Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018-2023, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_sched.h"
   6#include "ice_adminq_cmd.h"
   7#include "ice_flow.h"
   8#include "ice_ptp_hw.h"
   9
  10#define ICE_PF_RESET_WAIT_COUNT	300
  11#define ICE_MAX_NETLIST_SIZE	10
  12
  13static const char * const ice_link_mode_str_low[] = {
  14	[0] = "100BASE_TX",
  15	[1] = "100M_SGMII",
  16	[2] = "1000BASE_T",
  17	[3] = "1000BASE_SX",
  18	[4] = "1000BASE_LX",
  19	[5] = "1000BASE_KX",
  20	[6] = "1G_SGMII",
  21	[7] = "2500BASE_T",
  22	[8] = "2500BASE_X",
  23	[9] = "2500BASE_KX",
  24	[10] = "5GBASE_T",
  25	[11] = "5GBASE_KR",
  26	[12] = "10GBASE_T",
  27	[13] = "10G_SFI_DA",
  28	[14] = "10GBASE_SR",
  29	[15] = "10GBASE_LR",
  30	[16] = "10GBASE_KR_CR1",
  31	[17] = "10G_SFI_AOC_ACC",
  32	[18] = "10G_SFI_C2C",
  33	[19] = "25GBASE_T",
  34	[20] = "25GBASE_CR",
  35	[21] = "25GBASE_CR_S",
  36	[22] = "25GBASE_CR1",
  37	[23] = "25GBASE_SR",
  38	[24] = "25GBASE_LR",
  39	[25] = "25GBASE_KR",
  40	[26] = "25GBASE_KR_S",
  41	[27] = "25GBASE_KR1",
  42	[28] = "25G_AUI_AOC_ACC",
  43	[29] = "25G_AUI_C2C",
  44	[30] = "40GBASE_CR4",
  45	[31] = "40GBASE_SR4",
  46	[32] = "40GBASE_LR4",
  47	[33] = "40GBASE_KR4",
  48	[34] = "40G_XLAUI_AOC_ACC",
  49	[35] = "40G_XLAUI",
  50	[36] = "50GBASE_CR2",
  51	[37] = "50GBASE_SR2",
  52	[38] = "50GBASE_LR2",
  53	[39] = "50GBASE_KR2",
  54	[40] = "50G_LAUI2_AOC_ACC",
  55	[41] = "50G_LAUI2",
  56	[42] = "50G_AUI2_AOC_ACC",
  57	[43] = "50G_AUI2",
  58	[44] = "50GBASE_CP",
  59	[45] = "50GBASE_SR",
  60	[46] = "50GBASE_FR",
  61	[47] = "50GBASE_LR",
  62	[48] = "50GBASE_KR_PAM4",
  63	[49] = "50G_AUI1_AOC_ACC",
  64	[50] = "50G_AUI1",
  65	[51] = "100GBASE_CR4",
  66	[52] = "100GBASE_SR4",
  67	[53] = "100GBASE_LR4",
  68	[54] = "100GBASE_KR4",
  69	[55] = "100G_CAUI4_AOC_ACC",
  70	[56] = "100G_CAUI4",
  71	[57] = "100G_AUI4_AOC_ACC",
  72	[58] = "100G_AUI4",
  73	[59] = "100GBASE_CR_PAM4",
  74	[60] = "100GBASE_KR_PAM4",
  75	[61] = "100GBASE_CP2",
  76	[62] = "100GBASE_SR2",
  77	[63] = "100GBASE_DR",
  78};
  79
  80static const char * const ice_link_mode_str_high[] = {
  81	[0] = "100GBASE_KR2_PAM4",
  82	[1] = "100G_CAUI2_AOC_ACC",
  83	[2] = "100G_CAUI2",
  84	[3] = "100G_AUI2_AOC_ACC",
  85	[4] = "100G_AUI2",
  86};
  87
  88/**
  89 * ice_dump_phy_type - helper function to dump phy_type
  90 * @hw: pointer to the HW structure
  91 * @low: 64 bit value for phy_type_low
  92 * @high: 64 bit value for phy_type_high
  93 * @prefix: prefix string to differentiate multiple dumps
  94 */
  95static void
  96ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
  97{
  98	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
  99
 100	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
 101		if (low & BIT_ULL(i))
 102			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
 103				  prefix, i, ice_link_mode_str_low[i]);
 104	}
 105
 106	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
 107
 108	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
 109		if (high & BIT_ULL(i))
 110			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
 111				  prefix, i, ice_link_mode_str_high[i]);
 112	}
 113}
 114
 115/**
 116 * ice_set_mac_type - Sets MAC type
 117 * @hw: pointer to the HW structure
 118 *
 119 * This function sets the MAC type of the adapter based on the
 120 * vendor ID and device ID stored in the HW structure.
 121 */
 122static int ice_set_mac_type(struct ice_hw *hw)
 123{
 124	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
 125		return -ENODEV;
 126
 127	switch (hw->device_id) {
 128	case ICE_DEV_ID_E810C_BACKPLANE:
 129	case ICE_DEV_ID_E810C_QSFP:
 130	case ICE_DEV_ID_E810C_SFP:
 131	case ICE_DEV_ID_E810_XXV_BACKPLANE:
 132	case ICE_DEV_ID_E810_XXV_QSFP:
 133	case ICE_DEV_ID_E810_XXV_SFP:
 134		hw->mac_type = ICE_MAC_E810;
 135		break;
 136	case ICE_DEV_ID_E823C_10G_BASE_T:
 137	case ICE_DEV_ID_E823C_BACKPLANE:
 138	case ICE_DEV_ID_E823C_QSFP:
 139	case ICE_DEV_ID_E823C_SFP:
 140	case ICE_DEV_ID_E823C_SGMII:
 141	case ICE_DEV_ID_E822C_10G_BASE_T:
 142	case ICE_DEV_ID_E822C_BACKPLANE:
 143	case ICE_DEV_ID_E822C_QSFP:
 144	case ICE_DEV_ID_E822C_SFP:
 145	case ICE_DEV_ID_E822C_SGMII:
 146	case ICE_DEV_ID_E822L_10G_BASE_T:
 147	case ICE_DEV_ID_E822L_BACKPLANE:
 148	case ICE_DEV_ID_E822L_SFP:
 149	case ICE_DEV_ID_E822L_SGMII:
 150	case ICE_DEV_ID_E823L_10G_BASE_T:
 151	case ICE_DEV_ID_E823L_1GBE:
 152	case ICE_DEV_ID_E823L_BACKPLANE:
 153	case ICE_DEV_ID_E823L_QSFP:
 154	case ICE_DEV_ID_E823L_SFP:
 155		hw->mac_type = ICE_MAC_GENERIC;
 156		break;
 157	case ICE_DEV_ID_E825C_BACKPLANE:
 158	case ICE_DEV_ID_E825C_QSFP:
 159	case ICE_DEV_ID_E825C_SFP:
 160	case ICE_DEV_ID_E825C_SGMII:
 161		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
 162		break;
 163	case ICE_DEV_ID_E830CC_BACKPLANE:
 164	case ICE_DEV_ID_E830CC_QSFP56:
 165	case ICE_DEV_ID_E830CC_SFP:
 166	case ICE_DEV_ID_E830CC_SFP_DD:
 167	case ICE_DEV_ID_E830C_BACKPLANE:
 168	case ICE_DEV_ID_E830_XXV_BACKPLANE:
 169	case ICE_DEV_ID_E830C_QSFP:
 170	case ICE_DEV_ID_E830_XXV_QSFP:
 171	case ICE_DEV_ID_E830C_SFP:
 172	case ICE_DEV_ID_E830_XXV_SFP:
 173		hw->mac_type = ICE_MAC_E830;
 174		break;
 175	default:
 176		hw->mac_type = ICE_MAC_UNKNOWN;
 177		break;
 178	}
 179
 180	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
 181	return 0;
 182}
 183
 184/**
 185 * ice_is_generic_mac - check if device's mac_type is generic
 186 * @hw: pointer to the hardware structure
 187 *
 188 * Return: true if mac_type is generic (with SBQ support), false if not
 189 */
 190bool ice_is_generic_mac(struct ice_hw *hw)
 191{
 192	return (hw->mac_type == ICE_MAC_GENERIC ||
 193		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
 194}
 195
 196/**
 197 * ice_is_e810
 198 * @hw: pointer to the hardware structure
 199 *
 200 * returns true if the device is E810 based, false if not.
 201 */
 202bool ice_is_e810(struct ice_hw *hw)
 203{
 204	return hw->mac_type == ICE_MAC_E810;
 205}
 206
 207/**
 208 * ice_is_e810t
 209 * @hw: pointer to the hardware structure
 210 *
 211 * returns true if the device is E810T based, false if not.
 212 */
 213bool ice_is_e810t(struct ice_hw *hw)
 214{
 215	switch (hw->device_id) {
 216	case ICE_DEV_ID_E810C_SFP:
 217		switch (hw->subsystem_device_id) {
 218		case ICE_SUBDEV_ID_E810T:
 219		case ICE_SUBDEV_ID_E810T2:
 220		case ICE_SUBDEV_ID_E810T3:
 221		case ICE_SUBDEV_ID_E810T4:
 222		case ICE_SUBDEV_ID_E810T6:
 223		case ICE_SUBDEV_ID_E810T7:
 224			return true;
 225		}
 226		break;
 227	case ICE_DEV_ID_E810C_QSFP:
 228		switch (hw->subsystem_device_id) {
 229		case ICE_SUBDEV_ID_E810T2:
 230		case ICE_SUBDEV_ID_E810T3:
 231		case ICE_SUBDEV_ID_E810T5:
 232			return true;
 233		}
 234		break;
 235	default:
 236		break;
 237	}
 238
 239	return false;
 240}
 241
 242/**
 243 * ice_is_e822 - Check if a device is E822 family device
 244 * @hw: pointer to the hardware structure
 245 *
 246 * Return: true if the device is E822 based, false if not.
 247 */
 248bool ice_is_e822(struct ice_hw *hw)
 249{
 250	switch (hw->device_id) {
 251	case ICE_DEV_ID_E822C_BACKPLANE:
 252	case ICE_DEV_ID_E822C_QSFP:
 253	case ICE_DEV_ID_E822C_SFP:
 254	case ICE_DEV_ID_E822C_10G_BASE_T:
 255	case ICE_DEV_ID_E822C_SGMII:
 256	case ICE_DEV_ID_E822L_BACKPLANE:
 257	case ICE_DEV_ID_E822L_SFP:
 258	case ICE_DEV_ID_E822L_10G_BASE_T:
 259	case ICE_DEV_ID_E822L_SGMII:
 260		return true;
 261	default:
 262		return false;
 263	}
 264}
 265
 266/**
 267 * ice_is_e823
 268 * @hw: pointer to the hardware structure
 269 *
 270 * returns true if the device is E823-L or E823-C based, false if not.
 271 */
 272bool ice_is_e823(struct ice_hw *hw)
 273{
 274	switch (hw->device_id) {
 275	case ICE_DEV_ID_E823L_BACKPLANE:
 276	case ICE_DEV_ID_E823L_SFP:
 277	case ICE_DEV_ID_E823L_10G_BASE_T:
 278	case ICE_DEV_ID_E823L_1GBE:
 279	case ICE_DEV_ID_E823L_QSFP:
 280	case ICE_DEV_ID_E823C_BACKPLANE:
 281	case ICE_DEV_ID_E823C_QSFP:
 282	case ICE_DEV_ID_E823C_SFP:
 283	case ICE_DEV_ID_E823C_10G_BASE_T:
 284	case ICE_DEV_ID_E823C_SGMII:
 285		return true;
 286	default:
 287		return false;
 288	}
 289}
 290
 291/**
 292 * ice_is_e825c - Check if a device is E825C family device
 293 * @hw: pointer to the hardware structure
 294 *
 295 * Return: true if the device is E825-C based, false if not.
 296 */
 297bool ice_is_e825c(struct ice_hw *hw)
 298{
 299	switch (hw->device_id) {
 300	case ICE_DEV_ID_E825C_BACKPLANE:
 301	case ICE_DEV_ID_E825C_QSFP:
 302	case ICE_DEV_ID_E825C_SFP:
 303	case ICE_DEV_ID_E825C_SGMII:
 304		return true;
 305	default:
 306		return false;
 307	}
 308}
 309
 310/**
 311 * ice_clear_pf_cfg - Clear PF configuration
 312 * @hw: pointer to the hardware structure
 313 *
 314 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
 315 * configuration, flow director filters, etc.).
 316 */
 317int ice_clear_pf_cfg(struct ice_hw *hw)
 318{
 319	struct ice_aq_desc desc;
 320
 321	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
 322
 323	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
 324}
 325
 326/**
 327 * ice_aq_manage_mac_read - manage MAC address read command
 328 * @hw: pointer to the HW struct
 329 * @buf: a virtual buffer to hold the manage MAC read response
 330 * @buf_size: Size of the virtual buffer
 331 * @cd: pointer to command details structure or NULL
 332 *
 333 * This function is used to return per PF station MAC address (0x0107).
 334 * NOTE: Upon successful completion of this command, MAC address information
 335 * is returned in user specified buffer. Please interpret user specified
 336 * buffer as "manage_mac_read" response.
 337 * Response such as various MAC addresses are stored in HW struct (port.mac)
 338 * ice_discover_dev_caps is expected to be called before this function is
 339 * called.
 340 */
 341static int
 342ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
 343		       struct ice_sq_cd *cd)
 344{
 345	struct ice_aqc_manage_mac_read_resp *resp;
 346	struct ice_aqc_manage_mac_read *cmd;
 347	struct ice_aq_desc desc;
 348	int status;
 349	u16 flags;
 350	u8 i;
 351
 352	cmd = &desc.params.mac_read;
 353
 354	if (buf_size < sizeof(*resp))
 355		return -EINVAL;
 356
 357	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
 358
 359	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 360	if (status)
 361		return status;
 362
 363	resp = buf;
 364	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
 365
 366	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
 367		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
 368		return -EIO;
 369	}
 370
 371	/* A single port can report up to two (LAN and WoL) addresses */
 372	for (i = 0; i < cmd->num_addr; i++)
 373		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 374			ether_addr_copy(hw->port_info->mac.lan_addr,
 375					resp[i].mac_addr);
 376			ether_addr_copy(hw->port_info->mac.perm_addr,
 377					resp[i].mac_addr);
 378			break;
 379		}
 380
 381	return 0;
 382}
 383
 384/**
 385 * ice_aq_get_phy_caps - returns PHY capabilities
 386 * @pi: port information structure
 387 * @qual_mods: report qualified modules
 388 * @report_mode: report mode capabilities
 389 * @pcaps: structure for PHY capabilities to be filled
 390 * @cd: pointer to command details structure or NULL
 391 *
 392 * Returns the various PHY capabilities supported on the Port (0x0600)
 393 */
 394int
 395ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 396		    struct ice_aqc_get_phy_caps_data *pcaps,
 397		    struct ice_sq_cd *cd)
 398{
 399	struct ice_aqc_get_phy_caps *cmd;
 400	u16 pcaps_size = sizeof(*pcaps);
 401	struct ice_aq_desc desc;
 402	const char *prefix;
 403	struct ice_hw *hw;
 404	int status;
 405
 406	cmd = &desc.params.get_phy;
 407
 408	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 409		return -EINVAL;
 410	hw = pi->hw;
 411
 412	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
 413	    !ice_fw_supports_report_dflt_cfg(hw))
 414		return -EINVAL;
 415
 416	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 417
 418	if (qual_mods)
 419		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 420
 421	cmd->param0 |= cpu_to_le16(report_mode);
 422	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
 423
 424	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
 425
 426	switch (report_mode) {
 427	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
 428		prefix = "phy_caps_media";
 429		break;
 430	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
 431		prefix = "phy_caps_no_media";
 432		break;
 433	case ICE_AQC_REPORT_ACTIVE_CFG:
 434		prefix = "phy_caps_active";
 435		break;
 436	case ICE_AQC_REPORT_DFLT_CFG:
 437		prefix = "phy_caps_default";
 438		break;
 439	default:
 440		prefix = "phy_caps_invalid";
 441	}
 442
 443	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
 444			  le64_to_cpu(pcaps->phy_type_high), prefix);
 445
 446	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
 447		  prefix, report_mode);
 448	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
 449	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
 450		  pcaps->low_power_ctrl_an);
 451	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
 452		  pcaps->eee_cap);
 453	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
 454		  pcaps->eeer_value);
 455	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
 456		  pcaps->link_fec_options);
 457	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
 458		  prefix, pcaps->module_compliance_enforcement);
 459	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
 460		  prefix, pcaps->extended_compliance_code);
 461	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
 462		  pcaps->module_type[0]);
 463	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
 464		  pcaps->module_type[1]);
 465	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
 466		  pcaps->module_type[2]);
 467
 468	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
 469		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 470		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
 471		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
 472		       sizeof(pi->phy.link_info.module_type));
 473	}
 474
 475	return status;
 476}
 477
 478/**
 479 * ice_aq_get_link_topo_handle - get link topology node return status
 480 * @pi: port information structure
 481 * @node_type: requested node type
 482 * @cd: pointer to command details structure or NULL
 483 *
 484 * Get link topology node return status for specified node type (0x06E0)
 485 *
 486 * Node type cage can be used to determine if cage is present. If AQC
 487 * returns error (ENOENT), then no cage present. If no cage present, then
 488 * connection type is backplane or BASE-T.
 489 */
 490static int
 491ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
 492			    struct ice_sq_cd *cd)
 493{
 494	struct ice_aqc_get_link_topo *cmd;
 495	struct ice_aq_desc desc;
 496
 497	cmd = &desc.params.get_link_topo;
 498
 499	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
 500
 501	cmd->addr.topo_params.node_type_ctx =
 502		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
 503		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
 504
 505	/* set node type */
 506	cmd->addr.topo_params.node_type_ctx |=
 507		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
 508
 509	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
 510}
 511
 512/**
 513 * ice_aq_get_netlist_node
 514 * @hw: pointer to the hw struct
 515 * @cmd: get_link_topo AQ structure
 516 * @node_part_number: output node part number if node found
 517 * @node_handle: output node handle parameter if node found
 518 *
 519 * Get netlist node handle.
 520 */
 521int
 522ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
 523			u8 *node_part_number, u16 *node_handle)
 524{
 525	struct ice_aq_desc desc;
 526
 527	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
 528	desc.params.get_link_topo = *cmd;
 529
 530	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
 531		return -EINTR;
 532
 533	if (node_handle)
 534		*node_handle =
 535			le16_to_cpu(desc.params.get_link_topo.addr.handle);
 536	if (node_part_number)
 537		*node_part_number = desc.params.get_link_topo.node_part_num;
 538
 539	return 0;
 540}
 541
 542/**
 543 * ice_find_netlist_node
 544 * @hw: pointer to the hw struct
 545 * @node_type: type of netlist node to look for
 546 * @ctx: context of the search
 547 * @node_part_number: node part number to look for
 548 * @node_handle: output parameter if node found - optional
 549 *
 550 * Scan the netlist for a node handle of the given node type and part number.
 551 *
 552 * If node_handle is non-NULL it will be modified on function exit. It is only
 553 * valid if the function returns zero, and should be ignored on any non-zero
 554 * return value.
 555 *
 556 * Return:
 557 * * 0 if the node is found,
 558 * * -ENOENT if no handle was found,
 559 * * negative error code on failure to access the AQ.
 560 */
 561static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
 562				 u8 node_part_number, u16 *node_handle)
 563{
 564	u8 idx;
 565
 566	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
 567		struct ice_aqc_get_link_topo cmd = {};
 568		u8 rec_node_part_number;
 569		int status;
 570
 571		cmd.addr.topo_params.node_type_ctx =
 572			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
 573			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
 574		cmd.addr.topo_params.index = idx;
 575
 576		status = ice_aq_get_netlist_node(hw, &cmd,
 577						 &rec_node_part_number,
 578						 node_handle);
 579		if (status)
 580			return status;
 581
 582		if (rec_node_part_number == node_part_number)
 583			return 0;
 584	}
 585
 586	return -ENOENT;
 587}
 588
 589/**
 590 * ice_is_media_cage_present
 591 * @pi: port information structure
 592 *
 593 * Returns true if media cage is present, else false. If no cage, then
 594 * media type is backplane or BASE-T.
 595 */
 596static bool ice_is_media_cage_present(struct ice_port_info *pi)
 597{
 598	/* Node type cage can be used to determine if cage is present. If AQC
 599	 * returns error (ENOENT), then no cage present. If no cage present then
 600	 * connection type is backplane or BASE-T.
 601	 */
 602	return !ice_aq_get_link_topo_handle(pi,
 603					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
 604					    NULL);
 605}
 606
 607/**
 608 * ice_get_media_type - Gets media type
 609 * @pi: port information structure
 610 */
 611static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 612{
 613	struct ice_link_status *hw_link_info;
 614
 615	if (!pi)
 616		return ICE_MEDIA_UNKNOWN;
 617
 618	hw_link_info = &pi->phy.link_info;
 619	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
 620		/* If more than one media type is selected, report unknown */
 621		return ICE_MEDIA_UNKNOWN;
 622
 623	if (hw_link_info->phy_type_low) {
 624		/* 1G SGMII is a special case where some DA cable PHYs
 625		 * may show this as an option when it really shouldn't
 626		 * be since SGMII is meant to be between a MAC and a PHY
 627		 * in a backplane. Try to detect this case and handle it
 628		 */
 629		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
 630		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 631		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
 632		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 633		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
 634			return ICE_MEDIA_DA;
 635
 636		switch (hw_link_info->phy_type_low) {
 637		case ICE_PHY_TYPE_LOW_1000BASE_SX:
 638		case ICE_PHY_TYPE_LOW_1000BASE_LX:
 639		case ICE_PHY_TYPE_LOW_10GBASE_SR:
 640		case ICE_PHY_TYPE_LOW_10GBASE_LR:
 641		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 642		case ICE_PHY_TYPE_LOW_25GBASE_SR:
 643		case ICE_PHY_TYPE_LOW_25GBASE_LR:
 644		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 645		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 646		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
 647		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
 648		case ICE_PHY_TYPE_LOW_50GBASE_SR:
 649		case ICE_PHY_TYPE_LOW_50GBASE_FR:
 650		case ICE_PHY_TYPE_LOW_50GBASE_LR:
 651		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
 652		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
 653		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
 654		case ICE_PHY_TYPE_LOW_100GBASE_DR:
 655		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
 656		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
 657		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
 658		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
 659		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
 660		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
 661		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
 662		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
 663			return ICE_MEDIA_FIBER;
 664		case ICE_PHY_TYPE_LOW_100BASE_TX:
 665		case ICE_PHY_TYPE_LOW_1000BASE_T:
 666		case ICE_PHY_TYPE_LOW_2500BASE_T:
 667		case ICE_PHY_TYPE_LOW_5GBASE_T:
 668		case ICE_PHY_TYPE_LOW_10GBASE_T:
 669		case ICE_PHY_TYPE_LOW_25GBASE_T:
 670			return ICE_MEDIA_BASET;
 671		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 672		case ICE_PHY_TYPE_LOW_25GBASE_CR:
 673		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 674		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 675		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 676		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
 677		case ICE_PHY_TYPE_LOW_50GBASE_CP:
 678		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
 679		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
 680		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
 681			return ICE_MEDIA_DA;
 682		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 683		case ICE_PHY_TYPE_LOW_40G_XLAUI:
 684		case ICE_PHY_TYPE_LOW_50G_LAUI2:
 685		case ICE_PHY_TYPE_LOW_50G_AUI2:
 686		case ICE_PHY_TYPE_LOW_50G_AUI1:
 687		case ICE_PHY_TYPE_LOW_100G_AUI4:
 688		case ICE_PHY_TYPE_LOW_100G_CAUI4:
 689			if (ice_is_media_cage_present(pi))
 690				return ICE_MEDIA_DA;
 691			fallthrough;
 692		case ICE_PHY_TYPE_LOW_1000BASE_KX:
 693		case ICE_PHY_TYPE_LOW_2500BASE_KX:
 694		case ICE_PHY_TYPE_LOW_2500BASE_X:
 695		case ICE_PHY_TYPE_LOW_5GBASE_KR:
 696		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 697		case ICE_PHY_TYPE_LOW_25GBASE_KR:
 698		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 699		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 700		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 701		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
 702		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
 703		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
 704		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
 705			return ICE_MEDIA_BACKPLANE;
 706		}
 707	} else {
 708		switch (hw_link_info->phy_type_high) {
 709		case ICE_PHY_TYPE_HIGH_100G_AUI2:
 710		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
 711			if (ice_is_media_cage_present(pi))
 712				return ICE_MEDIA_DA;
 713			fallthrough;
 714		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
 715			return ICE_MEDIA_BACKPLANE;
 716		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
 717		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
 718			return ICE_MEDIA_FIBER;
 719		}
 720	}
 721	return ICE_MEDIA_UNKNOWN;
 722}
 723
 724/**
 725 * ice_get_link_status_datalen
 726 * @hw: pointer to the HW struct
 727 *
 728 * Returns datalength for the Get Link Status AQ command, which is bigger for
 729 * newer adapter families handled by ice driver.
 730 */
 731static u16 ice_get_link_status_datalen(struct ice_hw *hw)
 732{
 733	switch (hw->mac_type) {
 734	case ICE_MAC_E830:
 735		return ICE_AQC_LS_DATA_SIZE_V2;
 736	case ICE_MAC_E810:
 737	default:
 738		return ICE_AQC_LS_DATA_SIZE_V1;
 739	}
 740}
 741
 742/**
 743 * ice_aq_get_link_info
 744 * @pi: port information structure
 745 * @ena_lse: enable/disable LinkStatusEvent reporting
 746 * @link: pointer to link status structure - optional
 747 * @cd: pointer to command details structure or NULL
 748 *
 749 * Get Link Status (0x607). Returns the link status of the adapter.
 750 */
 751int
 752ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 753		     struct ice_link_status *link, struct ice_sq_cd *cd)
 754{
 755	struct ice_aqc_get_link_status_data link_data = { 0 };
 756	struct ice_aqc_get_link_status *resp;
 757	struct ice_link_status *li_old, *li;
 758	enum ice_media_type *hw_media_type;
 759	struct ice_fc_info *hw_fc_info;
 760	bool tx_pause, rx_pause;
 761	struct ice_aq_desc desc;
 762	struct ice_hw *hw;
 763	u16 cmd_flags;
 764	int status;
 765
 766	if (!pi)
 767		return -EINVAL;
 768	hw = pi->hw;
 769	li_old = &pi->phy.link_info_old;
 770	hw_media_type = &pi->phy.media_type;
 771	li = &pi->phy.link_info;
 772	hw_fc_info = &pi->fc;
 773
 774	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 775	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 776	resp = &desc.params.get_link_status;
 777	resp->cmd_flags = cpu_to_le16(cmd_flags);
 778	resp->lport_num = pi->lport;
 779
 780	status = ice_aq_send_cmd(hw, &desc, &link_data,
 781				 ice_get_link_status_datalen(hw), cd);
 782	if (status)
 783		return status;
 784
 785	/* save off old link status information */
 786	*li_old = *li;
 787
 788	/* update current link status information */
 789	li->link_speed = le16_to_cpu(link_data.link_speed);
 790	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 791	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
 792	*hw_media_type = ice_get_media_type(pi);
 793	li->link_info = link_data.link_info;
 794	li->link_cfg_err = link_data.link_cfg_err;
 795	li->an_info = link_data.an_info;
 796	li->ext_info = link_data.ext_info;
 797	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 798	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
 799	li->topo_media_conflict = link_data.topo_media_conflict;
 800	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
 801				      ICE_AQ_CFG_PACING_TYPE_M);
 802
 803	/* update fc info */
 804	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 805	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 806	if (tx_pause && rx_pause)
 807		hw_fc_info->current_mode = ICE_FC_FULL;
 808	else if (tx_pause)
 809		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 810	else if (rx_pause)
 811		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 812	else
 813		hw_fc_info->current_mode = ICE_FC_NONE;
 814
 815	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 816
 817	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
 818	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
 819	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
 820		  (unsigned long long)li->phy_type_low);
 821	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
 822		  (unsigned long long)li->phy_type_high);
 823	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
 824	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
 825	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
 826	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
 827	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
 828	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
 829	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
 830	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
 831		  li->max_frame_size);
 832	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
 833
 834	/* save link status information */
 835	if (link)
 836		*link = *li;
 837
 838	/* flag cleared so calling functions don't call AQ again */
 839	pi->phy.get_link_info = false;
 840
 841	return 0;
 842}
 843
 844/**
 845 * ice_fill_tx_timer_and_fc_thresh
 846 * @hw: pointer to the HW struct
 847 * @cmd: pointer to MAC cfg structure
 848 *
 849 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
 850 * descriptor
 851 */
 852static void
 853ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
 854				struct ice_aqc_set_mac_cfg *cmd)
 855{
 856	u32 val, fc_thres_m;
 857
 858	/* We read back the transmit timer and FC threshold value of
 859	 * LFC. Thus, we will use index =
 860	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
 861	 *
 862	 * Also, because we are operating on transmit timer and FC
 863	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
 864	 */
 865#define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
 866#define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
 867
 868	if (hw->mac_type == ICE_MAC_E830) {
 869		/* Retrieve the transmit timer */
 870		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
 871		cmd->tx_tmr_value =
 872			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
 873
 874		/* Retrieve the fc threshold */
 875		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
 876		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
 877	} else {
 878		/* Retrieve the transmit timer */
 879		val = rd32(hw,
 880			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
 881		cmd->tx_tmr_value =
 882			le16_encode_bits(val,
 883					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
 884
 885		/* Retrieve the fc threshold */
 886		val = rd32(hw,
 887			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
 888		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
 889	}
 890	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
 891}
 892
 893/**
 894 * ice_aq_set_mac_cfg
 895 * @hw: pointer to the HW struct
 896 * @max_frame_size: Maximum Frame Size to be supported
 897 * @cd: pointer to command details structure or NULL
 898 *
 899 * Set MAC configuration (0x0603)
 900 */
 901int
 902ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
 903{
 904	struct ice_aqc_set_mac_cfg *cmd;
 905	struct ice_aq_desc desc;
 906
 907	cmd = &desc.params.set_mac_cfg;
 908
 909	if (max_frame_size == 0)
 910		return -EINVAL;
 911
 912	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
 913
 914	cmd->max_frame_size = cpu_to_le16(max_frame_size);
 915
 916	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
 917
 918	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
 919}
 920
 921/**
 922 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 923 * @hw: pointer to the HW struct
 924 */
 925static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 926{
 927	struct ice_switch_info *sw;
 928	int status;
 929
 930	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 931				       sizeof(*hw->switch_info), GFP_KERNEL);
 932	sw = hw->switch_info;
 933
 934	if (!sw)
 935		return -ENOMEM;
 936
 937	INIT_LIST_HEAD(&sw->vsi_list_map_head);
 938	sw->prof_res_bm_init = 0;
 939
 940	/* Initialize recipe count with default recipes read from NVM */
 941	sw->recp_cnt = ICE_SW_LKUP_LAST;
 942
 943	status = ice_init_def_sw_recp(hw);
 944	if (status) {
 945		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
 946		return status;
 947	}
 948	return 0;
 949}
 950
 951/**
 952 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 953 * @hw: pointer to the HW struct
 954 */
 955static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 956{
 957	struct ice_switch_info *sw = hw->switch_info;
 958	struct ice_vsi_list_map_info *v_pos_map;
 959	struct ice_vsi_list_map_info *v_tmp_map;
 960	struct ice_sw_recipe *recps;
 961	u8 i;
 962
 963	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 964				 list_entry) {
 965		list_del(&v_pos_map->list_entry);
 966		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 967	}
 968	recps = sw->recp_list;
 969	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
 
 
 970		recps[i].root_rid = i;
 
 
 
 
 
 971
 972		if (recps[i].adv_rule) {
 973			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
 974			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
 975
 976			mutex_destroy(&recps[i].filt_rule_lock);
 977			list_for_each_entry_safe(lst_itr, tmp_entry,
 978						 &recps[i].filt_rules,
 979						 list_entry) {
 980				list_del(&lst_itr->list_entry);
 981				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
 982				devm_kfree(ice_hw_to_dev(hw), lst_itr);
 983			}
 984		} else {
 985			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
 986
 987			mutex_destroy(&recps[i].filt_rule_lock);
 988			list_for_each_entry_safe(lst_itr, tmp_entry,
 989						 &recps[i].filt_rules,
 990						 list_entry) {
 991				list_del(&lst_itr->list_entry);
 992				devm_kfree(ice_hw_to_dev(hw), lst_itr);
 993			}
 994		}
 
 995	}
 996	ice_rm_all_sw_replay_rule_info(hw);
 997	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
 998	devm_kfree(ice_hw_to_dev(hw), sw);
 999}
1000
1001/**
1002 * ice_get_itr_intrl_gran
1003 * @hw: pointer to the HW struct
1004 *
1005 * Determines the ITR/INTRL granularities based on the maximum aggregate
1006 * bandwidth according to the device's configuration during power-on.
1007 */
1008static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1009{
1010	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
1011				  rd32(hw, GL_PWR_MODE_CTL));
1012
1013	switch (max_agg_bw) {
1014	case ICE_MAX_AGG_BW_200G:
1015	case ICE_MAX_AGG_BW_100G:
1016	case ICE_MAX_AGG_BW_50G:
1017		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1018		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1019		break;
1020	case ICE_MAX_AGG_BW_25G:
1021		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1022		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1023		break;
1024	}
1025}
1026
1027/**
1028 * ice_init_hw - main hardware initialization routine
1029 * @hw: pointer to the hardware structure
1030 */
1031int ice_init_hw(struct ice_hw *hw)
1032{
1033	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1034	void *mac_buf __free(kfree) = NULL;
1035	u16 mac_buf_len;
1036	int status;
1037
1038	/* Set MAC type based on DeviceID */
1039	status = ice_set_mac_type(hw);
1040	if (status)
1041		return status;
1042
1043	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1044
1045	status = ice_reset(hw, ICE_RESET_PFR);
1046	if (status)
1047		return status;
1048
1049	ice_get_itr_intrl_gran(hw);
1050
1051	status = ice_create_all_ctrlq(hw);
1052	if (status)
1053		goto err_unroll_cqinit;
1054
1055	status = ice_fwlog_init(hw);
1056	if (status)
1057		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1058			  status);
1059
1060	status = ice_clear_pf_cfg(hw);
1061	if (status)
1062		goto err_unroll_cqinit;
1063
1064	/* Set bit to enable Flow Director filters */
1065	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1066	INIT_LIST_HEAD(&hw->fdir_list_head);
1067
1068	ice_clear_pxe_mode(hw);
1069
1070	status = ice_init_nvm(hw);
1071	if (status)
1072		goto err_unroll_cqinit;
1073
1074	status = ice_get_caps(hw);
1075	if (status)
1076		goto err_unroll_cqinit;
1077
1078	if (!hw->port_info)
1079		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1080					     sizeof(*hw->port_info),
1081					     GFP_KERNEL);
1082	if (!hw->port_info) {
1083		status = -ENOMEM;
1084		goto err_unroll_cqinit;
1085	}
1086
1087	hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1088	/* set the back pointer to HW */
1089	hw->port_info->hw = hw;
1090
1091	/* Initialize port_info struct with switch configuration data */
1092	status = ice_get_initial_sw_cfg(hw);
1093	if (status)
1094		goto err_unroll_alloc;
1095
1096	hw->evb_veb = true;
1097
1098	/* init xarray for identifying scheduling nodes uniquely */
1099	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1100
1101	/* Query the allocated resources for Tx scheduler */
1102	status = ice_sched_query_res_alloc(hw);
1103	if (status) {
1104		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1105		goto err_unroll_alloc;
1106	}
1107	ice_sched_get_psm_clk_freq(hw);
1108
1109	/* Initialize port_info struct with scheduler data */
1110	status = ice_sched_init_port(hw->port_info);
1111	if (status)
1112		goto err_unroll_sched;
1113
1114	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1115	if (!pcaps) {
1116		status = -ENOMEM;
1117		goto err_unroll_sched;
1118	}
1119
1120	/* Initialize port_info struct with PHY capabilities */
1121	status = ice_aq_get_phy_caps(hw->port_info, false,
1122				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1123				     NULL);
1124	if (status)
1125		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1126			 status);
1127
1128	/* Initialize port_info struct with link information */
1129	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1130	if (status)
1131		goto err_unroll_sched;
1132
1133	/* need a valid SW entry point to build a Tx tree */
1134	if (!hw->sw_entry_point_layer) {
1135		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1136		status = -EIO;
1137		goto err_unroll_sched;
1138	}
1139	INIT_LIST_HEAD(&hw->agg_list);
1140	/* Initialize max burst size */
1141	if (!hw->max_burst_size)
1142		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1143
1144	status = ice_init_fltr_mgmt_struct(hw);
1145	if (status)
1146		goto err_unroll_sched;
1147
1148	/* Get MAC information */
1149	/* A single port can report up to two (LAN and WoL) addresses */
1150	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1151			  GFP_KERNEL);
1152	if (!mac_buf) {
1153		status = -ENOMEM;
1154		goto err_unroll_fltr_mgmt_struct;
1155	}
1156
1157	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1158	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1159
1160	if (status)
1161		goto err_unroll_fltr_mgmt_struct;
1162	/* enable jumbo frame support at MAC level */
1163	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1164	if (status)
1165		goto err_unroll_fltr_mgmt_struct;
1166	/* Obtain counter base index which would be used by flow director */
1167	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1168	if (status)
1169		goto err_unroll_fltr_mgmt_struct;
1170	status = ice_init_hw_tbls(hw);
1171	if (status)
1172		goto err_unroll_fltr_mgmt_struct;
1173	mutex_init(&hw->tnl_lock);
1174	ice_init_chk_recipe_reuse_support(hw);
1175
1176	return 0;
1177
1178err_unroll_fltr_mgmt_struct:
1179	ice_cleanup_fltr_mgmt_struct(hw);
1180err_unroll_sched:
1181	ice_sched_cleanup_all(hw);
1182err_unroll_alloc:
1183	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1184err_unroll_cqinit:
1185	ice_destroy_all_ctrlq(hw);
1186	return status;
1187}
1188
1189/**
1190 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1191 * @hw: pointer to the hardware structure
1192 *
1193 * This should be called only during nominal operation, not as a result of
1194 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1195 * applicable initializations if it fails for any reason.
1196 */
1197void ice_deinit_hw(struct ice_hw *hw)
1198{
1199	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1200	ice_cleanup_fltr_mgmt_struct(hw);
1201
1202	ice_sched_cleanup_all(hw);
1203	ice_sched_clear_agg(hw);
1204	ice_free_seg(hw);
1205	ice_free_hw_tbls(hw);
1206	mutex_destroy(&hw->tnl_lock);
1207
1208	ice_fwlog_deinit(hw);
1209	ice_destroy_all_ctrlq(hw);
1210
1211	/* Clear VSI contexts if not already cleared */
1212	ice_clear_all_vsi_ctx(hw);
1213}
1214
1215/**
1216 * ice_check_reset - Check to see if a global reset is complete
1217 * @hw: pointer to the hardware structure
1218 */
1219int ice_check_reset(struct ice_hw *hw)
1220{
1221	u32 cnt, reg = 0, grst_timeout, uld_mask;
1222
1223	/* Poll for Device Active state in case a recent CORER, GLOBR,
1224	 * or EMPR has occurred. The grst delay value is in 100ms units.
1225	 * Add 1sec for outstanding AQ commands that can take a long time.
1226	 */
1227	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1228				 rd32(hw, GLGEN_RSTCTL)) + 10;
1229
1230	for (cnt = 0; cnt < grst_timeout; cnt++) {
1231		mdelay(100);
1232		reg = rd32(hw, GLGEN_RSTAT);
1233		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1234			break;
1235	}
1236
1237	if (cnt == grst_timeout) {
1238		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1239		return -EIO;
1240	}
1241
1242#define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1243				 GLNVM_ULD_PCIER_DONE_1_M |\
1244				 GLNVM_ULD_CORER_DONE_M |\
1245				 GLNVM_ULD_GLOBR_DONE_M |\
1246				 GLNVM_ULD_POR_DONE_M |\
1247				 GLNVM_ULD_POR_DONE_1_M |\
1248				 GLNVM_ULD_PCIER_DONE_2_M)
1249
1250	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1251					  GLNVM_ULD_PE_DONE_M : 0);
1252
1253	/* Device is Active; check Global Reset processes are done */
1254	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1255		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1256		if (reg == uld_mask) {
1257			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1258			break;
1259		}
1260		mdelay(10);
1261	}
1262
1263	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1264		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1265			  reg);
1266		return -EIO;
1267	}
1268
1269	return 0;
1270}
1271
1272/**
1273 * ice_pf_reset - Reset the PF
1274 * @hw: pointer to the hardware structure
1275 *
1276 * If a global reset has been triggered, this function checks
1277 * for its completion and then issues the PF reset
1278 */
1279static int ice_pf_reset(struct ice_hw *hw)
1280{
1281	u32 cnt, reg;
1282
1283	/* If at function entry a global reset was already in progress, i.e.
1284	 * state is not 'device active' or any of the reset done bits are not
1285	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1286	 * global reset is done.
1287	 */
1288	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1289	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1290		/* poll on global reset currently in progress until done */
1291		if (ice_check_reset(hw))
1292			return -EIO;
1293
1294		return 0;
1295	}
1296
1297	/* Reset the PF */
1298	reg = rd32(hw, PFGEN_CTRL);
1299
1300	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1301
1302	/* Wait for the PFR to complete. The wait time is the global config lock
1303	 * timeout plus the PFR timeout which will account for a possible reset
1304	 * that is occurring during a download package operation.
1305	 */
1306	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1307	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1308		reg = rd32(hw, PFGEN_CTRL);
1309		if (!(reg & PFGEN_CTRL_PFSWR_M))
1310			break;
1311
1312		mdelay(1);
1313	}
1314
1315	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1316		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1317		return -EIO;
1318	}
1319
1320	return 0;
1321}
1322
1323/**
1324 * ice_reset - Perform different types of reset
1325 * @hw: pointer to the hardware structure
1326 * @req: reset request
1327 *
1328 * This function triggers a reset as specified by the req parameter.
1329 *
1330 * Note:
1331 * If anything other than a PF reset is triggered, PXE mode is restored.
1332 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1333 * interface has been restored in the rebuild flow.
1334 */
1335int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1336{
1337	u32 val = 0;
1338
1339	switch (req) {
1340	case ICE_RESET_PFR:
1341		return ice_pf_reset(hw);
1342	case ICE_RESET_CORER:
1343		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1344		val = GLGEN_RTRIG_CORER_M;
1345		break;
1346	case ICE_RESET_GLOBR:
1347		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1348		val = GLGEN_RTRIG_GLOBR_M;
1349		break;
1350	default:
1351		return -EINVAL;
1352	}
1353
1354	val |= rd32(hw, GLGEN_RTRIG);
1355	wr32(hw, GLGEN_RTRIG, val);
1356	ice_flush(hw);
1357
1358	/* wait for the FW to be ready */
1359	return ice_check_reset(hw);
1360}
1361
1362/**
1363 * ice_copy_rxq_ctx_to_hw
1364 * @hw: pointer to the hardware structure
1365 * @ice_rxq_ctx: pointer to the rxq context
1366 * @rxq_index: the index of the Rx queue
1367 *
1368 * Copies rxq context from dense structure to HW register space
1369 */
1370static int
1371ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1372{
1373	u8 i;
1374
1375	if (!ice_rxq_ctx)
1376		return -EINVAL;
1377
1378	if (rxq_index > QRX_CTRL_MAX_INDEX)
1379		return -EINVAL;
1380
1381	/* Copy each dword separately to HW */
1382	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1383		wr32(hw, QRX_CONTEXT(i, rxq_index),
1384		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1385
1386		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1387			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1388	}
1389
1390	return 0;
1391}
1392
1393/* LAN Rx Queue Context */
1394static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1395	/* Field		Width	LSB */
1396	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1397	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1398	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1399	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1400	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1401	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1402	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1403	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1404	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1405	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1406	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1407	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1408	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1409	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1410	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1411	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1412	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1413	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1414	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1415	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1416	{ 0 }
1417};
1418
1419/**
1420 * ice_write_rxq_ctx
1421 * @hw: pointer to the hardware structure
1422 * @rlan_ctx: pointer to the rxq context
1423 * @rxq_index: the index of the Rx queue
1424 *
1425 * Converts rxq context from sparse to dense structure and then writes
1426 * it to HW register space and enables the hardware to prefetch descriptors
1427 * instead of only fetching them on demand
1428 */
1429int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1430		      u32 rxq_index)
1431{
1432	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1433
1434	if (!rlan_ctx)
1435		return -EINVAL;
1436
1437	rlan_ctx->prefena = 1;
1438
1439	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1440	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1441}
1442
1443/* LAN Tx Queue Context */
1444const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1445				    /* Field			Width	LSB */
1446	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1447	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1448	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1449	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1450	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1451	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1452	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1453	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1454	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1455	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1456	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1457	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1458	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1459	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1460	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1461	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1462	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1463	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1464	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1465	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1466	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1467	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1468	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1469	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1470	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1471	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1472	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1473	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1474	{ 0 }
1475};
1476
1477/* Sideband Queue command wrappers */
1478
1479/**
1480 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1481 * @hw: pointer to the HW struct
1482 * @desc: descriptor describing the command
1483 * @buf: buffer to use for indirect commands (NULL for direct commands)
1484 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1485 * @cd: pointer to command details structure
1486 */
1487static int
1488ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1489		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1490{
1491	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1492			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1493}
1494
1495/**
1496 * ice_sbq_rw_reg - Fill Sideband Queue command
1497 * @hw: pointer to the HW struct
1498 * @in: message info to be filled in descriptor
1499 * @flags: control queue descriptor flags
1500 */
1501int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1502{
1503	struct ice_sbq_cmd_desc desc = {0};
1504	struct ice_sbq_msg_req msg = {0};
1505	u16 msg_len;
1506	int status;
1507
1508	msg_len = sizeof(msg);
1509
1510	msg.dest_dev = in->dest_dev;
1511	msg.opcode = in->opcode;
1512	msg.flags = ICE_SBQ_MSG_FLAGS;
1513	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1514	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1515	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1516
1517	if (in->opcode)
1518		msg.data = cpu_to_le32(in->data);
1519	else
1520		/* data read comes back in completion, so shorten the struct by
1521		 * sizeof(msg.data)
1522		 */
1523		msg_len -= sizeof(msg.data);
1524
1525	desc.flags = cpu_to_le16(flags);
1526	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1527	desc.param0.cmd_len = cpu_to_le16(msg_len);
1528	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1529	if (!status && !in->opcode)
1530		in->data = le32_to_cpu
1531			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1532	return status;
1533}
1534
1535/* FW Admin Queue command wrappers */
1536
1537/* Software lock/mutex that is meant to be held while the Global Config Lock
1538 * in firmware is acquired by the software to prevent most (but not all) types
1539 * of AQ commands from being sent to FW
1540 */
1541DEFINE_MUTEX(ice_global_cfg_lock_sw);
1542
1543/**
1544 * ice_should_retry_sq_send_cmd
1545 * @opcode: AQ opcode
1546 *
1547 * Decide if we should retry the send command routine for the ATQ, depending
1548 * on the opcode.
1549 */
1550static bool ice_should_retry_sq_send_cmd(u16 opcode)
1551{
1552	switch (opcode) {
1553	case ice_aqc_opc_get_link_topo:
1554	case ice_aqc_opc_lldp_stop:
1555	case ice_aqc_opc_lldp_start:
1556	case ice_aqc_opc_lldp_filter_ctrl:
1557		return true;
1558	}
1559
1560	return false;
1561}
1562
1563/**
1564 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1565 * @hw: pointer to the HW struct
1566 * @cq: pointer to the specific Control queue
1567 * @desc: prefilled descriptor describing the command
1568 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1569 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1570 * @cd: pointer to command details structure
1571 *
1572 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1573 * Queue if the EBUSY AQ error is returned.
1574 */
1575static int
1576ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1577		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1578		      struct ice_sq_cd *cd)
1579{
1580	struct ice_aq_desc desc_cpy;
1581	bool is_cmd_for_retry;
1582	u8 idx = 0;
1583	u16 opcode;
1584	int status;
1585
1586	opcode = le16_to_cpu(desc->opcode);
1587	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1588	memset(&desc_cpy, 0, sizeof(desc_cpy));
1589
1590	if (is_cmd_for_retry) {
1591		/* All retryable cmds are direct, without buf. */
1592		WARN_ON(buf);
1593
1594		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1595	}
1596
1597	do {
1598		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1599
1600		if (!is_cmd_for_retry || !status ||
1601		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1602			break;
1603
1604		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1605
1606		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1607
1608	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1609
1610	return status;
1611}
1612
1613/**
1614 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1615 * @hw: pointer to the HW struct
1616 * @desc: descriptor describing the command
1617 * @buf: buffer to use for indirect commands (NULL for direct commands)
1618 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1619 * @cd: pointer to command details structure
1620 *
1621 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1622 */
1623int
1624ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1625		u16 buf_size, struct ice_sq_cd *cd)
1626{
1627	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1628	bool lock_acquired = false;
1629	int status;
1630
1631	/* When a package download is in process (i.e. when the firmware's
1632	 * Global Configuration Lock resource is held), only the Download
1633	 * Package, Get Version, Get Package Info List, Upload Section,
1634	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1635	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1636	 * Recipes to Profile Association, and Release Resource (with resource
1637	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1638	 * must block until the package download completes and the Global Config
1639	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1640	 */
1641	switch (le16_to_cpu(desc->opcode)) {
1642	case ice_aqc_opc_download_pkg:
1643	case ice_aqc_opc_get_pkg_info_list:
1644	case ice_aqc_opc_get_ver:
1645	case ice_aqc_opc_upload_section:
1646	case ice_aqc_opc_update_pkg:
1647	case ice_aqc_opc_set_port_params:
1648	case ice_aqc_opc_get_vlan_mode_parameters:
1649	case ice_aqc_opc_set_vlan_mode_parameters:
1650	case ice_aqc_opc_set_tx_topo:
1651	case ice_aqc_opc_get_tx_topo:
1652	case ice_aqc_opc_add_recipe:
1653	case ice_aqc_opc_recipe_to_profile:
1654	case ice_aqc_opc_get_recipe:
1655	case ice_aqc_opc_get_recipe_to_profile:
1656		break;
1657	case ice_aqc_opc_release_res:
1658		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1659			break;
1660		fallthrough;
1661	default:
1662		mutex_lock(&ice_global_cfg_lock_sw);
1663		lock_acquired = true;
1664		break;
1665	}
1666
1667	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1668	if (lock_acquired)
1669		mutex_unlock(&ice_global_cfg_lock_sw);
1670
1671	return status;
1672}
1673
1674/**
1675 * ice_aq_get_fw_ver
1676 * @hw: pointer to the HW struct
1677 * @cd: pointer to command details structure or NULL
1678 *
1679 * Get the firmware version (0x0001) from the admin queue commands
1680 */
1681int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1682{
1683	struct ice_aqc_get_ver *resp;
1684	struct ice_aq_desc desc;
1685	int status;
1686
1687	resp = &desc.params.get_ver;
1688
1689	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1690
1691	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1692
1693	if (!status) {
1694		hw->fw_branch = resp->fw_branch;
1695		hw->fw_maj_ver = resp->fw_major;
1696		hw->fw_min_ver = resp->fw_minor;
1697		hw->fw_patch = resp->fw_patch;
1698		hw->fw_build = le32_to_cpu(resp->fw_build);
1699		hw->api_branch = resp->api_branch;
1700		hw->api_maj_ver = resp->api_major;
1701		hw->api_min_ver = resp->api_minor;
1702		hw->api_patch = resp->api_patch;
1703	}
1704
1705	return status;
1706}
1707
1708/**
1709 * ice_aq_send_driver_ver
1710 * @hw: pointer to the HW struct
1711 * @dv: driver's major, minor version
1712 * @cd: pointer to command details structure or NULL
1713 *
1714 * Send the driver version (0x0002) to the firmware
1715 */
1716int
1717ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1718		       struct ice_sq_cd *cd)
1719{
1720	struct ice_aqc_driver_ver *cmd;
1721	struct ice_aq_desc desc;
1722	u16 len;
1723
1724	cmd = &desc.params.driver_ver;
1725
1726	if (!dv)
1727		return -EINVAL;
1728
1729	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1730
1731	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1732	cmd->major_ver = dv->major_ver;
1733	cmd->minor_ver = dv->minor_ver;
1734	cmd->build_ver = dv->build_ver;
1735	cmd->subbuild_ver = dv->subbuild_ver;
1736
1737	len = 0;
1738	while (len < sizeof(dv->driver_string) &&
1739	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1740		len++;
1741
1742	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1743}
1744
1745/**
1746 * ice_aq_q_shutdown
1747 * @hw: pointer to the HW struct
1748 * @unloading: is the driver unloading itself
1749 *
1750 * Tell the Firmware that we're shutting down the AdminQ and whether
1751 * or not the driver is unloading as well (0x0003).
1752 */
1753int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1754{
1755	struct ice_aqc_q_shutdown *cmd;
1756	struct ice_aq_desc desc;
1757
1758	cmd = &desc.params.q_shutdown;
1759
1760	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1761
1762	if (unloading)
1763		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1764
1765	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1766}
1767
1768/**
1769 * ice_aq_req_res
1770 * @hw: pointer to the HW struct
1771 * @res: resource ID
1772 * @access: access type
1773 * @sdp_number: resource number
1774 * @timeout: the maximum time in ms that the driver may hold the resource
1775 * @cd: pointer to command details structure or NULL
1776 *
1777 * Requests common resource using the admin queue commands (0x0008).
1778 * When attempting to acquire the Global Config Lock, the driver can
1779 * learn of three states:
1780 *  1) 0 -         acquired lock, and can perform download package
1781 *  2) -EIO -      did not get lock, driver should fail to load
1782 *  3) -EALREADY - did not get lock, but another driver has
1783 *                 successfully downloaded the package; the driver does
1784 *                 not have to download the package and can continue
1785 *                 loading
1786 *
1787 * Note that if the caller is in an acquire lock, perform action, release lock
1788 * phase of operation, it is possible that the FW may detect a timeout and issue
1789 * a CORER. In this case, the driver will receive a CORER interrupt and will
1790 * have to determine its cause. The calling thread that is handling this flow
1791 * will likely get an error propagated back to it indicating the Download
1792 * Package, Update Package or the Release Resource AQ commands timed out.
1793 */
1794static int
1795ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1796	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1797	       struct ice_sq_cd *cd)
1798{
1799	struct ice_aqc_req_res *cmd_resp;
1800	struct ice_aq_desc desc;
1801	int status;
1802
1803	cmd_resp = &desc.params.res_owner;
1804
1805	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1806
1807	cmd_resp->res_id = cpu_to_le16(res);
1808	cmd_resp->access_type = cpu_to_le16(access);
1809	cmd_resp->res_number = cpu_to_le32(sdp_number);
1810	cmd_resp->timeout = cpu_to_le32(*timeout);
1811	*timeout = 0;
1812
1813	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1814
1815	/* The completion specifies the maximum time in ms that the driver
1816	 * may hold the resource in the Timeout field.
1817	 */
1818
1819	/* Global config lock response utilizes an additional status field.
1820	 *
1821	 * If the Global config lock resource is held by some other driver, the
1822	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1823	 * and the timeout field indicates the maximum time the current owner
1824	 * of the resource has to free it.
1825	 */
1826	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1827		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1828			*timeout = le32_to_cpu(cmd_resp->timeout);
1829			return 0;
1830		} else if (le16_to_cpu(cmd_resp->status) ==
1831			   ICE_AQ_RES_GLBL_IN_PROG) {
1832			*timeout = le32_to_cpu(cmd_resp->timeout);
1833			return -EIO;
1834		} else if (le16_to_cpu(cmd_resp->status) ==
1835			   ICE_AQ_RES_GLBL_DONE) {
1836			return -EALREADY;
1837		}
1838
1839		/* invalid FW response, force a timeout immediately */
1840		*timeout = 0;
1841		return -EIO;
1842	}
1843
1844	/* If the resource is held by some other driver, the command completes
1845	 * with a busy return value and the timeout field indicates the maximum
1846	 * time the current owner of the resource has to free it.
1847	 */
1848	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1849		*timeout = le32_to_cpu(cmd_resp->timeout);
1850
1851	return status;
1852}
1853
1854/**
1855 * ice_aq_release_res
1856 * @hw: pointer to the HW struct
1857 * @res: resource ID
1858 * @sdp_number: resource number
1859 * @cd: pointer to command details structure or NULL
1860 *
1861 * release common resource using the admin queue commands (0x0009)
1862 */
1863static int
1864ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1865		   struct ice_sq_cd *cd)
1866{
1867	struct ice_aqc_req_res *cmd;
1868	struct ice_aq_desc desc;
1869
1870	cmd = &desc.params.res_owner;
1871
1872	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1873
1874	cmd->res_id = cpu_to_le16(res);
1875	cmd->res_number = cpu_to_le32(sdp_number);
1876
1877	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1878}
1879
1880/**
1881 * ice_acquire_res
1882 * @hw: pointer to the HW structure
1883 * @res: resource ID
1884 * @access: access type (read or write)
1885 * @timeout: timeout in milliseconds
1886 *
1887 * This function will attempt to acquire the ownership of a resource.
1888 */
1889int
1890ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1891		enum ice_aq_res_access_type access, u32 timeout)
1892{
1893#define ICE_RES_POLLING_DELAY_MS	10
1894	u32 delay = ICE_RES_POLLING_DELAY_MS;
1895	u32 time_left = timeout;
1896	int status;
1897
1898	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1899
1900	/* A return code of -EALREADY means that another driver has
1901	 * previously acquired the resource and performed any necessary updates;
1902	 * in this case the caller does not obtain the resource and has no
1903	 * further work to do.
1904	 */
1905	if (status == -EALREADY)
1906		goto ice_acquire_res_exit;
1907
1908	if (status)
1909		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1910
1911	/* If necessary, poll until the current lock owner timeouts */
1912	timeout = time_left;
1913	while (status && timeout && time_left) {
1914		mdelay(delay);
1915		timeout = (timeout > delay) ? timeout - delay : 0;
1916		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1917
1918		if (status == -EALREADY)
1919			/* lock free, but no work to do */
1920			break;
1921
1922		if (!status)
1923			/* lock acquired */
1924			break;
1925	}
1926	if (status && status != -EALREADY)
1927		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1928
1929ice_acquire_res_exit:
1930	if (status == -EALREADY) {
1931		if (access == ICE_RES_WRITE)
1932			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1933		else
1934			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1935	}
1936	return status;
1937}
1938
1939/**
1940 * ice_release_res
1941 * @hw: pointer to the HW structure
1942 * @res: resource ID
1943 *
1944 * This function will release a resource using the proper Admin Command.
1945 */
1946void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1947{
1948	unsigned long timeout;
1949	int status;
1950
1951	/* there are some rare cases when trying to release the resource
1952	 * results in an admin queue timeout, so handle them correctly
1953	 */
1954	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1955	do {
1956		status = ice_aq_release_res(hw, res, 0, NULL);
1957		if (status != -EIO)
1958			break;
1959		usleep_range(1000, 2000);
1960	} while (time_before(jiffies, timeout));
1961}
1962
1963/**
1964 * ice_aq_alloc_free_res - command to allocate/free resources
1965 * @hw: pointer to the HW struct
1966 * @buf: Indirect buffer to hold data parameters and response
1967 * @buf_size: size of buffer for indirect commands
1968 * @opc: pass in the command opcode
1969 *
1970 * Helper function to allocate/free resources using the admin queue commands
1971 */
1972int ice_aq_alloc_free_res(struct ice_hw *hw,
1973			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1974			  enum ice_adminq_opc opc)
1975{
1976	struct ice_aqc_alloc_free_res_cmd *cmd;
1977	struct ice_aq_desc desc;
1978
1979	cmd = &desc.params.sw_res_ctrl;
1980
1981	if (!buf || buf_size < flex_array_size(buf, elem, 1))
1982		return -EINVAL;
1983
1984	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1985
1986	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1987
1988	cmd->num_entries = cpu_to_le16(1);
1989
1990	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1991}
1992
1993/**
1994 * ice_alloc_hw_res - allocate resource
1995 * @hw: pointer to the HW struct
1996 * @type: type of resource
1997 * @num: number of resources to allocate
1998 * @btm: allocate from bottom
1999 * @res: pointer to array that will receive the resources
2000 */
2001int
2002ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2003{
2004	struct ice_aqc_alloc_free_res_elem *buf;
2005	u16 buf_len;
2006	int status;
2007
2008	buf_len = struct_size(buf, elem, num);
2009	buf = kzalloc(buf_len, GFP_KERNEL);
2010	if (!buf)
2011		return -ENOMEM;
2012
2013	/* Prepare buffer to allocate resource. */
2014	buf->num_elems = cpu_to_le16(num);
2015	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2016				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2017	if (btm)
2018		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2019
2020	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2021	if (status)
2022		goto ice_alloc_res_exit;
2023
2024	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2025
2026ice_alloc_res_exit:
2027	kfree(buf);
2028	return status;
2029}
2030
2031/**
2032 * ice_free_hw_res - free allocated HW resource
2033 * @hw: pointer to the HW struct
2034 * @type: type of resource to free
2035 * @num: number of resources
2036 * @res: pointer to array that contains the resources to free
2037 */
2038int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2039{
2040	struct ice_aqc_alloc_free_res_elem *buf;
2041	u16 buf_len;
2042	int status;
2043
2044	buf_len = struct_size(buf, elem, num);
2045	buf = kzalloc(buf_len, GFP_KERNEL);
2046	if (!buf)
2047		return -ENOMEM;
2048
2049	/* Prepare buffer to free resource. */
2050	buf->num_elems = cpu_to_le16(num);
2051	buf->res_type = cpu_to_le16(type);
2052	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2053
2054	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2055	if (status)
2056		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2057
2058	kfree(buf);
2059	return status;
2060}
2061
2062/**
2063 * ice_get_num_per_func - determine number of resources per PF
2064 * @hw: pointer to the HW structure
2065 * @max: value to be evenly split between each PF
2066 *
2067 * Determine the number of valid functions by going through the bitmap returned
2068 * from parsing capabilities and use this to calculate the number of resources
2069 * per PF based on the max value passed in.
2070 */
2071static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2072{
2073	u8 funcs;
2074
2075#define ICE_CAPS_VALID_FUNCS_M	0xFF
2076	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2077			 ICE_CAPS_VALID_FUNCS_M);
2078
2079	if (!funcs)
2080		return 0;
2081
2082	return max / funcs;
2083}
2084
2085/**
2086 * ice_parse_common_caps - parse common device/function capabilities
2087 * @hw: pointer to the HW struct
2088 * @caps: pointer to common capabilities structure
2089 * @elem: the capability element to parse
2090 * @prefix: message prefix for tracing capabilities
2091 *
2092 * Given a capability element, extract relevant details into the common
2093 * capability structure.
2094 *
2095 * Returns: true if the capability matches one of the common capability ids,
2096 * false otherwise.
2097 */
2098static bool
2099ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2100		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2101{
2102	u32 logical_id = le32_to_cpu(elem->logical_id);
2103	u32 phys_id = le32_to_cpu(elem->phys_id);
2104	u32 number = le32_to_cpu(elem->number);
2105	u16 cap = le16_to_cpu(elem->cap);
2106	bool found = true;
2107
2108	switch (cap) {
2109	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2110		caps->valid_functions = number;
2111		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2112			  caps->valid_functions);
2113		break;
2114	case ICE_AQC_CAPS_SRIOV:
2115		caps->sr_iov_1_1 = (number == 1);
2116		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2117			  caps->sr_iov_1_1);
2118		break;
2119	case ICE_AQC_CAPS_DCB:
2120		caps->dcb = (number == 1);
2121		caps->active_tc_bitmap = logical_id;
2122		caps->maxtc = phys_id;
2123		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2124		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2125			  caps->active_tc_bitmap);
2126		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2127		break;
2128	case ICE_AQC_CAPS_RSS:
2129		caps->rss_table_size = number;
2130		caps->rss_table_entry_width = logical_id;
2131		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2132			  caps->rss_table_size);
2133		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2134			  caps->rss_table_entry_width);
2135		break;
2136	case ICE_AQC_CAPS_RXQS:
2137		caps->num_rxq = number;
2138		caps->rxq_first_id = phys_id;
2139		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2140			  caps->num_rxq);
2141		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2142			  caps->rxq_first_id);
2143		break;
2144	case ICE_AQC_CAPS_TXQS:
2145		caps->num_txq = number;
2146		caps->txq_first_id = phys_id;
2147		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2148			  caps->num_txq);
2149		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2150			  caps->txq_first_id);
2151		break;
2152	case ICE_AQC_CAPS_MSIX:
2153		caps->num_msix_vectors = number;
2154		caps->msix_vector_first_id = phys_id;
2155		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2156			  caps->num_msix_vectors);
2157		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2158			  caps->msix_vector_first_id);
2159		break;
2160	case ICE_AQC_CAPS_PENDING_NVM_VER:
2161		caps->nvm_update_pending_nvm = true;
2162		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2163		break;
2164	case ICE_AQC_CAPS_PENDING_OROM_VER:
2165		caps->nvm_update_pending_orom = true;
2166		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2167		break;
2168	case ICE_AQC_CAPS_PENDING_NET_VER:
2169		caps->nvm_update_pending_netlist = true;
2170		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2171		break;
2172	case ICE_AQC_CAPS_NVM_MGMT:
2173		caps->nvm_unified_update =
2174			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2175			true : false;
2176		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2177			  caps->nvm_unified_update);
2178		break;
2179	case ICE_AQC_CAPS_RDMA:
2180		caps->rdma = (number == 1);
2181		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2182		break;
2183	case ICE_AQC_CAPS_MAX_MTU:
2184		caps->max_mtu = number;
2185		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2186			  prefix, caps->max_mtu);
2187		break;
2188	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2189		caps->pcie_reset_avoidance = (number > 0);
2190		ice_debug(hw, ICE_DBG_INIT,
2191			  "%s: pcie_reset_avoidance = %d\n", prefix,
2192			  caps->pcie_reset_avoidance);
2193		break;
2194	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2195		caps->reset_restrict_support = (number == 1);
2196		ice_debug(hw, ICE_DBG_INIT,
2197			  "%s: reset_restrict_support = %d\n", prefix,
2198			  caps->reset_restrict_support);
2199		break;
2200	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2201		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2202		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2203			  prefix, caps->roce_lag);
2204		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2205		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2206			  prefix, caps->sriov_lag);
2207		break;
2208	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2209		caps->tx_sched_topo_comp_mode_en = (number == 1);
2210		break;
2211	default:
2212		/* Not one of the recognized common capabilities */
2213		found = false;
2214	}
2215
2216	return found;
2217}
2218
2219/**
2220 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2221 * @hw: pointer to the HW structure
2222 * @caps: pointer to capabilities structure to fix
2223 *
2224 * Re-calculate the capabilities that are dependent on the number of physical
2225 * ports; i.e. some features are not supported or function differently on
2226 * devices with more than 4 ports.
2227 */
2228static void
2229ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2230{
2231	/* This assumes device capabilities are always scanned before function
2232	 * capabilities during the initialization flow.
2233	 */
2234	if (hw->dev_caps.num_funcs > 4) {
2235		/* Max 4 TCs per port */
2236		caps->maxtc = 4;
2237		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2238			  caps->maxtc);
2239		if (caps->rdma) {
2240			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2241			caps->rdma = 0;
2242		}
2243
2244		/* print message only when processing device capabilities
2245		 * during initialization.
2246		 */
2247		if (caps == &hw->dev_caps.common_cap)
2248			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2249	}
2250}
2251
2252/**
2253 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2254 * @hw: pointer to the HW struct
2255 * @func_p: pointer to function capabilities structure
2256 * @cap: pointer to the capability element to parse
2257 *
2258 * Extract function capabilities for ICE_AQC_CAPS_VF.
2259 */
2260static void
2261ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2262		       struct ice_aqc_list_caps_elem *cap)
2263{
2264	u32 logical_id = le32_to_cpu(cap->logical_id);
2265	u32 number = le32_to_cpu(cap->number);
2266
2267	func_p->num_allocd_vfs = number;
2268	func_p->vf_base_id = logical_id;
2269	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2270		  func_p->num_allocd_vfs);
2271	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2272		  func_p->vf_base_id);
2273}
2274
2275/**
2276 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2277 * @hw: pointer to the HW struct
2278 * @func_p: pointer to function capabilities structure
2279 * @cap: pointer to the capability element to parse
2280 *
2281 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2282 */
2283static void
2284ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2285			struct ice_aqc_list_caps_elem *cap)
2286{
2287	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2288	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2289		  le32_to_cpu(cap->number));
2290	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2291		  func_p->guar_num_vsi);
2292}
2293
2294/**
2295 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2296 * @hw: pointer to the HW struct
2297 * @func_p: pointer to function capabilities structure
2298 * @cap: pointer to the capability element to parse
2299 *
2300 * Extract function capabilities for ICE_AQC_CAPS_1588.
2301 */
2302static void
2303ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2304			 struct ice_aqc_list_caps_elem *cap)
2305{
2306	struct ice_ts_func_info *info = &func_p->ts_func_info;
2307	u32 number = le32_to_cpu(cap->number);
2308
2309	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2310	func_p->common_cap.ieee_1588 = info->ena;
2311
2312	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2313	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2314	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2315	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2316
2317	if (!ice_is_e825c(hw)) {
2318		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2319		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2320	} else {
2321		info->clk_freq = ICE_TIME_REF_FREQ_156_250;
2322		info->clk_src = ICE_CLK_SRC_TCXO;
2323	}
2324
2325	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2326		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2327	} else {
2328		/* Unknown clock frequency, so assume a (probably incorrect)
2329		 * default to avoid out-of-bounds look ups of frequency
2330		 * related information.
2331		 */
2332		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2333			  info->clk_freq);
2334		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2335	}
2336
2337	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2338		  func_p->common_cap.ieee_1588);
2339	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2340		  info->src_tmr_owned);
2341	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2342		  info->tmr_ena);
2343	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2344		  info->tmr_index_owned);
2345	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2346		  info->tmr_index_assoc);
2347	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2348		  info->clk_freq);
2349	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2350		  info->clk_src);
2351}
2352
2353/**
2354 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2355 * @hw: pointer to the HW struct
2356 * @func_p: pointer to function capabilities structure
2357 *
2358 * Extract function capabilities for ICE_AQC_CAPS_FD.
2359 */
2360static void
2361ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2362{
2363	u32 reg_val, gsize, bsize;
2364
2365	reg_val = rd32(hw, GLQF_FD_SIZE);
2366	switch (hw->mac_type) {
2367	case ICE_MAC_E830:
2368		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2369		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2370		break;
2371	case ICE_MAC_E810:
2372	default:
2373		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2374		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2375	}
2376	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2377	func_p->fd_fltr_best_effort = bsize;
2378
2379	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2380		  func_p->fd_fltr_guar);
2381	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2382		  func_p->fd_fltr_best_effort);
2383}
2384
2385/**
2386 * ice_parse_func_caps - Parse function capabilities
2387 * @hw: pointer to the HW struct
2388 * @func_p: pointer to function capabilities structure
2389 * @buf: buffer containing the function capability records
2390 * @cap_count: the number of capabilities
2391 *
2392 * Helper function to parse function (0x000A) capabilities list. For
2393 * capabilities shared between device and function, this relies on
2394 * ice_parse_common_caps.
2395 *
2396 * Loop through the list of provided capabilities and extract the relevant
2397 * data into the function capabilities structured.
2398 */
2399static void
2400ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2401		    void *buf, u32 cap_count)
2402{
2403	struct ice_aqc_list_caps_elem *cap_resp;
2404	u32 i;
2405
2406	cap_resp = buf;
2407
2408	memset(func_p, 0, sizeof(*func_p));
2409
2410	for (i = 0; i < cap_count; i++) {
2411		u16 cap = le16_to_cpu(cap_resp[i].cap);
2412		bool found;
2413
2414		found = ice_parse_common_caps(hw, &func_p->common_cap,
2415					      &cap_resp[i], "func caps");
2416
2417		switch (cap) {
2418		case ICE_AQC_CAPS_VF:
2419			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2420			break;
2421		case ICE_AQC_CAPS_VSI:
2422			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2423			break;
2424		case ICE_AQC_CAPS_1588:
2425			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2426			break;
2427		case ICE_AQC_CAPS_FD:
2428			ice_parse_fdir_func_caps(hw, func_p);
2429			break;
2430		default:
2431			/* Don't list common capabilities as unknown */
2432			if (!found)
2433				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2434					  i, cap);
2435			break;
2436		}
2437	}
2438
2439	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2440}
2441
2442/**
2443 * ice_func_id_to_logical_id - map from function id to logical pf id
2444 * @active_function_bitmap: active function bitmap
2445 * @pf_id: function number of device
2446 *
2447 * Return: logical PF ID.
2448 */
2449static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2450{
2451	u8 logical_id = 0;
2452	u8 i;
2453
2454	for (i = 0; i < pf_id; i++)
2455		if (active_function_bitmap & BIT(i))
2456			logical_id++;
2457
2458	return logical_id;
2459}
2460
2461/**
2462 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2463 * @hw: pointer to the HW struct
2464 * @dev_p: pointer to device capabilities structure
2465 * @cap: capability element to parse
2466 *
2467 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2468 */
2469static void
2470ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2471			      struct ice_aqc_list_caps_elem *cap)
2472{
2473	u32 number = le32_to_cpu(cap->number);
2474
2475	dev_p->num_funcs = hweight32(number);
2476	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2477		  dev_p->num_funcs);
2478
2479	hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2480}
2481
2482/**
2483 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2484 * @hw: pointer to the HW struct
2485 * @dev_p: pointer to device capabilities structure
2486 * @cap: capability element to parse
2487 *
2488 * Parse ICE_AQC_CAPS_VF for device capabilities.
2489 */
2490static void
2491ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2492		      struct ice_aqc_list_caps_elem *cap)
2493{
2494	u32 number = le32_to_cpu(cap->number);
2495
2496	dev_p->num_vfs_exposed = number;
2497	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2498		  dev_p->num_vfs_exposed);
2499}
2500
2501/**
2502 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2503 * @hw: pointer to the HW struct
2504 * @dev_p: pointer to device capabilities structure
2505 * @cap: capability element to parse
2506 *
2507 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2508 */
2509static void
2510ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2511		       struct ice_aqc_list_caps_elem *cap)
2512{
2513	u32 number = le32_to_cpu(cap->number);
2514
2515	dev_p->num_vsi_allocd_to_host = number;
2516	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2517		  dev_p->num_vsi_allocd_to_host);
2518}
2519
2520/**
2521 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2522 * @hw: pointer to the HW struct
2523 * @dev_p: pointer to device capabilities structure
2524 * @cap: capability element to parse
2525 *
2526 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2527 */
2528static void
2529ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2530			struct ice_aqc_list_caps_elem *cap)
2531{
2532	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2533	u32 logical_id = le32_to_cpu(cap->logical_id);
2534	u32 phys_id = le32_to_cpu(cap->phys_id);
2535	u32 number = le32_to_cpu(cap->number);
2536
2537	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2538	dev_p->common_cap.ieee_1588 = info->ena;
2539
2540	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2541	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2542	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2543
2544	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2545	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2546	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2547
2548	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2549	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2550
2551	info->ena_ports = logical_id;
2552	info->tmr_own_map = phys_id;
2553
2554	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2555		  dev_p->common_cap.ieee_1588);
2556	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2557		  info->tmr0_owner);
2558	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2559		  info->tmr0_owned);
2560	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2561		  info->tmr0_ena);
2562	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2563		  info->tmr1_owner);
2564	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2565		  info->tmr1_owned);
2566	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2567		  info->tmr1_ena);
2568	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2569		  info->ts_ll_read);
2570	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2571		  info->ts_ll_int_read);
2572	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2573		  info->ena_ports);
2574	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2575		  info->tmr_own_map);
2576}
2577
2578/**
2579 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2580 * @hw: pointer to the HW struct
2581 * @dev_p: pointer to device capabilities structure
2582 * @cap: capability element to parse
2583 *
2584 * Parse ICE_AQC_CAPS_FD for device capabilities.
2585 */
2586static void
2587ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2588			struct ice_aqc_list_caps_elem *cap)
2589{
2590	u32 number = le32_to_cpu(cap->number);
2591
2592	dev_p->num_flow_director_fltr = number;
2593	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2594		  dev_p->num_flow_director_fltr);
2595}
2596
2597/**
2598 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2599 * @hw: pointer to the HW struct
2600 * @dev_p: pointer to device capabilities structure
2601 * @cap: capability element to parse
2602 *
2603 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2604 * enabled sensors.
2605 */
2606static void
2607ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2608			     struct ice_aqc_list_caps_elem *cap)
2609{
2610	dev_p->supported_sensors = le32_to_cpu(cap->number);
2611
2612	ice_debug(hw, ICE_DBG_INIT,
2613		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2614		  dev_p->supported_sensors);
2615}
2616
2617/**
2618 * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2619 * @hw: pointer to the HW struct
2620 * @dev_p: pointer to device capabilities structure
2621 * @cap: capability element to parse
2622 *
2623 * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2624 */
2625static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2626					struct ice_hw_dev_caps *dev_p,
2627					struct ice_aqc_list_caps_elem *cap)
2628{
2629	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2630	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2631
2632	dev_info(ice_hw_to_dev(hw),
2633		 "PF is configured in %s mode with IP instance ID %d\n",
2634		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2635		 "primary" : "secondary", dev_p->nac_topo.id);
2636
2637	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2638		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2639	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2640		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2641	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2642		  dev_p->nac_topo.id);
2643}
2644
2645/**
2646 * ice_parse_dev_caps - Parse device capabilities
2647 * @hw: pointer to the HW struct
2648 * @dev_p: pointer to device capabilities structure
2649 * @buf: buffer containing the device capability records
2650 * @cap_count: the number of capabilities
2651 *
2652 * Helper device to parse device (0x000B) capabilities list. For
2653 * capabilities shared between device and function, this relies on
2654 * ice_parse_common_caps.
2655 *
2656 * Loop through the list of provided capabilities and extract the relevant
2657 * data into the device capabilities structured.
2658 */
2659static void
2660ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2661		   void *buf, u32 cap_count)
2662{
2663	struct ice_aqc_list_caps_elem *cap_resp;
2664	u32 i;
2665
2666	cap_resp = buf;
2667
2668	memset(dev_p, 0, sizeof(*dev_p));
2669
2670	for (i = 0; i < cap_count; i++) {
2671		u16 cap = le16_to_cpu(cap_resp[i].cap);
2672		bool found;
2673
2674		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2675					      &cap_resp[i], "dev caps");
2676
2677		switch (cap) {
2678		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2679			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2680			break;
2681		case ICE_AQC_CAPS_VF:
2682			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2683			break;
2684		case ICE_AQC_CAPS_VSI:
2685			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2686			break;
2687		case ICE_AQC_CAPS_1588:
2688			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2689			break;
2690		case ICE_AQC_CAPS_FD:
2691			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2692			break;
2693		case ICE_AQC_CAPS_SENSOR_READING:
2694			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2695			break;
2696		case ICE_AQC_CAPS_NAC_TOPOLOGY:
2697			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
2698			break;
2699		default:
2700			/* Don't list common capabilities as unknown */
2701			if (!found)
2702				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2703					  i, cap);
2704			break;
2705		}
2706	}
2707
2708	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2709}
2710
2711/**
2712 * ice_is_pf_c827 - check if pf contains c827 phy
2713 * @hw: pointer to the hw struct
2714 */
2715bool ice_is_pf_c827(struct ice_hw *hw)
2716{
2717	struct ice_aqc_get_link_topo cmd = {};
2718	u8 node_part_number;
2719	u16 node_handle;
2720	int status;
2721
2722	if (hw->mac_type != ICE_MAC_E810)
2723		return false;
2724
2725	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2726		return true;
2727
2728	cmd.addr.topo_params.node_type_ctx =
2729		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2730		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2731	cmd.addr.topo_params.index = 0;
2732
2733	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2734					 &node_handle);
2735
2736	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2737		return false;
2738
2739	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2740		return true;
2741
2742	return false;
2743}
2744
2745/**
2746 * ice_is_phy_rclk_in_netlist
2747 * @hw: pointer to the hw struct
2748 *
2749 * Check if the PHY Recovered Clock device is present in the netlist
2750 */
2751bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2752{
2753	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2754				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2755				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2756	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2757				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2758				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2759		return false;
2760
2761	return true;
2762}
2763
2764/**
2765 * ice_is_clock_mux_in_netlist
2766 * @hw: pointer to the hw struct
2767 *
2768 * Check if the Clock Multiplexer device is present in the netlist
2769 */
2770bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2771{
2772	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2773				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2774				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2775				  NULL))
2776		return false;
2777
2778	return true;
2779}
2780
2781/**
2782 * ice_is_cgu_in_netlist - check for CGU presence
2783 * @hw: pointer to the hw struct
2784 *
2785 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2786 * Save the CGU part number in the hw structure for later use.
2787 * Return:
2788 * * true - cgu is present
2789 * * false - cgu is not present
2790 */
2791bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2792{
2793	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2794				   ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2795				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2796				   NULL)) {
2797		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2798		return true;
2799	} else if (!ice_find_netlist_node(hw,
2800					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2801					  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2802					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2803					  NULL)) {
2804		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2805		return true;
2806	}
2807
2808	return false;
2809}
2810
2811/**
2812 * ice_is_gps_in_netlist
2813 * @hw: pointer to the hw struct
2814 *
2815 * Check if the GPS generic device is present in the netlist
2816 */
2817bool ice_is_gps_in_netlist(struct ice_hw *hw)
2818{
2819	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2820				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2821				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2822		return false;
2823
2824	return true;
2825}
2826
2827/**
2828 * ice_aq_list_caps - query function/device capabilities
2829 * @hw: pointer to the HW struct
2830 * @buf: a buffer to hold the capabilities
2831 * @buf_size: size of the buffer
2832 * @cap_count: if not NULL, set to the number of capabilities reported
2833 * @opc: capabilities type to discover, device or function
2834 * @cd: pointer to command details structure or NULL
2835 *
2836 * Get the function (0x000A) or device (0x000B) capabilities description from
2837 * firmware and store it in the buffer.
2838 *
2839 * If the cap_count pointer is not NULL, then it is set to the number of
2840 * capabilities firmware will report. Note that if the buffer size is too
2841 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2842 * cap_count will still be updated in this case. It is recommended that the
2843 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2844 * firmware could return) to avoid this.
2845 */
2846int
2847ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2848		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2849{
2850	struct ice_aqc_list_caps *cmd;
2851	struct ice_aq_desc desc;
2852	int status;
2853
2854	cmd = &desc.params.get_cap;
2855
2856	if (opc != ice_aqc_opc_list_func_caps &&
2857	    opc != ice_aqc_opc_list_dev_caps)
2858		return -EINVAL;
2859
2860	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2861	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2862
2863	if (cap_count)
2864		*cap_count = le32_to_cpu(cmd->count);
2865
2866	return status;
2867}
2868
2869/**
2870 * ice_discover_dev_caps - Read and extract device capabilities
2871 * @hw: pointer to the hardware structure
2872 * @dev_caps: pointer to device capabilities structure
2873 *
2874 * Read the device capabilities and extract them into the dev_caps structure
2875 * for later use.
2876 */
2877int
2878ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2879{
2880	u32 cap_count = 0;
2881	void *cbuf;
2882	int status;
2883
2884	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2885	if (!cbuf)
2886		return -ENOMEM;
2887
2888	/* Although the driver doesn't know the number of capabilities the
2889	 * device will return, we can simply send a 4KB buffer, the maximum
2890	 * possible size that firmware can return.
2891	 */
2892	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2893
2894	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2895				  ice_aqc_opc_list_dev_caps, NULL);
2896	if (!status)
2897		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2898	kfree(cbuf);
2899
2900	return status;
2901}
2902
2903/**
2904 * ice_discover_func_caps - Read and extract function capabilities
2905 * @hw: pointer to the hardware structure
2906 * @func_caps: pointer to function capabilities structure
2907 *
2908 * Read the function capabilities and extract them into the func_caps structure
2909 * for later use.
2910 */
2911static int
2912ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2913{
2914	u32 cap_count = 0;
2915	void *cbuf;
2916	int status;
2917
2918	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2919	if (!cbuf)
2920		return -ENOMEM;
2921
2922	/* Although the driver doesn't know the number of capabilities the
2923	 * device will return, we can simply send a 4KB buffer, the maximum
2924	 * possible size that firmware can return.
2925	 */
2926	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2927
2928	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2929				  ice_aqc_opc_list_func_caps, NULL);
2930	if (!status)
2931		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2932	kfree(cbuf);
2933
2934	return status;
2935}
2936
2937/**
2938 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2939 * @hw: pointer to the hardware structure
2940 */
2941void ice_set_safe_mode_caps(struct ice_hw *hw)
2942{
2943	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2944	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2945	struct ice_hw_common_caps cached_caps;
2946	u32 num_funcs;
2947
2948	/* cache some func_caps values that should be restored after memset */
2949	cached_caps = func_caps->common_cap;
2950
2951	/* unset func capabilities */
2952	memset(func_caps, 0, sizeof(*func_caps));
2953
2954#define ICE_RESTORE_FUNC_CAP(name) \
2955	func_caps->common_cap.name = cached_caps.name
2956
2957	/* restore cached values */
2958	ICE_RESTORE_FUNC_CAP(valid_functions);
2959	ICE_RESTORE_FUNC_CAP(txq_first_id);
2960	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2961	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2962	ICE_RESTORE_FUNC_CAP(max_mtu);
2963	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2964	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2965	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2966	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2967
2968	/* one Tx and one Rx queue in safe mode */
2969	func_caps->common_cap.num_rxq = 1;
2970	func_caps->common_cap.num_txq = 1;
2971
2972	/* two MSIX vectors, one for traffic and one for misc causes */
2973	func_caps->common_cap.num_msix_vectors = 2;
2974	func_caps->guar_num_vsi = 1;
2975
2976	/* cache some dev_caps values that should be restored after memset */
2977	cached_caps = dev_caps->common_cap;
2978	num_funcs = dev_caps->num_funcs;
2979
2980	/* unset dev capabilities */
2981	memset(dev_caps, 0, sizeof(*dev_caps));
2982
2983#define ICE_RESTORE_DEV_CAP(name) \
2984	dev_caps->common_cap.name = cached_caps.name
2985
2986	/* restore cached values */
2987	ICE_RESTORE_DEV_CAP(valid_functions);
2988	ICE_RESTORE_DEV_CAP(txq_first_id);
2989	ICE_RESTORE_DEV_CAP(rxq_first_id);
2990	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2991	ICE_RESTORE_DEV_CAP(max_mtu);
2992	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2993	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2994	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2995	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2996	dev_caps->num_funcs = num_funcs;
2997
2998	/* one Tx and one Rx queue per function in safe mode */
2999	dev_caps->common_cap.num_rxq = num_funcs;
3000	dev_caps->common_cap.num_txq = num_funcs;
3001
3002	/* two MSIX vectors per function */
3003	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3004}
3005
3006/**
3007 * ice_get_caps - get info about the HW
3008 * @hw: pointer to the hardware structure
3009 */
3010int ice_get_caps(struct ice_hw *hw)
3011{
3012	int status;
3013
3014	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3015	if (status)
3016		return status;
3017
3018	return ice_discover_func_caps(hw, &hw->func_caps);
3019}
3020
3021/**
3022 * ice_aq_manage_mac_write - manage MAC address write command
3023 * @hw: pointer to the HW struct
3024 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3025 * @flags: flags to control write behavior
3026 * @cd: pointer to command details structure or NULL
3027 *
3028 * This function is used to write MAC address to the NVM (0x0108).
3029 */
3030int
3031ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3032			struct ice_sq_cd *cd)
3033{
3034	struct ice_aqc_manage_mac_write *cmd;
3035	struct ice_aq_desc desc;
3036
3037	cmd = &desc.params.mac_write;
3038	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3039
3040	cmd->flags = flags;
3041	ether_addr_copy(cmd->mac_addr, mac_addr);
3042
3043	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3044}
3045
3046/**
3047 * ice_aq_clear_pxe_mode
3048 * @hw: pointer to the HW struct
3049 *
3050 * Tell the firmware that the driver is taking over from PXE (0x0110).
3051 */
3052static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3053{
3054	struct ice_aq_desc desc;
3055
3056	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3057	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3058
3059	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3060}
3061
3062/**
3063 * ice_clear_pxe_mode - clear pxe operations mode
3064 * @hw: pointer to the HW struct
3065 *
3066 * Make sure all PXE mode settings are cleared, including things
3067 * like descriptor fetch/write-back mode.
3068 */
3069void ice_clear_pxe_mode(struct ice_hw *hw)
3070{
3071	if (ice_check_sq_alive(hw, &hw->adminq))
3072		ice_aq_clear_pxe_mode(hw);
3073}
3074
3075/**
3076 * ice_aq_set_port_params - set physical port parameters.
3077 * @pi: pointer to the port info struct
3078 * @double_vlan: if set double VLAN is enabled
3079 * @cd: pointer to command details structure or NULL
3080 *
3081 * Set Physical port parameters (0x0203)
3082 */
3083int
3084ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3085		       struct ice_sq_cd *cd)
3086
3087{
3088	struct ice_aqc_set_port_params *cmd;
3089	struct ice_hw *hw = pi->hw;
3090	struct ice_aq_desc desc;
3091	u16 cmd_flags = 0;
3092
3093	cmd = &desc.params.set_port_params;
3094
3095	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3096	if (double_vlan)
3097		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3098	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3099
3100	cmd->local_fwd_mode = pi->local_fwd_mode |
3101				ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3102
3103	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3104}
3105
3106/**
3107 * ice_is_100m_speed_supported
3108 * @hw: pointer to the HW struct
3109 *
3110 * returns true if 100M speeds are supported by the device,
3111 * false otherwise.
3112 */
3113bool ice_is_100m_speed_supported(struct ice_hw *hw)
3114{
3115	switch (hw->device_id) {
3116	case ICE_DEV_ID_E822C_SGMII:
3117	case ICE_DEV_ID_E822L_SGMII:
3118	case ICE_DEV_ID_E823L_1GBE:
3119	case ICE_DEV_ID_E823C_SGMII:
3120		return true;
3121	default:
3122		return false;
3123	}
3124}
3125
3126/**
3127 * ice_get_link_speed_based_on_phy_type - returns link speed
3128 * @phy_type_low: lower part of phy_type
3129 * @phy_type_high: higher part of phy_type
3130 *
3131 * This helper function will convert an entry in PHY type structure
3132 * [phy_type_low, phy_type_high] to its corresponding link speed.
3133 * Note: In the structure of [phy_type_low, phy_type_high], there should
3134 * be one bit set, as this function will convert one PHY type to its
3135 * speed.
3136 *
3137 * Return:
3138 * * PHY speed for recognized PHY type
3139 * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3140 * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3141 */
3142u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
 
3143{
3144	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3145	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3146
3147	switch (phy_type_low) {
3148	case ICE_PHY_TYPE_LOW_100BASE_TX:
3149	case ICE_PHY_TYPE_LOW_100M_SGMII:
3150		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3151		break;
3152	case ICE_PHY_TYPE_LOW_1000BASE_T:
3153	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3154	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3155	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3156	case ICE_PHY_TYPE_LOW_1G_SGMII:
3157		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3158		break;
3159	case ICE_PHY_TYPE_LOW_2500BASE_T:
3160	case ICE_PHY_TYPE_LOW_2500BASE_X:
3161	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3162		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3163		break;
3164	case ICE_PHY_TYPE_LOW_5GBASE_T:
3165	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3166		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3167		break;
3168	case ICE_PHY_TYPE_LOW_10GBASE_T:
3169	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3170	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3171	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3172	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3173	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3174	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3175		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3176		break;
3177	case ICE_PHY_TYPE_LOW_25GBASE_T:
3178	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3179	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3180	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3181	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3182	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3183	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3184	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3185	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3186	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3187	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3188		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3189		break;
3190	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3191	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3192	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3193	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3194	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3195	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3196		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3197		break;
3198	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3199	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3200	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3201	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3202	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3203	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3204	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3205	case ICE_PHY_TYPE_LOW_50G_AUI2:
3206	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3207	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3208	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3209	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3210	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3211	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3212	case ICE_PHY_TYPE_LOW_50G_AUI1:
3213		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3214		break;
3215	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3216	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3217	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3218	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3219	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3220	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3221	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3222	case ICE_PHY_TYPE_LOW_100G_AUI4:
3223	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3224	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3225	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3226	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3227	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3228		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3229		break;
3230	default:
3231		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3232		break;
3233	}
3234
3235	switch (phy_type_high) {
3236	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3237	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3238	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3239	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3240	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3241		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3242		break;
3243	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3244	case ICE_PHY_TYPE_HIGH_200G_SR4:
3245	case ICE_PHY_TYPE_HIGH_200G_FR4:
3246	case ICE_PHY_TYPE_HIGH_200G_LR4:
3247	case ICE_PHY_TYPE_HIGH_200G_DR4:
3248	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3249	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3250	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3251		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3252		break;
3253	default:
3254		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3255		break;
3256	}
3257
3258	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3259	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3260		return ICE_AQ_LINK_SPEED_UNKNOWN;
3261	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3262		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3263		return ICE_AQ_LINK_SPEED_UNKNOWN;
3264	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3265		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3266		return speed_phy_type_low;
3267	else
3268		return speed_phy_type_high;
3269}
3270
3271/**
3272 * ice_update_phy_type
3273 * @phy_type_low: pointer to the lower part of phy_type
3274 * @phy_type_high: pointer to the higher part of phy_type
3275 * @link_speeds_bitmap: targeted link speeds bitmap
3276 *
3277 * Note: For the link_speeds_bitmap structure, you can check it at
3278 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3279 * link_speeds_bitmap include multiple speeds.
3280 *
3281 * Each entry in this [phy_type_low, phy_type_high] structure will
3282 * present a certain link speed. This helper function will turn on bits
3283 * in [phy_type_low, phy_type_high] structure based on the value of
3284 * link_speeds_bitmap input parameter.
3285 */
3286void
3287ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3288		    u16 link_speeds_bitmap)
3289{
3290	u64 pt_high;
3291	u64 pt_low;
3292	int index;
3293	u16 speed;
3294
3295	/* We first check with low part of phy_type */
3296	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3297		pt_low = BIT_ULL(index);
3298		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3299
3300		if (link_speeds_bitmap & speed)
3301			*phy_type_low |= BIT_ULL(index);
3302	}
3303
3304	/* We then check with high part of phy_type */
3305	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3306		pt_high = BIT_ULL(index);
3307		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3308
3309		if (link_speeds_bitmap & speed)
3310			*phy_type_high |= BIT_ULL(index);
3311	}
3312}
3313
3314/**
3315 * ice_aq_set_phy_cfg
3316 * @hw: pointer to the HW struct
3317 * @pi: port info structure of the interested logical port
3318 * @cfg: structure with PHY configuration data to be set
3319 * @cd: pointer to command details structure or NULL
3320 *
3321 * Set the various PHY configuration parameters supported on the Port.
3322 * One or more of the Set PHY config parameters may be ignored in an MFP
3323 * mode as the PF may not have the privilege to set some of the PHY Config
3324 * parameters. This status will be indicated by the command response (0x0601).
3325 */
3326int
3327ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3328		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3329{
3330	struct ice_aq_desc desc;
3331	int status;
3332
3333	if (!cfg)
3334		return -EINVAL;
3335
3336	/* Ensure that only valid bits of cfg->caps can be turned on. */
3337	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3338		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3339			  cfg->caps);
3340
3341		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3342	}
3343
3344	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3345	desc.params.set_phy.lport_num = pi->lport;
3346	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3347
3348	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3349	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3350		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3351	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3352		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3353	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3354	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3355		  cfg->low_power_ctrl_an);
3356	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3357	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3358	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3359		  cfg->link_fec_opt);
3360
3361	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3362	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3363		status = 0;
3364
3365	if (!status)
3366		pi->phy.curr_user_phy_cfg = *cfg;
3367
3368	return status;
3369}
3370
3371/**
3372 * ice_update_link_info - update status of the HW network link
3373 * @pi: port info structure of the interested logical port
3374 */
3375int ice_update_link_info(struct ice_port_info *pi)
3376{
3377	struct ice_link_status *li;
3378	int status;
3379
3380	if (!pi)
3381		return -EINVAL;
3382
3383	li = &pi->phy.link_info;
3384
3385	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3386	if (status)
3387		return status;
3388
3389	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3390		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3391
3392		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3393		if (!pcaps)
3394			return -ENOMEM;
3395
3396		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3397					     pcaps, NULL);
3398	}
3399
3400	return status;
3401}
3402
3403/**
3404 * ice_aq_get_phy_equalization - function to read serdes equaliser
3405 * value from firmware using admin queue command.
3406 * @hw: pointer to the HW struct
3407 * @data_in: represents the serdes equalization parameter requested
3408 * @op_code: represents the serdes number and flag to represent tx or rx
3409 * @serdes_num: represents the serdes number
3410 * @output: pointer to the caller-supplied buffer to return serdes equaliser
3411 *
3412 * Return: non-zero status on error and 0 on success.
3413 */
3414int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3415				u8 serdes_num, int *output)
3416{
3417	struct ice_aqc_dnl_call_command *cmd;
3418	struct ice_aqc_dnl_call buf = {};
3419	struct ice_aq_desc desc;
3420	int err;
3421
3422	buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3423	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3424		cpu_to_le16(op_code | (serdes_num & 0xF));
3425	cmd = &desc.params.dnl_call;
3426	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3427	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF |
3428				  ICE_AQ_FLAG_RD |
3429				  ICE_AQ_FLAG_SI);
3430	desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3431	cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3432
3433	err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3434			      NULL);
3435	*output = err ? 0 : buf.sto.txrx_equa_resp.val;
3436
3437	return err;
3438}
3439
3440#define FEC_REG_PORT(port) {	\
3441	FEC_CORR_LOW_REG_PORT##port,		\
3442	FEC_CORR_HIGH_REG_PORT##port,	\
3443	FEC_UNCORR_LOW_REG_PORT##port,	\
3444	FEC_UNCORR_HIGH_REG_PORT##port,	\
3445}
3446
3447static const u32 fec_reg[][ICE_FEC_MAX] = {
3448	FEC_REG_PORT(0),
3449	FEC_REG_PORT(1),
3450	FEC_REG_PORT(2),
3451	FEC_REG_PORT(3)
3452};
3453
3454/**
3455 * ice_aq_get_fec_stats - reads fec stats from phy
3456 * @hw: pointer to the HW struct
3457 * @pcs_quad: represents pcsquad of user input serdes
3458 * @pcs_port: represents the pcs port number part of above pcs quad
3459 * @fec_type: represents FEC stats type
3460 * @output: pointer to the caller-supplied buffer to return requested fec stats
3461 *
3462 * Return: non-zero status on error and 0 on success.
3463 */
3464int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3465			 enum ice_fec_stats_types fec_type, u32 *output)
3466{
3467	u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI);
3468	struct ice_sbq_msg_input msg = {};
3469	u32 receiver_id, reg_offset;
3470	int err;
3471
3472	if (pcs_port > 3)
3473		return -EINVAL;
3474
3475	reg_offset = fec_reg[pcs_port][fec_type];
3476
3477	if (pcs_quad == 0)
3478		receiver_id = FEC_RECEIVER_ID_PCS0;
3479	else if (pcs_quad == 1)
3480		receiver_id = FEC_RECEIVER_ID_PCS1;
3481	else
3482		return -EINVAL;
3483
3484	msg.msg_addr_low = lower_16_bits(reg_offset);
3485	msg.msg_addr_high = receiver_id;
3486	msg.opcode = ice_sbq_msg_rd;
3487	msg.dest_dev = rmn_0;
3488
3489	err = ice_sbq_rw_reg(hw, &msg, flag);
3490	if (err)
3491		return err;
3492
3493	*output = msg.data;
3494	return 0;
3495}
3496
3497/**
3498 * ice_cache_phy_user_req
3499 * @pi: port information structure
3500 * @cache_data: PHY logging data
3501 * @cache_mode: PHY logging mode
3502 *
3503 * Log the user request on (FC, FEC, SPEED) for later use.
3504 */
3505static void
3506ice_cache_phy_user_req(struct ice_port_info *pi,
3507		       struct ice_phy_cache_mode_data cache_data,
3508		       enum ice_phy_cache_mode cache_mode)
3509{
3510	if (!pi)
3511		return;
3512
3513	switch (cache_mode) {
3514	case ICE_FC_MODE:
3515		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3516		break;
3517	case ICE_SPEED_MODE:
3518		pi->phy.curr_user_speed_req =
3519			cache_data.data.curr_user_speed_req;
3520		break;
3521	case ICE_FEC_MODE:
3522		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3523		break;
3524	default:
3525		break;
3526	}
3527}
3528
3529/**
3530 * ice_caps_to_fc_mode
3531 * @caps: PHY capabilities
3532 *
3533 * Convert PHY FC capabilities to ice FC mode
3534 */
3535enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3536{
3537	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3538	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3539		return ICE_FC_FULL;
3540
3541	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3542		return ICE_FC_TX_PAUSE;
3543
3544	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3545		return ICE_FC_RX_PAUSE;
3546
3547	return ICE_FC_NONE;
3548}
3549
3550/**
3551 * ice_caps_to_fec_mode
3552 * @caps: PHY capabilities
3553 * @fec_options: Link FEC options
3554 *
3555 * Convert PHY FEC capabilities to ice FEC mode
3556 */
3557enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3558{
3559	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3560		return ICE_FEC_AUTO;
3561
3562	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3563			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3564			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3565			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3566		return ICE_FEC_BASER;
3567
3568	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3569			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3570			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3571		return ICE_FEC_RS;
3572
3573	return ICE_FEC_NONE;
3574}
3575
3576/**
3577 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3578 * @pi: port information structure
3579 * @cfg: PHY configuration data to set FC mode
3580 * @req_mode: FC mode to configure
3581 */
3582int
3583ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3584	       enum ice_fc_mode req_mode)
3585{
3586	struct ice_phy_cache_mode_data cache_data;
3587	u8 pause_mask = 0x0;
3588
3589	if (!pi || !cfg)
3590		return -EINVAL;
3591
3592	switch (req_mode) {
3593	case ICE_FC_FULL:
3594		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3595		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3596		break;
3597	case ICE_FC_RX_PAUSE:
3598		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3599		break;
3600	case ICE_FC_TX_PAUSE:
3601		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3602		break;
3603	default:
3604		break;
3605	}
3606
3607	/* clear the old pause settings */
3608	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3609		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3610
3611	/* set the new capabilities */
3612	cfg->caps |= pause_mask;
3613
3614	/* Cache user FC request */
3615	cache_data.data.curr_user_fc_req = req_mode;
3616	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3617
3618	return 0;
3619}
3620
3621/**
3622 * ice_set_fc
3623 * @pi: port information structure
3624 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3625 * @ena_auto_link_update: enable automatic link update
3626 *
3627 * Set the requested flow control mode.
3628 */
3629int
3630ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3631{
3632	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3633	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3634	struct ice_hw *hw;
3635	int status;
3636
3637	if (!pi || !aq_failures)
3638		return -EINVAL;
3639
3640	*aq_failures = 0;
3641	hw = pi->hw;
3642
3643	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3644	if (!pcaps)
3645		return -ENOMEM;
3646
3647	/* Get the current PHY config */
3648	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3649				     pcaps, NULL);
3650	if (status) {
3651		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3652		goto out;
3653	}
3654
3655	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3656
3657	/* Configure the set PHY data */
3658	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3659	if (status)
3660		goto out;
3661
3662	/* If the capabilities have changed, then set the new config */
3663	if (cfg.caps != pcaps->caps) {
3664		int retry_count, retry_max = 10;
3665
3666		/* Auto restart link so settings take effect */
3667		if (ena_auto_link_update)
3668			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3669
3670		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3671		if (status) {
3672			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3673			goto out;
3674		}
3675
3676		/* Update the link info
3677		 * It sometimes takes a really long time for link to
3678		 * come back from the atomic reset. Thus, we wait a
3679		 * little bit.
3680		 */
3681		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3682			status = ice_update_link_info(pi);
3683
3684			if (!status)
3685				break;
3686
3687			mdelay(100);
3688		}
3689
3690		if (status)
3691			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3692	}
3693
3694out:
3695	return status;
3696}
3697
3698/**
3699 * ice_phy_caps_equals_cfg
3700 * @phy_caps: PHY capabilities
3701 * @phy_cfg: PHY configuration
3702 *
3703 * Helper function to determine if PHY capabilities matches PHY
3704 * configuration
3705 */
3706bool
3707ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3708			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3709{
3710	u8 caps_mask, cfg_mask;
3711
3712	if (!phy_caps || !phy_cfg)
3713		return false;
3714
3715	/* These bits are not common between capabilities and configuration.
3716	 * Do not use them to determine equality.
3717	 */
3718	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3719					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3720	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3721
3722	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3723	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3724	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3725	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3726	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3727	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3728	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3729		return false;
3730
3731	return true;
3732}
3733
3734/**
3735 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3736 * @pi: port information structure
3737 * @caps: PHY ability structure to copy date from
3738 * @cfg: PHY configuration structure to copy data to
3739 *
3740 * Helper function to copy AQC PHY get ability data to PHY set configuration
3741 * data structure
3742 */
3743void
3744ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3745			 struct ice_aqc_get_phy_caps_data *caps,
3746			 struct ice_aqc_set_phy_cfg_data *cfg)
3747{
3748	if (!pi || !caps || !cfg)
3749		return;
3750
3751	memset(cfg, 0, sizeof(*cfg));
3752	cfg->phy_type_low = caps->phy_type_low;
3753	cfg->phy_type_high = caps->phy_type_high;
3754	cfg->caps = caps->caps;
3755	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3756	cfg->eee_cap = caps->eee_cap;
3757	cfg->eeer_value = caps->eeer_value;
3758	cfg->link_fec_opt = caps->link_fec_options;
3759	cfg->module_compliance_enforcement =
3760		caps->module_compliance_enforcement;
3761}
3762
3763/**
3764 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3765 * @pi: port information structure
3766 * @cfg: PHY configuration data to set FEC mode
3767 * @fec: FEC mode to configure
3768 */
3769int
3770ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3771		enum ice_fec_mode fec)
3772{
3773	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3774	struct ice_hw *hw;
3775	int status;
3776
3777	if (!pi || !cfg)
3778		return -EINVAL;
3779
3780	hw = pi->hw;
3781
3782	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3783	if (!pcaps)
3784		return -ENOMEM;
3785
3786	status = ice_aq_get_phy_caps(pi, false,
3787				     (ice_fw_supports_report_dflt_cfg(hw) ?
3788				      ICE_AQC_REPORT_DFLT_CFG :
3789				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3790	if (status)
3791		goto out;
3792
3793	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3794	cfg->link_fec_opt = pcaps->link_fec_options;
3795
3796	switch (fec) {
3797	case ICE_FEC_BASER:
3798		/* Clear RS bits, and AND BASE-R ability
3799		 * bits and OR request bits.
3800		 */
3801		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3802			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3803		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3804			ICE_AQC_PHY_FEC_25G_KR_REQ;
3805		break;
3806	case ICE_FEC_RS:
3807		/* Clear BASE-R bits, and AND RS ability
3808		 * bits and OR request bits.
3809		 */
3810		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3811		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3812			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3813		break;
3814	case ICE_FEC_NONE:
3815		/* Clear all FEC option bits. */
3816		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3817		break;
3818	case ICE_FEC_AUTO:
3819		/* AND auto FEC bit, and all caps bits. */
3820		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3821		cfg->link_fec_opt |= pcaps->link_fec_options;
3822		break;
3823	default:
3824		status = -EINVAL;
3825		break;
3826	}
3827
3828	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3829	    !ice_fw_supports_report_dflt_cfg(hw)) {
3830		struct ice_link_default_override_tlv tlv = { 0 };
3831
3832		status = ice_get_link_default_override(&tlv, pi);
3833		if (status)
3834			goto out;
3835
3836		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3837		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3838			cfg->link_fec_opt = tlv.fec_options;
3839	}
3840
3841out:
3842	return status;
3843}
3844
3845/**
3846 * ice_get_link_status - get status of the HW network link
3847 * @pi: port information structure
3848 * @link_up: pointer to bool (true/false = linkup/linkdown)
3849 *
3850 * Variable link_up is true if link is up, false if link is down.
3851 * The variable link_up is invalid if status is non zero. As a
3852 * result of this call, link status reporting becomes enabled
3853 */
3854int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3855{
3856	struct ice_phy_info *phy_info;
3857	int status = 0;
3858
3859	if (!pi || !link_up)
3860		return -EINVAL;
3861
3862	phy_info = &pi->phy;
3863
3864	if (phy_info->get_link_info) {
3865		status = ice_update_link_info(pi);
3866
3867		if (status)
3868			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3869				  status);
3870	}
3871
3872	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3873
3874	return status;
3875}
3876
3877/**
3878 * ice_aq_set_link_restart_an
3879 * @pi: pointer to the port information structure
3880 * @ena_link: if true: enable link, if false: disable link
3881 * @cd: pointer to command details structure or NULL
3882 *
3883 * Sets up the link and restarts the Auto-Negotiation over the link.
3884 */
3885int
3886ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3887			   struct ice_sq_cd *cd)
3888{
3889	struct ice_aqc_restart_an *cmd;
3890	struct ice_aq_desc desc;
3891
3892	cmd = &desc.params.restart_an;
3893
3894	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3895
3896	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3897	cmd->lport_num = pi->lport;
3898	if (ena_link)
3899		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3900	else
3901		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3902
3903	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3904}
3905
3906/**
3907 * ice_aq_set_event_mask
3908 * @hw: pointer to the HW struct
3909 * @port_num: port number of the physical function
3910 * @mask: event mask to be set
3911 * @cd: pointer to command details structure or NULL
3912 *
3913 * Set event mask (0x0613)
3914 */
3915int
3916ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3917		      struct ice_sq_cd *cd)
3918{
3919	struct ice_aqc_set_event_mask *cmd;
3920	struct ice_aq_desc desc;
3921
3922	cmd = &desc.params.set_event_mask;
3923
3924	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3925
3926	cmd->lport_num = port_num;
3927
3928	cmd->event_mask = cpu_to_le16(mask);
3929	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3930}
3931
3932/**
3933 * ice_aq_set_mac_loopback
3934 * @hw: pointer to the HW struct
3935 * @ena_lpbk: Enable or Disable loopback
3936 * @cd: pointer to command details structure or NULL
3937 *
3938 * Enable/disable loopback on a given port
3939 */
3940int
3941ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3942{
3943	struct ice_aqc_set_mac_lb *cmd;
3944	struct ice_aq_desc desc;
3945
3946	cmd = &desc.params.set_mac_lb;
3947
3948	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3949	if (ena_lpbk)
3950		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3951
3952	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3953}
3954
3955/**
3956 * ice_aq_set_port_id_led
3957 * @pi: pointer to the port information
3958 * @is_orig_mode: is this LED set to original mode (by the net-list)
3959 * @cd: pointer to command details structure or NULL
3960 *
3961 * Set LED value for the given port (0x06e9)
3962 */
3963int
3964ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3965		       struct ice_sq_cd *cd)
3966{
3967	struct ice_aqc_set_port_id_led *cmd;
3968	struct ice_hw *hw = pi->hw;
3969	struct ice_aq_desc desc;
3970
3971	cmd = &desc.params.set_port_id_led;
3972
3973	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3974
3975	if (is_orig_mode)
3976		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3977	else
3978		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3979
3980	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3981}
3982
3983/**
3984 * ice_aq_get_port_options
3985 * @hw: pointer to the HW struct
3986 * @options: buffer for the resultant port options
3987 * @option_count: input - size of the buffer in port options structures,
3988 *                output - number of returned port options
3989 * @lport: logical port to call the command with (optional)
3990 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3991 *               when PF owns more than 1 port it must be true
3992 * @active_option_idx: index of active port option in returned buffer
3993 * @active_option_valid: active option in returned buffer is valid
3994 * @pending_option_idx: index of pending port option in returned buffer
3995 * @pending_option_valid: pending option in returned buffer is valid
3996 *
3997 * Calls Get Port Options AQC (0x06ea) and verifies result.
3998 */
3999int
4000ice_aq_get_port_options(struct ice_hw *hw,
4001			struct ice_aqc_get_port_options_elem *options,
4002			u8 *option_count, u8 lport, bool lport_valid,
4003			u8 *active_option_idx, bool *active_option_valid,
4004			u8 *pending_option_idx, bool *pending_option_valid)
4005{
4006	struct ice_aqc_get_port_options *cmd;
4007	struct ice_aq_desc desc;
4008	int status;
4009	u8 i;
4010
4011	/* options buffer shall be able to hold max returned options */
4012	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4013		return -EINVAL;
4014
4015	cmd = &desc.params.get_port_options;
4016	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4017
4018	if (lport_valid)
4019		cmd->lport_num = lport;
4020	cmd->lport_num_valid = lport_valid;
4021
4022	status = ice_aq_send_cmd(hw, &desc, options,
4023				 *option_count * sizeof(*options), NULL);
4024	if (status)
4025		return status;
4026
4027	/* verify direct FW response & set output parameters */
4028	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4029				  cmd->port_options_count);
4030	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4031	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4032					 cmd->port_options);
4033	if (*active_option_valid) {
4034		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4035					       cmd->port_options);
4036		if (*active_option_idx > (*option_count - 1))
4037			return -EIO;
4038		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4039			  *active_option_idx);
4040	}
4041
4042	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4043					  cmd->pending_port_option_status);
4044	if (*pending_option_valid) {
4045		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4046						cmd->pending_port_option_status);
4047		if (*pending_option_idx > (*option_count - 1))
4048			return -EIO;
4049		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4050			  *pending_option_idx);
4051	}
4052
4053	/* mask output options fields */
4054	for (i = 0; i < *option_count; i++) {
4055		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4056					   options[i].pmd);
4057		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4058						      options[i].max_lane_speed);
4059		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4060			  options[i].pmd, options[i].max_lane_speed);
4061	}
4062
4063	return 0;
4064}
4065
4066/**
4067 * ice_aq_set_port_option
4068 * @hw: pointer to the HW struct
4069 * @lport: logical port to call the command with
4070 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4071 *               when PF owns more than 1 port it must be true
4072 * @new_option: new port option to be written
4073 *
4074 * Calls Set Port Options AQC (0x06eb).
4075 */
4076int
4077ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4078		       u8 new_option)
4079{
4080	struct ice_aqc_set_port_option *cmd;
4081	struct ice_aq_desc desc;
4082
4083	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4084		return -EINVAL;
4085
4086	cmd = &desc.params.set_port_option;
4087	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4088
4089	if (lport_valid)
4090		cmd->lport_num = lport;
4091
4092	cmd->lport_num_valid = lport_valid;
4093	cmd->selected_port_option = new_option;
4094
4095	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4096}
4097
4098/**
4099 * ice_get_phy_lane_number - Get PHY lane number for current adapter
4100 * @hw: pointer to the hw struct
4101 *
4102 * Return: PHY lane number on success, negative error code otherwise.
4103 */
4104int ice_get_phy_lane_number(struct ice_hw *hw)
4105{
4106	struct ice_aqc_get_port_options_elem *options;
4107	unsigned int lport = 0;
4108	unsigned int lane;
4109	int err;
4110
4111	options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4112	if (!options)
4113		return -ENOMEM;
4114
4115	for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4116		u8 options_count = ICE_AQC_PORT_OPT_MAX;
4117		u8 speed, active_idx, pending_idx;
4118		bool active_valid, pending_valid;
4119
4120		err = ice_aq_get_port_options(hw, options, &options_count, lane,
4121					      true, &active_idx, &active_valid,
4122					      &pending_idx, &pending_valid);
4123		if (err)
4124			goto err;
4125
4126		if (!active_valid)
4127			continue;
4128
4129		speed = options[active_idx].max_lane_speed;
4130		/* If we don't get speed for this lane, it's unoccupied */
4131		if (speed > ICE_AQC_PORT_OPT_MAX_LANE_200G)
4132			continue;
4133
4134		if (hw->pf_id == lport) {
4135			kfree(options);
4136			return lane;
4137		}
4138
4139		lport++;
4140	}
4141
4142	/* PHY lane not found */
4143	err = -ENXIO;
4144err:
4145	kfree(options);
4146	return err;
4147}
4148
4149/**
4150 * ice_aq_sff_eeprom
4151 * @hw: pointer to the HW struct
4152 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4153 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4154 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4155 * @page: QSFP page
4156 * @set_page: set or ignore the page
4157 * @data: pointer to data buffer to be read/written to the I2C device.
4158 * @length: 1-16 for read, 1 for write.
4159 * @write: 0 read, 1 for write.
4160 * @cd: pointer to command details structure or NULL
4161 *
4162 * Read/Write SFF EEPROM (0x06EE)
4163 */
4164int
4165ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4166		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4167		  bool write, struct ice_sq_cd *cd)
4168{
4169	struct ice_aqc_sff_eeprom *cmd;
4170	struct ice_aq_desc desc;
4171	u16 i2c_bus_addr;
4172	int status;
4173
4174	if (!data || (mem_addr & 0xff00))
4175		return -EINVAL;
4176
4177	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4178	cmd = &desc.params.read_write_sff_param;
4179	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
4180	cmd->lport_num = (u8)(lport & 0xff);
4181	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4182	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4183		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4184	if (write)
4185		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4186	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4187	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4188	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4189
4190	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4191	return status;
4192}
4193
4194static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4195{
4196	switch (type) {
4197	case ICE_LUT_VSI:
4198		return ICE_LUT_VSI_SIZE;
4199	case ICE_LUT_GLOBAL:
4200		return ICE_LUT_GLOBAL_SIZE;
4201	case ICE_LUT_PF:
4202		return ICE_LUT_PF_SIZE;
4203	}
4204	WARN_ONCE(1, "incorrect type passed");
4205	return ICE_LUT_VSI_SIZE;
4206}
4207
4208static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4209{
4210	switch (size) {
4211	case ICE_LUT_VSI_SIZE:
4212		return ICE_AQC_LUT_SIZE_SMALL;
4213	case ICE_LUT_GLOBAL_SIZE:
4214		return ICE_AQC_LUT_SIZE_512;
4215	case ICE_LUT_PF_SIZE:
4216		return ICE_AQC_LUT_SIZE_2K;
4217	}
4218	WARN_ONCE(1, "incorrect size passed");
4219	return 0;
4220}
4221
4222/**
4223 * __ice_aq_get_set_rss_lut
4224 * @hw: pointer to the hardware structure
4225 * @params: RSS LUT parameters
4226 * @set: set true to set the table, false to get the table
4227 *
4228 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4229 */
4230static int
4231__ice_aq_get_set_rss_lut(struct ice_hw *hw,
4232			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4233{
4234	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4235	enum ice_lut_type lut_type = params->lut_type;
4236	struct ice_aqc_get_set_rss_lut *desc_params;
4237	enum ice_aqc_lut_flags flags;
4238	enum ice_lut_size lut_size;
4239	struct ice_aq_desc desc;
4240	u8 *lut = params->lut;
4241
4242
4243	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4244		return -EINVAL;
4245
4246	lut_size = ice_lut_type_to_size(lut_type);
4247	if (lut_size > params->lut_size)
4248		return -EINVAL;
4249	else if (set && lut_size != params->lut_size)
4250		return -EINVAL;
4251
4252	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4253	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4254	if (set)
4255		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4256
4257	desc_params = &desc.params.get_set_rss_lut;
4258	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4259	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4260
4261	if (lut_type == ICE_LUT_GLOBAL)
4262		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4263					  params->global_lut_id);
4264
4265	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4266	desc_params->flags = cpu_to_le16(flags);
4267
4268	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4269}
4270
4271/**
4272 * ice_aq_get_rss_lut
4273 * @hw: pointer to the hardware structure
4274 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4275 *
4276 * get the RSS lookup table, PF or VSI type
4277 */
4278int
4279ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4280{
4281	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4282}
4283
4284/**
4285 * ice_aq_set_rss_lut
4286 * @hw: pointer to the hardware structure
4287 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4288 *
4289 * set the RSS lookup table, PF or VSI type
4290 */
4291int
4292ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4293{
4294	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4295}
4296
4297/**
4298 * __ice_aq_get_set_rss_key
4299 * @hw: pointer to the HW struct
4300 * @vsi_id: VSI FW index
4301 * @key: pointer to key info struct
4302 * @set: set true to set the key, false to get the key
4303 *
4304 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4305 */
4306static int
4307__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4308			 struct ice_aqc_get_set_rss_keys *key, bool set)
4309{
4310	struct ice_aqc_get_set_rss_key *desc_params;
4311	u16 key_size = sizeof(*key);
4312	struct ice_aq_desc desc;
4313
4314	if (set) {
4315		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4316		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4317	} else {
4318		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4319	}
4320
4321	desc_params = &desc.params.get_set_rss_key;
4322	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4323
4324	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4325}
4326
4327/**
4328 * ice_aq_get_rss_key
4329 * @hw: pointer to the HW struct
4330 * @vsi_handle: software VSI handle
4331 * @key: pointer to key info struct
4332 *
4333 * get the RSS key per VSI
4334 */
4335int
4336ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4337		   struct ice_aqc_get_set_rss_keys *key)
4338{
4339	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4340		return -EINVAL;
4341
4342	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4343					key, false);
4344}
4345
4346/**
4347 * ice_aq_set_rss_key
4348 * @hw: pointer to the HW struct
4349 * @vsi_handle: software VSI handle
4350 * @keys: pointer to key info struct
4351 *
4352 * set the RSS key per VSI
4353 */
4354int
4355ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4356		   struct ice_aqc_get_set_rss_keys *keys)
4357{
4358	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4359		return -EINVAL;
4360
4361	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4362					keys, true);
4363}
4364
4365/**
4366 * ice_aq_add_lan_txq
4367 * @hw: pointer to the hardware structure
4368 * @num_qgrps: Number of added queue groups
4369 * @qg_list: list of queue groups to be added
4370 * @buf_size: size of buffer for indirect command
4371 * @cd: pointer to command details structure or NULL
4372 *
4373 * Add Tx LAN queue (0x0C30)
4374 *
4375 * NOTE:
4376 * Prior to calling add Tx LAN queue:
4377 * Initialize the following as part of the Tx queue context:
4378 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4379 * Cache profile and Packet shaper profile.
4380 *
4381 * After add Tx LAN queue AQ command is completed:
4382 * Interrupts should be associated with specific queues,
4383 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4384 * flow.
4385 */
4386static int
4387ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4388		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4389		   struct ice_sq_cd *cd)
4390{
4391	struct ice_aqc_add_tx_qgrp *list;
4392	struct ice_aqc_add_txqs *cmd;
4393	struct ice_aq_desc desc;
4394	u16 i, sum_size = 0;
4395
4396	cmd = &desc.params.add_txqs;
4397
4398	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4399
4400	if (!qg_list)
4401		return -EINVAL;
4402
4403	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4404		return -EINVAL;
4405
4406	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4407		sum_size += struct_size(list, txqs, list->num_txqs);
4408		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4409						      list->num_txqs);
4410	}
4411
4412	if (buf_size != sum_size)
4413		return -EINVAL;
4414
4415	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4416
4417	cmd->num_qgrps = num_qgrps;
4418
4419	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4420}
4421
4422/**
4423 * ice_aq_dis_lan_txq
4424 * @hw: pointer to the hardware structure
4425 * @num_qgrps: number of groups in the list
4426 * @qg_list: the list of groups to disable
4427 * @buf_size: the total size of the qg_list buffer in bytes
4428 * @rst_src: if called due to reset, specifies the reset source
4429 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4430 * @cd: pointer to command details structure or NULL
4431 *
4432 * Disable LAN Tx queue (0x0C31)
4433 */
4434static int
4435ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4436		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4437		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4438		   struct ice_sq_cd *cd)
4439{
4440	struct ice_aqc_dis_txq_item *item;
4441	struct ice_aqc_dis_txqs *cmd;
4442	struct ice_aq_desc desc;
4443	u16 vmvf_and_timeout;
4444	u16 i, sz = 0;
4445	int status;
4446
4447	cmd = &desc.params.dis_txqs;
4448	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4449
4450	/* qg_list can be NULL only in VM/VF reset flow */
4451	if (!qg_list && !rst_src)
4452		return -EINVAL;
4453
4454	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4455		return -EINVAL;
4456
4457	cmd->num_entries = num_qgrps;
4458
4459	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4460
4461	switch (rst_src) {
4462	case ICE_VM_RESET:
4463		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4464		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4465		break;
4466	case ICE_VF_RESET:
4467		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4468		/* In this case, FW expects vmvf_num to be absolute VF ID */
4469		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4470				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4471		break;
4472	case ICE_NO_RESET:
4473	default:
4474		break;
4475	}
4476
4477	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4478
4479	/* flush pipe on time out */
4480	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4481	/* If no queue group info, we are in a reset flow. Issue the AQ */
4482	if (!qg_list)
4483		goto do_aq;
4484
4485	/* set RD bit to indicate that command buffer is provided by the driver
4486	 * and it needs to be read by the firmware
4487	 */
4488	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4489
4490	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4491		u16 item_size = struct_size(item, q_id, item->num_qs);
4492
4493		/* If the num of queues is even, add 2 bytes of padding */
4494		if ((item->num_qs % 2) == 0)
4495			item_size += 2;
4496
4497		sz += item_size;
4498
4499		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4500	}
4501
4502	if (buf_size != sz)
4503		return -EINVAL;
4504
4505do_aq:
4506	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4507	if (status) {
4508		if (!qg_list)
4509			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4510				  vmvf_num, hw->adminq.sq_last_status);
4511		else
4512			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4513				  le16_to_cpu(qg_list[0].q_id[0]),
4514				  hw->adminq.sq_last_status);
4515	}
4516	return status;
4517}
4518
4519/**
4520 * ice_aq_cfg_lan_txq
4521 * @hw: pointer to the hardware structure
4522 * @buf: buffer for command
4523 * @buf_size: size of buffer in bytes
4524 * @num_qs: number of queues being configured
4525 * @oldport: origination lport
4526 * @newport: destination lport
4527 * @cd: pointer to command details structure or NULL
4528 *
4529 * Move/Configure LAN Tx queue (0x0C32)
4530 *
4531 * There is a better AQ command to use for moving nodes, so only coding
4532 * this one for configuring the node.
4533 */
4534int
4535ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4536		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4537		   struct ice_sq_cd *cd)
4538{
4539	struct ice_aqc_cfg_txqs *cmd;
4540	struct ice_aq_desc desc;
4541	int status;
4542
4543	cmd = &desc.params.cfg_txqs;
4544	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4545	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4546
4547	if (!buf)
4548		return -EINVAL;
4549
4550	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4551	cmd->num_qs = num_qs;
4552	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4553	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4554	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4555	cmd->blocked_cgds = 0;
4556
4557	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4558	if (status)
4559		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4560			  hw->adminq.sq_last_status);
4561	return status;
4562}
4563
4564/**
4565 * ice_aq_add_rdma_qsets
4566 * @hw: pointer to the hardware structure
4567 * @num_qset_grps: Number of RDMA Qset groups
4568 * @qset_list: list of Qset groups to be added
4569 * @buf_size: size of buffer for indirect command
4570 * @cd: pointer to command details structure or NULL
4571 *
4572 * Add Tx RDMA Qsets (0x0C33)
4573 */
4574static int
4575ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4576		      struct ice_aqc_add_rdma_qset_data *qset_list,
4577		      u16 buf_size, struct ice_sq_cd *cd)
4578{
4579	struct ice_aqc_add_rdma_qset_data *list;
4580	struct ice_aqc_add_rdma_qset *cmd;
4581	struct ice_aq_desc desc;
4582	u16 i, sum_size = 0;
4583
4584	cmd = &desc.params.add_rdma_qset;
4585
4586	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4587
4588	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4589		return -EINVAL;
4590
4591	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4592		u16 num_qsets = le16_to_cpu(list->num_qsets);
4593
4594		sum_size += struct_size(list, rdma_qsets, num_qsets);
4595		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4596							     num_qsets);
4597	}
4598
4599	if (buf_size != sum_size)
4600		return -EINVAL;
4601
4602	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4603
4604	cmd->num_qset_grps = num_qset_grps;
4605
4606	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4607}
4608
4609/* End of FW Admin Queue command wrappers */
4610
4611/**
4612 * ice_pack_ctx_byte - write a byte to a packed context structure
4613 * @src_ctx: unpacked source context structure
4614 * @dest_ctx: packed destination context data
4615 * @ce_info: context element description
4616 */
4617static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4618			      const struct ice_ctx_ele *ce_info)
4619{
4620	u8 src_byte, dest_byte, mask;
4621	u8 *from, *dest;
4622	u16 shift_width;
4623
4624	/* copy from the next struct field */
4625	from = src_ctx + ce_info->offset;
4626
4627	/* prepare the bits and mask */
4628	shift_width = ce_info->lsb % 8;
4629	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4630
4631	src_byte = *from;
4632	src_byte <<= shift_width;
4633	src_byte &= mask;
4634
4635	/* get the current bits from the target bit string */
4636	dest = dest_ctx + (ce_info->lsb / 8);
4637
4638	memcpy(&dest_byte, dest, sizeof(dest_byte));
4639
4640	dest_byte &= ~mask;	/* get the bits not changing */
4641	dest_byte |= src_byte;	/* add in the new bits */
4642
4643	/* put it all back */
4644	memcpy(dest, &dest_byte, sizeof(dest_byte));
4645}
4646
4647/**
4648 * ice_pack_ctx_word - write a word to a packed context structure
4649 * @src_ctx: unpacked source context structure
4650 * @dest_ctx: packed destination context data
4651 * @ce_info: context element description
4652 */
4653static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4654			      const struct ice_ctx_ele *ce_info)
4655{
4656	u16 src_word, mask;
4657	__le16 dest_word;
4658	u8 *from, *dest;
4659	u16 shift_width;
4660
4661	/* copy from the next struct field */
4662	from = src_ctx + ce_info->offset;
4663
4664	/* prepare the bits and mask */
4665	shift_width = ce_info->lsb % 8;
4666	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4667
4668	/* don't swizzle the bits until after the mask because the mask bits
4669	 * will be in a different bit position on big endian machines
4670	 */
4671	src_word = *(u16 *)from;
4672	src_word <<= shift_width;
4673	src_word &= mask;
4674
4675	/* get the current bits from the target bit string */
4676	dest = dest_ctx + (ce_info->lsb / 8);
4677
4678	memcpy(&dest_word, dest, sizeof(dest_word));
4679
4680	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4681	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4682
4683	/* put it all back */
4684	memcpy(dest, &dest_word, sizeof(dest_word));
4685}
4686
4687/**
4688 * ice_pack_ctx_dword - write a dword to a packed context structure
4689 * @src_ctx: unpacked source context structure
4690 * @dest_ctx: packed destination context data
4691 * @ce_info: context element description
4692 */
4693static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4694			       const struct ice_ctx_ele *ce_info)
4695{
4696	u32 src_dword, mask;
4697	__le32 dest_dword;
4698	u8 *from, *dest;
4699	u16 shift_width;
4700
4701	/* copy from the next struct field */
4702	from = src_ctx + ce_info->offset;
4703
4704	/* prepare the bits and mask */
4705	shift_width = ce_info->lsb % 8;
4706	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4707
4708	/* don't swizzle the bits until after the mask because the mask bits
4709	 * will be in a different bit position on big endian machines
4710	 */
4711	src_dword = *(u32 *)from;
4712	src_dword <<= shift_width;
4713	src_dword &= mask;
4714
4715	/* get the current bits from the target bit string */
4716	dest = dest_ctx + (ce_info->lsb / 8);
4717
4718	memcpy(&dest_dword, dest, sizeof(dest_dword));
4719
4720	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4721	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4722
4723	/* put it all back */
4724	memcpy(dest, &dest_dword, sizeof(dest_dword));
4725}
4726
4727/**
4728 * ice_pack_ctx_qword - write a qword to a packed context structure
4729 * @src_ctx: unpacked source context structure
4730 * @dest_ctx: packed destination context data
4731 * @ce_info: context element description
4732 */
4733static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4734			       const struct ice_ctx_ele *ce_info)
4735{
4736	u64 src_qword, mask;
4737	__le64 dest_qword;
4738	u8 *from, *dest;
4739	u16 shift_width;
4740
4741	/* copy from the next struct field */
4742	from = src_ctx + ce_info->offset;
4743
4744	/* prepare the bits and mask */
4745	shift_width = ce_info->lsb % 8;
4746	mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
4747
4748	/* don't swizzle the bits until after the mask because the mask bits
4749	 * will be in a different bit position on big endian machines
4750	 */
4751	src_qword = *(u64 *)from;
4752	src_qword <<= shift_width;
4753	src_qword &= mask;
4754
4755	/* get the current bits from the target bit string */
4756	dest = dest_ctx + (ce_info->lsb / 8);
4757
4758	memcpy(&dest_qword, dest, sizeof(dest_qword));
4759
4760	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4761	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4762
4763	/* put it all back */
4764	memcpy(dest, &dest_qword, sizeof(dest_qword));
4765}
4766
4767/**
4768 * ice_set_ctx - set context bits in packed structure
4769 * @hw: pointer to the hardware structure
4770 * @src_ctx:  pointer to a generic non-packed context structure
4771 * @dest_ctx: pointer to memory for the packed structure
4772 * @ce_info: List of Rx context elements
4773 */
4774int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4775		const struct ice_ctx_ele *ce_info)
4776{
4777	int f;
4778
4779	for (f = 0; ce_info[f].width; f++) {
4780		/* We have to deal with each element of the FW response
4781		 * using the correct size so that we are correct regardless
4782		 * of the endianness of the machine.
4783		 */
4784		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4785			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4786				  f, ce_info[f].width, ce_info[f].size_of);
4787			continue;
4788		}
4789		switch (ce_info[f].size_of) {
4790		case sizeof(u8):
4791			ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
4792			break;
4793		case sizeof(u16):
4794			ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
4795			break;
4796		case sizeof(u32):
4797			ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
4798			break;
4799		case sizeof(u64):
4800			ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
4801			break;
4802		default:
4803			return -EINVAL;
4804		}
4805	}
4806
4807	return 0;
4808}
4809
4810/**
4811 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4812 * @hw: pointer to the HW struct
4813 * @vsi_handle: software VSI handle
4814 * @tc: TC number
4815 * @q_handle: software queue handle
4816 */
4817struct ice_q_ctx *
4818ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4819{
4820	struct ice_vsi_ctx *vsi;
4821	struct ice_q_ctx *q_ctx;
4822
4823	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4824	if (!vsi)
4825		return NULL;
4826	if (q_handle >= vsi->num_lan_q_entries[tc])
4827		return NULL;
4828	if (!vsi->lan_q_ctx[tc])
4829		return NULL;
4830	q_ctx = vsi->lan_q_ctx[tc];
4831	return &q_ctx[q_handle];
4832}
4833
4834/**
4835 * ice_ena_vsi_txq
4836 * @pi: port information structure
4837 * @vsi_handle: software VSI handle
4838 * @tc: TC number
4839 * @q_handle: software queue handle
4840 * @num_qgrps: Number of added queue groups
4841 * @buf: list of queue groups to be added
4842 * @buf_size: size of buffer for indirect command
4843 * @cd: pointer to command details structure or NULL
4844 *
4845 * This function adds one LAN queue
4846 */
4847int
4848ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4849		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4850		struct ice_sq_cd *cd)
4851{
4852	struct ice_aqc_txsched_elem_data node = { 0 };
4853	struct ice_sched_node *parent;
4854	struct ice_q_ctx *q_ctx;
4855	struct ice_hw *hw;
4856	int status;
4857
4858	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4859		return -EIO;
4860
4861	if (num_qgrps > 1 || buf->num_txqs > 1)
4862		return -ENOSPC;
4863
4864	hw = pi->hw;
4865
4866	if (!ice_is_vsi_valid(hw, vsi_handle))
4867		return -EINVAL;
4868
4869	mutex_lock(&pi->sched_lock);
4870
4871	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4872	if (!q_ctx) {
4873		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4874			  q_handle);
4875		status = -EINVAL;
4876		goto ena_txq_exit;
4877	}
4878
4879	/* find a parent node */
4880	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4881					    ICE_SCHED_NODE_OWNER_LAN);
4882	if (!parent) {
4883		status = -EINVAL;
4884		goto ena_txq_exit;
4885	}
4886
4887	buf->parent_teid = parent->info.node_teid;
4888	node.parent_teid = parent->info.node_teid;
4889	/* Mark that the values in the "generic" section as valid. The default
4890	 * value in the "generic" section is zero. This means that :
4891	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4892	 * - 0 priority among siblings, indicated by Bit 1-3.
4893	 * - WFQ, indicated by Bit 4.
4894	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4895	 * Bit 5-6.
4896	 * - Bit 7 is reserved.
4897	 * Without setting the generic section as valid in valid_sections, the
4898	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4899	 */
4900	buf->txqs[0].info.valid_sections =
4901		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4902		ICE_AQC_ELEM_VALID_EIR;
4903	buf->txqs[0].info.generic = 0;
4904	buf->txqs[0].info.cir_bw.bw_profile_idx =
4905		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4906	buf->txqs[0].info.cir_bw.bw_alloc =
4907		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4908	buf->txqs[0].info.eir_bw.bw_profile_idx =
4909		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4910	buf->txqs[0].info.eir_bw.bw_alloc =
4911		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4912
4913	/* add the LAN queue */
4914	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4915	if (status) {
4916		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4917			  le16_to_cpu(buf->txqs[0].txq_id),
4918			  hw->adminq.sq_last_status);
4919		goto ena_txq_exit;
4920	}
4921
4922	node.node_teid = buf->txqs[0].q_teid;
4923	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4924	q_ctx->q_handle = q_handle;
4925	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4926
4927	/* add a leaf node into scheduler tree queue layer */
4928	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4929	if (!status)
4930		status = ice_sched_replay_q_bw(pi, q_ctx);
4931
4932ena_txq_exit:
4933	mutex_unlock(&pi->sched_lock);
4934	return status;
4935}
4936
4937/**
4938 * ice_dis_vsi_txq
4939 * @pi: port information structure
4940 * @vsi_handle: software VSI handle
4941 * @tc: TC number
4942 * @num_queues: number of queues
4943 * @q_handles: pointer to software queue handle array
4944 * @q_ids: pointer to the q_id array
4945 * @q_teids: pointer to queue node teids
4946 * @rst_src: if called due to reset, specifies the reset source
4947 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4948 * @cd: pointer to command details structure or NULL
4949 *
4950 * This function removes queues and their corresponding nodes in SW DB
4951 */
4952int
4953ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4954		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4955		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4956		struct ice_sq_cd *cd)
4957{
4958	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4959	u16 i, buf_size = __struct_size(qg_list);
4960	struct ice_q_ctx *q_ctx;
4961	int status = -ENOENT;
4962	struct ice_hw *hw;
4963
4964	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4965		return -EIO;
4966
4967	hw = pi->hw;
4968
4969	if (!num_queues) {
4970		/* if queue is disabled already yet the disable queue command
4971		 * has to be sent to complete the VF reset, then call
4972		 * ice_aq_dis_lan_txq without any queue information
4973		 */
4974		if (rst_src)
4975			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4976						  vmvf_num, NULL);
4977		return -EIO;
4978	}
4979
4980	mutex_lock(&pi->sched_lock);
4981
4982	for (i = 0; i < num_queues; i++) {
4983		struct ice_sched_node *node;
4984
4985		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4986		if (!node)
4987			continue;
4988		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4989		if (!q_ctx) {
4990			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4991				  q_handles[i]);
4992			continue;
4993		}
4994		if (q_ctx->q_handle != q_handles[i]) {
4995			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4996				  q_ctx->q_handle, q_handles[i]);
4997			continue;
4998		}
4999		qg_list->parent_teid = node->info.parent_teid;
5000		qg_list->num_qs = 1;
5001		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
5002		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5003					    vmvf_num, cd);
5004
5005		if (status)
5006			break;
5007		ice_free_sched_node(pi, node);
5008		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5009		q_ctx->q_teid = ICE_INVAL_TEID;
5010	}
5011	mutex_unlock(&pi->sched_lock);
5012	return status;
5013}
5014
5015/**
5016 * ice_cfg_vsi_qs - configure the new/existing VSI queues
5017 * @pi: port information structure
5018 * @vsi_handle: software VSI handle
5019 * @tc_bitmap: TC bitmap
5020 * @maxqs: max queues array per TC
5021 * @owner: LAN or RDMA
5022 *
5023 * This function adds/updates the VSI queues per TC.
5024 */
5025static int
5026ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5027	       u16 *maxqs, u8 owner)
5028{
5029	int status = 0;
5030	u8 i;
5031
5032	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5033		return -EIO;
5034
5035	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5036		return -EINVAL;
5037
5038	mutex_lock(&pi->sched_lock);
5039
5040	ice_for_each_traffic_class(i) {
5041		/* configuration is possible only if TC node is present */
5042		if (!ice_sched_get_tc_node(pi, i))
5043			continue;
5044
5045		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5046					   ice_is_tc_ena(tc_bitmap, i));
5047		if (status)
5048			break;
5049	}
5050
5051	mutex_unlock(&pi->sched_lock);
5052	return status;
5053}
5054
5055/**
5056 * ice_cfg_vsi_lan - configure VSI LAN queues
5057 * @pi: port information structure
5058 * @vsi_handle: software VSI handle
5059 * @tc_bitmap: TC bitmap
5060 * @max_lanqs: max LAN queues array per TC
5061 *
5062 * This function adds/updates the VSI LAN queues per TC.
5063 */
5064int
5065ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5066		u16 *max_lanqs)
5067{
5068	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5069			      ICE_SCHED_NODE_OWNER_LAN);
5070}
5071
5072/**
5073 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5074 * @pi: port information structure
5075 * @vsi_handle: software VSI handle
5076 * @tc_bitmap: TC bitmap
5077 * @max_rdmaqs: max RDMA queues array per TC
5078 *
5079 * This function adds/updates the VSI RDMA queues per TC.
5080 */
5081int
5082ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5083		 u16 *max_rdmaqs)
5084{
5085	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5086			      ICE_SCHED_NODE_OWNER_RDMA);
5087}
5088
5089/**
5090 * ice_ena_vsi_rdma_qset
5091 * @pi: port information structure
5092 * @vsi_handle: software VSI handle
5093 * @tc: TC number
5094 * @rdma_qset: pointer to RDMA Qset
5095 * @num_qsets: number of RDMA Qsets
5096 * @qset_teid: pointer to Qset node TEIDs
5097 *
5098 * This function adds RDMA Qset
5099 */
5100int
5101ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5102		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5103{
5104	struct ice_aqc_txsched_elem_data node = { 0 };
5105	struct ice_aqc_add_rdma_qset_data *buf;
5106	struct ice_sched_node *parent;
5107	struct ice_hw *hw;
5108	u16 i, buf_size;
5109	int ret;
5110
5111	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5112		return -EIO;
5113	hw = pi->hw;
5114
5115	if (!ice_is_vsi_valid(hw, vsi_handle))
5116		return -EINVAL;
5117
5118	buf_size = struct_size(buf, rdma_qsets, num_qsets);
5119	buf = kzalloc(buf_size, GFP_KERNEL);
5120	if (!buf)
5121		return -ENOMEM;
5122	mutex_lock(&pi->sched_lock);
5123
5124	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5125					    ICE_SCHED_NODE_OWNER_RDMA);
5126	if (!parent) {
5127		ret = -EINVAL;
5128		goto rdma_error_exit;
5129	}
5130	buf->parent_teid = parent->info.node_teid;
5131	node.parent_teid = parent->info.node_teid;
5132
5133	buf->num_qsets = cpu_to_le16(num_qsets);
5134	for (i = 0; i < num_qsets; i++) {
5135		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5136		buf->rdma_qsets[i].info.valid_sections =
5137			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5138			ICE_AQC_ELEM_VALID_EIR;
5139		buf->rdma_qsets[i].info.generic = 0;
5140		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5141			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5142		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5143			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5144		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5145			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5146		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5147			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5148	}
5149	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5150	if (ret) {
5151		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5152		goto rdma_error_exit;
5153	}
5154	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5155	for (i = 0; i < num_qsets; i++) {
5156		node.node_teid = buf->rdma_qsets[i].qset_teid;
5157		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5158					 &node, NULL);
5159		if (ret)
5160			break;
5161		qset_teid[i] = le32_to_cpu(node.node_teid);
5162	}
5163rdma_error_exit:
5164	mutex_unlock(&pi->sched_lock);
5165	kfree(buf);
5166	return ret;
5167}
5168
5169/**
5170 * ice_dis_vsi_rdma_qset - free RDMA resources
5171 * @pi: port_info struct
5172 * @count: number of RDMA Qsets to free
5173 * @qset_teid: TEID of Qset node
5174 * @q_id: list of queue IDs being disabled
5175 */
5176int
5177ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5178		      u16 *q_id)
5179{
5180	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5181	u16 qg_size = __struct_size(qg_list);
5182	struct ice_hw *hw;
5183	int status = 0;
5184	int i;
5185
5186	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5187		return -EIO;
5188
5189	hw = pi->hw;
5190
5191	mutex_lock(&pi->sched_lock);
5192
5193	for (i = 0; i < count; i++) {
5194		struct ice_sched_node *node;
5195
5196		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5197		if (!node)
5198			continue;
5199
5200		qg_list->parent_teid = node->info.parent_teid;
5201		qg_list->num_qs = 1;
5202		qg_list->q_id[0] =
5203			cpu_to_le16(q_id[i] |
5204				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5205
5206		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5207					    ICE_NO_RESET, 0, NULL);
5208		if (status)
5209			break;
5210
5211		ice_free_sched_node(pi, node);
5212	}
5213
5214	mutex_unlock(&pi->sched_lock);
5215	return status;
5216}
5217
5218/**
5219 * ice_aq_get_cgu_abilities - get cgu abilities
5220 * @hw: pointer to the HW struct
5221 * @abilities: CGU abilities
5222 *
5223 * Get CGU abilities (0x0C61)
5224 * Return: 0 on success or negative value on failure.
5225 */
5226int
5227ice_aq_get_cgu_abilities(struct ice_hw *hw,
5228			 struct ice_aqc_get_cgu_abilities *abilities)
5229{
5230	struct ice_aq_desc desc;
5231
5232	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5233	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5234}
5235
5236/**
5237 * ice_aq_set_input_pin_cfg - set input pin config
5238 * @hw: pointer to the HW struct
5239 * @input_idx: Input index
5240 * @flags1: Input flags
5241 * @flags2: Input flags
5242 * @freq: Frequency in Hz
5243 * @phase_delay: Delay in ps
5244 *
5245 * Set CGU input config (0x0C62)
5246 * Return: 0 on success or negative value on failure.
5247 */
5248int
5249ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5250			 u32 freq, s32 phase_delay)
5251{
5252	struct ice_aqc_set_cgu_input_config *cmd;
5253	struct ice_aq_desc desc;
5254
5255	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5256	cmd = &desc.params.set_cgu_input_config;
5257	cmd->input_idx = input_idx;
5258	cmd->flags1 = flags1;
5259	cmd->flags2 = flags2;
5260	cmd->freq = cpu_to_le32(freq);
5261	cmd->phase_delay = cpu_to_le32(phase_delay);
5262
5263	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5264}
5265
5266/**
5267 * ice_aq_get_input_pin_cfg - get input pin config
5268 * @hw: pointer to the HW struct
5269 * @input_idx: Input index
5270 * @status: Pin status
5271 * @type: Pin type
5272 * @flags1: Input flags
5273 * @flags2: Input flags
5274 * @freq: Frequency in Hz
5275 * @phase_delay: Delay in ps
5276 *
5277 * Get CGU input config (0x0C63)
5278 * Return: 0 on success or negative value on failure.
5279 */
5280int
5281ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5282			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5283{
5284	struct ice_aqc_get_cgu_input_config *cmd;
5285	struct ice_aq_desc desc;
5286	int ret;
5287
5288	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5289	cmd = &desc.params.get_cgu_input_config;
5290	cmd->input_idx = input_idx;
5291
5292	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5293	if (!ret) {
5294		if (status)
5295			*status = cmd->status;
5296		if (type)
5297			*type = cmd->type;
5298		if (flags1)
5299			*flags1 = cmd->flags1;
5300		if (flags2)
5301			*flags2 = cmd->flags2;
5302		if (freq)
5303			*freq = le32_to_cpu(cmd->freq);
5304		if (phase_delay)
5305			*phase_delay = le32_to_cpu(cmd->phase_delay);
5306	}
5307
5308	return ret;
5309}
5310
5311/**
5312 * ice_aq_set_output_pin_cfg - set output pin config
5313 * @hw: pointer to the HW struct
5314 * @output_idx: Output index
5315 * @flags: Output flags
5316 * @src_sel: Index of DPLL block
5317 * @freq: Output frequency
5318 * @phase_delay: Output phase compensation
5319 *
5320 * Set CGU output config (0x0C64)
5321 * Return: 0 on success or negative value on failure.
5322 */
5323int
5324ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5325			  u8 src_sel, u32 freq, s32 phase_delay)
5326{
5327	struct ice_aqc_set_cgu_output_config *cmd;
5328	struct ice_aq_desc desc;
5329
5330	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5331	cmd = &desc.params.set_cgu_output_config;
5332	cmd->output_idx = output_idx;
5333	cmd->flags = flags;
5334	cmd->src_sel = src_sel;
5335	cmd->freq = cpu_to_le32(freq);
5336	cmd->phase_delay = cpu_to_le32(phase_delay);
5337
5338	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5339}
5340
5341/**
5342 * ice_aq_get_output_pin_cfg - get output pin config
5343 * @hw: pointer to the HW struct
5344 * @output_idx: Output index
5345 * @flags: Output flags
5346 * @src_sel: Internal DPLL source
5347 * @freq: Output frequency
5348 * @src_freq: Source frequency
5349 *
5350 * Get CGU output config (0x0C65)
5351 * Return: 0 on success or negative value on failure.
5352 */
5353int
5354ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5355			  u8 *src_sel, u32 *freq, u32 *src_freq)
5356{
5357	struct ice_aqc_get_cgu_output_config *cmd;
5358	struct ice_aq_desc desc;
5359	int ret;
5360
5361	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5362	cmd = &desc.params.get_cgu_output_config;
5363	cmd->output_idx = output_idx;
5364
5365	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5366	if (!ret) {
5367		if (flags)
5368			*flags = cmd->flags;
5369		if (src_sel)
5370			*src_sel = cmd->src_sel;
5371		if (freq)
5372			*freq = le32_to_cpu(cmd->freq);
5373		if (src_freq)
5374			*src_freq = le32_to_cpu(cmd->src_freq);
5375	}
5376
5377	return ret;
5378}
5379
5380/**
5381 * ice_aq_get_cgu_dpll_status - get dpll status
5382 * @hw: pointer to the HW struct
5383 * @dpll_num: DPLL index
5384 * @ref_state: Reference clock state
5385 * @config: current DPLL config
5386 * @dpll_state: current DPLL state
5387 * @phase_offset: Phase offset in ns
5388 * @eec_mode: EEC_mode
5389 *
5390 * Get CGU DPLL status (0x0C66)
5391 * Return: 0 on success or negative value on failure.
5392 */
5393int
5394ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5395			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5396			   u8 *eec_mode)
5397{
5398	struct ice_aqc_get_cgu_dpll_status *cmd;
5399	struct ice_aq_desc desc;
5400	int status;
5401
5402	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5403	cmd = &desc.params.get_cgu_dpll_status;
5404	cmd->dpll_num = dpll_num;
5405
5406	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5407	if (!status) {
5408		*ref_state = cmd->ref_state;
5409		*dpll_state = cmd->dpll_state;
5410		*config = cmd->config;
5411		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5412		*phase_offset <<= 32;
5413		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5414		*phase_offset = sign_extend64(*phase_offset, 47);
5415		*eec_mode = cmd->eec_mode;
5416	}
5417
5418	return status;
5419}
5420
5421/**
5422 * ice_aq_set_cgu_dpll_config - set dpll config
5423 * @hw: pointer to the HW struct
5424 * @dpll_num: DPLL index
5425 * @ref_state: Reference clock state
5426 * @config: DPLL config
5427 * @eec_mode: EEC mode
5428 *
5429 * Set CGU DPLL config (0x0C67)
5430 * Return: 0 on success or negative value on failure.
5431 */
5432int
5433ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5434			   u8 config, u8 eec_mode)
5435{
5436	struct ice_aqc_set_cgu_dpll_config *cmd;
5437	struct ice_aq_desc desc;
5438
5439	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5440	cmd = &desc.params.set_cgu_dpll_config;
5441	cmd->dpll_num = dpll_num;
5442	cmd->ref_state = ref_state;
5443	cmd->config = config;
5444	cmd->eec_mode = eec_mode;
5445
5446	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5447}
5448
5449/**
5450 * ice_aq_set_cgu_ref_prio - set input reference priority
5451 * @hw: pointer to the HW struct
5452 * @dpll_num: DPLL index
5453 * @ref_idx: Reference pin index
5454 * @ref_priority: Reference input priority
5455 *
5456 * Set CGU reference priority (0x0C68)
5457 * Return: 0 on success or negative value on failure.
5458 */
5459int
5460ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5461			u8 ref_priority)
5462{
5463	struct ice_aqc_set_cgu_ref_prio *cmd;
5464	struct ice_aq_desc desc;
5465
5466	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5467	cmd = &desc.params.set_cgu_ref_prio;
5468	cmd->dpll_num = dpll_num;
5469	cmd->ref_idx = ref_idx;
5470	cmd->ref_priority = ref_priority;
5471
5472	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5473}
5474
5475/**
5476 * ice_aq_get_cgu_ref_prio - get input reference priority
5477 * @hw: pointer to the HW struct
5478 * @dpll_num: DPLL index
5479 * @ref_idx: Reference pin index
5480 * @ref_prio: Reference input priority
5481 *
5482 * Get CGU reference priority (0x0C69)
5483 * Return: 0 on success or negative value on failure.
5484 */
5485int
5486ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5487			u8 *ref_prio)
5488{
5489	struct ice_aqc_get_cgu_ref_prio *cmd;
5490	struct ice_aq_desc desc;
5491	int status;
5492
5493	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5494	cmd = &desc.params.get_cgu_ref_prio;
5495	cmd->dpll_num = dpll_num;
5496	cmd->ref_idx = ref_idx;
5497
5498	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5499	if (!status)
5500		*ref_prio = cmd->ref_priority;
5501
5502	return status;
5503}
5504
5505/**
5506 * ice_aq_get_cgu_info - get cgu info
5507 * @hw: pointer to the HW struct
5508 * @cgu_id: CGU ID
5509 * @cgu_cfg_ver: CGU config version
5510 * @cgu_fw_ver: CGU firmware version
5511 *
5512 * Get CGU info (0x0C6A)
5513 * Return: 0 on success or negative value on failure.
5514 */
5515int
5516ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5517		    u32 *cgu_fw_ver)
5518{
5519	struct ice_aqc_get_cgu_info *cmd;
5520	struct ice_aq_desc desc;
5521	int status;
5522
5523	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5524	cmd = &desc.params.get_cgu_info;
5525
5526	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5527	if (!status) {
5528		*cgu_id = le32_to_cpu(cmd->cgu_id);
5529		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5530		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5531	}
5532
5533	return status;
5534}
5535
5536/**
5537 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5538 * @hw: pointer to the HW struct
5539 * @phy_output: PHY reference clock output pin
5540 * @enable: GPIO state to be applied
5541 * @freq: PHY output frequency
5542 *
5543 * Set phy recovered clock as reference (0x0630)
5544 * Return: 0 on success or negative value on failure.
5545 */
5546int
5547ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5548			   u32 *freq)
5549{
5550	struct ice_aqc_set_phy_rec_clk_out *cmd;
5551	struct ice_aq_desc desc;
5552	int status;
5553
5554	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5555	cmd = &desc.params.set_phy_rec_clk_out;
5556	cmd->phy_output = phy_output;
5557	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5558	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5559	cmd->freq = cpu_to_le32(*freq);
5560
5561	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5562	if (!status)
5563		*freq = le32_to_cpu(cmd->freq);
5564
5565	return status;
5566}
5567
5568/**
5569 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5570 * @hw: pointer to the HW struct
5571 * @phy_output: PHY reference clock output pin
5572 * @port_num: Port number
5573 * @flags: PHY flags
5574 * @node_handle: PHY output frequency
5575 *
5576 * Get PHY recovered clock output info (0x0631)
5577 * Return: 0 on success or negative value on failure.
5578 */
5579int
5580ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5581			   u8 *flags, u16 *node_handle)
5582{
5583	struct ice_aqc_get_phy_rec_clk_out *cmd;
5584	struct ice_aq_desc desc;
5585	int status;
5586
5587	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5588	cmd = &desc.params.get_phy_rec_clk_out;
5589	cmd->phy_output = *phy_output;
5590
5591	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5592	if (!status) {
5593		*phy_output = cmd->phy_output;
5594		if (port_num)
5595			*port_num = cmd->port_num;
5596		if (flags)
5597			*flags = cmd->flags;
5598		if (node_handle)
5599			*node_handle = le16_to_cpu(cmd->node_handle);
5600	}
5601
5602	return status;
5603}
5604
5605/**
5606 * ice_aq_get_sensor_reading
5607 * @hw: pointer to the HW struct
5608 * @data: pointer to data to be read from the sensor
5609 *
5610 * Get sensor reading (0x0632)
5611 */
5612int ice_aq_get_sensor_reading(struct ice_hw *hw,
5613			      struct ice_aqc_get_sensor_reading_resp *data)
5614{
5615	struct ice_aqc_get_sensor_reading *cmd;
5616	struct ice_aq_desc desc;
5617	int status;
5618
5619	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5620	cmd = &desc.params.get_sensor_reading;
5621#define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5622#define ICE_INTERNAL_TEMP_SENSOR	0
5623	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5624	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5625
5626	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5627	if (!status)
5628		memcpy(data, &desc.params.get_sensor_reading_resp,
5629		       sizeof(*data));
5630
5631	return status;
5632}
5633
5634/**
5635 * ice_replay_pre_init - replay pre initialization
5636 * @hw: pointer to the HW struct
5637 *
5638 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5639 */
5640static int ice_replay_pre_init(struct ice_hw *hw)
5641{
5642	struct ice_switch_info *sw = hw->switch_info;
5643	u8 i;
5644
5645	/* Delete old entries from replay filter list head if there is any */
5646	ice_rm_all_sw_replay_rule_info(hw);
5647	/* In start of replay, move entries into replay_rules list, it
5648	 * will allow adding rules entries back to filt_rules list,
5649	 * which is operational list.
5650	 */
5651	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5652		list_replace_init(&sw->recp_list[i].filt_rules,
5653				  &sw->recp_list[i].filt_replay_rules);
5654	ice_sched_replay_agg_vsi_preinit(hw);
5655
5656	return 0;
5657}
5658
5659/**
5660 * ice_replay_vsi - replay VSI configuration
5661 * @hw: pointer to the HW struct
5662 * @vsi_handle: driver VSI handle
5663 *
5664 * Restore all VSI configuration after reset. It is required to call this
5665 * function with main VSI first.
5666 */
5667int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5668{
5669	int status;
5670
5671	if (!ice_is_vsi_valid(hw, vsi_handle))
5672		return -EINVAL;
5673
5674	/* Replay pre-initialization if there is any */
5675	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5676		status = ice_replay_pre_init(hw);
5677		if (status)
5678			return status;
5679	}
5680	/* Replay per VSI all RSS configurations */
5681	status = ice_replay_rss_cfg(hw, vsi_handle);
5682	if (status)
5683		return status;
5684	/* Replay per VSI all filters */
5685	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5686	if (!status)
5687		status = ice_replay_vsi_agg(hw, vsi_handle);
5688	return status;
5689}
5690
5691/**
5692 * ice_replay_post - post replay configuration cleanup
5693 * @hw: pointer to the HW struct
5694 *
5695 * Post replay cleanup.
5696 */
5697void ice_replay_post(struct ice_hw *hw)
5698{
5699	/* Delete old entries from replay filter list head */
5700	ice_rm_all_sw_replay_rule_info(hw);
5701	ice_sched_replay_agg(hw);
5702}
5703
5704/**
5705 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5706 * @hw: ptr to the hardware info
5707 * @reg: offset of 64 bit HW register to read from
5708 * @prev_stat_loaded: bool to specify if previous stats are loaded
5709 * @prev_stat: ptr to previous loaded stat value
5710 * @cur_stat: ptr to current stat value
5711 */
5712void
5713ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5714		  u64 *prev_stat, u64 *cur_stat)
5715{
5716	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5717
5718	/* device stats are not reset at PFR, they likely will not be zeroed
5719	 * when the driver starts. Thus, save the value from the first read
5720	 * without adding to the statistic value so that we report stats which
5721	 * count up from zero.
5722	 */
5723	if (!prev_stat_loaded) {
5724		*prev_stat = new_data;
5725		return;
5726	}
5727
5728	/* Calculate the difference between the new and old values, and then
5729	 * add it to the software stat value.
5730	 */
5731	if (new_data >= *prev_stat)
5732		*cur_stat += new_data - *prev_stat;
5733	else
5734		/* to manage the potential roll-over */
5735		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5736
5737	/* Update the previously stored value to prepare for next read */
5738	*prev_stat = new_data;
5739}
5740
5741/**
5742 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5743 * @hw: ptr to the hardware info
5744 * @reg: offset of HW register to read from
5745 * @prev_stat_loaded: bool to specify if previous stats are loaded
5746 * @prev_stat: ptr to previous loaded stat value
5747 * @cur_stat: ptr to current stat value
5748 */
5749void
5750ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5751		  u64 *prev_stat, u64 *cur_stat)
5752{
5753	u32 new_data;
5754
5755	new_data = rd32(hw, reg);
5756
5757	/* device stats are not reset at PFR, they likely will not be zeroed
5758	 * when the driver starts. Thus, save the value from the first read
5759	 * without adding to the statistic value so that we report stats which
5760	 * count up from zero.
5761	 */
5762	if (!prev_stat_loaded) {
5763		*prev_stat = new_data;
5764		return;
5765	}
5766
5767	/* Calculate the difference between the new and old values, and then
5768	 * add it to the software stat value.
5769	 */
5770	if (new_data >= *prev_stat)
5771		*cur_stat += new_data - *prev_stat;
5772	else
5773		/* to manage the potential roll-over */
5774		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5775
5776	/* Update the previously stored value to prepare for next read */
5777	*prev_stat = new_data;
5778}
5779
5780/**
5781 * ice_sched_query_elem - query element information from HW
5782 * @hw: pointer to the HW struct
5783 * @node_teid: node TEID to be queried
5784 * @buf: buffer to element information
5785 *
5786 * This function queries HW element information
5787 */
5788int
5789ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5790		     struct ice_aqc_txsched_elem_data *buf)
5791{
5792	u16 buf_size, num_elem_ret = 0;
5793	int status;
5794
5795	buf_size = sizeof(*buf);
5796	memset(buf, 0, buf_size);
5797	buf->node_teid = cpu_to_le32(node_teid);
5798	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5799					  NULL);
5800	if (status || num_elem_ret != 1)
5801		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5802	return status;
5803}
5804
5805/**
5806 * ice_aq_read_i2c
5807 * @hw: pointer to the hw struct
5808 * @topo_addr: topology address for a device to communicate with
5809 * @bus_addr: 7-bit I2C bus address
5810 * @addr: I2C memory address (I2C offset) with up to 16 bits
5811 * @params: I2C parameters: bit [7] - Repeated start,
5812 *			    bits [6:5] data offset size,
5813 *			    bit [4] - I2C address type,
5814 *			    bits [3:0] - data size to read (0-16 bytes)
5815 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5816 * @cd: pointer to command details structure or NULL
5817 *
5818 * Read I2C (0x06E2)
5819 */
5820int
5821ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5822		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5823		struct ice_sq_cd *cd)
5824{
5825	struct ice_aq_desc desc = { 0 };
5826	struct ice_aqc_i2c *cmd;
5827	u8 data_size;
5828	int status;
5829
5830	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5831	cmd = &desc.params.read_write_i2c;
5832
5833	if (!data)
5834		return -EINVAL;
5835
5836	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5837
5838	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5839	cmd->topo_addr = topo_addr;
5840	cmd->i2c_params = params;
5841	cmd->i2c_addr = addr;
5842
5843	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5844	if (!status) {
5845		struct ice_aqc_read_i2c_resp *resp;
5846		u8 i;
5847
5848		resp = &desc.params.read_i2c_resp;
5849		for (i = 0; i < data_size; i++) {
5850			*data = resp->i2c_data[i];
5851			data++;
5852		}
5853	}
5854
5855	return status;
5856}
5857
5858/**
5859 * ice_aq_write_i2c
5860 * @hw: pointer to the hw struct
5861 * @topo_addr: topology address for a device to communicate with
5862 * @bus_addr: 7-bit I2C bus address
5863 * @addr: I2C memory address (I2C offset) with up to 16 bits
5864 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5865 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5866 * @cd: pointer to command details structure or NULL
5867 *
5868 * Write I2C (0x06E3)
5869 *
5870 * * Return:
5871 * * 0             - Successful write to the i2c device
5872 * * -EINVAL       - Data size greater than 4 bytes
5873 * * -EIO          - FW error
5874 */
5875int
5876ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5877		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5878		 struct ice_sq_cd *cd)
5879{
5880	struct ice_aq_desc desc = { 0 };
5881	struct ice_aqc_i2c *cmd;
5882	u8 data_size;
5883
5884	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5885	cmd = &desc.params.read_write_i2c;
5886
5887	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5888
5889	/* data_size limited to 4 */
5890	if (data_size > 4)
5891		return -EINVAL;
5892
5893	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5894	cmd->topo_addr = topo_addr;
5895	cmd->i2c_params = params;
5896	cmd->i2c_addr = addr;
5897
5898	memcpy(cmd->i2c_data, data, data_size);
5899
5900	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5901}
5902
5903/**
5904 * ice_aq_set_gpio
5905 * @hw: pointer to the hw struct
5906 * @gpio_ctrl_handle: GPIO controller node handle
5907 * @pin_idx: IO Number of the GPIO that needs to be set
5908 * @value: SW provide IO value to set in the LSB
5909 * @cd: pointer to command details structure or NULL
5910 *
5911 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5912 */
5913int
5914ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5915		struct ice_sq_cd *cd)
5916{
5917	struct ice_aqc_gpio *cmd;
5918	struct ice_aq_desc desc;
5919
5920	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5921	cmd = &desc.params.read_write_gpio;
5922	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5923	cmd->gpio_num = pin_idx;
5924	cmd->gpio_val = value ? 1 : 0;
5925
5926	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5927}
5928
5929/**
5930 * ice_aq_get_gpio
5931 * @hw: pointer to the hw struct
5932 * @gpio_ctrl_handle: GPIO controller node handle
5933 * @pin_idx: IO Number of the GPIO that needs to be set
5934 * @value: IO value read
5935 * @cd: pointer to command details structure or NULL
5936 *
5937 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5938 * the topology
5939 */
5940int
5941ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5942		bool *value, struct ice_sq_cd *cd)
5943{
5944	struct ice_aqc_gpio *cmd;
5945	struct ice_aq_desc desc;
5946	int status;
5947
5948	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5949	cmd = &desc.params.read_write_gpio;
5950	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5951	cmd->gpio_num = pin_idx;
5952
5953	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5954	if (status)
5955		return status;
5956
5957	*value = !!cmd->gpio_val;
5958	return 0;
5959}
5960
5961/**
5962 * ice_is_fw_api_min_ver
5963 * @hw: pointer to the hardware structure
5964 * @maj: major version
5965 * @min: minor version
5966 * @patch: patch version
5967 *
5968 * Checks if the firmware API is minimum version
5969 */
5970static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5971{
5972	if (hw->api_maj_ver == maj) {
5973		if (hw->api_min_ver > min)
5974			return true;
5975		if (hw->api_min_ver == min && hw->api_patch >= patch)
5976			return true;
5977	} else if (hw->api_maj_ver > maj) {
5978		return true;
5979	}
5980
5981	return false;
5982}
5983
5984/**
5985 * ice_fw_supports_link_override
5986 * @hw: pointer to the hardware structure
5987 *
5988 * Checks if the firmware supports link override
5989 */
5990bool ice_fw_supports_link_override(struct ice_hw *hw)
5991{
5992	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5993				     ICE_FW_API_LINK_OVERRIDE_MIN,
5994				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5995}
5996
5997/**
5998 * ice_get_link_default_override
5999 * @ldo: pointer to the link default override struct
6000 * @pi: pointer to the port info struct
6001 *
6002 * Gets the link default override for a port
6003 */
6004int
6005ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6006			      struct ice_port_info *pi)
6007{
6008	u16 i, tlv, tlv_len, tlv_start, buf, offset;
6009	struct ice_hw *hw = pi->hw;
6010	int status;
6011
6012	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6013					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6014	if (status) {
6015		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6016		return status;
6017	}
6018
6019	/* Each port has its own config; calculate for our port */
6020	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6021		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6022
6023	/* link options first */
6024	status = ice_read_sr_word(hw, tlv_start, &buf);
6025	if (status) {
6026		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6027		return status;
6028	}
6029	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
6030	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6031		ICE_LINK_OVERRIDE_PHY_CFG_S;
6032
6033	/* link PHY config */
6034	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6035	status = ice_read_sr_word(hw, offset, &buf);
6036	if (status) {
6037		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6038		return status;
6039	}
6040	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6041
6042	/* PHY types low */
6043	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6044	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6045		status = ice_read_sr_word(hw, (offset + i), &buf);
6046		if (status) {
6047			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6048			return status;
6049		}
6050		/* shift 16 bits at a time to fill 64 bits */
6051		ldo->phy_type_low |= ((u64)buf << (i * 16));
6052	}
6053
6054	/* PHY types high */
6055	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6056		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6057	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6058		status = ice_read_sr_word(hw, (offset + i), &buf);
6059		if (status) {
6060			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6061			return status;
6062		}
6063		/* shift 16 bits at a time to fill 64 bits */
6064		ldo->phy_type_high |= ((u64)buf << (i * 16));
6065	}
6066
6067	return status;
6068}
6069
6070/**
6071 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6072 * @caps: get PHY capability data
6073 */
6074bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6075{
6076	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6077	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6078				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
6079				       ICE_AQC_PHY_AN_EN_CLAUSE37))
6080		return true;
6081
6082	return false;
6083}
6084
6085/**
6086 * ice_aq_set_lldp_mib - Set the LLDP MIB
6087 * @hw: pointer to the HW struct
6088 * @mib_type: Local, Remote or both Local and Remote MIBs
6089 * @buf: pointer to the caller-supplied buffer to store the MIB block
6090 * @buf_size: size of the buffer (in bytes)
6091 * @cd: pointer to command details structure or NULL
6092 *
6093 * Set the LLDP MIB. (0x0A08)
6094 */
6095int
6096ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6097		    struct ice_sq_cd *cd)
6098{
6099	struct ice_aqc_lldp_set_local_mib *cmd;
6100	struct ice_aq_desc desc;
6101
6102	cmd = &desc.params.lldp_set_mib;
6103
6104	if (buf_size == 0 || !buf)
6105		return -EINVAL;
6106
6107	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6108
6109	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
6110	desc.datalen = cpu_to_le16(buf_size);
6111
6112	cmd->type = mib_type;
6113	cmd->length = cpu_to_le16(buf_size);
6114
6115	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6116}
6117
6118/**
6119 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6120 * @hw: pointer to HW struct
6121 */
6122bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6123{
6124	if (hw->mac_type != ICE_MAC_E810)
6125		return false;
6126
6127	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6128				     ICE_FW_API_LLDP_FLTR_MIN,
6129				     ICE_FW_API_LLDP_FLTR_PATCH);
6130}
6131
6132/**
6133 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6134 * @hw: pointer to HW struct
6135 * @vsi_num: absolute HW index for VSI
6136 * @add: boolean for if adding or removing a filter
6137 */
6138int
6139ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6140{
6141	struct ice_aqc_lldp_filter_ctrl *cmd;
6142	struct ice_aq_desc desc;
6143
6144	cmd = &desc.params.lldp_filter_ctrl;
6145
6146	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6147
6148	if (add)
6149		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6150	else
6151		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6152
6153	cmd->vsi_num = cpu_to_le16(vsi_num);
6154
6155	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6156}
6157
6158/**
6159 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6160 * @hw: pointer to HW struct
6161 */
6162int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6163{
6164	struct ice_aq_desc desc;
6165
6166	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6167
6168	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6169}
6170
6171/**
6172 * ice_fw_supports_report_dflt_cfg
6173 * @hw: pointer to the hardware structure
6174 *
6175 * Checks if the firmware supports report default configuration
6176 */
6177bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6178{
6179	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6180				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6181				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6182}
6183
6184/* each of the indexes into the following array match the speed of a return
6185 * value from the list of AQ returned speeds like the range:
6186 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6187 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6188 * array. The array is defined as 15 elements long because the link_speed
6189 * returned by the firmware is a 16 bit * value, but is indexed
6190 * by [fls(speed) - 1]
6191 */
6192static const u32 ice_aq_to_link_speed[] = {
6193	SPEED_10,	/* BIT(0) */
6194	SPEED_100,
6195	SPEED_1000,
6196	SPEED_2500,
6197	SPEED_5000,
6198	SPEED_10000,
6199	SPEED_20000,
6200	SPEED_25000,
6201	SPEED_40000,
6202	SPEED_50000,
6203	SPEED_100000,	/* BIT(10) */
6204	SPEED_200000,
6205};
6206
6207/**
6208 * ice_get_link_speed - get integer speed from table
6209 * @index: array index from fls(aq speed) - 1
6210 *
6211 * Returns: u32 value containing integer speed
6212 */
6213u32 ice_get_link_speed(u16 index)
6214{
6215	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6216		return 0;
6217
6218	return ice_aq_to_link_speed[index];
6219}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018-2023, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_sched.h"
   6#include "ice_adminq_cmd.h"
   7#include "ice_flow.h"
   8#include "ice_ptp_hw.h"
   9
  10#define ICE_PF_RESET_WAIT_COUNT	300
  11#define ICE_MAX_NETLIST_SIZE	10
  12
  13static const char * const ice_link_mode_str_low[] = {
  14	[0] = "100BASE_TX",
  15	[1] = "100M_SGMII",
  16	[2] = "1000BASE_T",
  17	[3] = "1000BASE_SX",
  18	[4] = "1000BASE_LX",
  19	[5] = "1000BASE_KX",
  20	[6] = "1G_SGMII",
  21	[7] = "2500BASE_T",
  22	[8] = "2500BASE_X",
  23	[9] = "2500BASE_KX",
  24	[10] = "5GBASE_T",
  25	[11] = "5GBASE_KR",
  26	[12] = "10GBASE_T",
  27	[13] = "10G_SFI_DA",
  28	[14] = "10GBASE_SR",
  29	[15] = "10GBASE_LR",
  30	[16] = "10GBASE_KR_CR1",
  31	[17] = "10G_SFI_AOC_ACC",
  32	[18] = "10G_SFI_C2C",
  33	[19] = "25GBASE_T",
  34	[20] = "25GBASE_CR",
  35	[21] = "25GBASE_CR_S",
  36	[22] = "25GBASE_CR1",
  37	[23] = "25GBASE_SR",
  38	[24] = "25GBASE_LR",
  39	[25] = "25GBASE_KR",
  40	[26] = "25GBASE_KR_S",
  41	[27] = "25GBASE_KR1",
  42	[28] = "25G_AUI_AOC_ACC",
  43	[29] = "25G_AUI_C2C",
  44	[30] = "40GBASE_CR4",
  45	[31] = "40GBASE_SR4",
  46	[32] = "40GBASE_LR4",
  47	[33] = "40GBASE_KR4",
  48	[34] = "40G_XLAUI_AOC_ACC",
  49	[35] = "40G_XLAUI",
  50	[36] = "50GBASE_CR2",
  51	[37] = "50GBASE_SR2",
  52	[38] = "50GBASE_LR2",
  53	[39] = "50GBASE_KR2",
  54	[40] = "50G_LAUI2_AOC_ACC",
  55	[41] = "50G_LAUI2",
  56	[42] = "50G_AUI2_AOC_ACC",
  57	[43] = "50G_AUI2",
  58	[44] = "50GBASE_CP",
  59	[45] = "50GBASE_SR",
  60	[46] = "50GBASE_FR",
  61	[47] = "50GBASE_LR",
  62	[48] = "50GBASE_KR_PAM4",
  63	[49] = "50G_AUI1_AOC_ACC",
  64	[50] = "50G_AUI1",
  65	[51] = "100GBASE_CR4",
  66	[52] = "100GBASE_SR4",
  67	[53] = "100GBASE_LR4",
  68	[54] = "100GBASE_KR4",
  69	[55] = "100G_CAUI4_AOC_ACC",
  70	[56] = "100G_CAUI4",
  71	[57] = "100G_AUI4_AOC_ACC",
  72	[58] = "100G_AUI4",
  73	[59] = "100GBASE_CR_PAM4",
  74	[60] = "100GBASE_KR_PAM4",
  75	[61] = "100GBASE_CP2",
  76	[62] = "100GBASE_SR2",
  77	[63] = "100GBASE_DR",
  78};
  79
  80static const char * const ice_link_mode_str_high[] = {
  81	[0] = "100GBASE_KR2_PAM4",
  82	[1] = "100G_CAUI2_AOC_ACC",
  83	[2] = "100G_CAUI2",
  84	[3] = "100G_AUI2_AOC_ACC",
  85	[4] = "100G_AUI2",
  86};
  87
  88/**
  89 * ice_dump_phy_type - helper function to dump phy_type
  90 * @hw: pointer to the HW structure
  91 * @low: 64 bit value for phy_type_low
  92 * @high: 64 bit value for phy_type_high
  93 * @prefix: prefix string to differentiate multiple dumps
  94 */
  95static void
  96ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
  97{
  98	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
  99
 100	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
 101		if (low & BIT_ULL(i))
 102			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
 103				  prefix, i, ice_link_mode_str_low[i]);
 104	}
 105
 106	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
 107
 108	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
 109		if (high & BIT_ULL(i))
 110			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
 111				  prefix, i, ice_link_mode_str_high[i]);
 112	}
 113}
 114
 115/**
 116 * ice_set_mac_type - Sets MAC type
 117 * @hw: pointer to the HW structure
 118 *
 119 * This function sets the MAC type of the adapter based on the
 120 * vendor ID and device ID stored in the HW structure.
 121 */
 122static int ice_set_mac_type(struct ice_hw *hw)
 123{
 124	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
 125		return -ENODEV;
 126
 127	switch (hw->device_id) {
 128	case ICE_DEV_ID_E810C_BACKPLANE:
 129	case ICE_DEV_ID_E810C_QSFP:
 130	case ICE_DEV_ID_E810C_SFP:
 131	case ICE_DEV_ID_E810_XXV_BACKPLANE:
 132	case ICE_DEV_ID_E810_XXV_QSFP:
 133	case ICE_DEV_ID_E810_XXV_SFP:
 134		hw->mac_type = ICE_MAC_E810;
 135		break;
 136	case ICE_DEV_ID_E823C_10G_BASE_T:
 137	case ICE_DEV_ID_E823C_BACKPLANE:
 138	case ICE_DEV_ID_E823C_QSFP:
 139	case ICE_DEV_ID_E823C_SFP:
 140	case ICE_DEV_ID_E823C_SGMII:
 141	case ICE_DEV_ID_E822C_10G_BASE_T:
 142	case ICE_DEV_ID_E822C_BACKPLANE:
 143	case ICE_DEV_ID_E822C_QSFP:
 144	case ICE_DEV_ID_E822C_SFP:
 145	case ICE_DEV_ID_E822C_SGMII:
 146	case ICE_DEV_ID_E822L_10G_BASE_T:
 147	case ICE_DEV_ID_E822L_BACKPLANE:
 148	case ICE_DEV_ID_E822L_SFP:
 149	case ICE_DEV_ID_E822L_SGMII:
 150	case ICE_DEV_ID_E823L_10G_BASE_T:
 151	case ICE_DEV_ID_E823L_1GBE:
 152	case ICE_DEV_ID_E823L_BACKPLANE:
 153	case ICE_DEV_ID_E823L_QSFP:
 154	case ICE_DEV_ID_E823L_SFP:
 155		hw->mac_type = ICE_MAC_GENERIC;
 156		break;
 157	case ICE_DEV_ID_E825C_BACKPLANE:
 158	case ICE_DEV_ID_E825C_QSFP:
 159	case ICE_DEV_ID_E825C_SFP:
 160	case ICE_DEV_ID_E825C_SGMII:
 161		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
 162		break;
 163	case ICE_DEV_ID_E830_BACKPLANE:
 164	case ICE_DEV_ID_E830_QSFP56:
 165	case ICE_DEV_ID_E830_SFP:
 166	case ICE_DEV_ID_E830_SFP_DD:
 
 
 
 
 
 
 167		hw->mac_type = ICE_MAC_E830;
 168		break;
 169	default:
 170		hw->mac_type = ICE_MAC_UNKNOWN;
 171		break;
 172	}
 173
 174	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
 175	return 0;
 176}
 177
 178/**
 179 * ice_is_generic_mac - check if device's mac_type is generic
 180 * @hw: pointer to the hardware structure
 181 *
 182 * Return: true if mac_type is generic (with SBQ support), false if not
 183 */
 184bool ice_is_generic_mac(struct ice_hw *hw)
 185{
 186	return (hw->mac_type == ICE_MAC_GENERIC ||
 187		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
 188}
 189
 190/**
 191 * ice_is_e810
 192 * @hw: pointer to the hardware structure
 193 *
 194 * returns true if the device is E810 based, false if not.
 195 */
 196bool ice_is_e810(struct ice_hw *hw)
 197{
 198	return hw->mac_type == ICE_MAC_E810;
 199}
 200
 201/**
 202 * ice_is_e810t
 203 * @hw: pointer to the hardware structure
 204 *
 205 * returns true if the device is E810T based, false if not.
 206 */
 207bool ice_is_e810t(struct ice_hw *hw)
 208{
 209	switch (hw->device_id) {
 210	case ICE_DEV_ID_E810C_SFP:
 211		switch (hw->subsystem_device_id) {
 212		case ICE_SUBDEV_ID_E810T:
 213		case ICE_SUBDEV_ID_E810T2:
 214		case ICE_SUBDEV_ID_E810T3:
 215		case ICE_SUBDEV_ID_E810T4:
 216		case ICE_SUBDEV_ID_E810T6:
 217		case ICE_SUBDEV_ID_E810T7:
 218			return true;
 219		}
 220		break;
 221	case ICE_DEV_ID_E810C_QSFP:
 222		switch (hw->subsystem_device_id) {
 223		case ICE_SUBDEV_ID_E810T2:
 224		case ICE_SUBDEV_ID_E810T3:
 225		case ICE_SUBDEV_ID_E810T5:
 226			return true;
 227		}
 228		break;
 229	default:
 230		break;
 231	}
 232
 233	return false;
 234}
 235
 236/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237 * ice_is_e823
 238 * @hw: pointer to the hardware structure
 239 *
 240 * returns true if the device is E823-L or E823-C based, false if not.
 241 */
 242bool ice_is_e823(struct ice_hw *hw)
 243{
 244	switch (hw->device_id) {
 245	case ICE_DEV_ID_E823L_BACKPLANE:
 246	case ICE_DEV_ID_E823L_SFP:
 247	case ICE_DEV_ID_E823L_10G_BASE_T:
 248	case ICE_DEV_ID_E823L_1GBE:
 249	case ICE_DEV_ID_E823L_QSFP:
 250	case ICE_DEV_ID_E823C_BACKPLANE:
 251	case ICE_DEV_ID_E823C_QSFP:
 252	case ICE_DEV_ID_E823C_SFP:
 253	case ICE_DEV_ID_E823C_10G_BASE_T:
 254	case ICE_DEV_ID_E823C_SGMII:
 255		return true;
 256	default:
 257		return false;
 258	}
 259}
 260
 261/**
 262 * ice_is_e825c - Check if a device is E825C family device
 263 * @hw: pointer to the hardware structure
 264 *
 265 * Return: true if the device is E825-C based, false if not.
 266 */
 267bool ice_is_e825c(struct ice_hw *hw)
 268{
 269	switch (hw->device_id) {
 270	case ICE_DEV_ID_E825C_BACKPLANE:
 271	case ICE_DEV_ID_E825C_QSFP:
 272	case ICE_DEV_ID_E825C_SFP:
 273	case ICE_DEV_ID_E825C_SGMII:
 274		return true;
 275	default:
 276		return false;
 277	}
 278}
 279
 280/**
 281 * ice_clear_pf_cfg - Clear PF configuration
 282 * @hw: pointer to the hardware structure
 283 *
 284 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
 285 * configuration, flow director filters, etc.).
 286 */
 287int ice_clear_pf_cfg(struct ice_hw *hw)
 288{
 289	struct ice_aq_desc desc;
 290
 291	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
 292
 293	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
 294}
 295
 296/**
 297 * ice_aq_manage_mac_read - manage MAC address read command
 298 * @hw: pointer to the HW struct
 299 * @buf: a virtual buffer to hold the manage MAC read response
 300 * @buf_size: Size of the virtual buffer
 301 * @cd: pointer to command details structure or NULL
 302 *
 303 * This function is used to return per PF station MAC address (0x0107).
 304 * NOTE: Upon successful completion of this command, MAC address information
 305 * is returned in user specified buffer. Please interpret user specified
 306 * buffer as "manage_mac_read" response.
 307 * Response such as various MAC addresses are stored in HW struct (port.mac)
 308 * ice_discover_dev_caps is expected to be called before this function is
 309 * called.
 310 */
 311static int
 312ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
 313		       struct ice_sq_cd *cd)
 314{
 315	struct ice_aqc_manage_mac_read_resp *resp;
 316	struct ice_aqc_manage_mac_read *cmd;
 317	struct ice_aq_desc desc;
 318	int status;
 319	u16 flags;
 320	u8 i;
 321
 322	cmd = &desc.params.mac_read;
 323
 324	if (buf_size < sizeof(*resp))
 325		return -EINVAL;
 326
 327	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
 328
 329	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 330	if (status)
 331		return status;
 332
 333	resp = buf;
 334	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
 335
 336	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
 337		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
 338		return -EIO;
 339	}
 340
 341	/* A single port can report up to two (LAN and WoL) addresses */
 342	for (i = 0; i < cmd->num_addr; i++)
 343		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 344			ether_addr_copy(hw->port_info->mac.lan_addr,
 345					resp[i].mac_addr);
 346			ether_addr_copy(hw->port_info->mac.perm_addr,
 347					resp[i].mac_addr);
 348			break;
 349		}
 350
 351	return 0;
 352}
 353
 354/**
 355 * ice_aq_get_phy_caps - returns PHY capabilities
 356 * @pi: port information structure
 357 * @qual_mods: report qualified modules
 358 * @report_mode: report mode capabilities
 359 * @pcaps: structure for PHY capabilities to be filled
 360 * @cd: pointer to command details structure or NULL
 361 *
 362 * Returns the various PHY capabilities supported on the Port (0x0600)
 363 */
 364int
 365ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 366		    struct ice_aqc_get_phy_caps_data *pcaps,
 367		    struct ice_sq_cd *cd)
 368{
 369	struct ice_aqc_get_phy_caps *cmd;
 370	u16 pcaps_size = sizeof(*pcaps);
 371	struct ice_aq_desc desc;
 372	const char *prefix;
 373	struct ice_hw *hw;
 374	int status;
 375
 376	cmd = &desc.params.get_phy;
 377
 378	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 379		return -EINVAL;
 380	hw = pi->hw;
 381
 382	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
 383	    !ice_fw_supports_report_dflt_cfg(hw))
 384		return -EINVAL;
 385
 386	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 387
 388	if (qual_mods)
 389		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 390
 391	cmd->param0 |= cpu_to_le16(report_mode);
 392	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
 393
 394	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
 395
 396	switch (report_mode) {
 397	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
 398		prefix = "phy_caps_media";
 399		break;
 400	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
 401		prefix = "phy_caps_no_media";
 402		break;
 403	case ICE_AQC_REPORT_ACTIVE_CFG:
 404		prefix = "phy_caps_active";
 405		break;
 406	case ICE_AQC_REPORT_DFLT_CFG:
 407		prefix = "phy_caps_default";
 408		break;
 409	default:
 410		prefix = "phy_caps_invalid";
 411	}
 412
 413	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
 414			  le64_to_cpu(pcaps->phy_type_high), prefix);
 415
 416	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
 417		  prefix, report_mode);
 418	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
 419	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
 420		  pcaps->low_power_ctrl_an);
 421	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
 422		  pcaps->eee_cap);
 423	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
 424		  pcaps->eeer_value);
 425	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
 426		  pcaps->link_fec_options);
 427	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
 428		  prefix, pcaps->module_compliance_enforcement);
 429	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
 430		  prefix, pcaps->extended_compliance_code);
 431	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
 432		  pcaps->module_type[0]);
 433	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
 434		  pcaps->module_type[1]);
 435	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
 436		  pcaps->module_type[2]);
 437
 438	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
 439		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 440		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
 441		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
 442		       sizeof(pi->phy.link_info.module_type));
 443	}
 444
 445	return status;
 446}
 447
 448/**
 449 * ice_aq_get_link_topo_handle - get link topology node return status
 450 * @pi: port information structure
 451 * @node_type: requested node type
 452 * @cd: pointer to command details structure or NULL
 453 *
 454 * Get link topology node return status for specified node type (0x06E0)
 455 *
 456 * Node type cage can be used to determine if cage is present. If AQC
 457 * returns error (ENOENT), then no cage present. If no cage present, then
 458 * connection type is backplane or BASE-T.
 459 */
 460static int
 461ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
 462			    struct ice_sq_cd *cd)
 463{
 464	struct ice_aqc_get_link_topo *cmd;
 465	struct ice_aq_desc desc;
 466
 467	cmd = &desc.params.get_link_topo;
 468
 469	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
 470
 471	cmd->addr.topo_params.node_type_ctx =
 472		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
 473		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
 474
 475	/* set node type */
 476	cmd->addr.topo_params.node_type_ctx |=
 477		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
 478
 479	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
 480}
 481
 482/**
 483 * ice_aq_get_netlist_node
 484 * @hw: pointer to the hw struct
 485 * @cmd: get_link_topo AQ structure
 486 * @node_part_number: output node part number if node found
 487 * @node_handle: output node handle parameter if node found
 488 *
 489 * Get netlist node handle.
 490 */
 491int
 492ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
 493			u8 *node_part_number, u16 *node_handle)
 494{
 495	struct ice_aq_desc desc;
 496
 497	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
 498	desc.params.get_link_topo = *cmd;
 499
 500	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
 501		return -EINTR;
 502
 503	if (node_handle)
 504		*node_handle =
 505			le16_to_cpu(desc.params.get_link_topo.addr.handle);
 506	if (node_part_number)
 507		*node_part_number = desc.params.get_link_topo.node_part_num;
 508
 509	return 0;
 510}
 511
 512/**
 513 * ice_find_netlist_node
 514 * @hw: pointer to the hw struct
 515 * @node_type_ctx: type of netlist node to look for
 
 516 * @node_part_number: node part number to look for
 517 * @node_handle: output parameter if node found - optional
 518 *
 519 * Scan the netlist for a node handle of the given node type and part number.
 520 *
 521 * If node_handle is non-NULL it will be modified on function exit. It is only
 522 * valid if the function returns zero, and should be ignored on any non-zero
 523 * return value.
 524 *
 525 * Returns: 0 if the node is found, -ENOENT if no handle was found, and
 526 * a negative error code on failure to access the AQ.
 
 
 527 */
 528static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx,
 529				 u8 node_part_number, u16 *node_handle)
 530{
 531	u8 idx;
 532
 533	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
 534		struct ice_aqc_get_link_topo cmd = {};
 535		u8 rec_node_part_number;
 536		int status;
 537
 538		cmd.addr.topo_params.node_type_ctx =
 539			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M,
 540				   node_type_ctx);
 541		cmd.addr.topo_params.index = idx;
 542
 543		status = ice_aq_get_netlist_node(hw, &cmd,
 544						 &rec_node_part_number,
 545						 node_handle);
 546		if (status)
 547			return status;
 548
 549		if (rec_node_part_number == node_part_number)
 550			return 0;
 551	}
 552
 553	return -ENOENT;
 554}
 555
 556/**
 557 * ice_is_media_cage_present
 558 * @pi: port information structure
 559 *
 560 * Returns true if media cage is present, else false. If no cage, then
 561 * media type is backplane or BASE-T.
 562 */
 563static bool ice_is_media_cage_present(struct ice_port_info *pi)
 564{
 565	/* Node type cage can be used to determine if cage is present. If AQC
 566	 * returns error (ENOENT), then no cage present. If no cage present then
 567	 * connection type is backplane or BASE-T.
 568	 */
 569	return !ice_aq_get_link_topo_handle(pi,
 570					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
 571					    NULL);
 572}
 573
 574/**
 575 * ice_get_media_type - Gets media type
 576 * @pi: port information structure
 577 */
 578static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 579{
 580	struct ice_link_status *hw_link_info;
 581
 582	if (!pi)
 583		return ICE_MEDIA_UNKNOWN;
 584
 585	hw_link_info = &pi->phy.link_info;
 586	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
 587		/* If more than one media type is selected, report unknown */
 588		return ICE_MEDIA_UNKNOWN;
 589
 590	if (hw_link_info->phy_type_low) {
 591		/* 1G SGMII is a special case where some DA cable PHYs
 592		 * may show this as an option when it really shouldn't
 593		 * be since SGMII is meant to be between a MAC and a PHY
 594		 * in a backplane. Try to detect this case and handle it
 595		 */
 596		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
 597		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 598		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
 599		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 600		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
 601			return ICE_MEDIA_DA;
 602
 603		switch (hw_link_info->phy_type_low) {
 604		case ICE_PHY_TYPE_LOW_1000BASE_SX:
 605		case ICE_PHY_TYPE_LOW_1000BASE_LX:
 606		case ICE_PHY_TYPE_LOW_10GBASE_SR:
 607		case ICE_PHY_TYPE_LOW_10GBASE_LR:
 608		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 609		case ICE_PHY_TYPE_LOW_25GBASE_SR:
 610		case ICE_PHY_TYPE_LOW_25GBASE_LR:
 611		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 612		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 613		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
 614		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
 615		case ICE_PHY_TYPE_LOW_50GBASE_SR:
 616		case ICE_PHY_TYPE_LOW_50GBASE_FR:
 617		case ICE_PHY_TYPE_LOW_50GBASE_LR:
 618		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
 619		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
 620		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
 621		case ICE_PHY_TYPE_LOW_100GBASE_DR:
 622		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
 623		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
 624		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
 625		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
 626		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
 627		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
 628		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
 629		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
 630			return ICE_MEDIA_FIBER;
 631		case ICE_PHY_TYPE_LOW_100BASE_TX:
 632		case ICE_PHY_TYPE_LOW_1000BASE_T:
 633		case ICE_PHY_TYPE_LOW_2500BASE_T:
 634		case ICE_PHY_TYPE_LOW_5GBASE_T:
 635		case ICE_PHY_TYPE_LOW_10GBASE_T:
 636		case ICE_PHY_TYPE_LOW_25GBASE_T:
 637			return ICE_MEDIA_BASET;
 638		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 639		case ICE_PHY_TYPE_LOW_25GBASE_CR:
 640		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 641		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 642		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 643		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
 644		case ICE_PHY_TYPE_LOW_50GBASE_CP:
 645		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
 646		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
 647		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
 648			return ICE_MEDIA_DA;
 649		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 650		case ICE_PHY_TYPE_LOW_40G_XLAUI:
 651		case ICE_PHY_TYPE_LOW_50G_LAUI2:
 652		case ICE_PHY_TYPE_LOW_50G_AUI2:
 653		case ICE_PHY_TYPE_LOW_50G_AUI1:
 654		case ICE_PHY_TYPE_LOW_100G_AUI4:
 655		case ICE_PHY_TYPE_LOW_100G_CAUI4:
 656			if (ice_is_media_cage_present(pi))
 657				return ICE_MEDIA_DA;
 658			fallthrough;
 659		case ICE_PHY_TYPE_LOW_1000BASE_KX:
 660		case ICE_PHY_TYPE_LOW_2500BASE_KX:
 661		case ICE_PHY_TYPE_LOW_2500BASE_X:
 662		case ICE_PHY_TYPE_LOW_5GBASE_KR:
 663		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 664		case ICE_PHY_TYPE_LOW_25GBASE_KR:
 665		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 666		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 667		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 668		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
 669		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
 670		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
 671		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
 672			return ICE_MEDIA_BACKPLANE;
 673		}
 674	} else {
 675		switch (hw_link_info->phy_type_high) {
 676		case ICE_PHY_TYPE_HIGH_100G_AUI2:
 677		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
 678			if (ice_is_media_cage_present(pi))
 679				return ICE_MEDIA_DA;
 680			fallthrough;
 681		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
 682			return ICE_MEDIA_BACKPLANE;
 683		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
 684		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
 685			return ICE_MEDIA_FIBER;
 686		}
 687	}
 688	return ICE_MEDIA_UNKNOWN;
 689}
 690
 691/**
 692 * ice_get_link_status_datalen
 693 * @hw: pointer to the HW struct
 694 *
 695 * Returns datalength for the Get Link Status AQ command, which is bigger for
 696 * newer adapter families handled by ice driver.
 697 */
 698static u16 ice_get_link_status_datalen(struct ice_hw *hw)
 699{
 700	switch (hw->mac_type) {
 701	case ICE_MAC_E830:
 702		return ICE_AQC_LS_DATA_SIZE_V2;
 703	case ICE_MAC_E810:
 704	default:
 705		return ICE_AQC_LS_DATA_SIZE_V1;
 706	}
 707}
 708
 709/**
 710 * ice_aq_get_link_info
 711 * @pi: port information structure
 712 * @ena_lse: enable/disable LinkStatusEvent reporting
 713 * @link: pointer to link status structure - optional
 714 * @cd: pointer to command details structure or NULL
 715 *
 716 * Get Link Status (0x607). Returns the link status of the adapter.
 717 */
 718int
 719ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 720		     struct ice_link_status *link, struct ice_sq_cd *cd)
 721{
 722	struct ice_aqc_get_link_status_data link_data = { 0 };
 723	struct ice_aqc_get_link_status *resp;
 724	struct ice_link_status *li_old, *li;
 725	enum ice_media_type *hw_media_type;
 726	struct ice_fc_info *hw_fc_info;
 727	bool tx_pause, rx_pause;
 728	struct ice_aq_desc desc;
 729	struct ice_hw *hw;
 730	u16 cmd_flags;
 731	int status;
 732
 733	if (!pi)
 734		return -EINVAL;
 735	hw = pi->hw;
 736	li_old = &pi->phy.link_info_old;
 737	hw_media_type = &pi->phy.media_type;
 738	li = &pi->phy.link_info;
 739	hw_fc_info = &pi->fc;
 740
 741	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 742	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 743	resp = &desc.params.get_link_status;
 744	resp->cmd_flags = cpu_to_le16(cmd_flags);
 745	resp->lport_num = pi->lport;
 746
 747	status = ice_aq_send_cmd(hw, &desc, &link_data,
 748				 ice_get_link_status_datalen(hw), cd);
 749	if (status)
 750		return status;
 751
 752	/* save off old link status information */
 753	*li_old = *li;
 754
 755	/* update current link status information */
 756	li->link_speed = le16_to_cpu(link_data.link_speed);
 757	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 758	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
 759	*hw_media_type = ice_get_media_type(pi);
 760	li->link_info = link_data.link_info;
 761	li->link_cfg_err = link_data.link_cfg_err;
 762	li->an_info = link_data.an_info;
 763	li->ext_info = link_data.ext_info;
 764	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 765	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
 766	li->topo_media_conflict = link_data.topo_media_conflict;
 767	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
 768				      ICE_AQ_CFG_PACING_TYPE_M);
 769
 770	/* update fc info */
 771	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 772	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 773	if (tx_pause && rx_pause)
 774		hw_fc_info->current_mode = ICE_FC_FULL;
 775	else if (tx_pause)
 776		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 777	else if (rx_pause)
 778		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 779	else
 780		hw_fc_info->current_mode = ICE_FC_NONE;
 781
 782	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 783
 784	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
 785	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
 786	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
 787		  (unsigned long long)li->phy_type_low);
 788	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
 789		  (unsigned long long)li->phy_type_high);
 790	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
 791	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
 792	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
 793	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
 794	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
 795	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
 796	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
 797	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
 798		  li->max_frame_size);
 799	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
 800
 801	/* save link status information */
 802	if (link)
 803		*link = *li;
 804
 805	/* flag cleared so calling functions don't call AQ again */
 806	pi->phy.get_link_info = false;
 807
 808	return 0;
 809}
 810
 811/**
 812 * ice_fill_tx_timer_and_fc_thresh
 813 * @hw: pointer to the HW struct
 814 * @cmd: pointer to MAC cfg structure
 815 *
 816 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
 817 * descriptor
 818 */
 819static void
 820ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
 821				struct ice_aqc_set_mac_cfg *cmd)
 822{
 823	u32 val, fc_thres_m;
 824
 825	/* We read back the transmit timer and FC threshold value of
 826	 * LFC. Thus, we will use index =
 827	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
 828	 *
 829	 * Also, because we are operating on transmit timer and FC
 830	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
 831	 */
 832#define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
 833#define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
 834
 835	if (hw->mac_type == ICE_MAC_E830) {
 836		/* Retrieve the transmit timer */
 837		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
 838		cmd->tx_tmr_value =
 839			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
 840
 841		/* Retrieve the fc threshold */
 842		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
 843		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
 844	} else {
 845		/* Retrieve the transmit timer */
 846		val = rd32(hw,
 847			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
 848		cmd->tx_tmr_value =
 849			le16_encode_bits(val,
 850					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
 851
 852		/* Retrieve the fc threshold */
 853		val = rd32(hw,
 854			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
 855		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
 856	}
 857	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
 858}
 859
 860/**
 861 * ice_aq_set_mac_cfg
 862 * @hw: pointer to the HW struct
 863 * @max_frame_size: Maximum Frame Size to be supported
 864 * @cd: pointer to command details structure or NULL
 865 *
 866 * Set MAC configuration (0x0603)
 867 */
 868int
 869ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
 870{
 871	struct ice_aqc_set_mac_cfg *cmd;
 872	struct ice_aq_desc desc;
 873
 874	cmd = &desc.params.set_mac_cfg;
 875
 876	if (max_frame_size == 0)
 877		return -EINVAL;
 878
 879	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
 880
 881	cmd->max_frame_size = cpu_to_le16(max_frame_size);
 882
 883	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
 884
 885	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
 886}
 887
 888/**
 889 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 890 * @hw: pointer to the HW struct
 891 */
 892static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 893{
 894	struct ice_switch_info *sw;
 895	int status;
 896
 897	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 898				       sizeof(*hw->switch_info), GFP_KERNEL);
 899	sw = hw->switch_info;
 900
 901	if (!sw)
 902		return -ENOMEM;
 903
 904	INIT_LIST_HEAD(&sw->vsi_list_map_head);
 905	sw->prof_res_bm_init = 0;
 906
 
 
 
 907	status = ice_init_def_sw_recp(hw);
 908	if (status) {
 909		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
 910		return status;
 911	}
 912	return 0;
 913}
 914
 915/**
 916 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 917 * @hw: pointer to the HW struct
 918 */
 919static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 920{
 921	struct ice_switch_info *sw = hw->switch_info;
 922	struct ice_vsi_list_map_info *v_pos_map;
 923	struct ice_vsi_list_map_info *v_tmp_map;
 924	struct ice_sw_recipe *recps;
 925	u8 i;
 926
 927	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 928				 list_entry) {
 929		list_del(&v_pos_map->list_entry);
 930		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 931	}
 932	recps = sw->recp_list;
 933	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
 934		struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
 935
 936		recps[i].root_rid = i;
 937		list_for_each_entry_safe(rg_entry, tmprg_entry,
 938					 &recps[i].rg_list, l_entry) {
 939			list_del(&rg_entry->l_entry);
 940			devm_kfree(ice_hw_to_dev(hw), rg_entry);
 941		}
 942
 943		if (recps[i].adv_rule) {
 944			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
 945			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
 946
 947			mutex_destroy(&recps[i].filt_rule_lock);
 948			list_for_each_entry_safe(lst_itr, tmp_entry,
 949						 &recps[i].filt_rules,
 950						 list_entry) {
 951				list_del(&lst_itr->list_entry);
 952				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
 953				devm_kfree(ice_hw_to_dev(hw), lst_itr);
 954			}
 955		} else {
 956			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
 957
 958			mutex_destroy(&recps[i].filt_rule_lock);
 959			list_for_each_entry_safe(lst_itr, tmp_entry,
 960						 &recps[i].filt_rules,
 961						 list_entry) {
 962				list_del(&lst_itr->list_entry);
 963				devm_kfree(ice_hw_to_dev(hw), lst_itr);
 964			}
 965		}
 966		devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
 967	}
 968	ice_rm_all_sw_replay_rule_info(hw);
 969	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
 970	devm_kfree(ice_hw_to_dev(hw), sw);
 971}
 972
 973/**
 974 * ice_get_itr_intrl_gran
 975 * @hw: pointer to the HW struct
 976 *
 977 * Determines the ITR/INTRL granularities based on the maximum aggregate
 978 * bandwidth according to the device's configuration during power-on.
 979 */
 980static void ice_get_itr_intrl_gran(struct ice_hw *hw)
 981{
 982	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
 983				  rd32(hw, GL_PWR_MODE_CTL));
 984
 985	switch (max_agg_bw) {
 986	case ICE_MAX_AGG_BW_200G:
 987	case ICE_MAX_AGG_BW_100G:
 988	case ICE_MAX_AGG_BW_50G:
 989		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
 990		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
 991		break;
 992	case ICE_MAX_AGG_BW_25G:
 993		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
 994		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
 995		break;
 996	}
 997}
 998
 999/**
1000 * ice_init_hw - main hardware initialization routine
1001 * @hw: pointer to the hardware structure
1002 */
1003int ice_init_hw(struct ice_hw *hw)
1004{
1005	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1006	void *mac_buf __free(kfree) = NULL;
1007	u16 mac_buf_len;
1008	int status;
1009
1010	/* Set MAC type based on DeviceID */
1011	status = ice_set_mac_type(hw);
1012	if (status)
1013		return status;
1014
1015	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1016
1017	status = ice_reset(hw, ICE_RESET_PFR);
1018	if (status)
1019		return status;
1020
1021	ice_get_itr_intrl_gran(hw);
1022
1023	status = ice_create_all_ctrlq(hw);
1024	if (status)
1025		goto err_unroll_cqinit;
1026
1027	status = ice_fwlog_init(hw);
1028	if (status)
1029		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1030			  status);
1031
1032	status = ice_clear_pf_cfg(hw);
1033	if (status)
1034		goto err_unroll_cqinit;
1035
1036	/* Set bit to enable Flow Director filters */
1037	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1038	INIT_LIST_HEAD(&hw->fdir_list_head);
1039
1040	ice_clear_pxe_mode(hw);
1041
1042	status = ice_init_nvm(hw);
1043	if (status)
1044		goto err_unroll_cqinit;
1045
1046	status = ice_get_caps(hw);
1047	if (status)
1048		goto err_unroll_cqinit;
1049
1050	if (!hw->port_info)
1051		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1052					     sizeof(*hw->port_info),
1053					     GFP_KERNEL);
1054	if (!hw->port_info) {
1055		status = -ENOMEM;
1056		goto err_unroll_cqinit;
1057	}
1058
 
1059	/* set the back pointer to HW */
1060	hw->port_info->hw = hw;
1061
1062	/* Initialize port_info struct with switch configuration data */
1063	status = ice_get_initial_sw_cfg(hw);
1064	if (status)
1065		goto err_unroll_alloc;
1066
1067	hw->evb_veb = true;
1068
1069	/* init xarray for identifying scheduling nodes uniquely */
1070	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1071
1072	/* Query the allocated resources for Tx scheduler */
1073	status = ice_sched_query_res_alloc(hw);
1074	if (status) {
1075		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1076		goto err_unroll_alloc;
1077	}
1078	ice_sched_get_psm_clk_freq(hw);
1079
1080	/* Initialize port_info struct with scheduler data */
1081	status = ice_sched_init_port(hw->port_info);
1082	if (status)
1083		goto err_unroll_sched;
1084
1085	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1086	if (!pcaps) {
1087		status = -ENOMEM;
1088		goto err_unroll_sched;
1089	}
1090
1091	/* Initialize port_info struct with PHY capabilities */
1092	status = ice_aq_get_phy_caps(hw->port_info, false,
1093				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1094				     NULL);
1095	if (status)
1096		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1097			 status);
1098
1099	/* Initialize port_info struct with link information */
1100	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1101	if (status)
1102		goto err_unroll_sched;
1103
1104	/* need a valid SW entry point to build a Tx tree */
1105	if (!hw->sw_entry_point_layer) {
1106		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1107		status = -EIO;
1108		goto err_unroll_sched;
1109	}
1110	INIT_LIST_HEAD(&hw->agg_list);
1111	/* Initialize max burst size */
1112	if (!hw->max_burst_size)
1113		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1114
1115	status = ice_init_fltr_mgmt_struct(hw);
1116	if (status)
1117		goto err_unroll_sched;
1118
1119	/* Get MAC information */
1120	/* A single port can report up to two (LAN and WoL) addresses */
1121	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1122			  GFP_KERNEL);
1123	if (!mac_buf) {
1124		status = -ENOMEM;
1125		goto err_unroll_fltr_mgmt_struct;
1126	}
1127
1128	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1129	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1130
1131	if (status)
1132		goto err_unroll_fltr_mgmt_struct;
1133	/* enable jumbo frame support at MAC level */
1134	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1135	if (status)
1136		goto err_unroll_fltr_mgmt_struct;
1137	/* Obtain counter base index which would be used by flow director */
1138	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1139	if (status)
1140		goto err_unroll_fltr_mgmt_struct;
1141	status = ice_init_hw_tbls(hw);
1142	if (status)
1143		goto err_unroll_fltr_mgmt_struct;
1144	mutex_init(&hw->tnl_lock);
 
 
1145	return 0;
1146
1147err_unroll_fltr_mgmt_struct:
1148	ice_cleanup_fltr_mgmt_struct(hw);
1149err_unroll_sched:
1150	ice_sched_cleanup_all(hw);
1151err_unroll_alloc:
1152	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1153err_unroll_cqinit:
1154	ice_destroy_all_ctrlq(hw);
1155	return status;
1156}
1157
1158/**
1159 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1160 * @hw: pointer to the hardware structure
1161 *
1162 * This should be called only during nominal operation, not as a result of
1163 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1164 * applicable initializations if it fails for any reason.
1165 */
1166void ice_deinit_hw(struct ice_hw *hw)
1167{
1168	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1169	ice_cleanup_fltr_mgmt_struct(hw);
1170
1171	ice_sched_cleanup_all(hw);
1172	ice_sched_clear_agg(hw);
1173	ice_free_seg(hw);
1174	ice_free_hw_tbls(hw);
1175	mutex_destroy(&hw->tnl_lock);
1176
1177	ice_fwlog_deinit(hw);
1178	ice_destroy_all_ctrlq(hw);
1179
1180	/* Clear VSI contexts if not already cleared */
1181	ice_clear_all_vsi_ctx(hw);
1182}
1183
1184/**
1185 * ice_check_reset - Check to see if a global reset is complete
1186 * @hw: pointer to the hardware structure
1187 */
1188int ice_check_reset(struct ice_hw *hw)
1189{
1190	u32 cnt, reg = 0, grst_timeout, uld_mask;
1191
1192	/* Poll for Device Active state in case a recent CORER, GLOBR,
1193	 * or EMPR has occurred. The grst delay value is in 100ms units.
1194	 * Add 1sec for outstanding AQ commands that can take a long time.
1195	 */
1196	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1197				 rd32(hw, GLGEN_RSTCTL)) + 10;
1198
1199	for (cnt = 0; cnt < grst_timeout; cnt++) {
1200		mdelay(100);
1201		reg = rd32(hw, GLGEN_RSTAT);
1202		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1203			break;
1204	}
1205
1206	if (cnt == grst_timeout) {
1207		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1208		return -EIO;
1209	}
1210
1211#define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1212				 GLNVM_ULD_PCIER_DONE_1_M |\
1213				 GLNVM_ULD_CORER_DONE_M |\
1214				 GLNVM_ULD_GLOBR_DONE_M |\
1215				 GLNVM_ULD_POR_DONE_M |\
1216				 GLNVM_ULD_POR_DONE_1_M |\
1217				 GLNVM_ULD_PCIER_DONE_2_M)
1218
1219	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1220					  GLNVM_ULD_PE_DONE_M : 0);
1221
1222	/* Device is Active; check Global Reset processes are done */
1223	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1224		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1225		if (reg == uld_mask) {
1226			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1227			break;
1228		}
1229		mdelay(10);
1230	}
1231
1232	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1233		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1234			  reg);
1235		return -EIO;
1236	}
1237
1238	return 0;
1239}
1240
1241/**
1242 * ice_pf_reset - Reset the PF
1243 * @hw: pointer to the hardware structure
1244 *
1245 * If a global reset has been triggered, this function checks
1246 * for its completion and then issues the PF reset
1247 */
1248static int ice_pf_reset(struct ice_hw *hw)
1249{
1250	u32 cnt, reg;
1251
1252	/* If at function entry a global reset was already in progress, i.e.
1253	 * state is not 'device active' or any of the reset done bits are not
1254	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1255	 * global reset is done.
1256	 */
1257	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1258	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1259		/* poll on global reset currently in progress until done */
1260		if (ice_check_reset(hw))
1261			return -EIO;
1262
1263		return 0;
1264	}
1265
1266	/* Reset the PF */
1267	reg = rd32(hw, PFGEN_CTRL);
1268
1269	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1270
1271	/* Wait for the PFR to complete. The wait time is the global config lock
1272	 * timeout plus the PFR timeout which will account for a possible reset
1273	 * that is occurring during a download package operation.
1274	 */
1275	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1276	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1277		reg = rd32(hw, PFGEN_CTRL);
1278		if (!(reg & PFGEN_CTRL_PFSWR_M))
1279			break;
1280
1281		mdelay(1);
1282	}
1283
1284	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1285		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1286		return -EIO;
1287	}
1288
1289	return 0;
1290}
1291
1292/**
1293 * ice_reset - Perform different types of reset
1294 * @hw: pointer to the hardware structure
1295 * @req: reset request
1296 *
1297 * This function triggers a reset as specified by the req parameter.
1298 *
1299 * Note:
1300 * If anything other than a PF reset is triggered, PXE mode is restored.
1301 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1302 * interface has been restored in the rebuild flow.
1303 */
1304int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1305{
1306	u32 val = 0;
1307
1308	switch (req) {
1309	case ICE_RESET_PFR:
1310		return ice_pf_reset(hw);
1311	case ICE_RESET_CORER:
1312		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1313		val = GLGEN_RTRIG_CORER_M;
1314		break;
1315	case ICE_RESET_GLOBR:
1316		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1317		val = GLGEN_RTRIG_GLOBR_M;
1318		break;
1319	default:
1320		return -EINVAL;
1321	}
1322
1323	val |= rd32(hw, GLGEN_RTRIG);
1324	wr32(hw, GLGEN_RTRIG, val);
1325	ice_flush(hw);
1326
1327	/* wait for the FW to be ready */
1328	return ice_check_reset(hw);
1329}
1330
1331/**
1332 * ice_copy_rxq_ctx_to_hw
1333 * @hw: pointer to the hardware structure
1334 * @ice_rxq_ctx: pointer to the rxq context
1335 * @rxq_index: the index of the Rx queue
1336 *
1337 * Copies rxq context from dense structure to HW register space
1338 */
1339static int
1340ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1341{
1342	u8 i;
1343
1344	if (!ice_rxq_ctx)
1345		return -EINVAL;
1346
1347	if (rxq_index > QRX_CTRL_MAX_INDEX)
1348		return -EINVAL;
1349
1350	/* Copy each dword separately to HW */
1351	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1352		wr32(hw, QRX_CONTEXT(i, rxq_index),
1353		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1354
1355		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1356			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1357	}
1358
1359	return 0;
1360}
1361
1362/* LAN Rx Queue Context */
1363static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1364	/* Field		Width	LSB */
1365	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1366	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1367	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1368	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1369	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1370	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1371	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1372	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1373	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1374	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1375	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1376	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1377	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1378	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1379	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1380	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1381	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1382	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1383	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1384	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1385	{ 0 }
1386};
1387
1388/**
1389 * ice_write_rxq_ctx
1390 * @hw: pointer to the hardware structure
1391 * @rlan_ctx: pointer to the rxq context
1392 * @rxq_index: the index of the Rx queue
1393 *
1394 * Converts rxq context from sparse to dense structure and then writes
1395 * it to HW register space and enables the hardware to prefetch descriptors
1396 * instead of only fetching them on demand
1397 */
1398int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1399		      u32 rxq_index)
1400{
1401	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1402
1403	if (!rlan_ctx)
1404		return -EINVAL;
1405
1406	rlan_ctx->prefena = 1;
1407
1408	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1409	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1410}
1411
1412/* LAN Tx Queue Context */
1413const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1414				    /* Field			Width	LSB */
1415	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1416	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1417	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1418	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1419	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1420	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1421	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1422	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1423	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1424	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1425	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1426	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1427	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1428	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1429	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1430	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1431	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1432	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1433	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1434	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1435	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1436	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1437	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1438	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1439	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1440	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1441	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1442	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1443	{ 0 }
1444};
1445
1446/* Sideband Queue command wrappers */
1447
1448/**
1449 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1450 * @hw: pointer to the HW struct
1451 * @desc: descriptor describing the command
1452 * @buf: buffer to use for indirect commands (NULL for direct commands)
1453 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1454 * @cd: pointer to command details structure
1455 */
1456static int
1457ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1458		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1459{
1460	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1461			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1462}
1463
1464/**
1465 * ice_sbq_rw_reg - Fill Sideband Queue command
1466 * @hw: pointer to the HW struct
1467 * @in: message info to be filled in descriptor
 
1468 */
1469int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1470{
1471	struct ice_sbq_cmd_desc desc = {0};
1472	struct ice_sbq_msg_req msg = {0};
1473	u16 msg_len;
1474	int status;
1475
1476	msg_len = sizeof(msg);
1477
1478	msg.dest_dev = in->dest_dev;
1479	msg.opcode = in->opcode;
1480	msg.flags = ICE_SBQ_MSG_FLAGS;
1481	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1482	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1483	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1484
1485	if (in->opcode)
1486		msg.data = cpu_to_le32(in->data);
1487	else
1488		/* data read comes back in completion, so shorten the struct by
1489		 * sizeof(msg.data)
1490		 */
1491		msg_len -= sizeof(msg.data);
1492
1493	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1494	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1495	desc.param0.cmd_len = cpu_to_le16(msg_len);
1496	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1497	if (!status && !in->opcode)
1498		in->data = le32_to_cpu
1499			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1500	return status;
1501}
1502
1503/* FW Admin Queue command wrappers */
1504
1505/* Software lock/mutex that is meant to be held while the Global Config Lock
1506 * in firmware is acquired by the software to prevent most (but not all) types
1507 * of AQ commands from being sent to FW
1508 */
1509DEFINE_MUTEX(ice_global_cfg_lock_sw);
1510
1511/**
1512 * ice_should_retry_sq_send_cmd
1513 * @opcode: AQ opcode
1514 *
1515 * Decide if we should retry the send command routine for the ATQ, depending
1516 * on the opcode.
1517 */
1518static bool ice_should_retry_sq_send_cmd(u16 opcode)
1519{
1520	switch (opcode) {
1521	case ice_aqc_opc_get_link_topo:
1522	case ice_aqc_opc_lldp_stop:
1523	case ice_aqc_opc_lldp_start:
1524	case ice_aqc_opc_lldp_filter_ctrl:
1525		return true;
1526	}
1527
1528	return false;
1529}
1530
1531/**
1532 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1533 * @hw: pointer to the HW struct
1534 * @cq: pointer to the specific Control queue
1535 * @desc: prefilled descriptor describing the command
1536 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1537 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1538 * @cd: pointer to command details structure
1539 *
1540 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1541 * Queue if the EBUSY AQ error is returned.
1542 */
1543static int
1544ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1545		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1546		      struct ice_sq_cd *cd)
1547{
1548	struct ice_aq_desc desc_cpy;
1549	bool is_cmd_for_retry;
1550	u8 idx = 0;
1551	u16 opcode;
1552	int status;
1553
1554	opcode = le16_to_cpu(desc->opcode);
1555	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1556	memset(&desc_cpy, 0, sizeof(desc_cpy));
1557
1558	if (is_cmd_for_retry) {
1559		/* All retryable cmds are direct, without buf. */
1560		WARN_ON(buf);
1561
1562		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1563	}
1564
1565	do {
1566		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1567
1568		if (!is_cmd_for_retry || !status ||
1569		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1570			break;
1571
1572		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1573
1574		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1575
1576	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1577
1578	return status;
1579}
1580
1581/**
1582 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1583 * @hw: pointer to the HW struct
1584 * @desc: descriptor describing the command
1585 * @buf: buffer to use for indirect commands (NULL for direct commands)
1586 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1587 * @cd: pointer to command details structure
1588 *
1589 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1590 */
1591int
1592ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1593		u16 buf_size, struct ice_sq_cd *cd)
1594{
1595	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1596	bool lock_acquired = false;
1597	int status;
1598
1599	/* When a package download is in process (i.e. when the firmware's
1600	 * Global Configuration Lock resource is held), only the Download
1601	 * Package, Get Version, Get Package Info List, Upload Section,
1602	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1603	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1604	 * Recipes to Profile Association, and Release Resource (with resource
1605	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1606	 * must block until the package download completes and the Global Config
1607	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1608	 */
1609	switch (le16_to_cpu(desc->opcode)) {
1610	case ice_aqc_opc_download_pkg:
1611	case ice_aqc_opc_get_pkg_info_list:
1612	case ice_aqc_opc_get_ver:
1613	case ice_aqc_opc_upload_section:
1614	case ice_aqc_opc_update_pkg:
1615	case ice_aqc_opc_set_port_params:
1616	case ice_aqc_opc_get_vlan_mode_parameters:
1617	case ice_aqc_opc_set_vlan_mode_parameters:
 
 
1618	case ice_aqc_opc_add_recipe:
1619	case ice_aqc_opc_recipe_to_profile:
1620	case ice_aqc_opc_get_recipe:
1621	case ice_aqc_opc_get_recipe_to_profile:
1622		break;
1623	case ice_aqc_opc_release_res:
1624		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1625			break;
1626		fallthrough;
1627	default:
1628		mutex_lock(&ice_global_cfg_lock_sw);
1629		lock_acquired = true;
1630		break;
1631	}
1632
1633	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1634	if (lock_acquired)
1635		mutex_unlock(&ice_global_cfg_lock_sw);
1636
1637	return status;
1638}
1639
1640/**
1641 * ice_aq_get_fw_ver
1642 * @hw: pointer to the HW struct
1643 * @cd: pointer to command details structure or NULL
1644 *
1645 * Get the firmware version (0x0001) from the admin queue commands
1646 */
1647int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1648{
1649	struct ice_aqc_get_ver *resp;
1650	struct ice_aq_desc desc;
1651	int status;
1652
1653	resp = &desc.params.get_ver;
1654
1655	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1656
1657	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1658
1659	if (!status) {
1660		hw->fw_branch = resp->fw_branch;
1661		hw->fw_maj_ver = resp->fw_major;
1662		hw->fw_min_ver = resp->fw_minor;
1663		hw->fw_patch = resp->fw_patch;
1664		hw->fw_build = le32_to_cpu(resp->fw_build);
1665		hw->api_branch = resp->api_branch;
1666		hw->api_maj_ver = resp->api_major;
1667		hw->api_min_ver = resp->api_minor;
1668		hw->api_patch = resp->api_patch;
1669	}
1670
1671	return status;
1672}
1673
1674/**
1675 * ice_aq_send_driver_ver
1676 * @hw: pointer to the HW struct
1677 * @dv: driver's major, minor version
1678 * @cd: pointer to command details structure or NULL
1679 *
1680 * Send the driver version (0x0002) to the firmware
1681 */
1682int
1683ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1684		       struct ice_sq_cd *cd)
1685{
1686	struct ice_aqc_driver_ver *cmd;
1687	struct ice_aq_desc desc;
1688	u16 len;
1689
1690	cmd = &desc.params.driver_ver;
1691
1692	if (!dv)
1693		return -EINVAL;
1694
1695	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1696
1697	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1698	cmd->major_ver = dv->major_ver;
1699	cmd->minor_ver = dv->minor_ver;
1700	cmd->build_ver = dv->build_ver;
1701	cmd->subbuild_ver = dv->subbuild_ver;
1702
1703	len = 0;
1704	while (len < sizeof(dv->driver_string) &&
1705	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1706		len++;
1707
1708	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1709}
1710
1711/**
1712 * ice_aq_q_shutdown
1713 * @hw: pointer to the HW struct
1714 * @unloading: is the driver unloading itself
1715 *
1716 * Tell the Firmware that we're shutting down the AdminQ and whether
1717 * or not the driver is unloading as well (0x0003).
1718 */
1719int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1720{
1721	struct ice_aqc_q_shutdown *cmd;
1722	struct ice_aq_desc desc;
1723
1724	cmd = &desc.params.q_shutdown;
1725
1726	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1727
1728	if (unloading)
1729		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1730
1731	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1732}
1733
1734/**
1735 * ice_aq_req_res
1736 * @hw: pointer to the HW struct
1737 * @res: resource ID
1738 * @access: access type
1739 * @sdp_number: resource number
1740 * @timeout: the maximum time in ms that the driver may hold the resource
1741 * @cd: pointer to command details structure or NULL
1742 *
1743 * Requests common resource using the admin queue commands (0x0008).
1744 * When attempting to acquire the Global Config Lock, the driver can
1745 * learn of three states:
1746 *  1) 0 -         acquired lock, and can perform download package
1747 *  2) -EIO -      did not get lock, driver should fail to load
1748 *  3) -EALREADY - did not get lock, but another driver has
1749 *                 successfully downloaded the package; the driver does
1750 *                 not have to download the package and can continue
1751 *                 loading
1752 *
1753 * Note that if the caller is in an acquire lock, perform action, release lock
1754 * phase of operation, it is possible that the FW may detect a timeout and issue
1755 * a CORER. In this case, the driver will receive a CORER interrupt and will
1756 * have to determine its cause. The calling thread that is handling this flow
1757 * will likely get an error propagated back to it indicating the Download
1758 * Package, Update Package or the Release Resource AQ commands timed out.
1759 */
1760static int
1761ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1762	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1763	       struct ice_sq_cd *cd)
1764{
1765	struct ice_aqc_req_res *cmd_resp;
1766	struct ice_aq_desc desc;
1767	int status;
1768
1769	cmd_resp = &desc.params.res_owner;
1770
1771	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1772
1773	cmd_resp->res_id = cpu_to_le16(res);
1774	cmd_resp->access_type = cpu_to_le16(access);
1775	cmd_resp->res_number = cpu_to_le32(sdp_number);
1776	cmd_resp->timeout = cpu_to_le32(*timeout);
1777	*timeout = 0;
1778
1779	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1780
1781	/* The completion specifies the maximum time in ms that the driver
1782	 * may hold the resource in the Timeout field.
1783	 */
1784
1785	/* Global config lock response utilizes an additional status field.
1786	 *
1787	 * If the Global config lock resource is held by some other driver, the
1788	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1789	 * and the timeout field indicates the maximum time the current owner
1790	 * of the resource has to free it.
1791	 */
1792	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1793		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1794			*timeout = le32_to_cpu(cmd_resp->timeout);
1795			return 0;
1796		} else if (le16_to_cpu(cmd_resp->status) ==
1797			   ICE_AQ_RES_GLBL_IN_PROG) {
1798			*timeout = le32_to_cpu(cmd_resp->timeout);
1799			return -EIO;
1800		} else if (le16_to_cpu(cmd_resp->status) ==
1801			   ICE_AQ_RES_GLBL_DONE) {
1802			return -EALREADY;
1803		}
1804
1805		/* invalid FW response, force a timeout immediately */
1806		*timeout = 0;
1807		return -EIO;
1808	}
1809
1810	/* If the resource is held by some other driver, the command completes
1811	 * with a busy return value and the timeout field indicates the maximum
1812	 * time the current owner of the resource has to free it.
1813	 */
1814	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1815		*timeout = le32_to_cpu(cmd_resp->timeout);
1816
1817	return status;
1818}
1819
1820/**
1821 * ice_aq_release_res
1822 * @hw: pointer to the HW struct
1823 * @res: resource ID
1824 * @sdp_number: resource number
1825 * @cd: pointer to command details structure or NULL
1826 *
1827 * release common resource using the admin queue commands (0x0009)
1828 */
1829static int
1830ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1831		   struct ice_sq_cd *cd)
1832{
1833	struct ice_aqc_req_res *cmd;
1834	struct ice_aq_desc desc;
1835
1836	cmd = &desc.params.res_owner;
1837
1838	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1839
1840	cmd->res_id = cpu_to_le16(res);
1841	cmd->res_number = cpu_to_le32(sdp_number);
1842
1843	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1844}
1845
1846/**
1847 * ice_acquire_res
1848 * @hw: pointer to the HW structure
1849 * @res: resource ID
1850 * @access: access type (read or write)
1851 * @timeout: timeout in milliseconds
1852 *
1853 * This function will attempt to acquire the ownership of a resource.
1854 */
1855int
1856ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1857		enum ice_aq_res_access_type access, u32 timeout)
1858{
1859#define ICE_RES_POLLING_DELAY_MS	10
1860	u32 delay = ICE_RES_POLLING_DELAY_MS;
1861	u32 time_left = timeout;
1862	int status;
1863
1864	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1865
1866	/* A return code of -EALREADY means that another driver has
1867	 * previously acquired the resource and performed any necessary updates;
1868	 * in this case the caller does not obtain the resource and has no
1869	 * further work to do.
1870	 */
1871	if (status == -EALREADY)
1872		goto ice_acquire_res_exit;
1873
1874	if (status)
1875		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1876
1877	/* If necessary, poll until the current lock owner timeouts */
1878	timeout = time_left;
1879	while (status && timeout && time_left) {
1880		mdelay(delay);
1881		timeout = (timeout > delay) ? timeout - delay : 0;
1882		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1883
1884		if (status == -EALREADY)
1885			/* lock free, but no work to do */
1886			break;
1887
1888		if (!status)
1889			/* lock acquired */
1890			break;
1891	}
1892	if (status && status != -EALREADY)
1893		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1894
1895ice_acquire_res_exit:
1896	if (status == -EALREADY) {
1897		if (access == ICE_RES_WRITE)
1898			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1899		else
1900			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1901	}
1902	return status;
1903}
1904
1905/**
1906 * ice_release_res
1907 * @hw: pointer to the HW structure
1908 * @res: resource ID
1909 *
1910 * This function will release a resource using the proper Admin Command.
1911 */
1912void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1913{
1914	unsigned long timeout;
1915	int status;
1916
1917	/* there are some rare cases when trying to release the resource
1918	 * results in an admin queue timeout, so handle them correctly
1919	 */
1920	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1921	do {
1922		status = ice_aq_release_res(hw, res, 0, NULL);
1923		if (status != -EIO)
1924			break;
1925		usleep_range(1000, 2000);
1926	} while (time_before(jiffies, timeout));
1927}
1928
1929/**
1930 * ice_aq_alloc_free_res - command to allocate/free resources
1931 * @hw: pointer to the HW struct
1932 * @buf: Indirect buffer to hold data parameters and response
1933 * @buf_size: size of buffer for indirect commands
1934 * @opc: pass in the command opcode
1935 *
1936 * Helper function to allocate/free resources using the admin queue commands
1937 */
1938int ice_aq_alloc_free_res(struct ice_hw *hw,
1939			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1940			  enum ice_adminq_opc opc)
1941{
1942	struct ice_aqc_alloc_free_res_cmd *cmd;
1943	struct ice_aq_desc desc;
1944
1945	cmd = &desc.params.sw_res_ctrl;
1946
1947	if (!buf || buf_size < flex_array_size(buf, elem, 1))
1948		return -EINVAL;
1949
1950	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1951
1952	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1953
1954	cmd->num_entries = cpu_to_le16(1);
1955
1956	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1957}
1958
1959/**
1960 * ice_alloc_hw_res - allocate resource
1961 * @hw: pointer to the HW struct
1962 * @type: type of resource
1963 * @num: number of resources to allocate
1964 * @btm: allocate from bottom
1965 * @res: pointer to array that will receive the resources
1966 */
1967int
1968ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1969{
1970	struct ice_aqc_alloc_free_res_elem *buf;
1971	u16 buf_len;
1972	int status;
1973
1974	buf_len = struct_size(buf, elem, num);
1975	buf = kzalloc(buf_len, GFP_KERNEL);
1976	if (!buf)
1977		return -ENOMEM;
1978
1979	/* Prepare buffer to allocate resource. */
1980	buf->num_elems = cpu_to_le16(num);
1981	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1982				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1983	if (btm)
1984		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1985
1986	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
1987	if (status)
1988		goto ice_alloc_res_exit;
1989
1990	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1991
1992ice_alloc_res_exit:
1993	kfree(buf);
1994	return status;
1995}
1996
1997/**
1998 * ice_free_hw_res - free allocated HW resource
1999 * @hw: pointer to the HW struct
2000 * @type: type of resource to free
2001 * @num: number of resources
2002 * @res: pointer to array that contains the resources to free
2003 */
2004int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2005{
2006	struct ice_aqc_alloc_free_res_elem *buf;
2007	u16 buf_len;
2008	int status;
2009
2010	buf_len = struct_size(buf, elem, num);
2011	buf = kzalloc(buf_len, GFP_KERNEL);
2012	if (!buf)
2013		return -ENOMEM;
2014
2015	/* Prepare buffer to free resource. */
2016	buf->num_elems = cpu_to_le16(num);
2017	buf->res_type = cpu_to_le16(type);
2018	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2019
2020	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2021	if (status)
2022		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2023
2024	kfree(buf);
2025	return status;
2026}
2027
2028/**
2029 * ice_get_num_per_func - determine number of resources per PF
2030 * @hw: pointer to the HW structure
2031 * @max: value to be evenly split between each PF
2032 *
2033 * Determine the number of valid functions by going through the bitmap returned
2034 * from parsing capabilities and use this to calculate the number of resources
2035 * per PF based on the max value passed in.
2036 */
2037static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2038{
2039	u8 funcs;
2040
2041#define ICE_CAPS_VALID_FUNCS_M	0xFF
2042	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2043			 ICE_CAPS_VALID_FUNCS_M);
2044
2045	if (!funcs)
2046		return 0;
2047
2048	return max / funcs;
2049}
2050
2051/**
2052 * ice_parse_common_caps - parse common device/function capabilities
2053 * @hw: pointer to the HW struct
2054 * @caps: pointer to common capabilities structure
2055 * @elem: the capability element to parse
2056 * @prefix: message prefix for tracing capabilities
2057 *
2058 * Given a capability element, extract relevant details into the common
2059 * capability structure.
2060 *
2061 * Returns: true if the capability matches one of the common capability ids,
2062 * false otherwise.
2063 */
2064static bool
2065ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2066		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2067{
2068	u32 logical_id = le32_to_cpu(elem->logical_id);
2069	u32 phys_id = le32_to_cpu(elem->phys_id);
2070	u32 number = le32_to_cpu(elem->number);
2071	u16 cap = le16_to_cpu(elem->cap);
2072	bool found = true;
2073
2074	switch (cap) {
2075	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2076		caps->valid_functions = number;
2077		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2078			  caps->valid_functions);
2079		break;
2080	case ICE_AQC_CAPS_SRIOV:
2081		caps->sr_iov_1_1 = (number == 1);
2082		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2083			  caps->sr_iov_1_1);
2084		break;
2085	case ICE_AQC_CAPS_DCB:
2086		caps->dcb = (number == 1);
2087		caps->active_tc_bitmap = logical_id;
2088		caps->maxtc = phys_id;
2089		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2090		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2091			  caps->active_tc_bitmap);
2092		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2093		break;
2094	case ICE_AQC_CAPS_RSS:
2095		caps->rss_table_size = number;
2096		caps->rss_table_entry_width = logical_id;
2097		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2098			  caps->rss_table_size);
2099		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2100			  caps->rss_table_entry_width);
2101		break;
2102	case ICE_AQC_CAPS_RXQS:
2103		caps->num_rxq = number;
2104		caps->rxq_first_id = phys_id;
2105		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2106			  caps->num_rxq);
2107		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2108			  caps->rxq_first_id);
2109		break;
2110	case ICE_AQC_CAPS_TXQS:
2111		caps->num_txq = number;
2112		caps->txq_first_id = phys_id;
2113		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2114			  caps->num_txq);
2115		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2116			  caps->txq_first_id);
2117		break;
2118	case ICE_AQC_CAPS_MSIX:
2119		caps->num_msix_vectors = number;
2120		caps->msix_vector_first_id = phys_id;
2121		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2122			  caps->num_msix_vectors);
2123		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2124			  caps->msix_vector_first_id);
2125		break;
2126	case ICE_AQC_CAPS_PENDING_NVM_VER:
2127		caps->nvm_update_pending_nvm = true;
2128		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2129		break;
2130	case ICE_AQC_CAPS_PENDING_OROM_VER:
2131		caps->nvm_update_pending_orom = true;
2132		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2133		break;
2134	case ICE_AQC_CAPS_PENDING_NET_VER:
2135		caps->nvm_update_pending_netlist = true;
2136		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2137		break;
2138	case ICE_AQC_CAPS_NVM_MGMT:
2139		caps->nvm_unified_update =
2140			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2141			true : false;
2142		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2143			  caps->nvm_unified_update);
2144		break;
2145	case ICE_AQC_CAPS_RDMA:
2146		caps->rdma = (number == 1);
2147		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2148		break;
2149	case ICE_AQC_CAPS_MAX_MTU:
2150		caps->max_mtu = number;
2151		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2152			  prefix, caps->max_mtu);
2153		break;
2154	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2155		caps->pcie_reset_avoidance = (number > 0);
2156		ice_debug(hw, ICE_DBG_INIT,
2157			  "%s: pcie_reset_avoidance = %d\n", prefix,
2158			  caps->pcie_reset_avoidance);
2159		break;
2160	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2161		caps->reset_restrict_support = (number == 1);
2162		ice_debug(hw, ICE_DBG_INIT,
2163			  "%s: reset_restrict_support = %d\n", prefix,
2164			  caps->reset_restrict_support);
2165		break;
2166	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2167		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2168		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2169			  prefix, caps->roce_lag);
2170		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2171		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2172			  prefix, caps->sriov_lag);
2173		break;
 
 
 
2174	default:
2175		/* Not one of the recognized common capabilities */
2176		found = false;
2177	}
2178
2179	return found;
2180}
2181
2182/**
2183 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2184 * @hw: pointer to the HW structure
2185 * @caps: pointer to capabilities structure to fix
2186 *
2187 * Re-calculate the capabilities that are dependent on the number of physical
2188 * ports; i.e. some features are not supported or function differently on
2189 * devices with more than 4 ports.
2190 */
2191static void
2192ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2193{
2194	/* This assumes device capabilities are always scanned before function
2195	 * capabilities during the initialization flow.
2196	 */
2197	if (hw->dev_caps.num_funcs > 4) {
2198		/* Max 4 TCs per port */
2199		caps->maxtc = 4;
2200		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2201			  caps->maxtc);
2202		if (caps->rdma) {
2203			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2204			caps->rdma = 0;
2205		}
2206
2207		/* print message only when processing device capabilities
2208		 * during initialization.
2209		 */
2210		if (caps == &hw->dev_caps.common_cap)
2211			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2212	}
2213}
2214
2215/**
2216 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2217 * @hw: pointer to the HW struct
2218 * @func_p: pointer to function capabilities structure
2219 * @cap: pointer to the capability element to parse
2220 *
2221 * Extract function capabilities for ICE_AQC_CAPS_VF.
2222 */
2223static void
2224ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2225		       struct ice_aqc_list_caps_elem *cap)
2226{
2227	u32 logical_id = le32_to_cpu(cap->logical_id);
2228	u32 number = le32_to_cpu(cap->number);
2229
2230	func_p->num_allocd_vfs = number;
2231	func_p->vf_base_id = logical_id;
2232	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2233		  func_p->num_allocd_vfs);
2234	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2235		  func_p->vf_base_id);
2236}
2237
2238/**
2239 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2240 * @hw: pointer to the HW struct
2241 * @func_p: pointer to function capabilities structure
2242 * @cap: pointer to the capability element to parse
2243 *
2244 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2245 */
2246static void
2247ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2248			struct ice_aqc_list_caps_elem *cap)
2249{
2250	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2251	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2252		  le32_to_cpu(cap->number));
2253	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2254		  func_p->guar_num_vsi);
2255}
2256
2257/**
2258 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2259 * @hw: pointer to the HW struct
2260 * @func_p: pointer to function capabilities structure
2261 * @cap: pointer to the capability element to parse
2262 *
2263 * Extract function capabilities for ICE_AQC_CAPS_1588.
2264 */
2265static void
2266ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2267			 struct ice_aqc_list_caps_elem *cap)
2268{
2269	struct ice_ts_func_info *info = &func_p->ts_func_info;
2270	u32 number = le32_to_cpu(cap->number);
2271
2272	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2273	func_p->common_cap.ieee_1588 = info->ena;
2274
2275	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2276	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2277	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2278	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2279
2280	info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2281	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
 
 
 
 
 
2282
2283	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2284		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2285	} else {
2286		/* Unknown clock frequency, so assume a (probably incorrect)
2287		 * default to avoid out-of-bounds look ups of frequency
2288		 * related information.
2289		 */
2290		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2291			  info->clk_freq);
2292		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2293	}
2294
2295	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2296		  func_p->common_cap.ieee_1588);
2297	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2298		  info->src_tmr_owned);
2299	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2300		  info->tmr_ena);
2301	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2302		  info->tmr_index_owned);
2303	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2304		  info->tmr_index_assoc);
2305	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2306		  info->clk_freq);
2307	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2308		  info->clk_src);
2309}
2310
2311/**
2312 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2313 * @hw: pointer to the HW struct
2314 * @func_p: pointer to function capabilities structure
2315 *
2316 * Extract function capabilities for ICE_AQC_CAPS_FD.
2317 */
2318static void
2319ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2320{
2321	u32 reg_val, gsize, bsize;
2322
2323	reg_val = rd32(hw, GLQF_FD_SIZE);
2324	switch (hw->mac_type) {
2325	case ICE_MAC_E830:
2326		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2327		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2328		break;
2329	case ICE_MAC_E810:
2330	default:
2331		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2332		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2333	}
2334	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2335	func_p->fd_fltr_best_effort = bsize;
2336
2337	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2338		  func_p->fd_fltr_guar);
2339	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2340		  func_p->fd_fltr_best_effort);
2341}
2342
2343/**
2344 * ice_parse_func_caps - Parse function capabilities
2345 * @hw: pointer to the HW struct
2346 * @func_p: pointer to function capabilities structure
2347 * @buf: buffer containing the function capability records
2348 * @cap_count: the number of capabilities
2349 *
2350 * Helper function to parse function (0x000A) capabilities list. For
2351 * capabilities shared between device and function, this relies on
2352 * ice_parse_common_caps.
2353 *
2354 * Loop through the list of provided capabilities and extract the relevant
2355 * data into the function capabilities structured.
2356 */
2357static void
2358ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2359		    void *buf, u32 cap_count)
2360{
2361	struct ice_aqc_list_caps_elem *cap_resp;
2362	u32 i;
2363
2364	cap_resp = buf;
2365
2366	memset(func_p, 0, sizeof(*func_p));
2367
2368	for (i = 0; i < cap_count; i++) {
2369		u16 cap = le16_to_cpu(cap_resp[i].cap);
2370		bool found;
2371
2372		found = ice_parse_common_caps(hw, &func_p->common_cap,
2373					      &cap_resp[i], "func caps");
2374
2375		switch (cap) {
2376		case ICE_AQC_CAPS_VF:
2377			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2378			break;
2379		case ICE_AQC_CAPS_VSI:
2380			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2381			break;
2382		case ICE_AQC_CAPS_1588:
2383			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2384			break;
2385		case ICE_AQC_CAPS_FD:
2386			ice_parse_fdir_func_caps(hw, func_p);
2387			break;
2388		default:
2389			/* Don't list common capabilities as unknown */
2390			if (!found)
2391				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2392					  i, cap);
2393			break;
2394		}
2395	}
2396
2397	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2398}
2399
2400/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2401 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2402 * @hw: pointer to the HW struct
2403 * @dev_p: pointer to device capabilities structure
2404 * @cap: capability element to parse
2405 *
2406 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2407 */
2408static void
2409ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2410			      struct ice_aqc_list_caps_elem *cap)
2411{
2412	u32 number = le32_to_cpu(cap->number);
2413
2414	dev_p->num_funcs = hweight32(number);
2415	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2416		  dev_p->num_funcs);
 
 
2417}
2418
2419/**
2420 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2421 * @hw: pointer to the HW struct
2422 * @dev_p: pointer to device capabilities structure
2423 * @cap: capability element to parse
2424 *
2425 * Parse ICE_AQC_CAPS_VF for device capabilities.
2426 */
2427static void
2428ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2429		      struct ice_aqc_list_caps_elem *cap)
2430{
2431	u32 number = le32_to_cpu(cap->number);
2432
2433	dev_p->num_vfs_exposed = number;
2434	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2435		  dev_p->num_vfs_exposed);
2436}
2437
2438/**
2439 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2440 * @hw: pointer to the HW struct
2441 * @dev_p: pointer to device capabilities structure
2442 * @cap: capability element to parse
2443 *
2444 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2445 */
2446static void
2447ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2448		       struct ice_aqc_list_caps_elem *cap)
2449{
2450	u32 number = le32_to_cpu(cap->number);
2451
2452	dev_p->num_vsi_allocd_to_host = number;
2453	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2454		  dev_p->num_vsi_allocd_to_host);
2455}
2456
2457/**
2458 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2459 * @hw: pointer to the HW struct
2460 * @dev_p: pointer to device capabilities structure
2461 * @cap: capability element to parse
2462 *
2463 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2464 */
2465static void
2466ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2467			struct ice_aqc_list_caps_elem *cap)
2468{
2469	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2470	u32 logical_id = le32_to_cpu(cap->logical_id);
2471	u32 phys_id = le32_to_cpu(cap->phys_id);
2472	u32 number = le32_to_cpu(cap->number);
2473
2474	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2475	dev_p->common_cap.ieee_1588 = info->ena;
2476
2477	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2478	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2479	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2480
2481	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2482	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2483	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2484
2485	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2486	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2487
2488	info->ena_ports = logical_id;
2489	info->tmr_own_map = phys_id;
2490
2491	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2492		  dev_p->common_cap.ieee_1588);
2493	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2494		  info->tmr0_owner);
2495	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2496		  info->tmr0_owned);
2497	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2498		  info->tmr0_ena);
2499	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2500		  info->tmr1_owner);
2501	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2502		  info->tmr1_owned);
2503	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2504		  info->tmr1_ena);
2505	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2506		  info->ts_ll_read);
2507	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2508		  info->ts_ll_int_read);
2509	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2510		  info->ena_ports);
2511	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2512		  info->tmr_own_map);
2513}
2514
2515/**
2516 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2517 * @hw: pointer to the HW struct
2518 * @dev_p: pointer to device capabilities structure
2519 * @cap: capability element to parse
2520 *
2521 * Parse ICE_AQC_CAPS_FD for device capabilities.
2522 */
2523static void
2524ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2525			struct ice_aqc_list_caps_elem *cap)
2526{
2527	u32 number = le32_to_cpu(cap->number);
2528
2529	dev_p->num_flow_director_fltr = number;
2530	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2531		  dev_p->num_flow_director_fltr);
2532}
2533
2534/**
2535 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2536 * @hw: pointer to the HW struct
2537 * @dev_p: pointer to device capabilities structure
2538 * @cap: capability element to parse
2539 *
2540 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2541 * enabled sensors.
2542 */
2543static void
2544ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2545			     struct ice_aqc_list_caps_elem *cap)
2546{
2547	dev_p->supported_sensors = le32_to_cpu(cap->number);
2548
2549	ice_debug(hw, ICE_DBG_INIT,
2550		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2551		  dev_p->supported_sensors);
2552}
2553
2554/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2555 * ice_parse_dev_caps - Parse device capabilities
2556 * @hw: pointer to the HW struct
2557 * @dev_p: pointer to device capabilities structure
2558 * @buf: buffer containing the device capability records
2559 * @cap_count: the number of capabilities
2560 *
2561 * Helper device to parse device (0x000B) capabilities list. For
2562 * capabilities shared between device and function, this relies on
2563 * ice_parse_common_caps.
2564 *
2565 * Loop through the list of provided capabilities and extract the relevant
2566 * data into the device capabilities structured.
2567 */
2568static void
2569ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2570		   void *buf, u32 cap_count)
2571{
2572	struct ice_aqc_list_caps_elem *cap_resp;
2573	u32 i;
2574
2575	cap_resp = buf;
2576
2577	memset(dev_p, 0, sizeof(*dev_p));
2578
2579	for (i = 0; i < cap_count; i++) {
2580		u16 cap = le16_to_cpu(cap_resp[i].cap);
2581		bool found;
2582
2583		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2584					      &cap_resp[i], "dev caps");
2585
2586		switch (cap) {
2587		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2588			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2589			break;
2590		case ICE_AQC_CAPS_VF:
2591			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2592			break;
2593		case ICE_AQC_CAPS_VSI:
2594			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2595			break;
2596		case ICE_AQC_CAPS_1588:
2597			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2598			break;
2599		case ICE_AQC_CAPS_FD:
2600			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2601			break;
2602		case ICE_AQC_CAPS_SENSOR_READING:
2603			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2604			break;
 
 
 
2605		default:
2606			/* Don't list common capabilities as unknown */
2607			if (!found)
2608				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2609					  i, cap);
2610			break;
2611		}
2612	}
2613
2614	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2615}
2616
2617/**
2618 * ice_is_pf_c827 - check if pf contains c827 phy
2619 * @hw: pointer to the hw struct
2620 */
2621bool ice_is_pf_c827(struct ice_hw *hw)
2622{
2623	struct ice_aqc_get_link_topo cmd = {};
2624	u8 node_part_number;
2625	u16 node_handle;
2626	int status;
2627
2628	if (hw->mac_type != ICE_MAC_E810)
2629		return false;
2630
2631	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2632		return true;
2633
2634	cmd.addr.topo_params.node_type_ctx =
2635		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2636		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2637	cmd.addr.topo_params.index = 0;
2638
2639	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2640					 &node_handle);
2641
2642	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2643		return false;
2644
2645	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2646		return true;
2647
2648	return false;
2649}
2650
2651/**
2652 * ice_is_phy_rclk_in_netlist
2653 * @hw: pointer to the hw struct
2654 *
2655 * Check if the PHY Recovered Clock device is present in the netlist
2656 */
2657bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2658{
2659	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
 
2660				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2661	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
 
2662				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2663		return false;
2664
2665	return true;
2666}
2667
2668/**
2669 * ice_is_clock_mux_in_netlist
2670 * @hw: pointer to the hw struct
2671 *
2672 * Check if the Clock Multiplexer device is present in the netlist
2673 */
2674bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2675{
2676	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
 
2677				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2678				  NULL))
2679		return false;
2680
2681	return true;
2682}
2683
2684/**
2685 * ice_is_cgu_in_netlist - check for CGU presence
2686 * @hw: pointer to the hw struct
2687 *
2688 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2689 * Save the CGU part number in the hw structure for later use.
2690 * Return:
2691 * * true - cgu is present
2692 * * false - cgu is not present
2693 */
2694bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2695{
2696	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
 
2697				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2698				   NULL)) {
2699		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2700		return true;
2701	} else if (!ice_find_netlist_node(hw,
2702					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
 
2703					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2704					  NULL)) {
2705		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2706		return true;
2707	}
2708
2709	return false;
2710}
2711
2712/**
2713 * ice_is_gps_in_netlist
2714 * @hw: pointer to the hw struct
2715 *
2716 * Check if the GPS generic device is present in the netlist
2717 */
2718bool ice_is_gps_in_netlist(struct ice_hw *hw)
2719{
2720	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
 
2721				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2722		return false;
2723
2724	return true;
2725}
2726
2727/**
2728 * ice_aq_list_caps - query function/device capabilities
2729 * @hw: pointer to the HW struct
2730 * @buf: a buffer to hold the capabilities
2731 * @buf_size: size of the buffer
2732 * @cap_count: if not NULL, set to the number of capabilities reported
2733 * @opc: capabilities type to discover, device or function
2734 * @cd: pointer to command details structure or NULL
2735 *
2736 * Get the function (0x000A) or device (0x000B) capabilities description from
2737 * firmware and store it in the buffer.
2738 *
2739 * If the cap_count pointer is not NULL, then it is set to the number of
2740 * capabilities firmware will report. Note that if the buffer size is too
2741 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2742 * cap_count will still be updated in this case. It is recommended that the
2743 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2744 * firmware could return) to avoid this.
2745 */
2746int
2747ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2748		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2749{
2750	struct ice_aqc_list_caps *cmd;
2751	struct ice_aq_desc desc;
2752	int status;
2753
2754	cmd = &desc.params.get_cap;
2755
2756	if (opc != ice_aqc_opc_list_func_caps &&
2757	    opc != ice_aqc_opc_list_dev_caps)
2758		return -EINVAL;
2759
2760	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2761	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2762
2763	if (cap_count)
2764		*cap_count = le32_to_cpu(cmd->count);
2765
2766	return status;
2767}
2768
2769/**
2770 * ice_discover_dev_caps - Read and extract device capabilities
2771 * @hw: pointer to the hardware structure
2772 * @dev_caps: pointer to device capabilities structure
2773 *
2774 * Read the device capabilities and extract them into the dev_caps structure
2775 * for later use.
2776 */
2777int
2778ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2779{
2780	u32 cap_count = 0;
2781	void *cbuf;
2782	int status;
2783
2784	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2785	if (!cbuf)
2786		return -ENOMEM;
2787
2788	/* Although the driver doesn't know the number of capabilities the
2789	 * device will return, we can simply send a 4KB buffer, the maximum
2790	 * possible size that firmware can return.
2791	 */
2792	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2793
2794	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2795				  ice_aqc_opc_list_dev_caps, NULL);
2796	if (!status)
2797		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2798	kfree(cbuf);
2799
2800	return status;
2801}
2802
2803/**
2804 * ice_discover_func_caps - Read and extract function capabilities
2805 * @hw: pointer to the hardware structure
2806 * @func_caps: pointer to function capabilities structure
2807 *
2808 * Read the function capabilities and extract them into the func_caps structure
2809 * for later use.
2810 */
2811static int
2812ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2813{
2814	u32 cap_count = 0;
2815	void *cbuf;
2816	int status;
2817
2818	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2819	if (!cbuf)
2820		return -ENOMEM;
2821
2822	/* Although the driver doesn't know the number of capabilities the
2823	 * device will return, we can simply send a 4KB buffer, the maximum
2824	 * possible size that firmware can return.
2825	 */
2826	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2827
2828	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2829				  ice_aqc_opc_list_func_caps, NULL);
2830	if (!status)
2831		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2832	kfree(cbuf);
2833
2834	return status;
2835}
2836
2837/**
2838 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2839 * @hw: pointer to the hardware structure
2840 */
2841void ice_set_safe_mode_caps(struct ice_hw *hw)
2842{
2843	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2844	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2845	struct ice_hw_common_caps cached_caps;
2846	u32 num_funcs;
2847
2848	/* cache some func_caps values that should be restored after memset */
2849	cached_caps = func_caps->common_cap;
2850
2851	/* unset func capabilities */
2852	memset(func_caps, 0, sizeof(*func_caps));
2853
2854#define ICE_RESTORE_FUNC_CAP(name) \
2855	func_caps->common_cap.name = cached_caps.name
2856
2857	/* restore cached values */
2858	ICE_RESTORE_FUNC_CAP(valid_functions);
2859	ICE_RESTORE_FUNC_CAP(txq_first_id);
2860	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2861	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2862	ICE_RESTORE_FUNC_CAP(max_mtu);
2863	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2864	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2865	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2866	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2867
2868	/* one Tx and one Rx queue in safe mode */
2869	func_caps->common_cap.num_rxq = 1;
2870	func_caps->common_cap.num_txq = 1;
2871
2872	/* two MSIX vectors, one for traffic and one for misc causes */
2873	func_caps->common_cap.num_msix_vectors = 2;
2874	func_caps->guar_num_vsi = 1;
2875
2876	/* cache some dev_caps values that should be restored after memset */
2877	cached_caps = dev_caps->common_cap;
2878	num_funcs = dev_caps->num_funcs;
2879
2880	/* unset dev capabilities */
2881	memset(dev_caps, 0, sizeof(*dev_caps));
2882
2883#define ICE_RESTORE_DEV_CAP(name) \
2884	dev_caps->common_cap.name = cached_caps.name
2885
2886	/* restore cached values */
2887	ICE_RESTORE_DEV_CAP(valid_functions);
2888	ICE_RESTORE_DEV_CAP(txq_first_id);
2889	ICE_RESTORE_DEV_CAP(rxq_first_id);
2890	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2891	ICE_RESTORE_DEV_CAP(max_mtu);
2892	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2893	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2894	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2895	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2896	dev_caps->num_funcs = num_funcs;
2897
2898	/* one Tx and one Rx queue per function in safe mode */
2899	dev_caps->common_cap.num_rxq = num_funcs;
2900	dev_caps->common_cap.num_txq = num_funcs;
2901
2902	/* two MSIX vectors per function */
2903	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2904}
2905
2906/**
2907 * ice_get_caps - get info about the HW
2908 * @hw: pointer to the hardware structure
2909 */
2910int ice_get_caps(struct ice_hw *hw)
2911{
2912	int status;
2913
2914	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2915	if (status)
2916		return status;
2917
2918	return ice_discover_func_caps(hw, &hw->func_caps);
2919}
2920
2921/**
2922 * ice_aq_manage_mac_write - manage MAC address write command
2923 * @hw: pointer to the HW struct
2924 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2925 * @flags: flags to control write behavior
2926 * @cd: pointer to command details structure or NULL
2927 *
2928 * This function is used to write MAC address to the NVM (0x0108).
2929 */
2930int
2931ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2932			struct ice_sq_cd *cd)
2933{
2934	struct ice_aqc_manage_mac_write *cmd;
2935	struct ice_aq_desc desc;
2936
2937	cmd = &desc.params.mac_write;
2938	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2939
2940	cmd->flags = flags;
2941	ether_addr_copy(cmd->mac_addr, mac_addr);
2942
2943	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2944}
2945
2946/**
2947 * ice_aq_clear_pxe_mode
2948 * @hw: pointer to the HW struct
2949 *
2950 * Tell the firmware that the driver is taking over from PXE (0x0110).
2951 */
2952static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2953{
2954	struct ice_aq_desc desc;
2955
2956	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2957	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2958
2959	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2960}
2961
2962/**
2963 * ice_clear_pxe_mode - clear pxe operations mode
2964 * @hw: pointer to the HW struct
2965 *
2966 * Make sure all PXE mode settings are cleared, including things
2967 * like descriptor fetch/write-back mode.
2968 */
2969void ice_clear_pxe_mode(struct ice_hw *hw)
2970{
2971	if (ice_check_sq_alive(hw, &hw->adminq))
2972		ice_aq_clear_pxe_mode(hw);
2973}
2974
2975/**
2976 * ice_aq_set_port_params - set physical port parameters.
2977 * @pi: pointer to the port info struct
2978 * @double_vlan: if set double VLAN is enabled
2979 * @cd: pointer to command details structure or NULL
2980 *
2981 * Set Physical port parameters (0x0203)
2982 */
2983int
2984ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2985		       struct ice_sq_cd *cd)
2986
2987{
2988	struct ice_aqc_set_port_params *cmd;
2989	struct ice_hw *hw = pi->hw;
2990	struct ice_aq_desc desc;
2991	u16 cmd_flags = 0;
2992
2993	cmd = &desc.params.set_port_params;
2994
2995	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2996	if (double_vlan)
2997		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2998	cmd->cmd_flags = cpu_to_le16(cmd_flags);
2999
 
 
 
3000	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3001}
3002
3003/**
3004 * ice_is_100m_speed_supported
3005 * @hw: pointer to the HW struct
3006 *
3007 * returns true if 100M speeds are supported by the device,
3008 * false otherwise.
3009 */
3010bool ice_is_100m_speed_supported(struct ice_hw *hw)
3011{
3012	switch (hw->device_id) {
3013	case ICE_DEV_ID_E822C_SGMII:
3014	case ICE_DEV_ID_E822L_SGMII:
3015	case ICE_DEV_ID_E823L_1GBE:
3016	case ICE_DEV_ID_E823C_SGMII:
3017		return true;
3018	default:
3019		return false;
3020	}
3021}
3022
3023/**
3024 * ice_get_link_speed_based_on_phy_type - returns link speed
3025 * @phy_type_low: lower part of phy_type
3026 * @phy_type_high: higher part of phy_type
3027 *
3028 * This helper function will convert an entry in PHY type structure
3029 * [phy_type_low, phy_type_high] to its corresponding link speed.
3030 * Note: In the structure of [phy_type_low, phy_type_high], there should
3031 * be one bit set, as this function will convert one PHY type to its
3032 * speed.
3033 * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3034 * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
 
 
 
3035 */
3036static u16
3037ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3038{
3039	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3040	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3041
3042	switch (phy_type_low) {
3043	case ICE_PHY_TYPE_LOW_100BASE_TX:
3044	case ICE_PHY_TYPE_LOW_100M_SGMII:
3045		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3046		break;
3047	case ICE_PHY_TYPE_LOW_1000BASE_T:
3048	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3049	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3050	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3051	case ICE_PHY_TYPE_LOW_1G_SGMII:
3052		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3053		break;
3054	case ICE_PHY_TYPE_LOW_2500BASE_T:
3055	case ICE_PHY_TYPE_LOW_2500BASE_X:
3056	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3057		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3058		break;
3059	case ICE_PHY_TYPE_LOW_5GBASE_T:
3060	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3061		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3062		break;
3063	case ICE_PHY_TYPE_LOW_10GBASE_T:
3064	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3065	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3066	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3067	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3068	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3069	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3070		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3071		break;
3072	case ICE_PHY_TYPE_LOW_25GBASE_T:
3073	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3074	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3075	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3076	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3077	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3078	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3079	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3080	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3081	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3082	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3083		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3084		break;
3085	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3086	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3087	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3088	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3089	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3090	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3091		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3092		break;
3093	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3094	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3095	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3096	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3097	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3098	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3099	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3100	case ICE_PHY_TYPE_LOW_50G_AUI2:
3101	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3102	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3103	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3104	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3105	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3106	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3107	case ICE_PHY_TYPE_LOW_50G_AUI1:
3108		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3109		break;
3110	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3111	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3112	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3113	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3114	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3115	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3116	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3117	case ICE_PHY_TYPE_LOW_100G_AUI4:
3118	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3119	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3120	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3121	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3122	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3123		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3124		break;
3125	default:
3126		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3127		break;
3128	}
3129
3130	switch (phy_type_high) {
3131	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3132	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3133	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3134	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3135	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3136		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3137		break;
3138	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3139	case ICE_PHY_TYPE_HIGH_200G_SR4:
3140	case ICE_PHY_TYPE_HIGH_200G_FR4:
3141	case ICE_PHY_TYPE_HIGH_200G_LR4:
3142	case ICE_PHY_TYPE_HIGH_200G_DR4:
3143	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3144	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3145	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3146		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3147		break;
3148	default:
3149		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3150		break;
3151	}
3152
3153	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3154	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3155		return ICE_AQ_LINK_SPEED_UNKNOWN;
3156	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3157		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3158		return ICE_AQ_LINK_SPEED_UNKNOWN;
3159	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3160		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3161		return speed_phy_type_low;
3162	else
3163		return speed_phy_type_high;
3164}
3165
3166/**
3167 * ice_update_phy_type
3168 * @phy_type_low: pointer to the lower part of phy_type
3169 * @phy_type_high: pointer to the higher part of phy_type
3170 * @link_speeds_bitmap: targeted link speeds bitmap
3171 *
3172 * Note: For the link_speeds_bitmap structure, you can check it at
3173 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3174 * link_speeds_bitmap include multiple speeds.
3175 *
3176 * Each entry in this [phy_type_low, phy_type_high] structure will
3177 * present a certain link speed. This helper function will turn on bits
3178 * in [phy_type_low, phy_type_high] structure based on the value of
3179 * link_speeds_bitmap input parameter.
3180 */
3181void
3182ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3183		    u16 link_speeds_bitmap)
3184{
3185	u64 pt_high;
3186	u64 pt_low;
3187	int index;
3188	u16 speed;
3189
3190	/* We first check with low part of phy_type */
3191	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3192		pt_low = BIT_ULL(index);
3193		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3194
3195		if (link_speeds_bitmap & speed)
3196			*phy_type_low |= BIT_ULL(index);
3197	}
3198
3199	/* We then check with high part of phy_type */
3200	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3201		pt_high = BIT_ULL(index);
3202		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3203
3204		if (link_speeds_bitmap & speed)
3205			*phy_type_high |= BIT_ULL(index);
3206	}
3207}
3208
3209/**
3210 * ice_aq_set_phy_cfg
3211 * @hw: pointer to the HW struct
3212 * @pi: port info structure of the interested logical port
3213 * @cfg: structure with PHY configuration data to be set
3214 * @cd: pointer to command details structure or NULL
3215 *
3216 * Set the various PHY configuration parameters supported on the Port.
3217 * One or more of the Set PHY config parameters may be ignored in an MFP
3218 * mode as the PF may not have the privilege to set some of the PHY Config
3219 * parameters. This status will be indicated by the command response (0x0601).
3220 */
3221int
3222ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3223		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3224{
3225	struct ice_aq_desc desc;
3226	int status;
3227
3228	if (!cfg)
3229		return -EINVAL;
3230
3231	/* Ensure that only valid bits of cfg->caps can be turned on. */
3232	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3233		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3234			  cfg->caps);
3235
3236		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3237	}
3238
3239	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3240	desc.params.set_phy.lport_num = pi->lport;
3241	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3242
3243	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3244	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3245		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3246	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3247		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3248	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3249	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3250		  cfg->low_power_ctrl_an);
3251	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3252	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3253	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3254		  cfg->link_fec_opt);
3255
3256	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3257	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3258		status = 0;
3259
3260	if (!status)
3261		pi->phy.curr_user_phy_cfg = *cfg;
3262
3263	return status;
3264}
3265
3266/**
3267 * ice_update_link_info - update status of the HW network link
3268 * @pi: port info structure of the interested logical port
3269 */
3270int ice_update_link_info(struct ice_port_info *pi)
3271{
3272	struct ice_link_status *li;
3273	int status;
3274
3275	if (!pi)
3276		return -EINVAL;
3277
3278	li = &pi->phy.link_info;
3279
3280	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3281	if (status)
3282		return status;
3283
3284	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3285		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3286
3287		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3288		if (!pcaps)
3289			return -ENOMEM;
3290
3291		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3292					     pcaps, NULL);
3293	}
3294
3295	return status;
3296}
3297
3298/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3299 * ice_cache_phy_user_req
3300 * @pi: port information structure
3301 * @cache_data: PHY logging data
3302 * @cache_mode: PHY logging mode
3303 *
3304 * Log the user request on (FC, FEC, SPEED) for later use.
3305 */
3306static void
3307ice_cache_phy_user_req(struct ice_port_info *pi,
3308		       struct ice_phy_cache_mode_data cache_data,
3309		       enum ice_phy_cache_mode cache_mode)
3310{
3311	if (!pi)
3312		return;
3313
3314	switch (cache_mode) {
3315	case ICE_FC_MODE:
3316		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3317		break;
3318	case ICE_SPEED_MODE:
3319		pi->phy.curr_user_speed_req =
3320			cache_data.data.curr_user_speed_req;
3321		break;
3322	case ICE_FEC_MODE:
3323		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3324		break;
3325	default:
3326		break;
3327	}
3328}
3329
3330/**
3331 * ice_caps_to_fc_mode
3332 * @caps: PHY capabilities
3333 *
3334 * Convert PHY FC capabilities to ice FC mode
3335 */
3336enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3337{
3338	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3339	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3340		return ICE_FC_FULL;
3341
3342	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3343		return ICE_FC_TX_PAUSE;
3344
3345	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3346		return ICE_FC_RX_PAUSE;
3347
3348	return ICE_FC_NONE;
3349}
3350
3351/**
3352 * ice_caps_to_fec_mode
3353 * @caps: PHY capabilities
3354 * @fec_options: Link FEC options
3355 *
3356 * Convert PHY FEC capabilities to ice FEC mode
3357 */
3358enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3359{
3360	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3361		return ICE_FEC_AUTO;
3362
3363	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3364			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3365			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3366			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3367		return ICE_FEC_BASER;
3368
3369	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3370			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3371			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3372		return ICE_FEC_RS;
3373
3374	return ICE_FEC_NONE;
3375}
3376
3377/**
3378 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3379 * @pi: port information structure
3380 * @cfg: PHY configuration data to set FC mode
3381 * @req_mode: FC mode to configure
3382 */
3383int
3384ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3385	       enum ice_fc_mode req_mode)
3386{
3387	struct ice_phy_cache_mode_data cache_data;
3388	u8 pause_mask = 0x0;
3389
3390	if (!pi || !cfg)
3391		return -EINVAL;
3392
3393	switch (req_mode) {
3394	case ICE_FC_FULL:
3395		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3396		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3397		break;
3398	case ICE_FC_RX_PAUSE:
3399		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3400		break;
3401	case ICE_FC_TX_PAUSE:
3402		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3403		break;
3404	default:
3405		break;
3406	}
3407
3408	/* clear the old pause settings */
3409	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3410		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3411
3412	/* set the new capabilities */
3413	cfg->caps |= pause_mask;
3414
3415	/* Cache user FC request */
3416	cache_data.data.curr_user_fc_req = req_mode;
3417	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3418
3419	return 0;
3420}
3421
3422/**
3423 * ice_set_fc
3424 * @pi: port information structure
3425 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3426 * @ena_auto_link_update: enable automatic link update
3427 *
3428 * Set the requested flow control mode.
3429 */
3430int
3431ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3432{
3433	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3434	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3435	struct ice_hw *hw;
3436	int status;
3437
3438	if (!pi || !aq_failures)
3439		return -EINVAL;
3440
3441	*aq_failures = 0;
3442	hw = pi->hw;
3443
3444	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3445	if (!pcaps)
3446		return -ENOMEM;
3447
3448	/* Get the current PHY config */
3449	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3450				     pcaps, NULL);
3451	if (status) {
3452		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3453		goto out;
3454	}
3455
3456	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3457
3458	/* Configure the set PHY data */
3459	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3460	if (status)
3461		goto out;
3462
3463	/* If the capabilities have changed, then set the new config */
3464	if (cfg.caps != pcaps->caps) {
3465		int retry_count, retry_max = 10;
3466
3467		/* Auto restart link so settings take effect */
3468		if (ena_auto_link_update)
3469			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3470
3471		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3472		if (status) {
3473			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3474			goto out;
3475		}
3476
3477		/* Update the link info
3478		 * It sometimes takes a really long time for link to
3479		 * come back from the atomic reset. Thus, we wait a
3480		 * little bit.
3481		 */
3482		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3483			status = ice_update_link_info(pi);
3484
3485			if (!status)
3486				break;
3487
3488			mdelay(100);
3489		}
3490
3491		if (status)
3492			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3493	}
3494
3495out:
3496	return status;
3497}
3498
3499/**
3500 * ice_phy_caps_equals_cfg
3501 * @phy_caps: PHY capabilities
3502 * @phy_cfg: PHY configuration
3503 *
3504 * Helper function to determine if PHY capabilities matches PHY
3505 * configuration
3506 */
3507bool
3508ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3509			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3510{
3511	u8 caps_mask, cfg_mask;
3512
3513	if (!phy_caps || !phy_cfg)
3514		return false;
3515
3516	/* These bits are not common between capabilities and configuration.
3517	 * Do not use them to determine equality.
3518	 */
3519	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3520					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3521	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3522
3523	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3524	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3525	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3526	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3527	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3528	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3529	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3530		return false;
3531
3532	return true;
3533}
3534
3535/**
3536 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3537 * @pi: port information structure
3538 * @caps: PHY ability structure to copy date from
3539 * @cfg: PHY configuration structure to copy data to
3540 *
3541 * Helper function to copy AQC PHY get ability data to PHY set configuration
3542 * data structure
3543 */
3544void
3545ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3546			 struct ice_aqc_get_phy_caps_data *caps,
3547			 struct ice_aqc_set_phy_cfg_data *cfg)
3548{
3549	if (!pi || !caps || !cfg)
3550		return;
3551
3552	memset(cfg, 0, sizeof(*cfg));
3553	cfg->phy_type_low = caps->phy_type_low;
3554	cfg->phy_type_high = caps->phy_type_high;
3555	cfg->caps = caps->caps;
3556	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3557	cfg->eee_cap = caps->eee_cap;
3558	cfg->eeer_value = caps->eeer_value;
3559	cfg->link_fec_opt = caps->link_fec_options;
3560	cfg->module_compliance_enforcement =
3561		caps->module_compliance_enforcement;
3562}
3563
3564/**
3565 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3566 * @pi: port information structure
3567 * @cfg: PHY configuration data to set FEC mode
3568 * @fec: FEC mode to configure
3569 */
3570int
3571ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3572		enum ice_fec_mode fec)
3573{
3574	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3575	struct ice_hw *hw;
3576	int status;
3577
3578	if (!pi || !cfg)
3579		return -EINVAL;
3580
3581	hw = pi->hw;
3582
3583	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3584	if (!pcaps)
3585		return -ENOMEM;
3586
3587	status = ice_aq_get_phy_caps(pi, false,
3588				     (ice_fw_supports_report_dflt_cfg(hw) ?
3589				      ICE_AQC_REPORT_DFLT_CFG :
3590				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3591	if (status)
3592		goto out;
3593
3594	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3595	cfg->link_fec_opt = pcaps->link_fec_options;
3596
3597	switch (fec) {
3598	case ICE_FEC_BASER:
3599		/* Clear RS bits, and AND BASE-R ability
3600		 * bits and OR request bits.
3601		 */
3602		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3603			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3604		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3605			ICE_AQC_PHY_FEC_25G_KR_REQ;
3606		break;
3607	case ICE_FEC_RS:
3608		/* Clear BASE-R bits, and AND RS ability
3609		 * bits and OR request bits.
3610		 */
3611		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3612		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3613			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3614		break;
3615	case ICE_FEC_NONE:
3616		/* Clear all FEC option bits. */
3617		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3618		break;
3619	case ICE_FEC_AUTO:
3620		/* AND auto FEC bit, and all caps bits. */
3621		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3622		cfg->link_fec_opt |= pcaps->link_fec_options;
3623		break;
3624	default:
3625		status = -EINVAL;
3626		break;
3627	}
3628
3629	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3630	    !ice_fw_supports_report_dflt_cfg(hw)) {
3631		struct ice_link_default_override_tlv tlv = { 0 };
3632
3633		status = ice_get_link_default_override(&tlv, pi);
3634		if (status)
3635			goto out;
3636
3637		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3638		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3639			cfg->link_fec_opt = tlv.fec_options;
3640	}
3641
3642out:
3643	return status;
3644}
3645
3646/**
3647 * ice_get_link_status - get status of the HW network link
3648 * @pi: port information structure
3649 * @link_up: pointer to bool (true/false = linkup/linkdown)
3650 *
3651 * Variable link_up is true if link is up, false if link is down.
3652 * The variable link_up is invalid if status is non zero. As a
3653 * result of this call, link status reporting becomes enabled
3654 */
3655int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3656{
3657	struct ice_phy_info *phy_info;
3658	int status = 0;
3659
3660	if (!pi || !link_up)
3661		return -EINVAL;
3662
3663	phy_info = &pi->phy;
3664
3665	if (phy_info->get_link_info) {
3666		status = ice_update_link_info(pi);
3667
3668		if (status)
3669			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3670				  status);
3671	}
3672
3673	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3674
3675	return status;
3676}
3677
3678/**
3679 * ice_aq_set_link_restart_an
3680 * @pi: pointer to the port information structure
3681 * @ena_link: if true: enable link, if false: disable link
3682 * @cd: pointer to command details structure or NULL
3683 *
3684 * Sets up the link and restarts the Auto-Negotiation over the link.
3685 */
3686int
3687ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3688			   struct ice_sq_cd *cd)
3689{
3690	struct ice_aqc_restart_an *cmd;
3691	struct ice_aq_desc desc;
3692
3693	cmd = &desc.params.restart_an;
3694
3695	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3696
3697	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3698	cmd->lport_num = pi->lport;
3699	if (ena_link)
3700		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3701	else
3702		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3703
3704	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3705}
3706
3707/**
3708 * ice_aq_set_event_mask
3709 * @hw: pointer to the HW struct
3710 * @port_num: port number of the physical function
3711 * @mask: event mask to be set
3712 * @cd: pointer to command details structure or NULL
3713 *
3714 * Set event mask (0x0613)
3715 */
3716int
3717ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3718		      struct ice_sq_cd *cd)
3719{
3720	struct ice_aqc_set_event_mask *cmd;
3721	struct ice_aq_desc desc;
3722
3723	cmd = &desc.params.set_event_mask;
3724
3725	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3726
3727	cmd->lport_num = port_num;
3728
3729	cmd->event_mask = cpu_to_le16(mask);
3730	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3731}
3732
3733/**
3734 * ice_aq_set_mac_loopback
3735 * @hw: pointer to the HW struct
3736 * @ena_lpbk: Enable or Disable loopback
3737 * @cd: pointer to command details structure or NULL
3738 *
3739 * Enable/disable loopback on a given port
3740 */
3741int
3742ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3743{
3744	struct ice_aqc_set_mac_lb *cmd;
3745	struct ice_aq_desc desc;
3746
3747	cmd = &desc.params.set_mac_lb;
3748
3749	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3750	if (ena_lpbk)
3751		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3752
3753	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3754}
3755
3756/**
3757 * ice_aq_set_port_id_led
3758 * @pi: pointer to the port information
3759 * @is_orig_mode: is this LED set to original mode (by the net-list)
3760 * @cd: pointer to command details structure or NULL
3761 *
3762 * Set LED value for the given port (0x06e9)
3763 */
3764int
3765ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3766		       struct ice_sq_cd *cd)
3767{
3768	struct ice_aqc_set_port_id_led *cmd;
3769	struct ice_hw *hw = pi->hw;
3770	struct ice_aq_desc desc;
3771
3772	cmd = &desc.params.set_port_id_led;
3773
3774	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3775
3776	if (is_orig_mode)
3777		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3778	else
3779		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3780
3781	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3782}
3783
3784/**
3785 * ice_aq_get_port_options
3786 * @hw: pointer to the HW struct
3787 * @options: buffer for the resultant port options
3788 * @option_count: input - size of the buffer in port options structures,
3789 *                output - number of returned port options
3790 * @lport: logical port to call the command with (optional)
3791 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3792 *               when PF owns more than 1 port it must be true
3793 * @active_option_idx: index of active port option in returned buffer
3794 * @active_option_valid: active option in returned buffer is valid
3795 * @pending_option_idx: index of pending port option in returned buffer
3796 * @pending_option_valid: pending option in returned buffer is valid
3797 *
3798 * Calls Get Port Options AQC (0x06ea) and verifies result.
3799 */
3800int
3801ice_aq_get_port_options(struct ice_hw *hw,
3802			struct ice_aqc_get_port_options_elem *options,
3803			u8 *option_count, u8 lport, bool lport_valid,
3804			u8 *active_option_idx, bool *active_option_valid,
3805			u8 *pending_option_idx, bool *pending_option_valid)
3806{
3807	struct ice_aqc_get_port_options *cmd;
3808	struct ice_aq_desc desc;
3809	int status;
3810	u8 i;
3811
3812	/* options buffer shall be able to hold max returned options */
3813	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3814		return -EINVAL;
3815
3816	cmd = &desc.params.get_port_options;
3817	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3818
3819	if (lport_valid)
3820		cmd->lport_num = lport;
3821	cmd->lport_num_valid = lport_valid;
3822
3823	status = ice_aq_send_cmd(hw, &desc, options,
3824				 *option_count * sizeof(*options), NULL);
3825	if (status)
3826		return status;
3827
3828	/* verify direct FW response & set output parameters */
3829	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3830				  cmd->port_options_count);
3831	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3832	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3833					 cmd->port_options);
3834	if (*active_option_valid) {
3835		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3836					       cmd->port_options);
3837		if (*active_option_idx > (*option_count - 1))
3838			return -EIO;
3839		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3840			  *active_option_idx);
3841	}
3842
3843	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3844					  cmd->pending_port_option_status);
3845	if (*pending_option_valid) {
3846		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3847						cmd->pending_port_option_status);
3848		if (*pending_option_idx > (*option_count - 1))
3849			return -EIO;
3850		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3851			  *pending_option_idx);
3852	}
3853
3854	/* mask output options fields */
3855	for (i = 0; i < *option_count; i++) {
3856		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3857					   options[i].pmd);
3858		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3859						      options[i].max_lane_speed);
3860		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3861			  options[i].pmd, options[i].max_lane_speed);
3862	}
3863
3864	return 0;
3865}
3866
3867/**
3868 * ice_aq_set_port_option
3869 * @hw: pointer to the HW struct
3870 * @lport: logical port to call the command with
3871 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3872 *               when PF owns more than 1 port it must be true
3873 * @new_option: new port option to be written
3874 *
3875 * Calls Set Port Options AQC (0x06eb).
3876 */
3877int
3878ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3879		       u8 new_option)
3880{
3881	struct ice_aqc_set_port_option *cmd;
3882	struct ice_aq_desc desc;
3883
3884	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3885		return -EINVAL;
3886
3887	cmd = &desc.params.set_port_option;
3888	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3889
3890	if (lport_valid)
3891		cmd->lport_num = lport;
3892
3893	cmd->lport_num_valid = lport_valid;
3894	cmd->selected_port_option = new_option;
3895
3896	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3897}
3898
3899/**
3900 * ice_aq_sff_eeprom
3901 * @hw: pointer to the HW struct
3902 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3903 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3904 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3905 * @page: QSFP page
3906 * @set_page: set or ignore the page
3907 * @data: pointer to data buffer to be read/written to the I2C device.
3908 * @length: 1-16 for read, 1 for write.
3909 * @write: 0 read, 1 for write.
3910 * @cd: pointer to command details structure or NULL
3911 *
3912 * Read/Write SFF EEPROM (0x06EE)
3913 */
3914int
3915ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3916		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3917		  bool write, struct ice_sq_cd *cd)
3918{
3919	struct ice_aqc_sff_eeprom *cmd;
3920	struct ice_aq_desc desc;
3921	u16 i2c_bus_addr;
3922	int status;
3923
3924	if (!data || (mem_addr & 0xff00))
3925		return -EINVAL;
3926
3927	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3928	cmd = &desc.params.read_write_sff_param;
3929	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3930	cmd->lport_num = (u8)(lport & 0xff);
3931	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3932	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
3933		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
3934	if (write)
3935		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
3936	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
3937	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3938	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
3939
3940	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3941	return status;
3942}
3943
3944static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
3945{
3946	switch (type) {
3947	case ICE_LUT_VSI:
3948		return ICE_LUT_VSI_SIZE;
3949	case ICE_LUT_GLOBAL:
3950		return ICE_LUT_GLOBAL_SIZE;
3951	case ICE_LUT_PF:
3952		return ICE_LUT_PF_SIZE;
3953	}
3954	WARN_ONCE(1, "incorrect type passed");
3955	return ICE_LUT_VSI_SIZE;
3956}
3957
3958static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
3959{
3960	switch (size) {
3961	case ICE_LUT_VSI_SIZE:
3962		return ICE_AQC_LUT_SIZE_SMALL;
3963	case ICE_LUT_GLOBAL_SIZE:
3964		return ICE_AQC_LUT_SIZE_512;
3965	case ICE_LUT_PF_SIZE:
3966		return ICE_AQC_LUT_SIZE_2K;
3967	}
3968	WARN_ONCE(1, "incorrect size passed");
3969	return 0;
3970}
3971
3972/**
3973 * __ice_aq_get_set_rss_lut
3974 * @hw: pointer to the hardware structure
3975 * @params: RSS LUT parameters
3976 * @set: set true to set the table, false to get the table
3977 *
3978 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3979 */
3980static int
3981__ice_aq_get_set_rss_lut(struct ice_hw *hw,
3982			 struct ice_aq_get_set_rss_lut_params *params, bool set)
3983{
3984	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
3985	enum ice_lut_type lut_type = params->lut_type;
3986	struct ice_aqc_get_set_rss_lut *desc_params;
3987	enum ice_aqc_lut_flags flags;
3988	enum ice_lut_size lut_size;
3989	struct ice_aq_desc desc;
3990	u8 *lut = params->lut;
3991
3992
3993	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
3994		return -EINVAL;
3995
3996	lut_size = ice_lut_type_to_size(lut_type);
3997	if (lut_size > params->lut_size)
3998		return -EINVAL;
3999	else if (set && lut_size != params->lut_size)
4000		return -EINVAL;
4001
4002	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4003	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4004	if (set)
4005		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4006
4007	desc_params = &desc.params.get_set_rss_lut;
4008	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4009	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4010
4011	if (lut_type == ICE_LUT_GLOBAL)
4012		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4013					  params->global_lut_id);
4014
4015	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4016	desc_params->flags = cpu_to_le16(flags);
4017
4018	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4019}
4020
4021/**
4022 * ice_aq_get_rss_lut
4023 * @hw: pointer to the hardware structure
4024 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4025 *
4026 * get the RSS lookup table, PF or VSI type
4027 */
4028int
4029ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4030{
4031	return __ice_aq_get_set_rss_lut(hw, get_params, false);
4032}
4033
4034/**
4035 * ice_aq_set_rss_lut
4036 * @hw: pointer to the hardware structure
4037 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4038 *
4039 * set the RSS lookup table, PF or VSI type
4040 */
4041int
4042ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4043{
4044	return __ice_aq_get_set_rss_lut(hw, set_params, true);
4045}
4046
4047/**
4048 * __ice_aq_get_set_rss_key
4049 * @hw: pointer to the HW struct
4050 * @vsi_id: VSI FW index
4051 * @key: pointer to key info struct
4052 * @set: set true to set the key, false to get the key
4053 *
4054 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4055 */
4056static int
4057__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4058			 struct ice_aqc_get_set_rss_keys *key, bool set)
4059{
4060	struct ice_aqc_get_set_rss_key *desc_params;
4061	u16 key_size = sizeof(*key);
4062	struct ice_aq_desc desc;
4063
4064	if (set) {
4065		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4066		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4067	} else {
4068		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4069	}
4070
4071	desc_params = &desc.params.get_set_rss_key;
4072	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4073
4074	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4075}
4076
4077/**
4078 * ice_aq_get_rss_key
4079 * @hw: pointer to the HW struct
4080 * @vsi_handle: software VSI handle
4081 * @key: pointer to key info struct
4082 *
4083 * get the RSS key per VSI
4084 */
4085int
4086ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4087		   struct ice_aqc_get_set_rss_keys *key)
4088{
4089	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4090		return -EINVAL;
4091
4092	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4093					key, false);
4094}
4095
4096/**
4097 * ice_aq_set_rss_key
4098 * @hw: pointer to the HW struct
4099 * @vsi_handle: software VSI handle
4100 * @keys: pointer to key info struct
4101 *
4102 * set the RSS key per VSI
4103 */
4104int
4105ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4106		   struct ice_aqc_get_set_rss_keys *keys)
4107{
4108	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4109		return -EINVAL;
4110
4111	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4112					keys, true);
4113}
4114
4115/**
4116 * ice_aq_add_lan_txq
4117 * @hw: pointer to the hardware structure
4118 * @num_qgrps: Number of added queue groups
4119 * @qg_list: list of queue groups to be added
4120 * @buf_size: size of buffer for indirect command
4121 * @cd: pointer to command details structure or NULL
4122 *
4123 * Add Tx LAN queue (0x0C30)
4124 *
4125 * NOTE:
4126 * Prior to calling add Tx LAN queue:
4127 * Initialize the following as part of the Tx queue context:
4128 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4129 * Cache profile and Packet shaper profile.
4130 *
4131 * After add Tx LAN queue AQ command is completed:
4132 * Interrupts should be associated with specific queues,
4133 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4134 * flow.
4135 */
4136static int
4137ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4138		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4139		   struct ice_sq_cd *cd)
4140{
4141	struct ice_aqc_add_tx_qgrp *list;
4142	struct ice_aqc_add_txqs *cmd;
4143	struct ice_aq_desc desc;
4144	u16 i, sum_size = 0;
4145
4146	cmd = &desc.params.add_txqs;
4147
4148	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4149
4150	if (!qg_list)
4151		return -EINVAL;
4152
4153	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4154		return -EINVAL;
4155
4156	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4157		sum_size += struct_size(list, txqs, list->num_txqs);
4158		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4159						      list->num_txqs);
4160	}
4161
4162	if (buf_size != sum_size)
4163		return -EINVAL;
4164
4165	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4166
4167	cmd->num_qgrps = num_qgrps;
4168
4169	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4170}
4171
4172/**
4173 * ice_aq_dis_lan_txq
4174 * @hw: pointer to the hardware structure
4175 * @num_qgrps: number of groups in the list
4176 * @qg_list: the list of groups to disable
4177 * @buf_size: the total size of the qg_list buffer in bytes
4178 * @rst_src: if called due to reset, specifies the reset source
4179 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4180 * @cd: pointer to command details structure or NULL
4181 *
4182 * Disable LAN Tx queue (0x0C31)
4183 */
4184static int
4185ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4186		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4187		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4188		   struct ice_sq_cd *cd)
4189{
4190	struct ice_aqc_dis_txq_item *item;
4191	struct ice_aqc_dis_txqs *cmd;
4192	struct ice_aq_desc desc;
4193	u16 vmvf_and_timeout;
4194	u16 i, sz = 0;
4195	int status;
4196
4197	cmd = &desc.params.dis_txqs;
4198	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4199
4200	/* qg_list can be NULL only in VM/VF reset flow */
4201	if (!qg_list && !rst_src)
4202		return -EINVAL;
4203
4204	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4205		return -EINVAL;
4206
4207	cmd->num_entries = num_qgrps;
4208
4209	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4210
4211	switch (rst_src) {
4212	case ICE_VM_RESET:
4213		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4214		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4215		break;
4216	case ICE_VF_RESET:
4217		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4218		/* In this case, FW expects vmvf_num to be absolute VF ID */
4219		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4220				    ICE_AQC_Q_DIS_VMVF_NUM_M;
4221		break;
4222	case ICE_NO_RESET:
4223	default:
4224		break;
4225	}
4226
4227	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4228
4229	/* flush pipe on time out */
4230	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4231	/* If no queue group info, we are in a reset flow. Issue the AQ */
4232	if (!qg_list)
4233		goto do_aq;
4234
4235	/* set RD bit to indicate that command buffer is provided by the driver
4236	 * and it needs to be read by the firmware
4237	 */
4238	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4239
4240	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4241		u16 item_size = struct_size(item, q_id, item->num_qs);
4242
4243		/* If the num of queues is even, add 2 bytes of padding */
4244		if ((item->num_qs % 2) == 0)
4245			item_size += 2;
4246
4247		sz += item_size;
4248
4249		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4250	}
4251
4252	if (buf_size != sz)
4253		return -EINVAL;
4254
4255do_aq:
4256	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4257	if (status) {
4258		if (!qg_list)
4259			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4260				  vmvf_num, hw->adminq.sq_last_status);
4261		else
4262			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4263				  le16_to_cpu(qg_list[0].q_id[0]),
4264				  hw->adminq.sq_last_status);
4265	}
4266	return status;
4267}
4268
4269/**
4270 * ice_aq_cfg_lan_txq
4271 * @hw: pointer to the hardware structure
4272 * @buf: buffer for command
4273 * @buf_size: size of buffer in bytes
4274 * @num_qs: number of queues being configured
4275 * @oldport: origination lport
4276 * @newport: destination lport
4277 * @cd: pointer to command details structure or NULL
4278 *
4279 * Move/Configure LAN Tx queue (0x0C32)
4280 *
4281 * There is a better AQ command to use for moving nodes, so only coding
4282 * this one for configuring the node.
4283 */
4284int
4285ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4286		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4287		   struct ice_sq_cd *cd)
4288{
4289	struct ice_aqc_cfg_txqs *cmd;
4290	struct ice_aq_desc desc;
4291	int status;
4292
4293	cmd = &desc.params.cfg_txqs;
4294	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4295	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4296
4297	if (!buf)
4298		return -EINVAL;
4299
4300	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4301	cmd->num_qs = num_qs;
4302	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4303	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4304	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4305	cmd->blocked_cgds = 0;
4306
4307	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4308	if (status)
4309		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4310			  hw->adminq.sq_last_status);
4311	return status;
4312}
4313
4314/**
4315 * ice_aq_add_rdma_qsets
4316 * @hw: pointer to the hardware structure
4317 * @num_qset_grps: Number of RDMA Qset groups
4318 * @qset_list: list of Qset groups to be added
4319 * @buf_size: size of buffer for indirect command
4320 * @cd: pointer to command details structure or NULL
4321 *
4322 * Add Tx RDMA Qsets (0x0C33)
4323 */
4324static int
4325ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4326		      struct ice_aqc_add_rdma_qset_data *qset_list,
4327		      u16 buf_size, struct ice_sq_cd *cd)
4328{
4329	struct ice_aqc_add_rdma_qset_data *list;
4330	struct ice_aqc_add_rdma_qset *cmd;
4331	struct ice_aq_desc desc;
4332	u16 i, sum_size = 0;
4333
4334	cmd = &desc.params.add_rdma_qset;
4335
4336	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4337
4338	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4339		return -EINVAL;
4340
4341	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4342		u16 num_qsets = le16_to_cpu(list->num_qsets);
4343
4344		sum_size += struct_size(list, rdma_qsets, num_qsets);
4345		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4346							     num_qsets);
4347	}
4348
4349	if (buf_size != sum_size)
4350		return -EINVAL;
4351
4352	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4353
4354	cmd->num_qset_grps = num_qset_grps;
4355
4356	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4357}
4358
4359/* End of FW Admin Queue command wrappers */
4360
4361/**
4362 * ice_pack_ctx_byte - write a byte to a packed context structure
4363 * @src_ctx: unpacked source context structure
4364 * @dest_ctx: packed destination context data
4365 * @ce_info: context element description
4366 */
4367static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4368			      const struct ice_ctx_ele *ce_info)
4369{
4370	u8 src_byte, dest_byte, mask;
4371	u8 *from, *dest;
4372	u16 shift_width;
4373
4374	/* copy from the next struct field */
4375	from = src_ctx + ce_info->offset;
4376
4377	/* prepare the bits and mask */
4378	shift_width = ce_info->lsb % 8;
4379	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4380
4381	src_byte = *from;
4382	src_byte <<= shift_width;
4383	src_byte &= mask;
4384
4385	/* get the current bits from the target bit string */
4386	dest = dest_ctx + (ce_info->lsb / 8);
4387
4388	memcpy(&dest_byte, dest, sizeof(dest_byte));
4389
4390	dest_byte &= ~mask;	/* get the bits not changing */
4391	dest_byte |= src_byte;	/* add in the new bits */
4392
4393	/* put it all back */
4394	memcpy(dest, &dest_byte, sizeof(dest_byte));
4395}
4396
4397/**
4398 * ice_pack_ctx_word - write a word to a packed context structure
4399 * @src_ctx: unpacked source context structure
4400 * @dest_ctx: packed destination context data
4401 * @ce_info: context element description
4402 */
4403static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4404			      const struct ice_ctx_ele *ce_info)
4405{
4406	u16 src_word, mask;
4407	__le16 dest_word;
4408	u8 *from, *dest;
4409	u16 shift_width;
4410
4411	/* copy from the next struct field */
4412	from = src_ctx + ce_info->offset;
4413
4414	/* prepare the bits and mask */
4415	shift_width = ce_info->lsb % 8;
4416	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4417
4418	/* don't swizzle the bits until after the mask because the mask bits
4419	 * will be in a different bit position on big endian machines
4420	 */
4421	src_word = *(u16 *)from;
4422	src_word <<= shift_width;
4423	src_word &= mask;
4424
4425	/* get the current bits from the target bit string */
4426	dest = dest_ctx + (ce_info->lsb / 8);
4427
4428	memcpy(&dest_word, dest, sizeof(dest_word));
4429
4430	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4431	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4432
4433	/* put it all back */
4434	memcpy(dest, &dest_word, sizeof(dest_word));
4435}
4436
4437/**
4438 * ice_pack_ctx_dword - write a dword to a packed context structure
4439 * @src_ctx: unpacked source context structure
4440 * @dest_ctx: packed destination context data
4441 * @ce_info: context element description
4442 */
4443static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4444			       const struct ice_ctx_ele *ce_info)
4445{
4446	u32 src_dword, mask;
4447	__le32 dest_dword;
4448	u8 *from, *dest;
4449	u16 shift_width;
4450
4451	/* copy from the next struct field */
4452	from = src_ctx + ce_info->offset;
4453
4454	/* prepare the bits and mask */
4455	shift_width = ce_info->lsb % 8;
4456	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4457
4458	/* don't swizzle the bits until after the mask because the mask bits
4459	 * will be in a different bit position on big endian machines
4460	 */
4461	src_dword = *(u32 *)from;
4462	src_dword <<= shift_width;
4463	src_dword &= mask;
4464
4465	/* get the current bits from the target bit string */
4466	dest = dest_ctx + (ce_info->lsb / 8);
4467
4468	memcpy(&dest_dword, dest, sizeof(dest_dword));
4469
4470	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4471	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4472
4473	/* put it all back */
4474	memcpy(dest, &dest_dword, sizeof(dest_dword));
4475}
4476
4477/**
4478 * ice_pack_ctx_qword - write a qword to a packed context structure
4479 * @src_ctx: unpacked source context structure
4480 * @dest_ctx: packed destination context data
4481 * @ce_info: context element description
4482 */
4483static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4484			       const struct ice_ctx_ele *ce_info)
4485{
4486	u64 src_qword, mask;
4487	__le64 dest_qword;
4488	u8 *from, *dest;
4489	u16 shift_width;
4490
4491	/* copy from the next struct field */
4492	from = src_ctx + ce_info->offset;
4493
4494	/* prepare the bits and mask */
4495	shift_width = ce_info->lsb % 8;
4496	mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
4497
4498	/* don't swizzle the bits until after the mask because the mask bits
4499	 * will be in a different bit position on big endian machines
4500	 */
4501	src_qword = *(u64 *)from;
4502	src_qword <<= shift_width;
4503	src_qword &= mask;
4504
4505	/* get the current bits from the target bit string */
4506	dest = dest_ctx + (ce_info->lsb / 8);
4507
4508	memcpy(&dest_qword, dest, sizeof(dest_qword));
4509
4510	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4511	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4512
4513	/* put it all back */
4514	memcpy(dest, &dest_qword, sizeof(dest_qword));
4515}
4516
4517/**
4518 * ice_set_ctx - set context bits in packed structure
4519 * @hw: pointer to the hardware structure
4520 * @src_ctx:  pointer to a generic non-packed context structure
4521 * @dest_ctx: pointer to memory for the packed structure
4522 * @ce_info: List of Rx context elements
4523 */
4524int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4525		const struct ice_ctx_ele *ce_info)
4526{
4527	int f;
4528
4529	for (f = 0; ce_info[f].width; f++) {
4530		/* We have to deal with each element of the FW response
4531		 * using the correct size so that we are correct regardless
4532		 * of the endianness of the machine.
4533		 */
4534		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4535			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4536				  f, ce_info[f].width, ce_info[f].size_of);
4537			continue;
4538		}
4539		switch (ce_info[f].size_of) {
4540		case sizeof(u8):
4541			ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
4542			break;
4543		case sizeof(u16):
4544			ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
4545			break;
4546		case sizeof(u32):
4547			ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
4548			break;
4549		case sizeof(u64):
4550			ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
4551			break;
4552		default:
4553			return -EINVAL;
4554		}
4555	}
4556
4557	return 0;
4558}
4559
4560/**
4561 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4562 * @hw: pointer to the HW struct
4563 * @vsi_handle: software VSI handle
4564 * @tc: TC number
4565 * @q_handle: software queue handle
4566 */
4567struct ice_q_ctx *
4568ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4569{
4570	struct ice_vsi_ctx *vsi;
4571	struct ice_q_ctx *q_ctx;
4572
4573	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4574	if (!vsi)
4575		return NULL;
4576	if (q_handle >= vsi->num_lan_q_entries[tc])
4577		return NULL;
4578	if (!vsi->lan_q_ctx[tc])
4579		return NULL;
4580	q_ctx = vsi->lan_q_ctx[tc];
4581	return &q_ctx[q_handle];
4582}
4583
4584/**
4585 * ice_ena_vsi_txq
4586 * @pi: port information structure
4587 * @vsi_handle: software VSI handle
4588 * @tc: TC number
4589 * @q_handle: software queue handle
4590 * @num_qgrps: Number of added queue groups
4591 * @buf: list of queue groups to be added
4592 * @buf_size: size of buffer for indirect command
4593 * @cd: pointer to command details structure or NULL
4594 *
4595 * This function adds one LAN queue
4596 */
4597int
4598ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4599		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4600		struct ice_sq_cd *cd)
4601{
4602	struct ice_aqc_txsched_elem_data node = { 0 };
4603	struct ice_sched_node *parent;
4604	struct ice_q_ctx *q_ctx;
4605	struct ice_hw *hw;
4606	int status;
4607
4608	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4609		return -EIO;
4610
4611	if (num_qgrps > 1 || buf->num_txqs > 1)
4612		return -ENOSPC;
4613
4614	hw = pi->hw;
4615
4616	if (!ice_is_vsi_valid(hw, vsi_handle))
4617		return -EINVAL;
4618
4619	mutex_lock(&pi->sched_lock);
4620
4621	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4622	if (!q_ctx) {
4623		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4624			  q_handle);
4625		status = -EINVAL;
4626		goto ena_txq_exit;
4627	}
4628
4629	/* find a parent node */
4630	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4631					    ICE_SCHED_NODE_OWNER_LAN);
4632	if (!parent) {
4633		status = -EINVAL;
4634		goto ena_txq_exit;
4635	}
4636
4637	buf->parent_teid = parent->info.node_teid;
4638	node.parent_teid = parent->info.node_teid;
4639	/* Mark that the values in the "generic" section as valid. The default
4640	 * value in the "generic" section is zero. This means that :
4641	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4642	 * - 0 priority among siblings, indicated by Bit 1-3.
4643	 * - WFQ, indicated by Bit 4.
4644	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4645	 * Bit 5-6.
4646	 * - Bit 7 is reserved.
4647	 * Without setting the generic section as valid in valid_sections, the
4648	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4649	 */
4650	buf->txqs[0].info.valid_sections =
4651		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4652		ICE_AQC_ELEM_VALID_EIR;
4653	buf->txqs[0].info.generic = 0;
4654	buf->txqs[0].info.cir_bw.bw_profile_idx =
4655		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4656	buf->txqs[0].info.cir_bw.bw_alloc =
4657		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4658	buf->txqs[0].info.eir_bw.bw_profile_idx =
4659		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4660	buf->txqs[0].info.eir_bw.bw_alloc =
4661		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4662
4663	/* add the LAN queue */
4664	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4665	if (status) {
4666		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4667			  le16_to_cpu(buf->txqs[0].txq_id),
4668			  hw->adminq.sq_last_status);
4669		goto ena_txq_exit;
4670	}
4671
4672	node.node_teid = buf->txqs[0].q_teid;
4673	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4674	q_ctx->q_handle = q_handle;
4675	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4676
4677	/* add a leaf node into scheduler tree queue layer */
4678	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4679	if (!status)
4680		status = ice_sched_replay_q_bw(pi, q_ctx);
4681
4682ena_txq_exit:
4683	mutex_unlock(&pi->sched_lock);
4684	return status;
4685}
4686
4687/**
4688 * ice_dis_vsi_txq
4689 * @pi: port information structure
4690 * @vsi_handle: software VSI handle
4691 * @tc: TC number
4692 * @num_queues: number of queues
4693 * @q_handles: pointer to software queue handle array
4694 * @q_ids: pointer to the q_id array
4695 * @q_teids: pointer to queue node teids
4696 * @rst_src: if called due to reset, specifies the reset source
4697 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4698 * @cd: pointer to command details structure or NULL
4699 *
4700 * This function removes queues and their corresponding nodes in SW DB
4701 */
4702int
4703ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4704		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4705		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4706		struct ice_sq_cd *cd)
4707{
4708	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4709	u16 i, buf_size = __struct_size(qg_list);
4710	struct ice_q_ctx *q_ctx;
4711	int status = -ENOENT;
4712	struct ice_hw *hw;
4713
4714	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4715		return -EIO;
4716
4717	hw = pi->hw;
4718
4719	if (!num_queues) {
4720		/* if queue is disabled already yet the disable queue command
4721		 * has to be sent to complete the VF reset, then call
4722		 * ice_aq_dis_lan_txq without any queue information
4723		 */
4724		if (rst_src)
4725			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4726						  vmvf_num, NULL);
4727		return -EIO;
4728	}
4729
4730	mutex_lock(&pi->sched_lock);
4731
4732	for (i = 0; i < num_queues; i++) {
4733		struct ice_sched_node *node;
4734
4735		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4736		if (!node)
4737			continue;
4738		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4739		if (!q_ctx) {
4740			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4741				  q_handles[i]);
4742			continue;
4743		}
4744		if (q_ctx->q_handle != q_handles[i]) {
4745			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4746				  q_ctx->q_handle, q_handles[i]);
4747			continue;
4748		}
4749		qg_list->parent_teid = node->info.parent_teid;
4750		qg_list->num_qs = 1;
4751		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4752		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4753					    vmvf_num, cd);
4754
4755		if (status)
4756			break;
4757		ice_free_sched_node(pi, node);
4758		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4759		q_ctx->q_teid = ICE_INVAL_TEID;
4760	}
4761	mutex_unlock(&pi->sched_lock);
4762	return status;
4763}
4764
4765/**
4766 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4767 * @pi: port information structure
4768 * @vsi_handle: software VSI handle
4769 * @tc_bitmap: TC bitmap
4770 * @maxqs: max queues array per TC
4771 * @owner: LAN or RDMA
4772 *
4773 * This function adds/updates the VSI queues per TC.
4774 */
4775static int
4776ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4777	       u16 *maxqs, u8 owner)
4778{
4779	int status = 0;
4780	u8 i;
4781
4782	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4783		return -EIO;
4784
4785	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4786		return -EINVAL;
4787
4788	mutex_lock(&pi->sched_lock);
4789
4790	ice_for_each_traffic_class(i) {
4791		/* configuration is possible only if TC node is present */
4792		if (!ice_sched_get_tc_node(pi, i))
4793			continue;
4794
4795		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4796					   ice_is_tc_ena(tc_bitmap, i));
4797		if (status)
4798			break;
4799	}
4800
4801	mutex_unlock(&pi->sched_lock);
4802	return status;
4803}
4804
4805/**
4806 * ice_cfg_vsi_lan - configure VSI LAN queues
4807 * @pi: port information structure
4808 * @vsi_handle: software VSI handle
4809 * @tc_bitmap: TC bitmap
4810 * @max_lanqs: max LAN queues array per TC
4811 *
4812 * This function adds/updates the VSI LAN queues per TC.
4813 */
4814int
4815ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4816		u16 *max_lanqs)
4817{
4818	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4819			      ICE_SCHED_NODE_OWNER_LAN);
4820}
4821
4822/**
4823 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4824 * @pi: port information structure
4825 * @vsi_handle: software VSI handle
4826 * @tc_bitmap: TC bitmap
4827 * @max_rdmaqs: max RDMA queues array per TC
4828 *
4829 * This function adds/updates the VSI RDMA queues per TC.
4830 */
4831int
4832ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4833		 u16 *max_rdmaqs)
4834{
4835	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4836			      ICE_SCHED_NODE_OWNER_RDMA);
4837}
4838
4839/**
4840 * ice_ena_vsi_rdma_qset
4841 * @pi: port information structure
4842 * @vsi_handle: software VSI handle
4843 * @tc: TC number
4844 * @rdma_qset: pointer to RDMA Qset
4845 * @num_qsets: number of RDMA Qsets
4846 * @qset_teid: pointer to Qset node TEIDs
4847 *
4848 * This function adds RDMA Qset
4849 */
4850int
4851ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4852		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4853{
4854	struct ice_aqc_txsched_elem_data node = { 0 };
4855	struct ice_aqc_add_rdma_qset_data *buf;
4856	struct ice_sched_node *parent;
4857	struct ice_hw *hw;
4858	u16 i, buf_size;
4859	int ret;
4860
4861	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4862		return -EIO;
4863	hw = pi->hw;
4864
4865	if (!ice_is_vsi_valid(hw, vsi_handle))
4866		return -EINVAL;
4867
4868	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4869	buf = kzalloc(buf_size, GFP_KERNEL);
4870	if (!buf)
4871		return -ENOMEM;
4872	mutex_lock(&pi->sched_lock);
4873
4874	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4875					    ICE_SCHED_NODE_OWNER_RDMA);
4876	if (!parent) {
4877		ret = -EINVAL;
4878		goto rdma_error_exit;
4879	}
4880	buf->parent_teid = parent->info.node_teid;
4881	node.parent_teid = parent->info.node_teid;
4882
4883	buf->num_qsets = cpu_to_le16(num_qsets);
4884	for (i = 0; i < num_qsets; i++) {
4885		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4886		buf->rdma_qsets[i].info.valid_sections =
4887			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4888			ICE_AQC_ELEM_VALID_EIR;
4889		buf->rdma_qsets[i].info.generic = 0;
4890		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4891			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4892		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4893			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4894		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4895			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4896		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4897			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4898	}
4899	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4900	if (ret) {
4901		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4902		goto rdma_error_exit;
4903	}
4904	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4905	for (i = 0; i < num_qsets; i++) {
4906		node.node_teid = buf->rdma_qsets[i].qset_teid;
4907		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4908					 &node, NULL);
4909		if (ret)
4910			break;
4911		qset_teid[i] = le32_to_cpu(node.node_teid);
4912	}
4913rdma_error_exit:
4914	mutex_unlock(&pi->sched_lock);
4915	kfree(buf);
4916	return ret;
4917}
4918
4919/**
4920 * ice_dis_vsi_rdma_qset - free RDMA resources
4921 * @pi: port_info struct
4922 * @count: number of RDMA Qsets to free
4923 * @qset_teid: TEID of Qset node
4924 * @q_id: list of queue IDs being disabled
4925 */
4926int
4927ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4928		      u16 *q_id)
4929{
4930	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4931	u16 qg_size = __struct_size(qg_list);
4932	struct ice_hw *hw;
4933	int status = 0;
4934	int i;
4935
4936	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4937		return -EIO;
4938
4939	hw = pi->hw;
4940
4941	mutex_lock(&pi->sched_lock);
4942
4943	for (i = 0; i < count; i++) {
4944		struct ice_sched_node *node;
4945
4946		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4947		if (!node)
4948			continue;
4949
4950		qg_list->parent_teid = node->info.parent_teid;
4951		qg_list->num_qs = 1;
4952		qg_list->q_id[0] =
4953			cpu_to_le16(q_id[i] |
4954				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4955
4956		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4957					    ICE_NO_RESET, 0, NULL);
4958		if (status)
4959			break;
4960
4961		ice_free_sched_node(pi, node);
4962	}
4963
4964	mutex_unlock(&pi->sched_lock);
4965	return status;
4966}
4967
4968/**
4969 * ice_aq_get_cgu_abilities - get cgu abilities
4970 * @hw: pointer to the HW struct
4971 * @abilities: CGU abilities
4972 *
4973 * Get CGU abilities (0x0C61)
4974 * Return: 0 on success or negative value on failure.
4975 */
4976int
4977ice_aq_get_cgu_abilities(struct ice_hw *hw,
4978			 struct ice_aqc_get_cgu_abilities *abilities)
4979{
4980	struct ice_aq_desc desc;
4981
4982	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
4983	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
4984}
4985
4986/**
4987 * ice_aq_set_input_pin_cfg - set input pin config
4988 * @hw: pointer to the HW struct
4989 * @input_idx: Input index
4990 * @flags1: Input flags
4991 * @flags2: Input flags
4992 * @freq: Frequency in Hz
4993 * @phase_delay: Delay in ps
4994 *
4995 * Set CGU input config (0x0C62)
4996 * Return: 0 on success or negative value on failure.
4997 */
4998int
4999ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5000			 u32 freq, s32 phase_delay)
5001{
5002	struct ice_aqc_set_cgu_input_config *cmd;
5003	struct ice_aq_desc desc;
5004
5005	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5006	cmd = &desc.params.set_cgu_input_config;
5007	cmd->input_idx = input_idx;
5008	cmd->flags1 = flags1;
5009	cmd->flags2 = flags2;
5010	cmd->freq = cpu_to_le32(freq);
5011	cmd->phase_delay = cpu_to_le32(phase_delay);
5012
5013	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5014}
5015
5016/**
5017 * ice_aq_get_input_pin_cfg - get input pin config
5018 * @hw: pointer to the HW struct
5019 * @input_idx: Input index
5020 * @status: Pin status
5021 * @type: Pin type
5022 * @flags1: Input flags
5023 * @flags2: Input flags
5024 * @freq: Frequency in Hz
5025 * @phase_delay: Delay in ps
5026 *
5027 * Get CGU input config (0x0C63)
5028 * Return: 0 on success or negative value on failure.
5029 */
5030int
5031ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5032			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5033{
5034	struct ice_aqc_get_cgu_input_config *cmd;
5035	struct ice_aq_desc desc;
5036	int ret;
5037
5038	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5039	cmd = &desc.params.get_cgu_input_config;
5040	cmd->input_idx = input_idx;
5041
5042	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5043	if (!ret) {
5044		if (status)
5045			*status = cmd->status;
5046		if (type)
5047			*type = cmd->type;
5048		if (flags1)
5049			*flags1 = cmd->flags1;
5050		if (flags2)
5051			*flags2 = cmd->flags2;
5052		if (freq)
5053			*freq = le32_to_cpu(cmd->freq);
5054		if (phase_delay)
5055			*phase_delay = le32_to_cpu(cmd->phase_delay);
5056	}
5057
5058	return ret;
5059}
5060
5061/**
5062 * ice_aq_set_output_pin_cfg - set output pin config
5063 * @hw: pointer to the HW struct
5064 * @output_idx: Output index
5065 * @flags: Output flags
5066 * @src_sel: Index of DPLL block
5067 * @freq: Output frequency
5068 * @phase_delay: Output phase compensation
5069 *
5070 * Set CGU output config (0x0C64)
5071 * Return: 0 on success or negative value on failure.
5072 */
5073int
5074ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5075			  u8 src_sel, u32 freq, s32 phase_delay)
5076{
5077	struct ice_aqc_set_cgu_output_config *cmd;
5078	struct ice_aq_desc desc;
5079
5080	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5081	cmd = &desc.params.set_cgu_output_config;
5082	cmd->output_idx = output_idx;
5083	cmd->flags = flags;
5084	cmd->src_sel = src_sel;
5085	cmd->freq = cpu_to_le32(freq);
5086	cmd->phase_delay = cpu_to_le32(phase_delay);
5087
5088	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5089}
5090
5091/**
5092 * ice_aq_get_output_pin_cfg - get output pin config
5093 * @hw: pointer to the HW struct
5094 * @output_idx: Output index
5095 * @flags: Output flags
5096 * @src_sel: Internal DPLL source
5097 * @freq: Output frequency
5098 * @src_freq: Source frequency
5099 *
5100 * Get CGU output config (0x0C65)
5101 * Return: 0 on success or negative value on failure.
5102 */
5103int
5104ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5105			  u8 *src_sel, u32 *freq, u32 *src_freq)
5106{
5107	struct ice_aqc_get_cgu_output_config *cmd;
5108	struct ice_aq_desc desc;
5109	int ret;
5110
5111	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5112	cmd = &desc.params.get_cgu_output_config;
5113	cmd->output_idx = output_idx;
5114
5115	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5116	if (!ret) {
5117		if (flags)
5118			*flags = cmd->flags;
5119		if (src_sel)
5120			*src_sel = cmd->src_sel;
5121		if (freq)
5122			*freq = le32_to_cpu(cmd->freq);
5123		if (src_freq)
5124			*src_freq = le32_to_cpu(cmd->src_freq);
5125	}
5126
5127	return ret;
5128}
5129
5130/**
5131 * ice_aq_get_cgu_dpll_status - get dpll status
5132 * @hw: pointer to the HW struct
5133 * @dpll_num: DPLL index
5134 * @ref_state: Reference clock state
5135 * @config: current DPLL config
5136 * @dpll_state: current DPLL state
5137 * @phase_offset: Phase offset in ns
5138 * @eec_mode: EEC_mode
5139 *
5140 * Get CGU DPLL status (0x0C66)
5141 * Return: 0 on success or negative value on failure.
5142 */
5143int
5144ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5145			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5146			   u8 *eec_mode)
5147{
5148	struct ice_aqc_get_cgu_dpll_status *cmd;
5149	struct ice_aq_desc desc;
5150	int status;
5151
5152	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5153	cmd = &desc.params.get_cgu_dpll_status;
5154	cmd->dpll_num = dpll_num;
5155
5156	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5157	if (!status) {
5158		*ref_state = cmd->ref_state;
5159		*dpll_state = cmd->dpll_state;
5160		*config = cmd->config;
5161		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5162		*phase_offset <<= 32;
5163		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5164		*phase_offset = sign_extend64(*phase_offset, 47);
5165		*eec_mode = cmd->eec_mode;
5166	}
5167
5168	return status;
5169}
5170
5171/**
5172 * ice_aq_set_cgu_dpll_config - set dpll config
5173 * @hw: pointer to the HW struct
5174 * @dpll_num: DPLL index
5175 * @ref_state: Reference clock state
5176 * @config: DPLL config
5177 * @eec_mode: EEC mode
5178 *
5179 * Set CGU DPLL config (0x0C67)
5180 * Return: 0 on success or negative value on failure.
5181 */
5182int
5183ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5184			   u8 config, u8 eec_mode)
5185{
5186	struct ice_aqc_set_cgu_dpll_config *cmd;
5187	struct ice_aq_desc desc;
5188
5189	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5190	cmd = &desc.params.set_cgu_dpll_config;
5191	cmd->dpll_num = dpll_num;
5192	cmd->ref_state = ref_state;
5193	cmd->config = config;
5194	cmd->eec_mode = eec_mode;
5195
5196	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5197}
5198
5199/**
5200 * ice_aq_set_cgu_ref_prio - set input reference priority
5201 * @hw: pointer to the HW struct
5202 * @dpll_num: DPLL index
5203 * @ref_idx: Reference pin index
5204 * @ref_priority: Reference input priority
5205 *
5206 * Set CGU reference priority (0x0C68)
5207 * Return: 0 on success or negative value on failure.
5208 */
5209int
5210ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5211			u8 ref_priority)
5212{
5213	struct ice_aqc_set_cgu_ref_prio *cmd;
5214	struct ice_aq_desc desc;
5215
5216	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5217	cmd = &desc.params.set_cgu_ref_prio;
5218	cmd->dpll_num = dpll_num;
5219	cmd->ref_idx = ref_idx;
5220	cmd->ref_priority = ref_priority;
5221
5222	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5223}
5224
5225/**
5226 * ice_aq_get_cgu_ref_prio - get input reference priority
5227 * @hw: pointer to the HW struct
5228 * @dpll_num: DPLL index
5229 * @ref_idx: Reference pin index
5230 * @ref_prio: Reference input priority
5231 *
5232 * Get CGU reference priority (0x0C69)
5233 * Return: 0 on success or negative value on failure.
5234 */
5235int
5236ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5237			u8 *ref_prio)
5238{
5239	struct ice_aqc_get_cgu_ref_prio *cmd;
5240	struct ice_aq_desc desc;
5241	int status;
5242
5243	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5244	cmd = &desc.params.get_cgu_ref_prio;
5245	cmd->dpll_num = dpll_num;
5246	cmd->ref_idx = ref_idx;
5247
5248	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5249	if (!status)
5250		*ref_prio = cmd->ref_priority;
5251
5252	return status;
5253}
5254
5255/**
5256 * ice_aq_get_cgu_info - get cgu info
5257 * @hw: pointer to the HW struct
5258 * @cgu_id: CGU ID
5259 * @cgu_cfg_ver: CGU config version
5260 * @cgu_fw_ver: CGU firmware version
5261 *
5262 * Get CGU info (0x0C6A)
5263 * Return: 0 on success or negative value on failure.
5264 */
5265int
5266ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5267		    u32 *cgu_fw_ver)
5268{
5269	struct ice_aqc_get_cgu_info *cmd;
5270	struct ice_aq_desc desc;
5271	int status;
5272
5273	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5274	cmd = &desc.params.get_cgu_info;
5275
5276	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5277	if (!status) {
5278		*cgu_id = le32_to_cpu(cmd->cgu_id);
5279		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5280		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5281	}
5282
5283	return status;
5284}
5285
5286/**
5287 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5288 * @hw: pointer to the HW struct
5289 * @phy_output: PHY reference clock output pin
5290 * @enable: GPIO state to be applied
5291 * @freq: PHY output frequency
5292 *
5293 * Set phy recovered clock as reference (0x0630)
5294 * Return: 0 on success or negative value on failure.
5295 */
5296int
5297ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5298			   u32 *freq)
5299{
5300	struct ice_aqc_set_phy_rec_clk_out *cmd;
5301	struct ice_aq_desc desc;
5302	int status;
5303
5304	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5305	cmd = &desc.params.set_phy_rec_clk_out;
5306	cmd->phy_output = phy_output;
5307	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5308	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5309	cmd->freq = cpu_to_le32(*freq);
5310
5311	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5312	if (!status)
5313		*freq = le32_to_cpu(cmd->freq);
5314
5315	return status;
5316}
5317
5318/**
5319 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5320 * @hw: pointer to the HW struct
5321 * @phy_output: PHY reference clock output pin
5322 * @port_num: Port number
5323 * @flags: PHY flags
5324 * @node_handle: PHY output frequency
5325 *
5326 * Get PHY recovered clock output info (0x0631)
5327 * Return: 0 on success or negative value on failure.
5328 */
5329int
5330ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5331			   u8 *flags, u16 *node_handle)
5332{
5333	struct ice_aqc_get_phy_rec_clk_out *cmd;
5334	struct ice_aq_desc desc;
5335	int status;
5336
5337	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5338	cmd = &desc.params.get_phy_rec_clk_out;
5339	cmd->phy_output = *phy_output;
5340
5341	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5342	if (!status) {
5343		*phy_output = cmd->phy_output;
5344		if (port_num)
5345			*port_num = cmd->port_num;
5346		if (flags)
5347			*flags = cmd->flags;
5348		if (node_handle)
5349			*node_handle = le16_to_cpu(cmd->node_handle);
5350	}
5351
5352	return status;
5353}
5354
5355/**
5356 * ice_aq_get_sensor_reading
5357 * @hw: pointer to the HW struct
5358 * @data: pointer to data to be read from the sensor
5359 *
5360 * Get sensor reading (0x0632)
5361 */
5362int ice_aq_get_sensor_reading(struct ice_hw *hw,
5363			      struct ice_aqc_get_sensor_reading_resp *data)
5364{
5365	struct ice_aqc_get_sensor_reading *cmd;
5366	struct ice_aq_desc desc;
5367	int status;
5368
5369	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5370	cmd = &desc.params.get_sensor_reading;
5371#define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5372#define ICE_INTERNAL_TEMP_SENSOR	0
5373	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5374	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5375
5376	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5377	if (!status)
5378		memcpy(data, &desc.params.get_sensor_reading_resp,
5379		       sizeof(*data));
5380
5381	return status;
5382}
5383
5384/**
5385 * ice_replay_pre_init - replay pre initialization
5386 * @hw: pointer to the HW struct
5387 *
5388 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5389 */
5390static int ice_replay_pre_init(struct ice_hw *hw)
5391{
5392	struct ice_switch_info *sw = hw->switch_info;
5393	u8 i;
5394
5395	/* Delete old entries from replay filter list head if there is any */
5396	ice_rm_all_sw_replay_rule_info(hw);
5397	/* In start of replay, move entries into replay_rules list, it
5398	 * will allow adding rules entries back to filt_rules list,
5399	 * which is operational list.
5400	 */
5401	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5402		list_replace_init(&sw->recp_list[i].filt_rules,
5403				  &sw->recp_list[i].filt_replay_rules);
5404	ice_sched_replay_agg_vsi_preinit(hw);
5405
5406	return 0;
5407}
5408
5409/**
5410 * ice_replay_vsi - replay VSI configuration
5411 * @hw: pointer to the HW struct
5412 * @vsi_handle: driver VSI handle
5413 *
5414 * Restore all VSI configuration after reset. It is required to call this
5415 * function with main VSI first.
5416 */
5417int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5418{
5419	int status;
5420
5421	if (!ice_is_vsi_valid(hw, vsi_handle))
5422		return -EINVAL;
5423
5424	/* Replay pre-initialization if there is any */
5425	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5426		status = ice_replay_pre_init(hw);
5427		if (status)
5428			return status;
5429	}
5430	/* Replay per VSI all RSS configurations */
5431	status = ice_replay_rss_cfg(hw, vsi_handle);
5432	if (status)
5433		return status;
5434	/* Replay per VSI all filters */
5435	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5436	if (!status)
5437		status = ice_replay_vsi_agg(hw, vsi_handle);
5438	return status;
5439}
5440
5441/**
5442 * ice_replay_post - post replay configuration cleanup
5443 * @hw: pointer to the HW struct
5444 *
5445 * Post replay cleanup.
5446 */
5447void ice_replay_post(struct ice_hw *hw)
5448{
5449	/* Delete old entries from replay filter list head */
5450	ice_rm_all_sw_replay_rule_info(hw);
5451	ice_sched_replay_agg(hw);
5452}
5453
5454/**
5455 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5456 * @hw: ptr to the hardware info
5457 * @reg: offset of 64 bit HW register to read from
5458 * @prev_stat_loaded: bool to specify if previous stats are loaded
5459 * @prev_stat: ptr to previous loaded stat value
5460 * @cur_stat: ptr to current stat value
5461 */
5462void
5463ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5464		  u64 *prev_stat, u64 *cur_stat)
5465{
5466	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5467
5468	/* device stats are not reset at PFR, they likely will not be zeroed
5469	 * when the driver starts. Thus, save the value from the first read
5470	 * without adding to the statistic value so that we report stats which
5471	 * count up from zero.
5472	 */
5473	if (!prev_stat_loaded) {
5474		*prev_stat = new_data;
5475		return;
5476	}
5477
5478	/* Calculate the difference between the new and old values, and then
5479	 * add it to the software stat value.
5480	 */
5481	if (new_data >= *prev_stat)
5482		*cur_stat += new_data - *prev_stat;
5483	else
5484		/* to manage the potential roll-over */
5485		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5486
5487	/* Update the previously stored value to prepare for next read */
5488	*prev_stat = new_data;
5489}
5490
5491/**
5492 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5493 * @hw: ptr to the hardware info
5494 * @reg: offset of HW register to read from
5495 * @prev_stat_loaded: bool to specify if previous stats are loaded
5496 * @prev_stat: ptr to previous loaded stat value
5497 * @cur_stat: ptr to current stat value
5498 */
5499void
5500ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5501		  u64 *prev_stat, u64 *cur_stat)
5502{
5503	u32 new_data;
5504
5505	new_data = rd32(hw, reg);
5506
5507	/* device stats are not reset at PFR, they likely will not be zeroed
5508	 * when the driver starts. Thus, save the value from the first read
5509	 * without adding to the statistic value so that we report stats which
5510	 * count up from zero.
5511	 */
5512	if (!prev_stat_loaded) {
5513		*prev_stat = new_data;
5514		return;
5515	}
5516
5517	/* Calculate the difference between the new and old values, and then
5518	 * add it to the software stat value.
5519	 */
5520	if (new_data >= *prev_stat)
5521		*cur_stat += new_data - *prev_stat;
5522	else
5523		/* to manage the potential roll-over */
5524		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5525
5526	/* Update the previously stored value to prepare for next read */
5527	*prev_stat = new_data;
5528}
5529
5530/**
5531 * ice_sched_query_elem - query element information from HW
5532 * @hw: pointer to the HW struct
5533 * @node_teid: node TEID to be queried
5534 * @buf: buffer to element information
5535 *
5536 * This function queries HW element information
5537 */
5538int
5539ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5540		     struct ice_aqc_txsched_elem_data *buf)
5541{
5542	u16 buf_size, num_elem_ret = 0;
5543	int status;
5544
5545	buf_size = sizeof(*buf);
5546	memset(buf, 0, buf_size);
5547	buf->node_teid = cpu_to_le32(node_teid);
5548	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5549					  NULL);
5550	if (status || num_elem_ret != 1)
5551		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5552	return status;
5553}
5554
5555/**
5556 * ice_aq_read_i2c
5557 * @hw: pointer to the hw struct
5558 * @topo_addr: topology address for a device to communicate with
5559 * @bus_addr: 7-bit I2C bus address
5560 * @addr: I2C memory address (I2C offset) with up to 16 bits
5561 * @params: I2C parameters: bit [7] - Repeated start,
5562 *			    bits [6:5] data offset size,
5563 *			    bit [4] - I2C address type,
5564 *			    bits [3:0] - data size to read (0-16 bytes)
5565 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5566 * @cd: pointer to command details structure or NULL
5567 *
5568 * Read I2C (0x06E2)
5569 */
5570int
5571ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5572		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5573		struct ice_sq_cd *cd)
5574{
5575	struct ice_aq_desc desc = { 0 };
5576	struct ice_aqc_i2c *cmd;
5577	u8 data_size;
5578	int status;
5579
5580	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5581	cmd = &desc.params.read_write_i2c;
5582
5583	if (!data)
5584		return -EINVAL;
5585
5586	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5587
5588	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5589	cmd->topo_addr = topo_addr;
5590	cmd->i2c_params = params;
5591	cmd->i2c_addr = addr;
5592
5593	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5594	if (!status) {
5595		struct ice_aqc_read_i2c_resp *resp;
5596		u8 i;
5597
5598		resp = &desc.params.read_i2c_resp;
5599		for (i = 0; i < data_size; i++) {
5600			*data = resp->i2c_data[i];
5601			data++;
5602		}
5603	}
5604
5605	return status;
5606}
5607
5608/**
5609 * ice_aq_write_i2c
5610 * @hw: pointer to the hw struct
5611 * @topo_addr: topology address for a device to communicate with
5612 * @bus_addr: 7-bit I2C bus address
5613 * @addr: I2C memory address (I2C offset) with up to 16 bits
5614 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5615 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5616 * @cd: pointer to command details structure or NULL
5617 *
5618 * Write I2C (0x06E3)
5619 *
5620 * * Return:
5621 * * 0             - Successful write to the i2c device
5622 * * -EINVAL       - Data size greater than 4 bytes
5623 * * -EIO          - FW error
5624 */
5625int
5626ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5627		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5628		 struct ice_sq_cd *cd)
5629{
5630	struct ice_aq_desc desc = { 0 };
5631	struct ice_aqc_i2c *cmd;
5632	u8 data_size;
5633
5634	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5635	cmd = &desc.params.read_write_i2c;
5636
5637	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5638
5639	/* data_size limited to 4 */
5640	if (data_size > 4)
5641		return -EINVAL;
5642
5643	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5644	cmd->topo_addr = topo_addr;
5645	cmd->i2c_params = params;
5646	cmd->i2c_addr = addr;
5647
5648	memcpy(cmd->i2c_data, data, data_size);
5649
5650	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5651}
5652
5653/**
5654 * ice_aq_set_gpio
5655 * @hw: pointer to the hw struct
5656 * @gpio_ctrl_handle: GPIO controller node handle
5657 * @pin_idx: IO Number of the GPIO that needs to be set
5658 * @value: SW provide IO value to set in the LSB
5659 * @cd: pointer to command details structure or NULL
5660 *
5661 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5662 */
5663int
5664ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5665		struct ice_sq_cd *cd)
5666{
5667	struct ice_aqc_gpio *cmd;
5668	struct ice_aq_desc desc;
5669
5670	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5671	cmd = &desc.params.read_write_gpio;
5672	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5673	cmd->gpio_num = pin_idx;
5674	cmd->gpio_val = value ? 1 : 0;
5675
5676	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5677}
5678
5679/**
5680 * ice_aq_get_gpio
5681 * @hw: pointer to the hw struct
5682 * @gpio_ctrl_handle: GPIO controller node handle
5683 * @pin_idx: IO Number of the GPIO that needs to be set
5684 * @value: IO value read
5685 * @cd: pointer to command details structure or NULL
5686 *
5687 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5688 * the topology
5689 */
5690int
5691ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5692		bool *value, struct ice_sq_cd *cd)
5693{
5694	struct ice_aqc_gpio *cmd;
5695	struct ice_aq_desc desc;
5696	int status;
5697
5698	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5699	cmd = &desc.params.read_write_gpio;
5700	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5701	cmd->gpio_num = pin_idx;
5702
5703	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5704	if (status)
5705		return status;
5706
5707	*value = !!cmd->gpio_val;
5708	return 0;
5709}
5710
5711/**
5712 * ice_is_fw_api_min_ver
5713 * @hw: pointer to the hardware structure
5714 * @maj: major version
5715 * @min: minor version
5716 * @patch: patch version
5717 *
5718 * Checks if the firmware API is minimum version
5719 */
5720static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5721{
5722	if (hw->api_maj_ver == maj) {
5723		if (hw->api_min_ver > min)
5724			return true;
5725		if (hw->api_min_ver == min && hw->api_patch >= patch)
5726			return true;
5727	} else if (hw->api_maj_ver > maj) {
5728		return true;
5729	}
5730
5731	return false;
5732}
5733
5734/**
5735 * ice_fw_supports_link_override
5736 * @hw: pointer to the hardware structure
5737 *
5738 * Checks if the firmware supports link override
5739 */
5740bool ice_fw_supports_link_override(struct ice_hw *hw)
5741{
5742	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5743				     ICE_FW_API_LINK_OVERRIDE_MIN,
5744				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5745}
5746
5747/**
5748 * ice_get_link_default_override
5749 * @ldo: pointer to the link default override struct
5750 * @pi: pointer to the port info struct
5751 *
5752 * Gets the link default override for a port
5753 */
5754int
5755ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5756			      struct ice_port_info *pi)
5757{
5758	u16 i, tlv, tlv_len, tlv_start, buf, offset;
5759	struct ice_hw *hw = pi->hw;
5760	int status;
5761
5762	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5763					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5764	if (status) {
5765		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5766		return status;
5767	}
5768
5769	/* Each port has its own config; calculate for our port */
5770	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5771		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5772
5773	/* link options first */
5774	status = ice_read_sr_word(hw, tlv_start, &buf);
5775	if (status) {
5776		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5777		return status;
5778	}
5779	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5780	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5781		ICE_LINK_OVERRIDE_PHY_CFG_S;
5782
5783	/* link PHY config */
5784	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5785	status = ice_read_sr_word(hw, offset, &buf);
5786	if (status) {
5787		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5788		return status;
5789	}
5790	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5791
5792	/* PHY types low */
5793	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5794	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5795		status = ice_read_sr_word(hw, (offset + i), &buf);
5796		if (status) {
5797			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5798			return status;
5799		}
5800		/* shift 16 bits at a time to fill 64 bits */
5801		ldo->phy_type_low |= ((u64)buf << (i * 16));
5802	}
5803
5804	/* PHY types high */
5805	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5806		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5807	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5808		status = ice_read_sr_word(hw, (offset + i), &buf);
5809		if (status) {
5810			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5811			return status;
5812		}
5813		/* shift 16 bits at a time to fill 64 bits */
5814		ldo->phy_type_high |= ((u64)buf << (i * 16));
5815	}
5816
5817	return status;
5818}
5819
5820/**
5821 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5822 * @caps: get PHY capability data
5823 */
5824bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5825{
5826	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5827	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5828				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
5829				       ICE_AQC_PHY_AN_EN_CLAUSE37))
5830		return true;
5831
5832	return false;
5833}
5834
5835/**
5836 * ice_aq_set_lldp_mib - Set the LLDP MIB
5837 * @hw: pointer to the HW struct
5838 * @mib_type: Local, Remote or both Local and Remote MIBs
5839 * @buf: pointer to the caller-supplied buffer to store the MIB block
5840 * @buf_size: size of the buffer (in bytes)
5841 * @cd: pointer to command details structure or NULL
5842 *
5843 * Set the LLDP MIB. (0x0A08)
5844 */
5845int
5846ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5847		    struct ice_sq_cd *cd)
5848{
5849	struct ice_aqc_lldp_set_local_mib *cmd;
5850	struct ice_aq_desc desc;
5851
5852	cmd = &desc.params.lldp_set_mib;
5853
5854	if (buf_size == 0 || !buf)
5855		return -EINVAL;
5856
5857	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5858
5859	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5860	desc.datalen = cpu_to_le16(buf_size);
5861
5862	cmd->type = mib_type;
5863	cmd->length = cpu_to_le16(buf_size);
5864
5865	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5866}
5867
5868/**
5869 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5870 * @hw: pointer to HW struct
5871 */
5872bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5873{
5874	if (hw->mac_type != ICE_MAC_E810)
5875		return false;
5876
5877	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5878				     ICE_FW_API_LLDP_FLTR_MIN,
5879				     ICE_FW_API_LLDP_FLTR_PATCH);
5880}
5881
5882/**
5883 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5884 * @hw: pointer to HW struct
5885 * @vsi_num: absolute HW index for VSI
5886 * @add: boolean for if adding or removing a filter
5887 */
5888int
5889ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5890{
5891	struct ice_aqc_lldp_filter_ctrl *cmd;
5892	struct ice_aq_desc desc;
5893
5894	cmd = &desc.params.lldp_filter_ctrl;
5895
5896	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5897
5898	if (add)
5899		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5900	else
5901		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5902
5903	cmd->vsi_num = cpu_to_le16(vsi_num);
5904
5905	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5906}
5907
5908/**
5909 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5910 * @hw: pointer to HW struct
5911 */
5912int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5913{
5914	struct ice_aq_desc desc;
5915
5916	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5917
5918	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5919}
5920
5921/**
5922 * ice_fw_supports_report_dflt_cfg
5923 * @hw: pointer to the hardware structure
5924 *
5925 * Checks if the firmware supports report default configuration
5926 */
5927bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5928{
5929	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5930				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
5931				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5932}
5933
5934/* each of the indexes into the following array match the speed of a return
5935 * value from the list of AQ returned speeds like the range:
5936 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5937 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5938 * array. The array is defined as 15 elements long because the link_speed
5939 * returned by the firmware is a 16 bit * value, but is indexed
5940 * by [fls(speed) - 1]
5941 */
5942static const u32 ice_aq_to_link_speed[] = {
5943	SPEED_10,	/* BIT(0) */
5944	SPEED_100,
5945	SPEED_1000,
5946	SPEED_2500,
5947	SPEED_5000,
5948	SPEED_10000,
5949	SPEED_20000,
5950	SPEED_25000,
5951	SPEED_40000,
5952	SPEED_50000,
5953	SPEED_100000,	/* BIT(10) */
5954	SPEED_200000,
5955};
5956
5957/**
5958 * ice_get_link_speed - get integer speed from table
5959 * @index: array index from fls(aq speed) - 1
5960 *
5961 * Returns: u32 value containing integer speed
5962 */
5963u32 ice_get_link_speed(u16 index)
5964{
5965	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5966		return 0;
5967
5968	return ice_aq_to_link_speed[index];
5969}