2		= xlog_recover_efd_commit_pass2,
 962};
 963
 964#ifdef CONFIG_XFS_RT
 965STATIC int
 966xlog_recover_rtefd_commit_pass2(
 967	struct xlog			*log,
 968	struct list_head		*buffer_list,
 969	struct xlog_recover_item	*item,
 970	xfs_lsn_t			lsn)
 971{
 972	struct xfs_efd_log_format	*efd_formatp;
 973	int				buflen = item->ri_buf[0].i_len;
 974
 975	efd_formatp = item->ri_buf[0].i_addr;
 976
 977	if (buflen < sizeof(struct xfs_efd_log_format)) {
 978		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
 979				efd_formatp, buflen);
 980		return -EFSCORRUPTED;
 981	}
 982
 983	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
 984						efd_formatp->efd_nextents) &&
 985	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
 986						efd_formatp->efd_nextents)) {
 987		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
 988				efd_formatp, buflen);
 989		return -EFSCORRUPTED;
 990	}
 991
 992	xlog_recover_release_intent(log, XFS_LI_EFI_RT,
 993			efd_formatp->efd_efi_id);
 994	return 0;
 995}
 996#else
 997# define xlog_recover_rtefd_commit_pass2	xlog_recover_rtefi_commit_pass2
 998#endif
 999
1000const struct xlog_recover_item_ops xlog_rtefd_item_ops = {
1001	.item_type		= XFS_LI_EFD_RT,
1002	.commit_pass2		= xlog_recover_rtefd_commit_pass2,
1003};
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_format.h"
  9#include "xfs_log_format.h"
 10#include "xfs_trans_resv.h"
 11#include "xfs_bit.h"
 12#include "xfs_shared.h"
 13#include "xfs_mount.h"
 14#include "xfs_ag.h"
 15#include "xfs_defer.h"
 16#include "xfs_trans.h"
 17#include "xfs_trans_priv.h"
 18#include "xfs_extfree_item.h"
 19#include "xfs_log.h"
 20#include "xfs_btree.h"
 21#include "xfs_rmap.h"
 22#include "xfs_alloc.h"
 23#include "xfs_bmap.h"
 24#include "xfs_trace.h"
 25#include "xfs_error.h"
 26#include "xfs_log_priv.h"
 27#include "xfs_log_recover.h"
 
 
 
 
 28
 29struct kmem_cache	*xfs_efi_cache;
 30struct kmem_cache	*xfs_efd_cache;
 31
 32static const struct xfs_item_ops xfs_efi_item_ops;
 33
 34static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
 35{
 36	return container_of(lip, struct xfs_efi_log_item, efi_item);
 37}
 38
 39STATIC void
 40xfs_efi_item_free(
 41	struct xfs_efi_log_item	*efip)
 42{
 43	kvfree(efip->efi_item.li_lv_shadow);
 44	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
 45		kfree(efip);
 46	else
 47		kmem_cache_free(xfs_efi_cache, efip);
 48}
 49
 50/*
 51 * Freeing the efi requires that we remove it from the AIL if it has already
 52 * been placed there. However, the EFI may not yet have been placed in the AIL
 53 * when called by xfs_efi_release() from EFD processing due to the ordering of
 54 * committed vs unpin operations in bulk insert operations. Hence the reference
 55 * count to ensure only the last caller frees the EFI.
 56 */
 57STATIC void
 58xfs_efi_release(
 59	struct xfs_efi_log_item	*efip)
 60{
 61	ASSERT(atomic_read(&efip->efi_refcount) > 0);
 62	if (!atomic_dec_and_test(&efip->efi_refcount))
 63		return;
 64
 65	xfs_trans_ail_delete(&efip->efi_item, 0);
 66	xfs_efi_item_free(efip);
 67}
 68
 69STATIC void
 70xfs_efi_item_size(
 71	struct xfs_log_item	*lip,
 72	int			*nvecs,
 73	int			*nbytes)
 74{
 75	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
 76
 77	*nvecs += 1;
 78	*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
 79}
 80
 81/*
 82 * This is called to fill in the vector of log iovecs for the
 83 * given efi log item. We use only 1 iovec, and we point that
 84 * at the efi_log_format structure embedded in the efi item.
 85 * It is at this point that we assert that all of the extent
 86 * slots in the efi item have been filled.
 87 */
 88STATIC void
 89xfs_efi_item_format(
 90	struct xfs_log_item	*lip,
 91	struct xfs_log_vec	*lv)
 92{
 93	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
 94	struct xfs_log_iovec	*vecp = NULL;
 95
 96	ASSERT(atomic_read(&efip->efi_next_extent) ==
 97				efip->efi_format.efi_nextents);
 
 98
 99	efip->efi_format.efi_type = XFS_LI_EFI;
100	efip->efi_format.efi_size = 1;
101
102	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
103			&efip->efi_format,
104			xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
105}
106
107
108/*
109 * The unpin operation is the last place an EFI is manipulated in the log. It is
110 * either inserted in the AIL or aborted in the event of a log I/O error. In
111 * either case, the EFI transaction has been successfully committed to make it
112 * this far. Therefore, we expect whoever committed the EFI to either construct
113 * and commit the EFD or drop the EFD's reference in the event of error. Simply
114 * drop the log's EFI reference now that the log is done with it.
115 */
116STATIC void
117xfs_efi_item_unpin(
118	struct xfs_log_item	*lip,
119	int			remove)
120{
121	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
122	xfs_efi_release(efip);
123}
124
125/*
126 * The EFI has been either committed or aborted if the transaction has been
127 * cancelled. If the transaction was cancelled, an EFD isn't going to be
128 * constructed and thus we free the EFI here directly.
129 */
130STATIC void
131xfs_efi_item_release(
132	struct xfs_log_item	*lip)
133{
134	xfs_efi_release(EFI_ITEM(lip));
135}
136
137/*
138 * Allocate and initialize an efi item with the given number of extents.
139 */
140STATIC struct xfs_efi_log_item *
141xfs_efi_init(
142	struct xfs_mount	*mp,
 
143	uint			nextents)
144
145{
146	struct xfs_efi_log_item	*efip;
147
 
148	ASSERT(nextents > 0);
 
149	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
150		efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
151				GFP_KERNEL | __GFP_NOFAIL);
152	} else {
153		efip = kmem_cache_zalloc(xfs_efi_cache,
154					 GFP_KERNEL | __GFP_NOFAIL);
155	}
156
157	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
158	efip->efi_format.efi_nextents = nextents;
159	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
160	atomic_set(&efip->efi_next_extent, 0);
161	atomic_set(&efip->efi_refcount, 2);
162
163	return efip;
164}
165
166/*
167 * Copy an EFI format buffer from the given buf, and into the destination
168 * EFI format structure.
169 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
170 * one of which will be the native format for this kernel.
171 * It will handle the conversion of formats if necessary.
172 */
173STATIC int
174xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
175{
176	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
177	uint i;
178	uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
179	uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
180	uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
181
182	if (buf->i_len == len) {
183		memcpy(dst_efi_fmt, src_efi_fmt,
184		       offsetof(struct xfs_efi_log_format, efi_extents));
185		for (i = 0; i < src_efi_fmt->efi_nextents; i++)
186			memcpy(&dst_efi_fmt->efi_extents[i],
187			       &src_efi_fmt->efi_extents[i],
188			       sizeof(struct xfs_extent));
189		return 0;
190	} else if (buf->i_len == len32) {
191		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
192
193		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
194		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
195		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
196		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
197		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
198			dst_efi_fmt->efi_extents[i].ext_start =
199				src_efi_fmt_32->efi_extents[i].ext_start;
200			dst_efi_fmt->efi_extents[i].ext_len =
201				src_efi_fmt_32->efi_extents[i].ext_len;
202		}
203		return 0;
204	} else if (buf->i_len == len64) {
205		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
206
207		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
208		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
209		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
210		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
211		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212			dst_efi_fmt->efi_extents[i].ext_start =
213				src_efi_fmt_64->efi_extents[i].ext_start;
214			dst_efi_fmt->efi_extents[i].ext_len =
215				src_efi_fmt_64->efi_extents[i].ext_len;
216		}
217		return 0;
218	}
219	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
220			buf->i_len);
221	return -EFSCORRUPTED;
222}
223
224static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
225{
226	return container_of(lip, struct xfs_efd_log_item, efd_item);
227}
228
229STATIC void
230xfs_efd_item_free(struct xfs_efd_log_item *efdp)
231{
232	kvfree(efdp->efd_item.li_lv_shadow);
233	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
234		kfree(efdp);
235	else
236		kmem_cache_free(xfs_efd_cache, efdp);
237}
238
239STATIC void
240xfs_efd_item_size(
241	struct xfs_log_item	*lip,
242	int			*nvecs,
243	int			*nbytes)
244{
245	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
246
247	*nvecs += 1;
248	*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
249}
250
251/*
252 * This is called to fill in the vector of log iovecs for the
253 * given efd log item. We use only 1 iovec, and we point that
254 * at the efd_log_format structure embedded in the efd item.
255 * It is at this point that we assert that all of the extent
256 * slots in the efd item have been filled.
257 */
258STATIC void
259xfs_efd_item_format(
260	struct xfs_log_item	*lip,
261	struct xfs_log_vec	*lv)
262{
263	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
264	struct xfs_log_iovec	*vecp = NULL;
265
266	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
 
267
268	efdp->efd_format.efd_type = XFS_LI_EFD;
269	efdp->efd_format.efd_size = 1;
270
271	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
272			&efdp->efd_format,
273			xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
274}
275
276/*
277 * The EFD is either committed or aborted if the transaction is cancelled. If
278 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
279 */
280STATIC void
281xfs_efd_item_release(
282	struct xfs_log_item	*lip)
283{
284	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
285
286	xfs_efi_release(efdp->efd_efip);
287	xfs_efd_item_free(efdp);
288}
289
290static struct xfs_log_item *
291xfs_efd_item_intent(
292	struct xfs_log_item	*lip)
293{
294	return &EFD_ITEM(lip)->efd_efip->efi_item;
295}
296
297static const struct xfs_item_ops xfs_efd_item_ops = {
298	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
299			  XFS_ITEM_INTENT_DONE,
300	.iop_size	= xfs_efd_item_size,
301	.iop_format	= xfs_efd_item_format,
302	.iop_release	= xfs_efd_item_release,
303	.iop_intent	= xfs_efd_item_intent,
304};
305
 
 
 
 
 
 
 
 
 
 
 
 
 
306/*
307 * Fill the EFD with all extents from the EFI when we need to roll the
308 * transaction and continue with a new EFI.
309 *
310 * This simply copies all the extents in the EFI to the EFD rather than make
311 * assumptions about which extents in the EFI have already been processed. We
312 * currently keep the xefi list in the same order as the EFI extent list, but
313 * that may not always be the case. Copying everything avoids leaving a landmine
314 * were we fail to cancel all the extents in an EFI if the xefi list is
315 * processed in a different order to the extents in the EFI.
316 */
317static void
318xfs_efd_from_efi(
319	struct xfs_efd_log_item	*efdp)
320{
321	struct xfs_efi_log_item *efip = efdp->efd_efip;
322	uint                    i;
323
324	ASSERT(efip->efi_format.efi_nextents > 0);
325	ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
326
327	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
328	       efdp->efd_format.efd_extents[i] =
329		       efip->efi_format.efi_extents[i];
330	}
331	efdp->efd_next_extent = efip->efi_format.efi_nextents;
332}
333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334/* Sort bmap items by AG. */
335static int
336xfs_extent_free_diff_items(
337	void				*priv,
338	const struct list_head		*a,
339	const struct list_head		*b)
340{
341	struct xfs_extent_free_item	*ra;
342	struct xfs_extent_free_item	*rb;
343
344	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
345	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
346
347	return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno;
348}
349
350/* Log a free extent to the intent item. */
351STATIC void
352xfs_extent_free_log_item(
353	struct xfs_trans		*tp,
354	struct xfs_efi_log_item		*efip,
355	struct xfs_extent_free_item	*xefi)
356{
357	uint				next_extent;
358	struct xfs_extent		*extp;
359
360	/*
361	 * atomic_inc_return gives us the value after the increment;
362	 * we want to use it as an array index so we need to subtract 1 from
363	 * it.
364	 */
365	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
366	ASSERT(next_extent < efip->efi_format.efi_nextents);
367	extp = &efip->efi_format.efi_extents[next_extent];
368	extp->ext_start = xefi->xefi_startblock;
369	extp->ext_len = xefi->xefi_blockcount;
370}
371
372static struct xfs_log_item *
373xfs_extent_free_create_intent(
374	struct xfs_trans		*tp,
375	struct list_head		*items,
376	unsigned int			count,
377	bool				sort)
 
378{
379	struct xfs_mount		*mp = tp->t_mountp;
380	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
381	struct xfs_extent_free_item	*xefi;
382
383	ASSERT(count > 0);
384
 
385	if (sort)
386		list_sort(mp, items, xfs_extent_free_diff_items);
387	list_for_each_entry(xefi, items, xefi_list)
388		xfs_extent_free_log_item(tp, efip, xefi);
389	return &efip->efi_item;
390}
391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392/* Get an EFD so we can process all the free extents. */
393static struct xfs_log_item *
394xfs_extent_free_create_done(
395	struct xfs_trans		*tp,
396	struct xfs_log_item		*intent,
397	unsigned int			count)
398{
399	struct xfs_efi_log_item		*efip = EFI_ITEM(intent);
400	struct xfs_efd_log_item		*efdp;
401
402	ASSERT(count > 0);
403
404	if (count > XFS_EFD_MAX_FAST_EXTENTS) {
405		efdp = kzalloc(xfs_efd_log_item_sizeof(count),
406				GFP_KERNEL | __GFP_NOFAIL);
407	} else {
408		efdp = kmem_cache_zalloc(xfs_efd_cache,
409					GFP_KERNEL | __GFP_NOFAIL);
410	}
411
412	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
413			  &xfs_efd_item_ops);
414	efdp->efd_efip = efip;
415	efdp->efd_format.efd_nextents = count;
416	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
417
418	return &efdp->efd_item;
419}
420
421/* Take a passive ref to the AG containing the space we're freeing. */
 
 
 
 
 
 
 
 
 
 
 
422void
423xfs_extent_free_get_group(
424	struct xfs_mount		*mp,
425	struct xfs_extent_free_item	*xefi)
 
426{
427	xfs_agnumber_t			agno;
 
 
 
428
429	agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock);
430	xefi->xefi_pag = xfs_perag_intent_get(mp, agno);
431}
432
433/* Release a passive AG ref after some freeing work. */
434static inline void
435xfs_extent_free_put_group(
436	struct xfs_extent_free_item	*xefi)
437{
438	xfs_perag_intent_put(xefi->xefi_pag);
 
 
 
439}
440
441/* Process a free extent. */
442STATIC int
443xfs_extent_free_finish_item(
444	struct xfs_trans		*tp,
445	struct xfs_log_item		*done,
446	struct list_head		*item,
447	struct xfs_btree_cur		**state)
448{
449	struct xfs_owner_info		oinfo = { };
450	struct xfs_extent_free_item	*xefi;
451	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
452	struct xfs_mount		*mp = tp->t_mountp;
453	struct xfs_extent		*extp;
454	uint				next_extent;
455	xfs_agblock_t			agbno;
456	int				error = 0;
457
458	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
459	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
460
461	oinfo.oi_owner = xefi->xefi_owner;
462	if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
463		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
464	if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
465		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
466
467	trace_xfs_bmap_free_deferred(tp->t_mountp, xefi->xefi_pag->pag_agno, 0,
468			agbno, xefi->xefi_blockcount);
469
470	/*
471	 * If we need a new transaction to make progress, the caller will log a
472	 * new EFI with the current contents. It will also log an EFD to cancel
473	 * the existing EFI, and so we need to copy all the unprocessed extents
474	 * in this EFI to the EFD so this works correctly.
475	 */
476	if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
477		error = __xfs_free_extent(tp, xefi->xefi_pag, agbno,
478				xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
479				xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
480	if (error == -EAGAIN) {
481		xfs_efd_from_efi(efdp);
482		return error;
483	}
484
485	/* Add the work we finished to the EFD, even though nobody uses that */
486	next_extent = efdp->efd_next_extent;
487	ASSERT(next_extent < efdp->efd_format.efd_nextents);
488	extp = &(efdp->efd_format.efd_extents[next_extent]);
489	extp->ext_start = xefi->xefi_startblock;
490	extp->ext_len = xefi->xefi_blockcount;
491	efdp->efd_next_extent++;
492
493	xfs_extent_free_put_group(xefi);
494	kmem_cache_free(xfs_extfree_item_cache, xefi);
495	return error;
496}
497
498/* Abort all pending EFIs. */
499STATIC void
500xfs_extent_free_abort_intent(
501	struct xfs_log_item		*intent)
502{
503	xfs_efi_release(EFI_ITEM(intent));
504}
505
506/* Cancel a free extent. */
507STATIC void
508xfs_extent_free_cancel_item(
509	struct list_head		*item)
510{
511	struct xfs_extent_free_item	*xefi;
512
513	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
514
515	xfs_extent_free_put_group(xefi);
516	kmem_cache_free(xfs_extfree_item_cache, xefi);
517}
518
519/*
520 * AGFL blocks are accounted differently in the reserve pools and are not
521 * inserted into the busy extent list.
522 */
523STATIC int
524xfs_agfl_free_finish_item(
525	struct xfs_trans		*tp,
526	struct xfs_log_item		*done,
527	struct list_head		*item,
528	struct xfs_btree_cur		**state)
529{
530	struct xfs_owner_info		oinfo = { };
531	struct xfs_mount		*mp = tp->t_mountp;
532	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
533	struct xfs_extent_free_item	*xefi;
534	struct xfs_extent		*extp;
535	struct xfs_buf			*agbp;
536	int				error;
537	xfs_agblock_t			agbno;
538	uint				next_extent;
539
540	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
541	ASSERT(xefi->xefi_blockcount == 1);
542	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
543	oinfo.oi_owner = xefi->xefi_owner;
544
545	trace_xfs_agfl_free_deferred(mp, xefi->xefi_pag->pag_agno, 0, agbno,
546			xefi->xefi_blockcount);
547
548	error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp);
549	if (!error)
550		error = xfs_free_agfl_block(tp, xefi->xefi_pag->pag_agno,
551				agbno, agbp, &oinfo);
552
553	next_extent = efdp->efd_next_extent;
554	ASSERT(next_extent < efdp->efd_format.efd_nextents);
555	extp = &(efdp->efd_format.efd_extents[next_extent]);
556	extp->ext_start = xefi->xefi_startblock;
557	extp->ext_len = xefi->xefi_blockcount;
558	efdp->efd_next_extent++;
559
560	xfs_extent_free_put_group(xefi);
561	kmem_cache_free(xfs_extfree_item_cache, xefi);
562	return error;
563}
564
565/* Is this recovered EFI ok? */
566static inline bool
567xfs_efi_validate_ext(
568	struct xfs_mount		*mp,
 
569	struct xfs_extent		*extp)
570{
 
 
 
571	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
572}
573
574static inline void
575xfs_efi_recover_work(
576	struct xfs_mount		*mp,
577	struct xfs_defer_pending	*dfp,
 
578	struct xfs_extent		*extp)
579{
580	struct xfs_extent_free_item	*xefi;
581
582	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
583			       GFP_KERNEL | __GFP_NOFAIL);
584	xefi->xefi_startblock = extp->ext_start;
585	xefi->xefi_blockcount = extp->ext_len;
586	xefi->xefi_agresv = XFS_AG_RESV_NONE;
587	xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
588	xfs_extent_free_get_group(mp, xefi);
 
 
 
589
590	xfs_defer_add_item(dfp, &xefi->xefi_list);
591}
592
593/*
594 * Process an extent free intent item that was recovered from
595 * the log.  We need to free the extents that it describes.
596 */
597STATIC int
598xfs_extent_free_recover_work(
599	struct xfs_defer_pending	*dfp,
600	struct list_head		*capture_list)
601{
602	struct xfs_trans_res		resv;
603	struct xfs_log_item		*lip = dfp->dfp_intent;
604	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
605	struct xfs_mount		*mp = lip->li_log->l_mp;
606	struct xfs_trans		*tp;
607	int				i;
608	int				error = 0;
 
609
610	/*
611	 * First check the validity of the extents described by the
612	 * EFI.  If any are bad, then assume that all are bad and
613	 * just toss the EFI.
614	 */
615	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
616		if (!xfs_efi_validate_ext(mp,
617					&efip->efi_format.efi_extents[i])) {
618			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
619					&efip->efi_format,
620					sizeof(efip->efi_format));
621			return -EFSCORRUPTED;
622		}
623
624		xfs_efi_recover_work(mp, dfp, &efip->efi_format.efi_extents[i]);
 
625	}
626
627	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
628	error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
629	if (error)
630		return error;
631
632	error = xlog_recover_finish_intent(tp, dfp);
633	if (error == -EFSCORRUPTED)
634		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
635				&efip->efi_format,
636				sizeof(efip->efi_format));
637	if (error)
638		goto abort_error;
639
640	return xfs_defer_ops_capture_and_commit(tp, capture_list);
641
642abort_error:
643	xfs_trans_cancel(tp);
644	return error;
645}
646
647/* Relog an intent item to push the log tail forward. */
648static struct xfs_log_item *
649xfs_extent_free_relog_intent(
650	struct xfs_trans		*tp,
651	struct xfs_log_item		*intent,
652	struct xfs_log_item		*done_item)
653{
654	struct xfs_efd_log_item		*efdp = EFD_ITEM(done_item);
655	struct xfs_efi_log_item		*efip;
656	struct xfs_extent		*extp;
657	unsigned int			count;
658
659	count = EFI_ITEM(intent)->efi_format.efi_nextents;
660	extp = EFI_ITEM(intent)->efi_format.efi_extents;
661
 
 
662	efdp->efd_next_extent = count;
663	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
664
665	efip = xfs_efi_init(tp->t_mountp, count);
666	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
667	atomic_set(&efip->efi_next_extent, count);
668
669	return &efip->efi_item;
670}
671
672const struct xfs_defer_op_type xfs_extent_free_defer_type = {
673	.name		= "extent_free",
674	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
675	.create_intent	= xfs_extent_free_create_intent,
676	.abort_intent	= xfs_extent_free_abort_intent,
677	.create_done	= xfs_extent_free_create_done,
678	.finish_item	= xfs_extent_free_finish_item,
679	.cancel_item	= xfs_extent_free_cancel_item,
680	.recover_work	= xfs_extent_free_recover_work,
681	.relog_intent	= xfs_extent_free_relog_intent,
682};
683
684/* sub-type with special handling for AGFL deferred frees */
685const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
686	.name		= "agfl_free",
687	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
688	.create_intent	= xfs_extent_free_create_intent,
689	.abort_intent	= xfs_extent_free_abort_intent,
690	.create_done	= xfs_extent_free_create_done,
691	.finish_item	= xfs_agfl_free_finish_item,
692	.cancel_item	= xfs_extent_free_cancel_item,
693	.recover_work	= xfs_extent_free_recover_work,
694	.relog_intent	= xfs_extent_free_relog_intent,
695};
696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
697STATIC bool
698xfs_efi_item_match(
699	struct xfs_log_item	*lip,
700	uint64_t		intent_id)
701{
702	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
703}
704
705static const struct xfs_item_ops xfs_efi_item_ops = {
706	.flags		= XFS_ITEM_INTENT,
707	.iop_size	= xfs_efi_item_size,
708	.iop_format	= xfs_efi_item_format,
709	.iop_unpin	= xfs_efi_item_unpin,
710	.iop_release	= xfs_efi_item_release,
711	.iop_match	= xfs_efi_item_match,
712};
713
714/*
715 * This routine is called to create an in-core extent free intent
716 * item from the efi format structure which was logged on disk.
717 * It allocates an in-core efi, copies the extents from the format
718 * structure into it, and adds the efi to the AIL with the given
719 * LSN.
720 */
721STATIC int
722xlog_recover_efi_commit_pass2(
723	struct xlog			*log,
724	struct list_head		*buffer_list,
725	struct xlog_recover_item	*item,
726	xfs_lsn_t			lsn)
727{
728	struct xfs_mount		*mp = log->l_mp;
729	struct xfs_efi_log_item		*efip;
730	struct xfs_efi_log_format	*efi_formatp;
731	int				error;
732
733	efi_formatp = item->ri_buf[0].i_addr;
734
735	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
736		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
737				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
738		return -EFSCORRUPTED;
739	}
740
741	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
742	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
743	if (error) {
744		xfs_efi_item_free(efip);
745		return error;
746	}
747	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
748
749	xlog_recover_intent_item(log, &efip->efi_item, lsn,
750			&xfs_extent_free_defer_type);
751	return 0;
752}
753
754const struct xlog_recover_item_ops xlog_efi_item_ops = {
755	.item_type		= XFS_LI_EFI,
756	.commit_pass2		= xlog_recover_efi_commit_pass2,
757};
758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
759/*
760 * This routine is called when an EFD format structure is found in a committed
761 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
762 * was still in the log. To do this it searches the AIL for the EFI with an id
763 * equal to that in the EFD format structure. If we find it we drop the EFD
764 * reference, which removes the EFI from the AIL and frees it.
765 */
766STATIC int
767xlog_recover_efd_commit_pass2(
768	struct xlog			*log,
769	struct list_head		*buffer_list,
770	struct xlog_recover_item	*item,
771	xfs_lsn_t			lsn)
772{
773	struct xfs_efd_log_format	*efd_formatp;
774	int				buflen = item->ri_buf[0].i_len;
775
776	efd_formatp = item->ri_buf[0].i_addr;
777
778	if (buflen < sizeof(struct xfs_efd_log_format)) {
779		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
780				efd_formatp, buflen);
781		return -EFSCORRUPTED;
782	}
783
784	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
785						efd_formatp->efd_nextents) &&
786	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
787						efd_formatp->efd_nextents)) {
788		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
789				efd_formatp, buflen);
790		return -EFSCORRUPTED;
791	}
792
793	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
794	return 0;
795}
796
797const struct xlog_recover_item_ops xlog_efd_item_ops = {
798	.item_type		= XFS_LI_EFD,
799	.commit_pass2		= xlog_recover_efd_commit_pass2,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
800};