Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <linux/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register_is_set && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register_is_set && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register_is_set && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
 292{
 293	put_unaligned_be24(val << shift, buf);
 294}
 295
 296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 297{
 298	put_unaligned_be32(val << shift, buf);
 299}
 300
 301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 302{
 303	put_unaligned_le32(val << shift, buf);
 304}
 305
 306static void regmap_format_32_native(void *buf, unsigned int val,
 307				    unsigned int shift)
 308{
 309	u32 v = val << shift;
 310
 311	memcpy(buf, &v, sizeof(v));
 312}
 313
 314static void regmap_parse_inplace_noop(void *buf)
 315{
 316}
 317
 318static unsigned int regmap_parse_8(const void *buf)
 319{
 320	const u8 *b = buf;
 321
 322	return b[0];
 323}
 324
 325static unsigned int regmap_parse_16_be(const void *buf)
 326{
 327	return get_unaligned_be16(buf);
 328}
 329
 330static unsigned int regmap_parse_16_le(const void *buf)
 331{
 332	return get_unaligned_le16(buf);
 333}
 334
 335static void regmap_parse_16_be_inplace(void *buf)
 336{
 337	u16 v = get_unaligned_be16(buf);
 338
 339	memcpy(buf, &v, sizeof(v));
 340}
 341
 342static void regmap_parse_16_le_inplace(void *buf)
 343{
 344	u16 v = get_unaligned_le16(buf);
 345
 346	memcpy(buf, &v, sizeof(v));
 347}
 348
 349static unsigned int regmap_parse_16_native(const void *buf)
 350{
 351	u16 v;
 352
 353	memcpy(&v, buf, sizeof(v));
 354	return v;
 355}
 356
 357static unsigned int regmap_parse_24_be(const void *buf)
 358{
 359	return get_unaligned_be24(buf);
 360}
 361
 362static unsigned int regmap_parse_32_be(const void *buf)
 363{
 364	return get_unaligned_be32(buf);
 365}
 366
 367static unsigned int regmap_parse_32_le(const void *buf)
 368{
 369	return get_unaligned_le32(buf);
 370}
 371
 372static void regmap_parse_32_be_inplace(void *buf)
 373{
 374	u32 v = get_unaligned_be32(buf);
 375
 376	memcpy(buf, &v, sizeof(v));
 377}
 378
 379static void regmap_parse_32_le_inplace(void *buf)
 380{
 381	u32 v = get_unaligned_le32(buf);
 382
 383	memcpy(buf, &v, sizeof(v));
 384}
 385
 386static unsigned int regmap_parse_32_native(const void *buf)
 387{
 388	u32 v;
 389
 390	memcpy(&v, buf, sizeof(v));
 391	return v;
 392}
 393
 394static void regmap_lock_hwlock(void *__map)
 395{
 396	struct regmap *map = __map;
 397
 398	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 399}
 400
 401static void regmap_lock_hwlock_irq(void *__map)
 402{
 403	struct regmap *map = __map;
 404
 405	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 406}
 407
 408static void regmap_lock_hwlock_irqsave(void *__map)
 409{
 410	struct regmap *map = __map;
 411
 412	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 413				    &map->spinlock_flags);
 414}
 415
 416static void regmap_unlock_hwlock(void *__map)
 417{
 418	struct regmap *map = __map;
 419
 420	hwspin_unlock(map->hwlock);
 421}
 422
 423static void regmap_unlock_hwlock_irq(void *__map)
 424{
 425	struct regmap *map = __map;
 426
 427	hwspin_unlock_irq(map->hwlock);
 428}
 429
 430static void regmap_unlock_hwlock_irqrestore(void *__map)
 431{
 432	struct regmap *map = __map;
 433
 434	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 435}
 436
 437static void regmap_lock_unlock_none(void *__map)
 438{
 439
 440}
 441
 442static void regmap_lock_mutex(void *__map)
 443{
 444	struct regmap *map = __map;
 445	mutex_lock(&map->mutex);
 446}
 447
 448static void regmap_unlock_mutex(void *__map)
 449{
 450	struct regmap *map = __map;
 451	mutex_unlock(&map->mutex);
 452}
 453
 454static void regmap_lock_spinlock(void *__map)
 455__acquires(&map->spinlock)
 456{
 457	struct regmap *map = __map;
 458	unsigned long flags;
 459
 460	spin_lock_irqsave(&map->spinlock, flags);
 461	map->spinlock_flags = flags;
 462}
 463
 464static void regmap_unlock_spinlock(void *__map)
 465__releases(&map->spinlock)
 466{
 467	struct regmap *map = __map;
 468	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 469}
 470
 471static void regmap_lock_raw_spinlock(void *__map)
 472__acquires(&map->raw_spinlock)
 473{
 474	struct regmap *map = __map;
 475	unsigned long flags;
 476
 477	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
 478	map->raw_spinlock_flags = flags;
 479}
 480
 481static void regmap_unlock_raw_spinlock(void *__map)
 482__releases(&map->raw_spinlock)
 483{
 484	struct regmap *map = __map;
 485	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
 486}
 487
 488static void dev_get_regmap_release(struct device *dev, void *res)
 489{
 490	/*
 491	 * We don't actually have anything to do here; the goal here
 492	 * is not to manage the regmap but to provide a simple way to
 493	 * get the regmap back given a struct device.
 494	 */
 495}
 496
 497static bool _regmap_range_add(struct regmap *map,
 498			      struct regmap_range_node *data)
 499{
 500	struct rb_root *root = &map->range_tree;
 501	struct rb_node **new = &(root->rb_node), *parent = NULL;
 502
 503	while (*new) {
 504		struct regmap_range_node *this =
 505			rb_entry(*new, struct regmap_range_node, node);
 506
 507		parent = *new;
 508		if (data->range_max < this->range_min)
 509			new = &((*new)->rb_left);
 510		else if (data->range_min > this->range_max)
 511			new = &((*new)->rb_right);
 512		else
 513			return false;
 514	}
 515
 516	rb_link_node(&data->node, parent, new);
 517	rb_insert_color(&data->node, root);
 518
 519	return true;
 520}
 521
 522static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 523						      unsigned int reg)
 524{
 525	struct rb_node *node = map->range_tree.rb_node;
 526
 527	while (node) {
 528		struct regmap_range_node *this =
 529			rb_entry(node, struct regmap_range_node, node);
 530
 531		if (reg < this->range_min)
 532			node = node->rb_left;
 533		else if (reg > this->range_max)
 534			node = node->rb_right;
 535		else
 536			return this;
 537	}
 538
 539	return NULL;
 540}
 541
 542static void regmap_range_exit(struct regmap *map)
 543{
 544	struct rb_node *next;
 545	struct regmap_range_node *range_node;
 546
 547	next = rb_first(&map->range_tree);
 548	while (next) {
 549		range_node = rb_entry(next, struct regmap_range_node, node);
 550		next = rb_next(&range_node->node);
 551		rb_erase(&range_node->node, &map->range_tree);
 552		kfree(range_node);
 553	}
 554
 555	kfree(map->selector_work_buf);
 556}
 557
 558static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 559{
 560	if (config->name) {
 561		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 562
 563		if (!name)
 564			return -ENOMEM;
 565
 566		kfree_const(map->name);
 567		map->name = name;
 568	}
 569
 570	return 0;
 571}
 572
 573int regmap_attach_dev(struct device *dev, struct regmap *map,
 574		      const struct regmap_config *config)
 575{
 576	struct regmap **m;
 577	int ret;
 578
 579	map->dev = dev;
 580
 581	ret = regmap_set_name(map, config);
 582	if (ret)
 583		return ret;
 584
 585	regmap_debugfs_exit(map);
 586	regmap_debugfs_init(map);
 587
 588	/* Add a devres resource for dev_get_regmap() */
 589	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 590	if (!m) {
 591		regmap_debugfs_exit(map);
 592		return -ENOMEM;
 593	}
 594	*m = map;
 595	devres_add(dev, m);
 596
 597	return 0;
 598}
 599EXPORT_SYMBOL_GPL(regmap_attach_dev);
 600
 601static int dev_get_regmap_match(struct device *dev, void *res, void *data);
 602
 603static int regmap_detach_dev(struct device *dev, struct regmap *map)
 604{
 605	if (!dev)
 606		return 0;
 607
 608	return devres_release(dev, dev_get_regmap_release,
 609			      dev_get_regmap_match, (void *)map->name);
 610}
 611
 612static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 613					const struct regmap_config *config)
 614{
 615	enum regmap_endian endian;
 616
 617	/* Retrieve the endianness specification from the regmap config */
 618	endian = config->reg_format_endian;
 619
 620	/* If the regmap config specified a non-default value, use that */
 621	if (endian != REGMAP_ENDIAN_DEFAULT)
 622		return endian;
 623
 624	/* Retrieve the endianness specification from the bus config */
 625	if (bus && bus->reg_format_endian_default)
 626		endian = bus->reg_format_endian_default;
 627
 628	/* If the bus specified a non-default value, use that */
 629	if (endian != REGMAP_ENDIAN_DEFAULT)
 630		return endian;
 631
 632	/* Use this if no other value was found */
 633	return REGMAP_ENDIAN_BIG;
 634}
 635
 636enum regmap_endian regmap_get_val_endian(struct device *dev,
 637					 const struct regmap_bus *bus,
 638					 const struct regmap_config *config)
 639{
 640	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 641	enum regmap_endian endian;
 642
 643	/* Retrieve the endianness specification from the regmap config */
 644	endian = config->val_format_endian;
 645
 646	/* If the regmap config specified a non-default value, use that */
 647	if (endian != REGMAP_ENDIAN_DEFAULT)
 648		return endian;
 649
 650	/* If the firmware node exist try to get endianness from it */
 651	if (fwnode_property_read_bool(fwnode, "big-endian"))
 652		endian = REGMAP_ENDIAN_BIG;
 653	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 654		endian = REGMAP_ENDIAN_LITTLE;
 655	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 656		endian = REGMAP_ENDIAN_NATIVE;
 657
 658	/* If the endianness was specified in fwnode, use that */
 659	if (endian != REGMAP_ENDIAN_DEFAULT)
 660		return endian;
 661
 662	/* Retrieve the endianness specification from the bus config */
 663	if (bus && bus->val_format_endian_default)
 664		endian = bus->val_format_endian_default;
 665
 666	/* If the bus specified a non-default value, use that */
 667	if (endian != REGMAP_ENDIAN_DEFAULT)
 668		return endian;
 669
 670	/* Use this if no other value was found */
 671	return REGMAP_ENDIAN_BIG;
 672}
 673EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 674
 675struct regmap *__regmap_init(struct device *dev,
 676			     const struct regmap_bus *bus,
 677			     void *bus_context,
 678			     const struct regmap_config *config,
 679			     struct lock_class_key *lock_key,
 680			     const char *lock_name)
 681{
 682	struct regmap *map;
 683	int ret = -EINVAL;
 684	enum regmap_endian reg_endian, val_endian;
 685	int i, j;
 686
 687	if (!config)
 688		goto err;
 689
 690	map = kzalloc(sizeof(*map), GFP_KERNEL);
 691	if (map == NULL) {
 692		ret = -ENOMEM;
 693		goto err;
 694	}
 695
 696	ret = regmap_set_name(map, config);
 697	if (ret)
 698		goto err_map;
 699
 700	ret = -EINVAL; /* Later error paths rely on this */
 701
 702	if (config->disable_locking) {
 703		map->lock = map->unlock = regmap_lock_unlock_none;
 704		map->can_sleep = config->can_sleep;
 705		regmap_debugfs_disable(map);
 706	} else if (config->lock && config->unlock) {
 707		map->lock = config->lock;
 708		map->unlock = config->unlock;
 709		map->lock_arg = config->lock_arg;
 710		map->can_sleep = config->can_sleep;
 711	} else if (config->use_hwlock) {
 712		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 713		if (!map->hwlock) {
 714			ret = -ENXIO;
 715			goto err_name;
 716		}
 717
 718		switch (config->hwlock_mode) {
 719		case HWLOCK_IRQSTATE:
 720			map->lock = regmap_lock_hwlock_irqsave;
 721			map->unlock = regmap_unlock_hwlock_irqrestore;
 722			break;
 723		case HWLOCK_IRQ:
 724			map->lock = regmap_lock_hwlock_irq;
 725			map->unlock = regmap_unlock_hwlock_irq;
 726			break;
 727		default:
 728			map->lock = regmap_lock_hwlock;
 729			map->unlock = regmap_unlock_hwlock;
 730			break;
 731		}
 732
 733		map->lock_arg = map;
 734	} else {
 735		if ((bus && bus->fast_io) ||
 736		    config->fast_io) {
 737			if (config->use_raw_spinlock) {
 738				raw_spin_lock_init(&map->raw_spinlock);
 739				map->lock = regmap_lock_raw_spinlock;
 740				map->unlock = regmap_unlock_raw_spinlock;
 741				lockdep_set_class_and_name(&map->raw_spinlock,
 742							   lock_key, lock_name);
 743			} else {
 744				spin_lock_init(&map->spinlock);
 745				map->lock = regmap_lock_spinlock;
 746				map->unlock = regmap_unlock_spinlock;
 747				lockdep_set_class_and_name(&map->spinlock,
 748							   lock_key, lock_name);
 749			}
 750		} else {
 751			mutex_init(&map->mutex);
 752			map->lock = regmap_lock_mutex;
 753			map->unlock = regmap_unlock_mutex;
 754			map->can_sleep = true;
 755			lockdep_set_class_and_name(&map->mutex,
 756						   lock_key, lock_name);
 757		}
 758		map->lock_arg = map;
 759		map->lock_key = lock_key;
 760	}
 761
 762	/*
 763	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 764	 * scratch buffers with sleeping allocations.
 765	 */
 766	if ((bus && bus->fast_io) || config->fast_io)
 767		map->alloc_flags = GFP_ATOMIC;
 768	else
 769		map->alloc_flags = GFP_KERNEL;
 770
 771	map->reg_base = config->reg_base;
 772
 773	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 774	map->format.pad_bytes = config->pad_bits / 8;
 775	map->format.reg_shift = config->reg_shift;
 776	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 777	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 778			config->val_bits + config->pad_bits, 8);
 779	map->reg_shift = config->pad_bits % 8;
 780	if (config->reg_stride)
 781		map->reg_stride = config->reg_stride;
 782	else
 783		map->reg_stride = 1;
 784	if (is_power_of_2(map->reg_stride))
 785		map->reg_stride_order = ilog2(map->reg_stride);
 786	else
 787		map->reg_stride_order = -1;
 788	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
 789	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
 790	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
 791	if (bus) {
 792		map->max_raw_read = bus->max_raw_read;
 793		map->max_raw_write = bus->max_raw_write;
 794	} else if (config->max_raw_read && config->max_raw_write) {
 795		map->max_raw_read = config->max_raw_read;
 796		map->max_raw_write = config->max_raw_write;
 797	}
 798	map->dev = dev;
 799	map->bus = bus;
 800	map->bus_context = bus_context;
 801	map->max_register = config->max_register;
 802	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
 803	map->wr_table = config->wr_table;
 804	map->rd_table = config->rd_table;
 805	map->volatile_table = config->volatile_table;
 806	map->precious_table = config->precious_table;
 807	map->wr_noinc_table = config->wr_noinc_table;
 808	map->rd_noinc_table = config->rd_noinc_table;
 809	map->writeable_reg = config->writeable_reg;
 810	map->readable_reg = config->readable_reg;
 811	map->volatile_reg = config->volatile_reg;
 812	map->precious_reg = config->precious_reg;
 813	map->writeable_noinc_reg = config->writeable_noinc_reg;
 814	map->readable_noinc_reg = config->readable_noinc_reg;
 815	map->cache_type = config->cache_type;
 816
 817	spin_lock_init(&map->async_lock);
 818	INIT_LIST_HEAD(&map->async_list);
 819	INIT_LIST_HEAD(&map->async_free);
 820	init_waitqueue_head(&map->async_waitq);
 821
 822	if (config->read_flag_mask ||
 823	    config->write_flag_mask ||
 824	    config->zero_flag_mask) {
 825		map->read_flag_mask = config->read_flag_mask;
 826		map->write_flag_mask = config->write_flag_mask;
 827	} else if (bus) {
 828		map->read_flag_mask = bus->read_flag_mask;
 829	}
 830
 831	if (config && config->read && config->write) {
 832		map->reg_read  = _regmap_bus_read;
 833		if (config->reg_update_bits)
 834			map->reg_update_bits = config->reg_update_bits;
 835
 836		/* Bulk read/write */
 837		map->read = config->read;
 838		map->write = config->write;
 839
 840		reg_endian = REGMAP_ENDIAN_NATIVE;
 841		val_endian = REGMAP_ENDIAN_NATIVE;
 842	} else if (!bus) {
 843		map->reg_read  = config->reg_read;
 844		map->reg_write = config->reg_write;
 845		map->reg_update_bits = config->reg_update_bits;
 846
 847		map->defer_caching = false;
 848		goto skip_format_initialization;
 849	} else if (!bus->read || !bus->write) {
 850		map->reg_read = _regmap_bus_reg_read;
 851		map->reg_write = _regmap_bus_reg_write;
 852		map->reg_update_bits = bus->reg_update_bits;
 853
 854		map->defer_caching = false;
 855		goto skip_format_initialization;
 856	} else {
 857		map->reg_read  = _regmap_bus_read;
 858		map->reg_update_bits = bus->reg_update_bits;
 859		/* Bulk read/write */
 860		map->read = bus->read;
 861		map->write = bus->write;
 862
 863		reg_endian = regmap_get_reg_endian(bus, config);
 864		val_endian = regmap_get_val_endian(dev, bus, config);
 865	}
 866
 867	switch (config->reg_bits + map->reg_shift) {
 868	case 2:
 869		switch (config->val_bits) {
 870		case 6:
 871			map->format.format_write = regmap_format_2_6_write;
 872			break;
 873		default:
 874			goto err_hwlock;
 875		}
 876		break;
 877
 878	case 4:
 879		switch (config->val_bits) {
 880		case 12:
 881			map->format.format_write = regmap_format_4_12_write;
 882			break;
 883		default:
 884			goto err_hwlock;
 885		}
 886		break;
 887
 888	case 7:
 889		switch (config->val_bits) {
 890		case 9:
 891			map->format.format_write = regmap_format_7_9_write;
 892			break;
 893		case 17:
 894			map->format.format_write = regmap_format_7_17_write;
 895			break;
 896		default:
 897			goto err_hwlock;
 898		}
 899		break;
 900
 901	case 10:
 902		switch (config->val_bits) {
 903		case 14:
 904			map->format.format_write = regmap_format_10_14_write;
 905			break;
 906		default:
 907			goto err_hwlock;
 908		}
 909		break;
 910
 911	case 12:
 912		switch (config->val_bits) {
 913		case 20:
 914			map->format.format_write = regmap_format_12_20_write;
 915			break;
 916		default:
 917			goto err_hwlock;
 918		}
 919		break;
 920
 921	case 8:
 922		map->format.format_reg = regmap_format_8;
 923		break;
 924
 925	case 16:
 926		switch (reg_endian) {
 927		case REGMAP_ENDIAN_BIG:
 928			map->format.format_reg = regmap_format_16_be;
 929			break;
 930		case REGMAP_ENDIAN_LITTLE:
 931			map->format.format_reg = regmap_format_16_le;
 932			break;
 933		case REGMAP_ENDIAN_NATIVE:
 934			map->format.format_reg = regmap_format_16_native;
 935			break;
 936		default:
 937			goto err_hwlock;
 938		}
 939		break;
 940
 941	case 24:
 942		switch (reg_endian) {
 943		case REGMAP_ENDIAN_BIG:
 944			map->format.format_reg = regmap_format_24_be;
 945			break;
 946		default:
 947			goto err_hwlock;
 948		}
 949		break;
 950
 951	case 32:
 952		switch (reg_endian) {
 953		case REGMAP_ENDIAN_BIG:
 954			map->format.format_reg = regmap_format_32_be;
 955			break;
 956		case REGMAP_ENDIAN_LITTLE:
 957			map->format.format_reg = regmap_format_32_le;
 958			break;
 959		case REGMAP_ENDIAN_NATIVE:
 960			map->format.format_reg = regmap_format_32_native;
 961			break;
 962		default:
 963			goto err_hwlock;
 964		}
 965		break;
 966
 967	default:
 968		goto err_hwlock;
 969	}
 970
 971	if (val_endian == REGMAP_ENDIAN_NATIVE)
 972		map->format.parse_inplace = regmap_parse_inplace_noop;
 973
 974	switch (config->val_bits) {
 975	case 8:
 976		map->format.format_val = regmap_format_8;
 977		map->format.parse_val = regmap_parse_8;
 978		map->format.parse_inplace = regmap_parse_inplace_noop;
 979		break;
 980	case 16:
 981		switch (val_endian) {
 982		case REGMAP_ENDIAN_BIG:
 983			map->format.format_val = regmap_format_16_be;
 984			map->format.parse_val = regmap_parse_16_be;
 985			map->format.parse_inplace = regmap_parse_16_be_inplace;
 986			break;
 987		case REGMAP_ENDIAN_LITTLE:
 988			map->format.format_val = regmap_format_16_le;
 989			map->format.parse_val = regmap_parse_16_le;
 990			map->format.parse_inplace = regmap_parse_16_le_inplace;
 991			break;
 992		case REGMAP_ENDIAN_NATIVE:
 993			map->format.format_val = regmap_format_16_native;
 994			map->format.parse_val = regmap_parse_16_native;
 995			break;
 996		default:
 997			goto err_hwlock;
 998		}
 999		break;
1000	case 24:
1001		switch (val_endian) {
1002		case REGMAP_ENDIAN_BIG:
1003			map->format.format_val = regmap_format_24_be;
1004			map->format.parse_val = regmap_parse_24_be;
1005			break;
1006		default:
1007			goto err_hwlock;
1008		}
1009		break;
1010	case 32:
1011		switch (val_endian) {
1012		case REGMAP_ENDIAN_BIG:
1013			map->format.format_val = regmap_format_32_be;
1014			map->format.parse_val = regmap_parse_32_be;
1015			map->format.parse_inplace = regmap_parse_32_be_inplace;
1016			break;
1017		case REGMAP_ENDIAN_LITTLE:
1018			map->format.format_val = regmap_format_32_le;
1019			map->format.parse_val = regmap_parse_32_le;
1020			map->format.parse_inplace = regmap_parse_32_le_inplace;
1021			break;
1022		case REGMAP_ENDIAN_NATIVE:
1023			map->format.format_val = regmap_format_32_native;
1024			map->format.parse_val = regmap_parse_32_native;
1025			break;
1026		default:
1027			goto err_hwlock;
1028		}
1029		break;
1030	}
1031
1032	if (map->format.format_write) {
1033		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1034		    (val_endian != REGMAP_ENDIAN_BIG))
1035			goto err_hwlock;
1036		map->use_single_write = true;
1037	}
1038
1039	if (!map->format.format_write &&
1040	    !(map->format.format_reg && map->format.format_val))
1041		goto err_hwlock;
1042
1043	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1044	if (map->work_buf == NULL) {
1045		ret = -ENOMEM;
1046		goto err_hwlock;
1047	}
1048
1049	if (map->format.format_write) {
1050		map->defer_caching = false;
1051		map->reg_write = _regmap_bus_formatted_write;
1052	} else if (map->format.format_val) {
1053		map->defer_caching = true;
1054		map->reg_write = _regmap_bus_raw_write;
1055	}
1056
1057skip_format_initialization:
1058
1059	map->range_tree = RB_ROOT;
1060	for (i = 0; i < config->num_ranges; i++) {
1061		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1062		struct regmap_range_node *new;
1063
1064		/* Sanity check */
1065		if (range_cfg->range_max < range_cfg->range_min) {
1066			dev_err(map->dev, "Invalid range %d: %u < %u\n", i,
1067				range_cfg->range_max, range_cfg->range_min);
1068			goto err_range;
1069		}
1070
1071		if (range_cfg->range_max > map->max_register) {
1072			dev_err(map->dev, "Invalid range %d: %u > %u\n", i,
1073				range_cfg->range_max, map->max_register);
1074			goto err_range;
1075		}
1076
1077		if (range_cfg->selector_reg > map->max_register) {
1078			dev_err(map->dev,
1079				"Invalid range %d: selector out of map\n", i);
1080			goto err_range;
1081		}
1082
1083		if (range_cfg->window_len == 0) {
1084			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1085				i);
1086			goto err_range;
1087		}
1088
1089		/* Make sure, that this register range has no selector
1090		   or data window within its boundary */
1091		for (j = 0; j < config->num_ranges; j++) {
1092			unsigned int sel_reg = config->ranges[j].selector_reg;
1093			unsigned int win_min = config->ranges[j].window_start;
1094			unsigned int win_max = win_min +
1095					       config->ranges[j].window_len - 1;
1096
1097			/* Allow data window inside its own virtual range */
1098			if (j == i)
1099				continue;
1100
1101			if (range_cfg->range_min <= sel_reg &&
1102			    sel_reg <= range_cfg->range_max) {
1103				dev_err(map->dev,
1104					"Range %d: selector for %d in window\n",
1105					i, j);
1106				goto err_range;
1107			}
1108
1109			if (!(win_max < range_cfg->range_min ||
1110			      win_min > range_cfg->range_max)) {
1111				dev_err(map->dev,
1112					"Range %d: window for %d in window\n",
1113					i, j);
1114				goto err_range;
1115			}
1116		}
1117
1118		new = kzalloc(sizeof(*new), GFP_KERNEL);
1119		if (new == NULL) {
1120			ret = -ENOMEM;
1121			goto err_range;
1122		}
1123
1124		new->map = map;
1125		new->name = range_cfg->name;
1126		new->range_min = range_cfg->range_min;
1127		new->range_max = range_cfg->range_max;
1128		new->selector_reg = range_cfg->selector_reg;
1129		new->selector_mask = range_cfg->selector_mask;
1130		new->selector_shift = range_cfg->selector_shift;
1131		new->window_start = range_cfg->window_start;
1132		new->window_len = range_cfg->window_len;
1133
1134		if (!_regmap_range_add(map, new)) {
1135			dev_err(map->dev, "Failed to add range %d\n", i);
1136			kfree(new);
1137			goto err_range;
1138		}
1139
1140		if (map->selector_work_buf == NULL) {
1141			map->selector_work_buf =
1142				kzalloc(map->format.buf_size, GFP_KERNEL);
1143			if (map->selector_work_buf == NULL) {
1144				ret = -ENOMEM;
1145				goto err_range;
1146			}
1147		}
1148	}
1149
1150	ret = regcache_init(map, config);
1151	if (ret != 0)
1152		goto err_range;
1153
1154	if (dev) {
1155		ret = regmap_attach_dev(dev, map, config);
1156		if (ret != 0)
1157			goto err_regcache;
1158	} else {
1159		regmap_debugfs_init(map);
1160	}
1161
1162	return map;
1163
1164err_regcache:
1165	regcache_exit(map);
1166err_range:
1167	regmap_range_exit(map);
1168	kfree(map->work_buf);
1169err_hwlock:
1170	if (map->hwlock)
1171		hwspin_lock_free(map->hwlock);
1172err_name:
1173	kfree_const(map->name);
1174err_map:
1175	kfree(map);
1176err:
1177	return ERR_PTR(ret);
1178}
1179EXPORT_SYMBOL_GPL(__regmap_init);
1180
1181static void devm_regmap_release(struct device *dev, void *res)
1182{
1183	regmap_exit(*(struct regmap **)res);
1184}
1185
1186struct regmap *__devm_regmap_init(struct device *dev,
1187				  const struct regmap_bus *bus,
1188				  void *bus_context,
1189				  const struct regmap_config *config,
1190				  struct lock_class_key *lock_key,
1191				  const char *lock_name)
1192{
1193	struct regmap **ptr, *regmap;
1194
1195	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1196	if (!ptr)
1197		return ERR_PTR(-ENOMEM);
1198
1199	regmap = __regmap_init(dev, bus, bus_context, config,
1200			       lock_key, lock_name);
1201	if (!IS_ERR(regmap)) {
1202		*ptr = regmap;
1203		devres_add(dev, ptr);
1204	} else {
1205		devres_free(ptr);
1206	}
1207
1208	return regmap;
1209}
1210EXPORT_SYMBOL_GPL(__devm_regmap_init);
1211
1212static void regmap_field_init(struct regmap_field *rm_field,
1213	struct regmap *regmap, struct reg_field reg_field)
1214{
1215	rm_field->regmap = regmap;
1216	rm_field->reg = reg_field.reg;
1217	rm_field->shift = reg_field.lsb;
1218	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1219
1220	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1221
1222	rm_field->id_size = reg_field.id_size;
1223	rm_field->id_offset = reg_field.id_offset;
1224}
1225
1226/**
1227 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1228 *
1229 * @dev: Device that will be interacted with
1230 * @regmap: regmap bank in which this register field is located.
1231 * @reg_field: Register field with in the bank.
1232 *
1233 * The return value will be an ERR_PTR() on error or a valid pointer
1234 * to a struct regmap_field. The regmap_field will be automatically freed
1235 * by the device management code.
1236 */
1237struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1238		struct regmap *regmap, struct reg_field reg_field)
1239{
1240	struct regmap_field *rm_field = devm_kzalloc(dev,
1241					sizeof(*rm_field), GFP_KERNEL);
1242	if (!rm_field)
1243		return ERR_PTR(-ENOMEM);
1244
1245	regmap_field_init(rm_field, regmap, reg_field);
1246
1247	return rm_field;
1248
1249}
1250EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1251
1252
1253/**
1254 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1255 *
1256 * @regmap: regmap bank in which this register field is located.
1257 * @rm_field: regmap register fields within the bank.
1258 * @reg_field: Register fields within the bank.
1259 * @num_fields: Number of register fields.
1260 *
1261 * The return value will be an -ENOMEM on error or zero for success.
1262 * Newly allocated regmap_fields should be freed by calling
1263 * regmap_field_bulk_free()
1264 */
1265int regmap_field_bulk_alloc(struct regmap *regmap,
1266			    struct regmap_field **rm_field,
1267			    const struct reg_field *reg_field,
1268			    int num_fields)
1269{
1270	struct regmap_field *rf;
1271	int i;
1272
1273	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1274	if (!rf)
1275		return -ENOMEM;
1276
1277	for (i = 0; i < num_fields; i++) {
1278		regmap_field_init(&rf[i], regmap, reg_field[i]);
1279		rm_field[i] = &rf[i];
1280	}
1281
1282	return 0;
1283}
1284EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1285
1286/**
1287 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1288 * fields.
1289 *
1290 * @dev: Device that will be interacted with
1291 * @regmap: regmap bank in which this register field is located.
1292 * @rm_field: regmap register fields within the bank.
1293 * @reg_field: Register fields within the bank.
1294 * @num_fields: Number of register fields.
1295 *
1296 * The return value will be an -ENOMEM on error or zero for success.
1297 * Newly allocated regmap_fields will be automatically freed by the
1298 * device management code.
1299 */
1300int devm_regmap_field_bulk_alloc(struct device *dev,
1301				 struct regmap *regmap,
1302				 struct regmap_field **rm_field,
1303				 const struct reg_field *reg_field,
1304				 int num_fields)
1305{
1306	struct regmap_field *rf;
1307	int i;
1308
1309	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1310	if (!rf)
1311		return -ENOMEM;
1312
1313	for (i = 0; i < num_fields; i++) {
1314		regmap_field_init(&rf[i], regmap, reg_field[i]);
1315		rm_field[i] = &rf[i];
1316	}
1317
1318	return 0;
1319}
1320EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1321
1322/**
1323 * regmap_field_bulk_free() - Free register field allocated using
1324 *                       regmap_field_bulk_alloc.
1325 *
1326 * @field: regmap fields which should be freed.
1327 */
1328void regmap_field_bulk_free(struct regmap_field *field)
1329{
1330	kfree(field);
1331}
1332EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1333
1334/**
1335 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1336 *                            devm_regmap_field_bulk_alloc.
1337 *
1338 * @dev: Device that will be interacted with
1339 * @field: regmap field which should be freed.
1340 *
1341 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1342 * drivers need not call this function, as the memory allocated via devm
1343 * will be freed as per device-driver life-cycle.
1344 */
1345void devm_regmap_field_bulk_free(struct device *dev,
1346				 struct regmap_field *field)
1347{
1348	devm_kfree(dev, field);
1349}
1350EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1351
1352/**
1353 * devm_regmap_field_free() - Free a register field allocated using
1354 *                            devm_regmap_field_alloc.
1355 *
1356 * @dev: Device that will be interacted with
1357 * @field: regmap field which should be freed.
1358 *
1359 * Free register field allocated using devm_regmap_field_alloc(). Usually
1360 * drivers need not call this function, as the memory allocated via devm
1361 * will be freed as per device-driver life-cyle.
1362 */
1363void devm_regmap_field_free(struct device *dev,
1364	struct regmap_field *field)
1365{
1366	devm_kfree(dev, field);
1367}
1368EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1369
1370/**
1371 * regmap_field_alloc() - Allocate and initialise a register field.
1372 *
1373 * @regmap: regmap bank in which this register field is located.
1374 * @reg_field: Register field with in the bank.
1375 *
1376 * The return value will be an ERR_PTR() on error or a valid pointer
1377 * to a struct regmap_field. The regmap_field should be freed by the
1378 * user once its finished working with it using regmap_field_free().
1379 */
1380struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1381		struct reg_field reg_field)
1382{
1383	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1384
1385	if (!rm_field)
1386		return ERR_PTR(-ENOMEM);
1387
1388	regmap_field_init(rm_field, regmap, reg_field);
1389
1390	return rm_field;
1391}
1392EXPORT_SYMBOL_GPL(regmap_field_alloc);
1393
1394/**
1395 * regmap_field_free() - Free register field allocated using
1396 *                       regmap_field_alloc.
1397 *
1398 * @field: regmap field which should be freed.
1399 */
1400void regmap_field_free(struct regmap_field *field)
1401{
1402	kfree(field);
1403}
1404EXPORT_SYMBOL_GPL(regmap_field_free);
1405
1406/**
1407 * regmap_reinit_cache() - Reinitialise the current register cache
1408 *
1409 * @map: Register map to operate on.
1410 * @config: New configuration.  Only the cache data will be used.
1411 *
1412 * Discard any existing register cache for the map and initialize a
1413 * new cache.  This can be used to restore the cache to defaults or to
1414 * update the cache configuration to reflect runtime discovery of the
1415 * hardware.
1416 *
1417 * No explicit locking is done here, the user needs to ensure that
1418 * this function will not race with other calls to regmap.
1419 */
1420int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1421{
1422	int ret;
1423
1424	regcache_exit(map);
1425	regmap_debugfs_exit(map);
1426
1427	map->max_register = config->max_register;
1428	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1429	map->writeable_reg = config->writeable_reg;
1430	map->readable_reg = config->readable_reg;
1431	map->volatile_reg = config->volatile_reg;
1432	map->precious_reg = config->precious_reg;
1433	map->writeable_noinc_reg = config->writeable_noinc_reg;
1434	map->readable_noinc_reg = config->readable_noinc_reg;
1435	map->cache_type = config->cache_type;
1436
1437	ret = regmap_set_name(map, config);
1438	if (ret)
1439		return ret;
1440
1441	regmap_debugfs_init(map);
1442
1443	map->cache_bypass = false;
1444	map->cache_only = false;
1445
1446	return regcache_init(map, config);
1447}
1448EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1449
1450/**
1451 * regmap_exit() - Free a previously allocated register map
1452 *
1453 * @map: Register map to operate on.
1454 */
1455void regmap_exit(struct regmap *map)
1456{
1457	struct regmap_async *async;
1458
1459	regmap_detach_dev(map->dev, map);
1460	regcache_exit(map);
1461
1462	regmap_debugfs_exit(map);
1463	regmap_range_exit(map);
1464	if (map->bus && map->bus->free_context)
1465		map->bus->free_context(map->bus_context);
1466	kfree(map->work_buf);
1467	while (!list_empty(&map->async_free)) {
1468		async = list_first_entry_or_null(&map->async_free,
1469						 struct regmap_async,
1470						 list);
1471		list_del(&async->list);
1472		kfree(async->work_buf);
1473		kfree(async);
1474	}
1475	if (map->hwlock)
1476		hwspin_lock_free(map->hwlock);
1477	if (map->lock == regmap_lock_mutex)
1478		mutex_destroy(&map->mutex);
1479	kfree_const(map->name);
1480	kfree(map->patch);
1481	if (map->bus && map->bus->free_on_exit)
1482		kfree(map->bus);
1483	kfree(map);
1484}
1485EXPORT_SYMBOL_GPL(regmap_exit);
1486
1487static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1488{
1489	struct regmap **r = res;
1490	if (!r || !*r) {
1491		WARN_ON(!r || !*r);
1492		return 0;
1493	}
1494
1495	/* If the user didn't specify a name match any */
1496	if (data)
1497		return (*r)->name && !strcmp((*r)->name, data);
1498	else
1499		return 1;
1500}
1501
1502/**
1503 * dev_get_regmap() - Obtain the regmap (if any) for a device
1504 *
1505 * @dev: Device to retrieve the map for
1506 * @name: Optional name for the register map, usually NULL.
1507 *
1508 * Returns the regmap for the device if one is present, or NULL.  If
1509 * name is specified then it must match the name specified when
1510 * registering the device, if it is NULL then the first regmap found
1511 * will be used.  Devices with multiple register maps are very rare,
1512 * generic code should normally not need to specify a name.
1513 */
1514struct regmap *dev_get_regmap(struct device *dev, const char *name)
1515{
1516	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1517					dev_get_regmap_match, (void *)name);
1518
1519	if (!r)
1520		return NULL;
1521	return *r;
1522}
1523EXPORT_SYMBOL_GPL(dev_get_regmap);
1524
1525/**
1526 * regmap_get_device() - Obtain the device from a regmap
1527 *
1528 * @map: Register map to operate on.
1529 *
1530 * Returns the underlying device that the regmap has been created for.
1531 */
1532struct device *regmap_get_device(struct regmap *map)
1533{
1534	return map->dev;
1535}
1536EXPORT_SYMBOL_GPL(regmap_get_device);
1537
1538static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1539			       struct regmap_range_node *range,
1540			       unsigned int val_num)
1541{
1542	void *orig_work_buf;
1543	unsigned int win_offset;
1544	unsigned int win_page;
1545	bool page_chg;
1546	int ret;
1547
1548	win_offset = (*reg - range->range_min) % range->window_len;
1549	win_page = (*reg - range->range_min) / range->window_len;
1550
1551	if (val_num > 1) {
1552		/* Bulk write shouldn't cross range boundary */
1553		if (*reg + val_num - 1 > range->range_max)
1554			return -EINVAL;
1555
1556		/* ... or single page boundary */
1557		if (val_num > range->window_len - win_offset)
1558			return -EINVAL;
1559	}
1560
1561	/* It is possible to have selector register inside data window.
1562	   In that case, selector register is located on every page and
1563	   it needs no page switching, when accessed alone. */
1564	if (val_num > 1 ||
1565	    range->window_start + win_offset != range->selector_reg) {
1566		/* Use separate work_buf during page switching */
1567		orig_work_buf = map->work_buf;
1568		map->work_buf = map->selector_work_buf;
1569
1570		ret = _regmap_update_bits(map, range->selector_reg,
1571					  range->selector_mask,
1572					  win_page << range->selector_shift,
1573					  &page_chg, false);
1574
1575		map->work_buf = orig_work_buf;
1576
1577		if (ret != 0)
1578			return ret;
1579	}
1580
1581	*reg = range->window_start + win_offset;
1582
1583	return 0;
1584}
1585
1586static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1587					  unsigned long mask)
1588{
1589	u8 *buf;
1590	int i;
1591
1592	if (!mask || !map->work_buf)
1593		return;
1594
1595	buf = map->work_buf;
1596
1597	for (i = 0; i < max_bytes; i++)
1598		buf[i] |= (mask >> (8 * i)) & 0xff;
1599}
1600
1601static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1602{
1603	reg += map->reg_base;
1604
1605	if (map->format.reg_shift > 0)
1606		reg >>= map->format.reg_shift;
1607	else if (map->format.reg_shift < 0)
1608		reg <<= -(map->format.reg_shift);
1609
1610	return reg;
1611}
1612
1613static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1614				  const void *val, size_t val_len, bool noinc)
1615{
1616	struct regmap_range_node *range;
1617	unsigned long flags;
1618	void *work_val = map->work_buf + map->format.reg_bytes +
1619		map->format.pad_bytes;
1620	void *buf;
1621	int ret = -ENOTSUPP;
1622	size_t len;
1623	int i;
1624
1625	/* Check for unwritable or noinc registers in range
1626	 * before we start
1627	 */
1628	if (!regmap_writeable_noinc(map, reg)) {
1629		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1630			unsigned int element =
1631				reg + regmap_get_offset(map, i);
1632			if (!regmap_writeable(map, element) ||
1633				regmap_writeable_noinc(map, element))
1634				return -EINVAL;
1635		}
1636	}
1637
1638	if (!map->cache_bypass && map->format.parse_val) {
1639		unsigned int ival, offset;
1640		int val_bytes = map->format.val_bytes;
1641
1642		/* Cache the last written value for noinc writes */
1643		i = noinc ? val_len - val_bytes : 0;
1644		for (; i < val_len; i += val_bytes) {
1645			ival = map->format.parse_val(val + i);
1646			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1647			ret = regcache_write(map, reg + offset, ival);
1648			if (ret) {
1649				dev_err(map->dev,
1650					"Error in caching of register: %x ret: %d\n",
1651					reg + offset, ret);
1652				return ret;
1653			}
1654		}
1655		if (map->cache_only) {
1656			map->cache_dirty = true;
1657			return 0;
1658		}
1659	}
1660
1661	range = _regmap_range_lookup(map, reg);
1662	if (range) {
1663		int val_num = val_len / map->format.val_bytes;
1664		int win_offset = (reg - range->range_min) % range->window_len;
1665		int win_residue = range->window_len - win_offset;
1666
1667		/* If the write goes beyond the end of the window split it */
1668		while (val_num > win_residue) {
1669			dev_dbg(map->dev, "Writing window %d/%zu\n",
1670				win_residue, val_len / map->format.val_bytes);
1671			ret = _regmap_raw_write_impl(map, reg, val,
1672						     win_residue *
1673						     map->format.val_bytes, noinc);
1674			if (ret != 0)
1675				return ret;
1676
1677			reg += win_residue;
1678			val_num -= win_residue;
1679			val += win_residue * map->format.val_bytes;
1680			val_len -= win_residue * map->format.val_bytes;
1681
1682			win_offset = (reg - range->range_min) %
1683				range->window_len;
1684			win_residue = range->window_len - win_offset;
1685		}
1686
1687		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1688		if (ret != 0)
1689			return ret;
1690	}
1691
1692	reg = regmap_reg_addr(map, reg);
1693	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1694	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1695				      map->write_flag_mask);
1696
1697	/*
1698	 * Essentially all I/O mechanisms will be faster with a single
1699	 * buffer to write.  Since register syncs often generate raw
1700	 * writes of single registers optimise that case.
1701	 */
1702	if (val != work_val && val_len == map->format.val_bytes) {
1703		memcpy(work_val, val, map->format.val_bytes);
1704		val = work_val;
1705	}
1706
1707	if (map->async && map->bus && map->bus->async_write) {
1708		struct regmap_async *async;
1709
1710		trace_regmap_async_write_start(map, reg, val_len);
1711
1712		spin_lock_irqsave(&map->async_lock, flags);
1713		async = list_first_entry_or_null(&map->async_free,
1714						 struct regmap_async,
1715						 list);
1716		if (async)
1717			list_del(&async->list);
1718		spin_unlock_irqrestore(&map->async_lock, flags);
1719
1720		if (!async) {
1721			async = map->bus->async_alloc();
1722			if (!async)
1723				return -ENOMEM;
1724
1725			async->work_buf = kzalloc(map->format.buf_size,
1726						  GFP_KERNEL | GFP_DMA);
1727			if (!async->work_buf) {
1728				kfree(async);
1729				return -ENOMEM;
1730			}
1731		}
1732
1733		async->map = map;
1734
1735		/* If the caller supplied the value we can use it safely. */
1736		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1737		       map->format.reg_bytes + map->format.val_bytes);
1738
1739		spin_lock_irqsave(&map->async_lock, flags);
1740		list_add_tail(&async->list, &map->async_list);
1741		spin_unlock_irqrestore(&map->async_lock, flags);
1742
1743		if (val != work_val)
1744			ret = map->bus->async_write(map->bus_context,
1745						    async->work_buf,
1746						    map->format.reg_bytes +
1747						    map->format.pad_bytes,
1748						    val, val_len, async);
1749		else
1750			ret = map->bus->async_write(map->bus_context,
1751						    async->work_buf,
1752						    map->format.reg_bytes +
1753						    map->format.pad_bytes +
1754						    val_len, NULL, 0, async);
1755
1756		if (ret != 0) {
1757			dev_err(map->dev, "Failed to schedule write: %d\n",
1758				ret);
1759
1760			spin_lock_irqsave(&map->async_lock, flags);
1761			list_move(&async->list, &map->async_free);
1762			spin_unlock_irqrestore(&map->async_lock, flags);
1763		}
1764
1765		return ret;
1766	}
1767
1768	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1769
1770	/* If we're doing a single register write we can probably just
1771	 * send the work_buf directly, otherwise try to do a gather
1772	 * write.
1773	 */
1774	if (val == work_val)
1775		ret = map->write(map->bus_context, map->work_buf,
1776				 map->format.reg_bytes +
1777				 map->format.pad_bytes +
1778				 val_len);
1779	else if (map->bus && map->bus->gather_write)
1780		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1781					     map->format.reg_bytes +
1782					     map->format.pad_bytes,
1783					     val, val_len);
1784	else
1785		ret = -ENOTSUPP;
1786
1787	/* If that didn't work fall back on linearising by hand. */
1788	if (ret == -ENOTSUPP) {
1789		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1790		buf = kzalloc(len, GFP_KERNEL);
1791		if (!buf)
1792			return -ENOMEM;
1793
1794		memcpy(buf, map->work_buf, map->format.reg_bytes);
1795		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1796		       val, val_len);
1797		ret = map->write(map->bus_context, buf, len);
1798
1799		kfree(buf);
1800	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1801		/* regcache_drop_region() takes lock that we already have,
1802		 * thus call map->cache_ops->drop() directly
1803		 */
1804		if (map->cache_ops && map->cache_ops->drop)
1805			map->cache_ops->drop(map, reg, reg + 1);
1806	}
1807
1808	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1809
1810	return ret;
1811}
1812
1813/**
1814 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1815 *
1816 * @map: Map to check.
1817 */
1818bool regmap_can_raw_write(struct regmap *map)
1819{
1820	return map->write && map->format.format_val && map->format.format_reg;
1821}
1822EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1823
1824/**
1825 * regmap_get_raw_read_max - Get the maximum size we can read
1826 *
1827 * @map: Map to check.
1828 */
1829size_t regmap_get_raw_read_max(struct regmap *map)
1830{
1831	return map->max_raw_read;
1832}
1833EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1834
1835/**
1836 * regmap_get_raw_write_max - Get the maximum size we can read
1837 *
1838 * @map: Map to check.
1839 */
1840size_t regmap_get_raw_write_max(struct regmap *map)
1841{
1842	return map->max_raw_write;
1843}
1844EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1845
1846static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1847				       unsigned int val)
1848{
1849	int ret;
1850	struct regmap_range_node *range;
1851	struct regmap *map = context;
1852
1853	WARN_ON(!map->format.format_write);
1854
1855	range = _regmap_range_lookup(map, reg);
1856	if (range) {
1857		ret = _regmap_select_page(map, &reg, range, 1);
1858		if (ret != 0)
1859			return ret;
1860	}
1861
1862	reg = regmap_reg_addr(map, reg);
1863	map->format.format_write(map, reg, val);
1864
1865	trace_regmap_hw_write_start(map, reg, 1);
1866
1867	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1868
1869	trace_regmap_hw_write_done(map, reg, 1);
1870
1871	return ret;
1872}
1873
1874static int _regmap_bus_reg_write(void *context, unsigned int reg,
1875				 unsigned int val)
1876{
1877	struct regmap *map = context;
1878	struct regmap_range_node *range;
1879	int ret;
1880
1881	range = _regmap_range_lookup(map, reg);
1882	if (range) {
1883		ret = _regmap_select_page(map, &reg, range, 1);
1884		if (ret != 0)
1885			return ret;
1886	}
1887
1888	reg = regmap_reg_addr(map, reg);
1889	return map->bus->reg_write(map->bus_context, reg, val);
1890}
1891
1892static int _regmap_bus_raw_write(void *context, unsigned int reg,
1893				 unsigned int val)
1894{
1895	struct regmap *map = context;
1896
1897	WARN_ON(!map->format.format_val);
1898
1899	map->format.format_val(map->work_buf + map->format.reg_bytes
1900			       + map->format.pad_bytes, val, 0);
1901	return _regmap_raw_write_impl(map, reg,
1902				      map->work_buf +
1903				      map->format.reg_bytes +
1904				      map->format.pad_bytes,
1905				      map->format.val_bytes,
1906				      false);
1907}
1908
1909static inline void *_regmap_map_get_context(struct regmap *map)
1910{
1911	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1912}
1913
1914int _regmap_write(struct regmap *map, unsigned int reg,
1915		  unsigned int val)
1916{
1917	int ret;
1918	void *context = _regmap_map_get_context(map);
1919
1920	if (!regmap_writeable(map, reg))
1921		return -EIO;
1922
1923	if (!map->cache_bypass && !map->defer_caching) {
1924		ret = regcache_write(map, reg, val);
1925		if (ret != 0)
1926			return ret;
1927		if (map->cache_only) {
1928			map->cache_dirty = true;
1929			return 0;
1930		}
1931	}
1932
1933	ret = map->reg_write(context, reg, val);
1934	if (ret == 0) {
1935		if (regmap_should_log(map))
1936			dev_info(map->dev, "%x <= %x\n", reg, val);
1937
1938		trace_regmap_reg_write(map, reg, val);
1939	}
1940
1941	return ret;
1942}
1943
1944/**
1945 * regmap_write() - Write a value to a single register
1946 *
1947 * @map: Register map to write to
1948 * @reg: Register to write to
1949 * @val: Value to be written
1950 *
1951 * A value of zero will be returned on success, a negative errno will
1952 * be returned in error cases.
1953 */
1954int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1955{
1956	int ret;
1957
1958	if (!IS_ALIGNED(reg, map->reg_stride))
1959		return -EINVAL;
1960
1961	map->lock(map->lock_arg);
1962
1963	ret = _regmap_write(map, reg, val);
1964
1965	map->unlock(map->lock_arg);
1966
1967	return ret;
1968}
1969EXPORT_SYMBOL_GPL(regmap_write);
1970
1971/**
1972 * regmap_write_async() - Write a value to a single register asynchronously
1973 *
1974 * @map: Register map to write to
1975 * @reg: Register to write to
1976 * @val: Value to be written
1977 *
1978 * A value of zero will be returned on success, a negative errno will
1979 * be returned in error cases.
1980 */
1981int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1982{
1983	int ret;
1984
1985	if (!IS_ALIGNED(reg, map->reg_stride))
1986		return -EINVAL;
1987
1988	map->lock(map->lock_arg);
1989
1990	map->async = true;
1991
1992	ret = _regmap_write(map, reg, val);
1993
1994	map->async = false;
1995
1996	map->unlock(map->lock_arg);
1997
1998	return ret;
1999}
2000EXPORT_SYMBOL_GPL(regmap_write_async);
2001
2002int _regmap_raw_write(struct regmap *map, unsigned int reg,
2003		      const void *val, size_t val_len, bool noinc)
2004{
2005	size_t val_bytes = map->format.val_bytes;
2006	size_t val_count = val_len / val_bytes;
2007	size_t chunk_count, chunk_bytes;
2008	size_t chunk_regs = val_count;
2009	int ret, i;
2010
2011	if (!val_count)
2012		return -EINVAL;
2013
2014	if (map->use_single_write)
2015		chunk_regs = 1;
2016	else if (map->max_raw_write && val_len > map->max_raw_write)
2017		chunk_regs = map->max_raw_write / val_bytes;
2018
2019	chunk_count = val_count / chunk_regs;
2020	chunk_bytes = chunk_regs * val_bytes;
2021
2022	/* Write as many bytes as possible with chunk_size */
2023	for (i = 0; i < chunk_count; i++) {
2024		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2025		if (ret)
2026			return ret;
2027
2028		reg += regmap_get_offset(map, chunk_regs);
2029		val += chunk_bytes;
2030		val_len -= chunk_bytes;
2031	}
2032
2033	/* Write remaining bytes */
2034	if (val_len)
2035		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2036
2037	return ret;
2038}
2039
2040/**
2041 * regmap_raw_write() - Write raw values to one or more registers
2042 *
2043 * @map: Register map to write to
2044 * @reg: Initial register to write to
2045 * @val: Block of data to be written, laid out for direct transmission to the
2046 *       device
2047 * @val_len: Length of data pointed to by val.
2048 *
2049 * This function is intended to be used for things like firmware
2050 * download where a large block of data needs to be transferred to the
2051 * device.  No formatting will be done on the data provided.
2052 *
2053 * A value of zero will be returned on success, a negative errno will
2054 * be returned in error cases.
2055 */
2056int regmap_raw_write(struct regmap *map, unsigned int reg,
2057		     const void *val, size_t val_len)
2058{
2059	int ret;
2060
2061	if (!regmap_can_raw_write(map))
2062		return -EINVAL;
2063	if (val_len % map->format.val_bytes)
2064		return -EINVAL;
2065
2066	map->lock(map->lock_arg);
2067
2068	ret = _regmap_raw_write(map, reg, val, val_len, false);
2069
2070	map->unlock(map->lock_arg);
2071
2072	return ret;
2073}
2074EXPORT_SYMBOL_GPL(regmap_raw_write);
2075
2076static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2077				  void *val, unsigned int val_len, bool write)
2078{
2079	size_t val_bytes = map->format.val_bytes;
2080	size_t val_count = val_len / val_bytes;
2081	unsigned int lastval;
2082	u8 *u8p;
2083	u16 *u16p;
2084	u32 *u32p;
2085	int ret;
2086	int i;
2087
2088	switch (val_bytes) {
2089	case 1:
2090		u8p = val;
2091		if (write)
2092			lastval = (unsigned int)u8p[val_count - 1];
2093		break;
2094	case 2:
2095		u16p = val;
2096		if (write)
2097			lastval = (unsigned int)u16p[val_count - 1];
2098		break;
2099	case 4:
2100		u32p = val;
2101		if (write)
2102			lastval = (unsigned int)u32p[val_count - 1];
2103		break;
2104	default:
2105		return -EINVAL;
2106	}
2107
2108	/*
2109	 * Update the cache with the last value we write, the rest is just
2110	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2111	 * sure a single read from the cache will work.
2112	 */
2113	if (write) {
2114		if (!map->cache_bypass && !map->defer_caching) {
2115			ret = regcache_write(map, reg, lastval);
2116			if (ret != 0)
2117				return ret;
2118			if (map->cache_only) {
2119				map->cache_dirty = true;
2120				return 0;
2121			}
2122		}
2123		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2124	} else {
2125		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2126	}
2127
2128	if (!ret && regmap_should_log(map)) {
2129		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2130		for (i = 0; i < val_count; i++) {
2131			switch (val_bytes) {
2132			case 1:
2133				pr_cont("%x", u8p[i]);
2134				break;
2135			case 2:
2136				pr_cont("%x", u16p[i]);
2137				break;
2138			case 4:
2139				pr_cont("%x", u32p[i]);
2140				break;
2141			default:
2142				break;
2143			}
2144			if (i == (val_count - 1))
2145				pr_cont("]\n");
2146			else
2147				pr_cont(",");
2148		}
2149	}
2150
2151	return 0;
2152}
2153
2154/**
2155 * regmap_noinc_write(): Write data to a register without incrementing the
2156 *			register number
2157 *
2158 * @map: Register map to write to
2159 * @reg: Register to write to
2160 * @val: Pointer to data buffer
2161 * @val_len: Length of output buffer in bytes.
2162 *
2163 * The regmap API usually assumes that bulk bus write operations will write a
2164 * range of registers. Some devices have certain registers for which a write
2165 * operation can write to an internal FIFO.
2166 *
2167 * The target register must be volatile but registers after it can be
2168 * completely unrelated cacheable registers.
2169 *
2170 * This will attempt multiple writes as required to write val_len bytes.
2171 *
2172 * A value of zero will be returned on success, a negative errno will be
2173 * returned in error cases.
2174 */
2175int regmap_noinc_write(struct regmap *map, unsigned int reg,
2176		      const void *val, size_t val_len)
2177{
2178	size_t write_len;
2179	int ret;
2180
2181	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2182		return -EINVAL;
2183	if (val_len % map->format.val_bytes)
2184		return -EINVAL;
2185	if (!IS_ALIGNED(reg, map->reg_stride))
2186		return -EINVAL;
2187	if (val_len == 0)
2188		return -EINVAL;
2189
2190	map->lock(map->lock_arg);
2191
2192	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2193		ret = -EINVAL;
2194		goto out_unlock;
2195	}
2196
2197	/*
2198	 * Use the accelerated operation if we can. The val drops the const
2199	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2200	 */
2201	if (map->bus->reg_noinc_write) {
2202		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2203		goto out_unlock;
2204	}
2205
2206	while (val_len) {
2207		if (map->max_raw_write && map->max_raw_write < val_len)
2208			write_len = map->max_raw_write;
2209		else
2210			write_len = val_len;
2211		ret = _regmap_raw_write(map, reg, val, write_len, true);
2212		if (ret)
2213			goto out_unlock;
2214		val = ((u8 *)val) + write_len;
2215		val_len -= write_len;
2216	}
2217
2218out_unlock:
2219	map->unlock(map->lock_arg);
2220	return ret;
2221}
2222EXPORT_SYMBOL_GPL(regmap_noinc_write);
2223
2224/**
2225 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2226 *                                   register field.
2227 *
2228 * @field: Register field to write to
2229 * @mask: Bitmask to change
2230 * @val: Value to be written
2231 * @change: Boolean indicating if a write was done
2232 * @async: Boolean indicating asynchronously
2233 * @force: Boolean indicating use force update
2234 *
2235 * Perform a read/modify/write cycle on the register field with change,
2236 * async, force option.
2237 *
2238 * A value of zero will be returned on success, a negative errno will
2239 * be returned in error cases.
2240 */
2241int regmap_field_update_bits_base(struct regmap_field *field,
2242				  unsigned int mask, unsigned int val,
2243				  bool *change, bool async, bool force)
2244{
2245	mask = (mask << field->shift) & field->mask;
2246
2247	return regmap_update_bits_base(field->regmap, field->reg,
2248				       mask, val << field->shift,
2249				       change, async, force);
2250}
2251EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2252
2253/**
2254 * regmap_field_test_bits() - Check if all specified bits are set in a
2255 *                            register field.
2256 *
2257 * @field: Register field to operate on
2258 * @bits: Bits to test
2259 *
2260 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2261 * tested bits is not set and 1 if all tested bits are set.
2262 */
2263int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2264{
2265	unsigned int val, ret;
2266
2267	ret = regmap_field_read(field, &val);
2268	if (ret)
2269		return ret;
2270
2271	return (val & bits) == bits;
2272}
2273EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2274
2275/**
2276 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2277 *                                    register field with port ID
2278 *
2279 * @field: Register field to write to
2280 * @id: port ID
2281 * @mask: Bitmask to change
2282 * @val: Value to be written
2283 * @change: Boolean indicating if a write was done
2284 * @async: Boolean indicating asynchronously
2285 * @force: Boolean indicating use force update
2286 *
2287 * A value of zero will be returned on success, a negative errno will
2288 * be returned in error cases.
2289 */
2290int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2291				   unsigned int mask, unsigned int val,
2292				   bool *change, bool async, bool force)
2293{
2294	if (id >= field->id_size)
2295		return -EINVAL;
2296
2297	mask = (mask << field->shift) & field->mask;
2298
2299	return regmap_update_bits_base(field->regmap,
2300				       field->reg + (field->id_offset * id),
2301				       mask, val << field->shift,
2302				       change, async, force);
2303}
2304EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2305
2306/**
2307 * regmap_bulk_write() - Write multiple registers to the device
2308 *
2309 * @map: Register map to write to
2310 * @reg: First register to be write from
2311 * @val: Block of data to be written, in native register size for device
2312 * @val_count: Number of registers to write
2313 *
2314 * This function is intended to be used for writing a large block of
2315 * data to the device either in single transfer or multiple transfer.
2316 *
2317 * A value of zero will be returned on success, a negative errno will
2318 * be returned in error cases.
2319 */
2320int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2321		     size_t val_count)
2322{
2323	int ret = 0, i;
2324	size_t val_bytes = map->format.val_bytes;
2325
2326	if (!IS_ALIGNED(reg, map->reg_stride))
2327		return -EINVAL;
2328
2329	/*
2330	 * Some devices don't support bulk write, for them we have a series of
2331	 * single write operations.
2332	 */
2333	if (!map->write || !map->format.parse_inplace) {
2334		map->lock(map->lock_arg);
2335		for (i = 0; i < val_count; i++) {
2336			unsigned int ival;
2337
2338			switch (val_bytes) {
2339			case 1:
2340				ival = *(u8 *)(val + (i * val_bytes));
2341				break;
2342			case 2:
2343				ival = *(u16 *)(val + (i * val_bytes));
2344				break;
2345			case 4:
2346				ival = *(u32 *)(val + (i * val_bytes));
2347				break;
2348			default:
2349				ret = -EINVAL;
2350				goto out;
2351			}
2352
2353			ret = _regmap_write(map,
2354					    reg + regmap_get_offset(map, i),
2355					    ival);
2356			if (ret != 0)
2357				goto out;
2358		}
2359out:
2360		map->unlock(map->lock_arg);
2361	} else {
2362		void *wval;
2363
2364		wval = kmemdup_array(val, val_count, val_bytes, map->alloc_flags);
2365		if (!wval)
2366			return -ENOMEM;
2367
2368		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2369			map->format.parse_inplace(wval + i);
2370
2371		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2372
2373		kfree(wval);
2374	}
2375
2376	if (!ret)
2377		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2378
2379	return ret;
2380}
2381EXPORT_SYMBOL_GPL(regmap_bulk_write);
2382
2383/*
2384 * _regmap_raw_multi_reg_write()
2385 *
2386 * the (register,newvalue) pairs in regs have not been formatted, but
2387 * they are all in the same page and have been changed to being page
2388 * relative. The page register has been written if that was necessary.
2389 */
2390static int _regmap_raw_multi_reg_write(struct regmap *map,
2391				       const struct reg_sequence *regs,
2392				       size_t num_regs)
2393{
2394	int ret;
2395	void *buf;
2396	int i;
2397	u8 *u8;
2398	size_t val_bytes = map->format.val_bytes;
2399	size_t reg_bytes = map->format.reg_bytes;
2400	size_t pad_bytes = map->format.pad_bytes;
2401	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2402	size_t len = pair_size * num_regs;
2403
2404	if (!len)
2405		return -EINVAL;
2406
2407	buf = kzalloc(len, GFP_KERNEL);
2408	if (!buf)
2409		return -ENOMEM;
2410
2411	/* We have to linearise by hand. */
2412
2413	u8 = buf;
2414
2415	for (i = 0; i < num_regs; i++) {
2416		unsigned int reg = regs[i].reg;
2417		unsigned int val = regs[i].def;
2418		trace_regmap_hw_write_start(map, reg, 1);
2419		reg = regmap_reg_addr(map, reg);
2420		map->format.format_reg(u8, reg, map->reg_shift);
2421		u8 += reg_bytes + pad_bytes;
2422		map->format.format_val(u8, val, 0);
2423		u8 += val_bytes;
2424	}
2425	u8 = buf;
2426	*u8 |= map->write_flag_mask;
2427
2428	ret = map->write(map->bus_context, buf, len);
2429
2430	kfree(buf);
2431
2432	for (i = 0; i < num_regs; i++) {
2433		int reg = regs[i].reg;
2434		trace_regmap_hw_write_done(map, reg, 1);
2435	}
2436	return ret;
2437}
2438
2439static unsigned int _regmap_register_page(struct regmap *map,
2440					  unsigned int reg,
2441					  struct regmap_range_node *range)
2442{
2443	unsigned int win_page = (reg - range->range_min) / range->window_len;
2444
2445	return win_page;
2446}
2447
2448static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2449					       struct reg_sequence *regs,
2450					       size_t num_regs)
2451{
2452	int ret;
2453	int i, n;
2454	struct reg_sequence *base;
2455	unsigned int this_page = 0;
2456	unsigned int page_change = 0;
2457	/*
2458	 * the set of registers are not neccessarily in order, but
2459	 * since the order of write must be preserved this algorithm
2460	 * chops the set each time the page changes. This also applies
2461	 * if there is a delay required at any point in the sequence.
2462	 */
2463	base = regs;
2464	for (i = 0, n = 0; i < num_regs; i++, n++) {
2465		unsigned int reg = regs[i].reg;
2466		struct regmap_range_node *range;
2467
2468		range = _regmap_range_lookup(map, reg);
2469		if (range) {
2470			unsigned int win_page = _regmap_register_page(map, reg,
2471								      range);
2472
2473			if (i == 0)
2474				this_page = win_page;
2475			if (win_page != this_page) {
2476				this_page = win_page;
2477				page_change = 1;
2478			}
2479		}
2480
2481		/* If we have both a page change and a delay make sure to
2482		 * write the regs and apply the delay before we change the
2483		 * page.
2484		 */
2485
2486		if (page_change || regs[i].delay_us) {
2487
2488				/* For situations where the first write requires
2489				 * a delay we need to make sure we don't call
2490				 * raw_multi_reg_write with n=0
2491				 * This can't occur with page breaks as we
2492				 * never write on the first iteration
2493				 */
2494				if (regs[i].delay_us && i == 0)
2495					n = 1;
2496
2497				ret = _regmap_raw_multi_reg_write(map, base, n);
2498				if (ret != 0)
2499					return ret;
2500
2501				if (regs[i].delay_us) {
2502					if (map->can_sleep)
2503						fsleep(regs[i].delay_us);
2504					else
2505						udelay(regs[i].delay_us);
2506				}
2507
2508				base += n;
2509				n = 0;
2510
2511				if (page_change) {
2512					ret = _regmap_select_page(map,
2513								  &base[n].reg,
2514								  range, 1);
2515					if (ret != 0)
2516						return ret;
2517
2518					page_change = 0;
2519				}
2520
2521		}
2522
2523	}
2524	if (n > 0)
2525		return _regmap_raw_multi_reg_write(map, base, n);
2526	return 0;
2527}
2528
2529static int _regmap_multi_reg_write(struct regmap *map,
2530				   const struct reg_sequence *regs,
2531				   size_t num_regs)
2532{
2533	int i;
2534	int ret;
2535
2536	if (!map->can_multi_write) {
2537		for (i = 0; i < num_regs; i++) {
2538			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2539			if (ret != 0)
2540				return ret;
2541
2542			if (regs[i].delay_us) {
2543				if (map->can_sleep)
2544					fsleep(regs[i].delay_us);
2545				else
2546					udelay(regs[i].delay_us);
2547			}
2548		}
2549		return 0;
2550	}
2551
2552	if (!map->format.parse_inplace)
2553		return -EINVAL;
2554
2555	if (map->writeable_reg)
2556		for (i = 0; i < num_regs; i++) {
2557			int reg = regs[i].reg;
2558			if (!map->writeable_reg(map->dev, reg))
2559				return -EINVAL;
2560			if (!IS_ALIGNED(reg, map->reg_stride))
2561				return -EINVAL;
2562		}
2563
2564	if (!map->cache_bypass) {
2565		for (i = 0; i < num_regs; i++) {
2566			unsigned int val = regs[i].def;
2567			unsigned int reg = regs[i].reg;
2568			ret = regcache_write(map, reg, val);
2569			if (ret) {
2570				dev_err(map->dev,
2571				"Error in caching of register: %x ret: %d\n",
2572								reg, ret);
2573				return ret;
2574			}
2575		}
2576		if (map->cache_only) {
2577			map->cache_dirty = true;
2578			return 0;
2579		}
2580	}
2581
2582	WARN_ON(!map->bus);
2583
2584	for (i = 0; i < num_regs; i++) {
2585		unsigned int reg = regs[i].reg;
2586		struct regmap_range_node *range;
2587
2588		/* Coalesce all the writes between a page break or a delay
2589		 * in a sequence
2590		 */
2591		range = _regmap_range_lookup(map, reg);
2592		if (range || regs[i].delay_us) {
2593			size_t len = sizeof(struct reg_sequence)*num_regs;
2594			struct reg_sequence *base = kmemdup(regs, len,
2595							   GFP_KERNEL);
2596			if (!base)
2597				return -ENOMEM;
2598			ret = _regmap_range_multi_paged_reg_write(map, base,
2599								  num_regs);
2600			kfree(base);
2601
2602			return ret;
2603		}
2604	}
2605	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2606}
2607
2608/**
2609 * regmap_multi_reg_write() - Write multiple registers to the device
2610 *
2611 * @map: Register map to write to
2612 * @regs: Array of structures containing register,value to be written
2613 * @num_regs: Number of registers to write
2614 *
2615 * Write multiple registers to the device where the set of register, value
2616 * pairs are supplied in any order, possibly not all in a single range.
2617 *
2618 * The 'normal' block write mode will send ultimately send data on the
2619 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2620 * addressed. However, this alternative block multi write mode will send
2621 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2622 * must of course support the mode.
2623 *
2624 * A value of zero will be returned on success, a negative errno will be
2625 * returned in error cases.
2626 */
2627int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2628			   int num_regs)
2629{
2630	int ret;
2631
2632	map->lock(map->lock_arg);
2633
2634	ret = _regmap_multi_reg_write(map, regs, num_regs);
2635
2636	map->unlock(map->lock_arg);
2637
2638	return ret;
2639}
2640EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2641
2642/**
2643 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2644 *                                     device but not the cache
2645 *
2646 * @map: Register map to write to
2647 * @regs: Array of structures containing register,value to be written
2648 * @num_regs: Number of registers to write
2649 *
2650 * Write multiple registers to the device but not the cache where the set
2651 * of register are supplied in any order.
2652 *
2653 * This function is intended to be used for writing a large block of data
2654 * atomically to the device in single transfer for those I2C client devices
2655 * that implement this alternative block write mode.
2656 *
2657 * A value of zero will be returned on success, a negative errno will
2658 * be returned in error cases.
2659 */
2660int regmap_multi_reg_write_bypassed(struct regmap *map,
2661				    const struct reg_sequence *regs,
2662				    int num_regs)
2663{
2664	int ret;
2665	bool bypass;
2666
2667	map->lock(map->lock_arg);
2668
2669	bypass = map->cache_bypass;
2670	map->cache_bypass = true;
2671
2672	ret = _regmap_multi_reg_write(map, regs, num_regs);
2673
2674	map->cache_bypass = bypass;
2675
2676	map->unlock(map->lock_arg);
2677
2678	return ret;
2679}
2680EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2681
2682/**
2683 * regmap_raw_write_async() - Write raw values to one or more registers
2684 *                            asynchronously
2685 *
2686 * @map: Register map to write to
2687 * @reg: Initial register to write to
2688 * @val: Block of data to be written, laid out for direct transmission to the
2689 *       device.  Must be valid until regmap_async_complete() is called.
2690 * @val_len: Length of data pointed to by val.
2691 *
2692 * This function is intended to be used for things like firmware
2693 * download where a large block of data needs to be transferred to the
2694 * device.  No formatting will be done on the data provided.
2695 *
2696 * If supported by the underlying bus the write will be scheduled
2697 * asynchronously, helping maximise I/O speed on higher speed buses
2698 * like SPI.  regmap_async_complete() can be called to ensure that all
2699 * asynchrnous writes have been completed.
2700 *
2701 * A value of zero will be returned on success, a negative errno will
2702 * be returned in error cases.
2703 */
2704int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2705			   const void *val, size_t val_len)
2706{
2707	int ret;
2708
2709	if (val_len % map->format.val_bytes)
2710		return -EINVAL;
2711	if (!IS_ALIGNED(reg, map->reg_stride))
2712		return -EINVAL;
2713
2714	map->lock(map->lock_arg);
2715
2716	map->async = true;
2717
2718	ret = _regmap_raw_write(map, reg, val, val_len, false);
2719
2720	map->async = false;
2721
2722	map->unlock(map->lock_arg);
2723
2724	return ret;
2725}
2726EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2727
2728static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2729			    unsigned int val_len, bool noinc)
2730{
2731	struct regmap_range_node *range;
2732	int ret;
2733
2734	if (!map->read)
2735		return -EINVAL;
2736
2737	range = _regmap_range_lookup(map, reg);
2738	if (range) {
2739		ret = _regmap_select_page(map, &reg, range,
2740					  noinc ? 1 : val_len / map->format.val_bytes);
2741		if (ret != 0)
2742			return ret;
2743	}
2744
2745	reg = regmap_reg_addr(map, reg);
2746	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2747	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2748				      map->read_flag_mask);
2749	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2750
2751	ret = map->read(map->bus_context, map->work_buf,
2752			map->format.reg_bytes + map->format.pad_bytes,
2753			val, val_len);
2754
2755	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2756
2757	return ret;
2758}
2759
2760static int _regmap_bus_reg_read(void *context, unsigned int reg,
2761				unsigned int *val)
2762{
2763	struct regmap *map = context;
2764	struct regmap_range_node *range;
2765	int ret;
2766
2767	range = _regmap_range_lookup(map, reg);
2768	if (range) {
2769		ret = _regmap_select_page(map, &reg, range, 1);
2770		if (ret != 0)
2771			return ret;
2772	}
2773
2774	reg = regmap_reg_addr(map, reg);
2775	return map->bus->reg_read(map->bus_context, reg, val);
2776}
2777
2778static int _regmap_bus_read(void *context, unsigned int reg,
2779			    unsigned int *val)
2780{
2781	int ret;
2782	struct regmap *map = context;
2783	void *work_val = map->work_buf + map->format.reg_bytes +
2784		map->format.pad_bytes;
2785
2786	if (!map->format.parse_val)
2787		return -EINVAL;
2788
2789	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2790	if (ret == 0)
2791		*val = map->format.parse_val(work_val);
2792
2793	return ret;
2794}
2795
2796static int _regmap_read(struct regmap *map, unsigned int reg,
2797			unsigned int *val)
2798{
2799	int ret;
2800	void *context = _regmap_map_get_context(map);
2801
2802	if (!map->cache_bypass) {
2803		ret = regcache_read(map, reg, val);
2804		if (ret == 0)
2805			return 0;
2806	}
2807
2808	if (map->cache_only)
2809		return -EBUSY;
2810
2811	if (!regmap_readable(map, reg))
2812		return -EIO;
2813
2814	ret = map->reg_read(context, reg, val);
2815	if (ret == 0) {
2816		if (regmap_should_log(map))
2817			dev_info(map->dev, "%x => %x\n", reg, *val);
2818
2819		trace_regmap_reg_read(map, reg, *val);
2820
2821		if (!map->cache_bypass)
2822			regcache_write(map, reg, *val);
2823	}
2824
2825	return ret;
2826}
2827
2828/**
2829 * regmap_read() - Read a value from a single register
2830 *
2831 * @map: Register map to read from
2832 * @reg: Register to be read from
2833 * @val: Pointer to store read value
2834 *
2835 * A value of zero will be returned on success, a negative errno will
2836 * be returned in error cases.
2837 */
2838int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2839{
2840	int ret;
2841
2842	if (!IS_ALIGNED(reg, map->reg_stride))
2843		return -EINVAL;
2844
2845	map->lock(map->lock_arg);
2846
2847	ret = _regmap_read(map, reg, val);
2848
2849	map->unlock(map->lock_arg);
2850
2851	return ret;
2852}
2853EXPORT_SYMBOL_GPL(regmap_read);
2854
2855/**
2856 * regmap_read_bypassed() - Read a value from a single register direct
2857 *			    from the device, bypassing the cache
2858 *
2859 * @map: Register map to read from
2860 * @reg: Register to be read from
2861 * @val: Pointer to store read value
2862 *
2863 * A value of zero will be returned on success, a negative errno will
2864 * be returned in error cases.
2865 */
2866int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2867{
2868	int ret;
2869	bool bypass, cache_only;
2870
2871	if (!IS_ALIGNED(reg, map->reg_stride))
2872		return -EINVAL;
2873
2874	map->lock(map->lock_arg);
2875
2876	bypass = map->cache_bypass;
2877	cache_only = map->cache_only;
2878	map->cache_bypass = true;
2879	map->cache_only = false;
2880
2881	ret = _regmap_read(map, reg, val);
2882
2883	map->cache_bypass = bypass;
2884	map->cache_only = cache_only;
2885
2886	map->unlock(map->lock_arg);
2887
2888	return ret;
2889}
2890EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2891
2892/**
2893 * regmap_raw_read() - Read raw data from the device
2894 *
2895 * @map: Register map to read from
2896 * @reg: First register to be read from
2897 * @val: Pointer to store read value
2898 * @val_len: Size of data to read
2899 *
2900 * A value of zero will be returned on success, a negative errno will
2901 * be returned in error cases.
2902 */
2903int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2904		    size_t val_len)
2905{
2906	size_t val_bytes = map->format.val_bytes;
2907	size_t val_count = val_len / val_bytes;
2908	unsigned int v;
2909	int ret, i;
2910
2911	if (val_len % map->format.val_bytes)
2912		return -EINVAL;
2913	if (!IS_ALIGNED(reg, map->reg_stride))
2914		return -EINVAL;
2915	if (val_count == 0)
2916		return -EINVAL;
2917
2918	map->lock(map->lock_arg);
2919
2920	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2921	    map->cache_type == REGCACHE_NONE) {
2922		size_t chunk_count, chunk_bytes;
2923		size_t chunk_regs = val_count;
2924
2925		if (!map->cache_bypass && map->cache_only) {
2926			ret = -EBUSY;
2927			goto out;
2928		}
2929
2930		if (!map->read) {
2931			ret = -ENOTSUPP;
2932			goto out;
2933		}
2934
2935		if (map->use_single_read)
2936			chunk_regs = 1;
2937		else if (map->max_raw_read && val_len > map->max_raw_read)
2938			chunk_regs = map->max_raw_read / val_bytes;
2939
2940		chunk_count = val_count / chunk_regs;
2941		chunk_bytes = chunk_regs * val_bytes;
2942
2943		/* Read bytes that fit into whole chunks */
2944		for (i = 0; i < chunk_count; i++) {
2945			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2946			if (ret != 0)
2947				goto out;
2948
2949			reg += regmap_get_offset(map, chunk_regs);
2950			val += chunk_bytes;
2951			val_len -= chunk_bytes;
2952		}
2953
2954		/* Read remaining bytes */
2955		if (val_len) {
2956			ret = _regmap_raw_read(map, reg, val, val_len, false);
2957			if (ret != 0)
2958				goto out;
2959		}
2960	} else {
2961		/* Otherwise go word by word for the cache; should be low
2962		 * cost as we expect to hit the cache.
2963		 */
2964		for (i = 0; i < val_count; i++) {
2965			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2966					   &v);
2967			if (ret != 0)
2968				goto out;
2969
2970			map->format.format_val(val + (i * val_bytes), v, 0);
2971		}
2972	}
2973
2974 out:
2975	map->unlock(map->lock_arg);
2976
2977	return ret;
2978}
2979EXPORT_SYMBOL_GPL(regmap_raw_read);
2980
2981/**
2982 * regmap_noinc_read(): Read data from a register without incrementing the
2983 *			register number
2984 *
2985 * @map: Register map to read from
2986 * @reg: Register to read from
2987 * @val: Pointer to data buffer
2988 * @val_len: Length of output buffer in bytes.
2989 *
2990 * The regmap API usually assumes that bulk read operations will read a
2991 * range of registers. Some devices have certain registers for which a read
2992 * operation read will read from an internal FIFO.
2993 *
2994 * The target register must be volatile but registers after it can be
2995 * completely unrelated cacheable registers.
2996 *
2997 * This will attempt multiple reads as required to read val_len bytes.
2998 *
2999 * A value of zero will be returned on success, a negative errno will be
3000 * returned in error cases.
3001 */
3002int regmap_noinc_read(struct regmap *map, unsigned int reg,
3003		      void *val, size_t val_len)
3004{
3005	size_t read_len;
3006	int ret;
3007
3008	if (!map->read)
3009		return -ENOTSUPP;
3010
3011	if (val_len % map->format.val_bytes)
3012		return -EINVAL;
3013	if (!IS_ALIGNED(reg, map->reg_stride))
3014		return -EINVAL;
3015	if (val_len == 0)
3016		return -EINVAL;
3017
3018	map->lock(map->lock_arg);
3019
3020	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3021		ret = -EINVAL;
3022		goto out_unlock;
3023	}
3024
3025	/*
3026	 * We have not defined the FIFO semantics for cache, as the
3027	 * cache is just one value deep. Should we return the last
3028	 * written value? Just avoid this by always reading the FIFO
3029	 * even when using cache. Cache only will not work.
3030	 */
3031	if (!map->cache_bypass && map->cache_only) {
3032		ret = -EBUSY;
3033		goto out_unlock;
3034	}
3035
3036	/* Use the accelerated operation if we can */
3037	if (map->bus->reg_noinc_read) {
3038		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3039		goto out_unlock;
3040	}
3041
3042	while (val_len) {
3043		if (map->max_raw_read && map->max_raw_read < val_len)
3044			read_len = map->max_raw_read;
3045		else
3046			read_len = val_len;
3047		ret = _regmap_raw_read(map, reg, val, read_len, true);
3048		if (ret)
3049			goto out_unlock;
3050		val = ((u8 *)val) + read_len;
3051		val_len -= read_len;
3052	}
3053
3054out_unlock:
3055	map->unlock(map->lock_arg);
3056	return ret;
3057}
3058EXPORT_SYMBOL_GPL(regmap_noinc_read);
3059
3060/**
3061 * regmap_field_read(): Read a value to a single register field
3062 *
3063 * @field: Register field to read from
3064 * @val: Pointer to store read value
3065 *
3066 * A value of zero will be returned on success, a negative errno will
3067 * be returned in error cases.
3068 */
3069int regmap_field_read(struct regmap_field *field, unsigned int *val)
3070{
3071	int ret;
3072	unsigned int reg_val;
3073	ret = regmap_read(field->regmap, field->reg, &reg_val);
3074	if (ret != 0)
3075		return ret;
3076
3077	reg_val &= field->mask;
3078	reg_val >>= field->shift;
3079	*val = reg_val;
3080
3081	return ret;
3082}
3083EXPORT_SYMBOL_GPL(regmap_field_read);
3084
3085/**
3086 * regmap_fields_read() - Read a value to a single register field with port ID
3087 *
3088 * @field: Register field to read from
3089 * @id: port ID
3090 * @val: Pointer to store read value
3091 *
3092 * A value of zero will be returned on success, a negative errno will
3093 * be returned in error cases.
3094 */
3095int regmap_fields_read(struct regmap_field *field, unsigned int id,
3096		       unsigned int *val)
3097{
3098	int ret;
3099	unsigned int reg_val;
3100
3101	if (id >= field->id_size)
3102		return -EINVAL;
3103
3104	ret = regmap_read(field->regmap,
3105			  field->reg + (field->id_offset * id),
3106			  &reg_val);
3107	if (ret != 0)
3108		return ret;
3109
3110	reg_val &= field->mask;
3111	reg_val >>= field->shift;
3112	*val = reg_val;
3113
3114	return ret;
3115}
3116EXPORT_SYMBOL_GPL(regmap_fields_read);
3117
3118static int _regmap_bulk_read(struct regmap *map, unsigned int reg,
3119			     unsigned int *regs, void *val, size_t val_count)
3120{
3121	u32 *u32 = val;
3122	u16 *u16 = val;
3123	u8 *u8 = val;
3124	int ret, i;
3125
3126	map->lock(map->lock_arg);
3127
3128	for (i = 0; i < val_count; i++) {
3129		unsigned int ival;
3130
3131		if (regs) {
3132			if (!IS_ALIGNED(regs[i], map->reg_stride)) {
3133				ret = -EINVAL;
3134				goto out;
3135			}
3136			ret = _regmap_read(map, regs[i], &ival);
3137		} else {
3138			ret = _regmap_read(map, reg + regmap_get_offset(map, i), &ival);
3139		}
3140		if (ret != 0)
3141			goto out;
3142
3143		switch (map->format.val_bytes) {
3144		case 4:
3145			u32[i] = ival;
3146			break;
3147		case 2:
3148			u16[i] = ival;
3149			break;
3150		case 1:
3151			u8[i] = ival;
3152			break;
3153		default:
3154			ret = -EINVAL;
3155			goto out;
3156		}
3157	}
3158out:
3159	map->unlock(map->lock_arg);
3160	return ret;
3161}
3162
3163/**
3164 * regmap_bulk_read() - Read multiple sequential registers from the device
3165 *
3166 * @map: Register map to read from
3167 * @reg: First register to be read from
3168 * @val: Pointer to store read value, in native register size for device
3169 * @val_count: Number of registers to read
3170 *
3171 * A value of zero will be returned on success, a negative errno will
3172 * be returned in error cases.
3173 */
3174int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3175		     size_t val_count)
3176{
3177	int ret, i;
3178	size_t val_bytes = map->format.val_bytes;
3179	bool vol = regmap_volatile_range(map, reg, val_count);
3180
3181	if (!IS_ALIGNED(reg, map->reg_stride))
3182		return -EINVAL;
3183	if (val_count == 0)
3184		return -EINVAL;
3185
3186	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3187		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3188		if (ret != 0)
3189			return ret;
3190
3191		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3192			map->format.parse_inplace(val + i);
3193	} else {
3194		ret = _regmap_bulk_read(map, reg, NULL, val, val_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3195	}
 
3196	if (!ret)
3197		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
 
3198	return ret;
3199}
3200EXPORT_SYMBOL_GPL(regmap_bulk_read);
3201
3202/**
3203 * regmap_multi_reg_read() - Read multiple non-sequential registers from the device
3204 *
3205 * @map: Register map to read from
3206 * @regs: Array of registers to read from
3207 * @val: Pointer to store read value, in native register size for device
3208 * @val_count: Number of registers to read
3209 *
3210 * A value of zero will be returned on success, a negative errno will
3211 * be returned in error cases.
3212 */
3213int regmap_multi_reg_read(struct regmap *map, unsigned int *regs, void *val,
3214			  size_t val_count)
3215{
3216	if (val_count == 0)
3217		return -EINVAL;
3218
3219	return _regmap_bulk_read(map, 0, regs, val, val_count);
3220}
3221EXPORT_SYMBOL_GPL(regmap_multi_reg_read);
3222
3223static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3224			       unsigned int mask, unsigned int val,
3225			       bool *change, bool force_write)
3226{
3227	int ret;
3228	unsigned int tmp, orig;
3229
3230	if (change)
3231		*change = false;
3232
3233	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3234		reg = regmap_reg_addr(map, reg);
3235		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3236		if (ret == 0 && change)
3237			*change = true;
3238	} else {
3239		ret = _regmap_read(map, reg, &orig);
3240		if (ret != 0)
3241			return ret;
3242
3243		tmp = orig & ~mask;
3244		tmp |= val & mask;
3245
3246		if (force_write || (tmp != orig) || map->force_write_field) {
3247			ret = _regmap_write(map, reg, tmp);
3248			if (ret == 0 && change)
3249				*change = true;
3250		}
3251	}
3252
3253	return ret;
3254}
3255
3256/**
3257 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3258 *
3259 * @map: Register map to update
3260 * @reg: Register to update
3261 * @mask: Bitmask to change
3262 * @val: New value for bitmask
3263 * @change: Boolean indicating if a write was done
3264 * @async: Boolean indicating asynchronously
3265 * @force: Boolean indicating use force update
3266 *
3267 * Perform a read/modify/write cycle on a register map with change, async, force
3268 * options.
3269 *
3270 * If async is true:
3271 *
3272 * With most buses the read must be done synchronously so this is most useful
3273 * for devices with a cache which do not need to interact with the hardware to
3274 * determine the current register value.
3275 *
3276 * Returns zero for success, a negative number on error.
3277 */
3278int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3279			    unsigned int mask, unsigned int val,
3280			    bool *change, bool async, bool force)
3281{
3282	int ret;
3283
3284	map->lock(map->lock_arg);
3285
3286	map->async = async;
3287
3288	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3289
3290	map->async = false;
3291
3292	map->unlock(map->lock_arg);
3293
3294	return ret;
3295}
3296EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3297
3298/**
3299 * regmap_test_bits() - Check if all specified bits are set in a register.
3300 *
3301 * @map: Register map to operate on
3302 * @reg: Register to read from
3303 * @bits: Bits to test
3304 *
3305 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3306 * bits are set and a negative error number if the underlying regmap_read()
3307 * fails.
3308 */
3309int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3310{
3311	unsigned int val, ret;
3312
3313	ret = regmap_read(map, reg, &val);
3314	if (ret)
3315		return ret;
3316
3317	return (val & bits) == bits;
3318}
3319EXPORT_SYMBOL_GPL(regmap_test_bits);
3320
3321void regmap_async_complete_cb(struct regmap_async *async, int ret)
3322{
3323	struct regmap *map = async->map;
3324	bool wake;
3325
3326	trace_regmap_async_io_complete(map);
3327
3328	spin_lock(&map->async_lock);
3329	list_move(&async->list, &map->async_free);
3330	wake = list_empty(&map->async_list);
3331
3332	if (ret != 0)
3333		map->async_ret = ret;
3334
3335	spin_unlock(&map->async_lock);
3336
3337	if (wake)
3338		wake_up(&map->async_waitq);
3339}
3340EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3341
3342static int regmap_async_is_done(struct regmap *map)
3343{
3344	unsigned long flags;
3345	int ret;
3346
3347	spin_lock_irqsave(&map->async_lock, flags);
3348	ret = list_empty(&map->async_list);
3349	spin_unlock_irqrestore(&map->async_lock, flags);
3350
3351	return ret;
3352}
3353
3354/**
3355 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3356 *
3357 * @map: Map to operate on.
3358 *
3359 * Blocks until any pending asynchronous I/O has completed.  Returns
3360 * an error code for any failed I/O operations.
3361 */
3362int regmap_async_complete(struct regmap *map)
3363{
3364	unsigned long flags;
3365	int ret;
3366
3367	/* Nothing to do with no async support */
3368	if (!map->bus || !map->bus->async_write)
3369		return 0;
3370
3371	trace_regmap_async_complete_start(map);
3372
3373	wait_event(map->async_waitq, regmap_async_is_done(map));
3374
3375	spin_lock_irqsave(&map->async_lock, flags);
3376	ret = map->async_ret;
3377	map->async_ret = 0;
3378	spin_unlock_irqrestore(&map->async_lock, flags);
3379
3380	trace_regmap_async_complete_done(map);
3381
3382	return ret;
3383}
3384EXPORT_SYMBOL_GPL(regmap_async_complete);
3385
3386/**
3387 * regmap_register_patch - Register and apply register updates to be applied
3388 *                         on device initialistion
3389 *
3390 * @map: Register map to apply updates to.
3391 * @regs: Values to update.
3392 * @num_regs: Number of entries in regs.
3393 *
3394 * Register a set of register updates to be applied to the device
3395 * whenever the device registers are synchronised with the cache and
3396 * apply them immediately.  Typically this is used to apply
3397 * corrections to be applied to the device defaults on startup, such
3398 * as the updates some vendors provide to undocumented registers.
3399 *
3400 * The caller must ensure that this function cannot be called
3401 * concurrently with either itself or regcache_sync().
3402 */
3403int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3404			  int num_regs)
3405{
3406	struct reg_sequence *p;
3407	int ret;
3408	bool bypass;
3409
3410	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3411	    num_regs))
3412		return 0;
3413
3414	p = krealloc(map->patch,
3415		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3416		     GFP_KERNEL);
3417	if (p) {
3418		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3419		map->patch = p;
3420		map->patch_regs += num_regs;
3421	} else {
3422		return -ENOMEM;
3423	}
3424
3425	map->lock(map->lock_arg);
3426
3427	bypass = map->cache_bypass;
3428
3429	map->cache_bypass = true;
3430	map->async = true;
3431
3432	ret = _regmap_multi_reg_write(map, regs, num_regs);
3433
3434	map->async = false;
3435	map->cache_bypass = bypass;
3436
3437	map->unlock(map->lock_arg);
3438
3439	regmap_async_complete(map);
3440
3441	return ret;
3442}
3443EXPORT_SYMBOL_GPL(regmap_register_patch);
3444
3445/**
3446 * regmap_get_val_bytes() - Report the size of a register value
3447 *
3448 * @map: Register map to operate on.
3449 *
3450 * Report the size of a register value, mainly intended to for use by
3451 * generic infrastructure built on top of regmap.
3452 */
3453int regmap_get_val_bytes(struct regmap *map)
3454{
3455	if (map->format.format_write)
3456		return -EINVAL;
3457
3458	return map->format.val_bytes;
3459}
3460EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3461
3462/**
3463 * regmap_get_max_register() - Report the max register value
3464 *
3465 * @map: Register map to operate on.
3466 *
3467 * Report the max register value, mainly intended to for use by
3468 * generic infrastructure built on top of regmap.
3469 */
3470int regmap_get_max_register(struct regmap *map)
3471{
3472	return map->max_register_is_set ? map->max_register : -EINVAL;
3473}
3474EXPORT_SYMBOL_GPL(regmap_get_max_register);
3475
3476/**
3477 * regmap_get_reg_stride() - Report the register address stride
3478 *
3479 * @map: Register map to operate on.
3480 *
3481 * Report the register address stride, mainly intended to for use by
3482 * generic infrastructure built on top of regmap.
3483 */
3484int regmap_get_reg_stride(struct regmap *map)
3485{
3486	return map->reg_stride;
3487}
3488EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3489
3490/**
3491 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3492 *
3493 * @map: Register map to operate on.
3494 *
3495 * Returns true if an access to the register might sleep, else false.
3496 */
3497bool regmap_might_sleep(struct regmap *map)
3498{
3499	return map->can_sleep;
3500}
3501EXPORT_SYMBOL_GPL(regmap_might_sleep);
3502
3503int regmap_parse_val(struct regmap *map, const void *buf,
3504			unsigned int *val)
3505{
3506	if (!map->format.parse_val)
3507		return -EINVAL;
3508
3509	*val = map->format.parse_val(buf);
3510
3511	return 0;
3512}
3513EXPORT_SYMBOL_GPL(regmap_parse_val);
3514
3515static int __init regmap_initcall(void)
3516{
3517	regmap_debugfs_initcall();
3518
3519	return 0;
3520}
3521postcore_initcall(regmap_initcall);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register_is_set && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register_is_set && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register_is_set && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
 292{
 293	put_unaligned_be24(val << shift, buf);
 294}
 295
 296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 297{
 298	put_unaligned_be32(val << shift, buf);
 299}
 300
 301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 302{
 303	put_unaligned_le32(val << shift, buf);
 304}
 305
 306static void regmap_format_32_native(void *buf, unsigned int val,
 307				    unsigned int shift)
 308{
 309	u32 v = val << shift;
 310
 311	memcpy(buf, &v, sizeof(v));
 312}
 313
 314static void regmap_parse_inplace_noop(void *buf)
 315{
 316}
 317
 318static unsigned int regmap_parse_8(const void *buf)
 319{
 320	const u8 *b = buf;
 321
 322	return b[0];
 323}
 324
 325static unsigned int regmap_parse_16_be(const void *buf)
 326{
 327	return get_unaligned_be16(buf);
 328}
 329
 330static unsigned int regmap_parse_16_le(const void *buf)
 331{
 332	return get_unaligned_le16(buf);
 333}
 334
 335static void regmap_parse_16_be_inplace(void *buf)
 336{
 337	u16 v = get_unaligned_be16(buf);
 338
 339	memcpy(buf, &v, sizeof(v));
 340}
 341
 342static void regmap_parse_16_le_inplace(void *buf)
 343{
 344	u16 v = get_unaligned_le16(buf);
 345
 346	memcpy(buf, &v, sizeof(v));
 347}
 348
 349static unsigned int regmap_parse_16_native(const void *buf)
 350{
 351	u16 v;
 352
 353	memcpy(&v, buf, sizeof(v));
 354	return v;
 355}
 356
 357static unsigned int regmap_parse_24_be(const void *buf)
 358{
 359	return get_unaligned_be24(buf);
 360}
 361
 362static unsigned int regmap_parse_32_be(const void *buf)
 363{
 364	return get_unaligned_be32(buf);
 365}
 366
 367static unsigned int regmap_parse_32_le(const void *buf)
 368{
 369	return get_unaligned_le32(buf);
 370}
 371
 372static void regmap_parse_32_be_inplace(void *buf)
 373{
 374	u32 v = get_unaligned_be32(buf);
 375
 376	memcpy(buf, &v, sizeof(v));
 377}
 378
 379static void regmap_parse_32_le_inplace(void *buf)
 380{
 381	u32 v = get_unaligned_le32(buf);
 382
 383	memcpy(buf, &v, sizeof(v));
 384}
 385
 386static unsigned int regmap_parse_32_native(const void *buf)
 387{
 388	u32 v;
 389
 390	memcpy(&v, buf, sizeof(v));
 391	return v;
 392}
 393
 394static void regmap_lock_hwlock(void *__map)
 395{
 396	struct regmap *map = __map;
 397
 398	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 399}
 400
 401static void regmap_lock_hwlock_irq(void *__map)
 402{
 403	struct regmap *map = __map;
 404
 405	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 406}
 407
 408static void regmap_lock_hwlock_irqsave(void *__map)
 409{
 410	struct regmap *map = __map;
 411
 412	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 413				    &map->spinlock_flags);
 414}
 415
 416static void regmap_unlock_hwlock(void *__map)
 417{
 418	struct regmap *map = __map;
 419
 420	hwspin_unlock(map->hwlock);
 421}
 422
 423static void regmap_unlock_hwlock_irq(void *__map)
 424{
 425	struct regmap *map = __map;
 426
 427	hwspin_unlock_irq(map->hwlock);
 428}
 429
 430static void regmap_unlock_hwlock_irqrestore(void *__map)
 431{
 432	struct regmap *map = __map;
 433
 434	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 435}
 436
 437static void regmap_lock_unlock_none(void *__map)
 438{
 439
 440}
 441
 442static void regmap_lock_mutex(void *__map)
 443{
 444	struct regmap *map = __map;
 445	mutex_lock(&map->mutex);
 446}
 447
 448static void regmap_unlock_mutex(void *__map)
 449{
 450	struct regmap *map = __map;
 451	mutex_unlock(&map->mutex);
 452}
 453
 454static void regmap_lock_spinlock(void *__map)
 455__acquires(&map->spinlock)
 456{
 457	struct regmap *map = __map;
 458	unsigned long flags;
 459
 460	spin_lock_irqsave(&map->spinlock, flags);
 461	map->spinlock_flags = flags;
 462}
 463
 464static void regmap_unlock_spinlock(void *__map)
 465__releases(&map->spinlock)
 466{
 467	struct regmap *map = __map;
 468	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 469}
 470
 471static void regmap_lock_raw_spinlock(void *__map)
 472__acquires(&map->raw_spinlock)
 473{
 474	struct regmap *map = __map;
 475	unsigned long flags;
 476
 477	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
 478	map->raw_spinlock_flags = flags;
 479}
 480
 481static void regmap_unlock_raw_spinlock(void *__map)
 482__releases(&map->raw_spinlock)
 483{
 484	struct regmap *map = __map;
 485	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
 486}
 487
 488static void dev_get_regmap_release(struct device *dev, void *res)
 489{
 490	/*
 491	 * We don't actually have anything to do here; the goal here
 492	 * is not to manage the regmap but to provide a simple way to
 493	 * get the regmap back given a struct device.
 494	 */
 495}
 496
 497static bool _regmap_range_add(struct regmap *map,
 498			      struct regmap_range_node *data)
 499{
 500	struct rb_root *root = &map->range_tree;
 501	struct rb_node **new = &(root->rb_node), *parent = NULL;
 502
 503	while (*new) {
 504		struct regmap_range_node *this =
 505			rb_entry(*new, struct regmap_range_node, node);
 506
 507		parent = *new;
 508		if (data->range_max < this->range_min)
 509			new = &((*new)->rb_left);
 510		else if (data->range_min > this->range_max)
 511			new = &((*new)->rb_right);
 512		else
 513			return false;
 514	}
 515
 516	rb_link_node(&data->node, parent, new);
 517	rb_insert_color(&data->node, root);
 518
 519	return true;
 520}
 521
 522static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 523						      unsigned int reg)
 524{
 525	struct rb_node *node = map->range_tree.rb_node;
 526
 527	while (node) {
 528		struct regmap_range_node *this =
 529			rb_entry(node, struct regmap_range_node, node);
 530
 531		if (reg < this->range_min)
 532			node = node->rb_left;
 533		else if (reg > this->range_max)
 534			node = node->rb_right;
 535		else
 536			return this;
 537	}
 538
 539	return NULL;
 540}
 541
 542static void regmap_range_exit(struct regmap *map)
 543{
 544	struct rb_node *next;
 545	struct regmap_range_node *range_node;
 546
 547	next = rb_first(&map->range_tree);
 548	while (next) {
 549		range_node = rb_entry(next, struct regmap_range_node, node);
 550		next = rb_next(&range_node->node);
 551		rb_erase(&range_node->node, &map->range_tree);
 552		kfree(range_node);
 553	}
 554
 555	kfree(map->selector_work_buf);
 556}
 557
 558static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 559{
 560	if (config->name) {
 561		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 562
 563		if (!name)
 564			return -ENOMEM;
 565
 566		kfree_const(map->name);
 567		map->name = name;
 568	}
 569
 570	return 0;
 571}
 572
 573int regmap_attach_dev(struct device *dev, struct regmap *map,
 574		      const struct regmap_config *config)
 575{
 576	struct regmap **m;
 577	int ret;
 578
 579	map->dev = dev;
 580
 581	ret = regmap_set_name(map, config);
 582	if (ret)
 583		return ret;
 584
 585	regmap_debugfs_exit(map);
 586	regmap_debugfs_init(map);
 587
 588	/* Add a devres resource for dev_get_regmap() */
 589	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 590	if (!m) {
 591		regmap_debugfs_exit(map);
 592		return -ENOMEM;
 593	}
 594	*m = map;
 595	devres_add(dev, m);
 596
 597	return 0;
 598}
 599EXPORT_SYMBOL_GPL(regmap_attach_dev);
 600
 
 
 
 
 
 
 
 
 
 
 
 601static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 602					const struct regmap_config *config)
 603{
 604	enum regmap_endian endian;
 605
 606	/* Retrieve the endianness specification from the regmap config */
 607	endian = config->reg_format_endian;
 608
 609	/* If the regmap config specified a non-default value, use that */
 610	if (endian != REGMAP_ENDIAN_DEFAULT)
 611		return endian;
 612
 613	/* Retrieve the endianness specification from the bus config */
 614	if (bus && bus->reg_format_endian_default)
 615		endian = bus->reg_format_endian_default;
 616
 617	/* If the bus specified a non-default value, use that */
 618	if (endian != REGMAP_ENDIAN_DEFAULT)
 619		return endian;
 620
 621	/* Use this if no other value was found */
 622	return REGMAP_ENDIAN_BIG;
 623}
 624
 625enum regmap_endian regmap_get_val_endian(struct device *dev,
 626					 const struct regmap_bus *bus,
 627					 const struct regmap_config *config)
 628{
 629	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 630	enum regmap_endian endian;
 631
 632	/* Retrieve the endianness specification from the regmap config */
 633	endian = config->val_format_endian;
 634
 635	/* If the regmap config specified a non-default value, use that */
 636	if (endian != REGMAP_ENDIAN_DEFAULT)
 637		return endian;
 638
 639	/* If the firmware node exist try to get endianness from it */
 640	if (fwnode_property_read_bool(fwnode, "big-endian"))
 641		endian = REGMAP_ENDIAN_BIG;
 642	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 643		endian = REGMAP_ENDIAN_LITTLE;
 644	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 645		endian = REGMAP_ENDIAN_NATIVE;
 646
 647	/* If the endianness was specified in fwnode, use that */
 648	if (endian != REGMAP_ENDIAN_DEFAULT)
 649		return endian;
 650
 651	/* Retrieve the endianness specification from the bus config */
 652	if (bus && bus->val_format_endian_default)
 653		endian = bus->val_format_endian_default;
 654
 655	/* If the bus specified a non-default value, use that */
 656	if (endian != REGMAP_ENDIAN_DEFAULT)
 657		return endian;
 658
 659	/* Use this if no other value was found */
 660	return REGMAP_ENDIAN_BIG;
 661}
 662EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 663
 664struct regmap *__regmap_init(struct device *dev,
 665			     const struct regmap_bus *bus,
 666			     void *bus_context,
 667			     const struct regmap_config *config,
 668			     struct lock_class_key *lock_key,
 669			     const char *lock_name)
 670{
 671	struct regmap *map;
 672	int ret = -EINVAL;
 673	enum regmap_endian reg_endian, val_endian;
 674	int i, j;
 675
 676	if (!config)
 677		goto err;
 678
 679	map = kzalloc(sizeof(*map), GFP_KERNEL);
 680	if (map == NULL) {
 681		ret = -ENOMEM;
 682		goto err;
 683	}
 684
 685	ret = regmap_set_name(map, config);
 686	if (ret)
 687		goto err_map;
 688
 689	ret = -EINVAL; /* Later error paths rely on this */
 690
 691	if (config->disable_locking) {
 692		map->lock = map->unlock = regmap_lock_unlock_none;
 693		map->can_sleep = config->can_sleep;
 694		regmap_debugfs_disable(map);
 695	} else if (config->lock && config->unlock) {
 696		map->lock = config->lock;
 697		map->unlock = config->unlock;
 698		map->lock_arg = config->lock_arg;
 699		map->can_sleep = config->can_sleep;
 700	} else if (config->use_hwlock) {
 701		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 702		if (!map->hwlock) {
 703			ret = -ENXIO;
 704			goto err_name;
 705		}
 706
 707		switch (config->hwlock_mode) {
 708		case HWLOCK_IRQSTATE:
 709			map->lock = regmap_lock_hwlock_irqsave;
 710			map->unlock = regmap_unlock_hwlock_irqrestore;
 711			break;
 712		case HWLOCK_IRQ:
 713			map->lock = regmap_lock_hwlock_irq;
 714			map->unlock = regmap_unlock_hwlock_irq;
 715			break;
 716		default:
 717			map->lock = regmap_lock_hwlock;
 718			map->unlock = regmap_unlock_hwlock;
 719			break;
 720		}
 721
 722		map->lock_arg = map;
 723	} else {
 724		if ((bus && bus->fast_io) ||
 725		    config->fast_io) {
 726			if (config->use_raw_spinlock) {
 727				raw_spin_lock_init(&map->raw_spinlock);
 728				map->lock = regmap_lock_raw_spinlock;
 729				map->unlock = regmap_unlock_raw_spinlock;
 730				lockdep_set_class_and_name(&map->raw_spinlock,
 731							   lock_key, lock_name);
 732			} else {
 733				spin_lock_init(&map->spinlock);
 734				map->lock = regmap_lock_spinlock;
 735				map->unlock = regmap_unlock_spinlock;
 736				lockdep_set_class_and_name(&map->spinlock,
 737							   lock_key, lock_name);
 738			}
 739		} else {
 740			mutex_init(&map->mutex);
 741			map->lock = regmap_lock_mutex;
 742			map->unlock = regmap_unlock_mutex;
 743			map->can_sleep = true;
 744			lockdep_set_class_and_name(&map->mutex,
 745						   lock_key, lock_name);
 746		}
 747		map->lock_arg = map;
 
 748	}
 749
 750	/*
 751	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 752	 * scratch buffers with sleeping allocations.
 753	 */
 754	if ((bus && bus->fast_io) || config->fast_io)
 755		map->alloc_flags = GFP_ATOMIC;
 756	else
 757		map->alloc_flags = GFP_KERNEL;
 758
 759	map->reg_base = config->reg_base;
 760
 761	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 762	map->format.pad_bytes = config->pad_bits / 8;
 763	map->format.reg_shift = config->reg_shift;
 764	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 765	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 766			config->val_bits + config->pad_bits, 8);
 767	map->reg_shift = config->pad_bits % 8;
 768	if (config->reg_stride)
 769		map->reg_stride = config->reg_stride;
 770	else
 771		map->reg_stride = 1;
 772	if (is_power_of_2(map->reg_stride))
 773		map->reg_stride_order = ilog2(map->reg_stride);
 774	else
 775		map->reg_stride_order = -1;
 776	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
 777	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
 778	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
 779	if (bus) {
 780		map->max_raw_read = bus->max_raw_read;
 781		map->max_raw_write = bus->max_raw_write;
 782	} else if (config->max_raw_read && config->max_raw_write) {
 783		map->max_raw_read = config->max_raw_read;
 784		map->max_raw_write = config->max_raw_write;
 785	}
 786	map->dev = dev;
 787	map->bus = bus;
 788	map->bus_context = bus_context;
 789	map->max_register = config->max_register;
 790	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
 791	map->wr_table = config->wr_table;
 792	map->rd_table = config->rd_table;
 793	map->volatile_table = config->volatile_table;
 794	map->precious_table = config->precious_table;
 795	map->wr_noinc_table = config->wr_noinc_table;
 796	map->rd_noinc_table = config->rd_noinc_table;
 797	map->writeable_reg = config->writeable_reg;
 798	map->readable_reg = config->readable_reg;
 799	map->volatile_reg = config->volatile_reg;
 800	map->precious_reg = config->precious_reg;
 801	map->writeable_noinc_reg = config->writeable_noinc_reg;
 802	map->readable_noinc_reg = config->readable_noinc_reg;
 803	map->cache_type = config->cache_type;
 804
 805	spin_lock_init(&map->async_lock);
 806	INIT_LIST_HEAD(&map->async_list);
 807	INIT_LIST_HEAD(&map->async_free);
 808	init_waitqueue_head(&map->async_waitq);
 809
 810	if (config->read_flag_mask ||
 811	    config->write_flag_mask ||
 812	    config->zero_flag_mask) {
 813		map->read_flag_mask = config->read_flag_mask;
 814		map->write_flag_mask = config->write_flag_mask;
 815	} else if (bus) {
 816		map->read_flag_mask = bus->read_flag_mask;
 817	}
 818
 819	if (config && config->read && config->write) {
 820		map->reg_read  = _regmap_bus_read;
 821		if (config->reg_update_bits)
 822			map->reg_update_bits = config->reg_update_bits;
 823
 824		/* Bulk read/write */
 825		map->read = config->read;
 826		map->write = config->write;
 827
 828		reg_endian = REGMAP_ENDIAN_NATIVE;
 829		val_endian = REGMAP_ENDIAN_NATIVE;
 830	} else if (!bus) {
 831		map->reg_read  = config->reg_read;
 832		map->reg_write = config->reg_write;
 833		map->reg_update_bits = config->reg_update_bits;
 834
 835		map->defer_caching = false;
 836		goto skip_format_initialization;
 837	} else if (!bus->read || !bus->write) {
 838		map->reg_read = _regmap_bus_reg_read;
 839		map->reg_write = _regmap_bus_reg_write;
 840		map->reg_update_bits = bus->reg_update_bits;
 841
 842		map->defer_caching = false;
 843		goto skip_format_initialization;
 844	} else {
 845		map->reg_read  = _regmap_bus_read;
 846		map->reg_update_bits = bus->reg_update_bits;
 847		/* Bulk read/write */
 848		map->read = bus->read;
 849		map->write = bus->write;
 850
 851		reg_endian = regmap_get_reg_endian(bus, config);
 852		val_endian = regmap_get_val_endian(dev, bus, config);
 853	}
 854
 855	switch (config->reg_bits + map->reg_shift) {
 856	case 2:
 857		switch (config->val_bits) {
 858		case 6:
 859			map->format.format_write = regmap_format_2_6_write;
 860			break;
 861		default:
 862			goto err_hwlock;
 863		}
 864		break;
 865
 866	case 4:
 867		switch (config->val_bits) {
 868		case 12:
 869			map->format.format_write = regmap_format_4_12_write;
 870			break;
 871		default:
 872			goto err_hwlock;
 873		}
 874		break;
 875
 876	case 7:
 877		switch (config->val_bits) {
 878		case 9:
 879			map->format.format_write = regmap_format_7_9_write;
 880			break;
 881		case 17:
 882			map->format.format_write = regmap_format_7_17_write;
 883			break;
 884		default:
 885			goto err_hwlock;
 886		}
 887		break;
 888
 889	case 10:
 890		switch (config->val_bits) {
 891		case 14:
 892			map->format.format_write = regmap_format_10_14_write;
 893			break;
 894		default:
 895			goto err_hwlock;
 896		}
 897		break;
 898
 899	case 12:
 900		switch (config->val_bits) {
 901		case 20:
 902			map->format.format_write = regmap_format_12_20_write;
 903			break;
 904		default:
 905			goto err_hwlock;
 906		}
 907		break;
 908
 909	case 8:
 910		map->format.format_reg = regmap_format_8;
 911		break;
 912
 913	case 16:
 914		switch (reg_endian) {
 915		case REGMAP_ENDIAN_BIG:
 916			map->format.format_reg = regmap_format_16_be;
 917			break;
 918		case REGMAP_ENDIAN_LITTLE:
 919			map->format.format_reg = regmap_format_16_le;
 920			break;
 921		case REGMAP_ENDIAN_NATIVE:
 922			map->format.format_reg = regmap_format_16_native;
 923			break;
 924		default:
 925			goto err_hwlock;
 926		}
 927		break;
 928
 929	case 24:
 930		switch (reg_endian) {
 931		case REGMAP_ENDIAN_BIG:
 932			map->format.format_reg = regmap_format_24_be;
 933			break;
 934		default:
 935			goto err_hwlock;
 936		}
 937		break;
 938
 939	case 32:
 940		switch (reg_endian) {
 941		case REGMAP_ENDIAN_BIG:
 942			map->format.format_reg = regmap_format_32_be;
 943			break;
 944		case REGMAP_ENDIAN_LITTLE:
 945			map->format.format_reg = regmap_format_32_le;
 946			break;
 947		case REGMAP_ENDIAN_NATIVE:
 948			map->format.format_reg = regmap_format_32_native;
 949			break;
 950		default:
 951			goto err_hwlock;
 952		}
 953		break;
 954
 955	default:
 956		goto err_hwlock;
 957	}
 958
 959	if (val_endian == REGMAP_ENDIAN_NATIVE)
 960		map->format.parse_inplace = regmap_parse_inplace_noop;
 961
 962	switch (config->val_bits) {
 963	case 8:
 964		map->format.format_val = regmap_format_8;
 965		map->format.parse_val = regmap_parse_8;
 966		map->format.parse_inplace = regmap_parse_inplace_noop;
 967		break;
 968	case 16:
 969		switch (val_endian) {
 970		case REGMAP_ENDIAN_BIG:
 971			map->format.format_val = regmap_format_16_be;
 972			map->format.parse_val = regmap_parse_16_be;
 973			map->format.parse_inplace = regmap_parse_16_be_inplace;
 974			break;
 975		case REGMAP_ENDIAN_LITTLE:
 976			map->format.format_val = regmap_format_16_le;
 977			map->format.parse_val = regmap_parse_16_le;
 978			map->format.parse_inplace = regmap_parse_16_le_inplace;
 979			break;
 980		case REGMAP_ENDIAN_NATIVE:
 981			map->format.format_val = regmap_format_16_native;
 982			map->format.parse_val = regmap_parse_16_native;
 983			break;
 984		default:
 985			goto err_hwlock;
 986		}
 987		break;
 988	case 24:
 989		switch (val_endian) {
 990		case REGMAP_ENDIAN_BIG:
 991			map->format.format_val = regmap_format_24_be;
 992			map->format.parse_val = regmap_parse_24_be;
 993			break;
 994		default:
 995			goto err_hwlock;
 996		}
 997		break;
 998	case 32:
 999		switch (val_endian) {
1000		case REGMAP_ENDIAN_BIG:
1001			map->format.format_val = regmap_format_32_be;
1002			map->format.parse_val = regmap_parse_32_be;
1003			map->format.parse_inplace = regmap_parse_32_be_inplace;
1004			break;
1005		case REGMAP_ENDIAN_LITTLE:
1006			map->format.format_val = regmap_format_32_le;
1007			map->format.parse_val = regmap_parse_32_le;
1008			map->format.parse_inplace = regmap_parse_32_le_inplace;
1009			break;
1010		case REGMAP_ENDIAN_NATIVE:
1011			map->format.format_val = regmap_format_32_native;
1012			map->format.parse_val = regmap_parse_32_native;
1013			break;
1014		default:
1015			goto err_hwlock;
1016		}
1017		break;
1018	}
1019
1020	if (map->format.format_write) {
1021		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1022		    (val_endian != REGMAP_ENDIAN_BIG))
1023			goto err_hwlock;
1024		map->use_single_write = true;
1025	}
1026
1027	if (!map->format.format_write &&
1028	    !(map->format.format_reg && map->format.format_val))
1029		goto err_hwlock;
1030
1031	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1032	if (map->work_buf == NULL) {
1033		ret = -ENOMEM;
1034		goto err_hwlock;
1035	}
1036
1037	if (map->format.format_write) {
1038		map->defer_caching = false;
1039		map->reg_write = _regmap_bus_formatted_write;
1040	} else if (map->format.format_val) {
1041		map->defer_caching = true;
1042		map->reg_write = _regmap_bus_raw_write;
1043	}
1044
1045skip_format_initialization:
1046
1047	map->range_tree = RB_ROOT;
1048	for (i = 0; i < config->num_ranges; i++) {
1049		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1050		struct regmap_range_node *new;
1051
1052		/* Sanity check */
1053		if (range_cfg->range_max < range_cfg->range_min) {
1054			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1055				range_cfg->range_max, range_cfg->range_min);
1056			goto err_range;
1057		}
1058
1059		if (range_cfg->range_max > map->max_register) {
1060			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1061				range_cfg->range_max, map->max_register);
1062			goto err_range;
1063		}
1064
1065		if (range_cfg->selector_reg > map->max_register) {
1066			dev_err(map->dev,
1067				"Invalid range %d: selector out of map\n", i);
1068			goto err_range;
1069		}
1070
1071		if (range_cfg->window_len == 0) {
1072			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1073				i);
1074			goto err_range;
1075		}
1076
1077		/* Make sure, that this register range has no selector
1078		   or data window within its boundary */
1079		for (j = 0; j < config->num_ranges; j++) {
1080			unsigned int sel_reg = config->ranges[j].selector_reg;
1081			unsigned int win_min = config->ranges[j].window_start;
1082			unsigned int win_max = win_min +
1083					       config->ranges[j].window_len - 1;
1084
1085			/* Allow data window inside its own virtual range */
1086			if (j == i)
1087				continue;
1088
1089			if (range_cfg->range_min <= sel_reg &&
1090			    sel_reg <= range_cfg->range_max) {
1091				dev_err(map->dev,
1092					"Range %d: selector for %d in window\n",
1093					i, j);
1094				goto err_range;
1095			}
1096
1097			if (!(win_max < range_cfg->range_min ||
1098			      win_min > range_cfg->range_max)) {
1099				dev_err(map->dev,
1100					"Range %d: window for %d in window\n",
1101					i, j);
1102				goto err_range;
1103			}
1104		}
1105
1106		new = kzalloc(sizeof(*new), GFP_KERNEL);
1107		if (new == NULL) {
1108			ret = -ENOMEM;
1109			goto err_range;
1110		}
1111
1112		new->map = map;
1113		new->name = range_cfg->name;
1114		new->range_min = range_cfg->range_min;
1115		new->range_max = range_cfg->range_max;
1116		new->selector_reg = range_cfg->selector_reg;
1117		new->selector_mask = range_cfg->selector_mask;
1118		new->selector_shift = range_cfg->selector_shift;
1119		new->window_start = range_cfg->window_start;
1120		new->window_len = range_cfg->window_len;
1121
1122		if (!_regmap_range_add(map, new)) {
1123			dev_err(map->dev, "Failed to add range %d\n", i);
1124			kfree(new);
1125			goto err_range;
1126		}
1127
1128		if (map->selector_work_buf == NULL) {
1129			map->selector_work_buf =
1130				kzalloc(map->format.buf_size, GFP_KERNEL);
1131			if (map->selector_work_buf == NULL) {
1132				ret = -ENOMEM;
1133				goto err_range;
1134			}
1135		}
1136	}
1137
1138	ret = regcache_init(map, config);
1139	if (ret != 0)
1140		goto err_range;
1141
1142	if (dev) {
1143		ret = regmap_attach_dev(dev, map, config);
1144		if (ret != 0)
1145			goto err_regcache;
1146	} else {
1147		regmap_debugfs_init(map);
1148	}
1149
1150	return map;
1151
1152err_regcache:
1153	regcache_exit(map);
1154err_range:
1155	regmap_range_exit(map);
1156	kfree(map->work_buf);
1157err_hwlock:
1158	if (map->hwlock)
1159		hwspin_lock_free(map->hwlock);
1160err_name:
1161	kfree_const(map->name);
1162err_map:
1163	kfree(map);
1164err:
1165	return ERR_PTR(ret);
1166}
1167EXPORT_SYMBOL_GPL(__regmap_init);
1168
1169static void devm_regmap_release(struct device *dev, void *res)
1170{
1171	regmap_exit(*(struct regmap **)res);
1172}
1173
1174struct regmap *__devm_regmap_init(struct device *dev,
1175				  const struct regmap_bus *bus,
1176				  void *bus_context,
1177				  const struct regmap_config *config,
1178				  struct lock_class_key *lock_key,
1179				  const char *lock_name)
1180{
1181	struct regmap **ptr, *regmap;
1182
1183	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1184	if (!ptr)
1185		return ERR_PTR(-ENOMEM);
1186
1187	regmap = __regmap_init(dev, bus, bus_context, config,
1188			       lock_key, lock_name);
1189	if (!IS_ERR(regmap)) {
1190		*ptr = regmap;
1191		devres_add(dev, ptr);
1192	} else {
1193		devres_free(ptr);
1194	}
1195
1196	return regmap;
1197}
1198EXPORT_SYMBOL_GPL(__devm_regmap_init);
1199
1200static void regmap_field_init(struct regmap_field *rm_field,
1201	struct regmap *regmap, struct reg_field reg_field)
1202{
1203	rm_field->regmap = regmap;
1204	rm_field->reg = reg_field.reg;
1205	rm_field->shift = reg_field.lsb;
1206	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1207
1208	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1209
1210	rm_field->id_size = reg_field.id_size;
1211	rm_field->id_offset = reg_field.id_offset;
1212}
1213
1214/**
1215 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1216 *
1217 * @dev: Device that will be interacted with
1218 * @regmap: regmap bank in which this register field is located.
1219 * @reg_field: Register field with in the bank.
1220 *
1221 * The return value will be an ERR_PTR() on error or a valid pointer
1222 * to a struct regmap_field. The regmap_field will be automatically freed
1223 * by the device management code.
1224 */
1225struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1226		struct regmap *regmap, struct reg_field reg_field)
1227{
1228	struct regmap_field *rm_field = devm_kzalloc(dev,
1229					sizeof(*rm_field), GFP_KERNEL);
1230	if (!rm_field)
1231		return ERR_PTR(-ENOMEM);
1232
1233	regmap_field_init(rm_field, regmap, reg_field);
1234
1235	return rm_field;
1236
1237}
1238EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1239
1240
1241/**
1242 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1243 *
1244 * @regmap: regmap bank in which this register field is located.
1245 * @rm_field: regmap register fields within the bank.
1246 * @reg_field: Register fields within the bank.
1247 * @num_fields: Number of register fields.
1248 *
1249 * The return value will be an -ENOMEM on error or zero for success.
1250 * Newly allocated regmap_fields should be freed by calling
1251 * regmap_field_bulk_free()
1252 */
1253int regmap_field_bulk_alloc(struct regmap *regmap,
1254			    struct regmap_field **rm_field,
1255			    const struct reg_field *reg_field,
1256			    int num_fields)
1257{
1258	struct regmap_field *rf;
1259	int i;
1260
1261	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1262	if (!rf)
1263		return -ENOMEM;
1264
1265	for (i = 0; i < num_fields; i++) {
1266		regmap_field_init(&rf[i], regmap, reg_field[i]);
1267		rm_field[i] = &rf[i];
1268	}
1269
1270	return 0;
1271}
1272EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1273
1274/**
1275 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1276 * fields.
1277 *
1278 * @dev: Device that will be interacted with
1279 * @regmap: regmap bank in which this register field is located.
1280 * @rm_field: regmap register fields within the bank.
1281 * @reg_field: Register fields within the bank.
1282 * @num_fields: Number of register fields.
1283 *
1284 * The return value will be an -ENOMEM on error or zero for success.
1285 * Newly allocated regmap_fields will be automatically freed by the
1286 * device management code.
1287 */
1288int devm_regmap_field_bulk_alloc(struct device *dev,
1289				 struct regmap *regmap,
1290				 struct regmap_field **rm_field,
1291				 const struct reg_field *reg_field,
1292				 int num_fields)
1293{
1294	struct regmap_field *rf;
1295	int i;
1296
1297	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1298	if (!rf)
1299		return -ENOMEM;
1300
1301	for (i = 0; i < num_fields; i++) {
1302		regmap_field_init(&rf[i], regmap, reg_field[i]);
1303		rm_field[i] = &rf[i];
1304	}
1305
1306	return 0;
1307}
1308EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1309
1310/**
1311 * regmap_field_bulk_free() - Free register field allocated using
1312 *                       regmap_field_bulk_alloc.
1313 *
1314 * @field: regmap fields which should be freed.
1315 */
1316void regmap_field_bulk_free(struct regmap_field *field)
1317{
1318	kfree(field);
1319}
1320EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1321
1322/**
1323 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1324 *                            devm_regmap_field_bulk_alloc.
1325 *
1326 * @dev: Device that will be interacted with
1327 * @field: regmap field which should be freed.
1328 *
1329 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1330 * drivers need not call this function, as the memory allocated via devm
1331 * will be freed as per device-driver life-cycle.
1332 */
1333void devm_regmap_field_bulk_free(struct device *dev,
1334				 struct regmap_field *field)
1335{
1336	devm_kfree(dev, field);
1337}
1338EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1339
1340/**
1341 * devm_regmap_field_free() - Free a register field allocated using
1342 *                            devm_regmap_field_alloc.
1343 *
1344 * @dev: Device that will be interacted with
1345 * @field: regmap field which should be freed.
1346 *
1347 * Free register field allocated using devm_regmap_field_alloc(). Usually
1348 * drivers need not call this function, as the memory allocated via devm
1349 * will be freed as per device-driver life-cyle.
1350 */
1351void devm_regmap_field_free(struct device *dev,
1352	struct regmap_field *field)
1353{
1354	devm_kfree(dev, field);
1355}
1356EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1357
1358/**
1359 * regmap_field_alloc() - Allocate and initialise a register field.
1360 *
1361 * @regmap: regmap bank in which this register field is located.
1362 * @reg_field: Register field with in the bank.
1363 *
1364 * The return value will be an ERR_PTR() on error or a valid pointer
1365 * to a struct regmap_field. The regmap_field should be freed by the
1366 * user once its finished working with it using regmap_field_free().
1367 */
1368struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1369		struct reg_field reg_field)
1370{
1371	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1372
1373	if (!rm_field)
1374		return ERR_PTR(-ENOMEM);
1375
1376	regmap_field_init(rm_field, regmap, reg_field);
1377
1378	return rm_field;
1379}
1380EXPORT_SYMBOL_GPL(regmap_field_alloc);
1381
1382/**
1383 * regmap_field_free() - Free register field allocated using
1384 *                       regmap_field_alloc.
1385 *
1386 * @field: regmap field which should be freed.
1387 */
1388void regmap_field_free(struct regmap_field *field)
1389{
1390	kfree(field);
1391}
1392EXPORT_SYMBOL_GPL(regmap_field_free);
1393
1394/**
1395 * regmap_reinit_cache() - Reinitialise the current register cache
1396 *
1397 * @map: Register map to operate on.
1398 * @config: New configuration.  Only the cache data will be used.
1399 *
1400 * Discard any existing register cache for the map and initialize a
1401 * new cache.  This can be used to restore the cache to defaults or to
1402 * update the cache configuration to reflect runtime discovery of the
1403 * hardware.
1404 *
1405 * No explicit locking is done here, the user needs to ensure that
1406 * this function will not race with other calls to regmap.
1407 */
1408int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1409{
1410	int ret;
1411
1412	regcache_exit(map);
1413	regmap_debugfs_exit(map);
1414
1415	map->max_register = config->max_register;
1416	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1417	map->writeable_reg = config->writeable_reg;
1418	map->readable_reg = config->readable_reg;
1419	map->volatile_reg = config->volatile_reg;
1420	map->precious_reg = config->precious_reg;
1421	map->writeable_noinc_reg = config->writeable_noinc_reg;
1422	map->readable_noinc_reg = config->readable_noinc_reg;
1423	map->cache_type = config->cache_type;
1424
1425	ret = regmap_set_name(map, config);
1426	if (ret)
1427		return ret;
1428
1429	regmap_debugfs_init(map);
1430
1431	map->cache_bypass = false;
1432	map->cache_only = false;
1433
1434	return regcache_init(map, config);
1435}
1436EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1437
1438/**
1439 * regmap_exit() - Free a previously allocated register map
1440 *
1441 * @map: Register map to operate on.
1442 */
1443void regmap_exit(struct regmap *map)
1444{
1445	struct regmap_async *async;
1446
 
1447	regcache_exit(map);
 
1448	regmap_debugfs_exit(map);
1449	regmap_range_exit(map);
1450	if (map->bus && map->bus->free_context)
1451		map->bus->free_context(map->bus_context);
1452	kfree(map->work_buf);
1453	while (!list_empty(&map->async_free)) {
1454		async = list_first_entry_or_null(&map->async_free,
1455						 struct regmap_async,
1456						 list);
1457		list_del(&async->list);
1458		kfree(async->work_buf);
1459		kfree(async);
1460	}
1461	if (map->hwlock)
1462		hwspin_lock_free(map->hwlock);
1463	if (map->lock == regmap_lock_mutex)
1464		mutex_destroy(&map->mutex);
1465	kfree_const(map->name);
1466	kfree(map->patch);
1467	if (map->bus && map->bus->free_on_exit)
1468		kfree(map->bus);
1469	kfree(map);
1470}
1471EXPORT_SYMBOL_GPL(regmap_exit);
1472
1473static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1474{
1475	struct regmap **r = res;
1476	if (!r || !*r) {
1477		WARN_ON(!r || !*r);
1478		return 0;
1479	}
1480
1481	/* If the user didn't specify a name match any */
1482	if (data)
1483		return (*r)->name && !strcmp((*r)->name, data);
1484	else
1485		return 1;
1486}
1487
1488/**
1489 * dev_get_regmap() - Obtain the regmap (if any) for a device
1490 *
1491 * @dev: Device to retrieve the map for
1492 * @name: Optional name for the register map, usually NULL.
1493 *
1494 * Returns the regmap for the device if one is present, or NULL.  If
1495 * name is specified then it must match the name specified when
1496 * registering the device, if it is NULL then the first regmap found
1497 * will be used.  Devices with multiple register maps are very rare,
1498 * generic code should normally not need to specify a name.
1499 */
1500struct regmap *dev_get_regmap(struct device *dev, const char *name)
1501{
1502	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1503					dev_get_regmap_match, (void *)name);
1504
1505	if (!r)
1506		return NULL;
1507	return *r;
1508}
1509EXPORT_SYMBOL_GPL(dev_get_regmap);
1510
1511/**
1512 * regmap_get_device() - Obtain the device from a regmap
1513 *
1514 * @map: Register map to operate on.
1515 *
1516 * Returns the underlying device that the regmap has been created for.
1517 */
1518struct device *regmap_get_device(struct regmap *map)
1519{
1520	return map->dev;
1521}
1522EXPORT_SYMBOL_GPL(regmap_get_device);
1523
1524static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1525			       struct regmap_range_node *range,
1526			       unsigned int val_num)
1527{
1528	void *orig_work_buf;
1529	unsigned int win_offset;
1530	unsigned int win_page;
1531	bool page_chg;
1532	int ret;
1533
1534	win_offset = (*reg - range->range_min) % range->window_len;
1535	win_page = (*reg - range->range_min) / range->window_len;
1536
1537	if (val_num > 1) {
1538		/* Bulk write shouldn't cross range boundary */
1539		if (*reg + val_num - 1 > range->range_max)
1540			return -EINVAL;
1541
1542		/* ... or single page boundary */
1543		if (val_num > range->window_len - win_offset)
1544			return -EINVAL;
1545	}
1546
1547	/* It is possible to have selector register inside data window.
1548	   In that case, selector register is located on every page and
1549	   it needs no page switching, when accessed alone. */
1550	if (val_num > 1 ||
1551	    range->window_start + win_offset != range->selector_reg) {
1552		/* Use separate work_buf during page switching */
1553		orig_work_buf = map->work_buf;
1554		map->work_buf = map->selector_work_buf;
1555
1556		ret = _regmap_update_bits(map, range->selector_reg,
1557					  range->selector_mask,
1558					  win_page << range->selector_shift,
1559					  &page_chg, false);
1560
1561		map->work_buf = orig_work_buf;
1562
1563		if (ret != 0)
1564			return ret;
1565	}
1566
1567	*reg = range->window_start + win_offset;
1568
1569	return 0;
1570}
1571
1572static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1573					  unsigned long mask)
1574{
1575	u8 *buf;
1576	int i;
1577
1578	if (!mask || !map->work_buf)
1579		return;
1580
1581	buf = map->work_buf;
1582
1583	for (i = 0; i < max_bytes; i++)
1584		buf[i] |= (mask >> (8 * i)) & 0xff;
1585}
1586
1587static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1588{
1589	reg += map->reg_base;
1590
1591	if (map->format.reg_shift > 0)
1592		reg >>= map->format.reg_shift;
1593	else if (map->format.reg_shift < 0)
1594		reg <<= -(map->format.reg_shift);
1595
1596	return reg;
1597}
1598
1599static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1600				  const void *val, size_t val_len, bool noinc)
1601{
1602	struct regmap_range_node *range;
1603	unsigned long flags;
1604	void *work_val = map->work_buf + map->format.reg_bytes +
1605		map->format.pad_bytes;
1606	void *buf;
1607	int ret = -ENOTSUPP;
1608	size_t len;
1609	int i;
1610
1611	/* Check for unwritable or noinc registers in range
1612	 * before we start
1613	 */
1614	if (!regmap_writeable_noinc(map, reg)) {
1615		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1616			unsigned int element =
1617				reg + regmap_get_offset(map, i);
1618			if (!regmap_writeable(map, element) ||
1619				regmap_writeable_noinc(map, element))
1620				return -EINVAL;
1621		}
1622	}
1623
1624	if (!map->cache_bypass && map->format.parse_val) {
1625		unsigned int ival, offset;
1626		int val_bytes = map->format.val_bytes;
1627
1628		/* Cache the last written value for noinc writes */
1629		i = noinc ? val_len - val_bytes : 0;
1630		for (; i < val_len; i += val_bytes) {
1631			ival = map->format.parse_val(val + i);
1632			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1633			ret = regcache_write(map, reg + offset, ival);
1634			if (ret) {
1635				dev_err(map->dev,
1636					"Error in caching of register: %x ret: %d\n",
1637					reg + offset, ret);
1638				return ret;
1639			}
1640		}
1641		if (map->cache_only) {
1642			map->cache_dirty = true;
1643			return 0;
1644		}
1645	}
1646
1647	range = _regmap_range_lookup(map, reg);
1648	if (range) {
1649		int val_num = val_len / map->format.val_bytes;
1650		int win_offset = (reg - range->range_min) % range->window_len;
1651		int win_residue = range->window_len - win_offset;
1652
1653		/* If the write goes beyond the end of the window split it */
1654		while (val_num > win_residue) {
1655			dev_dbg(map->dev, "Writing window %d/%zu\n",
1656				win_residue, val_len / map->format.val_bytes);
1657			ret = _regmap_raw_write_impl(map, reg, val,
1658						     win_residue *
1659						     map->format.val_bytes, noinc);
1660			if (ret != 0)
1661				return ret;
1662
1663			reg += win_residue;
1664			val_num -= win_residue;
1665			val += win_residue * map->format.val_bytes;
1666			val_len -= win_residue * map->format.val_bytes;
1667
1668			win_offset = (reg - range->range_min) %
1669				range->window_len;
1670			win_residue = range->window_len - win_offset;
1671		}
1672
1673		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1674		if (ret != 0)
1675			return ret;
1676	}
1677
1678	reg = regmap_reg_addr(map, reg);
1679	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1680	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1681				      map->write_flag_mask);
1682
1683	/*
1684	 * Essentially all I/O mechanisms will be faster with a single
1685	 * buffer to write.  Since register syncs often generate raw
1686	 * writes of single registers optimise that case.
1687	 */
1688	if (val != work_val && val_len == map->format.val_bytes) {
1689		memcpy(work_val, val, map->format.val_bytes);
1690		val = work_val;
1691	}
1692
1693	if (map->async && map->bus && map->bus->async_write) {
1694		struct regmap_async *async;
1695
1696		trace_regmap_async_write_start(map, reg, val_len);
1697
1698		spin_lock_irqsave(&map->async_lock, flags);
1699		async = list_first_entry_or_null(&map->async_free,
1700						 struct regmap_async,
1701						 list);
1702		if (async)
1703			list_del(&async->list);
1704		spin_unlock_irqrestore(&map->async_lock, flags);
1705
1706		if (!async) {
1707			async = map->bus->async_alloc();
1708			if (!async)
1709				return -ENOMEM;
1710
1711			async->work_buf = kzalloc(map->format.buf_size,
1712						  GFP_KERNEL | GFP_DMA);
1713			if (!async->work_buf) {
1714				kfree(async);
1715				return -ENOMEM;
1716			}
1717		}
1718
1719		async->map = map;
1720
1721		/* If the caller supplied the value we can use it safely. */
1722		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1723		       map->format.reg_bytes + map->format.val_bytes);
1724
1725		spin_lock_irqsave(&map->async_lock, flags);
1726		list_add_tail(&async->list, &map->async_list);
1727		spin_unlock_irqrestore(&map->async_lock, flags);
1728
1729		if (val != work_val)
1730			ret = map->bus->async_write(map->bus_context,
1731						    async->work_buf,
1732						    map->format.reg_bytes +
1733						    map->format.pad_bytes,
1734						    val, val_len, async);
1735		else
1736			ret = map->bus->async_write(map->bus_context,
1737						    async->work_buf,
1738						    map->format.reg_bytes +
1739						    map->format.pad_bytes +
1740						    val_len, NULL, 0, async);
1741
1742		if (ret != 0) {
1743			dev_err(map->dev, "Failed to schedule write: %d\n",
1744				ret);
1745
1746			spin_lock_irqsave(&map->async_lock, flags);
1747			list_move(&async->list, &map->async_free);
1748			spin_unlock_irqrestore(&map->async_lock, flags);
1749		}
1750
1751		return ret;
1752	}
1753
1754	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1755
1756	/* If we're doing a single register write we can probably just
1757	 * send the work_buf directly, otherwise try to do a gather
1758	 * write.
1759	 */
1760	if (val == work_val)
1761		ret = map->write(map->bus_context, map->work_buf,
1762				 map->format.reg_bytes +
1763				 map->format.pad_bytes +
1764				 val_len);
1765	else if (map->bus && map->bus->gather_write)
1766		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1767					     map->format.reg_bytes +
1768					     map->format.pad_bytes,
1769					     val, val_len);
1770	else
1771		ret = -ENOTSUPP;
1772
1773	/* If that didn't work fall back on linearising by hand. */
1774	if (ret == -ENOTSUPP) {
1775		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1776		buf = kzalloc(len, GFP_KERNEL);
1777		if (!buf)
1778			return -ENOMEM;
1779
1780		memcpy(buf, map->work_buf, map->format.reg_bytes);
1781		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1782		       val, val_len);
1783		ret = map->write(map->bus_context, buf, len);
1784
1785		kfree(buf);
1786	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1787		/* regcache_drop_region() takes lock that we already have,
1788		 * thus call map->cache_ops->drop() directly
1789		 */
1790		if (map->cache_ops && map->cache_ops->drop)
1791			map->cache_ops->drop(map, reg, reg + 1);
1792	}
1793
1794	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1795
1796	return ret;
1797}
1798
1799/**
1800 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1801 *
1802 * @map: Map to check.
1803 */
1804bool regmap_can_raw_write(struct regmap *map)
1805{
1806	return map->write && map->format.format_val && map->format.format_reg;
1807}
1808EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1809
1810/**
1811 * regmap_get_raw_read_max - Get the maximum size we can read
1812 *
1813 * @map: Map to check.
1814 */
1815size_t regmap_get_raw_read_max(struct regmap *map)
1816{
1817	return map->max_raw_read;
1818}
1819EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1820
1821/**
1822 * regmap_get_raw_write_max - Get the maximum size we can read
1823 *
1824 * @map: Map to check.
1825 */
1826size_t regmap_get_raw_write_max(struct regmap *map)
1827{
1828	return map->max_raw_write;
1829}
1830EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1831
1832static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1833				       unsigned int val)
1834{
1835	int ret;
1836	struct regmap_range_node *range;
1837	struct regmap *map = context;
1838
1839	WARN_ON(!map->format.format_write);
1840
1841	range = _regmap_range_lookup(map, reg);
1842	if (range) {
1843		ret = _regmap_select_page(map, &reg, range, 1);
1844		if (ret != 0)
1845			return ret;
1846	}
1847
1848	reg = regmap_reg_addr(map, reg);
1849	map->format.format_write(map, reg, val);
1850
1851	trace_regmap_hw_write_start(map, reg, 1);
1852
1853	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1854
1855	trace_regmap_hw_write_done(map, reg, 1);
1856
1857	return ret;
1858}
1859
1860static int _regmap_bus_reg_write(void *context, unsigned int reg,
1861				 unsigned int val)
1862{
1863	struct regmap *map = context;
1864	struct regmap_range_node *range;
1865	int ret;
1866
1867	range = _regmap_range_lookup(map, reg);
1868	if (range) {
1869		ret = _regmap_select_page(map, &reg, range, 1);
1870		if (ret != 0)
1871			return ret;
1872	}
1873
1874	reg = regmap_reg_addr(map, reg);
1875	return map->bus->reg_write(map->bus_context, reg, val);
1876}
1877
1878static int _regmap_bus_raw_write(void *context, unsigned int reg,
1879				 unsigned int val)
1880{
1881	struct regmap *map = context;
1882
1883	WARN_ON(!map->format.format_val);
1884
1885	map->format.format_val(map->work_buf + map->format.reg_bytes
1886			       + map->format.pad_bytes, val, 0);
1887	return _regmap_raw_write_impl(map, reg,
1888				      map->work_buf +
1889				      map->format.reg_bytes +
1890				      map->format.pad_bytes,
1891				      map->format.val_bytes,
1892				      false);
1893}
1894
1895static inline void *_regmap_map_get_context(struct regmap *map)
1896{
1897	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1898}
1899
1900int _regmap_write(struct regmap *map, unsigned int reg,
1901		  unsigned int val)
1902{
1903	int ret;
1904	void *context = _regmap_map_get_context(map);
1905
1906	if (!regmap_writeable(map, reg))
1907		return -EIO;
1908
1909	if (!map->cache_bypass && !map->defer_caching) {
1910		ret = regcache_write(map, reg, val);
1911		if (ret != 0)
1912			return ret;
1913		if (map->cache_only) {
1914			map->cache_dirty = true;
1915			return 0;
1916		}
1917	}
1918
1919	ret = map->reg_write(context, reg, val);
1920	if (ret == 0) {
1921		if (regmap_should_log(map))
1922			dev_info(map->dev, "%x <= %x\n", reg, val);
1923
1924		trace_regmap_reg_write(map, reg, val);
1925	}
1926
1927	return ret;
1928}
1929
1930/**
1931 * regmap_write() - Write a value to a single register
1932 *
1933 * @map: Register map to write to
1934 * @reg: Register to write to
1935 * @val: Value to be written
1936 *
1937 * A value of zero will be returned on success, a negative errno will
1938 * be returned in error cases.
1939 */
1940int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1941{
1942	int ret;
1943
1944	if (!IS_ALIGNED(reg, map->reg_stride))
1945		return -EINVAL;
1946
1947	map->lock(map->lock_arg);
1948
1949	ret = _regmap_write(map, reg, val);
1950
1951	map->unlock(map->lock_arg);
1952
1953	return ret;
1954}
1955EXPORT_SYMBOL_GPL(regmap_write);
1956
1957/**
1958 * regmap_write_async() - Write a value to a single register asynchronously
1959 *
1960 * @map: Register map to write to
1961 * @reg: Register to write to
1962 * @val: Value to be written
1963 *
1964 * A value of zero will be returned on success, a negative errno will
1965 * be returned in error cases.
1966 */
1967int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1968{
1969	int ret;
1970
1971	if (!IS_ALIGNED(reg, map->reg_stride))
1972		return -EINVAL;
1973
1974	map->lock(map->lock_arg);
1975
1976	map->async = true;
1977
1978	ret = _regmap_write(map, reg, val);
1979
1980	map->async = false;
1981
1982	map->unlock(map->lock_arg);
1983
1984	return ret;
1985}
1986EXPORT_SYMBOL_GPL(regmap_write_async);
1987
1988int _regmap_raw_write(struct regmap *map, unsigned int reg,
1989		      const void *val, size_t val_len, bool noinc)
1990{
1991	size_t val_bytes = map->format.val_bytes;
1992	size_t val_count = val_len / val_bytes;
1993	size_t chunk_count, chunk_bytes;
1994	size_t chunk_regs = val_count;
1995	int ret, i;
1996
1997	if (!val_count)
1998		return -EINVAL;
1999
2000	if (map->use_single_write)
2001		chunk_regs = 1;
2002	else if (map->max_raw_write && val_len > map->max_raw_write)
2003		chunk_regs = map->max_raw_write / val_bytes;
2004
2005	chunk_count = val_count / chunk_regs;
2006	chunk_bytes = chunk_regs * val_bytes;
2007
2008	/* Write as many bytes as possible with chunk_size */
2009	for (i = 0; i < chunk_count; i++) {
2010		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2011		if (ret)
2012			return ret;
2013
2014		reg += regmap_get_offset(map, chunk_regs);
2015		val += chunk_bytes;
2016		val_len -= chunk_bytes;
2017	}
2018
2019	/* Write remaining bytes */
2020	if (val_len)
2021		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2022
2023	return ret;
2024}
2025
2026/**
2027 * regmap_raw_write() - Write raw values to one or more registers
2028 *
2029 * @map: Register map to write to
2030 * @reg: Initial register to write to
2031 * @val: Block of data to be written, laid out for direct transmission to the
2032 *       device
2033 * @val_len: Length of data pointed to by val.
2034 *
2035 * This function is intended to be used for things like firmware
2036 * download where a large block of data needs to be transferred to the
2037 * device.  No formatting will be done on the data provided.
2038 *
2039 * A value of zero will be returned on success, a negative errno will
2040 * be returned in error cases.
2041 */
2042int regmap_raw_write(struct regmap *map, unsigned int reg,
2043		     const void *val, size_t val_len)
2044{
2045	int ret;
2046
2047	if (!regmap_can_raw_write(map))
2048		return -EINVAL;
2049	if (val_len % map->format.val_bytes)
2050		return -EINVAL;
2051
2052	map->lock(map->lock_arg);
2053
2054	ret = _regmap_raw_write(map, reg, val, val_len, false);
2055
2056	map->unlock(map->lock_arg);
2057
2058	return ret;
2059}
2060EXPORT_SYMBOL_GPL(regmap_raw_write);
2061
2062static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2063				  void *val, unsigned int val_len, bool write)
2064{
2065	size_t val_bytes = map->format.val_bytes;
2066	size_t val_count = val_len / val_bytes;
2067	unsigned int lastval;
2068	u8 *u8p;
2069	u16 *u16p;
2070	u32 *u32p;
2071	int ret;
2072	int i;
2073
2074	switch (val_bytes) {
2075	case 1:
2076		u8p = val;
2077		if (write)
2078			lastval = (unsigned int)u8p[val_count - 1];
2079		break;
2080	case 2:
2081		u16p = val;
2082		if (write)
2083			lastval = (unsigned int)u16p[val_count - 1];
2084		break;
2085	case 4:
2086		u32p = val;
2087		if (write)
2088			lastval = (unsigned int)u32p[val_count - 1];
2089		break;
2090	default:
2091		return -EINVAL;
2092	}
2093
2094	/*
2095	 * Update the cache with the last value we write, the rest is just
2096	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2097	 * sure a single read from the cache will work.
2098	 */
2099	if (write) {
2100		if (!map->cache_bypass && !map->defer_caching) {
2101			ret = regcache_write(map, reg, lastval);
2102			if (ret != 0)
2103				return ret;
2104			if (map->cache_only) {
2105				map->cache_dirty = true;
2106				return 0;
2107			}
2108		}
2109		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2110	} else {
2111		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2112	}
2113
2114	if (!ret && regmap_should_log(map)) {
2115		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2116		for (i = 0; i < val_count; i++) {
2117			switch (val_bytes) {
2118			case 1:
2119				pr_cont("%x", u8p[i]);
2120				break;
2121			case 2:
2122				pr_cont("%x", u16p[i]);
2123				break;
2124			case 4:
2125				pr_cont("%x", u32p[i]);
2126				break;
2127			default:
2128				break;
2129			}
2130			if (i == (val_count - 1))
2131				pr_cont("]\n");
2132			else
2133				pr_cont(",");
2134		}
2135	}
2136
2137	return 0;
2138}
2139
2140/**
2141 * regmap_noinc_write(): Write data to a register without incrementing the
2142 *			register number
2143 *
2144 * @map: Register map to write to
2145 * @reg: Register to write to
2146 * @val: Pointer to data buffer
2147 * @val_len: Length of output buffer in bytes.
2148 *
2149 * The regmap API usually assumes that bulk bus write operations will write a
2150 * range of registers. Some devices have certain registers for which a write
2151 * operation can write to an internal FIFO.
2152 *
2153 * The target register must be volatile but registers after it can be
2154 * completely unrelated cacheable registers.
2155 *
2156 * This will attempt multiple writes as required to write val_len bytes.
2157 *
2158 * A value of zero will be returned on success, a negative errno will be
2159 * returned in error cases.
2160 */
2161int regmap_noinc_write(struct regmap *map, unsigned int reg,
2162		      const void *val, size_t val_len)
2163{
2164	size_t write_len;
2165	int ret;
2166
2167	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2168		return -EINVAL;
2169	if (val_len % map->format.val_bytes)
2170		return -EINVAL;
2171	if (!IS_ALIGNED(reg, map->reg_stride))
2172		return -EINVAL;
2173	if (val_len == 0)
2174		return -EINVAL;
2175
2176	map->lock(map->lock_arg);
2177
2178	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2179		ret = -EINVAL;
2180		goto out_unlock;
2181	}
2182
2183	/*
2184	 * Use the accelerated operation if we can. The val drops the const
2185	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2186	 */
2187	if (map->bus->reg_noinc_write) {
2188		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2189		goto out_unlock;
2190	}
2191
2192	while (val_len) {
2193		if (map->max_raw_write && map->max_raw_write < val_len)
2194			write_len = map->max_raw_write;
2195		else
2196			write_len = val_len;
2197		ret = _regmap_raw_write(map, reg, val, write_len, true);
2198		if (ret)
2199			goto out_unlock;
2200		val = ((u8 *)val) + write_len;
2201		val_len -= write_len;
2202	}
2203
2204out_unlock:
2205	map->unlock(map->lock_arg);
2206	return ret;
2207}
2208EXPORT_SYMBOL_GPL(regmap_noinc_write);
2209
2210/**
2211 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2212 *                                   register field.
2213 *
2214 * @field: Register field to write to
2215 * @mask: Bitmask to change
2216 * @val: Value to be written
2217 * @change: Boolean indicating if a write was done
2218 * @async: Boolean indicating asynchronously
2219 * @force: Boolean indicating use force update
2220 *
2221 * Perform a read/modify/write cycle on the register field with change,
2222 * async, force option.
2223 *
2224 * A value of zero will be returned on success, a negative errno will
2225 * be returned in error cases.
2226 */
2227int regmap_field_update_bits_base(struct regmap_field *field,
2228				  unsigned int mask, unsigned int val,
2229				  bool *change, bool async, bool force)
2230{
2231	mask = (mask << field->shift) & field->mask;
2232
2233	return regmap_update_bits_base(field->regmap, field->reg,
2234				       mask, val << field->shift,
2235				       change, async, force);
2236}
2237EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2238
2239/**
2240 * regmap_field_test_bits() - Check if all specified bits are set in a
2241 *                            register field.
2242 *
2243 * @field: Register field to operate on
2244 * @bits: Bits to test
2245 *
2246 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2247 * tested bits is not set and 1 if all tested bits are set.
2248 */
2249int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2250{
2251	unsigned int val, ret;
2252
2253	ret = regmap_field_read(field, &val);
2254	if (ret)
2255		return ret;
2256
2257	return (val & bits) == bits;
2258}
2259EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2260
2261/**
2262 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2263 *                                    register field with port ID
2264 *
2265 * @field: Register field to write to
2266 * @id: port ID
2267 * @mask: Bitmask to change
2268 * @val: Value to be written
2269 * @change: Boolean indicating if a write was done
2270 * @async: Boolean indicating asynchronously
2271 * @force: Boolean indicating use force update
2272 *
2273 * A value of zero will be returned on success, a negative errno will
2274 * be returned in error cases.
2275 */
2276int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2277				   unsigned int mask, unsigned int val,
2278				   bool *change, bool async, bool force)
2279{
2280	if (id >= field->id_size)
2281		return -EINVAL;
2282
2283	mask = (mask << field->shift) & field->mask;
2284
2285	return regmap_update_bits_base(field->regmap,
2286				       field->reg + (field->id_offset * id),
2287				       mask, val << field->shift,
2288				       change, async, force);
2289}
2290EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2291
2292/**
2293 * regmap_bulk_write() - Write multiple registers to the device
2294 *
2295 * @map: Register map to write to
2296 * @reg: First register to be write from
2297 * @val: Block of data to be written, in native register size for device
2298 * @val_count: Number of registers to write
2299 *
2300 * This function is intended to be used for writing a large block of
2301 * data to the device either in single transfer or multiple transfer.
2302 *
2303 * A value of zero will be returned on success, a negative errno will
2304 * be returned in error cases.
2305 */
2306int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2307		     size_t val_count)
2308{
2309	int ret = 0, i;
2310	size_t val_bytes = map->format.val_bytes;
2311
2312	if (!IS_ALIGNED(reg, map->reg_stride))
2313		return -EINVAL;
2314
2315	/*
2316	 * Some devices don't support bulk write, for them we have a series of
2317	 * single write operations.
2318	 */
2319	if (!map->write || !map->format.parse_inplace) {
2320		map->lock(map->lock_arg);
2321		for (i = 0; i < val_count; i++) {
2322			unsigned int ival;
2323
2324			switch (val_bytes) {
2325			case 1:
2326				ival = *(u8 *)(val + (i * val_bytes));
2327				break;
2328			case 2:
2329				ival = *(u16 *)(val + (i * val_bytes));
2330				break;
2331			case 4:
2332				ival = *(u32 *)(val + (i * val_bytes));
2333				break;
2334			default:
2335				ret = -EINVAL;
2336				goto out;
2337			}
2338
2339			ret = _regmap_write(map,
2340					    reg + regmap_get_offset(map, i),
2341					    ival);
2342			if (ret != 0)
2343				goto out;
2344		}
2345out:
2346		map->unlock(map->lock_arg);
2347	} else {
2348		void *wval;
2349
2350		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2351		if (!wval)
2352			return -ENOMEM;
2353
2354		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2355			map->format.parse_inplace(wval + i);
2356
2357		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2358
2359		kfree(wval);
2360	}
2361
2362	if (!ret)
2363		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2364
2365	return ret;
2366}
2367EXPORT_SYMBOL_GPL(regmap_bulk_write);
2368
2369/*
2370 * _regmap_raw_multi_reg_write()
2371 *
2372 * the (register,newvalue) pairs in regs have not been formatted, but
2373 * they are all in the same page and have been changed to being page
2374 * relative. The page register has been written if that was necessary.
2375 */
2376static int _regmap_raw_multi_reg_write(struct regmap *map,
2377				       const struct reg_sequence *regs,
2378				       size_t num_regs)
2379{
2380	int ret;
2381	void *buf;
2382	int i;
2383	u8 *u8;
2384	size_t val_bytes = map->format.val_bytes;
2385	size_t reg_bytes = map->format.reg_bytes;
2386	size_t pad_bytes = map->format.pad_bytes;
2387	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2388	size_t len = pair_size * num_regs;
2389
2390	if (!len)
2391		return -EINVAL;
2392
2393	buf = kzalloc(len, GFP_KERNEL);
2394	if (!buf)
2395		return -ENOMEM;
2396
2397	/* We have to linearise by hand. */
2398
2399	u8 = buf;
2400
2401	for (i = 0; i < num_regs; i++) {
2402		unsigned int reg = regs[i].reg;
2403		unsigned int val = regs[i].def;
2404		trace_regmap_hw_write_start(map, reg, 1);
2405		reg = regmap_reg_addr(map, reg);
2406		map->format.format_reg(u8, reg, map->reg_shift);
2407		u8 += reg_bytes + pad_bytes;
2408		map->format.format_val(u8, val, 0);
2409		u8 += val_bytes;
2410	}
2411	u8 = buf;
2412	*u8 |= map->write_flag_mask;
2413
2414	ret = map->write(map->bus_context, buf, len);
2415
2416	kfree(buf);
2417
2418	for (i = 0; i < num_regs; i++) {
2419		int reg = regs[i].reg;
2420		trace_regmap_hw_write_done(map, reg, 1);
2421	}
2422	return ret;
2423}
2424
2425static unsigned int _regmap_register_page(struct regmap *map,
2426					  unsigned int reg,
2427					  struct regmap_range_node *range)
2428{
2429	unsigned int win_page = (reg - range->range_min) / range->window_len;
2430
2431	return win_page;
2432}
2433
2434static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2435					       struct reg_sequence *regs,
2436					       size_t num_regs)
2437{
2438	int ret;
2439	int i, n;
2440	struct reg_sequence *base;
2441	unsigned int this_page = 0;
2442	unsigned int page_change = 0;
2443	/*
2444	 * the set of registers are not neccessarily in order, but
2445	 * since the order of write must be preserved this algorithm
2446	 * chops the set each time the page changes. This also applies
2447	 * if there is a delay required at any point in the sequence.
2448	 */
2449	base = regs;
2450	for (i = 0, n = 0; i < num_regs; i++, n++) {
2451		unsigned int reg = regs[i].reg;
2452		struct regmap_range_node *range;
2453
2454		range = _regmap_range_lookup(map, reg);
2455		if (range) {
2456			unsigned int win_page = _regmap_register_page(map, reg,
2457								      range);
2458
2459			if (i == 0)
2460				this_page = win_page;
2461			if (win_page != this_page) {
2462				this_page = win_page;
2463				page_change = 1;
2464			}
2465		}
2466
2467		/* If we have both a page change and a delay make sure to
2468		 * write the regs and apply the delay before we change the
2469		 * page.
2470		 */
2471
2472		if (page_change || regs[i].delay_us) {
2473
2474				/* For situations where the first write requires
2475				 * a delay we need to make sure we don't call
2476				 * raw_multi_reg_write with n=0
2477				 * This can't occur with page breaks as we
2478				 * never write on the first iteration
2479				 */
2480				if (regs[i].delay_us && i == 0)
2481					n = 1;
2482
2483				ret = _regmap_raw_multi_reg_write(map, base, n);
2484				if (ret != 0)
2485					return ret;
2486
2487				if (regs[i].delay_us) {
2488					if (map->can_sleep)
2489						fsleep(regs[i].delay_us);
2490					else
2491						udelay(regs[i].delay_us);
2492				}
2493
2494				base += n;
2495				n = 0;
2496
2497				if (page_change) {
2498					ret = _regmap_select_page(map,
2499								  &base[n].reg,
2500								  range, 1);
2501					if (ret != 0)
2502						return ret;
2503
2504					page_change = 0;
2505				}
2506
2507		}
2508
2509	}
2510	if (n > 0)
2511		return _regmap_raw_multi_reg_write(map, base, n);
2512	return 0;
2513}
2514
2515static int _regmap_multi_reg_write(struct regmap *map,
2516				   const struct reg_sequence *regs,
2517				   size_t num_regs)
2518{
2519	int i;
2520	int ret;
2521
2522	if (!map->can_multi_write) {
2523		for (i = 0; i < num_regs; i++) {
2524			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2525			if (ret != 0)
2526				return ret;
2527
2528			if (regs[i].delay_us) {
2529				if (map->can_sleep)
2530					fsleep(regs[i].delay_us);
2531				else
2532					udelay(regs[i].delay_us);
2533			}
2534		}
2535		return 0;
2536	}
2537
2538	if (!map->format.parse_inplace)
2539		return -EINVAL;
2540
2541	if (map->writeable_reg)
2542		for (i = 0; i < num_regs; i++) {
2543			int reg = regs[i].reg;
2544			if (!map->writeable_reg(map->dev, reg))
2545				return -EINVAL;
2546			if (!IS_ALIGNED(reg, map->reg_stride))
2547				return -EINVAL;
2548		}
2549
2550	if (!map->cache_bypass) {
2551		for (i = 0; i < num_regs; i++) {
2552			unsigned int val = regs[i].def;
2553			unsigned int reg = regs[i].reg;
2554			ret = regcache_write(map, reg, val);
2555			if (ret) {
2556				dev_err(map->dev,
2557				"Error in caching of register: %x ret: %d\n",
2558								reg, ret);
2559				return ret;
2560			}
2561		}
2562		if (map->cache_only) {
2563			map->cache_dirty = true;
2564			return 0;
2565		}
2566	}
2567
2568	WARN_ON(!map->bus);
2569
2570	for (i = 0; i < num_regs; i++) {
2571		unsigned int reg = regs[i].reg;
2572		struct regmap_range_node *range;
2573
2574		/* Coalesce all the writes between a page break or a delay
2575		 * in a sequence
2576		 */
2577		range = _regmap_range_lookup(map, reg);
2578		if (range || regs[i].delay_us) {
2579			size_t len = sizeof(struct reg_sequence)*num_regs;
2580			struct reg_sequence *base = kmemdup(regs, len,
2581							   GFP_KERNEL);
2582			if (!base)
2583				return -ENOMEM;
2584			ret = _regmap_range_multi_paged_reg_write(map, base,
2585								  num_regs);
2586			kfree(base);
2587
2588			return ret;
2589		}
2590	}
2591	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2592}
2593
2594/**
2595 * regmap_multi_reg_write() - Write multiple registers to the device
2596 *
2597 * @map: Register map to write to
2598 * @regs: Array of structures containing register,value to be written
2599 * @num_regs: Number of registers to write
2600 *
2601 * Write multiple registers to the device where the set of register, value
2602 * pairs are supplied in any order, possibly not all in a single range.
2603 *
2604 * The 'normal' block write mode will send ultimately send data on the
2605 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2606 * addressed. However, this alternative block multi write mode will send
2607 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2608 * must of course support the mode.
2609 *
2610 * A value of zero will be returned on success, a negative errno will be
2611 * returned in error cases.
2612 */
2613int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2614			   int num_regs)
2615{
2616	int ret;
2617
2618	map->lock(map->lock_arg);
2619
2620	ret = _regmap_multi_reg_write(map, regs, num_regs);
2621
2622	map->unlock(map->lock_arg);
2623
2624	return ret;
2625}
2626EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2627
2628/**
2629 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2630 *                                     device but not the cache
2631 *
2632 * @map: Register map to write to
2633 * @regs: Array of structures containing register,value to be written
2634 * @num_regs: Number of registers to write
2635 *
2636 * Write multiple registers to the device but not the cache where the set
2637 * of register are supplied in any order.
2638 *
2639 * This function is intended to be used for writing a large block of data
2640 * atomically to the device in single transfer for those I2C client devices
2641 * that implement this alternative block write mode.
2642 *
2643 * A value of zero will be returned on success, a negative errno will
2644 * be returned in error cases.
2645 */
2646int regmap_multi_reg_write_bypassed(struct regmap *map,
2647				    const struct reg_sequence *regs,
2648				    int num_regs)
2649{
2650	int ret;
2651	bool bypass;
2652
2653	map->lock(map->lock_arg);
2654
2655	bypass = map->cache_bypass;
2656	map->cache_bypass = true;
2657
2658	ret = _regmap_multi_reg_write(map, regs, num_regs);
2659
2660	map->cache_bypass = bypass;
2661
2662	map->unlock(map->lock_arg);
2663
2664	return ret;
2665}
2666EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2667
2668/**
2669 * regmap_raw_write_async() - Write raw values to one or more registers
2670 *                            asynchronously
2671 *
2672 * @map: Register map to write to
2673 * @reg: Initial register to write to
2674 * @val: Block of data to be written, laid out for direct transmission to the
2675 *       device.  Must be valid until regmap_async_complete() is called.
2676 * @val_len: Length of data pointed to by val.
2677 *
2678 * This function is intended to be used for things like firmware
2679 * download where a large block of data needs to be transferred to the
2680 * device.  No formatting will be done on the data provided.
2681 *
2682 * If supported by the underlying bus the write will be scheduled
2683 * asynchronously, helping maximise I/O speed on higher speed buses
2684 * like SPI.  regmap_async_complete() can be called to ensure that all
2685 * asynchrnous writes have been completed.
2686 *
2687 * A value of zero will be returned on success, a negative errno will
2688 * be returned in error cases.
2689 */
2690int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2691			   const void *val, size_t val_len)
2692{
2693	int ret;
2694
2695	if (val_len % map->format.val_bytes)
2696		return -EINVAL;
2697	if (!IS_ALIGNED(reg, map->reg_stride))
2698		return -EINVAL;
2699
2700	map->lock(map->lock_arg);
2701
2702	map->async = true;
2703
2704	ret = _regmap_raw_write(map, reg, val, val_len, false);
2705
2706	map->async = false;
2707
2708	map->unlock(map->lock_arg);
2709
2710	return ret;
2711}
2712EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2713
2714static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2715			    unsigned int val_len, bool noinc)
2716{
2717	struct regmap_range_node *range;
2718	int ret;
2719
2720	if (!map->read)
2721		return -EINVAL;
2722
2723	range = _regmap_range_lookup(map, reg);
2724	if (range) {
2725		ret = _regmap_select_page(map, &reg, range,
2726					  noinc ? 1 : val_len / map->format.val_bytes);
2727		if (ret != 0)
2728			return ret;
2729	}
2730
2731	reg = regmap_reg_addr(map, reg);
2732	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2733	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2734				      map->read_flag_mask);
2735	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2736
2737	ret = map->read(map->bus_context, map->work_buf,
2738			map->format.reg_bytes + map->format.pad_bytes,
2739			val, val_len);
2740
2741	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2742
2743	return ret;
2744}
2745
2746static int _regmap_bus_reg_read(void *context, unsigned int reg,
2747				unsigned int *val)
2748{
2749	struct regmap *map = context;
2750	struct regmap_range_node *range;
2751	int ret;
2752
2753	range = _regmap_range_lookup(map, reg);
2754	if (range) {
2755		ret = _regmap_select_page(map, &reg, range, 1);
2756		if (ret != 0)
2757			return ret;
2758	}
2759
2760	reg = regmap_reg_addr(map, reg);
2761	return map->bus->reg_read(map->bus_context, reg, val);
2762}
2763
2764static int _regmap_bus_read(void *context, unsigned int reg,
2765			    unsigned int *val)
2766{
2767	int ret;
2768	struct regmap *map = context;
2769	void *work_val = map->work_buf + map->format.reg_bytes +
2770		map->format.pad_bytes;
2771
2772	if (!map->format.parse_val)
2773		return -EINVAL;
2774
2775	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2776	if (ret == 0)
2777		*val = map->format.parse_val(work_val);
2778
2779	return ret;
2780}
2781
2782static int _regmap_read(struct regmap *map, unsigned int reg,
2783			unsigned int *val)
2784{
2785	int ret;
2786	void *context = _regmap_map_get_context(map);
2787
2788	if (!map->cache_bypass) {
2789		ret = regcache_read(map, reg, val);
2790		if (ret == 0)
2791			return 0;
2792	}
2793
2794	if (map->cache_only)
2795		return -EBUSY;
2796
2797	if (!regmap_readable(map, reg))
2798		return -EIO;
2799
2800	ret = map->reg_read(context, reg, val);
2801	if (ret == 0) {
2802		if (regmap_should_log(map))
2803			dev_info(map->dev, "%x => %x\n", reg, *val);
2804
2805		trace_regmap_reg_read(map, reg, *val);
2806
2807		if (!map->cache_bypass)
2808			regcache_write(map, reg, *val);
2809	}
2810
2811	return ret;
2812}
2813
2814/**
2815 * regmap_read() - Read a value from a single register
2816 *
2817 * @map: Register map to read from
2818 * @reg: Register to be read from
2819 * @val: Pointer to store read value
2820 *
2821 * A value of zero will be returned on success, a negative errno will
2822 * be returned in error cases.
2823 */
2824int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2825{
2826	int ret;
2827
2828	if (!IS_ALIGNED(reg, map->reg_stride))
2829		return -EINVAL;
2830
2831	map->lock(map->lock_arg);
2832
2833	ret = _regmap_read(map, reg, val);
2834
2835	map->unlock(map->lock_arg);
2836
2837	return ret;
2838}
2839EXPORT_SYMBOL_GPL(regmap_read);
2840
2841/**
2842 * regmap_read_bypassed() - Read a value from a single register direct
2843 *			    from the device, bypassing the cache
2844 *
2845 * @map: Register map to read from
2846 * @reg: Register to be read from
2847 * @val: Pointer to store read value
2848 *
2849 * A value of zero will be returned on success, a negative errno will
2850 * be returned in error cases.
2851 */
2852int regmap_read_bypassed(struct regmap *map, unsigned int reg, unsigned int *val)
2853{
2854	int ret;
2855	bool bypass, cache_only;
2856
2857	if (!IS_ALIGNED(reg, map->reg_stride))
2858		return -EINVAL;
2859
2860	map->lock(map->lock_arg);
2861
2862	bypass = map->cache_bypass;
2863	cache_only = map->cache_only;
2864	map->cache_bypass = true;
2865	map->cache_only = false;
2866
2867	ret = _regmap_read(map, reg, val);
2868
2869	map->cache_bypass = bypass;
2870	map->cache_only = cache_only;
2871
2872	map->unlock(map->lock_arg);
2873
2874	return ret;
2875}
2876EXPORT_SYMBOL_GPL(regmap_read_bypassed);
2877
2878/**
2879 * regmap_raw_read() - Read raw data from the device
2880 *
2881 * @map: Register map to read from
2882 * @reg: First register to be read from
2883 * @val: Pointer to store read value
2884 * @val_len: Size of data to read
2885 *
2886 * A value of zero will be returned on success, a negative errno will
2887 * be returned in error cases.
2888 */
2889int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2890		    size_t val_len)
2891{
2892	size_t val_bytes = map->format.val_bytes;
2893	size_t val_count = val_len / val_bytes;
2894	unsigned int v;
2895	int ret, i;
2896
2897	if (val_len % map->format.val_bytes)
2898		return -EINVAL;
2899	if (!IS_ALIGNED(reg, map->reg_stride))
2900		return -EINVAL;
2901	if (val_count == 0)
2902		return -EINVAL;
2903
2904	map->lock(map->lock_arg);
2905
2906	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2907	    map->cache_type == REGCACHE_NONE) {
2908		size_t chunk_count, chunk_bytes;
2909		size_t chunk_regs = val_count;
2910
2911		if (!map->cache_bypass && map->cache_only) {
2912			ret = -EBUSY;
2913			goto out;
2914		}
2915
2916		if (!map->read) {
2917			ret = -ENOTSUPP;
2918			goto out;
2919		}
2920
2921		if (map->use_single_read)
2922			chunk_regs = 1;
2923		else if (map->max_raw_read && val_len > map->max_raw_read)
2924			chunk_regs = map->max_raw_read / val_bytes;
2925
2926		chunk_count = val_count / chunk_regs;
2927		chunk_bytes = chunk_regs * val_bytes;
2928
2929		/* Read bytes that fit into whole chunks */
2930		for (i = 0; i < chunk_count; i++) {
2931			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2932			if (ret != 0)
2933				goto out;
2934
2935			reg += regmap_get_offset(map, chunk_regs);
2936			val += chunk_bytes;
2937			val_len -= chunk_bytes;
2938		}
2939
2940		/* Read remaining bytes */
2941		if (val_len) {
2942			ret = _regmap_raw_read(map, reg, val, val_len, false);
2943			if (ret != 0)
2944				goto out;
2945		}
2946	} else {
2947		/* Otherwise go word by word for the cache; should be low
2948		 * cost as we expect to hit the cache.
2949		 */
2950		for (i = 0; i < val_count; i++) {
2951			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2952					   &v);
2953			if (ret != 0)
2954				goto out;
2955
2956			map->format.format_val(val + (i * val_bytes), v, 0);
2957		}
2958	}
2959
2960 out:
2961	map->unlock(map->lock_arg);
2962
2963	return ret;
2964}
2965EXPORT_SYMBOL_GPL(regmap_raw_read);
2966
2967/**
2968 * regmap_noinc_read(): Read data from a register without incrementing the
2969 *			register number
2970 *
2971 * @map: Register map to read from
2972 * @reg: Register to read from
2973 * @val: Pointer to data buffer
2974 * @val_len: Length of output buffer in bytes.
2975 *
2976 * The regmap API usually assumes that bulk read operations will read a
2977 * range of registers. Some devices have certain registers for which a read
2978 * operation read will read from an internal FIFO.
2979 *
2980 * The target register must be volatile but registers after it can be
2981 * completely unrelated cacheable registers.
2982 *
2983 * This will attempt multiple reads as required to read val_len bytes.
2984 *
2985 * A value of zero will be returned on success, a negative errno will be
2986 * returned in error cases.
2987 */
2988int regmap_noinc_read(struct regmap *map, unsigned int reg,
2989		      void *val, size_t val_len)
2990{
2991	size_t read_len;
2992	int ret;
2993
2994	if (!map->read)
2995		return -ENOTSUPP;
2996
2997	if (val_len % map->format.val_bytes)
2998		return -EINVAL;
2999	if (!IS_ALIGNED(reg, map->reg_stride))
3000		return -EINVAL;
3001	if (val_len == 0)
3002		return -EINVAL;
3003
3004	map->lock(map->lock_arg);
3005
3006	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3007		ret = -EINVAL;
3008		goto out_unlock;
3009	}
3010
3011	/*
3012	 * We have not defined the FIFO semantics for cache, as the
3013	 * cache is just one value deep. Should we return the last
3014	 * written value? Just avoid this by always reading the FIFO
3015	 * even when using cache. Cache only will not work.
3016	 */
3017	if (!map->cache_bypass && map->cache_only) {
3018		ret = -EBUSY;
3019		goto out_unlock;
3020	}
3021
3022	/* Use the accelerated operation if we can */
3023	if (map->bus->reg_noinc_read) {
3024		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3025		goto out_unlock;
3026	}
3027
3028	while (val_len) {
3029		if (map->max_raw_read && map->max_raw_read < val_len)
3030			read_len = map->max_raw_read;
3031		else
3032			read_len = val_len;
3033		ret = _regmap_raw_read(map, reg, val, read_len, true);
3034		if (ret)
3035			goto out_unlock;
3036		val = ((u8 *)val) + read_len;
3037		val_len -= read_len;
3038	}
3039
3040out_unlock:
3041	map->unlock(map->lock_arg);
3042	return ret;
3043}
3044EXPORT_SYMBOL_GPL(regmap_noinc_read);
3045
3046/**
3047 * regmap_field_read(): Read a value to a single register field
3048 *
3049 * @field: Register field to read from
3050 * @val: Pointer to store read value
3051 *
3052 * A value of zero will be returned on success, a negative errno will
3053 * be returned in error cases.
3054 */
3055int regmap_field_read(struct regmap_field *field, unsigned int *val)
3056{
3057	int ret;
3058	unsigned int reg_val;
3059	ret = regmap_read(field->regmap, field->reg, &reg_val);
3060	if (ret != 0)
3061		return ret;
3062
3063	reg_val &= field->mask;
3064	reg_val >>= field->shift;
3065	*val = reg_val;
3066
3067	return ret;
3068}
3069EXPORT_SYMBOL_GPL(regmap_field_read);
3070
3071/**
3072 * regmap_fields_read() - Read a value to a single register field with port ID
3073 *
3074 * @field: Register field to read from
3075 * @id: port ID
3076 * @val: Pointer to store read value
3077 *
3078 * A value of zero will be returned on success, a negative errno will
3079 * be returned in error cases.
3080 */
3081int regmap_fields_read(struct regmap_field *field, unsigned int id,
3082		       unsigned int *val)
3083{
3084	int ret;
3085	unsigned int reg_val;
3086
3087	if (id >= field->id_size)
3088		return -EINVAL;
3089
3090	ret = regmap_read(field->regmap,
3091			  field->reg + (field->id_offset * id),
3092			  &reg_val);
3093	if (ret != 0)
3094		return ret;
3095
3096	reg_val &= field->mask;
3097	reg_val >>= field->shift;
3098	*val = reg_val;
3099
3100	return ret;
3101}
3102EXPORT_SYMBOL_GPL(regmap_fields_read);
3103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3104/**
3105 * regmap_bulk_read() - Read multiple registers from the device
3106 *
3107 * @map: Register map to read from
3108 * @reg: First register to be read from
3109 * @val: Pointer to store read value, in native register size for device
3110 * @val_count: Number of registers to read
3111 *
3112 * A value of zero will be returned on success, a negative errno will
3113 * be returned in error cases.
3114 */
3115int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3116		     size_t val_count)
3117{
3118	int ret, i;
3119	size_t val_bytes = map->format.val_bytes;
3120	bool vol = regmap_volatile_range(map, reg, val_count);
3121
3122	if (!IS_ALIGNED(reg, map->reg_stride))
3123		return -EINVAL;
3124	if (val_count == 0)
3125		return -EINVAL;
3126
3127	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3128		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3129		if (ret != 0)
3130			return ret;
3131
3132		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3133			map->format.parse_inplace(val + i);
3134	} else {
3135		u32 *u32 = val;
3136		u16 *u16 = val;
3137		u8 *u8 = val;
3138
3139		map->lock(map->lock_arg);
3140
3141		for (i = 0; i < val_count; i++) {
3142			unsigned int ival;
3143
3144			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3145					   &ival);
3146			if (ret != 0)
3147				goto out;
3148
3149			switch (map->format.val_bytes) {
3150			case 4:
3151				u32[i] = ival;
3152				break;
3153			case 2:
3154				u16[i] = ival;
3155				break;
3156			case 1:
3157				u8[i] = ival;
3158				break;
3159			default:
3160				ret = -EINVAL;
3161				goto out;
3162			}
3163		}
3164
3165out:
3166		map->unlock(map->lock_arg);
3167	}
3168
3169	if (!ret)
3170		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3171
3172	return ret;
3173}
3174EXPORT_SYMBOL_GPL(regmap_bulk_read);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3175
3176static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3177			       unsigned int mask, unsigned int val,
3178			       bool *change, bool force_write)
3179{
3180	int ret;
3181	unsigned int tmp, orig;
3182
3183	if (change)
3184		*change = false;
3185
3186	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3187		reg = regmap_reg_addr(map, reg);
3188		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3189		if (ret == 0 && change)
3190			*change = true;
3191	} else {
3192		ret = _regmap_read(map, reg, &orig);
3193		if (ret != 0)
3194			return ret;
3195
3196		tmp = orig & ~mask;
3197		tmp |= val & mask;
3198
3199		if (force_write || (tmp != orig) || map->force_write_field) {
3200			ret = _regmap_write(map, reg, tmp);
3201			if (ret == 0 && change)
3202				*change = true;
3203		}
3204	}
3205
3206	return ret;
3207}
3208
3209/**
3210 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3211 *
3212 * @map: Register map to update
3213 * @reg: Register to update
3214 * @mask: Bitmask to change
3215 * @val: New value for bitmask
3216 * @change: Boolean indicating if a write was done
3217 * @async: Boolean indicating asynchronously
3218 * @force: Boolean indicating use force update
3219 *
3220 * Perform a read/modify/write cycle on a register map with change, async, force
3221 * options.
3222 *
3223 * If async is true:
3224 *
3225 * With most buses the read must be done synchronously so this is most useful
3226 * for devices with a cache which do not need to interact with the hardware to
3227 * determine the current register value.
3228 *
3229 * Returns zero for success, a negative number on error.
3230 */
3231int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3232			    unsigned int mask, unsigned int val,
3233			    bool *change, bool async, bool force)
3234{
3235	int ret;
3236
3237	map->lock(map->lock_arg);
3238
3239	map->async = async;
3240
3241	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3242
3243	map->async = false;
3244
3245	map->unlock(map->lock_arg);
3246
3247	return ret;
3248}
3249EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3250
3251/**
3252 * regmap_test_bits() - Check if all specified bits are set in a register.
3253 *
3254 * @map: Register map to operate on
3255 * @reg: Register to read from
3256 * @bits: Bits to test
3257 *
3258 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3259 * bits are set and a negative error number if the underlying regmap_read()
3260 * fails.
3261 */
3262int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3263{
3264	unsigned int val, ret;
3265
3266	ret = regmap_read(map, reg, &val);
3267	if (ret)
3268		return ret;
3269
3270	return (val & bits) == bits;
3271}
3272EXPORT_SYMBOL_GPL(regmap_test_bits);
3273
3274void regmap_async_complete_cb(struct regmap_async *async, int ret)
3275{
3276	struct regmap *map = async->map;
3277	bool wake;
3278
3279	trace_regmap_async_io_complete(map);
3280
3281	spin_lock(&map->async_lock);
3282	list_move(&async->list, &map->async_free);
3283	wake = list_empty(&map->async_list);
3284
3285	if (ret != 0)
3286		map->async_ret = ret;
3287
3288	spin_unlock(&map->async_lock);
3289
3290	if (wake)
3291		wake_up(&map->async_waitq);
3292}
3293EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3294
3295static int regmap_async_is_done(struct regmap *map)
3296{
3297	unsigned long flags;
3298	int ret;
3299
3300	spin_lock_irqsave(&map->async_lock, flags);
3301	ret = list_empty(&map->async_list);
3302	spin_unlock_irqrestore(&map->async_lock, flags);
3303
3304	return ret;
3305}
3306
3307/**
3308 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3309 *
3310 * @map: Map to operate on.
3311 *
3312 * Blocks until any pending asynchronous I/O has completed.  Returns
3313 * an error code for any failed I/O operations.
3314 */
3315int regmap_async_complete(struct regmap *map)
3316{
3317	unsigned long flags;
3318	int ret;
3319
3320	/* Nothing to do with no async support */
3321	if (!map->bus || !map->bus->async_write)
3322		return 0;
3323
3324	trace_regmap_async_complete_start(map);
3325
3326	wait_event(map->async_waitq, regmap_async_is_done(map));
3327
3328	spin_lock_irqsave(&map->async_lock, flags);
3329	ret = map->async_ret;
3330	map->async_ret = 0;
3331	spin_unlock_irqrestore(&map->async_lock, flags);
3332
3333	trace_regmap_async_complete_done(map);
3334
3335	return ret;
3336}
3337EXPORT_SYMBOL_GPL(regmap_async_complete);
3338
3339/**
3340 * regmap_register_patch - Register and apply register updates to be applied
3341 *                         on device initialistion
3342 *
3343 * @map: Register map to apply updates to.
3344 * @regs: Values to update.
3345 * @num_regs: Number of entries in regs.
3346 *
3347 * Register a set of register updates to be applied to the device
3348 * whenever the device registers are synchronised with the cache and
3349 * apply them immediately.  Typically this is used to apply
3350 * corrections to be applied to the device defaults on startup, such
3351 * as the updates some vendors provide to undocumented registers.
3352 *
3353 * The caller must ensure that this function cannot be called
3354 * concurrently with either itself or regcache_sync().
3355 */
3356int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3357			  int num_regs)
3358{
3359	struct reg_sequence *p;
3360	int ret;
3361	bool bypass;
3362
3363	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3364	    num_regs))
3365		return 0;
3366
3367	p = krealloc(map->patch,
3368		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3369		     GFP_KERNEL);
3370	if (p) {
3371		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3372		map->patch = p;
3373		map->patch_regs += num_regs;
3374	} else {
3375		return -ENOMEM;
3376	}
3377
3378	map->lock(map->lock_arg);
3379
3380	bypass = map->cache_bypass;
3381
3382	map->cache_bypass = true;
3383	map->async = true;
3384
3385	ret = _regmap_multi_reg_write(map, regs, num_regs);
3386
3387	map->async = false;
3388	map->cache_bypass = bypass;
3389
3390	map->unlock(map->lock_arg);
3391
3392	regmap_async_complete(map);
3393
3394	return ret;
3395}
3396EXPORT_SYMBOL_GPL(regmap_register_patch);
3397
3398/**
3399 * regmap_get_val_bytes() - Report the size of a register value
3400 *
3401 * @map: Register map to operate on.
3402 *
3403 * Report the size of a register value, mainly intended to for use by
3404 * generic infrastructure built on top of regmap.
3405 */
3406int regmap_get_val_bytes(struct regmap *map)
3407{
3408	if (map->format.format_write)
3409		return -EINVAL;
3410
3411	return map->format.val_bytes;
3412}
3413EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3414
3415/**
3416 * regmap_get_max_register() - Report the max register value
3417 *
3418 * @map: Register map to operate on.
3419 *
3420 * Report the max register value, mainly intended to for use by
3421 * generic infrastructure built on top of regmap.
3422 */
3423int regmap_get_max_register(struct regmap *map)
3424{
3425	return map->max_register_is_set ? map->max_register : -EINVAL;
3426}
3427EXPORT_SYMBOL_GPL(regmap_get_max_register);
3428
3429/**
3430 * regmap_get_reg_stride() - Report the register address stride
3431 *
3432 * @map: Register map to operate on.
3433 *
3434 * Report the register address stride, mainly intended to for use by
3435 * generic infrastructure built on top of regmap.
3436 */
3437int regmap_get_reg_stride(struct regmap *map)
3438{
3439	return map->reg_stride;
3440}
3441EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3442
3443/**
3444 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3445 *
3446 * @map: Register map to operate on.
3447 *
3448 * Returns true if an access to the register might sleep, else false.
3449 */
3450bool regmap_might_sleep(struct regmap *map)
3451{
3452	return map->can_sleep;
3453}
3454EXPORT_SYMBOL_GPL(regmap_might_sleep);
3455
3456int regmap_parse_val(struct regmap *map, const void *buf,
3457			unsigned int *val)
3458{
3459	if (!map->format.parse_val)
3460		return -EINVAL;
3461
3462	*val = map->format.parse_val(buf);
3463
3464	return 0;
3465}
3466EXPORT_SYMBOL_GPL(regmap_parse_val);
3467
3468static int __init regmap_initcall(void)
3469{
3470	regmap_debugfs_initcall();
3471
3472	return 0;
3473}
3474postcore_initcall(regmap_initcall);