Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for I2C adapter in Rockchip RK3xxx SoC
   4 *
   5 * Max Schwarz <max.schwarz@online.de>
   6 * based on the patches by Rockchip Inc.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/i2c.h>
  12#include <linux/interrupt.h>
  13#include <linux/iopoll.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/platform_device.h>
  17#include <linux/io.h>
  18#include <linux/of_address.h>
  19#include <linux/of_irq.h>
  20#include <linux/spinlock.h>
  21#include <linux/clk.h>
  22#include <linux/wait.h>
  23#include <linux/mfd/syscon.h>
  24#include <linux/regmap.h>
  25#include <linux/math64.h>
  26
  27
  28/* Register Map */
  29#define REG_CON        0x00 /* control register */
  30#define REG_CLKDIV     0x04 /* clock divisor register */
  31#define REG_MRXADDR    0x08 /* target address for REGISTER_TX */
  32#define REG_MRXRADDR   0x0c /* target register address for REGISTER_TX */
  33#define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
  34#define REG_MRXCNT     0x14 /* number of bytes to be received */
  35#define REG_IEN        0x18 /* interrupt enable */
  36#define REG_IPD        0x1c /* interrupt pending */
  37#define REG_FCNT       0x20 /* finished count */
  38
  39/* Data buffer offsets */
  40#define TXBUFFER_BASE 0x100
  41#define RXBUFFER_BASE 0x200
  42
  43/* REG_CON bits */
  44#define REG_CON_EN        BIT(0)
  45enum {
  46	REG_CON_MOD_TX = 0,      /* transmit data */
  47	REG_CON_MOD_REGISTER_TX, /* select register and restart */
  48	REG_CON_MOD_RX,          /* receive data */
  49	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
  50				  * register addr */
  51};
  52#define REG_CON_MOD(mod)  ((mod) << 1)
  53#define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
  54#define REG_CON_START     BIT(3)
  55#define REG_CON_STOP      BIT(4)
  56#define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
  57#define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
  58
  59#define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
  60
  61#define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
  62#define REG_CON_STA_CFG(cfg) ((cfg) << 12)
  63#define REG_CON_STO_CFG(cfg) ((cfg) << 14)
  64
  65/* REG_MRXADDR bits */
  66#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
  67
  68/* REG_IEN/REG_IPD bits */
  69#define REG_INT_BTF       BIT(0) /* a byte was transmitted */
  70#define REG_INT_BRF       BIT(1) /* a byte was received */
  71#define REG_INT_MBTF      BIT(2) /* controller data transmit finished */
  72#define REG_INT_MBRF      BIT(3) /* controller data receive finished */
  73#define REG_INT_START     BIT(4) /* START condition generated */
  74#define REG_INT_STOP      BIT(5) /* STOP condition generated */
  75#define REG_INT_NAKRCV    BIT(6) /* NACK received */
  76#define REG_INT_ALL       0x7f
  77
  78/* Constants */
  79#define WAIT_TIMEOUT      1000 /* ms */
  80#define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
  81
  82/**
  83 * struct i2c_spec_values - I2C specification values for various modes
  84 * @min_hold_start_ns: min hold time (repeated) START condition
  85 * @min_low_ns: min LOW period of the SCL clock
  86 * @min_high_ns: min HIGH period of the SCL cloc
  87 * @min_setup_start_ns: min set-up time for a repeated START conditio
  88 * @max_data_hold_ns: max data hold time
  89 * @min_data_setup_ns: min data set-up time
  90 * @min_setup_stop_ns: min set-up time for STOP condition
  91 * @min_hold_buffer_ns: min bus free time between a STOP and
  92 * START condition
  93 */
  94struct i2c_spec_values {
  95	unsigned long min_hold_start_ns;
  96	unsigned long min_low_ns;
  97	unsigned long min_high_ns;
  98	unsigned long min_setup_start_ns;
  99	unsigned long max_data_hold_ns;
 100	unsigned long min_data_setup_ns;
 101	unsigned long min_setup_stop_ns;
 102	unsigned long min_hold_buffer_ns;
 103};
 104
 105static const struct i2c_spec_values standard_mode_spec = {
 106	.min_hold_start_ns = 4000,
 107	.min_low_ns = 4700,
 108	.min_high_ns = 4000,
 109	.min_setup_start_ns = 4700,
 110	.max_data_hold_ns = 3450,
 111	.min_data_setup_ns = 250,
 112	.min_setup_stop_ns = 4000,
 113	.min_hold_buffer_ns = 4700,
 114};
 115
 116static const struct i2c_spec_values fast_mode_spec = {
 117	.min_hold_start_ns = 600,
 118	.min_low_ns = 1300,
 119	.min_high_ns = 600,
 120	.min_setup_start_ns = 600,
 121	.max_data_hold_ns = 900,
 122	.min_data_setup_ns = 100,
 123	.min_setup_stop_ns = 600,
 124	.min_hold_buffer_ns = 1300,
 125};
 126
 127static const struct i2c_spec_values fast_mode_plus_spec = {
 128	.min_hold_start_ns = 260,
 129	.min_low_ns = 500,
 130	.min_high_ns = 260,
 131	.min_setup_start_ns = 260,
 132	.max_data_hold_ns = 400,
 133	.min_data_setup_ns = 50,
 134	.min_setup_stop_ns = 260,
 135	.min_hold_buffer_ns = 500,
 136};
 137
 138/**
 139 * struct rk3x_i2c_calced_timings - calculated V1 timings
 140 * @div_low: Divider output for low
 141 * @div_high: Divider output for high
 142 * @tuning: Used to adjust setup/hold data time,
 143 * setup/hold start time and setup stop time for
 144 * v1's calc_timings, the tuning should all be 0
 145 * for old hardware anyone using v0's calc_timings.
 146 */
 147struct rk3x_i2c_calced_timings {
 148	unsigned long div_low;
 149	unsigned long div_high;
 150	unsigned int tuning;
 151};
 152
 153enum rk3x_i2c_state {
 154	STATE_IDLE,
 155	STATE_START,
 156	STATE_READ,
 157	STATE_WRITE,
 158	STATE_STOP
 159};
 160
 161/**
 162 * struct rk3x_i2c_soc_data - SOC-specific data
 163 * @grf_offset: offset inside the grf regmap for setting the i2c type
 164 * @calc_timings: Callback function for i2c timing information calculated
 165 */
 166struct rk3x_i2c_soc_data {
 167	int grf_offset;
 168	int (*calc_timings)(unsigned long, struct i2c_timings *,
 169			    struct rk3x_i2c_calced_timings *);
 170};
 171
 172/**
 173 * struct rk3x_i2c - private data of the controller
 174 * @adap: corresponding I2C adapter
 175 * @dev: device for this controller
 176 * @soc_data: related soc data struct
 177 * @regs: virtual memory area
 178 * @clk: function clk for rk3399 or function & Bus clks for others
 179 * @pclk: Bus clk for rk3399
 180 * @clk_rate_nb: i2c clk rate change notify
 181 * @irq: irq number
 182 * @t: I2C known timing information
 183 * @lock: spinlock for the i2c bus
 184 * @wait: the waitqueue to wait for i2c transfer
 185 * @busy: the condition for the event to wait for
 186 * @msg: current i2c message
 187 * @addr: addr of i2c target device
 188 * @mode: mode of i2c transfer
 189 * @is_last_msg: flag determines whether it is the last msg in this transfer
 190 * @state: state of i2c transfer
 191 * @processed: byte length which has been send or received
 192 * @error: error code for i2c transfer
 193 */
 194struct rk3x_i2c {
 195	struct i2c_adapter adap;
 196	struct device *dev;
 197	const struct rk3x_i2c_soc_data *soc_data;
 198
 199	/* Hardware resources */
 200	void __iomem *regs;
 201	struct clk *clk;
 202	struct clk *pclk;
 203	struct notifier_block clk_rate_nb;
 204	int irq;
 205
 206	/* Settings */
 207	struct i2c_timings t;
 208
 209	/* Synchronization & notification */
 210	spinlock_t lock;
 211	wait_queue_head_t wait;
 212	bool busy;
 213
 214	/* Current message */
 215	struct i2c_msg *msg;
 216	u8 addr;
 217	unsigned int mode;
 218	bool is_last_msg;
 219
 220	/* I2C state machine */
 221	enum rk3x_i2c_state state;
 222	unsigned int processed;
 223	int error;
 224};
 225
 226static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
 227			      unsigned int offset)
 228{
 229	writel(value, i2c->regs + offset);
 230}
 231
 232static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
 233{
 234	return readl(i2c->regs + offset);
 235}
 236
 237/* Reset all interrupt pending bits */
 238static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
 239{
 240	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
 241}
 242
 243/**
 244 * rk3x_i2c_start - Generate a START condition, which triggers a REG_INT_START interrupt.
 245 * @i2c: target controller data
 246 */
 247static void rk3x_i2c_start(struct rk3x_i2c *i2c)
 248{
 249	u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
 250
 251	i2c_writel(i2c, REG_INT_START, REG_IEN);
 252
 253	/* enable adapter with correct mode, send START condition */
 254	val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
 255
 256	/* if we want to react to NACK, set ACTACK bit */
 257	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
 258		val |= REG_CON_ACTACK;
 259
 260	i2c_writel(i2c, val, REG_CON);
 261}
 262
 263/**
 264 * rk3x_i2c_stop - Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
 265 * @i2c: target controller data
 266 * @error: Error code to return in rk3x_i2c_xfer
 267 */
 268static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
 269{
 270	unsigned int ctrl;
 271
 272	i2c->processed = 0;
 273	i2c->msg = NULL;
 274	i2c->error = error;
 275
 276	if (i2c->is_last_msg) {
 277		/* Enable stop interrupt */
 278		i2c_writel(i2c, REG_INT_STOP, REG_IEN);
 279
 280		i2c->state = STATE_STOP;
 281
 282		ctrl = i2c_readl(i2c, REG_CON);
 283		ctrl |= REG_CON_STOP;
 284		i2c_writel(i2c, ctrl, REG_CON);
 285	} else {
 286		/* Signal rk3x_i2c_xfer to start the next message. */
 287		i2c->busy = false;
 288		i2c->state = STATE_IDLE;
 289
 290		/*
 291		 * The HW is actually not capable of REPEATED START. But we can
 292		 * get the intended effect by resetting its internal state
 293		 * and issuing an ordinary START.
 294		 */
 295		ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
 296		i2c_writel(i2c, ctrl, REG_CON);
 297
 298		/* signal that we are finished with the current msg */
 299		wake_up(&i2c->wait);
 300	}
 301}
 302
 303/**
 304 * rk3x_i2c_prepare_read - Setup a read according to i2c->msg
 305 * @i2c: target controller data
 306 */
 307static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
 308{
 309	unsigned int len = i2c->msg->len - i2c->processed;
 310	u32 con;
 311
 312	con = i2c_readl(i2c, REG_CON);
 313
 314	/*
 315	 * The hw can read up to 32 bytes at a time. If we need more than one
 316	 * chunk, send an ACK after the last byte of the current chunk.
 317	 */
 318	if (len > 32) {
 319		len = 32;
 320		con &= ~REG_CON_LASTACK;
 321	} else {
 322		con |= REG_CON_LASTACK;
 323	}
 324
 325	/* make sure we are in plain RX mode if we read a second chunk */
 326	if (i2c->processed != 0) {
 327		con &= ~REG_CON_MOD_MASK;
 328		con |= REG_CON_MOD(REG_CON_MOD_RX);
 329	}
 330
 331	i2c_writel(i2c, con, REG_CON);
 332	i2c_writel(i2c, len, REG_MRXCNT);
 333}
 334
 335/**
 336 * rk3x_i2c_fill_transmit_buf - Fill the transmit buffer with data from i2c->msg
 337 * @i2c: target controller data
 338 */
 339static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
 340{
 341	unsigned int i, j;
 342	u32 cnt = 0;
 343	u32 val;
 344	u8 byte;
 345
 346	for (i = 0; i < 8; ++i) {
 347		val = 0;
 348		for (j = 0; j < 4; ++j) {
 349			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
 350				break;
 351
 352			if (i2c->processed == 0 && cnt == 0)
 353				byte = (i2c->addr & 0x7f) << 1;
 354			else
 355				byte = i2c->msg->buf[i2c->processed++];
 356
 357			val |= byte << (j * 8);
 358			cnt++;
 359		}
 360
 361		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
 362
 363		if (i2c->processed == i2c->msg->len)
 364			break;
 365	}
 366
 367	i2c_writel(i2c, cnt, REG_MTXCNT);
 368}
 369
 370
 371/* IRQ handlers for individual states */
 372
 373static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
 374{
 375	if (!(ipd & REG_INT_START)) {
 376		rk3x_i2c_stop(i2c, -EIO);
 377		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
 378		rk3x_i2c_clean_ipd(i2c);
 379		return;
 380	}
 381
 382	/* ack interrupt */
 383	i2c_writel(i2c, REG_INT_START, REG_IPD);
 384
 385	/* disable start bit */
 386	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
 387
 388	/* enable appropriate interrupts and transition */
 389	if (i2c->mode == REG_CON_MOD_TX) {
 390		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
 391		i2c->state = STATE_WRITE;
 392		rk3x_i2c_fill_transmit_buf(i2c);
 393	} else {
 394		/* in any other case, we are going to be reading. */
 395		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
 396		i2c->state = STATE_READ;
 397		rk3x_i2c_prepare_read(i2c);
 398	}
 399}
 400
 401static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
 402{
 403	if (!(ipd & REG_INT_MBTF)) {
 404		rk3x_i2c_stop(i2c, -EIO);
 405		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
 406		rk3x_i2c_clean_ipd(i2c);
 407		return;
 408	}
 409
 410	/* ack interrupt */
 411	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
 412
 413	/* are we finished? */
 414	if (i2c->processed == i2c->msg->len)
 415		rk3x_i2c_stop(i2c, i2c->error);
 416	else
 417		rk3x_i2c_fill_transmit_buf(i2c);
 418}
 419
 420static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
 421{
 422	unsigned int i;
 423	unsigned int len = i2c->msg->len - i2c->processed;
 424	u32 val;
 425	u8 byte;
 426
 427	/* we only care for MBRF here. */
 428	if (!(ipd & REG_INT_MBRF))
 429		return;
 430
 431	/* ack interrupt (read also produces a spurious START flag, clear it too) */
 432	i2c_writel(i2c, REG_INT_MBRF | REG_INT_START, REG_IPD);
 433
 434	/* Can only handle a maximum of 32 bytes at a time */
 435	if (len > 32)
 436		len = 32;
 437
 438	/* read the data from receive buffer */
 439	for (i = 0; i < len; ++i) {
 440		if (i % 4 == 0)
 441			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
 442
 443		byte = (val >> ((i % 4) * 8)) & 0xff;
 444		i2c->msg->buf[i2c->processed++] = byte;
 445	}
 446
 447	/* are we finished? */
 448	if (i2c->processed == i2c->msg->len)
 449		rk3x_i2c_stop(i2c, i2c->error);
 450	else
 451		rk3x_i2c_prepare_read(i2c);
 452}
 453
 454static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
 455{
 456	unsigned int con;
 457
 458	if (!(ipd & REG_INT_STOP)) {
 459		rk3x_i2c_stop(i2c, -EIO);
 460		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
 461		rk3x_i2c_clean_ipd(i2c);
 462		return;
 463	}
 464
 465	/* ack interrupt */
 466	i2c_writel(i2c, REG_INT_STOP, REG_IPD);
 467
 468	/* disable STOP bit */
 469	con = i2c_readl(i2c, REG_CON);
 470	con &= ~REG_CON_STOP;
 471	i2c_writel(i2c, con, REG_CON);
 472
 473	i2c->busy = false;
 474	i2c->state = STATE_IDLE;
 475
 476	/* signal rk3x_i2c_xfer that we are finished */
 477	wake_up(&i2c->wait);
 478}
 479
 480static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
 481{
 482	struct rk3x_i2c *i2c = dev_id;
 483	unsigned int ipd;
 484
 485	spin_lock(&i2c->lock);
 486
 487	ipd = i2c_readl(i2c, REG_IPD);
 488	if (i2c->state == STATE_IDLE) {
 489		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
 490		rk3x_i2c_clean_ipd(i2c);
 491		goto out;
 492	}
 493
 494	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
 495
 496	/* Clean interrupt bits we don't care about */
 497	ipd &= ~(REG_INT_BRF | REG_INT_BTF);
 498
 499	if (ipd & REG_INT_NAKRCV) {
 500		/*
 501		 * We got a NACK in the last operation. Depending on whether
 502		 * IGNORE_NAK is set, we have to stop the operation and report
 503		 * an error.
 504		 */
 505		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
 506
 507		ipd &= ~REG_INT_NAKRCV;
 508
 509		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
 510			rk3x_i2c_stop(i2c, -ENXIO);
 511	}
 512
 513	/* is there anything left to handle? */
 514	if ((ipd & REG_INT_ALL) == 0)
 515		goto out;
 516
 517	switch (i2c->state) {
 518	case STATE_START:
 519		rk3x_i2c_handle_start(i2c, ipd);
 520		break;
 521	case STATE_WRITE:
 522		rk3x_i2c_handle_write(i2c, ipd);
 523		break;
 524	case STATE_READ:
 525		rk3x_i2c_handle_read(i2c, ipd);
 526		break;
 527	case STATE_STOP:
 528		rk3x_i2c_handle_stop(i2c, ipd);
 529		break;
 530	case STATE_IDLE:
 531		break;
 532	}
 533
 534out:
 535	spin_unlock(&i2c->lock);
 536	return IRQ_HANDLED;
 537}
 538
 539/**
 540 * rk3x_i2c_get_spec - Get timing values of I2C specification
 541 * @speed: Desired SCL frequency
 542 *
 543 * Return: Matched i2c_spec_values.
 544 */
 545static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
 546{
 547	if (speed <= I2C_MAX_STANDARD_MODE_FREQ)
 548		return &standard_mode_spec;
 549	else if (speed <= I2C_MAX_FAST_MODE_FREQ)
 550		return &fast_mode_spec;
 551	else
 552		return &fast_mode_plus_spec;
 553}
 554
 555/**
 556 * rk3x_i2c_v0_calc_timings - Calculate divider values for desired SCL frequency
 557 * @clk_rate: I2C input clock rate
 558 * @t: Known I2C timing information
 559 * @t_calc: Caculated rk3x private timings that would be written into regs
 560 *
 561 * Return: %0 on success, -%EINVAL if the goal SCL rate is too slow. In that case
 562 * a best-effort divider value is returned in divs. If the target rate is
 563 * too high, we silently use the highest possible rate.
 564 */
 565static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
 566				    struct i2c_timings *t,
 567				    struct rk3x_i2c_calced_timings *t_calc)
 568{
 569	unsigned long min_low_ns, min_high_ns;
 570	unsigned long max_low_ns, min_total_ns;
 571
 572	unsigned long clk_rate_khz, scl_rate_khz;
 573
 574	unsigned long min_low_div, min_high_div;
 575	unsigned long max_low_div;
 576
 577	unsigned long min_div_for_hold, min_total_div;
 578	unsigned long extra_div, extra_low_div, ideal_low_div;
 579
 580	unsigned long data_hold_buffer_ns = 50;
 581	const struct i2c_spec_values *spec;
 582	int ret = 0;
 583
 584	/* Only support standard-mode and fast-mode */
 585	if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ))
 586		t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ;
 587
 588	/* prevent scl_rate_khz from becoming 0 */
 589	if (WARN_ON(t->bus_freq_hz < 1000))
 590		t->bus_freq_hz = 1000;
 591
 592	/*
 593	 * min_low_ns:  The minimum number of ns we need to hold low to
 594	 *		meet I2C specification, should include fall time.
 595	 * min_high_ns: The minimum number of ns we need to hold high to
 596	 *		meet I2C specification, should include rise time.
 597	 * max_low_ns:  The maximum number of ns we can hold low to meet
 598	 *		I2C specification.
 599	 *
 600	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
 601	 *	 This is because the i2c host on Rockchip holds the data line
 602	 *	 for half the low time.
 603	 */
 604	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
 605	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
 606
 607	/*
 608	 * Timings for repeated start:
 609	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
 610	 * - controller appears to keep SCL high for 2x programmed clk high.
 611	 *
 612	 * We need to account for those rules in picking our "high" time so
 613	 * we meet tSU;STA and tHD;STA times.
 614	 */
 615	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
 616		(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
 617	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
 618		(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
 619		spec->min_high_ns), 2));
 620
 621	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
 622	max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
 623	min_total_ns = min_low_ns + min_high_ns;
 624
 625	/* Adjust to avoid overflow */
 626	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
 627	scl_rate_khz = t->bus_freq_hz / 1000;
 628
 629	/*
 630	 * We need the total div to be >= this number
 631	 * so we don't clock too fast.
 632	 */
 633	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
 634
 635	/* These are the min dividers needed for min hold times. */
 636	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
 637	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
 638	min_div_for_hold = (min_low_div + min_high_div);
 639
 640	/*
 641	 * This is the maximum divider so we don't go over the maximum.
 642	 * We don't round up here (we round down) since this is a maximum.
 643	 */
 644	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
 645
 646	if (min_low_div > max_low_div) {
 647		WARN_ONCE(true,
 648			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
 649			  min_low_div, max_low_div);
 650		max_low_div = min_low_div;
 651	}
 652
 653	if (min_div_for_hold > min_total_div) {
 654		/*
 655		 * Time needed to meet hold requirements is important.
 656		 * Just use that.
 657		 */
 658		t_calc->div_low = min_low_div;
 659		t_calc->div_high = min_high_div;
 660	} else {
 661		/*
 662		 * We've got to distribute some time among the low and high
 663		 * so we don't run too fast.
 664		 */
 665		extra_div = min_total_div - min_div_for_hold;
 666
 667		/*
 668		 * We'll try to split things up perfectly evenly,
 669		 * biasing slightly towards having a higher div
 670		 * for low (spend more time low).
 671		 */
 672		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
 673					     scl_rate_khz * 8 * min_total_ns);
 674
 675		/* Don't allow it to go over the maximum */
 676		if (ideal_low_div > max_low_div)
 677			ideal_low_div = max_low_div;
 678
 679		/*
 680		 * Handle when the ideal low div is going to take up
 681		 * more than we have.
 682		 */
 683		if (ideal_low_div > min_low_div + extra_div)
 684			ideal_low_div = min_low_div + extra_div;
 685
 686		/* Give low the "ideal" and give high whatever extra is left */
 687		extra_low_div = ideal_low_div - min_low_div;
 688		t_calc->div_low = ideal_low_div;
 689		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
 690	}
 691
 692	/*
 693	 * Adjust to the fact that the hardware has an implicit "+1".
 694	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
 695	 */
 696	t_calc->div_low--;
 697	t_calc->div_high--;
 698
 699	/* Give the tuning value 0, that would not update con register */
 700	t_calc->tuning = 0;
 701	/* Maximum divider supported by hw is 0xffff */
 702	if (t_calc->div_low > 0xffff) {
 703		t_calc->div_low = 0xffff;
 704		ret = -EINVAL;
 705	}
 706
 707	if (t_calc->div_high > 0xffff) {
 708		t_calc->div_high = 0xffff;
 709		ret = -EINVAL;
 710	}
 711
 712	return ret;
 713}
 714
 715/**
 716 * rk3x_i2c_v1_calc_timings - Calculate timing values for desired SCL frequency
 717 * @clk_rate: I2C input clock rate
 718 * @t: Known I2C timing information
 719 * @t_calc: Caculated rk3x private timings that would be written into regs
 720 *
 721 * Return: %0 on success, -%EINVAL if the goal SCL rate is too slow. In that case
 722 * a best-effort divider value is returned in divs. If the target rate is
 723 * too high, we silently use the highest possible rate.
 724 * The following formulas are v1's method to calculate timings.
 725 *
 726 * l = divl + 1;
 727 * h = divh + 1;
 728 * s = sda_update_config + 1;
 729 * u = start_setup_config + 1;
 730 * p = stop_setup_config + 1;
 731 * T = Tclk_i2c;
 732 *
 733 * tHigh = 8 * h * T;
 734 * tLow = 8 * l * T;
 735 *
 736 * tHD;sda = (l * s + 1) * T;
 737 * tSU;sda = [(8 - s) * l + 1] * T;
 738 * tI2C = 8 * (l + h) * T;
 739 *
 740 * tSU;sta = (8h * u + 1) * T;
 741 * tHD;sta = [8h * (u + 1) - 1] * T;
 742 * tSU;sto = (8h * p + 1) * T;
 743 */
 744static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
 745				    struct i2c_timings *t,
 746				    struct rk3x_i2c_calced_timings *t_calc)
 747{
 748	unsigned long min_low_ns, min_high_ns;
 749	unsigned long min_setup_start_ns, min_setup_data_ns;
 750	unsigned long min_setup_stop_ns, max_hold_data_ns;
 751
 752	unsigned long clk_rate_khz, scl_rate_khz;
 753
 754	unsigned long min_low_div, min_high_div;
 755
 756	unsigned long min_div_for_hold, min_total_div;
 757	unsigned long extra_div, extra_low_div;
 758	unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
 759
 760	const struct i2c_spec_values *spec;
 761	int ret = 0;
 762
 763	/* Support standard-mode, fast-mode and fast-mode plus */
 764	if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_PLUS_FREQ))
 765		t->bus_freq_hz = I2C_MAX_FAST_MODE_PLUS_FREQ;
 766
 767	/* prevent scl_rate_khz from becoming 0 */
 768	if (WARN_ON(t->bus_freq_hz < 1000))
 769		t->bus_freq_hz = 1000;
 770
 771	/*
 772	 * min_low_ns: The minimum number of ns we need to hold low to
 773	 *	       meet I2C specification, should include fall time.
 774	 * min_high_ns: The minimum number of ns we need to hold high to
 775	 *	        meet I2C specification, should include rise time.
 776	 */
 777	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
 778
 779	/* calculate min-divh and min-divl */
 780	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
 781	scl_rate_khz = t->bus_freq_hz / 1000;
 782	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
 783
 784	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
 785	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
 786
 787	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
 788	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
 789
 790	/*
 791	 * Final divh and divl must be greater than 0, otherwise the
 792	 * hardware would not output the i2c clk.
 793	 */
 794	min_high_div = (min_high_div < 1) ? 2 : min_high_div;
 795	min_low_div = (min_low_div < 1) ? 2 : min_low_div;
 796
 797	/* These are the min dividers needed for min hold times. */
 798	min_div_for_hold = (min_low_div + min_high_div);
 799
 800	/*
 801	 * This is the maximum divider so we don't go over the maximum.
 802	 * We don't round up here (we round down) since this is a maximum.
 803	 */
 804	if (min_div_for_hold >= min_total_div) {
 805		/*
 806		 * Time needed to meet hold requirements is important.
 807		 * Just use that.
 808		 */
 809		t_calc->div_low = min_low_div;
 810		t_calc->div_high = min_high_div;
 811	} else {
 812		/*
 813		 * We've got to distribute some time among the low and high
 814		 * so we don't run too fast.
 815		 * We'll try to split things up by the scale of min_low_div and
 816		 * min_high_div, biasing slightly towards having a higher div
 817		 * for low (spend more time low).
 818		 */
 819		extra_div = min_total_div - min_div_for_hold;
 820		extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
 821					     min_div_for_hold);
 822
 823		t_calc->div_low = min_low_div + extra_low_div;
 824		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
 825	}
 826
 827	/*
 828	 * calculate sda data hold count by the rules, data_upd_st:3
 829	 * is a appropriate value to reduce calculated times.
 830	 */
 831	for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
 832		max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
 833						 * (t_calc->div_low) + 1)
 834						 * 1000000, clk_rate_khz);
 835		min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
 836						 * (t_calc->div_low) + 1)
 837						 * 1000000, clk_rate_khz);
 838		if ((max_hold_data_ns < spec->max_data_hold_ns) &&
 839		    (min_setup_data_ns > spec->min_data_setup_ns))
 840			break;
 841	}
 842
 843	/* calculate setup start config */
 844	min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
 845	stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
 846			   - 1000000, 8 * 1000000 * (t_calc->div_high));
 847
 848	/* calculate setup stop config */
 849	min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
 850	stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
 851			   - 1000000, 8 * 1000000 * (t_calc->div_high));
 852
 853	t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
 854			 REG_CON_STA_CFG(--stp_sta_cfg) |
 855			 REG_CON_STO_CFG(--stp_sto_cfg);
 856
 857	t_calc->div_low--;
 858	t_calc->div_high--;
 859
 860	/* Maximum divider supported by hw is 0xffff */
 861	if (t_calc->div_low > 0xffff) {
 862		t_calc->div_low = 0xffff;
 863		ret = -EINVAL;
 864	}
 865
 866	if (t_calc->div_high > 0xffff) {
 867		t_calc->div_high = 0xffff;
 868		ret = -EINVAL;
 869	}
 870
 871	return ret;
 872}
 873
 874static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
 875{
 876	struct i2c_timings *t = &i2c->t;
 877	struct rk3x_i2c_calced_timings calc;
 878	u64 t_low_ns, t_high_ns;
 879	unsigned long flags;
 880	u32 val;
 881	int ret;
 882
 883	ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
 884	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
 885
 886	clk_enable(i2c->pclk);
 887
 888	spin_lock_irqsave(&i2c->lock, flags);
 889	val = i2c_readl(i2c, REG_CON);
 890	val &= ~REG_CON_TUNING_MASK;
 891	val |= calc.tuning;
 892	i2c_writel(i2c, val, REG_CON);
 893	i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
 894		   REG_CLKDIV);
 895	spin_unlock_irqrestore(&i2c->lock, flags);
 896
 897	clk_disable(i2c->pclk);
 898
 899	t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
 900	t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
 901			    clk_rate);
 902	dev_dbg(i2c->dev,
 903		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
 904		clk_rate / 1000,
 905		1000000000 / t->bus_freq_hz,
 906		t_low_ns, t_high_ns);
 907}
 908
 909/**
 910 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
 911 * @nb:		Pointer to notifier block
 912 * @event:	Notification reason
 913 * @data:	Pointer to notification data object
 914 *
 915 * The callback checks whether a valid bus frequency can be generated after the
 916 * change. If so, the change is acknowledged, otherwise the change is aborted.
 917 * New dividers are written to the HW in the pre- or post change notification
 918 * depending on the scaling direction.
 919 *
 920 * Code adapted from i2c-cadence.c.
 921 *
 922 * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
 923 *		to acknowledge the change, NOTIFY_DONE if the notification is
 924 *		considered irrelevant.
 925 */
 926static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
 927				    event, void *data)
 928{
 929	struct clk_notifier_data *ndata = data;
 930	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
 931	struct rk3x_i2c_calced_timings calc;
 932
 933	switch (event) {
 934	case PRE_RATE_CHANGE:
 935		/*
 936		 * Try the calculation (but don't store the result) ahead of
 937		 * time to see if we need to block the clock change.  Timings
 938		 * shouldn't actually take effect until rk3x_i2c_adapt_div().
 939		 */
 940		if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
 941						&calc) != 0)
 942			return NOTIFY_STOP;
 943
 944		/* scale up */
 945		if (ndata->new_rate > ndata->old_rate)
 946			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
 947
 948		return NOTIFY_OK;
 949	case POST_RATE_CHANGE:
 950		/* scale down */
 951		if (ndata->new_rate < ndata->old_rate)
 952			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
 953		return NOTIFY_OK;
 954	case ABORT_RATE_CHANGE:
 955		/* scale up */
 956		if (ndata->new_rate > ndata->old_rate)
 957			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
 958		return NOTIFY_OK;
 959	default:
 960		return NOTIFY_DONE;
 961	}
 962}
 963
 964/**
 965 * rk3x_i2c_setup - Setup I2C registers for an I2C operation specified by msgs, num.
 966 * @i2c: target controller data
 967 * @msgs: I2C msgs to process
 968 * @num: Number of msgs
 969 *
 970 * Must be called with i2c->lock held.
 971 *
 972 * Return: Number of I2C msgs processed or negative in case of error
 973 */
 974static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
 975{
 976	u32 addr = (msgs[0].addr & 0x7f) << 1;
 977	int ret = 0;
 978
 979	/*
 980	 * The I2C adapter can issue a small (len < 4) write packet before
 981	 * reading. This speeds up SMBus-style register reads.
 982	 * The MRXADDR/MRXRADDR hold the target address and the target register
 983	 * address in this case.
 984	 */
 985
 986	if (num >= 2 && msgs[0].len < 4 &&
 987	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
 988		u32 reg_addr = 0;
 989		int i;
 990
 991		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
 992			addr >> 1);
 993
 994		/* Fill MRXRADDR with the register address(es) */
 995		for (i = 0; i < msgs[0].len; ++i) {
 996			reg_addr |= msgs[0].buf[i] << (i * 8);
 997			reg_addr |= REG_MRXADDR_VALID(i);
 998		}
 999
1000		/* msgs[0] is handled by hw. */
1001		i2c->msg = &msgs[1];
1002
1003		i2c->mode = REG_CON_MOD_REGISTER_TX;
1004
1005		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
1006		i2c_writel(i2c, reg_addr, REG_MRXRADDR);
1007
1008		ret = 2;
1009	} else {
1010		/*
1011		 * We'll have to do it the boring way and process the msgs
1012		 * one-by-one.
1013		 */
1014
1015		if (msgs[0].flags & I2C_M_RD) {
1016			addr |= 1; /* set read bit */
1017
1018			/*
1019			 * We have to transmit the target addr first. Use
1020			 * MOD_REGISTER_TX for that purpose.
1021			 */
1022			i2c->mode = REG_CON_MOD_REGISTER_TX;
1023			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
1024				   REG_MRXADDR);
1025			i2c_writel(i2c, 0, REG_MRXRADDR);
1026		} else {
1027			i2c->mode = REG_CON_MOD_TX;
1028		}
1029
1030		i2c->msg = &msgs[0];
1031
1032		ret = 1;
1033	}
1034
1035	i2c->addr = msgs[0].addr;
1036	i2c->busy = true;
1037	i2c->state = STATE_START;
1038	i2c->processed = 0;
1039	i2c->error = 0;
1040
1041	rk3x_i2c_clean_ipd(i2c);
1042
1043	return ret;
1044}
1045
1046static int rk3x_i2c_wait_xfer_poll(struct rk3x_i2c *i2c)
1047{
1048	ktime_t timeout = ktime_add_ms(ktime_get(), WAIT_TIMEOUT);
1049
1050	while (READ_ONCE(i2c->busy) &&
1051	       ktime_compare(ktime_get(), timeout) < 0) {
1052		udelay(5);
1053		rk3x_i2c_irq(0, i2c);
1054	}
1055
1056	return !i2c->busy;
1057}
1058
1059static int rk3x_i2c_xfer_common(struct i2c_adapter *adap,
1060				struct i2c_msg *msgs, int num, bool polling)
1061{
1062	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
1063	unsigned long flags;
1064	long time_left;
1065	u32 val;
1066	int ret = 0;
1067	int i;
1068
1069	spin_lock_irqsave(&i2c->lock, flags);
1070
1071	clk_enable(i2c->clk);
1072	clk_enable(i2c->pclk);
1073
1074	i2c->is_last_msg = false;
1075
1076	/*
1077	 * Process msgs. We can handle more than one message at once (see
1078	 * rk3x_i2c_setup()).
1079	 */
1080	for (i = 0; i < num; i += ret) {
1081		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
1082
1083		if (ret < 0) {
1084			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
1085			break;
1086		}
1087
1088		if (i + ret >= num)
1089			i2c->is_last_msg = true;
1090
1091		spin_unlock_irqrestore(&i2c->lock, flags);
1092
1093		if (!polling) {
1094			rk3x_i2c_start(i2c);
1095
1096			time_left = wait_event_timeout(i2c->wait, !i2c->busy,
1097						       msecs_to_jiffies(WAIT_TIMEOUT));
1098		} else {
1099			disable_irq(i2c->irq);
1100			rk3x_i2c_start(i2c);
1101
1102			time_left = rk3x_i2c_wait_xfer_poll(i2c);
1103
1104			enable_irq(i2c->irq);
1105		}
1106
1107		spin_lock_irqsave(&i2c->lock, flags);
1108
1109		if (time_left == 0) {
 
 
 
1110			/* Force a STOP condition without interrupt */
1111			i2c_writel(i2c, 0, REG_IEN);
1112			val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
1113			val |= REG_CON_EN | REG_CON_STOP;
1114			i2c_writel(i2c, val, REG_CON);
1115
1116			i2c->state = STATE_IDLE;
1117
1118			ret = -ETIMEDOUT;
1119			break;
1120		}
1121
1122		if (i2c->error) {
1123			ret = i2c->error;
1124			break;
1125		}
1126	}
1127
1128	clk_disable(i2c->pclk);
1129	clk_disable(i2c->clk);
1130
1131	spin_unlock_irqrestore(&i2c->lock, flags);
1132
1133	return ret < 0 ? ret : num;
1134}
1135
1136static int rk3x_i2c_xfer(struct i2c_adapter *adap,
1137			 struct i2c_msg *msgs, int num)
1138{
1139	return rk3x_i2c_xfer_common(adap, msgs, num, false);
1140}
1141
1142static int rk3x_i2c_xfer_polling(struct i2c_adapter *adap,
1143				 struct i2c_msg *msgs, int num)
1144{
1145	return rk3x_i2c_xfer_common(adap, msgs, num, true);
1146}
1147
1148static __maybe_unused int rk3x_i2c_resume(struct device *dev)
1149{
1150	struct rk3x_i2c *i2c = dev_get_drvdata(dev);
1151
1152	rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
1153
1154	return 0;
1155}
1156
1157static u32 rk3x_i2c_func(struct i2c_adapter *adap)
1158{
1159	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
1160}
1161
1162static const struct i2c_algorithm rk3x_i2c_algorithm = {
1163	.xfer = rk3x_i2c_xfer,
1164	.xfer_atomic = rk3x_i2c_xfer_polling,
1165	.functionality = rk3x_i2c_func,
1166};
1167
1168static const struct rk3x_i2c_soc_data rv1108_soc_data = {
1169	.grf_offset = -1,
1170	.calc_timings = rk3x_i2c_v1_calc_timings,
1171};
1172
1173static const struct rk3x_i2c_soc_data rv1126_soc_data = {
1174	.grf_offset = 0x118,
1175	.calc_timings = rk3x_i2c_v1_calc_timings,
1176};
1177
1178static const struct rk3x_i2c_soc_data rk3066_soc_data = {
1179	.grf_offset = 0x154,
1180	.calc_timings = rk3x_i2c_v0_calc_timings,
1181};
1182
1183static const struct rk3x_i2c_soc_data rk3188_soc_data = {
1184	.grf_offset = 0x0a4,
1185	.calc_timings = rk3x_i2c_v0_calc_timings,
1186};
1187
1188static const struct rk3x_i2c_soc_data rk3228_soc_data = {
1189	.grf_offset = -1,
1190	.calc_timings = rk3x_i2c_v0_calc_timings,
1191};
1192
1193static const struct rk3x_i2c_soc_data rk3288_soc_data = {
1194	.grf_offset = -1,
1195	.calc_timings = rk3x_i2c_v0_calc_timings,
1196};
1197
1198static const struct rk3x_i2c_soc_data rk3399_soc_data = {
1199	.grf_offset = -1,
1200	.calc_timings = rk3x_i2c_v1_calc_timings,
1201};
1202
1203static const struct of_device_id rk3x_i2c_match[] = {
1204	{
1205		.compatible = "rockchip,rv1108-i2c",
1206		.data = &rv1108_soc_data
1207	},
1208	{
1209		.compatible = "rockchip,rv1126-i2c",
1210		.data = &rv1126_soc_data
1211	},
1212	{
1213		.compatible = "rockchip,rk3066-i2c",
1214		.data = &rk3066_soc_data
1215	},
1216	{
1217		.compatible = "rockchip,rk3188-i2c",
1218		.data = &rk3188_soc_data
1219	},
1220	{
1221		.compatible = "rockchip,rk3228-i2c",
1222		.data = &rk3228_soc_data
1223	},
1224	{
1225		.compatible = "rockchip,rk3288-i2c",
1226		.data = &rk3288_soc_data
1227	},
1228	{
1229		.compatible = "rockchip,rk3399-i2c",
1230		.data = &rk3399_soc_data
1231	},
1232	{},
1233};
1234MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
1235
1236static int rk3x_i2c_probe(struct platform_device *pdev)
1237{
1238	struct device_node *np = pdev->dev.of_node;
1239	const struct of_device_id *match;
1240	struct rk3x_i2c *i2c;
1241	int ret = 0;
1242	int bus_nr;
1243	u32 value;
1244	int irq;
1245	unsigned long clk_rate;
1246
1247	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
1248	if (!i2c)
1249		return -ENOMEM;
1250
1251	match = of_match_node(rk3x_i2c_match, np);
1252	i2c->soc_data = match->data;
1253
1254	/* use common interface to get I2C timing properties */
1255	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
1256
1257	strscpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
1258	i2c->adap.owner = THIS_MODULE;
1259	i2c->adap.algo = &rk3x_i2c_algorithm;
1260	i2c->adap.retries = 3;
1261	i2c->adap.dev.of_node = np;
1262	i2c->adap.algo_data = i2c;
1263	i2c->adap.dev.parent = &pdev->dev;
1264
1265	i2c->dev = &pdev->dev;
1266
1267	spin_lock_init(&i2c->lock);
1268	init_waitqueue_head(&i2c->wait);
1269
1270	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
1271	if (IS_ERR(i2c->regs))
1272		return PTR_ERR(i2c->regs);
1273
1274	/* Try to set the I2C adapter number from dt */
1275	bus_nr = of_alias_get_id(np, "i2c");
1276
1277	/*
1278	 * Switch to new interface if the SoC also offers the old one.
1279	 * The control bit is located in the GRF register space.
1280	 */
1281	if (i2c->soc_data->grf_offset >= 0) {
1282		struct regmap *grf;
1283
1284		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
1285		if (IS_ERR(grf)) {
1286			dev_err(&pdev->dev,
1287				"rk3x-i2c needs 'rockchip,grf' property\n");
1288			return PTR_ERR(grf);
1289		}
1290
1291		if (bus_nr < 0) {
1292			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
1293			return -EINVAL;
1294		}
1295
1296		/* rv1126 i2c2 uses non-sequential write mask 20, value 4 */
1297		if (i2c->soc_data == &rv1126_soc_data && bus_nr == 2)
1298			value = BIT(20) | BIT(4);
1299		else
1300			/* 27+i: write mask, 11+i: value */
1301			value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
1302
1303		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
1304		if (ret != 0) {
1305			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
1306			return ret;
1307		}
1308	}
1309
1310	/* IRQ setup */
1311	irq = platform_get_irq(pdev, 0);
1312	if (irq < 0)
1313		return irq;
1314
1315	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
1316			       0, dev_name(&pdev->dev), i2c);
1317	if (ret < 0) {
1318		dev_err(&pdev->dev, "cannot request IRQ\n");
1319		return ret;
1320	}
1321
1322	i2c->irq = irq;
1323
1324	platform_set_drvdata(pdev, i2c);
1325
1326	if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
1327		/* Only one clock to use for bus clock and peripheral clock */
1328		i2c->clk = devm_clk_get(&pdev->dev, NULL);
1329		i2c->pclk = i2c->clk;
1330	} else {
1331		i2c->clk = devm_clk_get(&pdev->dev, "i2c");
1332		i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
1333	}
1334
1335	if (IS_ERR(i2c->clk))
1336		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->clk),
1337				     "Can't get bus clk\n");
1338
1339	if (IS_ERR(i2c->pclk))
1340		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk),
1341				     "Can't get periph clk\n");
1342
1343	ret = clk_prepare(i2c->clk);
1344	if (ret < 0) {
1345		dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
1346		return ret;
1347	}
1348	ret = clk_prepare(i2c->pclk);
1349	if (ret < 0) {
1350		dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
1351		goto err_clk;
1352	}
1353
1354	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
1355	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
1356	if (ret != 0) {
1357		dev_err(&pdev->dev, "Unable to register clock notifier\n");
1358		goto err_pclk;
1359	}
1360
1361	ret = clk_enable(i2c->clk);
1362	if (ret < 0) {
1363		dev_err(&pdev->dev, "Can't enable bus clk: %d\n", ret);
1364		goto err_clk_notifier;
1365	}
1366
1367	clk_rate = clk_get_rate(i2c->clk);
1368	rk3x_i2c_adapt_div(i2c, clk_rate);
1369	clk_disable(i2c->clk);
1370
1371	ret = i2c_add_adapter(&i2c->adap);
1372	if (ret < 0)
1373		goto err_clk_notifier;
1374
1375	return 0;
1376
1377err_clk_notifier:
1378	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1379err_pclk:
1380	clk_unprepare(i2c->pclk);
1381err_clk:
1382	clk_unprepare(i2c->clk);
1383	return ret;
1384}
1385
1386static void rk3x_i2c_remove(struct platform_device *pdev)
1387{
1388	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1389
1390	i2c_del_adapter(&i2c->adap);
1391
1392	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1393	clk_unprepare(i2c->pclk);
1394	clk_unprepare(i2c->clk);
1395}
1396
1397static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);
1398
1399static struct platform_driver rk3x_i2c_driver = {
1400	.probe   = rk3x_i2c_probe,
1401	.remove = rk3x_i2c_remove,
1402	.driver  = {
1403		.name  = "rk3x-i2c",
1404		.of_match_table = rk3x_i2c_match,
1405		.pm = &rk3x_i2c_pm_ops,
1406	},
1407};
1408
1409module_platform_driver(rk3x_i2c_driver);
1410
1411MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1412MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1413MODULE_LICENSE("GPL v2");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for I2C adapter in Rockchip RK3xxx SoC
   4 *
   5 * Max Schwarz <max.schwarz@online.de>
   6 * based on the patches by Rockchip Inc.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/i2c.h>
  12#include <linux/interrupt.h>
  13#include <linux/iopoll.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/platform_device.h>
  17#include <linux/io.h>
  18#include <linux/of_address.h>
  19#include <linux/of_irq.h>
  20#include <linux/spinlock.h>
  21#include <linux/clk.h>
  22#include <linux/wait.h>
  23#include <linux/mfd/syscon.h>
  24#include <linux/regmap.h>
  25#include <linux/math64.h>
  26
  27
  28/* Register Map */
  29#define REG_CON        0x00 /* control register */
  30#define REG_CLKDIV     0x04 /* clock divisor register */
  31#define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
  32#define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
  33#define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
  34#define REG_MRXCNT     0x14 /* number of bytes to be received */
  35#define REG_IEN        0x18 /* interrupt enable */
  36#define REG_IPD        0x1c /* interrupt pending */
  37#define REG_FCNT       0x20 /* finished count */
  38
  39/* Data buffer offsets */
  40#define TXBUFFER_BASE 0x100
  41#define RXBUFFER_BASE 0x200
  42
  43/* REG_CON bits */
  44#define REG_CON_EN        BIT(0)
  45enum {
  46	REG_CON_MOD_TX = 0,      /* transmit data */
  47	REG_CON_MOD_REGISTER_TX, /* select register and restart */
  48	REG_CON_MOD_RX,          /* receive data */
  49	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
  50				  * register addr */
  51};
  52#define REG_CON_MOD(mod)  ((mod) << 1)
  53#define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
  54#define REG_CON_START     BIT(3)
  55#define REG_CON_STOP      BIT(4)
  56#define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
  57#define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
  58
  59#define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
  60
  61#define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
  62#define REG_CON_STA_CFG(cfg) ((cfg) << 12)
  63#define REG_CON_STO_CFG(cfg) ((cfg) << 14)
  64
  65/* REG_MRXADDR bits */
  66#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
  67
  68/* REG_IEN/REG_IPD bits */
  69#define REG_INT_BTF       BIT(0) /* a byte was transmitted */
  70#define REG_INT_BRF       BIT(1) /* a byte was received */
  71#define REG_INT_MBTF      BIT(2) /* master data transmit finished */
  72#define REG_INT_MBRF      BIT(3) /* master data receive finished */
  73#define REG_INT_START     BIT(4) /* START condition generated */
  74#define REG_INT_STOP      BIT(5) /* STOP condition generated */
  75#define REG_INT_NAKRCV    BIT(6) /* NACK received */
  76#define REG_INT_ALL       0x7f
  77
  78/* Constants */
  79#define WAIT_TIMEOUT      1000 /* ms */
  80#define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
  81
  82/**
  83 * struct i2c_spec_values - I2C specification values for various modes
  84 * @min_hold_start_ns: min hold time (repeated) START condition
  85 * @min_low_ns: min LOW period of the SCL clock
  86 * @min_high_ns: min HIGH period of the SCL cloc
  87 * @min_setup_start_ns: min set-up time for a repeated START conditio
  88 * @max_data_hold_ns: max data hold time
  89 * @min_data_setup_ns: min data set-up time
  90 * @min_setup_stop_ns: min set-up time for STOP condition
  91 * @min_hold_buffer_ns: min bus free time between a STOP and
  92 * START condition
  93 */
  94struct i2c_spec_values {
  95	unsigned long min_hold_start_ns;
  96	unsigned long min_low_ns;
  97	unsigned long min_high_ns;
  98	unsigned long min_setup_start_ns;
  99	unsigned long max_data_hold_ns;
 100	unsigned long min_data_setup_ns;
 101	unsigned long min_setup_stop_ns;
 102	unsigned long min_hold_buffer_ns;
 103};
 104
 105static const struct i2c_spec_values standard_mode_spec = {
 106	.min_hold_start_ns = 4000,
 107	.min_low_ns = 4700,
 108	.min_high_ns = 4000,
 109	.min_setup_start_ns = 4700,
 110	.max_data_hold_ns = 3450,
 111	.min_data_setup_ns = 250,
 112	.min_setup_stop_ns = 4000,
 113	.min_hold_buffer_ns = 4700,
 114};
 115
 116static const struct i2c_spec_values fast_mode_spec = {
 117	.min_hold_start_ns = 600,
 118	.min_low_ns = 1300,
 119	.min_high_ns = 600,
 120	.min_setup_start_ns = 600,
 121	.max_data_hold_ns = 900,
 122	.min_data_setup_ns = 100,
 123	.min_setup_stop_ns = 600,
 124	.min_hold_buffer_ns = 1300,
 125};
 126
 127static const struct i2c_spec_values fast_mode_plus_spec = {
 128	.min_hold_start_ns = 260,
 129	.min_low_ns = 500,
 130	.min_high_ns = 260,
 131	.min_setup_start_ns = 260,
 132	.max_data_hold_ns = 400,
 133	.min_data_setup_ns = 50,
 134	.min_setup_stop_ns = 260,
 135	.min_hold_buffer_ns = 500,
 136};
 137
 138/**
 139 * struct rk3x_i2c_calced_timings - calculated V1 timings
 140 * @div_low: Divider output for low
 141 * @div_high: Divider output for high
 142 * @tuning: Used to adjust setup/hold data time,
 143 * setup/hold start time and setup stop time for
 144 * v1's calc_timings, the tuning should all be 0
 145 * for old hardware anyone using v0's calc_timings.
 146 */
 147struct rk3x_i2c_calced_timings {
 148	unsigned long div_low;
 149	unsigned long div_high;
 150	unsigned int tuning;
 151};
 152
 153enum rk3x_i2c_state {
 154	STATE_IDLE,
 155	STATE_START,
 156	STATE_READ,
 157	STATE_WRITE,
 158	STATE_STOP
 159};
 160
 161/**
 162 * struct rk3x_i2c_soc_data - SOC-specific data
 163 * @grf_offset: offset inside the grf regmap for setting the i2c type
 164 * @calc_timings: Callback function for i2c timing information calculated
 165 */
 166struct rk3x_i2c_soc_data {
 167	int grf_offset;
 168	int (*calc_timings)(unsigned long, struct i2c_timings *,
 169			    struct rk3x_i2c_calced_timings *);
 170};
 171
 172/**
 173 * struct rk3x_i2c - private data of the controller
 174 * @adap: corresponding I2C adapter
 175 * @dev: device for this controller
 176 * @soc_data: related soc data struct
 177 * @regs: virtual memory area
 178 * @clk: function clk for rk3399 or function & Bus clks for others
 179 * @pclk: Bus clk for rk3399
 180 * @clk_rate_nb: i2c clk rate change notify
 181 * @irq: irq number
 182 * @t: I2C known timing information
 183 * @lock: spinlock for the i2c bus
 184 * @wait: the waitqueue to wait for i2c transfer
 185 * @busy: the condition for the event to wait for
 186 * @msg: current i2c message
 187 * @addr: addr of i2c slave device
 188 * @mode: mode of i2c transfer
 189 * @is_last_msg: flag determines whether it is the last msg in this transfer
 190 * @state: state of i2c transfer
 191 * @processed: byte length which has been send or received
 192 * @error: error code for i2c transfer
 193 */
 194struct rk3x_i2c {
 195	struct i2c_adapter adap;
 196	struct device *dev;
 197	const struct rk3x_i2c_soc_data *soc_data;
 198
 199	/* Hardware resources */
 200	void __iomem *regs;
 201	struct clk *clk;
 202	struct clk *pclk;
 203	struct notifier_block clk_rate_nb;
 204	int irq;
 205
 206	/* Settings */
 207	struct i2c_timings t;
 208
 209	/* Synchronization & notification */
 210	spinlock_t lock;
 211	wait_queue_head_t wait;
 212	bool busy;
 213
 214	/* Current message */
 215	struct i2c_msg *msg;
 216	u8 addr;
 217	unsigned int mode;
 218	bool is_last_msg;
 219
 220	/* I2C state machine */
 221	enum rk3x_i2c_state state;
 222	unsigned int processed;
 223	int error;
 224};
 225
 226static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
 227			      unsigned int offset)
 228{
 229	writel(value, i2c->regs + offset);
 230}
 231
 232static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
 233{
 234	return readl(i2c->regs + offset);
 235}
 236
 237/* Reset all interrupt pending bits */
 238static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
 239{
 240	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
 241}
 242
 243/**
 244 * rk3x_i2c_start - Generate a START condition, which triggers a REG_INT_START interrupt.
 245 * @i2c: target controller data
 246 */
 247static void rk3x_i2c_start(struct rk3x_i2c *i2c)
 248{
 249	u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
 250
 251	i2c_writel(i2c, REG_INT_START, REG_IEN);
 252
 253	/* enable adapter with correct mode, send START condition */
 254	val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
 255
 256	/* if we want to react to NACK, set ACTACK bit */
 257	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
 258		val |= REG_CON_ACTACK;
 259
 260	i2c_writel(i2c, val, REG_CON);
 261}
 262
 263/**
 264 * rk3x_i2c_stop - Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
 265 * @i2c: target controller data
 266 * @error: Error code to return in rk3x_i2c_xfer
 267 */
 268static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
 269{
 270	unsigned int ctrl;
 271
 272	i2c->processed = 0;
 273	i2c->msg = NULL;
 274	i2c->error = error;
 275
 276	if (i2c->is_last_msg) {
 277		/* Enable stop interrupt */
 278		i2c_writel(i2c, REG_INT_STOP, REG_IEN);
 279
 280		i2c->state = STATE_STOP;
 281
 282		ctrl = i2c_readl(i2c, REG_CON);
 283		ctrl |= REG_CON_STOP;
 284		i2c_writel(i2c, ctrl, REG_CON);
 285	} else {
 286		/* Signal rk3x_i2c_xfer to start the next message. */
 287		i2c->busy = false;
 288		i2c->state = STATE_IDLE;
 289
 290		/*
 291		 * The HW is actually not capable of REPEATED START. But we can
 292		 * get the intended effect by resetting its internal state
 293		 * and issuing an ordinary START.
 294		 */
 295		ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
 296		i2c_writel(i2c, ctrl, REG_CON);
 297
 298		/* signal that we are finished with the current msg */
 299		wake_up(&i2c->wait);
 300	}
 301}
 302
 303/**
 304 * rk3x_i2c_prepare_read - Setup a read according to i2c->msg
 305 * @i2c: target controller data
 306 */
 307static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
 308{
 309	unsigned int len = i2c->msg->len - i2c->processed;
 310	u32 con;
 311
 312	con = i2c_readl(i2c, REG_CON);
 313
 314	/*
 315	 * The hw can read up to 32 bytes at a time. If we need more than one
 316	 * chunk, send an ACK after the last byte of the current chunk.
 317	 */
 318	if (len > 32) {
 319		len = 32;
 320		con &= ~REG_CON_LASTACK;
 321	} else {
 322		con |= REG_CON_LASTACK;
 323	}
 324
 325	/* make sure we are in plain RX mode if we read a second chunk */
 326	if (i2c->processed != 0) {
 327		con &= ~REG_CON_MOD_MASK;
 328		con |= REG_CON_MOD(REG_CON_MOD_RX);
 329	}
 330
 331	i2c_writel(i2c, con, REG_CON);
 332	i2c_writel(i2c, len, REG_MRXCNT);
 333}
 334
 335/**
 336 * rk3x_i2c_fill_transmit_buf - Fill the transmit buffer with data from i2c->msg
 337 * @i2c: target controller data
 338 */
 339static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
 340{
 341	unsigned int i, j;
 342	u32 cnt = 0;
 343	u32 val;
 344	u8 byte;
 345
 346	for (i = 0; i < 8; ++i) {
 347		val = 0;
 348		for (j = 0; j < 4; ++j) {
 349			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
 350				break;
 351
 352			if (i2c->processed == 0 && cnt == 0)
 353				byte = (i2c->addr & 0x7f) << 1;
 354			else
 355				byte = i2c->msg->buf[i2c->processed++];
 356
 357			val |= byte << (j * 8);
 358			cnt++;
 359		}
 360
 361		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
 362
 363		if (i2c->processed == i2c->msg->len)
 364			break;
 365	}
 366
 367	i2c_writel(i2c, cnt, REG_MTXCNT);
 368}
 369
 370
 371/* IRQ handlers for individual states */
 372
 373static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
 374{
 375	if (!(ipd & REG_INT_START)) {
 376		rk3x_i2c_stop(i2c, -EIO);
 377		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
 378		rk3x_i2c_clean_ipd(i2c);
 379		return;
 380	}
 381
 382	/* ack interrupt */
 383	i2c_writel(i2c, REG_INT_START, REG_IPD);
 384
 385	/* disable start bit */
 386	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
 387
 388	/* enable appropriate interrupts and transition */
 389	if (i2c->mode == REG_CON_MOD_TX) {
 390		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
 391		i2c->state = STATE_WRITE;
 392		rk3x_i2c_fill_transmit_buf(i2c);
 393	} else {
 394		/* in any other case, we are going to be reading. */
 395		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
 396		i2c->state = STATE_READ;
 397		rk3x_i2c_prepare_read(i2c);
 398	}
 399}
 400
 401static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
 402{
 403	if (!(ipd & REG_INT_MBTF)) {
 404		rk3x_i2c_stop(i2c, -EIO);
 405		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
 406		rk3x_i2c_clean_ipd(i2c);
 407		return;
 408	}
 409
 410	/* ack interrupt */
 411	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
 412
 413	/* are we finished? */
 414	if (i2c->processed == i2c->msg->len)
 415		rk3x_i2c_stop(i2c, i2c->error);
 416	else
 417		rk3x_i2c_fill_transmit_buf(i2c);
 418}
 419
 420static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
 421{
 422	unsigned int i;
 423	unsigned int len = i2c->msg->len - i2c->processed;
 424	u32 val;
 425	u8 byte;
 426
 427	/* we only care for MBRF here. */
 428	if (!(ipd & REG_INT_MBRF))
 429		return;
 430
 431	/* ack interrupt (read also produces a spurious START flag, clear it too) */
 432	i2c_writel(i2c, REG_INT_MBRF | REG_INT_START, REG_IPD);
 433
 434	/* Can only handle a maximum of 32 bytes at a time */
 435	if (len > 32)
 436		len = 32;
 437
 438	/* read the data from receive buffer */
 439	for (i = 0; i < len; ++i) {
 440		if (i % 4 == 0)
 441			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
 442
 443		byte = (val >> ((i % 4) * 8)) & 0xff;
 444		i2c->msg->buf[i2c->processed++] = byte;
 445	}
 446
 447	/* are we finished? */
 448	if (i2c->processed == i2c->msg->len)
 449		rk3x_i2c_stop(i2c, i2c->error);
 450	else
 451		rk3x_i2c_prepare_read(i2c);
 452}
 453
 454static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
 455{
 456	unsigned int con;
 457
 458	if (!(ipd & REG_INT_STOP)) {
 459		rk3x_i2c_stop(i2c, -EIO);
 460		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
 461		rk3x_i2c_clean_ipd(i2c);
 462		return;
 463	}
 464
 465	/* ack interrupt */
 466	i2c_writel(i2c, REG_INT_STOP, REG_IPD);
 467
 468	/* disable STOP bit */
 469	con = i2c_readl(i2c, REG_CON);
 470	con &= ~REG_CON_STOP;
 471	i2c_writel(i2c, con, REG_CON);
 472
 473	i2c->busy = false;
 474	i2c->state = STATE_IDLE;
 475
 476	/* signal rk3x_i2c_xfer that we are finished */
 477	wake_up(&i2c->wait);
 478}
 479
 480static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
 481{
 482	struct rk3x_i2c *i2c = dev_id;
 483	unsigned int ipd;
 484
 485	spin_lock(&i2c->lock);
 486
 487	ipd = i2c_readl(i2c, REG_IPD);
 488	if (i2c->state == STATE_IDLE) {
 489		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
 490		rk3x_i2c_clean_ipd(i2c);
 491		goto out;
 492	}
 493
 494	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
 495
 496	/* Clean interrupt bits we don't care about */
 497	ipd &= ~(REG_INT_BRF | REG_INT_BTF);
 498
 499	if (ipd & REG_INT_NAKRCV) {
 500		/*
 501		 * We got a NACK in the last operation. Depending on whether
 502		 * IGNORE_NAK is set, we have to stop the operation and report
 503		 * an error.
 504		 */
 505		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
 506
 507		ipd &= ~REG_INT_NAKRCV;
 508
 509		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
 510			rk3x_i2c_stop(i2c, -ENXIO);
 511	}
 512
 513	/* is there anything left to handle? */
 514	if ((ipd & REG_INT_ALL) == 0)
 515		goto out;
 516
 517	switch (i2c->state) {
 518	case STATE_START:
 519		rk3x_i2c_handle_start(i2c, ipd);
 520		break;
 521	case STATE_WRITE:
 522		rk3x_i2c_handle_write(i2c, ipd);
 523		break;
 524	case STATE_READ:
 525		rk3x_i2c_handle_read(i2c, ipd);
 526		break;
 527	case STATE_STOP:
 528		rk3x_i2c_handle_stop(i2c, ipd);
 529		break;
 530	case STATE_IDLE:
 531		break;
 532	}
 533
 534out:
 535	spin_unlock(&i2c->lock);
 536	return IRQ_HANDLED;
 537}
 538
 539/**
 540 * rk3x_i2c_get_spec - Get timing values of I2C specification
 541 * @speed: Desired SCL frequency
 542 *
 543 * Return: Matched i2c_spec_values.
 544 */
 545static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
 546{
 547	if (speed <= I2C_MAX_STANDARD_MODE_FREQ)
 548		return &standard_mode_spec;
 549	else if (speed <= I2C_MAX_FAST_MODE_FREQ)
 550		return &fast_mode_spec;
 551	else
 552		return &fast_mode_plus_spec;
 553}
 554
 555/**
 556 * rk3x_i2c_v0_calc_timings - Calculate divider values for desired SCL frequency
 557 * @clk_rate: I2C input clock rate
 558 * @t: Known I2C timing information
 559 * @t_calc: Caculated rk3x private timings that would be written into regs
 560 *
 561 * Return: %0 on success, -%EINVAL if the goal SCL rate is too slow. In that case
 562 * a best-effort divider value is returned in divs. If the target rate is
 563 * too high, we silently use the highest possible rate.
 564 */
 565static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
 566				    struct i2c_timings *t,
 567				    struct rk3x_i2c_calced_timings *t_calc)
 568{
 569	unsigned long min_low_ns, min_high_ns;
 570	unsigned long max_low_ns, min_total_ns;
 571
 572	unsigned long clk_rate_khz, scl_rate_khz;
 573
 574	unsigned long min_low_div, min_high_div;
 575	unsigned long max_low_div;
 576
 577	unsigned long min_div_for_hold, min_total_div;
 578	unsigned long extra_div, extra_low_div, ideal_low_div;
 579
 580	unsigned long data_hold_buffer_ns = 50;
 581	const struct i2c_spec_values *spec;
 582	int ret = 0;
 583
 584	/* Only support standard-mode and fast-mode */
 585	if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ))
 586		t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ;
 587
 588	/* prevent scl_rate_khz from becoming 0 */
 589	if (WARN_ON(t->bus_freq_hz < 1000))
 590		t->bus_freq_hz = 1000;
 591
 592	/*
 593	 * min_low_ns:  The minimum number of ns we need to hold low to
 594	 *		meet I2C specification, should include fall time.
 595	 * min_high_ns: The minimum number of ns we need to hold high to
 596	 *		meet I2C specification, should include rise time.
 597	 * max_low_ns:  The maximum number of ns we can hold low to meet
 598	 *		I2C specification.
 599	 *
 600	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
 601	 *	 This is because the i2c host on Rockchip holds the data line
 602	 *	 for half the low time.
 603	 */
 604	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
 605	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
 606
 607	/*
 608	 * Timings for repeated start:
 609	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
 610	 * - controller appears to keep SCL high for 2x programmed clk high.
 611	 *
 612	 * We need to account for those rules in picking our "high" time so
 613	 * we meet tSU;STA and tHD;STA times.
 614	 */
 615	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
 616		(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
 617	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
 618		(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
 619		spec->min_high_ns), 2));
 620
 621	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
 622	max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
 623	min_total_ns = min_low_ns + min_high_ns;
 624
 625	/* Adjust to avoid overflow */
 626	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
 627	scl_rate_khz = t->bus_freq_hz / 1000;
 628
 629	/*
 630	 * We need the total div to be >= this number
 631	 * so we don't clock too fast.
 632	 */
 633	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
 634
 635	/* These are the min dividers needed for min hold times. */
 636	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
 637	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
 638	min_div_for_hold = (min_low_div + min_high_div);
 639
 640	/*
 641	 * This is the maximum divider so we don't go over the maximum.
 642	 * We don't round up here (we round down) since this is a maximum.
 643	 */
 644	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
 645
 646	if (min_low_div > max_low_div) {
 647		WARN_ONCE(true,
 648			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
 649			  min_low_div, max_low_div);
 650		max_low_div = min_low_div;
 651	}
 652
 653	if (min_div_for_hold > min_total_div) {
 654		/*
 655		 * Time needed to meet hold requirements is important.
 656		 * Just use that.
 657		 */
 658		t_calc->div_low = min_low_div;
 659		t_calc->div_high = min_high_div;
 660	} else {
 661		/*
 662		 * We've got to distribute some time among the low and high
 663		 * so we don't run too fast.
 664		 */
 665		extra_div = min_total_div - min_div_for_hold;
 666
 667		/*
 668		 * We'll try to split things up perfectly evenly,
 669		 * biasing slightly towards having a higher div
 670		 * for low (spend more time low).
 671		 */
 672		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
 673					     scl_rate_khz * 8 * min_total_ns);
 674
 675		/* Don't allow it to go over the maximum */
 676		if (ideal_low_div > max_low_div)
 677			ideal_low_div = max_low_div;
 678
 679		/*
 680		 * Handle when the ideal low div is going to take up
 681		 * more than we have.
 682		 */
 683		if (ideal_low_div > min_low_div + extra_div)
 684			ideal_low_div = min_low_div + extra_div;
 685
 686		/* Give low the "ideal" and give high whatever extra is left */
 687		extra_low_div = ideal_low_div - min_low_div;
 688		t_calc->div_low = ideal_low_div;
 689		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
 690	}
 691
 692	/*
 693	 * Adjust to the fact that the hardware has an implicit "+1".
 694	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
 695	 */
 696	t_calc->div_low--;
 697	t_calc->div_high--;
 698
 699	/* Give the tuning value 0, that would not update con register */
 700	t_calc->tuning = 0;
 701	/* Maximum divider supported by hw is 0xffff */
 702	if (t_calc->div_low > 0xffff) {
 703		t_calc->div_low = 0xffff;
 704		ret = -EINVAL;
 705	}
 706
 707	if (t_calc->div_high > 0xffff) {
 708		t_calc->div_high = 0xffff;
 709		ret = -EINVAL;
 710	}
 711
 712	return ret;
 713}
 714
 715/**
 716 * rk3x_i2c_v1_calc_timings - Calculate timing values for desired SCL frequency
 717 * @clk_rate: I2C input clock rate
 718 * @t: Known I2C timing information
 719 * @t_calc: Caculated rk3x private timings that would be written into regs
 720 *
 721 * Return: %0 on success, -%EINVAL if the goal SCL rate is too slow. In that case
 722 * a best-effort divider value is returned in divs. If the target rate is
 723 * too high, we silently use the highest possible rate.
 724 * The following formulas are v1's method to calculate timings.
 725 *
 726 * l = divl + 1;
 727 * h = divh + 1;
 728 * s = sda_update_config + 1;
 729 * u = start_setup_config + 1;
 730 * p = stop_setup_config + 1;
 731 * T = Tclk_i2c;
 732 *
 733 * tHigh = 8 * h * T;
 734 * tLow = 8 * l * T;
 735 *
 736 * tHD;sda = (l * s + 1) * T;
 737 * tSU;sda = [(8 - s) * l + 1] * T;
 738 * tI2C = 8 * (l + h) * T;
 739 *
 740 * tSU;sta = (8h * u + 1) * T;
 741 * tHD;sta = [8h * (u + 1) - 1] * T;
 742 * tSU;sto = (8h * p + 1) * T;
 743 */
 744static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
 745				    struct i2c_timings *t,
 746				    struct rk3x_i2c_calced_timings *t_calc)
 747{
 748	unsigned long min_low_ns, min_high_ns;
 749	unsigned long min_setup_start_ns, min_setup_data_ns;
 750	unsigned long min_setup_stop_ns, max_hold_data_ns;
 751
 752	unsigned long clk_rate_khz, scl_rate_khz;
 753
 754	unsigned long min_low_div, min_high_div;
 755
 756	unsigned long min_div_for_hold, min_total_div;
 757	unsigned long extra_div, extra_low_div;
 758	unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
 759
 760	const struct i2c_spec_values *spec;
 761	int ret = 0;
 762
 763	/* Support standard-mode, fast-mode and fast-mode plus */
 764	if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_PLUS_FREQ))
 765		t->bus_freq_hz = I2C_MAX_FAST_MODE_PLUS_FREQ;
 766
 767	/* prevent scl_rate_khz from becoming 0 */
 768	if (WARN_ON(t->bus_freq_hz < 1000))
 769		t->bus_freq_hz = 1000;
 770
 771	/*
 772	 * min_low_ns: The minimum number of ns we need to hold low to
 773	 *	       meet I2C specification, should include fall time.
 774	 * min_high_ns: The minimum number of ns we need to hold high to
 775	 *	        meet I2C specification, should include rise time.
 776	 */
 777	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
 778
 779	/* calculate min-divh and min-divl */
 780	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
 781	scl_rate_khz = t->bus_freq_hz / 1000;
 782	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
 783
 784	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
 785	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
 786
 787	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
 788	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
 789
 790	/*
 791	 * Final divh and divl must be greater than 0, otherwise the
 792	 * hardware would not output the i2c clk.
 793	 */
 794	min_high_div = (min_high_div < 1) ? 2 : min_high_div;
 795	min_low_div = (min_low_div < 1) ? 2 : min_low_div;
 796
 797	/* These are the min dividers needed for min hold times. */
 798	min_div_for_hold = (min_low_div + min_high_div);
 799
 800	/*
 801	 * This is the maximum divider so we don't go over the maximum.
 802	 * We don't round up here (we round down) since this is a maximum.
 803	 */
 804	if (min_div_for_hold >= min_total_div) {
 805		/*
 806		 * Time needed to meet hold requirements is important.
 807		 * Just use that.
 808		 */
 809		t_calc->div_low = min_low_div;
 810		t_calc->div_high = min_high_div;
 811	} else {
 812		/*
 813		 * We've got to distribute some time among the low and high
 814		 * so we don't run too fast.
 815		 * We'll try to split things up by the scale of min_low_div and
 816		 * min_high_div, biasing slightly towards having a higher div
 817		 * for low (spend more time low).
 818		 */
 819		extra_div = min_total_div - min_div_for_hold;
 820		extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
 821					     min_div_for_hold);
 822
 823		t_calc->div_low = min_low_div + extra_low_div;
 824		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
 825	}
 826
 827	/*
 828	 * calculate sda data hold count by the rules, data_upd_st:3
 829	 * is a appropriate value to reduce calculated times.
 830	 */
 831	for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
 832		max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
 833						 * (t_calc->div_low) + 1)
 834						 * 1000000, clk_rate_khz);
 835		min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
 836						 * (t_calc->div_low) + 1)
 837						 * 1000000, clk_rate_khz);
 838		if ((max_hold_data_ns < spec->max_data_hold_ns) &&
 839		    (min_setup_data_ns > spec->min_data_setup_ns))
 840			break;
 841	}
 842
 843	/* calculate setup start config */
 844	min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
 845	stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
 846			   - 1000000, 8 * 1000000 * (t_calc->div_high));
 847
 848	/* calculate setup stop config */
 849	min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
 850	stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
 851			   - 1000000, 8 * 1000000 * (t_calc->div_high));
 852
 853	t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
 854			 REG_CON_STA_CFG(--stp_sta_cfg) |
 855			 REG_CON_STO_CFG(--stp_sto_cfg);
 856
 857	t_calc->div_low--;
 858	t_calc->div_high--;
 859
 860	/* Maximum divider supported by hw is 0xffff */
 861	if (t_calc->div_low > 0xffff) {
 862		t_calc->div_low = 0xffff;
 863		ret = -EINVAL;
 864	}
 865
 866	if (t_calc->div_high > 0xffff) {
 867		t_calc->div_high = 0xffff;
 868		ret = -EINVAL;
 869	}
 870
 871	return ret;
 872}
 873
 874static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
 875{
 876	struct i2c_timings *t = &i2c->t;
 877	struct rk3x_i2c_calced_timings calc;
 878	u64 t_low_ns, t_high_ns;
 879	unsigned long flags;
 880	u32 val;
 881	int ret;
 882
 883	ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
 884	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
 885
 886	clk_enable(i2c->pclk);
 887
 888	spin_lock_irqsave(&i2c->lock, flags);
 889	val = i2c_readl(i2c, REG_CON);
 890	val &= ~REG_CON_TUNING_MASK;
 891	val |= calc.tuning;
 892	i2c_writel(i2c, val, REG_CON);
 893	i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
 894		   REG_CLKDIV);
 895	spin_unlock_irqrestore(&i2c->lock, flags);
 896
 897	clk_disable(i2c->pclk);
 898
 899	t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
 900	t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
 901			    clk_rate);
 902	dev_dbg(i2c->dev,
 903		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
 904		clk_rate / 1000,
 905		1000000000 / t->bus_freq_hz,
 906		t_low_ns, t_high_ns);
 907}
 908
 909/**
 910 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
 911 * @nb:		Pointer to notifier block
 912 * @event:	Notification reason
 913 * @data:	Pointer to notification data object
 914 *
 915 * The callback checks whether a valid bus frequency can be generated after the
 916 * change. If so, the change is acknowledged, otherwise the change is aborted.
 917 * New dividers are written to the HW in the pre- or post change notification
 918 * depending on the scaling direction.
 919 *
 920 * Code adapted from i2c-cadence.c.
 921 *
 922 * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
 923 *		to acknowledge the change, NOTIFY_DONE if the notification is
 924 *		considered irrelevant.
 925 */
 926static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
 927				    event, void *data)
 928{
 929	struct clk_notifier_data *ndata = data;
 930	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
 931	struct rk3x_i2c_calced_timings calc;
 932
 933	switch (event) {
 934	case PRE_RATE_CHANGE:
 935		/*
 936		 * Try the calculation (but don't store the result) ahead of
 937		 * time to see if we need to block the clock change.  Timings
 938		 * shouldn't actually take effect until rk3x_i2c_adapt_div().
 939		 */
 940		if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
 941						&calc) != 0)
 942			return NOTIFY_STOP;
 943
 944		/* scale up */
 945		if (ndata->new_rate > ndata->old_rate)
 946			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
 947
 948		return NOTIFY_OK;
 949	case POST_RATE_CHANGE:
 950		/* scale down */
 951		if (ndata->new_rate < ndata->old_rate)
 952			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
 953		return NOTIFY_OK;
 954	case ABORT_RATE_CHANGE:
 955		/* scale up */
 956		if (ndata->new_rate > ndata->old_rate)
 957			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
 958		return NOTIFY_OK;
 959	default:
 960		return NOTIFY_DONE;
 961	}
 962}
 963
 964/**
 965 * rk3x_i2c_setup - Setup I2C registers for an I2C operation specified by msgs, num.
 966 * @i2c: target controller data
 967 * @msgs: I2C msgs to process
 968 * @num: Number of msgs
 969 *
 970 * Must be called with i2c->lock held.
 971 *
 972 * Return: Number of I2C msgs processed or negative in case of error
 973 */
 974static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
 975{
 976	u32 addr = (msgs[0].addr & 0x7f) << 1;
 977	int ret = 0;
 978
 979	/*
 980	 * The I2C adapter can issue a small (len < 4) write packet before
 981	 * reading. This speeds up SMBus-style register reads.
 982	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
 983	 * address in this case.
 984	 */
 985
 986	if (num >= 2 && msgs[0].len < 4 &&
 987	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
 988		u32 reg_addr = 0;
 989		int i;
 990
 991		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
 992			addr >> 1);
 993
 994		/* Fill MRXRADDR with the register address(es) */
 995		for (i = 0; i < msgs[0].len; ++i) {
 996			reg_addr |= msgs[0].buf[i] << (i * 8);
 997			reg_addr |= REG_MRXADDR_VALID(i);
 998		}
 999
1000		/* msgs[0] is handled by hw. */
1001		i2c->msg = &msgs[1];
1002
1003		i2c->mode = REG_CON_MOD_REGISTER_TX;
1004
1005		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
1006		i2c_writel(i2c, reg_addr, REG_MRXRADDR);
1007
1008		ret = 2;
1009	} else {
1010		/*
1011		 * We'll have to do it the boring way and process the msgs
1012		 * one-by-one.
1013		 */
1014
1015		if (msgs[0].flags & I2C_M_RD) {
1016			addr |= 1; /* set read bit */
1017
1018			/*
1019			 * We have to transmit the slave addr first. Use
1020			 * MOD_REGISTER_TX for that purpose.
1021			 */
1022			i2c->mode = REG_CON_MOD_REGISTER_TX;
1023			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
1024				   REG_MRXADDR);
1025			i2c_writel(i2c, 0, REG_MRXRADDR);
1026		} else {
1027			i2c->mode = REG_CON_MOD_TX;
1028		}
1029
1030		i2c->msg = &msgs[0];
1031
1032		ret = 1;
1033	}
1034
1035	i2c->addr = msgs[0].addr;
1036	i2c->busy = true;
1037	i2c->state = STATE_START;
1038	i2c->processed = 0;
1039	i2c->error = 0;
1040
1041	rk3x_i2c_clean_ipd(i2c);
1042
1043	return ret;
1044}
1045
1046static int rk3x_i2c_wait_xfer_poll(struct rk3x_i2c *i2c)
1047{
1048	ktime_t timeout = ktime_add_ms(ktime_get(), WAIT_TIMEOUT);
1049
1050	while (READ_ONCE(i2c->busy) &&
1051	       ktime_compare(ktime_get(), timeout) < 0) {
1052		udelay(5);
1053		rk3x_i2c_irq(0, i2c);
1054	}
1055
1056	return !i2c->busy;
1057}
1058
1059static int rk3x_i2c_xfer_common(struct i2c_adapter *adap,
1060				struct i2c_msg *msgs, int num, bool polling)
1061{
1062	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
1063	unsigned long timeout, flags;
 
1064	u32 val;
1065	int ret = 0;
1066	int i;
1067
1068	spin_lock_irqsave(&i2c->lock, flags);
1069
1070	clk_enable(i2c->clk);
1071	clk_enable(i2c->pclk);
1072
1073	i2c->is_last_msg = false;
1074
1075	/*
1076	 * Process msgs. We can handle more than one message at once (see
1077	 * rk3x_i2c_setup()).
1078	 */
1079	for (i = 0; i < num; i += ret) {
1080		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
1081
1082		if (ret < 0) {
1083			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
1084			break;
1085		}
1086
1087		if (i + ret >= num)
1088			i2c->is_last_msg = true;
1089
1090		spin_unlock_irqrestore(&i2c->lock, flags);
1091
1092		if (!polling) {
1093			rk3x_i2c_start(i2c);
1094
1095			timeout = wait_event_timeout(i2c->wait, !i2c->busy,
1096						     msecs_to_jiffies(WAIT_TIMEOUT));
1097		} else {
1098			disable_irq(i2c->irq);
1099			rk3x_i2c_start(i2c);
1100
1101			timeout = rk3x_i2c_wait_xfer_poll(i2c);
1102
1103			enable_irq(i2c->irq);
1104		}
1105
1106		spin_lock_irqsave(&i2c->lock, flags);
1107
1108		if (timeout == 0) {
1109			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
1110				i2c_readl(i2c, REG_IPD), i2c->state);
1111
1112			/* Force a STOP condition without interrupt */
1113			i2c_writel(i2c, 0, REG_IEN);
1114			val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
1115			val |= REG_CON_EN | REG_CON_STOP;
1116			i2c_writel(i2c, val, REG_CON);
1117
1118			i2c->state = STATE_IDLE;
1119
1120			ret = -ETIMEDOUT;
1121			break;
1122		}
1123
1124		if (i2c->error) {
1125			ret = i2c->error;
1126			break;
1127		}
1128	}
1129
1130	clk_disable(i2c->pclk);
1131	clk_disable(i2c->clk);
1132
1133	spin_unlock_irqrestore(&i2c->lock, flags);
1134
1135	return ret < 0 ? ret : num;
1136}
1137
1138static int rk3x_i2c_xfer(struct i2c_adapter *adap,
1139			 struct i2c_msg *msgs, int num)
1140{
1141	return rk3x_i2c_xfer_common(adap, msgs, num, false);
1142}
1143
1144static int rk3x_i2c_xfer_polling(struct i2c_adapter *adap,
1145				 struct i2c_msg *msgs, int num)
1146{
1147	return rk3x_i2c_xfer_common(adap, msgs, num, true);
1148}
1149
1150static __maybe_unused int rk3x_i2c_resume(struct device *dev)
1151{
1152	struct rk3x_i2c *i2c = dev_get_drvdata(dev);
1153
1154	rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
1155
1156	return 0;
1157}
1158
1159static u32 rk3x_i2c_func(struct i2c_adapter *adap)
1160{
1161	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
1162}
1163
1164static const struct i2c_algorithm rk3x_i2c_algorithm = {
1165	.master_xfer		= rk3x_i2c_xfer,
1166	.master_xfer_atomic	= rk3x_i2c_xfer_polling,
1167	.functionality		= rk3x_i2c_func,
1168};
1169
1170static const struct rk3x_i2c_soc_data rv1108_soc_data = {
1171	.grf_offset = -1,
1172	.calc_timings = rk3x_i2c_v1_calc_timings,
1173};
1174
1175static const struct rk3x_i2c_soc_data rv1126_soc_data = {
1176	.grf_offset = 0x118,
1177	.calc_timings = rk3x_i2c_v1_calc_timings,
1178};
1179
1180static const struct rk3x_i2c_soc_data rk3066_soc_data = {
1181	.grf_offset = 0x154,
1182	.calc_timings = rk3x_i2c_v0_calc_timings,
1183};
1184
1185static const struct rk3x_i2c_soc_data rk3188_soc_data = {
1186	.grf_offset = 0x0a4,
1187	.calc_timings = rk3x_i2c_v0_calc_timings,
1188};
1189
1190static const struct rk3x_i2c_soc_data rk3228_soc_data = {
1191	.grf_offset = -1,
1192	.calc_timings = rk3x_i2c_v0_calc_timings,
1193};
1194
1195static const struct rk3x_i2c_soc_data rk3288_soc_data = {
1196	.grf_offset = -1,
1197	.calc_timings = rk3x_i2c_v0_calc_timings,
1198};
1199
1200static const struct rk3x_i2c_soc_data rk3399_soc_data = {
1201	.grf_offset = -1,
1202	.calc_timings = rk3x_i2c_v1_calc_timings,
1203};
1204
1205static const struct of_device_id rk3x_i2c_match[] = {
1206	{
1207		.compatible = "rockchip,rv1108-i2c",
1208		.data = &rv1108_soc_data
1209	},
1210	{
1211		.compatible = "rockchip,rv1126-i2c",
1212		.data = &rv1126_soc_data
1213	},
1214	{
1215		.compatible = "rockchip,rk3066-i2c",
1216		.data = &rk3066_soc_data
1217	},
1218	{
1219		.compatible = "rockchip,rk3188-i2c",
1220		.data = &rk3188_soc_data
1221	},
1222	{
1223		.compatible = "rockchip,rk3228-i2c",
1224		.data = &rk3228_soc_data
1225	},
1226	{
1227		.compatible = "rockchip,rk3288-i2c",
1228		.data = &rk3288_soc_data
1229	},
1230	{
1231		.compatible = "rockchip,rk3399-i2c",
1232		.data = &rk3399_soc_data
1233	},
1234	{},
1235};
1236MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
1237
1238static int rk3x_i2c_probe(struct platform_device *pdev)
1239{
1240	struct device_node *np = pdev->dev.of_node;
1241	const struct of_device_id *match;
1242	struct rk3x_i2c *i2c;
1243	int ret = 0;
1244	int bus_nr;
1245	u32 value;
1246	int irq;
1247	unsigned long clk_rate;
1248
1249	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
1250	if (!i2c)
1251		return -ENOMEM;
1252
1253	match = of_match_node(rk3x_i2c_match, np);
1254	i2c->soc_data = match->data;
1255
1256	/* use common interface to get I2C timing properties */
1257	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
1258
1259	strscpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
1260	i2c->adap.owner = THIS_MODULE;
1261	i2c->adap.algo = &rk3x_i2c_algorithm;
1262	i2c->adap.retries = 3;
1263	i2c->adap.dev.of_node = np;
1264	i2c->adap.algo_data = i2c;
1265	i2c->adap.dev.parent = &pdev->dev;
1266
1267	i2c->dev = &pdev->dev;
1268
1269	spin_lock_init(&i2c->lock);
1270	init_waitqueue_head(&i2c->wait);
1271
1272	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
1273	if (IS_ERR(i2c->regs))
1274		return PTR_ERR(i2c->regs);
1275
1276	/* Try to set the I2C adapter number from dt */
1277	bus_nr = of_alias_get_id(np, "i2c");
1278
1279	/*
1280	 * Switch to new interface if the SoC also offers the old one.
1281	 * The control bit is located in the GRF register space.
1282	 */
1283	if (i2c->soc_data->grf_offset >= 0) {
1284		struct regmap *grf;
1285
1286		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
1287		if (IS_ERR(grf)) {
1288			dev_err(&pdev->dev,
1289				"rk3x-i2c needs 'rockchip,grf' property\n");
1290			return PTR_ERR(grf);
1291		}
1292
1293		if (bus_nr < 0) {
1294			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
1295			return -EINVAL;
1296		}
1297
1298		/* rv1126 i2c2 uses non-sequential write mask 20, value 4 */
1299		if (i2c->soc_data == &rv1126_soc_data && bus_nr == 2)
1300			value = BIT(20) | BIT(4);
1301		else
1302			/* 27+i: write mask, 11+i: value */
1303			value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
1304
1305		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
1306		if (ret != 0) {
1307			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
1308			return ret;
1309		}
1310	}
1311
1312	/* IRQ setup */
1313	irq = platform_get_irq(pdev, 0);
1314	if (irq < 0)
1315		return irq;
1316
1317	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
1318			       0, dev_name(&pdev->dev), i2c);
1319	if (ret < 0) {
1320		dev_err(&pdev->dev, "cannot request IRQ\n");
1321		return ret;
1322	}
1323
1324	i2c->irq = irq;
1325
1326	platform_set_drvdata(pdev, i2c);
1327
1328	if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
1329		/* Only one clock to use for bus clock and peripheral clock */
1330		i2c->clk = devm_clk_get(&pdev->dev, NULL);
1331		i2c->pclk = i2c->clk;
1332	} else {
1333		i2c->clk = devm_clk_get(&pdev->dev, "i2c");
1334		i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
1335	}
1336
1337	if (IS_ERR(i2c->clk))
1338		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->clk),
1339				     "Can't get bus clk\n");
1340
1341	if (IS_ERR(i2c->pclk))
1342		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk),
1343				     "Can't get periph clk\n");
1344
1345	ret = clk_prepare(i2c->clk);
1346	if (ret < 0) {
1347		dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
1348		return ret;
1349	}
1350	ret = clk_prepare(i2c->pclk);
1351	if (ret < 0) {
1352		dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
1353		goto err_clk;
1354	}
1355
1356	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
1357	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
1358	if (ret != 0) {
1359		dev_err(&pdev->dev, "Unable to register clock notifier\n");
1360		goto err_pclk;
1361	}
1362
1363	ret = clk_enable(i2c->clk);
1364	if (ret < 0) {
1365		dev_err(&pdev->dev, "Can't enable bus clk: %d\n", ret);
1366		goto err_clk_notifier;
1367	}
1368
1369	clk_rate = clk_get_rate(i2c->clk);
1370	rk3x_i2c_adapt_div(i2c, clk_rate);
1371	clk_disable(i2c->clk);
1372
1373	ret = i2c_add_adapter(&i2c->adap);
1374	if (ret < 0)
1375		goto err_clk_notifier;
1376
1377	return 0;
1378
1379err_clk_notifier:
1380	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1381err_pclk:
1382	clk_unprepare(i2c->pclk);
1383err_clk:
1384	clk_unprepare(i2c->clk);
1385	return ret;
1386}
1387
1388static void rk3x_i2c_remove(struct platform_device *pdev)
1389{
1390	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1391
1392	i2c_del_adapter(&i2c->adap);
1393
1394	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1395	clk_unprepare(i2c->pclk);
1396	clk_unprepare(i2c->clk);
1397}
1398
1399static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);
1400
1401static struct platform_driver rk3x_i2c_driver = {
1402	.probe   = rk3x_i2c_probe,
1403	.remove_new = rk3x_i2c_remove,
1404	.driver  = {
1405		.name  = "rk3x-i2c",
1406		.of_match_table = rk3x_i2c_match,
1407		.pm = &rk3x_i2c_pm_ops,
1408	},
1409};
1410
1411module_platform_driver(rk3x_i2c_driver);
1412
1413MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1414MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1415MODULE_LICENSE("GPL v2");