Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * RISC-V performance counter support.
   4 *
   5 * Copyright (C) 2021 Western Digital Corporation or its affiliates.
   6 *
   7 * This code is based on ARM perf event code which is in turn based on
   8 * sparc64 and x86 code.
   9 */
  10
  11#define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
  12
  13#include <linux/mod_devicetable.h>
  14#include <linux/perf/riscv_pmu.h>
  15#include <linux/platform_device.h>
  16#include <linux/irq.h>
  17#include <linux/irqdomain.h>
  18#include <linux/of_irq.h>
  19#include <linux/of.h>
  20#include <linux/cpu_pm.h>
  21#include <linux/sched/clock.h>
  22#include <linux/soc/andes/irq.h>
  23#include <linux/workqueue.h>
  24
  25#include <asm/errata_list.h>
  26#include <asm/sbi.h>
  27#include <asm/cpufeature.h>
  28#include <asm/vendor_extensions.h>
  29#include <asm/vendor_extensions/andes.h>
  30
  31#define ALT_SBI_PMU_OVERFLOW(__ovl)					\
  32asm volatile(ALTERNATIVE_2(						\
  33	"csrr %0, " __stringify(CSR_SCOUNTOVF),				\
  34	"csrr %0, " __stringify(THEAD_C9XX_CSR_SCOUNTEROF),		\
  35		THEAD_VENDOR_ID, ERRATA_THEAD_PMU,			\
  36		CONFIG_ERRATA_THEAD_PMU,				\
  37	"csrr %0, " __stringify(ANDES_CSR_SCOUNTEROF),			\
  38		ANDES_VENDOR_ID,					\
  39		RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \
  40		CONFIG_ANDES_CUSTOM_PMU)				\
  41	: "=r" (__ovl) :						\
  42	: "memory")
  43
  44#define ALT_SBI_PMU_OVF_CLEAR_PENDING(__irq_mask)			\
  45asm volatile(ALTERNATIVE(						\
  46	"csrc " __stringify(CSR_IP) ", %0\n\t",				\
  47	"csrc " __stringify(ANDES_CSR_SLIP) ", %0\n\t",			\
  48		ANDES_VENDOR_ID,					\
  49		RISCV_ISA_VENDOR_EXT_XANDESPMU + RISCV_VENDOR_EXT_ALTERNATIVES_BASE, \
  50		CONFIG_ANDES_CUSTOM_PMU)				\
  51	: : "r"(__irq_mask)						\
  52	: "memory")
  53
  54#define SYSCTL_NO_USER_ACCESS	0
  55#define SYSCTL_USER_ACCESS	1
  56#define SYSCTL_LEGACY		2
  57
  58#define PERF_EVENT_FLAG_NO_USER_ACCESS	BIT(SYSCTL_NO_USER_ACCESS)
  59#define PERF_EVENT_FLAG_USER_ACCESS	BIT(SYSCTL_USER_ACCESS)
  60#define PERF_EVENT_FLAG_LEGACY		BIT(SYSCTL_LEGACY)
  61
  62PMU_FORMAT_ATTR(event, "config:0-47");
  63PMU_FORMAT_ATTR(firmware, "config:62-63");
  64
  65static bool sbi_v2_available;
  66static DEFINE_STATIC_KEY_FALSE(sbi_pmu_snapshot_available);
  67#define sbi_pmu_snapshot_available() \
  68	static_branch_unlikely(&sbi_pmu_snapshot_available)
  69
  70static struct attribute *riscv_arch_formats_attr[] = {
  71	&format_attr_event.attr,
  72	&format_attr_firmware.attr,
  73	NULL,
  74};
  75
  76static struct attribute_group riscv_pmu_format_group = {
  77	.name = "format",
  78	.attrs = riscv_arch_formats_attr,
  79};
  80
  81static const struct attribute_group *riscv_pmu_attr_groups[] = {
  82	&riscv_pmu_format_group,
  83	NULL,
  84};
  85
  86/* Allow user mode access by default */
  87static int sysctl_perf_user_access __read_mostly = SYSCTL_USER_ACCESS;
  88
  89/*
  90 * RISC-V doesn't have heterogeneous harts yet. This need to be part of
  91 * per_cpu in case of harts with different pmu counters
  92 */
  93static union sbi_pmu_ctr_info *pmu_ctr_list;
  94static bool riscv_pmu_use_irq;
  95static unsigned int riscv_pmu_irq_num;
  96static unsigned int riscv_pmu_irq_mask;
  97static unsigned int riscv_pmu_irq;
  98
  99/* Cache the available counters in a bitmask */
 100static unsigned long cmask;
 101
 102struct sbi_pmu_event_data {
 103	union {
 104		union {
 105			struct hw_gen_event {
 106				uint32_t event_code:16;
 107				uint32_t event_type:4;
 108				uint32_t reserved:12;
 109			} hw_gen_event;
 110			struct hw_cache_event {
 111				uint32_t result_id:1;
 112				uint32_t op_id:2;
 113				uint32_t cache_id:13;
 114				uint32_t event_type:4;
 115				uint32_t reserved:12;
 116			} hw_cache_event;
 117		};
 118		uint32_t event_idx;
 119	};
 120};
 121
 122static struct sbi_pmu_event_data pmu_hw_event_map[] = {
 123	[PERF_COUNT_HW_CPU_CYCLES]		= {.hw_gen_event = {
 124							SBI_PMU_HW_CPU_CYCLES,
 125							SBI_PMU_EVENT_TYPE_HW, 0}},
 126	[PERF_COUNT_HW_INSTRUCTIONS]		= {.hw_gen_event = {
 127							SBI_PMU_HW_INSTRUCTIONS,
 128							SBI_PMU_EVENT_TYPE_HW, 0}},
 129	[PERF_COUNT_HW_CACHE_REFERENCES]	= {.hw_gen_event = {
 130							SBI_PMU_HW_CACHE_REFERENCES,
 131							SBI_PMU_EVENT_TYPE_HW, 0}},
 132	[PERF_COUNT_HW_CACHE_MISSES]		= {.hw_gen_event = {
 133							SBI_PMU_HW_CACHE_MISSES,
 134							SBI_PMU_EVENT_TYPE_HW, 0}},
 135	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= {.hw_gen_event = {
 136							SBI_PMU_HW_BRANCH_INSTRUCTIONS,
 137							SBI_PMU_EVENT_TYPE_HW, 0}},
 138	[PERF_COUNT_HW_BRANCH_MISSES]		= {.hw_gen_event = {
 139							SBI_PMU_HW_BRANCH_MISSES,
 140							SBI_PMU_EVENT_TYPE_HW, 0}},
 141	[PERF_COUNT_HW_BUS_CYCLES]		= {.hw_gen_event = {
 142							SBI_PMU_HW_BUS_CYCLES,
 143							SBI_PMU_EVENT_TYPE_HW, 0}},
 144	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= {.hw_gen_event = {
 145							SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
 146							SBI_PMU_EVENT_TYPE_HW, 0}},
 147	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= {.hw_gen_event = {
 148							SBI_PMU_HW_STALLED_CYCLES_BACKEND,
 149							SBI_PMU_EVENT_TYPE_HW, 0}},
 150	[PERF_COUNT_HW_REF_CPU_CYCLES]		= {.hw_gen_event = {
 151							SBI_PMU_HW_REF_CPU_CYCLES,
 152							SBI_PMU_EVENT_TYPE_HW, 0}},
 153};
 154
 155#define C(x) PERF_COUNT_HW_CACHE_##x
 156static struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
 157[PERF_COUNT_HW_CACHE_OP_MAX]
 158[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 159	[C(L1D)] = {
 160		[C(OP_READ)] = {
 161			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 162					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 163			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 164					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 165		},
 166		[C(OP_WRITE)] = {
 167			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 168					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 169			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 170					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 171		},
 172		[C(OP_PREFETCH)] = {
 173			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 174					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 175			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 176					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 177		},
 178	},
 179	[C(L1I)] = {
 180		[C(OP_READ)] = {
 181			[C(RESULT_ACCESS)] = {.hw_cache_event =	{C(RESULT_ACCESS),
 182					C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 183			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
 184					C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 185		},
 186		[C(OP_WRITE)] = {
 187			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 188					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 189			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 190					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 191		},
 192		[C(OP_PREFETCH)] = {
 193			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 194					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 195			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 196					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 197		},
 198	},
 199	[C(LL)] = {
 200		[C(OP_READ)] = {
 201			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 202					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 203			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 204					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 205		},
 206		[C(OP_WRITE)] = {
 207			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 208					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 209			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 210					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 211		},
 212		[C(OP_PREFETCH)] = {
 213			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 214					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 215			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 216					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 217		},
 218	},
 219	[C(DTLB)] = {
 220		[C(OP_READ)] = {
 221			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 222					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 223			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 224					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 225		},
 226		[C(OP_WRITE)] = {
 227			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 228					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 229			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 230					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 231		},
 232		[C(OP_PREFETCH)] = {
 233			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 234					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 235			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 236					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 237		},
 238	},
 239	[C(ITLB)] = {
 240		[C(OP_READ)] = {
 241			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 242					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 243			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 244					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 245		},
 246		[C(OP_WRITE)] = {
 247			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 248					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 249			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 250					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 251		},
 252		[C(OP_PREFETCH)] = {
 253			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 254					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 255			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 256					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 257		},
 258	},
 259	[C(BPU)] = {
 260		[C(OP_READ)] = {
 261			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 262					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 263			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 264					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 265		},
 266		[C(OP_WRITE)] = {
 267			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 268					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 269			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 270					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 271		},
 272		[C(OP_PREFETCH)] = {
 273			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 274					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 275			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 276					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 277		},
 278	},
 279	[C(NODE)] = {
 280		[C(OP_READ)] = {
 281			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 282					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 283			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 284					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 285		},
 286		[C(OP_WRITE)] = {
 287			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 288					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 289			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 290					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 291		},
 292		[C(OP_PREFETCH)] = {
 293			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 294					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 295			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 296					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 297		},
 298	},
 299};
 300
 301static void pmu_sbi_check_event(struct sbi_pmu_event_data *edata)
 302{
 303	struct sbiret ret;
 304
 305	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH,
 306			0, cmask, 0, edata->event_idx, 0, 0);
 307	if (!ret.error) {
 308		sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
 309			  ret.value, 0x1, SBI_PMU_STOP_FLAG_RESET, 0, 0, 0);
 310	} else if (ret.error == SBI_ERR_NOT_SUPPORTED) {
 311		/* This event cannot be monitored by any counter */
 312		edata->event_idx = -ENOENT;
 313	}
 314}
 315
 316static void pmu_sbi_check_std_events(struct work_struct *work)
 317{
 318	for (int i = 0; i < ARRAY_SIZE(pmu_hw_event_map); i++)
 319		pmu_sbi_check_event(&pmu_hw_event_map[i]);
 320
 321	for (int i = 0; i < ARRAY_SIZE(pmu_cache_event_map); i++)
 322		for (int j = 0; j < ARRAY_SIZE(pmu_cache_event_map[i]); j++)
 323			for (int k = 0; k < ARRAY_SIZE(pmu_cache_event_map[i][j]); k++)
 324				pmu_sbi_check_event(&pmu_cache_event_map[i][j][k]);
 325}
 326
 327static DECLARE_WORK(check_std_events_work, pmu_sbi_check_std_events);
 328
 329static int pmu_sbi_ctr_get_width(int idx)
 330{
 331	return pmu_ctr_list[idx].width;
 332}
 333
 334static bool pmu_sbi_ctr_is_fw(int cidx)
 335{
 336	union sbi_pmu_ctr_info *info;
 337
 338	info = &pmu_ctr_list[cidx];
 339	if (!info)
 340		return false;
 341
 342	return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
 343}
 344
 345/*
 346 * Returns the counter width of a programmable counter and number of hardware
 347 * counters. As we don't support heterogeneous CPUs yet, it is okay to just
 348 * return the counter width of the first programmable counter.
 349 */
 350int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr)
 351{
 352	int i;
 353	union sbi_pmu_ctr_info *info;
 354	u32 hpm_width = 0, hpm_count = 0;
 355
 356	if (!cmask)
 357		return -EINVAL;
 358
 359	for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) {
 360		info = &pmu_ctr_list[i];
 361		if (!info)
 362			continue;
 363		if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET)
 364			hpm_width = info->width;
 365		if (info->type == SBI_PMU_CTR_TYPE_HW)
 366			hpm_count++;
 367	}
 368
 369	*hw_ctr_width = hpm_width;
 370	*num_hw_ctr = hpm_count;
 371
 372	return 0;
 373}
 374EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info);
 375
 376static uint8_t pmu_sbi_csr_index(struct perf_event *event)
 377{
 378	return pmu_ctr_list[event->hw.idx].csr - CSR_CYCLE;
 379}
 380
 381static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event)
 382{
 383	unsigned long cflags = 0;
 384	bool guest_events = false;
 385
 386	if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS)
 387		guest_events = true;
 388	if (event->attr.exclude_kernel)
 389		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH;
 390	if (event->attr.exclude_user)
 391		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH;
 392	if (guest_events && event->attr.exclude_hv)
 393		cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
 394	if (event->attr.exclude_host)
 395		cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH;
 396	if (event->attr.exclude_guest)
 397		cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH;
 398
 399	return cflags;
 400}
 401
 402static int pmu_sbi_ctr_get_idx(struct perf_event *event)
 403{
 404	struct hw_perf_event *hwc = &event->hw;
 405	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
 406	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
 407	struct sbiret ret;
 408	int idx;
 409	uint64_t cbase = 0, cmask = rvpmu->cmask;
 410	unsigned long cflags = 0;
 411
 412	cflags = pmu_sbi_get_filter_flags(event);
 413
 414	/*
 415	 * In legacy mode, we have to force the fixed counters for those events
 416	 * but not in the user access mode as we want to use the other counters
 417	 * that support sampling/filtering.
 418	 */
 419	if ((hwc->flags & PERF_EVENT_FLAG_LEGACY) && (event->attr.type == PERF_TYPE_HARDWARE)) {
 420		if (event->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
 421			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
 422			cmask = 1;
 423		} else if (event->attr.config == PERF_COUNT_HW_INSTRUCTIONS) {
 424			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
 425			cmask = BIT(CSR_INSTRET - CSR_CYCLE);
 426		}
 427	}
 428
 429	/* retrieve the available counter index */
 430#if defined(CONFIG_32BIT)
 431	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
 432			cmask, cflags, hwc->event_base, hwc->config,
 433			hwc->config >> 32);
 434#else
 435	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
 436			cmask, cflags, hwc->event_base, hwc->config, 0);
 437#endif
 438	if (ret.error) {
 439		pr_debug("Not able to find a counter for event %lx config %llx\n",
 440			hwc->event_base, hwc->config);
 441		return sbi_err_map_linux_errno(ret.error);
 442	}
 443
 444	idx = ret.value;
 445	if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value)
 446		return -ENOENT;
 447
 448	/* Additional sanity check for the counter id */
 449	if (pmu_sbi_ctr_is_fw(idx)) {
 450		if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
 451			return idx;
 452	} else {
 453		if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
 454			return idx;
 455	}
 456
 457	return -ENOENT;
 458}
 459
 460static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
 461{
 462
 463	struct hw_perf_event *hwc = &event->hw;
 464	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
 465	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
 466	int idx = hwc->idx;
 467
 468	if (pmu_sbi_ctr_is_fw(idx))
 469		clear_bit(idx, cpuc->used_fw_ctrs);
 470	else
 471		clear_bit(idx, cpuc->used_hw_ctrs);
 472}
 473
 474static int pmu_event_find_cache(u64 config)
 475{
 476	unsigned int cache_type, cache_op, cache_result, ret;
 477
 478	cache_type = (config >>  0) & 0xff;
 479	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 480		return -EINVAL;
 481
 482	cache_op = (config >>  8) & 0xff;
 483	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 484		return -EINVAL;
 485
 486	cache_result = (config >> 16) & 0xff;
 487	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 488		return -EINVAL;
 489
 490	ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
 491
 492	return ret;
 493}
 494
 495static bool pmu_sbi_is_fw_event(struct perf_event *event)
 496{
 497	u32 type = event->attr.type;
 498	u64 config = event->attr.config;
 499
 500	if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
 501		return true;
 502	else
 503		return false;
 504}
 505
 506static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
 507{
 508	u32 type = event->attr.type;
 509	u64 config = event->attr.config;
 510	int ret = -ENOENT;
 511
 512	/*
 513	 * Ensure we are finished checking standard hardware events for
 514	 * validity before allowing userspace to configure any events.
 515	 */
 516	flush_work(&check_std_events_work);
 517
 518	switch (type) {
 519	case PERF_TYPE_HARDWARE:
 520		if (config >= PERF_COUNT_HW_MAX)
 521			return -EINVAL;
 522		ret = pmu_hw_event_map[event->attr.config].event_idx;
 523		break;
 524	case PERF_TYPE_HW_CACHE:
 525		ret = pmu_event_find_cache(config);
 526		break;
 527	case PERF_TYPE_RAW:
 528		/*
 529		 * As per SBI specification, the upper 16 bits must be unused
 530		 * for a hardware raw event.
 531		 * Bits 63:62 are used to distinguish between raw events
 532		 * 00 - Hardware raw event
 533		 * 10 - SBI firmware events
 534		 * 11 - Risc-V platform specific firmware event
 535		 */
 536
 537		switch (config >> 62) {
 538		case 0:
 539			/* Return error any bits [48-63] is set  as it is not allowed by the spec */
 540			if (!(config & ~RISCV_PMU_RAW_EVENT_MASK)) {
 541				*econfig = config & RISCV_PMU_RAW_EVENT_MASK;
 542				ret = RISCV_PMU_RAW_EVENT_IDX;
 543			}
 544			break;
 545		case 2:
 546			ret = (config & 0xFFFF) | (SBI_PMU_EVENT_TYPE_FW << 16);
 547			break;
 548		case 3:
 549			/*
 550			 * For Risc-V platform specific firmware events
 551			 * Event code - 0xFFFF
 552			 * Event data - raw event encoding
 553			 */
 554			ret = SBI_PMU_EVENT_TYPE_FW << 16 | RISCV_PLAT_FW_EVENT;
 555			*econfig = config & RISCV_PMU_PLAT_FW_EVENT_MASK;
 556			break;
 557		default:
 558			break;
 559		}
 560		break;
 561	default:
 
 562		break;
 563	}
 564
 565	return ret;
 566}
 567
 568static void pmu_sbi_snapshot_free(struct riscv_pmu *pmu)
 569{
 570	int cpu;
 571
 572	for_each_possible_cpu(cpu) {
 573		struct cpu_hw_events *cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
 574
 575		if (!cpu_hw_evt->snapshot_addr)
 576			continue;
 577
 578		free_page((unsigned long)cpu_hw_evt->snapshot_addr);
 579		cpu_hw_evt->snapshot_addr = NULL;
 580		cpu_hw_evt->snapshot_addr_phys = 0;
 581	}
 582}
 583
 584static int pmu_sbi_snapshot_alloc(struct riscv_pmu *pmu)
 585{
 586	int cpu;
 587	struct page *snapshot_page;
 588
 589	for_each_possible_cpu(cpu) {
 590		struct cpu_hw_events *cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
 591
 592		snapshot_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
 593		if (!snapshot_page) {
 594			pmu_sbi_snapshot_free(pmu);
 595			return -ENOMEM;
 596		}
 597		cpu_hw_evt->snapshot_addr = page_to_virt(snapshot_page);
 598		cpu_hw_evt->snapshot_addr_phys = page_to_phys(snapshot_page);
 599	}
 600
 601	return 0;
 602}
 603
 604static int pmu_sbi_snapshot_disable(void)
 605{
 606	struct sbiret ret;
 607
 608	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM, SBI_SHMEM_DISABLE,
 609			SBI_SHMEM_DISABLE, 0, 0, 0, 0);
 610	if (ret.error) {
 611		pr_warn("failed to disable snapshot shared memory\n");
 612		return sbi_err_map_linux_errno(ret.error);
 613	}
 614
 615	return 0;
 616}
 617
 618static int pmu_sbi_snapshot_setup(struct riscv_pmu *pmu, int cpu)
 619{
 620	struct cpu_hw_events *cpu_hw_evt;
 621	struct sbiret ret = {0};
 622
 623	cpu_hw_evt = per_cpu_ptr(pmu->hw_events, cpu);
 624	if (!cpu_hw_evt->snapshot_addr_phys)
 625		return -EINVAL;
 626
 627	if (cpu_hw_evt->snapshot_set_done)
 628		return 0;
 629
 630	if (IS_ENABLED(CONFIG_32BIT))
 631		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM,
 632				cpu_hw_evt->snapshot_addr_phys,
 633				(u64)(cpu_hw_evt->snapshot_addr_phys) >> 32, 0, 0, 0, 0);
 634	else
 635		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_SNAPSHOT_SET_SHMEM,
 636				cpu_hw_evt->snapshot_addr_phys, 0, 0, 0, 0, 0);
 637
 638	/* Free up the snapshot area memory and fall back to SBI PMU calls without snapshot */
 639	if (ret.error) {
 640		if (ret.error != SBI_ERR_NOT_SUPPORTED)
 641			pr_warn("pmu snapshot setup failed with error %ld\n", ret.error);
 642		return sbi_err_map_linux_errno(ret.error);
 643	}
 644
 645	memset(cpu_hw_evt->snapshot_cval_shcopy, 0, sizeof(u64) * RISCV_MAX_COUNTERS);
 646	cpu_hw_evt->snapshot_set_done = true;
 647
 648	return 0;
 649}
 650
 651static u64 pmu_sbi_ctr_read(struct perf_event *event)
 652{
 653	struct hw_perf_event *hwc = &event->hw;
 654	int idx = hwc->idx;
 655	struct sbiret ret;
 
 656	u64 val = 0;
 657	struct riscv_pmu *pmu = to_riscv_pmu(event->pmu);
 658	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 659	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
 660	union sbi_pmu_ctr_info info = pmu_ctr_list[idx];
 661
 662	/* Read the value from the shared memory directly only if counter is stopped */
 663	if (sbi_pmu_snapshot_available() && (hwc->state & PERF_HES_STOPPED)) {
 664		val = sdata->ctr_values[idx];
 665		return val;
 666	}
 667
 668	if (pmu_sbi_is_fw_event(event)) {
 669		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
 670				hwc->idx, 0, 0, 0, 0, 0);
 671		if (ret.error)
 672			return 0;
 673
 674		val = ret.value;
 675		if (IS_ENABLED(CONFIG_32BIT) && sbi_v2_available && info.width >= 32) {
 676			ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ_HI,
 677					hwc->idx, 0, 0, 0, 0, 0);
 678			if (!ret.error)
 679				val |= ((u64)ret.value << 32);
 680			else
 681				WARN_ONCE(1, "Unable to read upper 32 bits of firmware counter error: %ld\n",
 682					  ret.error);
 683		}
 684	} else {
 
 685		val = riscv_pmu_ctr_read_csr(info.csr);
 686		if (IS_ENABLED(CONFIG_32BIT))
 687			val |= ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 32;
 688	}
 689
 690	return val;
 691}
 692
 693static void pmu_sbi_set_scounteren(void *arg)
 694{
 695	struct perf_event *event = (struct perf_event *)arg;
 696
 697	if (event->hw.idx != -1)
 698		csr_write(CSR_SCOUNTEREN,
 699			  csr_read(CSR_SCOUNTEREN) | BIT(pmu_sbi_csr_index(event)));
 700}
 701
 702static void pmu_sbi_reset_scounteren(void *arg)
 703{
 704	struct perf_event *event = (struct perf_event *)arg;
 705
 706	if (event->hw.idx != -1)
 707		csr_write(CSR_SCOUNTEREN,
 708			  csr_read(CSR_SCOUNTEREN) & ~BIT(pmu_sbi_csr_index(event)));
 709}
 710
 711static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
 712{
 713	struct sbiret ret;
 714	struct hw_perf_event *hwc = &event->hw;
 715	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
 716
 717	/* There is no benefit setting SNAPSHOT FLAG for a single counter */
 718#if defined(CONFIG_32BIT)
 719	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
 720			1, flag, ival, ival >> 32, 0);
 721#else
 722	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
 723			1, flag, ival, 0, 0);
 724#endif
 725	if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
 726		pr_err("Starting counter idx %d failed with error %d\n",
 727			hwc->idx, sbi_err_map_linux_errno(ret.error));
 728
 729	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
 730	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
 731		pmu_sbi_set_scounteren((void *)event);
 732}
 733
 734static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
 735{
 736	struct sbiret ret;
 737	struct hw_perf_event *hwc = &event->hw;
 738	struct riscv_pmu *pmu = to_riscv_pmu(event->pmu);
 739	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 740	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
 741
 742	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
 743	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
 744		pmu_sbi_reset_scounteren((void *)event);
 745
 746	if (sbi_pmu_snapshot_available())
 747		flag |= SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT;
 748
 749	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
 750	if (!ret.error && sbi_pmu_snapshot_available()) {
 751		/*
 752		 * The counter snapshot is based on the index base specified by hwc->idx.
 753		 * The actual counter value is updated in shared memory at index 0 when counter
 754		 * mask is 0x01. To ensure accurate counter values, it's necessary to transfer
 755		 * the counter value to shared memory. However, if hwc->idx is zero, the counter
 756		 * value is already correctly updated in shared memory, requiring no further
 757		 * adjustment.
 758		 */
 759		if (hwc->idx > 0) {
 760			sdata->ctr_values[hwc->idx] = sdata->ctr_values[0];
 761			sdata->ctr_values[0] = 0;
 762		}
 763	} else if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
 764		flag != SBI_PMU_STOP_FLAG_RESET) {
 765		pr_err("Stopping counter idx %d failed with error %d\n",
 766			hwc->idx, sbi_err_map_linux_errno(ret.error));
 767	}
 768}
 769
 770static int pmu_sbi_find_num_ctrs(void)
 771{
 772	struct sbiret ret;
 773
 774	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
 775	if (!ret.error)
 776		return ret.value;
 777	else
 778		return sbi_err_map_linux_errno(ret.error);
 779}
 780
 781static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask)
 782{
 783	struct sbiret ret;
 784	int i, num_hw_ctr = 0, num_fw_ctr = 0;
 785	union sbi_pmu_ctr_info cinfo;
 786
 787	pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
 788	if (!pmu_ctr_list)
 789		return -ENOMEM;
 790
 791	for (i = 0; i < nctr; i++) {
 792		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
 793		if (ret.error)
 794			/* The logical counter ids are not expected to be contiguous */
 795			continue;
 796
 797		*mask |= BIT(i);
 798
 799		cinfo.value = ret.value;
 800		if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
 801			num_fw_ctr++;
 802		else
 803			num_hw_ctr++;
 804		pmu_ctr_list[i].value = cinfo.value;
 805	}
 806
 807	pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
 808
 809	return 0;
 810}
 811
 812static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
 813{
 814	/*
 815	 * No need to check the error because we are disabling all the counters
 816	 * which may include counters that are not enabled yet.
 817	 */
 818	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
 819		  0, pmu->cmask, SBI_PMU_STOP_FLAG_RESET, 0, 0, 0);
 820}
 821
 822static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
 823{
 824	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 825	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
 826	unsigned long flag = 0;
 827	int i, idx;
 828	struct sbiret ret;
 829	u64 temp_ctr_overflow_mask = 0;
 830
 831	if (sbi_pmu_snapshot_available())
 832		flag = SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT;
 833
 834	/* Reset the shadow copy to avoid save/restore any value from previous overflow */
 835	memset(cpu_hw_evt->snapshot_cval_shcopy, 0, sizeof(u64) * RISCV_MAX_COUNTERS);
 836
 837	for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
 838		/* No need to check the error here as we can't do anything about the error */
 839		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, i * BITS_PER_LONG,
 840				cpu_hw_evt->used_hw_ctrs[i], flag, 0, 0, 0);
 841		if (!ret.error && sbi_pmu_snapshot_available()) {
 842			/* Save the counter values to avoid clobbering */
 843			for_each_set_bit(idx, &cpu_hw_evt->used_hw_ctrs[i], BITS_PER_LONG)
 844				cpu_hw_evt->snapshot_cval_shcopy[i * BITS_PER_LONG + idx] =
 845							sdata->ctr_values[idx];
 846			/* Save the overflow mask to avoid clobbering */
 847			temp_ctr_overflow_mask |= sdata->ctr_overflow_mask << (i * BITS_PER_LONG);
 848		}
 849	}
 850
 851	/* Restore the counter values to the shared memory for used hw counters */
 852	if (sbi_pmu_snapshot_available()) {
 853		for_each_set_bit(idx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS)
 854			sdata->ctr_values[idx] = cpu_hw_evt->snapshot_cval_shcopy[idx];
 855		if (temp_ctr_overflow_mask)
 856			sdata->ctr_overflow_mask = temp_ctr_overflow_mask;
 857	}
 858}
 859
 860/*
 861 * This function starts all the used counters in two step approach.
 862 * Any counter that did not overflow can be start in a single step
 863 * while the overflowed counters need to be started with updated initialization
 864 * value.
 865 */
 866static inline void pmu_sbi_start_ovf_ctrs_sbi(struct cpu_hw_events *cpu_hw_evt,
 867					      u64 ctr_ovf_mask)
 868{
 869	int idx = 0, i;
 
 870	struct perf_event *event;
 871	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
 872	unsigned long ctr_start_mask = 0;
 873	uint64_t max_period;
 874	struct hw_perf_event *hwc;
 875	u64 init_val = 0;
 876
 877	for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
 878		ctr_start_mask = cpu_hw_evt->used_hw_ctrs[i] & ~ctr_ovf_mask;
 879		/* Start all the counters that did not overflow in a single shot */
 880		sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, i * BITS_PER_LONG, ctr_start_mask,
 881			0, 0, 0, 0);
 882	}
 883
 884	/* Reinitialize and start all the counter that overflowed */
 885	while (ctr_ovf_mask) {
 886		if (ctr_ovf_mask & 0x01) {
 887			event = cpu_hw_evt->events[idx];
 888			hwc = &event->hw;
 889			max_period = riscv_pmu_ctr_get_width_mask(event);
 890			init_val = local64_read(&hwc->prev_count) & max_period;
 891#if defined(CONFIG_32BIT)
 892			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
 893				  flag, init_val, init_val >> 32, 0);
 894#else
 895			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
 896				  flag, init_val, 0, 0);
 897#endif
 898			perf_event_update_userpage(event);
 899		}
 900		ctr_ovf_mask = ctr_ovf_mask >> 1;
 901		idx++;
 902	}
 903}
 904
 905static inline void pmu_sbi_start_ovf_ctrs_snapshot(struct cpu_hw_events *cpu_hw_evt,
 906						   u64 ctr_ovf_mask)
 907{
 908	int i, idx = 0;
 909	struct perf_event *event;
 910	unsigned long flag = SBI_PMU_START_FLAG_INIT_SNAPSHOT;
 911	u64 max_period, init_val = 0;
 912	struct hw_perf_event *hwc;
 913	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
 914
 915	for_each_set_bit(idx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
 916		if (ctr_ovf_mask & BIT(idx)) {
 917			event = cpu_hw_evt->events[idx];
 918			hwc = &event->hw;
 919			max_period = riscv_pmu_ctr_get_width_mask(event);
 920			init_val = local64_read(&hwc->prev_count) & max_period;
 921			cpu_hw_evt->snapshot_cval_shcopy[idx] = init_val;
 922		}
 923		/*
 924		 * We do not need to update the non-overflow counters the previous
 925		 * value should have been there already.
 926		 */
 927	}
 928
 929	for (i = 0; i < BITS_TO_LONGS(RISCV_MAX_COUNTERS); i++) {
 930		/* Restore the counter values to relative indices for used hw counters */
 931		for_each_set_bit(idx, &cpu_hw_evt->used_hw_ctrs[i], BITS_PER_LONG)
 932			sdata->ctr_values[idx] =
 933					cpu_hw_evt->snapshot_cval_shcopy[idx + i * BITS_PER_LONG];
 934		/* Start all the counters in a single shot */
 935		sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx * BITS_PER_LONG,
 936			  cpu_hw_evt->used_hw_ctrs[i], flag, 0, 0, 0);
 937	}
 938}
 939
 940static void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
 941					u64 ctr_ovf_mask)
 942{
 943	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 944
 945	if (sbi_pmu_snapshot_available())
 946		pmu_sbi_start_ovf_ctrs_snapshot(cpu_hw_evt, ctr_ovf_mask);
 947	else
 948		pmu_sbi_start_ovf_ctrs_sbi(cpu_hw_evt, ctr_ovf_mask);
 949}
 950
 951static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
 952{
 953	struct perf_sample_data data;
 954	struct pt_regs *regs;
 955	struct hw_perf_event *hw_evt;
 956	union sbi_pmu_ctr_info *info;
 957	int lidx, hidx, fidx;
 958	struct riscv_pmu *pmu;
 959	struct perf_event *event;
 960	u64 overflow;
 961	u64 overflowed_ctrs = 0;
 962	struct cpu_hw_events *cpu_hw_evt = dev;
 963	u64 start_clock = sched_clock();
 964	struct riscv_pmu_snapshot_data *sdata = cpu_hw_evt->snapshot_addr;
 965
 966	if (WARN_ON_ONCE(!cpu_hw_evt))
 967		return IRQ_NONE;
 968
 969	/* Firmware counter don't support overflow yet */
 970	fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
 971	if (fidx == RISCV_MAX_COUNTERS) {
 972		csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
 973		return IRQ_NONE;
 974	}
 975
 976	event = cpu_hw_evt->events[fidx];
 977	if (!event) {
 978		ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
 979		return IRQ_NONE;
 980	}
 981
 982	pmu = to_riscv_pmu(event->pmu);
 983	pmu_sbi_stop_hw_ctrs(pmu);
 984
 985	/* Overflow status register should only be read after counter are stopped */
 986	if (sbi_pmu_snapshot_available())
 987		overflow = sdata->ctr_overflow_mask;
 988	else
 989		ALT_SBI_PMU_OVERFLOW(overflow);
 990
 991	/*
 992	 * Overflow interrupt pending bit should only be cleared after stopping
 993	 * all the counters to avoid any race condition.
 994	 */
 995	ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
 996
 997	/* No overflow bit is set */
 998	if (!overflow)
 999		return IRQ_NONE;
1000
1001	regs = get_irq_regs();
1002
1003	for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
1004		struct perf_event *event = cpu_hw_evt->events[lidx];
1005
1006		/* Skip if invalid event or user did not request a sampling */
1007		if (!event || !is_sampling_event(event))
1008			continue;
1009
1010		info = &pmu_ctr_list[lidx];
1011		/* Do a sanity check */
1012		if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
1013			continue;
1014
1015		if (sbi_pmu_snapshot_available())
1016			/* SBI implementation already updated the logical indicies */
1017			hidx = lidx;
1018		else
1019			/* compute hardware counter index */
1020			hidx = info->csr - CSR_CYCLE;
1021
1022		/* check if the corresponding bit is set in sscountovf or overflow mask in shmem */
1023		if (!(overflow & BIT(hidx)))
1024			continue;
1025
1026		/*
1027		 * Keep a track of overflowed counters so that they can be started
1028		 * with updated initial value.
1029		 */
1030		overflowed_ctrs |= BIT(lidx);
1031		hw_evt = &event->hw;
1032		/* Update the event states here so that we know the state while reading */
1033		hw_evt->state |= PERF_HES_STOPPED;
1034		riscv_pmu_event_update(event);
1035		hw_evt->state |= PERF_HES_UPTODATE;
1036		perf_sample_data_init(&data, 0, hw_evt->last_period);
1037		if (riscv_pmu_event_set_period(event)) {
1038			/*
1039			 * Unlike other ISAs, RISC-V don't have to disable interrupts
1040			 * to avoid throttling here. As per the specification, the
1041			 * interrupt remains disabled until the OF bit is set.
1042			 * Interrupts are enabled again only during the start.
1043			 * TODO: We will need to stop the guest counters once
1044			 * virtualization support is added.
1045			 */
1046			perf_event_overflow(event, &data, regs);
1047		}
1048		/* Reset the state as we are going to start the counter after the loop */
1049		hw_evt->state = 0;
1050	}
1051
1052	pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
1053	perf_sample_event_took(sched_clock() - start_clock);
1054
1055	return IRQ_HANDLED;
1056}
1057
1058static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
1059{
1060	struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
1061	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
1062
1063	/*
1064	 * We keep enabling userspace access to CYCLE, TIME and INSTRET via the
1065	 * legacy option but that will be removed in the future.
1066	 */
1067	if (sysctl_perf_user_access == SYSCTL_LEGACY)
1068		csr_write(CSR_SCOUNTEREN, 0x7);
1069	else
1070		csr_write(CSR_SCOUNTEREN, 0x2);
1071
1072	/* Stop all the counters so that they can be enabled from perf */
1073	pmu_sbi_stop_all(pmu);
1074
1075	if (riscv_pmu_use_irq) {
1076		cpu_hw_evt->irq = riscv_pmu_irq;
1077		ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
1078		enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
1079	}
1080
1081	if (sbi_pmu_snapshot_available())
1082		return pmu_sbi_snapshot_setup(pmu, cpu);
1083
1084	return 0;
1085}
1086
1087static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
1088{
1089	if (riscv_pmu_use_irq) {
1090		disable_percpu_irq(riscv_pmu_irq);
1091	}
1092
1093	/* Disable all counters access for user mode now */
1094	csr_write(CSR_SCOUNTEREN, 0x0);
1095
1096	if (sbi_pmu_snapshot_available())
1097		return pmu_sbi_snapshot_disable();
1098
1099	return 0;
1100}
1101
1102static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
1103{
1104	int ret;
1105	struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
1106	struct irq_domain *domain = NULL;
1107
1108	if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
1109		riscv_pmu_irq_num = RV_IRQ_PMU;
1110		riscv_pmu_use_irq = true;
1111	} else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) &&
1112		   riscv_cached_mvendorid(0) == THEAD_VENDOR_ID &&
1113		   riscv_cached_marchid(0) == 0 &&
1114		   riscv_cached_mimpid(0) == 0) {
1115		riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU;
1116		riscv_pmu_use_irq = true;
1117	} else if (riscv_has_vendor_extension_unlikely(ANDES_VENDOR_ID,
1118						       RISCV_ISA_VENDOR_EXT_XANDESPMU) &&
1119		   IS_ENABLED(CONFIG_ANDES_CUSTOM_PMU)) {
1120		riscv_pmu_irq_num = ANDES_SLI_CAUSE_BASE + ANDES_RV_IRQ_PMOVI;
1121		riscv_pmu_use_irq = true;
1122	}
1123
1124	riscv_pmu_irq_mask = BIT(riscv_pmu_irq_num % BITS_PER_LONG);
1125
1126	if (!riscv_pmu_use_irq)
1127		return -EOPNOTSUPP;
1128
1129	domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(),
1130					  DOMAIN_BUS_ANY);
1131	if (!domain) {
1132		pr_err("Failed to find INTC IRQ root domain\n");
1133		return -ENODEV;
1134	}
1135
1136	riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num);
1137	if (!riscv_pmu_irq) {
1138		pr_err("Failed to map PMU interrupt for node\n");
1139		return -ENODEV;
1140	}
1141
1142	ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
1143	if (ret) {
1144		pr_err("registering percpu irq failed [%d]\n", ret);
1145		return ret;
1146	}
1147
1148	return 0;
1149}
1150
1151#ifdef CONFIG_CPU_PM
1152static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
1153				void *v)
1154{
1155	struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
1156	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
1157	int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
1158	struct perf_event *event;
1159	int idx;
1160
1161	if (!enabled)
1162		return NOTIFY_OK;
1163
1164	for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
1165		event = cpuc->events[idx];
1166		if (!event)
1167			continue;
1168
1169		switch (cmd) {
1170		case CPU_PM_ENTER:
1171			/*
1172			 * Stop and update the counter
1173			 */
1174			riscv_pmu_stop(event, PERF_EF_UPDATE);
1175			break;
1176		case CPU_PM_EXIT:
1177		case CPU_PM_ENTER_FAILED:
1178			/*
1179			 * Restore and enable the counter.
1180			 */
1181			riscv_pmu_start(event, PERF_EF_RELOAD);
1182			break;
1183		default:
1184			break;
1185		}
1186	}
1187
1188	return NOTIFY_OK;
1189}
1190
1191static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
1192{
1193	pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
1194	return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
1195}
1196
1197static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
1198{
1199	cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
1200}
1201#else
1202static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
1203static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
1204#endif
1205
1206static void riscv_pmu_destroy(struct riscv_pmu *pmu)
1207{
1208	if (sbi_v2_available) {
1209		if (sbi_pmu_snapshot_available()) {
1210			pmu_sbi_snapshot_disable();
1211			pmu_sbi_snapshot_free(pmu);
1212		}
1213	}
1214	riscv_pm_pmu_unregister(pmu);
1215	cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1216}
1217
1218static void pmu_sbi_event_init(struct perf_event *event)
1219{
1220	/*
1221	 * The permissions are set at event_init so that we do not depend
1222	 * on the sysctl value that can change.
1223	 */
1224	if (sysctl_perf_user_access == SYSCTL_NO_USER_ACCESS)
1225		event->hw.flags |= PERF_EVENT_FLAG_NO_USER_ACCESS;
1226	else if (sysctl_perf_user_access == SYSCTL_USER_ACCESS)
1227		event->hw.flags |= PERF_EVENT_FLAG_USER_ACCESS;
1228	else
1229		event->hw.flags |= PERF_EVENT_FLAG_LEGACY;
1230}
1231
1232static void pmu_sbi_event_mapped(struct perf_event *event, struct mm_struct *mm)
1233{
1234	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
1235		return;
1236
1237	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
1238		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
1239		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
1240			return;
1241		}
1242	}
1243
1244	/*
1245	 * The user mmapped the event to directly access it: this is where
1246	 * we determine based on sysctl_perf_user_access if we grant userspace
1247	 * the direct access to this event. That means that within the same
1248	 * task, some events may be directly accessible and some other may not,
1249	 * if the user changes the value of sysctl_perf_user_accesss in the
1250	 * meantime.
1251	 */
1252
1253	event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1254
1255	/*
1256	 * We must enable userspace access *before* advertising in the user page
1257	 * that it is possible to do so to avoid any race.
1258	 * And we must notify all cpus here because threads that currently run
1259	 * on other cpus will try to directly access the counter too without
1260	 * calling pmu_sbi_ctr_start.
1261	 */
1262	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
1263		on_each_cpu_mask(mm_cpumask(mm),
1264				 pmu_sbi_set_scounteren, (void *)event, 1);
1265}
1266
1267static void pmu_sbi_event_unmapped(struct perf_event *event, struct mm_struct *mm)
1268{
1269	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
1270		return;
1271
1272	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
1273		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
1274		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
1275			return;
1276		}
1277	}
1278
1279	/*
1280	 * Here we can directly remove user access since the user does not have
1281	 * access to the user page anymore so we avoid the racy window where the
1282	 * user could have read cap_user_rdpmc to true right before we disable
1283	 * it.
1284	 */
1285	event->hw.flags &= ~PERF_EVENT_FLAG_USER_READ_CNT;
1286
1287	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
1288		on_each_cpu_mask(mm_cpumask(mm),
1289				 pmu_sbi_reset_scounteren, (void *)event, 1);
1290}
1291
1292static void riscv_pmu_update_counter_access(void *info)
1293{
1294	if (sysctl_perf_user_access == SYSCTL_LEGACY)
1295		csr_write(CSR_SCOUNTEREN, 0x7);
1296	else
1297		csr_write(CSR_SCOUNTEREN, 0x2);
1298}
1299
1300static int riscv_pmu_proc_user_access_handler(const struct ctl_table *table,
1301					      int write, void *buffer,
1302					      size_t *lenp, loff_t *ppos)
1303{
1304	int prev = sysctl_perf_user_access;
1305	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1306
1307	/*
1308	 * Test against the previous value since we clear SCOUNTEREN when
1309	 * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should
1310	 * not do that if that was already the case.
1311	 */
1312	if (ret || !write || prev == sysctl_perf_user_access)
1313		return ret;
1314
1315	on_each_cpu(riscv_pmu_update_counter_access, NULL, 1);
1316
1317	return 0;
1318}
1319
1320static struct ctl_table sbi_pmu_sysctl_table[] = {
1321	{
1322		.procname       = "perf_user_access",
1323		.data		= &sysctl_perf_user_access,
1324		.maxlen		= sizeof(unsigned int),
1325		.mode           = 0644,
1326		.proc_handler	= riscv_pmu_proc_user_access_handler,
1327		.extra1		= SYSCTL_ZERO,
1328		.extra2		= SYSCTL_TWO,
1329	},
 
1330};
1331
1332static int pmu_sbi_device_probe(struct platform_device *pdev)
1333{
1334	struct riscv_pmu *pmu = NULL;
1335	int ret = -ENODEV;
1336	int num_counters;
1337
1338	pr_info("SBI PMU extension is available\n");
1339	pmu = riscv_pmu_alloc();
1340	if (!pmu)
1341		return -ENOMEM;
1342
1343	num_counters = pmu_sbi_find_num_ctrs();
1344	if (num_counters < 0) {
1345		pr_err("SBI PMU extension doesn't provide any counters\n");
1346		goto out_free;
1347	}
1348
1349	/* It is possible to get from SBI more than max number of counters */
1350	if (num_counters > RISCV_MAX_COUNTERS) {
1351		num_counters = RISCV_MAX_COUNTERS;
1352		pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters);
1353	}
1354
1355	/* cache all the information about counters now */
1356	if (pmu_sbi_get_ctrinfo(num_counters, &cmask))
1357		goto out_free;
1358
1359	ret = pmu_sbi_setup_irqs(pmu, pdev);
1360	if (ret < 0) {
1361		pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
1362		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1363		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
1364	}
1365
1366	pmu->pmu.attr_groups = riscv_pmu_attr_groups;
1367	pmu->pmu.parent = &pdev->dev;
1368	pmu->cmask = cmask;
1369	pmu->ctr_start = pmu_sbi_ctr_start;
1370	pmu->ctr_stop = pmu_sbi_ctr_stop;
1371	pmu->event_map = pmu_sbi_event_map;
1372	pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
1373	pmu->ctr_get_width = pmu_sbi_ctr_get_width;
1374	pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
1375	pmu->ctr_read = pmu_sbi_ctr_read;
1376	pmu->event_init = pmu_sbi_event_init;
1377	pmu->event_mapped = pmu_sbi_event_mapped;
1378	pmu->event_unmapped = pmu_sbi_event_unmapped;
1379	pmu->csr_index = pmu_sbi_csr_index;
1380
 
 
 
 
1381	ret = riscv_pm_pmu_register(pmu);
1382	if (ret)
1383		goto out_unregister;
1384
1385	ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
1386	if (ret)
1387		goto out_unregister;
1388
1389	/* SBI PMU Snapsphot is only available in SBI v2.0 */
1390	if (sbi_v2_available) {
1391		int cpu;
1392
1393		ret = pmu_sbi_snapshot_alloc(pmu);
1394		if (ret)
1395			goto out_unregister;
1396
1397		cpu = get_cpu();
1398		ret = pmu_sbi_snapshot_setup(pmu, cpu);
1399		put_cpu();
1400
1401		if (ret) {
1402			/* Snapshot is an optional feature. Continue if not available */
1403			pmu_sbi_snapshot_free(pmu);
1404		} else {
1405			pr_info("SBI PMU snapshot detected\n");
1406			/*
1407			 * We enable it once here for the boot cpu. If snapshot shmem setup
1408			 * fails during cpu hotplug process, it will fail to start the cpu
1409			 * as we can not handle hetergenous PMUs with different snapshot
1410			 * capability.
1411			 */
1412			static_branch_enable(&sbi_pmu_snapshot_available);
1413		}
1414	}
1415
1416	register_sysctl("kernel", sbi_pmu_sysctl_table);
1417
1418	ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1419	if (ret)
1420		goto out_unregister;
1421
1422	/* Asynchronously check which standard events are available */
1423	schedule_work(&check_std_events_work);
1424
1425	return 0;
1426
1427out_unregister:
1428	riscv_pmu_destroy(pmu);
1429
1430out_free:
1431	kfree(pmu);
1432	return ret;
1433}
1434
1435static struct platform_driver pmu_sbi_driver = {
1436	.probe		= pmu_sbi_device_probe,
1437	.driver		= {
1438		.name	= RISCV_PMU_SBI_PDEV_NAME,
1439	},
1440};
1441
1442static int __init pmu_sbi_devinit(void)
1443{
1444	int ret;
1445	struct platform_device *pdev;
1446
1447	if (sbi_spec_version < sbi_mk_version(0, 3) ||
1448	    !sbi_probe_extension(SBI_EXT_PMU)) {
1449		return 0;
1450	}
1451
1452	if (sbi_spec_version >= sbi_mk_version(2, 0))
1453		sbi_v2_available = true;
1454
1455	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
1456				      "perf/riscv/pmu:starting",
1457				      pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
1458	if (ret) {
1459		pr_err("CPU hotplug notifier could not be registered: %d\n",
1460		       ret);
1461		return ret;
1462	}
1463
1464	ret = platform_driver_register(&pmu_sbi_driver);
1465	if (ret)
1466		return ret;
1467
1468	pdev = platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME, -1, NULL, 0);
1469	if (IS_ERR(pdev)) {
1470		platform_driver_unregister(&pmu_sbi_driver);
1471		return PTR_ERR(pdev);
1472	}
1473
1474	/* Notify legacy implementation that SBI pmu is available*/
1475	riscv_pmu_legacy_skip_init();
1476
1477	return ret;
1478}
1479device_initcall(pmu_sbi_devinit)
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * RISC-V performance counter support.
   4 *
   5 * Copyright (C) 2021 Western Digital Corporation or its affiliates.
   6 *
   7 * This code is based on ARM perf event code which is in turn based on
   8 * sparc64 and x86 code.
   9 */
  10
  11#define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
  12
  13#include <linux/mod_devicetable.h>
  14#include <linux/perf/riscv_pmu.h>
  15#include <linux/platform_device.h>
  16#include <linux/irq.h>
  17#include <linux/irqdomain.h>
  18#include <linux/of_irq.h>
  19#include <linux/of.h>
  20#include <linux/cpu_pm.h>
  21#include <linux/sched/clock.h>
  22#include <linux/soc/andes/irq.h>
 
  23
  24#include <asm/errata_list.h>
  25#include <asm/sbi.h>
  26#include <asm/cpufeature.h>
 
 
  27
  28#define ALT_SBI_PMU_OVERFLOW(__ovl)					\
  29asm volatile(ALTERNATIVE_2(						\
  30	"csrr %0, " __stringify(CSR_SCOUNTOVF),				\
  31	"csrr %0, " __stringify(THEAD_C9XX_CSR_SCOUNTEROF),		\
  32		THEAD_VENDOR_ID, ERRATA_THEAD_PMU,			\
  33		CONFIG_ERRATA_THEAD_PMU,				\
  34	"csrr %0, " __stringify(ANDES_CSR_SCOUNTEROF),			\
  35		0, RISCV_ISA_EXT_XANDESPMU,				\
 
  36		CONFIG_ANDES_CUSTOM_PMU)				\
  37	: "=r" (__ovl) :						\
  38	: "memory")
  39
  40#define ALT_SBI_PMU_OVF_CLEAR_PENDING(__irq_mask)			\
  41asm volatile(ALTERNATIVE(						\
  42	"csrc " __stringify(CSR_IP) ", %0\n\t",				\
  43	"csrc " __stringify(ANDES_CSR_SLIP) ", %0\n\t",			\
  44		0, RISCV_ISA_EXT_XANDESPMU,				\
 
  45		CONFIG_ANDES_CUSTOM_PMU)				\
  46	: : "r"(__irq_mask)						\
  47	: "memory")
  48
  49#define SYSCTL_NO_USER_ACCESS	0
  50#define SYSCTL_USER_ACCESS	1
  51#define SYSCTL_LEGACY		2
  52
  53#define PERF_EVENT_FLAG_NO_USER_ACCESS	BIT(SYSCTL_NO_USER_ACCESS)
  54#define PERF_EVENT_FLAG_USER_ACCESS	BIT(SYSCTL_USER_ACCESS)
  55#define PERF_EVENT_FLAG_LEGACY		BIT(SYSCTL_LEGACY)
  56
  57PMU_FORMAT_ATTR(event, "config:0-47");
  58PMU_FORMAT_ATTR(firmware, "config:63");
 
 
 
 
 
  59
  60static struct attribute *riscv_arch_formats_attr[] = {
  61	&format_attr_event.attr,
  62	&format_attr_firmware.attr,
  63	NULL,
  64};
  65
  66static struct attribute_group riscv_pmu_format_group = {
  67	.name = "format",
  68	.attrs = riscv_arch_formats_attr,
  69};
  70
  71static const struct attribute_group *riscv_pmu_attr_groups[] = {
  72	&riscv_pmu_format_group,
  73	NULL,
  74};
  75
  76/* Allow user mode access by default */
  77static int sysctl_perf_user_access __read_mostly = SYSCTL_USER_ACCESS;
  78
  79/*
  80 * RISC-V doesn't have heterogeneous harts yet. This need to be part of
  81 * per_cpu in case of harts with different pmu counters
  82 */
  83static union sbi_pmu_ctr_info *pmu_ctr_list;
  84static bool riscv_pmu_use_irq;
  85static unsigned int riscv_pmu_irq_num;
  86static unsigned int riscv_pmu_irq_mask;
  87static unsigned int riscv_pmu_irq;
  88
  89/* Cache the available counters in a bitmask */
  90static unsigned long cmask;
  91
  92struct sbi_pmu_event_data {
  93	union {
  94		union {
  95			struct hw_gen_event {
  96				uint32_t event_code:16;
  97				uint32_t event_type:4;
  98				uint32_t reserved:12;
  99			} hw_gen_event;
 100			struct hw_cache_event {
 101				uint32_t result_id:1;
 102				uint32_t op_id:2;
 103				uint32_t cache_id:13;
 104				uint32_t event_type:4;
 105				uint32_t reserved:12;
 106			} hw_cache_event;
 107		};
 108		uint32_t event_idx;
 109	};
 110};
 111
 112static const struct sbi_pmu_event_data pmu_hw_event_map[] = {
 113	[PERF_COUNT_HW_CPU_CYCLES]		= {.hw_gen_event = {
 114							SBI_PMU_HW_CPU_CYCLES,
 115							SBI_PMU_EVENT_TYPE_HW, 0}},
 116	[PERF_COUNT_HW_INSTRUCTIONS]		= {.hw_gen_event = {
 117							SBI_PMU_HW_INSTRUCTIONS,
 118							SBI_PMU_EVENT_TYPE_HW, 0}},
 119	[PERF_COUNT_HW_CACHE_REFERENCES]	= {.hw_gen_event = {
 120							SBI_PMU_HW_CACHE_REFERENCES,
 121							SBI_PMU_EVENT_TYPE_HW, 0}},
 122	[PERF_COUNT_HW_CACHE_MISSES]		= {.hw_gen_event = {
 123							SBI_PMU_HW_CACHE_MISSES,
 124							SBI_PMU_EVENT_TYPE_HW, 0}},
 125	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= {.hw_gen_event = {
 126							SBI_PMU_HW_BRANCH_INSTRUCTIONS,
 127							SBI_PMU_EVENT_TYPE_HW, 0}},
 128	[PERF_COUNT_HW_BRANCH_MISSES]		= {.hw_gen_event = {
 129							SBI_PMU_HW_BRANCH_MISSES,
 130							SBI_PMU_EVENT_TYPE_HW, 0}},
 131	[PERF_COUNT_HW_BUS_CYCLES]		= {.hw_gen_event = {
 132							SBI_PMU_HW_BUS_CYCLES,
 133							SBI_PMU_EVENT_TYPE_HW, 0}},
 134	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= {.hw_gen_event = {
 135							SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
 136							SBI_PMU_EVENT_TYPE_HW, 0}},
 137	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= {.hw_gen_event = {
 138							SBI_PMU_HW_STALLED_CYCLES_BACKEND,
 139							SBI_PMU_EVENT_TYPE_HW, 0}},
 140	[PERF_COUNT_HW_REF_CPU_CYCLES]		= {.hw_gen_event = {
 141							SBI_PMU_HW_REF_CPU_CYCLES,
 142							SBI_PMU_EVENT_TYPE_HW, 0}},
 143};
 144
 145#define C(x) PERF_COUNT_HW_CACHE_##x
 146static const struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
 147[PERF_COUNT_HW_CACHE_OP_MAX]
 148[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 149	[C(L1D)] = {
 150		[C(OP_READ)] = {
 151			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 152					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 153			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 154					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 155		},
 156		[C(OP_WRITE)] = {
 157			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 158					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 159			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 160					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 161		},
 162		[C(OP_PREFETCH)] = {
 163			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 164					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 165			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 166					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 167		},
 168	},
 169	[C(L1I)] = {
 170		[C(OP_READ)] = {
 171			[C(RESULT_ACCESS)] = {.hw_cache_event =	{C(RESULT_ACCESS),
 172					C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 173			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
 174					C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 175		},
 176		[C(OP_WRITE)] = {
 177			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 178					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 179			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 180					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 181		},
 182		[C(OP_PREFETCH)] = {
 183			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 184					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 185			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 186					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 187		},
 188	},
 189	[C(LL)] = {
 190		[C(OP_READ)] = {
 191			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 192					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 193			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 194					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 195		},
 196		[C(OP_WRITE)] = {
 197			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 198					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 199			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 200					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 201		},
 202		[C(OP_PREFETCH)] = {
 203			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 204					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 205			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 206					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 207		},
 208	},
 209	[C(DTLB)] = {
 210		[C(OP_READ)] = {
 211			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 212					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 213			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 214					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 215		},
 216		[C(OP_WRITE)] = {
 217			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 218					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 219			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 220					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 221		},
 222		[C(OP_PREFETCH)] = {
 223			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 224					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 225			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 226					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 227		},
 228	},
 229	[C(ITLB)] = {
 230		[C(OP_READ)] = {
 231			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 232					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 233			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 234					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 235		},
 236		[C(OP_WRITE)] = {
 237			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 238					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 239			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 240					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 241		},
 242		[C(OP_PREFETCH)] = {
 243			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 244					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 245			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 246					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 247		},
 248	},
 249	[C(BPU)] = {
 250		[C(OP_READ)] = {
 251			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 252					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 253			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 254					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 255		},
 256		[C(OP_WRITE)] = {
 257			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 258					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 259			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 260					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 261		},
 262		[C(OP_PREFETCH)] = {
 263			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 264					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 265			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 266					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 267		},
 268	},
 269	[C(NODE)] = {
 270		[C(OP_READ)] = {
 271			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 272					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 273			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 274					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 275		},
 276		[C(OP_WRITE)] = {
 277			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 278					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 279			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 280					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 281		},
 282		[C(OP_PREFETCH)] = {
 283			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
 284					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 285			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
 286					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
 287		},
 288	},
 289};
 290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291static int pmu_sbi_ctr_get_width(int idx)
 292{
 293	return pmu_ctr_list[idx].width;
 294}
 295
 296static bool pmu_sbi_ctr_is_fw(int cidx)
 297{
 298	union sbi_pmu_ctr_info *info;
 299
 300	info = &pmu_ctr_list[cidx];
 301	if (!info)
 302		return false;
 303
 304	return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
 305}
 306
 307/*
 308 * Returns the counter width of a programmable counter and number of hardware
 309 * counters. As we don't support heterogeneous CPUs yet, it is okay to just
 310 * return the counter width of the first programmable counter.
 311 */
 312int riscv_pmu_get_hpm_info(u32 *hw_ctr_width, u32 *num_hw_ctr)
 313{
 314	int i;
 315	union sbi_pmu_ctr_info *info;
 316	u32 hpm_width = 0, hpm_count = 0;
 317
 318	if (!cmask)
 319		return -EINVAL;
 320
 321	for_each_set_bit(i, &cmask, RISCV_MAX_COUNTERS) {
 322		info = &pmu_ctr_list[i];
 323		if (!info)
 324			continue;
 325		if (!hpm_width && info->csr != CSR_CYCLE && info->csr != CSR_INSTRET)
 326			hpm_width = info->width;
 327		if (info->type == SBI_PMU_CTR_TYPE_HW)
 328			hpm_count++;
 329	}
 330
 331	*hw_ctr_width = hpm_width;
 332	*num_hw_ctr = hpm_count;
 333
 334	return 0;
 335}
 336EXPORT_SYMBOL_GPL(riscv_pmu_get_hpm_info);
 337
 338static uint8_t pmu_sbi_csr_index(struct perf_event *event)
 339{
 340	return pmu_ctr_list[event->hw.idx].csr - CSR_CYCLE;
 341}
 342
 343static unsigned long pmu_sbi_get_filter_flags(struct perf_event *event)
 344{
 345	unsigned long cflags = 0;
 346	bool guest_events = false;
 347
 348	if (event->attr.config1 & RISCV_PMU_CONFIG1_GUEST_EVENTS)
 349		guest_events = true;
 350	if (event->attr.exclude_kernel)
 351		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VSINH : SBI_PMU_CFG_FLAG_SET_SINH;
 352	if (event->attr.exclude_user)
 353		cflags |= guest_events ? SBI_PMU_CFG_FLAG_SET_VUINH : SBI_PMU_CFG_FLAG_SET_UINH;
 354	if (guest_events && event->attr.exclude_hv)
 355		cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
 356	if (event->attr.exclude_host)
 357		cflags |= SBI_PMU_CFG_FLAG_SET_UINH | SBI_PMU_CFG_FLAG_SET_SINH;
 358	if (event->attr.exclude_guest)
 359		cflags |= SBI_PMU_CFG_FLAG_SET_VSINH | SBI_PMU_CFG_FLAG_SET_VUINH;
 360
 361	return cflags;
 362}
 363
 364static int pmu_sbi_ctr_get_idx(struct perf_event *event)
 365{
 366	struct hw_perf_event *hwc = &event->hw;
 367	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
 368	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
 369	struct sbiret ret;
 370	int idx;
 371	uint64_t cbase = 0, cmask = rvpmu->cmask;
 372	unsigned long cflags = 0;
 373
 374	cflags = pmu_sbi_get_filter_flags(event);
 375
 376	/*
 377	 * In legacy mode, we have to force the fixed counters for those events
 378	 * but not in the user access mode as we want to use the other counters
 379	 * that support sampling/filtering.
 380	 */
 381	if (hwc->flags & PERF_EVENT_FLAG_LEGACY) {
 382		if (event->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
 383			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
 384			cmask = 1;
 385		} else if (event->attr.config == PERF_COUNT_HW_INSTRUCTIONS) {
 386			cflags |= SBI_PMU_CFG_FLAG_SKIP_MATCH;
 387			cmask = 1UL << (CSR_INSTRET - CSR_CYCLE);
 388		}
 389	}
 390
 391	/* retrieve the available counter index */
 392#if defined(CONFIG_32BIT)
 393	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
 394			cmask, cflags, hwc->event_base, hwc->config,
 395			hwc->config >> 32);
 396#else
 397	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase,
 398			cmask, cflags, hwc->event_base, hwc->config, 0);
 399#endif
 400	if (ret.error) {
 401		pr_debug("Not able to find a counter for event %lx config %llx\n",
 402			hwc->event_base, hwc->config);
 403		return sbi_err_map_linux_errno(ret.error);
 404	}
 405
 406	idx = ret.value;
 407	if (!test_bit(idx, &rvpmu->cmask) || !pmu_ctr_list[idx].value)
 408		return -ENOENT;
 409
 410	/* Additional sanity check for the counter id */
 411	if (pmu_sbi_ctr_is_fw(idx)) {
 412		if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
 413			return idx;
 414	} else {
 415		if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
 416			return idx;
 417	}
 418
 419	return -ENOENT;
 420}
 421
 422static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
 423{
 424
 425	struct hw_perf_event *hwc = &event->hw;
 426	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
 427	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
 428	int idx = hwc->idx;
 429
 430	if (pmu_sbi_ctr_is_fw(idx))
 431		clear_bit(idx, cpuc->used_fw_ctrs);
 432	else
 433		clear_bit(idx, cpuc->used_hw_ctrs);
 434}
 435
 436static int pmu_event_find_cache(u64 config)
 437{
 438	unsigned int cache_type, cache_op, cache_result, ret;
 439
 440	cache_type = (config >>  0) & 0xff;
 441	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 442		return -EINVAL;
 443
 444	cache_op = (config >>  8) & 0xff;
 445	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 446		return -EINVAL;
 447
 448	cache_result = (config >> 16) & 0xff;
 449	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 450		return -EINVAL;
 451
 452	ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
 453
 454	return ret;
 455}
 456
 457static bool pmu_sbi_is_fw_event(struct perf_event *event)
 458{
 459	u32 type = event->attr.type;
 460	u64 config = event->attr.config;
 461
 462	if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
 463		return true;
 464	else
 465		return false;
 466}
 467
 468static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
 469{
 470	u32 type = event->attr.type;
 471	u64 config = event->attr.config;
 472	int bSoftware;
 473	u64 raw_config_val;
 474	int ret;
 
 
 
 
 475
 476	switch (type) {
 477	case PERF_TYPE_HARDWARE:
 478		if (config >= PERF_COUNT_HW_MAX)
 479			return -EINVAL;
 480		ret = pmu_hw_event_map[event->attr.config].event_idx;
 481		break;
 482	case PERF_TYPE_HW_CACHE:
 483		ret = pmu_event_find_cache(config);
 484		break;
 485	case PERF_TYPE_RAW:
 486		/*
 487		 * As per SBI specification, the upper 16 bits must be unused for
 488		 * a raw event. Use the MSB (63b) to distinguish between hardware
 489		 * raw event and firmware events.
 
 
 
 490		 */
 491		bSoftware = config >> 63;
 492		raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
 493		if (bSoftware) {
 494			ret = (raw_config_val & 0xFFFF) |
 495				(SBI_PMU_EVENT_TYPE_FW << 16);
 496		} else {
 497			ret = RISCV_PMU_RAW_EVENT_IDX;
 498			*econfig = raw_config_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499		}
 500		break;
 501	default:
 502		ret = -EINVAL;
 503		break;
 504	}
 505
 506	return ret;
 507}
 508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509static u64 pmu_sbi_ctr_read(struct perf_event *event)
 510{
 511	struct hw_perf_event *hwc = &event->hw;
 512	int idx = hwc->idx;
 513	struct sbiret ret;
 514	union sbi_pmu_ctr_info info;
 515	u64 val = 0;
 
 
 
 
 
 
 
 
 
 
 516
 517	if (pmu_sbi_is_fw_event(event)) {
 518		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
 519				hwc->idx, 0, 0, 0, 0, 0);
 520		if (!ret.error)
 521			val = ret.value;
 
 
 
 
 
 
 
 
 
 
 
 522	} else {
 523		info = pmu_ctr_list[idx];
 524		val = riscv_pmu_ctr_read_csr(info.csr);
 525		if (IS_ENABLED(CONFIG_32BIT))
 526			val = ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 31 | val;
 527	}
 528
 529	return val;
 530}
 531
 532static void pmu_sbi_set_scounteren(void *arg)
 533{
 534	struct perf_event *event = (struct perf_event *)arg;
 535
 536	if (event->hw.idx != -1)
 537		csr_write(CSR_SCOUNTEREN,
 538			  csr_read(CSR_SCOUNTEREN) | BIT(pmu_sbi_csr_index(event)));
 539}
 540
 541static void pmu_sbi_reset_scounteren(void *arg)
 542{
 543	struct perf_event *event = (struct perf_event *)arg;
 544
 545	if (event->hw.idx != -1)
 546		csr_write(CSR_SCOUNTEREN,
 547			  csr_read(CSR_SCOUNTEREN) & ~BIT(pmu_sbi_csr_index(event)));
 548}
 549
 550static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
 551{
 552	struct sbiret ret;
 553	struct hw_perf_event *hwc = &event->hw;
 554	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
 555
 
 556#if defined(CONFIG_32BIT)
 557	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
 558			1, flag, ival, ival >> 32, 0);
 559#else
 560	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
 561			1, flag, ival, 0, 0);
 562#endif
 563	if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
 564		pr_err("Starting counter idx %d failed with error %d\n",
 565			hwc->idx, sbi_err_map_linux_errno(ret.error));
 566
 567	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
 568	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
 569		pmu_sbi_set_scounteren((void *)event);
 570}
 571
 572static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
 573{
 574	struct sbiret ret;
 575	struct hw_perf_event *hwc = &event->hw;
 
 
 
 576
 577	if ((hwc->flags & PERF_EVENT_FLAG_USER_ACCESS) &&
 578	    (hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
 579		pmu_sbi_reset_scounteren((void *)event);
 580
 
 
 
 581	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
 582	if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
 583		flag != SBI_PMU_STOP_FLAG_RESET)
 
 
 
 
 
 
 
 
 
 
 
 
 
 584		pr_err("Stopping counter idx %d failed with error %d\n",
 585			hwc->idx, sbi_err_map_linux_errno(ret.error));
 
 586}
 587
 588static int pmu_sbi_find_num_ctrs(void)
 589{
 590	struct sbiret ret;
 591
 592	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
 593	if (!ret.error)
 594		return ret.value;
 595	else
 596		return sbi_err_map_linux_errno(ret.error);
 597}
 598
 599static int pmu_sbi_get_ctrinfo(int nctr, unsigned long *mask)
 600{
 601	struct sbiret ret;
 602	int i, num_hw_ctr = 0, num_fw_ctr = 0;
 603	union sbi_pmu_ctr_info cinfo;
 604
 605	pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
 606	if (!pmu_ctr_list)
 607		return -ENOMEM;
 608
 609	for (i = 0; i < nctr; i++) {
 610		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
 611		if (ret.error)
 612			/* The logical counter ids are not expected to be contiguous */
 613			continue;
 614
 615		*mask |= BIT(i);
 616
 617		cinfo.value = ret.value;
 618		if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
 619			num_fw_ctr++;
 620		else
 621			num_hw_ctr++;
 622		pmu_ctr_list[i].value = cinfo.value;
 623	}
 624
 625	pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
 626
 627	return 0;
 628}
 629
 630static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
 631{
 632	/*
 633	 * No need to check the error because we are disabling all the counters
 634	 * which may include counters that are not enabled yet.
 635	 */
 636	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
 637		  0, pmu->cmask, 0, 0, 0, 0);
 638}
 639
 640static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
 641{
 642	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643
 644	/* No need to check the error here as we can't do anything about the error */
 645	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 0,
 646		  cpu_hw_evt->used_hw_ctrs[0], 0, 0, 0, 0);
 
 
 
 
 647}
 648
 649/*
 650 * This function starts all the used counters in two step approach.
 651 * Any counter that did not overflow can be start in a single step
 652 * while the overflowed counters need to be started with updated initialization
 653 * value.
 654 */
 655static inline void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
 656					       unsigned long ctr_ovf_mask)
 657{
 658	int idx = 0;
 659	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 660	struct perf_event *event;
 661	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
 662	unsigned long ctr_start_mask = 0;
 663	uint64_t max_period;
 664	struct hw_perf_event *hwc;
 665	u64 init_val = 0;
 666
 667	ctr_start_mask = cpu_hw_evt->used_hw_ctrs[0] & ~ctr_ovf_mask;
 668
 669	/* Start all the counters that did not overflow in a single shot */
 670	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, 0, ctr_start_mask,
 671		  0, 0, 0, 0);
 
 672
 673	/* Reinitialize and start all the counter that overflowed */
 674	while (ctr_ovf_mask) {
 675		if (ctr_ovf_mask & 0x01) {
 676			event = cpu_hw_evt->events[idx];
 677			hwc = &event->hw;
 678			max_period = riscv_pmu_ctr_get_width_mask(event);
 679			init_val = local64_read(&hwc->prev_count) & max_period;
 680#if defined(CONFIG_32BIT)
 681			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
 682				  flag, init_val, init_val >> 32, 0);
 683#else
 684			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
 685				  flag, init_val, 0, 0);
 686#endif
 687			perf_event_update_userpage(event);
 688		}
 689		ctr_ovf_mask = ctr_ovf_mask >> 1;
 690		idx++;
 691	}
 692}
 693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
 695{
 696	struct perf_sample_data data;
 697	struct pt_regs *regs;
 698	struct hw_perf_event *hw_evt;
 699	union sbi_pmu_ctr_info *info;
 700	int lidx, hidx, fidx;
 701	struct riscv_pmu *pmu;
 702	struct perf_event *event;
 703	unsigned long overflow;
 704	unsigned long overflowed_ctrs = 0;
 705	struct cpu_hw_events *cpu_hw_evt = dev;
 706	u64 start_clock = sched_clock();
 
 707
 708	if (WARN_ON_ONCE(!cpu_hw_evt))
 709		return IRQ_NONE;
 710
 711	/* Firmware counter don't support overflow yet */
 712	fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
 713	if (fidx == RISCV_MAX_COUNTERS) {
 714		csr_clear(CSR_SIP, BIT(riscv_pmu_irq_num));
 715		return IRQ_NONE;
 716	}
 717
 718	event = cpu_hw_evt->events[fidx];
 719	if (!event) {
 720		ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
 721		return IRQ_NONE;
 722	}
 723
 724	pmu = to_riscv_pmu(event->pmu);
 725	pmu_sbi_stop_hw_ctrs(pmu);
 726
 727	/* Overflow status register should only be read after counter are stopped */
 728	ALT_SBI_PMU_OVERFLOW(overflow);
 
 
 
 729
 730	/*
 731	 * Overflow interrupt pending bit should only be cleared after stopping
 732	 * all the counters to avoid any race condition.
 733	 */
 734	ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
 735
 736	/* No overflow bit is set */
 737	if (!overflow)
 738		return IRQ_NONE;
 739
 740	regs = get_irq_regs();
 741
 742	for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
 743		struct perf_event *event = cpu_hw_evt->events[lidx];
 744
 745		/* Skip if invalid event or user did not request a sampling */
 746		if (!event || !is_sampling_event(event))
 747			continue;
 748
 749		info = &pmu_ctr_list[lidx];
 750		/* Do a sanity check */
 751		if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
 752			continue;
 753
 754		/* compute hardware counter index */
 755		hidx = info->csr - CSR_CYCLE;
 756		/* check if the corresponding bit is set in sscountovf */
 
 
 
 
 
 757		if (!(overflow & BIT(hidx)))
 758			continue;
 759
 760		/*
 761		 * Keep a track of overflowed counters so that they can be started
 762		 * with updated initial value.
 763		 */
 764		overflowed_ctrs |= BIT(lidx);
 765		hw_evt = &event->hw;
 
 
 766		riscv_pmu_event_update(event);
 
 767		perf_sample_data_init(&data, 0, hw_evt->last_period);
 768		if (riscv_pmu_event_set_period(event)) {
 769			/*
 770			 * Unlike other ISAs, RISC-V don't have to disable interrupts
 771			 * to avoid throttling here. As per the specification, the
 772			 * interrupt remains disabled until the OF bit is set.
 773			 * Interrupts are enabled again only during the start.
 774			 * TODO: We will need to stop the guest counters once
 775			 * virtualization support is added.
 776			 */
 777			perf_event_overflow(event, &data, regs);
 778		}
 
 
 779	}
 780
 781	pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
 782	perf_sample_event_took(sched_clock() - start_clock);
 783
 784	return IRQ_HANDLED;
 785}
 786
 787static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
 788{
 789	struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
 790	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
 791
 792	/*
 793	 * We keep enabling userspace access to CYCLE, TIME and INSTRET via the
 794	 * legacy option but that will be removed in the future.
 795	 */
 796	if (sysctl_perf_user_access == SYSCTL_LEGACY)
 797		csr_write(CSR_SCOUNTEREN, 0x7);
 798	else
 799		csr_write(CSR_SCOUNTEREN, 0x2);
 800
 801	/* Stop all the counters so that they can be enabled from perf */
 802	pmu_sbi_stop_all(pmu);
 803
 804	if (riscv_pmu_use_irq) {
 805		cpu_hw_evt->irq = riscv_pmu_irq;
 806		ALT_SBI_PMU_OVF_CLEAR_PENDING(riscv_pmu_irq_mask);
 807		enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
 808	}
 809
 
 
 
 810	return 0;
 811}
 812
 813static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
 814{
 815	if (riscv_pmu_use_irq) {
 816		disable_percpu_irq(riscv_pmu_irq);
 817	}
 818
 819	/* Disable all counters access for user mode now */
 820	csr_write(CSR_SCOUNTEREN, 0x0);
 821
 
 
 
 822	return 0;
 823}
 824
 825static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
 826{
 827	int ret;
 828	struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
 829	struct irq_domain *domain = NULL;
 830
 831	if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
 832		riscv_pmu_irq_num = RV_IRQ_PMU;
 833		riscv_pmu_use_irq = true;
 834	} else if (IS_ENABLED(CONFIG_ERRATA_THEAD_PMU) &&
 835		   riscv_cached_mvendorid(0) == THEAD_VENDOR_ID &&
 836		   riscv_cached_marchid(0) == 0 &&
 837		   riscv_cached_mimpid(0) == 0) {
 838		riscv_pmu_irq_num = THEAD_C9XX_RV_IRQ_PMU;
 839		riscv_pmu_use_irq = true;
 840	} else if (riscv_isa_extension_available(NULL, XANDESPMU) &&
 
 841		   IS_ENABLED(CONFIG_ANDES_CUSTOM_PMU)) {
 842		riscv_pmu_irq_num = ANDES_SLI_CAUSE_BASE + ANDES_RV_IRQ_PMOVI;
 843		riscv_pmu_use_irq = true;
 844	}
 845
 846	riscv_pmu_irq_mask = BIT(riscv_pmu_irq_num % BITS_PER_LONG);
 847
 848	if (!riscv_pmu_use_irq)
 849		return -EOPNOTSUPP;
 850
 851	domain = irq_find_matching_fwnode(riscv_get_intc_hwnode(),
 852					  DOMAIN_BUS_ANY);
 853	if (!domain) {
 854		pr_err("Failed to find INTC IRQ root domain\n");
 855		return -ENODEV;
 856	}
 857
 858	riscv_pmu_irq = irq_create_mapping(domain, riscv_pmu_irq_num);
 859	if (!riscv_pmu_irq) {
 860		pr_err("Failed to map PMU interrupt for node\n");
 861		return -ENODEV;
 862	}
 863
 864	ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
 865	if (ret) {
 866		pr_err("registering percpu irq failed [%d]\n", ret);
 867		return ret;
 868	}
 869
 870	return 0;
 871}
 872
 873#ifdef CONFIG_CPU_PM
 874static int riscv_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
 875				void *v)
 876{
 877	struct riscv_pmu *rvpmu = container_of(b, struct riscv_pmu, riscv_pm_nb);
 878	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
 879	int enabled = bitmap_weight(cpuc->used_hw_ctrs, RISCV_MAX_COUNTERS);
 880	struct perf_event *event;
 881	int idx;
 882
 883	if (!enabled)
 884		return NOTIFY_OK;
 885
 886	for (idx = 0; idx < RISCV_MAX_COUNTERS; idx++) {
 887		event = cpuc->events[idx];
 888		if (!event)
 889			continue;
 890
 891		switch (cmd) {
 892		case CPU_PM_ENTER:
 893			/*
 894			 * Stop and update the counter
 895			 */
 896			riscv_pmu_stop(event, PERF_EF_UPDATE);
 897			break;
 898		case CPU_PM_EXIT:
 899		case CPU_PM_ENTER_FAILED:
 900			/*
 901			 * Restore and enable the counter.
 902			 */
 903			riscv_pmu_start(event, PERF_EF_RELOAD);
 904			break;
 905		default:
 906			break;
 907		}
 908	}
 909
 910	return NOTIFY_OK;
 911}
 912
 913static int riscv_pm_pmu_register(struct riscv_pmu *pmu)
 914{
 915	pmu->riscv_pm_nb.notifier_call = riscv_pm_pmu_notify;
 916	return cpu_pm_register_notifier(&pmu->riscv_pm_nb);
 917}
 918
 919static void riscv_pm_pmu_unregister(struct riscv_pmu *pmu)
 920{
 921	cpu_pm_unregister_notifier(&pmu->riscv_pm_nb);
 922}
 923#else
 924static inline int riscv_pm_pmu_register(struct riscv_pmu *pmu) { return 0; }
 925static inline void riscv_pm_pmu_unregister(struct riscv_pmu *pmu) { }
 926#endif
 927
 928static void riscv_pmu_destroy(struct riscv_pmu *pmu)
 929{
 
 
 
 
 
 
 930	riscv_pm_pmu_unregister(pmu);
 931	cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
 932}
 933
 934static void pmu_sbi_event_init(struct perf_event *event)
 935{
 936	/*
 937	 * The permissions are set at event_init so that we do not depend
 938	 * on the sysctl value that can change.
 939	 */
 940	if (sysctl_perf_user_access == SYSCTL_NO_USER_ACCESS)
 941		event->hw.flags |= PERF_EVENT_FLAG_NO_USER_ACCESS;
 942	else if (sysctl_perf_user_access == SYSCTL_USER_ACCESS)
 943		event->hw.flags |= PERF_EVENT_FLAG_USER_ACCESS;
 944	else
 945		event->hw.flags |= PERF_EVENT_FLAG_LEGACY;
 946}
 947
 948static void pmu_sbi_event_mapped(struct perf_event *event, struct mm_struct *mm)
 949{
 950	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
 951		return;
 952
 953	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
 954		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
 955		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
 956			return;
 957		}
 958	}
 959
 960	/*
 961	 * The user mmapped the event to directly access it: this is where
 962	 * we determine based on sysctl_perf_user_access if we grant userspace
 963	 * the direct access to this event. That means that within the same
 964	 * task, some events may be directly accessible and some other may not,
 965	 * if the user changes the value of sysctl_perf_user_accesss in the
 966	 * meantime.
 967	 */
 968
 969	event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
 970
 971	/*
 972	 * We must enable userspace access *before* advertising in the user page
 973	 * that it is possible to do so to avoid any race.
 974	 * And we must notify all cpus here because threads that currently run
 975	 * on other cpus will try to directly access the counter too without
 976	 * calling pmu_sbi_ctr_start.
 977	 */
 978	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
 979		on_each_cpu_mask(mm_cpumask(mm),
 980				 pmu_sbi_set_scounteren, (void *)event, 1);
 981}
 982
 983static void pmu_sbi_event_unmapped(struct perf_event *event, struct mm_struct *mm)
 984{
 985	if (event->hw.flags & PERF_EVENT_FLAG_NO_USER_ACCESS)
 986		return;
 987
 988	if (event->hw.flags & PERF_EVENT_FLAG_LEGACY) {
 989		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES &&
 990		    event->attr.config != PERF_COUNT_HW_INSTRUCTIONS) {
 991			return;
 992		}
 993	}
 994
 995	/*
 996	 * Here we can directly remove user access since the user does not have
 997	 * access to the user page anymore so we avoid the racy window where the
 998	 * user could have read cap_user_rdpmc to true right before we disable
 999	 * it.
1000	 */
1001	event->hw.flags &= ~PERF_EVENT_FLAG_USER_READ_CNT;
1002
1003	if (event->hw.flags & PERF_EVENT_FLAG_USER_ACCESS)
1004		on_each_cpu_mask(mm_cpumask(mm),
1005				 pmu_sbi_reset_scounteren, (void *)event, 1);
1006}
1007
1008static void riscv_pmu_update_counter_access(void *info)
1009{
1010	if (sysctl_perf_user_access == SYSCTL_LEGACY)
1011		csr_write(CSR_SCOUNTEREN, 0x7);
1012	else
1013		csr_write(CSR_SCOUNTEREN, 0x2);
1014}
1015
1016static int riscv_pmu_proc_user_access_handler(struct ctl_table *table,
1017					      int write, void *buffer,
1018					      size_t *lenp, loff_t *ppos)
1019{
1020	int prev = sysctl_perf_user_access;
1021	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1022
1023	/*
1024	 * Test against the previous value since we clear SCOUNTEREN when
1025	 * sysctl_perf_user_access is set to SYSCTL_USER_ACCESS, but we should
1026	 * not do that if that was already the case.
1027	 */
1028	if (ret || !write || prev == sysctl_perf_user_access)
1029		return ret;
1030
1031	on_each_cpu(riscv_pmu_update_counter_access, NULL, 1);
1032
1033	return 0;
1034}
1035
1036static struct ctl_table sbi_pmu_sysctl_table[] = {
1037	{
1038		.procname       = "perf_user_access",
1039		.data		= &sysctl_perf_user_access,
1040		.maxlen		= sizeof(unsigned int),
1041		.mode           = 0644,
1042		.proc_handler	= riscv_pmu_proc_user_access_handler,
1043		.extra1		= SYSCTL_ZERO,
1044		.extra2		= SYSCTL_TWO,
1045	},
1046	{ }
1047};
1048
1049static int pmu_sbi_device_probe(struct platform_device *pdev)
1050{
1051	struct riscv_pmu *pmu = NULL;
1052	int ret = -ENODEV;
1053	int num_counters;
1054
1055	pr_info("SBI PMU extension is available\n");
1056	pmu = riscv_pmu_alloc();
1057	if (!pmu)
1058		return -ENOMEM;
1059
1060	num_counters = pmu_sbi_find_num_ctrs();
1061	if (num_counters < 0) {
1062		pr_err("SBI PMU extension doesn't provide any counters\n");
1063		goto out_free;
1064	}
1065
1066	/* It is possible to get from SBI more than max number of counters */
1067	if (num_counters > RISCV_MAX_COUNTERS) {
1068		num_counters = RISCV_MAX_COUNTERS;
1069		pr_info("SBI returned more than maximum number of counters. Limiting the number of counters to %d\n", num_counters);
1070	}
1071
1072	/* cache all the information about counters now */
1073	if (pmu_sbi_get_ctrinfo(num_counters, &cmask))
1074		goto out_free;
1075
1076	ret = pmu_sbi_setup_irqs(pmu, pdev);
1077	if (ret < 0) {
1078		pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
1079		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1080		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
1081	}
1082
1083	pmu->pmu.attr_groups = riscv_pmu_attr_groups;
 
1084	pmu->cmask = cmask;
1085	pmu->ctr_start = pmu_sbi_ctr_start;
1086	pmu->ctr_stop = pmu_sbi_ctr_stop;
1087	pmu->event_map = pmu_sbi_event_map;
1088	pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
1089	pmu->ctr_get_width = pmu_sbi_ctr_get_width;
1090	pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
1091	pmu->ctr_read = pmu_sbi_ctr_read;
1092	pmu->event_init = pmu_sbi_event_init;
1093	pmu->event_mapped = pmu_sbi_event_mapped;
1094	pmu->event_unmapped = pmu_sbi_event_unmapped;
1095	pmu->csr_index = pmu_sbi_csr_index;
1096
1097	ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
1098	if (ret)
1099		return ret;
1100
1101	ret = riscv_pm_pmu_register(pmu);
1102	if (ret)
1103		goto out_unregister;
1104
1105	ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
1106	if (ret)
1107		goto out_unregister;
1108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109	register_sysctl("kernel", sbi_pmu_sysctl_table);
1110
 
 
 
 
 
 
 
1111	return 0;
1112
1113out_unregister:
1114	riscv_pmu_destroy(pmu);
1115
1116out_free:
1117	kfree(pmu);
1118	return ret;
1119}
1120
1121static struct platform_driver pmu_sbi_driver = {
1122	.probe		= pmu_sbi_device_probe,
1123	.driver		= {
1124		.name	= RISCV_PMU_SBI_PDEV_NAME,
1125	},
1126};
1127
1128static int __init pmu_sbi_devinit(void)
1129{
1130	int ret;
1131	struct platform_device *pdev;
1132
1133	if (sbi_spec_version < sbi_mk_version(0, 3) ||
1134	    !sbi_probe_extension(SBI_EXT_PMU)) {
1135		return 0;
1136	}
 
 
 
1137
1138	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
1139				      "perf/riscv/pmu:starting",
1140				      pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
1141	if (ret) {
1142		pr_err("CPU hotplug notifier could not be registered: %d\n",
1143		       ret);
1144		return ret;
1145	}
1146
1147	ret = platform_driver_register(&pmu_sbi_driver);
1148	if (ret)
1149		return ret;
1150
1151	pdev = platform_device_register_simple(RISCV_PMU_SBI_PDEV_NAME, -1, NULL, 0);
1152	if (IS_ERR(pdev)) {
1153		platform_driver_unregister(&pmu_sbi_driver);
1154		return PTR_ERR(pdev);
1155	}
1156
1157	/* Notify legacy implementation that SBI pmu is available*/
1158	riscv_pmu_legacy_skip_init();
1159
1160	return ret;
1161}
1162device_initcall(pmu_sbi_devinit)