Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * User-space Probes (UProbes) for x86
   4 *
   5 * Copyright (C) IBM Corporation, 2008-2011
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 */
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/ptrace.h>
  13#include <linux/uprobes.h>
  14#include <linux/uaccess.h>
  15#include <linux/syscalls.h>
  16
  17#include <linux/kdebug.h>
  18#include <asm/processor.h>
  19#include <asm/insn.h>
  20#include <asm/mmu_context.h>
  21
  22/* Post-execution fixups. */
  23
  24/* Adjust IP back to vicinity of actual insn */
  25#define UPROBE_FIX_IP		0x01
  26
  27/* Adjust the return address of a call insn */
  28#define UPROBE_FIX_CALL		0x02
  29
  30/* Instruction will modify TF, don't change it */
  31#define UPROBE_FIX_SETF		0x04
  32
  33#define UPROBE_FIX_RIP_SI	0x08
  34#define UPROBE_FIX_RIP_DI	0x10
  35#define UPROBE_FIX_RIP_BX	0x20
  36#define UPROBE_FIX_RIP_MASK	\
  37	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  38
  39#define	UPROBE_TRAP_NR		UINT_MAX
  40
  41/* Adaptations for mhiramat x86 decoder v14. */
  42#define OPCODE1(insn)		((insn)->opcode.bytes[0])
  43#define OPCODE2(insn)		((insn)->opcode.bytes[1])
  44#define OPCODE3(insn)		((insn)->opcode.bytes[2])
  45#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
  46
  47#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  48	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  49	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  50	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  51	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  52	 << (row % 32))
  53
  54/*
  55 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  56 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  57 * some versions of gcc to think only *(unsigned long*) is used.
  58 *
  59 * Opcodes we'll probably never support:
  60 * 6c-6f - ins,outs. SEGVs if used in userspace
  61 * e4-e7 - in,out imm. SEGVs if used in userspace
  62 * ec-ef - in,out acc. SEGVs if used in userspace
  63 * cc - int3. SIGTRAP if used in userspace
  64 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  65 *	(why we support bound (62) then? it's similar, and similarly unused...)
  66 * f1 - int1. SIGTRAP if used in userspace
  67 * f4 - hlt. SEGVs if used in userspace
  68 * fa - cli. SEGVs if used in userspace
  69 * fb - sti. SEGVs if used in userspace
  70 *
  71 * Opcodes which need some work to be supported:
  72 * 07,17,1f - pop es/ss/ds
  73 *	Normally not used in userspace, but would execute if used.
  74 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
  75 *	We hesitate to run them under single step since kernel's handling
  76 *	of userspace single-stepping (TF flag) is fragile.
  77 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  78 *	on the same grounds that they are never used.
  79 * cd - int N.
  80 *	Used by userspace for "int 80" syscall entry. (Other "int N"
  81 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  82 *	Not supported since kernel's handling of userspace single-stepping
  83 *	(TF flag) is fragile.
  84 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  85 */
  86#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  87static volatile u32 good_insns_32[256 / 32] = {
  88	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  89	/*      ----------------------------------------------         */
  90	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  91	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  92	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  93	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  94	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  95	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  96	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  97	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  98	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  99	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 100	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 101	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 102	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 103	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 104	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 105	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 106	/*      ----------------------------------------------         */
 107	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 108};
 109#else
 110#define good_insns_32	NULL
 111#endif
 112
 113/* Good-instruction tables for 64-bit apps.
 114 *
 115 * Genuinely invalid opcodes:
 116 * 06,07 - formerly push/pop es
 117 * 0e - formerly push cs
 118 * 16,17 - formerly push/pop ss
 119 * 1e,1f - formerly push/pop ds
 120 * 27,2f,37,3f - formerly daa/das/aaa/aas
 121 * 60,61 - formerly pusha/popa
 122 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 123 * 82 - formerly redundant encoding of Group1
 124 * 9a - formerly call seg:ofs
 125 * ce - formerly into
 126 * d4,d5 - formerly aam/aad
 127 * d6 - formerly undocumented salc
 128 * ea - formerly jmp seg:ofs
 129 *
 130 * Opcodes we'll probably never support:
 131 * 6c-6f - ins,outs. SEGVs if used in userspace
 132 * e4-e7 - in,out imm. SEGVs if used in userspace
 133 * ec-ef - in,out acc. SEGVs if used in userspace
 134 * cc - int3. SIGTRAP if used in userspace
 135 * f1 - int1. SIGTRAP if used in userspace
 136 * f4 - hlt. SEGVs if used in userspace
 137 * fa - cli. SEGVs if used in userspace
 138 * fb - sti. SEGVs if used in userspace
 139 *
 140 * Opcodes which need some work to be supported:
 141 * cd - int N.
 142 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 143 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 144 *	Not supported since kernel's handling of userspace single-stepping
 145 *	(TF flag) is fragile.
 146 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 147 */
 148#if defined(CONFIG_X86_64)
 149static volatile u32 good_insns_64[256 / 32] = {
 150	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 151	/*      ----------------------------------------------         */
 152	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 153	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 154	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 155	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 156	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 157	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 158	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 159	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 160	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 161	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 162	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 163	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 164	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 165	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 166	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 167	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 168	/*      ----------------------------------------------         */
 169	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 170};
 171#else
 172#define good_insns_64	NULL
 173#endif
 174
 175/* Using this for both 64-bit and 32-bit apps.
 176 * Opcodes we don't support:
 177 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 178 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 179 *	Also encodes tons of other system insns if mod=11.
 180 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 181 * 0f 05 - syscall
 182 * 0f 06 - clts (CPL0 insn)
 183 * 0f 07 - sysret
 184 * 0f 08 - invd (CPL0 insn)
 185 * 0f 09 - wbinvd (CPL0 insn)
 186 * 0f 0b - ud2
 187 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 188 * 0f 34 - sysenter
 189 * 0f 35 - sysexit
 190 * 0f 37 - getsec
 191 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 192 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 193 *	Note: with prefixes, these two opcodes are
 194 *	extrq/insertq/AVX512 convert vector ops.
 195 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 196 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 197 *	Why? They are all user-executable.
 198 */
 199static volatile u32 good_2byte_insns[256 / 32] = {
 200	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 201	/*      ----------------------------------------------         */
 202	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 203	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 204	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 205	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 206	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 207	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 208	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 209	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 210	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 211	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 212	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 213	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 214	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 215	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 216	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 217	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 218	/*      ----------------------------------------------         */
 219	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 220};
 221#undef W
 222
 223/*
 224 * opcodes we may need to refine support for:
 225 *
 226 *  0f - 2-byte instructions: For many of these instructions, the validity
 227 *  depends on the prefix and/or the reg field.  On such instructions, we
 228 *  just consider the opcode combination valid if it corresponds to any
 229 *  valid instruction.
 230 *
 231 *  8f - Group 1 - only reg = 0 is OK
 232 *  c6-c7 - Group 11 - only reg = 0 is OK
 233 *  d9-df - fpu insns with some illegal encodings
 234 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 235 *  certain floating-point instructions, such as addsd.
 236 *
 237 *  fe - Group 4 - only reg = 0 or 1 is OK
 238 *  ff - Group 5 - only reg = 0-6 is OK
 239 *
 240 * others -- Do we need to support these?
 241 *
 242 *  0f - (floating-point?) prefetch instructions
 243 *  07, 17, 1f - pop es, pop ss, pop ds
 244 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 245 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 246 *  67 - addr16 prefix
 247 *  ce - into
 248 *  f0 - lock prefix
 249 */
 250
 251/*
 252 * TODO:
 253 * - Where necessary, examine the modrm byte and allow only valid instructions
 254 * in the different Groups and fpu instructions.
 255 */
 256
 257static bool is_prefix_bad(struct insn *insn)
 258{
 259	insn_byte_t p;
 260	int i;
 261
 262	for_each_insn_prefix(insn, i, p) {
 263		insn_attr_t attr;
 264
 265		attr = inat_get_opcode_attribute(p);
 266		switch (attr) {
 267		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 268		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 269		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 270		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 271		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 272			return true;
 273		}
 274	}
 275	return false;
 276}
 277
 278static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 279{
 280	enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
 281	u32 volatile *good_insns;
 282	int ret;
 283
 284	ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
 285	if (ret < 0)
 286		return -ENOEXEC;
 287
 288	if (is_prefix_bad(insn))
 289		return -ENOTSUPP;
 290
 291	/* We should not singlestep on the exception masking instructions */
 292	if (insn_masking_exception(insn))
 293		return -ENOTSUPP;
 294
 295	if (x86_64)
 296		good_insns = good_insns_64;
 297	else
 298		good_insns = good_insns_32;
 299
 300	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 301		return 0;
 302
 303	if (insn->opcode.nbytes == 2) {
 304		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 305			return 0;
 306	}
 307
 308	return -ENOTSUPP;
 309}
 310
 311#ifdef CONFIG_X86_64
 312
 313asm (
 314	".pushsection .rodata\n"
 315	".global uretprobe_trampoline_entry\n"
 316	"uretprobe_trampoline_entry:\n"
 317	"pushq %rax\n"
 318	"pushq %rcx\n"
 319	"pushq %r11\n"
 320	"movq $" __stringify(__NR_uretprobe) ", %rax\n"
 321	"syscall\n"
 322	".global uretprobe_syscall_check\n"
 323	"uretprobe_syscall_check:\n"
 324	"popq %r11\n"
 325	"popq %rcx\n"
 326
 327	/* The uretprobe syscall replaces stored %rax value with final
 328	 * return address, so we don't restore %rax in here and just
 329	 * call ret.
 330	 */
 331	"retq\n"
 332	".global uretprobe_trampoline_end\n"
 333	"uretprobe_trampoline_end:\n"
 334	".popsection\n"
 335);
 336
 337extern u8 uretprobe_trampoline_entry[];
 338extern u8 uretprobe_trampoline_end[];
 339extern u8 uretprobe_syscall_check[];
 340
 341void *arch_uprobe_trampoline(unsigned long *psize)
 342{
 343	static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
 344	struct pt_regs *regs = task_pt_regs(current);
 345
 346	/*
 347	 * At the moment the uretprobe syscall trampoline is supported
 348	 * only for native 64-bit process, the compat process still uses
 349	 * standard breakpoint.
 350	 */
 351	if (user_64bit_mode(regs)) {
 352		*psize = uretprobe_trampoline_end - uretprobe_trampoline_entry;
 353		return uretprobe_trampoline_entry;
 354	}
 355
 356	*psize = UPROBE_SWBP_INSN_SIZE;
 357	return &insn;
 358}
 359
 360static unsigned long trampoline_check_ip(void)
 361{
 362	unsigned long tramp = uprobe_get_trampoline_vaddr();
 363
 364	return tramp + (uretprobe_syscall_check - uretprobe_trampoline_entry);
 365}
 366
 367SYSCALL_DEFINE0(uretprobe)
 368{
 369	struct pt_regs *regs = task_pt_regs(current);
 370	unsigned long err, ip, sp, r11_cx_ax[3];
 371
 372	if (regs->ip != trampoline_check_ip())
 373		goto sigill;
 374
 375	err = copy_from_user(r11_cx_ax, (void __user *)regs->sp, sizeof(r11_cx_ax));
 376	if (err)
 377		goto sigill;
 378
 379	/* expose the "right" values of r11/cx/ax/sp to uprobe_consumer/s */
 380	regs->r11 = r11_cx_ax[0];
 381	regs->cx  = r11_cx_ax[1];
 382	regs->ax  = r11_cx_ax[2];
 383	regs->sp += sizeof(r11_cx_ax);
 384	regs->orig_ax = -1;
 385
 386	ip = regs->ip;
 387	sp = regs->sp;
 388
 389	uprobe_handle_trampoline(regs);
 390
 391	/*
 392	 * Some of the uprobe consumers has changed sp, we can do nothing,
 393	 * just return via iret.
 394	 * .. or shadow stack is enabled, in which case we need to skip
 395	 * return through the user space stack address.
 396	 */
 397	if (regs->sp != sp || shstk_is_enabled())
 398		return regs->ax;
 399	regs->sp -= sizeof(r11_cx_ax);
 400
 401	/* for the case uprobe_consumer has changed r11/cx */
 402	r11_cx_ax[0] = regs->r11;
 403	r11_cx_ax[1] = regs->cx;
 404
 405	/*
 406	 * ax register is passed through as return value, so we can use
 407	 * its space on stack for ip value and jump to it through the
 408	 * trampoline's ret instruction
 409	 */
 410	r11_cx_ax[2] = regs->ip;
 411	regs->ip = ip;
 412
 413	err = copy_to_user((void __user *)regs->sp, r11_cx_ax, sizeof(r11_cx_ax));
 414	if (err)
 415		goto sigill;
 416
 417	/* ensure sysret, see do_syscall_64() */
 418	regs->r11 = regs->flags;
 419	regs->cx  = regs->ip;
 420
 421	return regs->ax;
 422
 423sigill:
 424	force_sig(SIGILL);
 425	return -1;
 426}
 427
 428/*
 429 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 430 * immediately.  Otherwise, rewrite the instruction so that it accesses
 431 * its memory operand indirectly through a scratch register.  Set
 432 * defparam->fixups accordingly. (The contents of the scratch register
 433 * will be saved before we single-step the modified instruction,
 434 * and restored afterward).
 435 *
 436 * We do this because a rip-relative instruction can access only a
 437 * relatively small area (+/- 2 GB from the instruction), and the XOL
 438 * area typically lies beyond that area.  At least for instructions
 439 * that store to memory, we can't execute the original instruction
 440 * and "fix things up" later, because the misdirected store could be
 441 * disastrous.
 442 *
 443 * Some useful facts about rip-relative instructions:
 444 *
 445 *  - There's always a modrm byte with bit layout "00 reg 101".
 446 *  - There's never a SIB byte.
 447 *  - The displacement is always 4 bytes.
 448 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 449 *    has no effect on rip-relative mode. It doesn't make modrm byte
 450 *    with r/m=101 refer to register 1101 = R13.
 451 */
 452static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 453{
 454	u8 *cursor;
 455	u8 reg;
 456	u8 reg2;
 457
 458	if (!insn_rip_relative(insn))
 459		return;
 460
 461	/*
 462	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 463	 * Clear REX.b bit (extension of MODRM.rm field):
 464	 * we want to encode low numbered reg, not r8+.
 465	 */
 466	if (insn->rex_prefix.nbytes) {
 467		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 468		/* REX byte has 0100wrxb layout, clearing REX.b bit */
 469		*cursor &= 0xfe;
 470	}
 471	/*
 472	 * Similar treatment for VEX3/EVEX prefix.
 473	 * TODO: add XOP treatment when insn decoder supports them
 474	 */
 475	if (insn->vex_prefix.nbytes >= 3) {
 476		/*
 477		 * vex2:     c5    rvvvvLpp   (has no b bit)
 478		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 479		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 480		 * Setting VEX3.b (setting because it has inverted meaning).
 481		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 482		 * is the 4th bit of MODRM.rm, and needs the same treatment.
 483		 * For VEX3-encoded insns, VEX3.x value has no effect in
 484		 * non-SIB encoding, the change is superfluous but harmless.
 485		 */
 486		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 487		*cursor |= 0x60;
 488	}
 489
 490	/*
 491	 * Convert from rip-relative addressing to register-relative addressing
 492	 * via a scratch register.
 493	 *
 494	 * This is tricky since there are insns with modrm byte
 495	 * which also use registers not encoded in modrm byte:
 496	 * [i]div/[i]mul: implicitly use dx:ax
 497	 * shift ops: implicitly use cx
 498	 * cmpxchg: implicitly uses ax
 499	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 500	 *   Encoding: 0f c7/1 modrm
 501	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
 502	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 503	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 504	 *   Example where none of bx,cx,dx can be used as scratch reg:
 505	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 506	 * [v]pcmpistri: implicitly uses cx, xmm0
 507	 * [v]pcmpistrm: implicitly uses xmm0
 508	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 509	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 510	 *   Evil SSE4.2 string comparison ops from hell.
 511	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 512	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 513	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 514	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 515	 *   and that it can have only register operands, not mem
 516	 *   (its modrm byte must have mode=11).
 517	 *   If these restrictions will ever be lifted,
 518	 *   we'll need code to prevent selection of di as scratch reg!
 519	 *
 520	 * Summary: I don't know any insns with modrm byte which
 521	 * use SI register implicitly. DI register is used only
 522	 * by one insn (maskmovq) and BX register is used
 523	 * only by one too (cmpxchg8b).
 524	 * BP is stack-segment based (may be a problem?).
 525	 * AX, DX, CX are off-limits (many implicit users).
 526	 * SP is unusable (it's stack pointer - think about "pop mem";
 527	 * also, rsp+disp32 needs sib encoding -> insn length change).
 528	 */
 529
 530	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
 531	reg2 = 0xff;		/* Fetch vex.vvvv */
 532	if (insn->vex_prefix.nbytes)
 533		reg2 = insn->vex_prefix.bytes[2];
 534	/*
 535	 * TODO: add XOP vvvv reading.
 536	 *
 537	 * vex.vvvv field is in bits 6-3, bits are inverted.
 538	 * But in 32-bit mode, high-order bit may be ignored.
 539	 * Therefore, let's consider only 3 low-order bits.
 540	 */
 541	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 542	/*
 543	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 544	 *
 545	 * Choose scratch reg. Order is important: must not select bx
 546	 * if we can use si (cmpxchg8b case!)
 547	 */
 548	if (reg != 6 && reg2 != 6) {
 549		reg2 = 6;
 550		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 551	} else if (reg != 7 && reg2 != 7) {
 552		reg2 = 7;
 553		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 554		/* TODO (paranoia): force maskmovq to not use di */
 555	} else {
 556		reg2 = 3;
 557		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 558	}
 559	/*
 560	 * Point cursor at the modrm byte.  The next 4 bytes are the
 561	 * displacement.  Beyond the displacement, for some instructions,
 562	 * is the immediate operand.
 563	 */
 564	cursor = auprobe->insn + insn_offset_modrm(insn);
 565	/*
 566	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 567	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
 568	 * 89 86 disp32  mov %eax,disp32(%rsi)
 569	 */
 570	*cursor = 0x80 | (reg << 3) | reg2;
 571}
 572
 573static inline unsigned long *
 574scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 575{
 576	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 577		return &regs->si;
 578	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 579		return &regs->di;
 580	return &regs->bx;
 581}
 582
 583/*
 584 * If we're emulating a rip-relative instruction, save the contents
 585 * of the scratch register and store the target address in that register.
 586 */
 587static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 588{
 589	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 590		struct uprobe_task *utask = current->utask;
 591		unsigned long *sr = scratch_reg(auprobe, regs);
 592
 593		utask->autask.saved_scratch_register = *sr;
 594		*sr = utask->vaddr + auprobe->defparam.ilen;
 595	}
 596}
 597
 598static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 599{
 600	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 601		struct uprobe_task *utask = current->utask;
 602		unsigned long *sr = scratch_reg(auprobe, regs);
 603
 604		*sr = utask->autask.saved_scratch_register;
 605	}
 606}
 607#else /* 32-bit: */
 608/*
 609 * No RIP-relative addressing on 32-bit
 610 */
 611static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 612{
 613}
 614static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 615{
 616}
 617static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 618{
 619}
 620#endif /* CONFIG_X86_64 */
 621
 622struct uprobe_xol_ops {
 623	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
 624	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 625	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
 626	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
 627};
 628
 629static inline int sizeof_long(struct pt_regs *regs)
 630{
 631	/*
 632	 * Check registers for mode as in_xxx_syscall() does not apply here.
 633	 */
 634	return user_64bit_mode(regs) ? 8 : 4;
 635}
 636
 637static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 638{
 639	riprel_pre_xol(auprobe, regs);
 640	return 0;
 641}
 642
 643static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 644{
 645	unsigned long new_sp = regs->sp - sizeof_long(regs);
 646
 647	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
 648		return -EFAULT;
 649
 650	regs->sp = new_sp;
 651	return 0;
 652}
 653
 654/*
 655 * We have to fix things up as follows:
 656 *
 657 * Typically, the new ip is relative to the copied instruction.  We need
 658 * to make it relative to the original instruction (FIX_IP).  Exceptions
 659 * are return instructions and absolute or indirect jump or call instructions.
 660 *
 661 * If the single-stepped instruction was a call, the return address that
 662 * is atop the stack is the address following the copied instruction.  We
 663 * need to make it the address following the original instruction (FIX_CALL).
 664 *
 665 * If the original instruction was a rip-relative instruction such as
 666 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 667 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 668 * We need to restore the contents of the scratch register
 669 * (FIX_RIP_reg).
 670 */
 671static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 672{
 673	struct uprobe_task *utask = current->utask;
 674
 675	riprel_post_xol(auprobe, regs);
 676	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 677		long correction = utask->vaddr - utask->xol_vaddr;
 678		regs->ip += correction;
 679	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 680		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
 681		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 682			return -ERESTART;
 683	}
 684	/* popf; tell the caller to not touch TF */
 685	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 686		utask->autask.saved_tf = true;
 687
 688	return 0;
 689}
 690
 691static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 692{
 693	riprel_post_xol(auprobe, regs);
 694}
 695
 696static const struct uprobe_xol_ops default_xol_ops = {
 697	.pre_xol  = default_pre_xol_op,
 698	.post_xol = default_post_xol_op,
 699	.abort	  = default_abort_op,
 700};
 701
 702static bool branch_is_call(struct arch_uprobe *auprobe)
 703{
 704	return auprobe->branch.opc1 == 0xe8;
 705}
 706
 707#define CASE_COND					\
 708	COND(70, 71, XF(OF))				\
 709	COND(72, 73, XF(CF))				\
 710	COND(74, 75, XF(ZF))				\
 711	COND(78, 79, XF(SF))				\
 712	COND(7a, 7b, XF(PF))				\
 713	COND(76, 77, XF(CF) || XF(ZF))			\
 714	COND(7c, 7d, XF(SF) != XF(OF))			\
 715	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 716
 717#define COND(op_y, op_n, expr)				\
 718	case 0x ## op_y: DO((expr) != 0)		\
 719	case 0x ## op_n: DO((expr) == 0)
 720
 721#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
 722
 723static bool is_cond_jmp_opcode(u8 opcode)
 724{
 725	switch (opcode) {
 726	#define DO(expr)	\
 727		return true;
 728	CASE_COND
 729	#undef	DO
 730
 731	default:
 732		return false;
 733	}
 734}
 735
 736static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 737{
 738	unsigned long flags = regs->flags;
 739
 740	switch (auprobe->branch.opc1) {
 741	#define DO(expr)	\
 742		return expr;
 743	CASE_COND
 744	#undef	DO
 745
 746	default:	/* not a conditional jmp */
 747		return true;
 748	}
 749}
 750
 751#undef	XF
 752#undef	COND
 753#undef	CASE_COND
 754
 755static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 756{
 757	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 758	unsigned long offs = (long)auprobe->branch.offs;
 759
 760	if (branch_is_call(auprobe)) {
 761		/*
 762		 * If it fails we execute this (mangled, see the comment in
 763		 * branch_clear_offset) insn out-of-line. In the likely case
 764		 * this should trigger the trap, and the probed application
 765		 * should die or restart the same insn after it handles the
 766		 * signal, arch_uprobe_post_xol() won't be even called.
 767		 *
 768		 * But there is corner case, see the comment in ->post_xol().
 769		 */
 770		if (emulate_push_stack(regs, new_ip))
 771			return false;
 772	} else if (!check_jmp_cond(auprobe, regs)) {
 773		offs = 0;
 774	}
 775
 776	regs->ip = new_ip + offs;
 777	return true;
 778}
 779
 780static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 781{
 782	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 783
 784	if (emulate_push_stack(regs, *src_ptr))
 785		return false;
 786	regs->ip += auprobe->push.ilen;
 787	return true;
 788}
 789
 790static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 791{
 792	BUG_ON(!branch_is_call(auprobe));
 793	/*
 794	 * We can only get here if branch_emulate_op() failed to push the ret
 795	 * address _and_ another thread expanded our stack before the (mangled)
 796	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
 797	 * We could also restore ->ip and try to call branch_emulate_op() again.
 798	 */
 799	regs->sp += sizeof_long(regs);
 800	return -ERESTART;
 801}
 802
 803static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 804{
 805	/*
 806	 * Turn this insn into "call 1f; 1:", this is what we will execute
 807	 * out-of-line if ->emulate() fails. We only need this to generate
 808	 * a trap, so that the probed task receives the correct signal with
 809	 * the properly filled siginfo.
 810	 *
 811	 * But see the comment in ->post_xol(), in the unlikely case it can
 812	 * succeed. So we need to ensure that the new ->ip can not fall into
 813	 * the non-canonical area and trigger #GP.
 814	 *
 815	 * We could turn it into (say) "pushf", but then we would need to
 816	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 817	 * of ->insn[] for set_orig_insn().
 818	 */
 819	memset(auprobe->insn + insn_offset_immediate(insn),
 820		0, insn->immediate.nbytes);
 821}
 822
 823static const struct uprobe_xol_ops branch_xol_ops = {
 824	.emulate  = branch_emulate_op,
 825	.post_xol = branch_post_xol_op,
 826};
 827
 828static const struct uprobe_xol_ops push_xol_ops = {
 829	.emulate  = push_emulate_op,
 830};
 831
 832/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 833static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 834{
 835	u8 opc1 = OPCODE1(insn);
 836	insn_byte_t p;
 837	int i;
 838
 839	switch (opc1) {
 840	case 0xeb:	/* jmp 8 */
 841	case 0xe9:	/* jmp 32 */
 842		break;
 843	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
 844		goto setup;
 845
 846	case 0xe8:	/* call relative */
 847		branch_clear_offset(auprobe, insn);
 848		break;
 849
 850	case 0x0f:
 851		if (insn->opcode.nbytes != 2)
 852			return -ENOSYS;
 853		/*
 854		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 855		 * OPCODE1() of the "short" jmp which checks the same condition.
 856		 */
 857		opc1 = OPCODE2(insn) - 0x10;
 858		fallthrough;
 859	default:
 860		if (!is_cond_jmp_opcode(opc1))
 861			return -ENOSYS;
 862	}
 863
 864	/*
 865	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 866	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 867	 * No one uses these insns, reject any branch insns with such prefix.
 868	 */
 869	for_each_insn_prefix(insn, i, p) {
 870		if (p == 0x66)
 871			return -ENOTSUPP;
 872	}
 873
 874setup:
 875	auprobe->branch.opc1 = opc1;
 876	auprobe->branch.ilen = insn->length;
 877	auprobe->branch.offs = insn->immediate.value;
 878
 879	auprobe->ops = &branch_xol_ops;
 880	return 0;
 881}
 882
 883/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 884static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 885{
 886	u8 opc1 = OPCODE1(insn), reg_offset = 0;
 887
 888	if (opc1 < 0x50 || opc1 > 0x57)
 889		return -ENOSYS;
 890
 891	if (insn->length > 2)
 892		return -ENOSYS;
 893	if (insn->length == 2) {
 894		/* only support rex_prefix 0x41 (x64 only) */
 895#ifdef CONFIG_X86_64
 896		if (insn->rex_prefix.nbytes != 1 ||
 897		    insn->rex_prefix.bytes[0] != 0x41)
 898			return -ENOSYS;
 899
 900		switch (opc1) {
 901		case 0x50:
 902			reg_offset = offsetof(struct pt_regs, r8);
 903			break;
 904		case 0x51:
 905			reg_offset = offsetof(struct pt_regs, r9);
 906			break;
 907		case 0x52:
 908			reg_offset = offsetof(struct pt_regs, r10);
 909			break;
 910		case 0x53:
 911			reg_offset = offsetof(struct pt_regs, r11);
 912			break;
 913		case 0x54:
 914			reg_offset = offsetof(struct pt_regs, r12);
 915			break;
 916		case 0x55:
 917			reg_offset = offsetof(struct pt_regs, r13);
 918			break;
 919		case 0x56:
 920			reg_offset = offsetof(struct pt_regs, r14);
 921			break;
 922		case 0x57:
 923			reg_offset = offsetof(struct pt_regs, r15);
 924			break;
 925		}
 926#else
 927		return -ENOSYS;
 928#endif
 929	} else {
 930		switch (opc1) {
 931		case 0x50:
 932			reg_offset = offsetof(struct pt_regs, ax);
 933			break;
 934		case 0x51:
 935			reg_offset = offsetof(struct pt_regs, cx);
 936			break;
 937		case 0x52:
 938			reg_offset = offsetof(struct pt_regs, dx);
 939			break;
 940		case 0x53:
 941			reg_offset = offsetof(struct pt_regs, bx);
 942			break;
 943		case 0x54:
 944			reg_offset = offsetof(struct pt_regs, sp);
 945			break;
 946		case 0x55:
 947			reg_offset = offsetof(struct pt_regs, bp);
 948			break;
 949		case 0x56:
 950			reg_offset = offsetof(struct pt_regs, si);
 951			break;
 952		case 0x57:
 953			reg_offset = offsetof(struct pt_regs, di);
 954			break;
 955		}
 956	}
 957
 958	auprobe->push.reg_offset = reg_offset;
 959	auprobe->push.ilen = insn->length;
 960	auprobe->ops = &push_xol_ops;
 961	return 0;
 962}
 963
 964/**
 965 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 966 * @auprobe: the probepoint information.
 967 * @mm: the probed address space.
 968 * @addr: virtual address at which to install the probepoint
 969 * Return 0 on success or a -ve number on error.
 970 */
 971int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 972{
 973	struct insn insn;
 974	u8 fix_ip_or_call = UPROBE_FIX_IP;
 975	int ret;
 976
 977	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 978	if (ret)
 979		return ret;
 980
 981	ret = branch_setup_xol_ops(auprobe, &insn);
 982	if (ret != -ENOSYS)
 983		return ret;
 984
 985	ret = push_setup_xol_ops(auprobe, &insn);
 986	if (ret != -ENOSYS)
 987		return ret;
 988
 989	/*
 990	 * Figure out which fixups default_post_xol_op() will need to perform,
 991	 * and annotate defparam->fixups accordingly.
 992	 */
 993	switch (OPCODE1(&insn)) {
 994	case 0x9d:		/* popf */
 995		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 996		break;
 997	case 0xc3:		/* ret or lret -- ip is correct */
 998	case 0xcb:
 999	case 0xc2:
1000	case 0xca:
1001	case 0xea:		/* jmp absolute -- ip is correct */
1002		fix_ip_or_call = 0;
1003		break;
1004	case 0x9a:		/* call absolute - Fix return addr, not ip */
1005		fix_ip_or_call = UPROBE_FIX_CALL;
1006		break;
1007	case 0xff:
1008		switch (MODRM_REG(&insn)) {
1009		case 2: case 3:			/* call or lcall, indirect */
1010			fix_ip_or_call = UPROBE_FIX_CALL;
1011			break;
1012		case 4: case 5:			/* jmp or ljmp, indirect */
1013			fix_ip_or_call = 0;
1014			break;
1015		}
1016		fallthrough;
1017	default:
1018		riprel_analyze(auprobe, &insn);
1019	}
1020
1021	auprobe->defparam.ilen = insn.length;
1022	auprobe->defparam.fixups |= fix_ip_or_call;
1023
1024	auprobe->ops = &default_xol_ops;
1025	return 0;
1026}
1027
1028/*
1029 * arch_uprobe_pre_xol - prepare to execute out of line.
1030 * @auprobe: the probepoint information.
1031 * @regs: reflects the saved user state of current task.
1032 */
1033int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1034{
1035	struct uprobe_task *utask = current->utask;
1036
1037	if (auprobe->ops->pre_xol) {
1038		int err = auprobe->ops->pre_xol(auprobe, regs);
1039		if (err)
1040			return err;
1041	}
1042
1043	regs->ip = utask->xol_vaddr;
1044	utask->autask.saved_trap_nr = current->thread.trap_nr;
1045	current->thread.trap_nr = UPROBE_TRAP_NR;
1046
1047	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
1048	regs->flags |= X86_EFLAGS_TF;
1049	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
1050		set_task_blockstep(current, false);
1051
1052	return 0;
1053}
1054
1055/*
1056 * If xol insn itself traps and generates a signal(Say,
1057 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
1058 * instruction jumps back to its own address. It is assumed that anything
1059 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
1060 *
1061 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
1062 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
1063 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
1064 */
1065bool arch_uprobe_xol_was_trapped(struct task_struct *t)
1066{
1067	if (t->thread.trap_nr != UPROBE_TRAP_NR)
1068		return true;
1069
1070	return false;
1071}
1072
1073/*
1074 * Called after single-stepping. To avoid the SMP problems that can
1075 * occur when we temporarily put back the original opcode to
1076 * single-step, we single-stepped a copy of the instruction.
1077 *
1078 * This function prepares to resume execution after the single-step.
1079 */
1080int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1081{
1082	struct uprobe_task *utask = current->utask;
1083	bool send_sigtrap = utask->autask.saved_tf;
1084	int err = 0;
1085
1086	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
1087	current->thread.trap_nr = utask->autask.saved_trap_nr;
1088
1089	if (auprobe->ops->post_xol) {
1090		err = auprobe->ops->post_xol(auprobe, regs);
1091		if (err) {
1092			/*
1093			 * Restore ->ip for restart or post mortem analysis.
1094			 * ->post_xol() must not return -ERESTART unless this
1095			 * is really possible.
1096			 */
1097			regs->ip = utask->vaddr;
1098			if (err == -ERESTART)
1099				err = 0;
1100			send_sigtrap = false;
1101		}
1102	}
1103	/*
1104	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
1105	 * so we can get an extra SIGTRAP if we do not clear TF. We need
1106	 * to examine the opcode to make it right.
1107	 */
1108	if (send_sigtrap)
1109		send_sig(SIGTRAP, current, 0);
1110
1111	if (!utask->autask.saved_tf)
1112		regs->flags &= ~X86_EFLAGS_TF;
1113
1114	return err;
1115}
1116
1117/* callback routine for handling exceptions. */
1118int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1119{
1120	struct die_args *args = data;
1121	struct pt_regs *regs = args->regs;
1122	int ret = NOTIFY_DONE;
1123
1124	/* We are only interested in userspace traps */
1125	if (regs && !user_mode(regs))
1126		return NOTIFY_DONE;
1127
1128	switch (val) {
1129	case DIE_INT3:
1130		if (uprobe_pre_sstep_notifier(regs))
1131			ret = NOTIFY_STOP;
1132
1133		break;
1134
1135	case DIE_DEBUG:
1136		if (uprobe_post_sstep_notifier(regs))
1137			ret = NOTIFY_STOP;
1138
1139		break;
1140
1141	default:
1142		break;
1143	}
1144
1145	return ret;
1146}
1147
1148/*
1149 * This function gets called when XOL instruction either gets trapped or
1150 * the thread has a fatal signal. Reset the instruction pointer to its
1151 * probed address for the potential restart or for post mortem analysis.
1152 */
1153void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1154{
1155	struct uprobe_task *utask = current->utask;
1156
1157	if (auprobe->ops->abort)
1158		auprobe->ops->abort(auprobe, regs);
1159
1160	current->thread.trap_nr = utask->autask.saved_trap_nr;
1161	regs->ip = utask->vaddr;
1162	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1163	if (!utask->autask.saved_tf)
1164		regs->flags &= ~X86_EFLAGS_TF;
1165}
1166
1167static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1168{
1169	if (auprobe->ops->emulate)
1170		return auprobe->ops->emulate(auprobe, regs);
1171	return false;
1172}
1173
1174bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1175{
1176	bool ret = __skip_sstep(auprobe, regs);
1177	if (ret && (regs->flags & X86_EFLAGS_TF))
1178		send_sig(SIGTRAP, current, 0);
1179	return ret;
1180}
1181
1182unsigned long
1183arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1184{
1185	int rasize = sizeof_long(regs), nleft;
1186	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1187
1188	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1189		return -1;
1190
1191	/* check whether address has been already hijacked */
1192	if (orig_ret_vaddr == trampoline_vaddr)
1193		return orig_ret_vaddr;
1194
1195	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1196	if (likely(!nleft)) {
1197		if (shstk_update_last_frame(trampoline_vaddr)) {
1198			force_sig(SIGSEGV);
1199			return -1;
1200		}
1201		return orig_ret_vaddr;
1202	}
1203
1204	if (nleft != rasize) {
1205		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1206		       current->pid, regs->sp, regs->ip);
1207
1208		force_sig(SIGSEGV);
1209	}
1210
1211	return -1;
1212}
1213
1214bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1215				struct pt_regs *regs)
1216{
1217	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1218		return regs->sp < ret->stack;
1219	else
1220		return regs->sp <= ret->stack;
1221}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * User-space Probes (UProbes) for x86
   4 *
   5 * Copyright (C) IBM Corporation, 2008-2011
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 */
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/ptrace.h>
  13#include <linux/uprobes.h>
  14#include <linux/uaccess.h>
 
  15
  16#include <linux/kdebug.h>
  17#include <asm/processor.h>
  18#include <asm/insn.h>
  19#include <asm/mmu_context.h>
  20
  21/* Post-execution fixups. */
  22
  23/* Adjust IP back to vicinity of actual insn */
  24#define UPROBE_FIX_IP		0x01
  25
  26/* Adjust the return address of a call insn */
  27#define UPROBE_FIX_CALL		0x02
  28
  29/* Instruction will modify TF, don't change it */
  30#define UPROBE_FIX_SETF		0x04
  31
  32#define UPROBE_FIX_RIP_SI	0x08
  33#define UPROBE_FIX_RIP_DI	0x10
  34#define UPROBE_FIX_RIP_BX	0x20
  35#define UPROBE_FIX_RIP_MASK	\
  36	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  37
  38#define	UPROBE_TRAP_NR		UINT_MAX
  39
  40/* Adaptations for mhiramat x86 decoder v14. */
  41#define OPCODE1(insn)		((insn)->opcode.bytes[0])
  42#define OPCODE2(insn)		((insn)->opcode.bytes[1])
  43#define OPCODE3(insn)		((insn)->opcode.bytes[2])
  44#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
  45
  46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  47	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  48	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  49	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  50	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  51	 << (row % 32))
  52
  53/*
  54 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  56 * some versions of gcc to think only *(unsigned long*) is used.
  57 *
  58 * Opcodes we'll probably never support:
  59 * 6c-6f - ins,outs. SEGVs if used in userspace
  60 * e4-e7 - in,out imm. SEGVs if used in userspace
  61 * ec-ef - in,out acc. SEGVs if used in userspace
  62 * cc - int3. SIGTRAP if used in userspace
  63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  64 *	(why we support bound (62) then? it's similar, and similarly unused...)
  65 * f1 - int1. SIGTRAP if used in userspace
  66 * f4 - hlt. SEGVs if used in userspace
  67 * fa - cli. SEGVs if used in userspace
  68 * fb - sti. SEGVs if used in userspace
  69 *
  70 * Opcodes which need some work to be supported:
  71 * 07,17,1f - pop es/ss/ds
  72 *	Normally not used in userspace, but would execute if used.
  73 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
  74 *	We hesitate to run them under single step since kernel's handling
  75 *	of userspace single-stepping (TF flag) is fragile.
  76 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  77 *	on the same grounds that they are never used.
  78 * cd - int N.
  79 *	Used by userspace for "int 80" syscall entry. (Other "int N"
  80 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  81 *	Not supported since kernel's handling of userspace single-stepping
  82 *	(TF flag) is fragile.
  83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  84 */
  85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  86static volatile u32 good_insns_32[256 / 32] = {
  87	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  88	/*      ----------------------------------------------         */
  89	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  90	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  91	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  92	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  93	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  94	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  95	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  96	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  97	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  98	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  99	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 100	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 101	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 102	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 103	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 104	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 105	/*      ----------------------------------------------         */
 106	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 107};
 108#else
 109#define good_insns_32	NULL
 110#endif
 111
 112/* Good-instruction tables for 64-bit apps.
 113 *
 114 * Genuinely invalid opcodes:
 115 * 06,07 - formerly push/pop es
 116 * 0e - formerly push cs
 117 * 16,17 - formerly push/pop ss
 118 * 1e,1f - formerly push/pop ds
 119 * 27,2f,37,3f - formerly daa/das/aaa/aas
 120 * 60,61 - formerly pusha/popa
 121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 122 * 82 - formerly redundant encoding of Group1
 123 * 9a - formerly call seg:ofs
 124 * ce - formerly into
 125 * d4,d5 - formerly aam/aad
 126 * d6 - formerly undocumented salc
 127 * ea - formerly jmp seg:ofs
 128 *
 129 * Opcodes we'll probably never support:
 130 * 6c-6f - ins,outs. SEGVs if used in userspace
 131 * e4-e7 - in,out imm. SEGVs if used in userspace
 132 * ec-ef - in,out acc. SEGVs if used in userspace
 133 * cc - int3. SIGTRAP if used in userspace
 134 * f1 - int1. SIGTRAP if used in userspace
 135 * f4 - hlt. SEGVs if used in userspace
 136 * fa - cli. SEGVs if used in userspace
 137 * fb - sti. SEGVs if used in userspace
 138 *
 139 * Opcodes which need some work to be supported:
 140 * cd - int N.
 141 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 142 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 143 *	Not supported since kernel's handling of userspace single-stepping
 144 *	(TF flag) is fragile.
 145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 146 */
 147#if defined(CONFIG_X86_64)
 148static volatile u32 good_insns_64[256 / 32] = {
 149	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 150	/*      ----------------------------------------------         */
 151	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 152	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 153	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 154	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 155	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 156	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 157	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 158	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 159	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 160	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 161	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 162	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 163	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 164	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 165	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 166	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 167	/*      ----------------------------------------------         */
 168	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 169};
 170#else
 171#define good_insns_64	NULL
 172#endif
 173
 174/* Using this for both 64-bit and 32-bit apps.
 175 * Opcodes we don't support:
 176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 178 *	Also encodes tons of other system insns if mod=11.
 179 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 180 * 0f 05 - syscall
 181 * 0f 06 - clts (CPL0 insn)
 182 * 0f 07 - sysret
 183 * 0f 08 - invd (CPL0 insn)
 184 * 0f 09 - wbinvd (CPL0 insn)
 185 * 0f 0b - ud2
 186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 187 * 0f 34 - sysenter
 188 * 0f 35 - sysexit
 189 * 0f 37 - getsec
 190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 192 *	Note: with prefixes, these two opcodes are
 193 *	extrq/insertq/AVX512 convert vector ops.
 194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 195 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 196 *	Why? They are all user-executable.
 197 */
 198static volatile u32 good_2byte_insns[256 / 32] = {
 199	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 200	/*      ----------------------------------------------         */
 201	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 202	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 203	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 204	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 205	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 206	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 207	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 208	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 209	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 210	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 211	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 212	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 213	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 214	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 215	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 216	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 217	/*      ----------------------------------------------         */
 218	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 219};
 220#undef W
 221
 222/*
 223 * opcodes we may need to refine support for:
 224 *
 225 *  0f - 2-byte instructions: For many of these instructions, the validity
 226 *  depends on the prefix and/or the reg field.  On such instructions, we
 227 *  just consider the opcode combination valid if it corresponds to any
 228 *  valid instruction.
 229 *
 230 *  8f - Group 1 - only reg = 0 is OK
 231 *  c6-c7 - Group 11 - only reg = 0 is OK
 232 *  d9-df - fpu insns with some illegal encodings
 233 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 234 *  certain floating-point instructions, such as addsd.
 235 *
 236 *  fe - Group 4 - only reg = 0 or 1 is OK
 237 *  ff - Group 5 - only reg = 0-6 is OK
 238 *
 239 * others -- Do we need to support these?
 240 *
 241 *  0f - (floating-point?) prefetch instructions
 242 *  07, 17, 1f - pop es, pop ss, pop ds
 243 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 244 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 245 *  67 - addr16 prefix
 246 *  ce - into
 247 *  f0 - lock prefix
 248 */
 249
 250/*
 251 * TODO:
 252 * - Where necessary, examine the modrm byte and allow only valid instructions
 253 * in the different Groups and fpu instructions.
 254 */
 255
 256static bool is_prefix_bad(struct insn *insn)
 257{
 258	insn_byte_t p;
 259	int i;
 260
 261	for_each_insn_prefix(insn, i, p) {
 262		insn_attr_t attr;
 263
 264		attr = inat_get_opcode_attribute(p);
 265		switch (attr) {
 266		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 267		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 268		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 269		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 270		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 271			return true;
 272		}
 273	}
 274	return false;
 275}
 276
 277static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 278{
 279	enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
 280	u32 volatile *good_insns;
 281	int ret;
 282
 283	ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
 284	if (ret < 0)
 285		return -ENOEXEC;
 286
 287	if (is_prefix_bad(insn))
 288		return -ENOTSUPP;
 289
 290	/* We should not singlestep on the exception masking instructions */
 291	if (insn_masking_exception(insn))
 292		return -ENOTSUPP;
 293
 294	if (x86_64)
 295		good_insns = good_insns_64;
 296	else
 297		good_insns = good_insns_32;
 298
 299	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 300		return 0;
 301
 302	if (insn->opcode.nbytes == 2) {
 303		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 304			return 0;
 305	}
 306
 307	return -ENOTSUPP;
 308}
 309
 310#ifdef CONFIG_X86_64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311/*
 312 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 313 * immediately.  Otherwise, rewrite the instruction so that it accesses
 314 * its memory operand indirectly through a scratch register.  Set
 315 * defparam->fixups accordingly. (The contents of the scratch register
 316 * will be saved before we single-step the modified instruction,
 317 * and restored afterward).
 318 *
 319 * We do this because a rip-relative instruction can access only a
 320 * relatively small area (+/- 2 GB from the instruction), and the XOL
 321 * area typically lies beyond that area.  At least for instructions
 322 * that store to memory, we can't execute the original instruction
 323 * and "fix things up" later, because the misdirected store could be
 324 * disastrous.
 325 *
 326 * Some useful facts about rip-relative instructions:
 327 *
 328 *  - There's always a modrm byte with bit layout "00 reg 101".
 329 *  - There's never a SIB byte.
 330 *  - The displacement is always 4 bytes.
 331 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 332 *    has no effect on rip-relative mode. It doesn't make modrm byte
 333 *    with r/m=101 refer to register 1101 = R13.
 334 */
 335static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 336{
 337	u8 *cursor;
 338	u8 reg;
 339	u8 reg2;
 340
 341	if (!insn_rip_relative(insn))
 342		return;
 343
 344	/*
 345	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 346	 * Clear REX.b bit (extension of MODRM.rm field):
 347	 * we want to encode low numbered reg, not r8+.
 348	 */
 349	if (insn->rex_prefix.nbytes) {
 350		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 351		/* REX byte has 0100wrxb layout, clearing REX.b bit */
 352		*cursor &= 0xfe;
 353	}
 354	/*
 355	 * Similar treatment for VEX3/EVEX prefix.
 356	 * TODO: add XOP treatment when insn decoder supports them
 357	 */
 358	if (insn->vex_prefix.nbytes >= 3) {
 359		/*
 360		 * vex2:     c5    rvvvvLpp   (has no b bit)
 361		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 362		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 363		 * Setting VEX3.b (setting because it has inverted meaning).
 364		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 365		 * is the 4th bit of MODRM.rm, and needs the same treatment.
 366		 * For VEX3-encoded insns, VEX3.x value has no effect in
 367		 * non-SIB encoding, the change is superfluous but harmless.
 368		 */
 369		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 370		*cursor |= 0x60;
 371	}
 372
 373	/*
 374	 * Convert from rip-relative addressing to register-relative addressing
 375	 * via a scratch register.
 376	 *
 377	 * This is tricky since there are insns with modrm byte
 378	 * which also use registers not encoded in modrm byte:
 379	 * [i]div/[i]mul: implicitly use dx:ax
 380	 * shift ops: implicitly use cx
 381	 * cmpxchg: implicitly uses ax
 382	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 383	 *   Encoding: 0f c7/1 modrm
 384	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
 385	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 386	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 387	 *   Example where none of bx,cx,dx can be used as scratch reg:
 388	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 389	 * [v]pcmpistri: implicitly uses cx, xmm0
 390	 * [v]pcmpistrm: implicitly uses xmm0
 391	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 392	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 393	 *   Evil SSE4.2 string comparison ops from hell.
 394	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 395	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 396	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 397	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 398	 *   and that it can have only register operands, not mem
 399	 *   (its modrm byte must have mode=11).
 400	 *   If these restrictions will ever be lifted,
 401	 *   we'll need code to prevent selection of di as scratch reg!
 402	 *
 403	 * Summary: I don't know any insns with modrm byte which
 404	 * use SI register implicitly. DI register is used only
 405	 * by one insn (maskmovq) and BX register is used
 406	 * only by one too (cmpxchg8b).
 407	 * BP is stack-segment based (may be a problem?).
 408	 * AX, DX, CX are off-limits (many implicit users).
 409	 * SP is unusable (it's stack pointer - think about "pop mem";
 410	 * also, rsp+disp32 needs sib encoding -> insn length change).
 411	 */
 412
 413	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
 414	reg2 = 0xff;		/* Fetch vex.vvvv */
 415	if (insn->vex_prefix.nbytes)
 416		reg2 = insn->vex_prefix.bytes[2];
 417	/*
 418	 * TODO: add XOP vvvv reading.
 419	 *
 420	 * vex.vvvv field is in bits 6-3, bits are inverted.
 421	 * But in 32-bit mode, high-order bit may be ignored.
 422	 * Therefore, let's consider only 3 low-order bits.
 423	 */
 424	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 425	/*
 426	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 427	 *
 428	 * Choose scratch reg. Order is important: must not select bx
 429	 * if we can use si (cmpxchg8b case!)
 430	 */
 431	if (reg != 6 && reg2 != 6) {
 432		reg2 = 6;
 433		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 434	} else if (reg != 7 && reg2 != 7) {
 435		reg2 = 7;
 436		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 437		/* TODO (paranoia): force maskmovq to not use di */
 438	} else {
 439		reg2 = 3;
 440		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 441	}
 442	/*
 443	 * Point cursor at the modrm byte.  The next 4 bytes are the
 444	 * displacement.  Beyond the displacement, for some instructions,
 445	 * is the immediate operand.
 446	 */
 447	cursor = auprobe->insn + insn_offset_modrm(insn);
 448	/*
 449	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 450	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
 451	 * 89 86 disp32  mov %eax,disp32(%rsi)
 452	 */
 453	*cursor = 0x80 | (reg << 3) | reg2;
 454}
 455
 456static inline unsigned long *
 457scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 458{
 459	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 460		return &regs->si;
 461	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 462		return &regs->di;
 463	return &regs->bx;
 464}
 465
 466/*
 467 * If we're emulating a rip-relative instruction, save the contents
 468 * of the scratch register and store the target address in that register.
 469 */
 470static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 471{
 472	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 473		struct uprobe_task *utask = current->utask;
 474		unsigned long *sr = scratch_reg(auprobe, regs);
 475
 476		utask->autask.saved_scratch_register = *sr;
 477		*sr = utask->vaddr + auprobe->defparam.ilen;
 478	}
 479}
 480
 481static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 482{
 483	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 484		struct uprobe_task *utask = current->utask;
 485		unsigned long *sr = scratch_reg(auprobe, regs);
 486
 487		*sr = utask->autask.saved_scratch_register;
 488	}
 489}
 490#else /* 32-bit: */
 491/*
 492 * No RIP-relative addressing on 32-bit
 493 */
 494static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 495{
 496}
 497static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 498{
 499}
 500static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 501{
 502}
 503#endif /* CONFIG_X86_64 */
 504
 505struct uprobe_xol_ops {
 506	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
 507	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 508	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
 509	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
 510};
 511
 512static inline int sizeof_long(struct pt_regs *regs)
 513{
 514	/*
 515	 * Check registers for mode as in_xxx_syscall() does not apply here.
 516	 */
 517	return user_64bit_mode(regs) ? 8 : 4;
 518}
 519
 520static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 521{
 522	riprel_pre_xol(auprobe, regs);
 523	return 0;
 524}
 525
 526static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 527{
 528	unsigned long new_sp = regs->sp - sizeof_long(regs);
 529
 530	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
 531		return -EFAULT;
 532
 533	regs->sp = new_sp;
 534	return 0;
 535}
 536
 537/*
 538 * We have to fix things up as follows:
 539 *
 540 * Typically, the new ip is relative to the copied instruction.  We need
 541 * to make it relative to the original instruction (FIX_IP).  Exceptions
 542 * are return instructions and absolute or indirect jump or call instructions.
 543 *
 544 * If the single-stepped instruction was a call, the return address that
 545 * is atop the stack is the address following the copied instruction.  We
 546 * need to make it the address following the original instruction (FIX_CALL).
 547 *
 548 * If the original instruction was a rip-relative instruction such as
 549 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 550 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 551 * We need to restore the contents of the scratch register
 552 * (FIX_RIP_reg).
 553 */
 554static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 555{
 556	struct uprobe_task *utask = current->utask;
 557
 558	riprel_post_xol(auprobe, regs);
 559	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 560		long correction = utask->vaddr - utask->xol_vaddr;
 561		regs->ip += correction;
 562	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 563		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
 564		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 565			return -ERESTART;
 566	}
 567	/* popf; tell the caller to not touch TF */
 568	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 569		utask->autask.saved_tf = true;
 570
 571	return 0;
 572}
 573
 574static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 575{
 576	riprel_post_xol(auprobe, regs);
 577}
 578
 579static const struct uprobe_xol_ops default_xol_ops = {
 580	.pre_xol  = default_pre_xol_op,
 581	.post_xol = default_post_xol_op,
 582	.abort	  = default_abort_op,
 583};
 584
 585static bool branch_is_call(struct arch_uprobe *auprobe)
 586{
 587	return auprobe->branch.opc1 == 0xe8;
 588}
 589
 590#define CASE_COND					\
 591	COND(70, 71, XF(OF))				\
 592	COND(72, 73, XF(CF))				\
 593	COND(74, 75, XF(ZF))				\
 594	COND(78, 79, XF(SF))				\
 595	COND(7a, 7b, XF(PF))				\
 596	COND(76, 77, XF(CF) || XF(ZF))			\
 597	COND(7c, 7d, XF(SF) != XF(OF))			\
 598	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 599
 600#define COND(op_y, op_n, expr)				\
 601	case 0x ## op_y: DO((expr) != 0)		\
 602	case 0x ## op_n: DO((expr) == 0)
 603
 604#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
 605
 606static bool is_cond_jmp_opcode(u8 opcode)
 607{
 608	switch (opcode) {
 609	#define DO(expr)	\
 610		return true;
 611	CASE_COND
 612	#undef	DO
 613
 614	default:
 615		return false;
 616	}
 617}
 618
 619static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 620{
 621	unsigned long flags = regs->flags;
 622
 623	switch (auprobe->branch.opc1) {
 624	#define DO(expr)	\
 625		return expr;
 626	CASE_COND
 627	#undef	DO
 628
 629	default:	/* not a conditional jmp */
 630		return true;
 631	}
 632}
 633
 634#undef	XF
 635#undef	COND
 636#undef	CASE_COND
 637
 638static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 639{
 640	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 641	unsigned long offs = (long)auprobe->branch.offs;
 642
 643	if (branch_is_call(auprobe)) {
 644		/*
 645		 * If it fails we execute this (mangled, see the comment in
 646		 * branch_clear_offset) insn out-of-line. In the likely case
 647		 * this should trigger the trap, and the probed application
 648		 * should die or restart the same insn after it handles the
 649		 * signal, arch_uprobe_post_xol() won't be even called.
 650		 *
 651		 * But there is corner case, see the comment in ->post_xol().
 652		 */
 653		if (emulate_push_stack(regs, new_ip))
 654			return false;
 655	} else if (!check_jmp_cond(auprobe, regs)) {
 656		offs = 0;
 657	}
 658
 659	regs->ip = new_ip + offs;
 660	return true;
 661}
 662
 663static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 664{
 665	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 666
 667	if (emulate_push_stack(regs, *src_ptr))
 668		return false;
 669	regs->ip += auprobe->push.ilen;
 670	return true;
 671}
 672
 673static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 674{
 675	BUG_ON(!branch_is_call(auprobe));
 676	/*
 677	 * We can only get here if branch_emulate_op() failed to push the ret
 678	 * address _and_ another thread expanded our stack before the (mangled)
 679	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
 680	 * We could also restore ->ip and try to call branch_emulate_op() again.
 681	 */
 682	regs->sp += sizeof_long(regs);
 683	return -ERESTART;
 684}
 685
 686static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 687{
 688	/*
 689	 * Turn this insn into "call 1f; 1:", this is what we will execute
 690	 * out-of-line if ->emulate() fails. We only need this to generate
 691	 * a trap, so that the probed task receives the correct signal with
 692	 * the properly filled siginfo.
 693	 *
 694	 * But see the comment in ->post_xol(), in the unlikely case it can
 695	 * succeed. So we need to ensure that the new ->ip can not fall into
 696	 * the non-canonical area and trigger #GP.
 697	 *
 698	 * We could turn it into (say) "pushf", but then we would need to
 699	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 700	 * of ->insn[] for set_orig_insn().
 701	 */
 702	memset(auprobe->insn + insn_offset_immediate(insn),
 703		0, insn->immediate.nbytes);
 704}
 705
 706static const struct uprobe_xol_ops branch_xol_ops = {
 707	.emulate  = branch_emulate_op,
 708	.post_xol = branch_post_xol_op,
 709};
 710
 711static const struct uprobe_xol_ops push_xol_ops = {
 712	.emulate  = push_emulate_op,
 713};
 714
 715/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 716static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 717{
 718	u8 opc1 = OPCODE1(insn);
 719	insn_byte_t p;
 720	int i;
 721
 722	switch (opc1) {
 723	case 0xeb:	/* jmp 8 */
 724	case 0xe9:	/* jmp 32 */
 725		break;
 726	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
 727		goto setup;
 728
 729	case 0xe8:	/* call relative */
 730		branch_clear_offset(auprobe, insn);
 731		break;
 732
 733	case 0x0f:
 734		if (insn->opcode.nbytes != 2)
 735			return -ENOSYS;
 736		/*
 737		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 738		 * OPCODE1() of the "short" jmp which checks the same condition.
 739		 */
 740		opc1 = OPCODE2(insn) - 0x10;
 741		fallthrough;
 742	default:
 743		if (!is_cond_jmp_opcode(opc1))
 744			return -ENOSYS;
 745	}
 746
 747	/*
 748	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 749	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 750	 * No one uses these insns, reject any branch insns with such prefix.
 751	 */
 752	for_each_insn_prefix(insn, i, p) {
 753		if (p == 0x66)
 754			return -ENOTSUPP;
 755	}
 756
 757setup:
 758	auprobe->branch.opc1 = opc1;
 759	auprobe->branch.ilen = insn->length;
 760	auprobe->branch.offs = insn->immediate.value;
 761
 762	auprobe->ops = &branch_xol_ops;
 763	return 0;
 764}
 765
 766/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 767static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 768{
 769	u8 opc1 = OPCODE1(insn), reg_offset = 0;
 770
 771	if (opc1 < 0x50 || opc1 > 0x57)
 772		return -ENOSYS;
 773
 774	if (insn->length > 2)
 775		return -ENOSYS;
 776	if (insn->length == 2) {
 777		/* only support rex_prefix 0x41 (x64 only) */
 778#ifdef CONFIG_X86_64
 779		if (insn->rex_prefix.nbytes != 1 ||
 780		    insn->rex_prefix.bytes[0] != 0x41)
 781			return -ENOSYS;
 782
 783		switch (opc1) {
 784		case 0x50:
 785			reg_offset = offsetof(struct pt_regs, r8);
 786			break;
 787		case 0x51:
 788			reg_offset = offsetof(struct pt_regs, r9);
 789			break;
 790		case 0x52:
 791			reg_offset = offsetof(struct pt_regs, r10);
 792			break;
 793		case 0x53:
 794			reg_offset = offsetof(struct pt_regs, r11);
 795			break;
 796		case 0x54:
 797			reg_offset = offsetof(struct pt_regs, r12);
 798			break;
 799		case 0x55:
 800			reg_offset = offsetof(struct pt_regs, r13);
 801			break;
 802		case 0x56:
 803			reg_offset = offsetof(struct pt_regs, r14);
 804			break;
 805		case 0x57:
 806			reg_offset = offsetof(struct pt_regs, r15);
 807			break;
 808		}
 809#else
 810		return -ENOSYS;
 811#endif
 812	} else {
 813		switch (opc1) {
 814		case 0x50:
 815			reg_offset = offsetof(struct pt_regs, ax);
 816			break;
 817		case 0x51:
 818			reg_offset = offsetof(struct pt_regs, cx);
 819			break;
 820		case 0x52:
 821			reg_offset = offsetof(struct pt_regs, dx);
 822			break;
 823		case 0x53:
 824			reg_offset = offsetof(struct pt_regs, bx);
 825			break;
 826		case 0x54:
 827			reg_offset = offsetof(struct pt_regs, sp);
 828			break;
 829		case 0x55:
 830			reg_offset = offsetof(struct pt_regs, bp);
 831			break;
 832		case 0x56:
 833			reg_offset = offsetof(struct pt_regs, si);
 834			break;
 835		case 0x57:
 836			reg_offset = offsetof(struct pt_regs, di);
 837			break;
 838		}
 839	}
 840
 841	auprobe->push.reg_offset = reg_offset;
 842	auprobe->push.ilen = insn->length;
 843	auprobe->ops = &push_xol_ops;
 844	return 0;
 845}
 846
 847/**
 848 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 849 * @auprobe: the probepoint information.
 850 * @mm: the probed address space.
 851 * @addr: virtual address at which to install the probepoint
 852 * Return 0 on success or a -ve number on error.
 853 */
 854int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 855{
 856	struct insn insn;
 857	u8 fix_ip_or_call = UPROBE_FIX_IP;
 858	int ret;
 859
 860	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 861	if (ret)
 862		return ret;
 863
 864	ret = branch_setup_xol_ops(auprobe, &insn);
 865	if (ret != -ENOSYS)
 866		return ret;
 867
 868	ret = push_setup_xol_ops(auprobe, &insn);
 869	if (ret != -ENOSYS)
 870		return ret;
 871
 872	/*
 873	 * Figure out which fixups default_post_xol_op() will need to perform,
 874	 * and annotate defparam->fixups accordingly.
 875	 */
 876	switch (OPCODE1(&insn)) {
 877	case 0x9d:		/* popf */
 878		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 879		break;
 880	case 0xc3:		/* ret or lret -- ip is correct */
 881	case 0xcb:
 882	case 0xc2:
 883	case 0xca:
 884	case 0xea:		/* jmp absolute -- ip is correct */
 885		fix_ip_or_call = 0;
 886		break;
 887	case 0x9a:		/* call absolute - Fix return addr, not ip */
 888		fix_ip_or_call = UPROBE_FIX_CALL;
 889		break;
 890	case 0xff:
 891		switch (MODRM_REG(&insn)) {
 892		case 2: case 3:			/* call or lcall, indirect */
 893			fix_ip_or_call = UPROBE_FIX_CALL;
 894			break;
 895		case 4: case 5:			/* jmp or ljmp, indirect */
 896			fix_ip_or_call = 0;
 897			break;
 898		}
 899		fallthrough;
 900	default:
 901		riprel_analyze(auprobe, &insn);
 902	}
 903
 904	auprobe->defparam.ilen = insn.length;
 905	auprobe->defparam.fixups |= fix_ip_or_call;
 906
 907	auprobe->ops = &default_xol_ops;
 908	return 0;
 909}
 910
 911/*
 912 * arch_uprobe_pre_xol - prepare to execute out of line.
 913 * @auprobe: the probepoint information.
 914 * @regs: reflects the saved user state of current task.
 915 */
 916int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 917{
 918	struct uprobe_task *utask = current->utask;
 919
 920	if (auprobe->ops->pre_xol) {
 921		int err = auprobe->ops->pre_xol(auprobe, regs);
 922		if (err)
 923			return err;
 924	}
 925
 926	regs->ip = utask->xol_vaddr;
 927	utask->autask.saved_trap_nr = current->thread.trap_nr;
 928	current->thread.trap_nr = UPROBE_TRAP_NR;
 929
 930	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 931	regs->flags |= X86_EFLAGS_TF;
 932	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 933		set_task_blockstep(current, false);
 934
 935	return 0;
 936}
 937
 938/*
 939 * If xol insn itself traps and generates a signal(Say,
 940 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 941 * instruction jumps back to its own address. It is assumed that anything
 942 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 943 *
 944 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 945 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 946 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 947 */
 948bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 949{
 950	if (t->thread.trap_nr != UPROBE_TRAP_NR)
 951		return true;
 952
 953	return false;
 954}
 955
 956/*
 957 * Called after single-stepping. To avoid the SMP problems that can
 958 * occur when we temporarily put back the original opcode to
 959 * single-step, we single-stepped a copy of the instruction.
 960 *
 961 * This function prepares to resume execution after the single-step.
 962 */
 963int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 964{
 965	struct uprobe_task *utask = current->utask;
 966	bool send_sigtrap = utask->autask.saved_tf;
 967	int err = 0;
 968
 969	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 970	current->thread.trap_nr = utask->autask.saved_trap_nr;
 971
 972	if (auprobe->ops->post_xol) {
 973		err = auprobe->ops->post_xol(auprobe, regs);
 974		if (err) {
 975			/*
 976			 * Restore ->ip for restart or post mortem analysis.
 977			 * ->post_xol() must not return -ERESTART unless this
 978			 * is really possible.
 979			 */
 980			regs->ip = utask->vaddr;
 981			if (err == -ERESTART)
 982				err = 0;
 983			send_sigtrap = false;
 984		}
 985	}
 986	/*
 987	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 988	 * so we can get an extra SIGTRAP if we do not clear TF. We need
 989	 * to examine the opcode to make it right.
 990	 */
 991	if (send_sigtrap)
 992		send_sig(SIGTRAP, current, 0);
 993
 994	if (!utask->autask.saved_tf)
 995		regs->flags &= ~X86_EFLAGS_TF;
 996
 997	return err;
 998}
 999
1000/* callback routine for handling exceptions. */
1001int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1002{
1003	struct die_args *args = data;
1004	struct pt_regs *regs = args->regs;
1005	int ret = NOTIFY_DONE;
1006
1007	/* We are only interested in userspace traps */
1008	if (regs && !user_mode(regs))
1009		return NOTIFY_DONE;
1010
1011	switch (val) {
1012	case DIE_INT3:
1013		if (uprobe_pre_sstep_notifier(regs))
1014			ret = NOTIFY_STOP;
1015
1016		break;
1017
1018	case DIE_DEBUG:
1019		if (uprobe_post_sstep_notifier(regs))
1020			ret = NOTIFY_STOP;
1021
1022		break;
1023
1024	default:
1025		break;
1026	}
1027
1028	return ret;
1029}
1030
1031/*
1032 * This function gets called when XOL instruction either gets trapped or
1033 * the thread has a fatal signal. Reset the instruction pointer to its
1034 * probed address for the potential restart or for post mortem analysis.
1035 */
1036void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1037{
1038	struct uprobe_task *utask = current->utask;
1039
1040	if (auprobe->ops->abort)
1041		auprobe->ops->abort(auprobe, regs);
1042
1043	current->thread.trap_nr = utask->autask.saved_trap_nr;
1044	regs->ip = utask->vaddr;
1045	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1046	if (!utask->autask.saved_tf)
1047		regs->flags &= ~X86_EFLAGS_TF;
1048}
1049
1050static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1051{
1052	if (auprobe->ops->emulate)
1053		return auprobe->ops->emulate(auprobe, regs);
1054	return false;
1055}
1056
1057bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1058{
1059	bool ret = __skip_sstep(auprobe, regs);
1060	if (ret && (regs->flags & X86_EFLAGS_TF))
1061		send_sig(SIGTRAP, current, 0);
1062	return ret;
1063}
1064
1065unsigned long
1066arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1067{
1068	int rasize = sizeof_long(regs), nleft;
1069	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1070
1071	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1072		return -1;
1073
1074	/* check whether address has been already hijacked */
1075	if (orig_ret_vaddr == trampoline_vaddr)
1076		return orig_ret_vaddr;
1077
1078	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1079	if (likely(!nleft))
 
 
 
 
1080		return orig_ret_vaddr;
 
1081
1082	if (nleft != rasize) {
1083		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1084		       current->pid, regs->sp, regs->ip);
1085
1086		force_sig(SIGSEGV);
1087	}
1088
1089	return -1;
1090}
1091
1092bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1093				struct pt_regs *regs)
1094{
1095	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1096		return regs->sp < ret->stack;
1097	else
1098		return regs->sp <= ret->stack;
1099}