Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2//
   3// Driver for Cadence QSPI Controller
   4//
   5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
   6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
   7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
   8
   9#include <linux/clk.h>
  10#include <linux/completion.h>
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/dmaengine.h>
  14#include <linux/err.h>
  15#include <linux/errno.h>
  16#include <linux/firmware/xlnx-zynqmp.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/iopoll.h>
  20#include <linux/jiffies.h>
  21#include <linux/kernel.h>
  22#include <linux/log2.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/reset.h>
  28#include <linux/sched.h>
  29#include <linux/spi/spi.h>
  30#include <linux/spi/spi-mem.h>
  31#include <linux/timer.h>
  32
  33#define CQSPI_NAME			"cadence-qspi"
  34#define CQSPI_MAX_CHIPSELECT		4
  35
  36static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
  37
  38/* Quirks */
  39#define CQSPI_NEEDS_WR_DELAY		BIT(0)
  40#define CQSPI_DISABLE_DAC_MODE		BIT(1)
  41#define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
  42#define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
  43#define CQSPI_SLOW_SRAM		BIT(4)
  44#define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
  45#define CQSPI_RD_NO_IRQ			BIT(6)
  46#define CQSPI_DISABLE_STIG_MODE		BIT(7)
  47
  48/* Capabilities */
  49#define CQSPI_SUPPORTS_OCTAL		BIT(0)
  50
  51#define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
  52
  53enum {
  54	CLK_QSPI_APB = 0,
  55	CLK_QSPI_AHB,
  56	CLK_QSPI_NUM,
  57};
  58
  59struct cqspi_st;
  60
  61struct cqspi_flash_pdata {
  62	struct cqspi_st	*cqspi;
  63	u32		clk_rate;
  64	u32		read_delay;
  65	u32		tshsl_ns;
  66	u32		tsd2d_ns;
  67	u32		tchsh_ns;
  68	u32		tslch_ns;
  69	u8		cs;
  70};
  71
  72struct cqspi_st {
  73	struct platform_device	*pdev;
  74	struct spi_controller	*host;
  75	struct clk		*clk;
  76	struct clk		*clks[CLK_QSPI_NUM];
  77	unsigned int		sclk;
  78
  79	void __iomem		*iobase;
  80	void __iomem		*ahb_base;
  81	resource_size_t		ahb_size;
  82	struct completion	transfer_complete;
  83
  84	struct dma_chan		*rx_chan;
  85	struct completion	rx_dma_complete;
  86	dma_addr_t		mmap_phys_base;
  87
  88	int			current_cs;
  89	unsigned long		master_ref_clk_hz;
  90	bool			is_decoded_cs;
  91	u32			fifo_depth;
  92	u32			fifo_width;
  93	u32			num_chipselect;
  94	bool			rclk_en;
  95	u32			trigger_address;
  96	u32			wr_delay;
  97	bool			use_direct_mode;
  98	bool			use_direct_mode_wr;
  99	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
 100	bool			use_dma_read;
 101	u32			pd_dev_id;
 102	bool			wr_completion;
 103	bool			slow_sram;
 104	bool			apb_ahb_hazard;
 105
 106	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
 107	bool			disable_stig_mode;
 108
 109	const struct cqspi_driver_platdata *ddata;
 110};
 111
 112struct cqspi_driver_platdata {
 113	u32 hwcaps_mask;
 114	u8 quirks;
 115	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
 116				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
 117	u32 (*get_dma_status)(struct cqspi_st *cqspi);
 118	int (*jh7110_clk_init)(struct platform_device *pdev,
 119			       struct cqspi_st *cqspi);
 120};
 121
 122/* Operation timeout value */
 123#define CQSPI_TIMEOUT_MS			500
 124#define CQSPI_READ_TIMEOUT_MS			10
 125#define CQSPI_BUSYWAIT_TIMEOUT_US		500
 126
 127/* Runtime_pm autosuspend delay */
 128#define CQSPI_AUTOSUSPEND_TIMEOUT		2000
 129
 130#define CQSPI_DUMMY_CLKS_PER_BYTE		8
 131#define CQSPI_DUMMY_BYTES_MAX			4
 132#define CQSPI_DUMMY_CLKS_MAX			31
 133
 134#define CQSPI_STIG_DATA_LEN_MAX			8
 135
 136/* Register map */
 137#define CQSPI_REG_CONFIG			0x00
 138#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
 139#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
 140#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
 141#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
 142#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
 143#define CQSPI_REG_CONFIG_BAUD_LSB		19
 144#define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
 145#define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
 146#define CQSPI_REG_CONFIG_IDLE_LSB		31
 147#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
 148#define CQSPI_REG_CONFIG_BAUD_MASK		0xF
 149
 150#define CQSPI_REG_RD_INSTR			0x04
 151#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
 152#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
 153#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
 154#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
 155#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
 156#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
 157#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
 158#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
 159#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
 160#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
 161
 162#define CQSPI_REG_WR_INSTR			0x08
 163#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
 164#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
 165#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
 166
 167#define CQSPI_REG_DELAY				0x0C
 168#define CQSPI_REG_DELAY_TSLCH_LSB		0
 169#define CQSPI_REG_DELAY_TCHSH_LSB		8
 170#define CQSPI_REG_DELAY_TSD2D_LSB		16
 171#define CQSPI_REG_DELAY_TSHSL_LSB		24
 172#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
 173#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
 174#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
 175#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
 176
 177#define CQSPI_REG_READCAPTURE			0x10
 178#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
 179#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
 180#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
 181
 182#define CQSPI_REG_SIZE				0x14
 183#define CQSPI_REG_SIZE_ADDRESS_LSB		0
 184#define CQSPI_REG_SIZE_PAGE_LSB			4
 185#define CQSPI_REG_SIZE_BLOCK_LSB		16
 186#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
 187#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
 188#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
 189
 190#define CQSPI_REG_SRAMPARTITION			0x18
 191#define CQSPI_REG_INDIRECTTRIGGER		0x1C
 192
 193#define CQSPI_REG_DMA				0x20
 194#define CQSPI_REG_DMA_SINGLE_LSB		0
 195#define CQSPI_REG_DMA_BURST_LSB			8
 196#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
 197#define CQSPI_REG_DMA_BURST_MASK		0xFF
 198
 199#define CQSPI_REG_REMAP				0x24
 200#define CQSPI_REG_MODE_BIT			0x28
 201
 202#define CQSPI_REG_SDRAMLEVEL			0x2C
 203#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
 204#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
 205#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
 206#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
 207
 208#define CQSPI_REG_WR_COMPLETION_CTRL		0x38
 209#define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
 210
 211#define CQSPI_REG_IRQSTATUS			0x40
 212#define CQSPI_REG_IRQMASK			0x44
 213
 214#define CQSPI_REG_INDIRECTRD			0x60
 215#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
 216#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
 217#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
 218
 219#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
 220#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
 221#define CQSPI_REG_INDIRECTRDBYTES		0x6C
 222
 223#define CQSPI_REG_CMDCTRL			0x90
 224#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
 225#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
 226#define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
 227#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
 228#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
 229#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
 230#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
 231#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
 232#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
 233#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
 234#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
 235#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
 236#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
 237#define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
 238
 239#define CQSPI_REG_INDIRECTWR			0x70
 240#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
 241#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
 242#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
 243
 244#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
 245#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
 246#define CQSPI_REG_INDIRECTWRBYTES		0x7C
 247
 248#define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
 249
 250#define CQSPI_REG_CMDADDRESS			0x94
 251#define CQSPI_REG_CMDREADDATALOWER		0xA0
 252#define CQSPI_REG_CMDREADDATAUPPER		0xA4
 253#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
 254#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
 255
 256#define CQSPI_REG_POLLING_STATUS		0xB0
 257#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
 258
 259#define CQSPI_REG_OP_EXT_LOWER			0xE0
 260#define CQSPI_REG_OP_EXT_READ_LSB		24
 261#define CQSPI_REG_OP_EXT_WRITE_LSB		16
 262#define CQSPI_REG_OP_EXT_STIG_LSB		0
 263
 264#define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
 265
 266#define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
 267#define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
 268
 269#define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
 270
 271#define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
 272#define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
 273#define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
 274#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
 275
 276#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
 277
 278#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
 279#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
 280
 281/* Interrupt status bits */
 282#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
 283#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
 284#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
 285#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
 286#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
 287#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
 288#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
 289#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
 290
 291#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
 292					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
 293					 CQSPI_REG_IRQ_IND_COMP)
 294
 295#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
 296					 CQSPI_REG_IRQ_WATERMARK	| \
 297					 CQSPI_REG_IRQ_UNDERFLOW)
 298
 299#define CQSPI_IRQ_STATUS_MASK		0x1FFFF
 300#define CQSPI_DMA_UNALIGN		0x3
 301
 302#define CQSPI_REG_VERSAL_DMA_VAL		0x602
 303
 304static int cqspi_wait_for_bit(const struct cqspi_driver_platdata *ddata,
 305			      void __iomem *reg, const u32 mask, bool clr,
 306			      bool busywait)
 307{
 308	u64 timeout_us = CQSPI_TIMEOUT_MS * USEC_PER_MSEC;
 309	u32 val;
 310
 311	if (busywait) {
 312		int ret = readl_relaxed_poll_timeout(reg, val,
 313						     (((clr ? ~val : val) & mask) == mask),
 314						     0, CQSPI_BUSYWAIT_TIMEOUT_US);
 315
 316		if (ret != -ETIMEDOUT)
 317			return ret;
 318
 319		timeout_us -= CQSPI_BUSYWAIT_TIMEOUT_US;
 320	}
 321
 322	return readl_relaxed_poll_timeout(reg, val,
 323					  (((clr ? ~val : val) & mask) == mask),
 324					  10, timeout_us);
 325}
 326
 327static bool cqspi_is_idle(struct cqspi_st *cqspi)
 328{
 329	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 330
 331	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
 332}
 333
 334static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
 335{
 336	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
 337
 338	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
 339	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
 340}
 341
 342static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
 343{
 344	u32 dma_status;
 345
 346	dma_status = readl(cqspi->iobase +
 347					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
 348	writel(dma_status, cqspi->iobase +
 349		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
 350
 351	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
 352}
 353
 354static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
 355{
 356	struct cqspi_st *cqspi = dev;
 357	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
 358	unsigned int irq_status;
 
 
 
 
 359
 360	/* Read interrupt status */
 361	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
 362
 363	/* Clear interrupt */
 364	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
 365
 366	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
 367		if (ddata->get_dma_status(cqspi)) {
 368			complete(&cqspi->transfer_complete);
 369			return IRQ_HANDLED;
 370		}
 371	}
 372
 373	else if (!cqspi->slow_sram)
 374		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
 375	else
 376		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
 377
 378	if (irq_status)
 379		complete(&cqspi->transfer_complete);
 380
 381	return IRQ_HANDLED;
 382}
 383
 384static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
 385{
 386	u32 rdreg = 0;
 387
 388	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
 389	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
 390	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
 391
 392	return rdreg;
 393}
 394
 395static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
 396{
 397	unsigned int dummy_clk;
 398
 399	if (!op->dummy.nbytes)
 400		return 0;
 401
 402	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
 403	if (op->cmd.dtr)
 404		dummy_clk /= 2;
 405
 406	return dummy_clk;
 407}
 408
 409static int cqspi_wait_idle(struct cqspi_st *cqspi)
 410{
 411	const unsigned int poll_idle_retry = 3;
 412	unsigned int count = 0;
 413	unsigned long timeout;
 414
 415	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
 416	while (1) {
 417		/*
 418		 * Read few times in succession to ensure the controller
 419		 * is indeed idle, that is, the bit does not transition
 420		 * low again.
 421		 */
 422		if (cqspi_is_idle(cqspi))
 423			count++;
 424		else
 425			count = 0;
 426
 427		if (count >= poll_idle_retry)
 428			return 0;
 429
 430		if (time_after(jiffies, timeout)) {
 431			/* Timeout, in busy mode. */
 432			dev_err(&cqspi->pdev->dev,
 433				"QSPI is still busy after %dms timeout.\n",
 434				CQSPI_TIMEOUT_MS);
 435			return -ETIMEDOUT;
 436		}
 437
 438		cpu_relax();
 439	}
 440}
 441
 442static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
 443{
 444	void __iomem *reg_base = cqspi->iobase;
 445	int ret;
 446
 447	/* Write the CMDCTRL without start execution. */
 448	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 449	/* Start execute */
 450	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
 451	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 452
 453	/* Polling for completion. */
 454	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_CMDCTRL,
 455				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1, true);
 456	if (ret) {
 457		dev_err(&cqspi->pdev->dev,
 458			"Flash command execution timed out.\n");
 459		return ret;
 460	}
 461
 462	/* Polling QSPI idle status. */
 463	return cqspi_wait_idle(cqspi);
 464}
 465
 466static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
 467				  const struct spi_mem_op *op,
 468				  unsigned int shift)
 469{
 470	struct cqspi_st *cqspi = f_pdata->cqspi;
 471	void __iomem *reg_base = cqspi->iobase;
 472	unsigned int reg;
 473	u8 ext;
 474
 475	if (op->cmd.nbytes != 2)
 476		return -EINVAL;
 477
 478	/* Opcode extension is the LSB. */
 479	ext = op->cmd.opcode & 0xff;
 480
 481	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
 482	reg &= ~(0xff << shift);
 483	reg |= ext << shift;
 484	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
 485
 486	return 0;
 487}
 488
 489static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
 490			    const struct spi_mem_op *op, unsigned int shift)
 491{
 492	struct cqspi_st *cqspi = f_pdata->cqspi;
 493	void __iomem *reg_base = cqspi->iobase;
 494	unsigned int reg;
 495	int ret;
 496
 497	reg = readl(reg_base + CQSPI_REG_CONFIG);
 498
 499	/*
 500	 * We enable dual byte opcode here. The callers have to set up the
 501	 * extension opcode based on which type of operation it is.
 502	 */
 503	if (op->cmd.dtr) {
 504		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
 505		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
 506
 507		/* Set up command opcode extension. */
 508		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
 509		if (ret)
 510			return ret;
 511	} else {
 512		unsigned int mask = CQSPI_REG_CONFIG_DTR_PROTO | CQSPI_REG_CONFIG_DUAL_OPCODE;
 513		/* Shortcut if DTR is already disabled. */
 514		if ((reg & mask) == 0)
 515			return 0;
 516		reg &= ~mask;
 517	}
 518
 519	writel(reg, reg_base + CQSPI_REG_CONFIG);
 520
 521	return cqspi_wait_idle(cqspi);
 522}
 523
 524static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
 525			      const struct spi_mem_op *op)
 526{
 527	struct cqspi_st *cqspi = f_pdata->cqspi;
 528	void __iomem *reg_base = cqspi->iobase;
 529	u8 *rxbuf = op->data.buf.in;
 530	u8 opcode;
 531	size_t n_rx = op->data.nbytes;
 532	unsigned int rdreg;
 533	unsigned int reg;
 534	unsigned int dummy_clk;
 535	size_t read_len;
 536	int status;
 537
 538	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
 539	if (status)
 540		return status;
 541
 542	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
 543		dev_err(&cqspi->pdev->dev,
 544			"Invalid input argument, len %zu rxbuf 0x%p\n",
 545			n_rx, rxbuf);
 546		return -EINVAL;
 547	}
 548
 549	if (op->cmd.dtr)
 550		opcode = op->cmd.opcode >> 8;
 551	else
 552		opcode = op->cmd.opcode;
 553
 554	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 555
 556	rdreg = cqspi_calc_rdreg(op);
 557	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
 558
 559	dummy_clk = cqspi_calc_dummy(op);
 560	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
 561		return -EOPNOTSUPP;
 562
 563	if (dummy_clk)
 564		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
 565		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
 566
 567	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
 568
 569	/* 0 means 1 byte. */
 570	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
 571		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
 572
 573	/* setup ADDR BIT field */
 574	if (op->addr.nbytes) {
 575		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
 576		reg |= ((op->addr.nbytes - 1) &
 577			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
 578			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
 579
 580		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
 581	}
 582
 583	status = cqspi_exec_flash_cmd(cqspi, reg);
 584	if (status)
 585		return status;
 586
 587	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
 588
 589	/* Put the read value into rx_buf */
 590	read_len = (n_rx > 4) ? 4 : n_rx;
 591	memcpy(rxbuf, &reg, read_len);
 592	rxbuf += read_len;
 593
 594	if (n_rx > 4) {
 595		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
 596
 597		read_len = n_rx - read_len;
 598		memcpy(rxbuf, &reg, read_len);
 599	}
 600
 601	/* Reset CMD_CTRL Reg once command read completes */
 602	writel(0, reg_base + CQSPI_REG_CMDCTRL);
 603
 604	return 0;
 605}
 606
 607static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
 608			       const struct spi_mem_op *op)
 609{
 610	struct cqspi_st *cqspi = f_pdata->cqspi;
 611	void __iomem *reg_base = cqspi->iobase;
 612	u8 opcode;
 613	const u8 *txbuf = op->data.buf.out;
 614	size_t n_tx = op->data.nbytes;
 615	unsigned int reg;
 616	unsigned int data;
 617	size_t write_len;
 618	int ret;
 619
 620	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
 621	if (ret)
 622		return ret;
 623
 624	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
 625		dev_err(&cqspi->pdev->dev,
 626			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
 627			n_tx, txbuf);
 628		return -EINVAL;
 629	}
 630
 631	reg = cqspi_calc_rdreg(op);
 632	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 633
 634	if (op->cmd.dtr)
 635		opcode = op->cmd.opcode >> 8;
 636	else
 637		opcode = op->cmd.opcode;
 638
 639	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 640
 641	if (op->addr.nbytes) {
 642		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
 643		reg |= ((op->addr.nbytes - 1) &
 644			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
 645			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
 646
 647		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
 648	}
 649
 650	if (n_tx) {
 651		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
 652		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
 653			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
 654		data = 0;
 655		write_len = (n_tx > 4) ? 4 : n_tx;
 656		memcpy(&data, txbuf, write_len);
 657		txbuf += write_len;
 658		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
 659
 660		if (n_tx > 4) {
 661			data = 0;
 662			write_len = n_tx - 4;
 663			memcpy(&data, txbuf, write_len);
 664			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
 665		}
 666	}
 667
 668	ret = cqspi_exec_flash_cmd(cqspi, reg);
 669
 670	/* Reset CMD_CTRL Reg once command write completes */
 671	writel(0, reg_base + CQSPI_REG_CMDCTRL);
 672
 673	return ret;
 674}
 675
 676static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
 677			    const struct spi_mem_op *op)
 678{
 679	struct cqspi_st *cqspi = f_pdata->cqspi;
 680	void __iomem *reg_base = cqspi->iobase;
 681	unsigned int dummy_clk = 0;
 682	unsigned int reg;
 683	int ret;
 684	u8 opcode;
 685
 686	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
 687	if (ret)
 688		return ret;
 689
 690	if (op->cmd.dtr)
 691		opcode = op->cmd.opcode >> 8;
 692	else
 693		opcode = op->cmd.opcode;
 694
 695	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
 696	reg |= cqspi_calc_rdreg(op);
 697
 698	/* Setup dummy clock cycles */
 699	dummy_clk = cqspi_calc_dummy(op);
 700
 701	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
 702		return -EOPNOTSUPP;
 703
 704	if (dummy_clk)
 705		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
 706		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
 707
 708	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 709
 710	/* Set address width */
 711	reg = readl(reg_base + CQSPI_REG_SIZE);
 712	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
 713	reg |= (op->addr.nbytes - 1);
 714	writel(reg, reg_base + CQSPI_REG_SIZE);
 715	return 0;
 716}
 717
 718static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
 719				       u8 *rxbuf, loff_t from_addr,
 720				       const size_t n_rx)
 721{
 722	struct cqspi_st *cqspi = f_pdata->cqspi;
 723	bool use_irq = !(cqspi->ddata && cqspi->ddata->quirks & CQSPI_RD_NO_IRQ);
 724	struct device *dev = &cqspi->pdev->dev;
 725	void __iomem *reg_base = cqspi->iobase;
 726	void __iomem *ahb_base = cqspi->ahb_base;
 727	unsigned int remaining = n_rx;
 728	unsigned int mod_bytes = n_rx % 4;
 729	unsigned int bytes_to_read = 0;
 730	u8 *rxbuf_end = rxbuf + n_rx;
 731	int ret = 0;
 732
 733	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
 734	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
 735
 736	/* Clear all interrupts. */
 737	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 738
 739	/*
 740	 * On SoCFPGA platform reading the SRAM is slow due to
 741	 * hardware limitation and causing read interrupt storm to CPU,
 742	 * so enabling only watermark interrupt to disable all read
 743	 * interrupts later as we want to run "bytes to read" loop with
 744	 * all the read interrupts disabled for max performance.
 745	 */
 746
 747	if (use_irq && cqspi->slow_sram)
 748		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
 749	else if (use_irq)
 750		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
 751	else
 752		writel(0, reg_base + CQSPI_REG_IRQMASK);
 753
 754	reinit_completion(&cqspi->transfer_complete);
 755	writel(CQSPI_REG_INDIRECTRD_START_MASK,
 756	       reg_base + CQSPI_REG_INDIRECTRD);
 757
 758	while (remaining > 0) {
 759		if (use_irq &&
 760		    !wait_for_completion_timeout(&cqspi->transfer_complete,
 761						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
 762			ret = -ETIMEDOUT;
 763
 764		/*
 765		 * Disable all read interrupts until
 766		 * we are out of "bytes to read"
 767		 */
 768		if (cqspi->slow_sram)
 769			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
 770
 771		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 772
 773		if (ret && bytes_to_read == 0) {
 774			dev_err(dev, "Indirect read timeout, no bytes\n");
 775			goto failrd;
 776		}
 777
 778		while (bytes_to_read != 0) {
 779			unsigned int word_remain = round_down(remaining, 4);
 780
 781			bytes_to_read *= cqspi->fifo_width;
 782			bytes_to_read = bytes_to_read > remaining ?
 783					remaining : bytes_to_read;
 784			bytes_to_read = round_down(bytes_to_read, 4);
 785			/* Read 4 byte word chunks then single bytes */
 786			if (bytes_to_read) {
 787				ioread32_rep(ahb_base, rxbuf,
 788					     (bytes_to_read / 4));
 789			} else if (!word_remain && mod_bytes) {
 790				unsigned int temp = ioread32(ahb_base);
 791
 792				bytes_to_read = mod_bytes;
 793				memcpy(rxbuf, &temp, min((unsigned int)
 794							 (rxbuf_end - rxbuf),
 795							 bytes_to_read));
 796			}
 797			rxbuf += bytes_to_read;
 798			remaining -= bytes_to_read;
 799			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 800		}
 801
 802		if (use_irq && remaining > 0) {
 803			reinit_completion(&cqspi->transfer_complete);
 804			if (cqspi->slow_sram)
 805				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
 806		}
 807	}
 808
 809	/* Check indirect done status */
 810	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTRD,
 811				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0, true);
 812	if (ret) {
 813		dev_err(dev, "Indirect read completion error (%i)\n", ret);
 814		goto failrd;
 815	}
 816
 817	/* Disable interrupt */
 818	writel(0, reg_base + CQSPI_REG_IRQMASK);
 819
 820	/* Clear indirect completion status */
 821	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
 822
 823	return 0;
 824
 825failrd:
 826	/* Disable interrupt */
 827	writel(0, reg_base + CQSPI_REG_IRQMASK);
 828
 829	/* Cancel the indirect read */
 830	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
 831	       reg_base + CQSPI_REG_INDIRECTRD);
 832	return ret;
 833}
 834
 835static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
 836{
 837	void __iomem *reg_base = cqspi->iobase;
 838	unsigned int reg;
 839
 840	reg = readl(reg_base + CQSPI_REG_CONFIG);
 841
 842	if (enable)
 843		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
 844	else
 845		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
 846
 847	writel(reg, reg_base + CQSPI_REG_CONFIG);
 848}
 849
 850static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
 851					  u_char *rxbuf, loff_t from_addr,
 852					  size_t n_rx)
 853{
 854	struct cqspi_st *cqspi = f_pdata->cqspi;
 855	struct device *dev = &cqspi->pdev->dev;
 856	void __iomem *reg_base = cqspi->iobase;
 857	u32 reg, bytes_to_dma;
 858	loff_t addr = from_addr;
 859	void *buf = rxbuf;
 860	dma_addr_t dma_addr;
 861	u8 bytes_rem;
 862	int ret = 0;
 863
 864	bytes_rem = n_rx % 4;
 865	bytes_to_dma = (n_rx - bytes_rem);
 866
 867	if (!bytes_to_dma)
 868		goto nondmard;
 869
 870	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
 871	if (ret)
 872		return ret;
 873
 874	cqspi_controller_enable(cqspi, 0);
 875
 876	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 877	reg |= CQSPI_REG_CONFIG_DMA_MASK;
 878	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 879
 880	cqspi_controller_enable(cqspi, 1);
 881
 882	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
 883	if (dma_mapping_error(dev, dma_addr)) {
 884		dev_err(dev, "dma mapping failed\n");
 885		return -ENOMEM;
 886	}
 887
 888	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
 889	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
 890	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
 891	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
 892
 893	/* Clear all interrupts. */
 894	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 895
 896	/* Enable DMA done interrupt */
 897	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
 898	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
 899
 900	/* Default DMA periph configuration */
 901	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
 902
 903	/* Configure DMA Dst address */
 904	writel(lower_32_bits(dma_addr),
 905	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
 906	writel(upper_32_bits(dma_addr),
 907	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
 908
 909	/* Configure DMA Src address */
 910	writel(cqspi->trigger_address, reg_base +
 911	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
 912
 913	/* Set DMA destination size */
 914	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
 915
 916	/* Set DMA destination control */
 917	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
 918	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
 919
 920	writel(CQSPI_REG_INDIRECTRD_START_MASK,
 921	       reg_base + CQSPI_REG_INDIRECTRD);
 922
 923	reinit_completion(&cqspi->transfer_complete);
 924
 925	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 926					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
 927		ret = -ETIMEDOUT;
 928		goto failrd;
 929	}
 930
 931	/* Disable DMA interrupt */
 932	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
 933
 934	/* Clear indirect completion status */
 935	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
 936	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
 937	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
 938
 939	cqspi_controller_enable(cqspi, 0);
 940
 941	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 942	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
 943	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 944
 945	cqspi_controller_enable(cqspi, 1);
 946
 947	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
 948					PM_OSPI_MUX_SEL_LINEAR);
 949	if (ret)
 950		return ret;
 951
 952nondmard:
 953	if (bytes_rem) {
 954		addr += bytes_to_dma;
 955		buf += bytes_to_dma;
 956		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
 957						  bytes_rem);
 958		if (ret)
 959			return ret;
 960	}
 961
 962	return 0;
 963
 964failrd:
 965	/* Disable DMA interrupt */
 966	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
 967
 968	/* Cancel the indirect read */
 969	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
 970	       reg_base + CQSPI_REG_INDIRECTRD);
 971
 972	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
 973
 974	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 975	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
 976	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 977
 978	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
 979
 980	return ret;
 981}
 982
 983static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
 984			     const struct spi_mem_op *op)
 985{
 986	unsigned int reg;
 987	int ret;
 988	struct cqspi_st *cqspi = f_pdata->cqspi;
 989	void __iomem *reg_base = cqspi->iobase;
 990	u8 opcode;
 991
 992	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
 993	if (ret)
 994		return ret;
 995
 996	if (op->cmd.dtr)
 997		opcode = op->cmd.opcode >> 8;
 998	else
 999		opcode = op->cmd.opcode;
1000
1001	/* Set opcode. */
1002	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
1003	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
1004	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
1005	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
1006	reg = cqspi_calc_rdreg(op);
1007	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
1008
1009	/*
1010	 * SPI NAND flashes require the address of the status register to be
1011	 * passed in the Read SR command. Also, some SPI NOR flashes like the
1012	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
1013	 * command in DTR mode.
1014	 *
1015	 * But this controller does not support address phase in the Read SR
1016	 * command when doing auto-HW polling. So, disable write completion
1017	 * polling on the controller's side. spinand and spi-nor will take
1018	 * care of polling the status register.
1019	 */
1020	if (cqspi->wr_completion) {
1021		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1022		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1023		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1024		/*
1025		 * DAC mode require auto polling as flash needs to be polled
1026		 * for write completion in case of bubble in SPI transaction
1027		 * due to slow CPU/DMA master.
1028		 */
1029		cqspi->use_direct_mode_wr = false;
1030	}
1031
1032	reg = readl(reg_base + CQSPI_REG_SIZE);
1033	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1034	reg |= (op->addr.nbytes - 1);
1035	writel(reg, reg_base + CQSPI_REG_SIZE);
1036	return 0;
1037}
1038
1039static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1040					loff_t to_addr, const u8 *txbuf,
1041					const size_t n_tx)
1042{
1043	struct cqspi_st *cqspi = f_pdata->cqspi;
1044	struct device *dev = &cqspi->pdev->dev;
1045	void __iomem *reg_base = cqspi->iobase;
1046	unsigned int remaining = n_tx;
1047	unsigned int write_bytes;
1048	int ret;
1049
1050	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1051	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1052
1053	/* Clear all interrupts. */
1054	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1055
1056	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1057
1058	reinit_completion(&cqspi->transfer_complete);
1059	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1060	       reg_base + CQSPI_REG_INDIRECTWR);
1061	/*
1062	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1063	 * Controller programming sequence, couple of cycles of
1064	 * QSPI_REF_CLK delay is required for the above bit to
1065	 * be internally synchronized by the QSPI module. Provide 5
1066	 * cycles of delay.
1067	 */
1068	if (cqspi->wr_delay)
1069		ndelay(cqspi->wr_delay);
1070
1071	/*
1072	 * If a hazard exists between the APB and AHB interfaces, perform a
1073	 * dummy readback from the controller to ensure synchronization.
1074	 */
1075	if (cqspi->apb_ahb_hazard)
1076		readl(reg_base + CQSPI_REG_INDIRECTWR);
1077
1078	while (remaining > 0) {
1079		size_t write_words, mod_bytes;
1080
1081		write_bytes = remaining;
1082		write_words = write_bytes / 4;
1083		mod_bytes = write_bytes % 4;
1084		/* Write 4 bytes at a time then single bytes. */
1085		if (write_words) {
1086			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1087			txbuf += (write_words * 4);
1088		}
1089		if (mod_bytes) {
1090			unsigned int temp = 0xFFFFFFFF;
1091
1092			memcpy(&temp, txbuf, mod_bytes);
1093			iowrite32(temp, cqspi->ahb_base);
1094			txbuf += mod_bytes;
1095		}
1096
1097		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1098						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1099			dev_err(dev, "Indirect write timeout\n");
1100			ret = -ETIMEDOUT;
1101			goto failwr;
1102		}
1103
1104		remaining -= write_bytes;
1105
1106		if (remaining > 0)
1107			reinit_completion(&cqspi->transfer_complete);
1108	}
1109
1110	/* Check indirect done status */
1111	ret = cqspi_wait_for_bit(cqspi->ddata, reg_base + CQSPI_REG_INDIRECTWR,
1112				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0, false);
1113	if (ret) {
1114		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1115		goto failwr;
1116	}
1117
1118	/* Disable interrupt. */
1119	writel(0, reg_base + CQSPI_REG_IRQMASK);
1120
1121	/* Clear indirect completion status */
1122	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1123
1124	cqspi_wait_idle(cqspi);
1125
1126	return 0;
1127
1128failwr:
1129	/* Disable interrupt. */
1130	writel(0, reg_base + CQSPI_REG_IRQMASK);
1131
1132	/* Cancel the indirect write */
1133	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1134	       reg_base + CQSPI_REG_INDIRECTWR);
1135	return ret;
1136}
1137
1138static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1139{
1140	struct cqspi_st *cqspi = f_pdata->cqspi;
1141	void __iomem *reg_base = cqspi->iobase;
1142	unsigned int chip_select = f_pdata->cs;
1143	unsigned int reg;
1144
1145	reg = readl(reg_base + CQSPI_REG_CONFIG);
1146	if (cqspi->is_decoded_cs) {
1147		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1148	} else {
1149		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1150
1151		/* Convert CS if without decoder.
1152		 * CS0 to 4b'1110
1153		 * CS1 to 4b'1101
1154		 * CS2 to 4b'1011
1155		 * CS3 to 4b'0111
1156		 */
1157		chip_select = 0xF & ~(1 << chip_select);
1158	}
1159
1160	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1161		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1162	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1163	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1164	writel(reg, reg_base + CQSPI_REG_CONFIG);
1165}
1166
1167static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1168					   const unsigned int ns_val)
1169{
1170	unsigned int ticks;
1171
1172	ticks = ref_clk_hz / 1000;	/* kHz */
1173	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1174
1175	return ticks;
1176}
1177
1178static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1179{
1180	struct cqspi_st *cqspi = f_pdata->cqspi;
1181	void __iomem *iobase = cqspi->iobase;
1182	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1183	unsigned int tshsl, tchsh, tslch, tsd2d;
1184	unsigned int reg;
1185	unsigned int tsclk;
1186
1187	/* calculate the number of ref ticks for one sclk tick */
1188	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1189
1190	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1191	/* this particular value must be at least one sclk */
1192	if (tshsl < tsclk)
1193		tshsl = tsclk;
1194
1195	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1196	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1197	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1198
1199	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1200	       << CQSPI_REG_DELAY_TSHSL_LSB;
1201	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1202		<< CQSPI_REG_DELAY_TCHSH_LSB;
1203	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1204		<< CQSPI_REG_DELAY_TSLCH_LSB;
1205	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1206		<< CQSPI_REG_DELAY_TSD2D_LSB;
1207	writel(reg, iobase + CQSPI_REG_DELAY);
1208}
1209
1210static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1211{
1212	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1213	void __iomem *reg_base = cqspi->iobase;
1214	u32 reg, div;
1215
1216	/* Recalculate the baudrate divisor based on QSPI specification. */
1217	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1218
1219	/* Maximum baud divisor */
1220	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1221		div = CQSPI_REG_CONFIG_BAUD_MASK;
1222		dev_warn(&cqspi->pdev->dev,
1223			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1224			cqspi->sclk, ref_clk_hz/((div+1)*2));
1225	}
1226
1227	reg = readl(reg_base + CQSPI_REG_CONFIG);
1228	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1229	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1230	writel(reg, reg_base + CQSPI_REG_CONFIG);
1231}
1232
1233static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1234				   const bool bypass,
1235				   const unsigned int delay)
1236{
1237	void __iomem *reg_base = cqspi->iobase;
1238	unsigned int reg;
1239
1240	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1241
1242	if (bypass)
1243		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1244	else
1245		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1246
1247	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1248		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1249
1250	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1251		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1252
1253	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1254}
1255
1256static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1257			    unsigned long sclk)
1258{
1259	struct cqspi_st *cqspi = f_pdata->cqspi;
1260	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1261	int switch_ck = (cqspi->sclk != sclk);
1262
1263	if (switch_cs || switch_ck)
1264		cqspi_controller_enable(cqspi, 0);
1265
1266	/* Switch chip select. */
1267	if (switch_cs) {
1268		cqspi->current_cs = f_pdata->cs;
1269		cqspi_chipselect(f_pdata);
1270	}
1271
1272	/* Setup baudrate divisor and delays */
1273	if (switch_ck) {
1274		cqspi->sclk = sclk;
1275		cqspi_config_baudrate_div(cqspi);
1276		cqspi_delay(f_pdata);
1277		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1278				       f_pdata->read_delay);
1279	}
1280
1281	if (switch_cs || switch_ck)
1282		cqspi_controller_enable(cqspi, 1);
1283}
1284
1285static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1286			   const struct spi_mem_op *op)
1287{
1288	struct cqspi_st *cqspi = f_pdata->cqspi;
1289	loff_t to = op->addr.val;
1290	size_t len = op->data.nbytes;
1291	const u_char *buf = op->data.buf.out;
1292	int ret;
1293
1294	ret = cqspi_write_setup(f_pdata, op);
1295	if (ret)
1296		return ret;
1297
1298	/*
1299	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1300	 * address (all 0s) with the read status register command in DTR mode.
1301	 * But this controller does not support sending dummy address bytes to
1302	 * the flash when it is polling the write completion register in DTR
1303	 * mode. So, we can not use direct mode when in DTR mode for writing
1304	 * data.
1305	 */
1306	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1307	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1308		memcpy_toio(cqspi->ahb_base + to, buf, len);
1309		return cqspi_wait_idle(cqspi);
1310	}
1311
1312	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1313}
1314
1315static void cqspi_rx_dma_callback(void *param)
1316{
1317	struct cqspi_st *cqspi = param;
1318
1319	complete(&cqspi->rx_dma_complete);
1320}
1321
1322static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1323				     u_char *buf, loff_t from, size_t len)
1324{
1325	struct cqspi_st *cqspi = f_pdata->cqspi;
1326	struct device *dev = &cqspi->pdev->dev;
1327	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1328	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1329	int ret = 0;
1330	struct dma_async_tx_descriptor *tx;
1331	dma_cookie_t cookie;
1332	dma_addr_t dma_dst;
1333	struct device *ddev;
1334
1335	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1336		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1337		return 0;
1338	}
1339
1340	ddev = cqspi->rx_chan->device->dev;
1341	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1342	if (dma_mapping_error(ddev, dma_dst)) {
1343		dev_err(dev, "dma mapping failed\n");
1344		return -ENOMEM;
1345	}
1346	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1347				       len, flags);
1348	if (!tx) {
1349		dev_err(dev, "device_prep_dma_memcpy error\n");
1350		ret = -EIO;
1351		goto err_unmap;
1352	}
1353
1354	tx->callback = cqspi_rx_dma_callback;
1355	tx->callback_param = cqspi;
1356	cookie = tx->tx_submit(tx);
1357	reinit_completion(&cqspi->rx_dma_complete);
1358
1359	ret = dma_submit_error(cookie);
1360	if (ret) {
1361		dev_err(dev, "dma_submit_error %d\n", cookie);
1362		ret = -EIO;
1363		goto err_unmap;
1364	}
1365
1366	dma_async_issue_pending(cqspi->rx_chan);
1367	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1368					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1369		dmaengine_terminate_sync(cqspi->rx_chan);
1370		dev_err(dev, "DMA wait_for_completion_timeout\n");
1371		ret = -ETIMEDOUT;
1372		goto err_unmap;
1373	}
1374
1375err_unmap:
1376	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1377
1378	return ret;
1379}
1380
1381static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1382			  const struct spi_mem_op *op)
1383{
1384	struct cqspi_st *cqspi = f_pdata->cqspi;
1385	const struct cqspi_driver_platdata *ddata = cqspi->ddata;
 
1386	loff_t from = op->addr.val;
1387	size_t len = op->data.nbytes;
1388	u_char *buf = op->data.buf.in;
1389	u64 dma_align = (u64)(uintptr_t)buf;
1390	int ret;
1391
 
 
1392	ret = cqspi_read_setup(f_pdata, op);
1393	if (ret)
1394		return ret;
1395
1396	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1397		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1398
1399	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1400	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1401		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1402
1403	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1404}
1405
1406static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1407{
1408	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1409	struct cqspi_flash_pdata *f_pdata;
1410
1411	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1412	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1413
1414	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1415	/*
1416	 * Performing reads in DAC mode forces to read minimum 4 bytes
1417	 * which is unsupported on some flash devices during register
1418	 * reads, prefer STIG mode for such small reads.
1419	 */
1420		if (!op->addr.nbytes ||
1421		    (op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX &&
1422		     !cqspi->disable_stig_mode))
1423			return cqspi_command_read(f_pdata, op);
1424
1425		return cqspi_read(f_pdata, op);
1426	}
1427
1428	if (!op->addr.nbytes || !op->data.buf.out)
1429		return cqspi_command_write(f_pdata, op);
1430
1431	return cqspi_write(f_pdata, op);
1432}
1433
1434static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1435{
1436	int ret;
1437	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1438	struct device *dev = &cqspi->pdev->dev;
1439
1440	ret = pm_runtime_resume_and_get(dev);
1441	if (ret) {
1442		dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1443		return ret;
1444	}
1445
1446	ret = cqspi_mem_process(mem, op);
1447
1448	pm_runtime_mark_last_busy(dev);
1449	pm_runtime_put_autosuspend(dev);
1450
1451	if (ret)
1452		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1453
1454	return ret;
1455}
1456
1457static bool cqspi_supports_mem_op(struct spi_mem *mem,
1458				  const struct spi_mem_op *op)
1459{
1460	bool all_true, all_false;
1461
1462	/*
1463	 * op->dummy.dtr is required for converting nbytes into ncycles.
1464	 * Also, don't check the dtr field of the op phase having zero nbytes.
1465	 */
1466	all_true = op->cmd.dtr &&
1467		   (!op->addr.nbytes || op->addr.dtr) &&
1468		   (!op->dummy.nbytes || op->dummy.dtr) &&
1469		   (!op->data.nbytes || op->data.dtr);
1470
1471	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1472		    !op->data.dtr;
1473
1474	if (all_true) {
1475		/* Right now we only support 8-8-8 DTR mode. */
1476		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1477			return false;
1478		if (op->addr.nbytes && op->addr.buswidth != 8)
1479			return false;
1480		if (op->data.nbytes && op->data.buswidth != 8)
1481			return false;
1482	} else if (!all_false) {
1483		/* Mixed DTR modes are not supported. */
1484		return false;
1485	}
1486
1487	return spi_mem_default_supports_op(mem, op);
1488}
1489
1490static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1491				    struct cqspi_flash_pdata *f_pdata,
1492				    struct device_node *np)
1493{
1494	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1495		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1496		return -ENXIO;
1497	}
1498
1499	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1500		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1501		return -ENXIO;
1502	}
1503
1504	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1505		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1506		return -ENXIO;
1507	}
1508
1509	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1510		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1511		return -ENXIO;
1512	}
1513
1514	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1515		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1516		return -ENXIO;
1517	}
1518
1519	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1520		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1521		return -ENXIO;
1522	}
1523
1524	return 0;
1525}
1526
1527static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1528{
1529	struct device *dev = &cqspi->pdev->dev;
1530	struct device_node *np = dev->of_node;
1531	u32 id[2];
1532
1533	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1534
1535	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1536		/* Zero signals FIFO depth should be runtime detected. */
1537		cqspi->fifo_depth = 0;
1538	}
1539
1540	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1541		dev_err(dev, "couldn't determine fifo-width\n");
1542		return -ENXIO;
1543	}
1544
1545	if (of_property_read_u32(np, "cdns,trigger-address",
1546				 &cqspi->trigger_address)) {
1547		dev_err(dev, "couldn't determine trigger-address\n");
1548		return -ENXIO;
1549	}
1550
1551	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1552		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1553
1554	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1555
1556	if (!of_property_read_u32_array(np, "power-domains", id,
1557					ARRAY_SIZE(id)))
1558		cqspi->pd_dev_id = id[1];
1559
1560	return 0;
1561}
1562
1563static void cqspi_controller_init(struct cqspi_st *cqspi)
1564{
1565	u32 reg;
1566
 
 
1567	/* Configure the remap address register, no remap */
1568	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1569
1570	/* Disable all interrupts. */
1571	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1572
1573	/* Configure the SRAM split to 1:1 . */
1574	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1575
1576	/* Load indirect trigger address. */
1577	writel(cqspi->trigger_address,
1578	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1579
1580	/* Program read watermark -- 1/2 of the FIFO. */
1581	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1582	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1583	/* Program write watermark -- 1/8 of the FIFO. */
1584	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1585	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1586
1587	/* Disable direct access controller */
1588	if (!cqspi->use_direct_mode) {
1589		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1590		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1591		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1592	}
1593
1594	/* Enable DMA interface */
1595	if (cqspi->use_dma_read) {
1596		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1597		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1598		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1599	}
1600}
1601
1602static void cqspi_controller_detect_fifo_depth(struct cqspi_st *cqspi)
1603{
1604	struct device *dev = &cqspi->pdev->dev;
1605	u32 reg, fifo_depth;
1606
1607	/*
1608	 * Bits N-1:0 are writable while bits 31:N are read as zero, with 2^N
1609	 * the FIFO depth.
1610	 */
1611	writel(U32_MAX, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1612	reg = readl(cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1613	fifo_depth = reg + 1;
1614
1615	/* FIFO depth of zero means no value from devicetree was provided. */
1616	if (cqspi->fifo_depth == 0) {
1617		cqspi->fifo_depth = fifo_depth;
1618		dev_dbg(dev, "using FIFO depth of %u\n", fifo_depth);
1619	} else if (fifo_depth != cqspi->fifo_depth) {
1620		dev_warn(dev, "detected FIFO depth (%u) different from config (%u)\n",
1621			 fifo_depth, cqspi->fifo_depth);
1622	}
1623}
1624
1625static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1626{
1627	dma_cap_mask_t mask;
1628
1629	dma_cap_zero(mask);
1630	dma_cap_set(DMA_MEMCPY, mask);
1631
1632	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1633	if (IS_ERR(cqspi->rx_chan)) {
1634		int ret = PTR_ERR(cqspi->rx_chan);
1635
1636		cqspi->rx_chan = NULL;
1637		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1638	}
1639	init_completion(&cqspi->rx_dma_complete);
1640
1641	return 0;
1642}
1643
1644static const char *cqspi_get_name(struct spi_mem *mem)
1645{
1646	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1647	struct device *dev = &cqspi->pdev->dev;
1648
1649	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1650			      spi_get_chipselect(mem->spi, 0));
1651}
1652
1653static const struct spi_controller_mem_ops cqspi_mem_ops = {
1654	.exec_op = cqspi_exec_mem_op,
1655	.get_name = cqspi_get_name,
1656	.supports_op = cqspi_supports_mem_op,
1657};
1658
1659static const struct spi_controller_mem_caps cqspi_mem_caps = {
1660	.dtr = true,
1661};
1662
1663static int cqspi_setup_flash(struct cqspi_st *cqspi)
1664{
1665	unsigned int max_cs = cqspi->num_chipselect - 1;
1666	struct platform_device *pdev = cqspi->pdev;
1667	struct device *dev = &pdev->dev;
 
1668	struct cqspi_flash_pdata *f_pdata;
1669	unsigned int cs;
1670	int ret;
1671
1672	/* Get flash device data */
1673	for_each_available_child_of_node_scoped(dev->of_node, np) {
1674		ret = of_property_read_u32(np, "reg", &cs);
1675		if (ret) {
1676			dev_err(dev, "Couldn't determine chip select.\n");
 
1677			return ret;
1678		}
1679
1680		if (cs >= cqspi->num_chipselect) {
1681			dev_err(dev, "Chip select %d out of range.\n", cs);
 
1682			return -EINVAL;
1683		} else if (cs < max_cs) {
1684			max_cs = cs;
1685		}
1686
1687		f_pdata = &cqspi->f_pdata[cs];
1688		f_pdata->cqspi = cqspi;
1689		f_pdata->cs = cs;
1690
1691		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1692		if (ret)
 
1693			return ret;
 
1694	}
1695
1696	cqspi->num_chipselect = max_cs + 1;
1697	return 0;
1698}
1699
1700static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1701{
1702	static struct clk_bulk_data qspiclk[] = {
1703		{ .id = "apb" },
1704		{ .id = "ahb" },
1705	};
1706
1707	int ret = 0;
1708
1709	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1710	if (ret) {
1711		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1712		return ret;
1713	}
1714
1715	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1716	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1717
1718	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1719	if (ret) {
1720		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1721		return ret;
1722	}
1723
1724	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1725	if (ret) {
1726		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1727		goto disable_apb_clk;
1728	}
1729
1730	cqspi->is_jh7110 = true;
1731
1732	return 0;
1733
1734disable_apb_clk:
1735	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1736
1737	return ret;
1738}
1739
1740static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1741{
1742	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1743	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1744}
1745static int cqspi_probe(struct platform_device *pdev)
1746{
1747	const struct cqspi_driver_platdata *ddata;
1748	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1749	struct device *dev = &pdev->dev;
1750	struct spi_controller *host;
1751	struct resource *res_ahb;
1752	struct cqspi_st *cqspi;
1753	int ret;
1754	int irq;
1755
1756	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1757	if (!host)
1758		return -ENOMEM;
1759
1760	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1761	host->mem_ops = &cqspi_mem_ops;
1762	host->mem_caps = &cqspi_mem_caps;
1763	host->dev.of_node = pdev->dev.of_node;
1764
1765	cqspi = spi_controller_get_devdata(host);
1766
1767	cqspi->pdev = pdev;
1768	cqspi->host = host;
1769	cqspi->is_jh7110 = false;
1770	cqspi->ddata = ddata = of_device_get_match_data(dev);
1771	platform_set_drvdata(pdev, cqspi);
1772
1773	/* Obtain configuration from OF. */
1774	ret = cqspi_of_get_pdata(cqspi);
1775	if (ret) {
1776		dev_err(dev, "Cannot get mandatory OF data.\n");
1777		return -ENODEV;
1778	}
1779
1780	/* Obtain QSPI clock. */
1781	cqspi->clk = devm_clk_get(dev, NULL);
1782	if (IS_ERR(cqspi->clk)) {
1783		dev_err(dev, "Cannot claim QSPI clock.\n");
1784		ret = PTR_ERR(cqspi->clk);
1785		return ret;
1786	}
1787
1788	/* Obtain and remap controller address. */
1789	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1790	if (IS_ERR(cqspi->iobase)) {
1791		dev_err(dev, "Cannot remap controller address.\n");
1792		ret = PTR_ERR(cqspi->iobase);
1793		return ret;
1794	}
1795
1796	/* Obtain and remap AHB address. */
1797	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1798	if (IS_ERR(cqspi->ahb_base)) {
1799		dev_err(dev, "Cannot remap AHB address.\n");
1800		ret = PTR_ERR(cqspi->ahb_base);
1801		return ret;
1802	}
1803	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1804	cqspi->ahb_size = resource_size(res_ahb);
1805
1806	init_completion(&cqspi->transfer_complete);
1807
1808	/* Obtain IRQ line. */
1809	irq = platform_get_irq(pdev, 0);
1810	if (irq < 0)
1811		return -ENXIO;
1812
1813	ret = pm_runtime_set_active(dev);
1814	if (ret)
1815		return ret;
1816
1817
1818	ret = clk_prepare_enable(cqspi->clk);
1819	if (ret) {
1820		dev_err(dev, "Cannot enable QSPI clock.\n");
1821		goto probe_clk_failed;
1822	}
1823
1824	/* Obtain QSPI reset control */
1825	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1826	if (IS_ERR(rstc)) {
1827		ret = PTR_ERR(rstc);
1828		dev_err(dev, "Cannot get QSPI reset.\n");
1829		goto probe_reset_failed;
1830	}
1831
1832	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1833	if (IS_ERR(rstc_ocp)) {
1834		ret = PTR_ERR(rstc_ocp);
1835		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1836		goto probe_reset_failed;
1837	}
1838
1839	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1840		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1841		if (IS_ERR(rstc_ref)) {
1842			ret = PTR_ERR(rstc_ref);
1843			dev_err(dev, "Cannot get QSPI REF reset.\n");
1844			goto probe_reset_failed;
1845		}
1846		reset_control_assert(rstc_ref);
1847		reset_control_deassert(rstc_ref);
1848	}
1849
1850	reset_control_assert(rstc);
1851	reset_control_deassert(rstc);
1852
1853	reset_control_assert(rstc_ocp);
1854	reset_control_deassert(rstc_ocp);
1855
1856	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1857	host->max_speed_hz = cqspi->master_ref_clk_hz;
1858
1859	/* write completion is supported by default */
1860	cqspi->wr_completion = true;
1861
 
1862	if (ddata) {
1863		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1864			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1865						cqspi->master_ref_clk_hz);
1866		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1867			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1868		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1869			cqspi->use_direct_mode = true;
1870			cqspi->use_direct_mode_wr = true;
1871		}
1872		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1873			cqspi->use_dma_read = true;
1874		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1875			cqspi->wr_completion = false;
1876		if (ddata->quirks & CQSPI_SLOW_SRAM)
1877			cqspi->slow_sram = true;
1878		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1879			cqspi->apb_ahb_hazard = true;
1880
1881		if (ddata->jh7110_clk_init) {
1882			ret = cqspi_jh7110_clk_init(pdev, cqspi);
1883			if (ret)
1884				goto probe_reset_failed;
1885		}
1886		if (ddata->quirks & CQSPI_DISABLE_STIG_MODE)
1887			cqspi->disable_stig_mode = true;
1888
1889		if (of_device_is_compatible(pdev->dev.of_node,
1890					    "xlnx,versal-ospi-1.0")) {
1891			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1892			if (ret)
1893				goto probe_reset_failed;
1894		}
1895	}
1896
1897	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1898			       pdev->name, cqspi);
1899	if (ret) {
1900		dev_err(dev, "Cannot request IRQ.\n");
1901		goto probe_reset_failed;
1902	}
1903
1904	cqspi_wait_idle(cqspi);
1905	cqspi_controller_enable(cqspi, 0);
1906	cqspi_controller_detect_fifo_depth(cqspi);
1907	cqspi_controller_init(cqspi);
1908	cqspi_controller_enable(cqspi, 1);
1909	cqspi->current_cs = -1;
1910	cqspi->sclk = 0;
1911
1912	ret = cqspi_setup_flash(cqspi);
1913	if (ret) {
1914		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1915		goto probe_setup_failed;
1916	}
1917
1918	host->num_chipselect = cqspi->num_chipselect;
1919
1920	if (cqspi->use_direct_mode) {
1921		ret = cqspi_request_mmap_dma(cqspi);
1922		if (ret == -EPROBE_DEFER)
1923			goto probe_setup_failed;
1924	}
1925
1926	ret = devm_pm_runtime_enable(dev);
1927	if (ret) {
1928		if (cqspi->rx_chan)
1929			dma_release_channel(cqspi->rx_chan);
1930		goto probe_setup_failed;
1931	}
1932
1933	pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1934	pm_runtime_use_autosuspend(dev);
1935	pm_runtime_get_noresume(dev);
1936
1937	ret = spi_register_controller(host);
1938	if (ret) {
1939		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1940		goto probe_setup_failed;
1941	}
1942
1943	pm_runtime_mark_last_busy(dev);
1944	pm_runtime_put_autosuspend(dev);
1945
1946	return 0;
1947probe_setup_failed:
1948	cqspi_controller_enable(cqspi, 0);
1949probe_reset_failed:
1950	if (cqspi->is_jh7110)
1951		cqspi_jh7110_disable_clk(pdev, cqspi);
1952	clk_disable_unprepare(cqspi->clk);
1953probe_clk_failed:
1954	return ret;
1955}
1956
1957static void cqspi_remove(struct platform_device *pdev)
1958{
1959	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1960
1961	spi_unregister_controller(cqspi->host);
1962	cqspi_controller_enable(cqspi, 0);
1963
1964	if (cqspi->rx_chan)
1965		dma_release_channel(cqspi->rx_chan);
1966
1967	clk_disable_unprepare(cqspi->clk);
1968
1969	if (cqspi->is_jh7110)
1970		cqspi_jh7110_disable_clk(pdev, cqspi);
1971
1972	pm_runtime_put_sync(&pdev->dev);
1973	pm_runtime_disable(&pdev->dev);
1974}
1975
1976static int cqspi_runtime_suspend(struct device *dev)
1977{
1978	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1979
1980	cqspi_controller_enable(cqspi, 0);
1981	clk_disable_unprepare(cqspi->clk);
1982	return 0;
1983}
1984
1985static int cqspi_runtime_resume(struct device *dev)
1986{
1987	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1988
1989	clk_prepare_enable(cqspi->clk);
1990	cqspi_wait_idle(cqspi);
1991	cqspi_controller_enable(cqspi, 0);
1992	cqspi_controller_init(cqspi);
1993	cqspi_controller_enable(cqspi, 1);
1994
1995	cqspi->current_cs = -1;
1996	cqspi->sclk = 0;
1997	return 0;
1998}
1999
2000static int cqspi_suspend(struct device *dev)
2001{
2002	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2003	int ret;
2004
2005	ret = spi_controller_suspend(cqspi->host);
2006	if (ret)
2007		return ret;
2008
2009	return pm_runtime_force_suspend(dev);
2010}
2011
2012static int cqspi_resume(struct device *dev)
2013{
2014	struct cqspi_st *cqspi = dev_get_drvdata(dev);
2015	int ret;
2016
2017	ret = pm_runtime_force_resume(dev);
2018	if (ret) {
2019		dev_err(dev, "pm_runtime_force_resume failed on resume\n");
2020		return ret;
2021	}
2022
2023	return spi_controller_resume(cqspi->host);
2024}
2025
2026static const struct dev_pm_ops cqspi_dev_pm_ops = {
2027	RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
2028	SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
2029};
2030
2031static const struct cqspi_driver_platdata cdns_qspi = {
2032	.quirks = CQSPI_DISABLE_DAC_MODE,
2033};
2034
2035static const struct cqspi_driver_platdata k2g_qspi = {
2036	.quirks = CQSPI_NEEDS_WR_DELAY,
2037};
2038
2039static const struct cqspi_driver_platdata am654_ospi = {
2040	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2041	.quirks = CQSPI_NEEDS_WR_DELAY,
2042};
2043
2044static const struct cqspi_driver_platdata intel_lgm_qspi = {
2045	.quirks = CQSPI_DISABLE_DAC_MODE,
2046};
2047
2048static const struct cqspi_driver_platdata socfpga_qspi = {
2049	.quirks = CQSPI_DISABLE_DAC_MODE
2050			| CQSPI_NO_SUPPORT_WR_COMPLETION
2051			| CQSPI_SLOW_SRAM
2052			| CQSPI_DISABLE_STIG_MODE,
2053};
2054
2055static const struct cqspi_driver_platdata versal_ospi = {
2056	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2057	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
2058	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2059	.get_dma_status = cqspi_get_versal_dma_status,
2060};
2061
2062static const struct cqspi_driver_platdata jh7110_qspi = {
2063	.quirks = CQSPI_DISABLE_DAC_MODE,
2064	.jh7110_clk_init = cqspi_jh7110_clk_init,
2065};
2066
2067static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2068	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2069};
2070
2071static const struct cqspi_driver_platdata mobileye_eyeq5_ospi = {
2072	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2073	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION |
2074			CQSPI_RD_NO_IRQ,
2075};
2076
2077static const struct of_device_id cqspi_dt_ids[] = {
2078	{
2079		.compatible = "cdns,qspi-nor",
2080		.data = &cdns_qspi,
2081	},
2082	{
2083		.compatible = "ti,k2g-qspi",
2084		.data = &k2g_qspi,
2085	},
2086	{
2087		.compatible = "ti,am654-ospi",
2088		.data = &am654_ospi,
2089	},
2090	{
2091		.compatible = "intel,lgm-qspi",
2092		.data = &intel_lgm_qspi,
2093	},
2094	{
2095		.compatible = "xlnx,versal-ospi-1.0",
2096		.data = &versal_ospi,
2097	},
2098	{
2099		.compatible = "intel,socfpga-qspi",
2100		.data = &socfpga_qspi,
2101	},
2102	{
2103		.compatible = "starfive,jh7110-qspi",
2104		.data = &jh7110_qspi,
2105	},
2106	{
2107		.compatible = "amd,pensando-elba-qspi",
2108		.data = &pensando_cdns_qspi,
2109	},
2110	{
2111		.compatible = "mobileye,eyeq5-ospi",
2112		.data = &mobileye_eyeq5_ospi,
2113	},
2114	{ /* end of table */ }
2115};
2116
2117MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2118
2119static struct platform_driver cqspi_platform_driver = {
2120	.probe = cqspi_probe,
2121	.remove = cqspi_remove,
2122	.driver = {
2123		.name = CQSPI_NAME,
2124		.pm = pm_ptr(&cqspi_dev_pm_ops),
2125		.of_match_table = cqspi_dt_ids,
2126	},
2127};
2128
2129module_platform_driver(cqspi_platform_driver);
2130
2131MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2132MODULE_LICENSE("GPL v2");
2133MODULE_ALIAS("platform:" CQSPI_NAME);
2134MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2135MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2136MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2137MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2138MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2//
   3// Driver for Cadence QSPI Controller
   4//
   5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
   6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
   7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
   8
   9#include <linux/clk.h>
  10#include <linux/completion.h>
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/dmaengine.h>
  14#include <linux/err.h>
  15#include <linux/errno.h>
  16#include <linux/firmware/xlnx-zynqmp.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/iopoll.h>
  20#include <linux/jiffies.h>
  21#include <linux/kernel.h>
  22#include <linux/log2.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/reset.h>
  28#include <linux/sched.h>
  29#include <linux/spi/spi.h>
  30#include <linux/spi/spi-mem.h>
  31#include <linux/timer.h>
  32
  33#define CQSPI_NAME			"cadence-qspi"
  34#define CQSPI_MAX_CHIPSELECT		4
  35
  36static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
  37
  38/* Quirks */
  39#define CQSPI_NEEDS_WR_DELAY		BIT(0)
  40#define CQSPI_DISABLE_DAC_MODE		BIT(1)
  41#define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
  42#define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
  43#define CQSPI_SLOW_SRAM		BIT(4)
  44#define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
 
 
  45
  46/* Capabilities */
  47#define CQSPI_SUPPORTS_OCTAL		BIT(0)
  48
  49#define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
  50
  51enum {
  52	CLK_QSPI_APB = 0,
  53	CLK_QSPI_AHB,
  54	CLK_QSPI_NUM,
  55};
  56
  57struct cqspi_st;
  58
  59struct cqspi_flash_pdata {
  60	struct cqspi_st	*cqspi;
  61	u32		clk_rate;
  62	u32		read_delay;
  63	u32		tshsl_ns;
  64	u32		tsd2d_ns;
  65	u32		tchsh_ns;
  66	u32		tslch_ns;
  67	u8		cs;
  68};
  69
  70struct cqspi_st {
  71	struct platform_device	*pdev;
  72	struct spi_controller	*host;
  73	struct clk		*clk;
  74	struct clk		*clks[CLK_QSPI_NUM];
  75	unsigned int		sclk;
  76
  77	void __iomem		*iobase;
  78	void __iomem		*ahb_base;
  79	resource_size_t		ahb_size;
  80	struct completion	transfer_complete;
  81
  82	struct dma_chan		*rx_chan;
  83	struct completion	rx_dma_complete;
  84	dma_addr_t		mmap_phys_base;
  85
  86	int			current_cs;
  87	unsigned long		master_ref_clk_hz;
  88	bool			is_decoded_cs;
  89	u32			fifo_depth;
  90	u32			fifo_width;
  91	u32			num_chipselect;
  92	bool			rclk_en;
  93	u32			trigger_address;
  94	u32			wr_delay;
  95	bool			use_direct_mode;
  96	bool			use_direct_mode_wr;
  97	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
  98	bool			use_dma_read;
  99	u32			pd_dev_id;
 100	bool			wr_completion;
 101	bool			slow_sram;
 102	bool			apb_ahb_hazard;
 103
 104	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
 
 
 
 105};
 106
 107struct cqspi_driver_platdata {
 108	u32 hwcaps_mask;
 109	u8 quirks;
 110	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
 111				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
 112	u32 (*get_dma_status)(struct cqspi_st *cqspi);
 113	int (*jh7110_clk_init)(struct platform_device *pdev,
 114			       struct cqspi_st *cqspi);
 115};
 116
 117/* Operation timeout value */
 118#define CQSPI_TIMEOUT_MS			500
 119#define CQSPI_READ_TIMEOUT_MS			10
 
 120
 121/* Runtime_pm autosuspend delay */
 122#define CQSPI_AUTOSUSPEND_TIMEOUT		2000
 123
 124#define CQSPI_DUMMY_CLKS_PER_BYTE		8
 125#define CQSPI_DUMMY_BYTES_MAX			4
 126#define CQSPI_DUMMY_CLKS_MAX			31
 127
 128#define CQSPI_STIG_DATA_LEN_MAX			8
 129
 130/* Register map */
 131#define CQSPI_REG_CONFIG			0x00
 132#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
 133#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
 134#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
 135#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
 136#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
 137#define CQSPI_REG_CONFIG_BAUD_LSB		19
 138#define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
 139#define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
 140#define CQSPI_REG_CONFIG_IDLE_LSB		31
 141#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
 142#define CQSPI_REG_CONFIG_BAUD_MASK		0xF
 143
 144#define CQSPI_REG_RD_INSTR			0x04
 145#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
 146#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
 147#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
 148#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
 149#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
 150#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
 151#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
 152#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
 153#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
 154#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
 155
 156#define CQSPI_REG_WR_INSTR			0x08
 157#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
 158#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
 159#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
 160
 161#define CQSPI_REG_DELAY				0x0C
 162#define CQSPI_REG_DELAY_TSLCH_LSB		0
 163#define CQSPI_REG_DELAY_TCHSH_LSB		8
 164#define CQSPI_REG_DELAY_TSD2D_LSB		16
 165#define CQSPI_REG_DELAY_TSHSL_LSB		24
 166#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
 167#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
 168#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
 169#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
 170
 171#define CQSPI_REG_READCAPTURE			0x10
 172#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
 173#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
 174#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
 175
 176#define CQSPI_REG_SIZE				0x14
 177#define CQSPI_REG_SIZE_ADDRESS_LSB		0
 178#define CQSPI_REG_SIZE_PAGE_LSB			4
 179#define CQSPI_REG_SIZE_BLOCK_LSB		16
 180#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
 181#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
 182#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
 183
 184#define CQSPI_REG_SRAMPARTITION			0x18
 185#define CQSPI_REG_INDIRECTTRIGGER		0x1C
 186
 187#define CQSPI_REG_DMA				0x20
 188#define CQSPI_REG_DMA_SINGLE_LSB		0
 189#define CQSPI_REG_DMA_BURST_LSB			8
 190#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
 191#define CQSPI_REG_DMA_BURST_MASK		0xFF
 192
 193#define CQSPI_REG_REMAP				0x24
 194#define CQSPI_REG_MODE_BIT			0x28
 195
 196#define CQSPI_REG_SDRAMLEVEL			0x2C
 197#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
 198#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
 199#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
 200#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
 201
 202#define CQSPI_REG_WR_COMPLETION_CTRL		0x38
 203#define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
 204
 205#define CQSPI_REG_IRQSTATUS			0x40
 206#define CQSPI_REG_IRQMASK			0x44
 207
 208#define CQSPI_REG_INDIRECTRD			0x60
 209#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
 210#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
 211#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
 212
 213#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
 214#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
 215#define CQSPI_REG_INDIRECTRDBYTES		0x6C
 216
 217#define CQSPI_REG_CMDCTRL			0x90
 218#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
 219#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
 220#define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
 221#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
 222#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
 223#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
 224#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
 225#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
 226#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
 227#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
 228#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
 229#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
 230#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
 231#define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
 232
 233#define CQSPI_REG_INDIRECTWR			0x70
 234#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
 235#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
 236#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
 237
 238#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
 239#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
 240#define CQSPI_REG_INDIRECTWRBYTES		0x7C
 241
 242#define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
 243
 244#define CQSPI_REG_CMDADDRESS			0x94
 245#define CQSPI_REG_CMDREADDATALOWER		0xA0
 246#define CQSPI_REG_CMDREADDATAUPPER		0xA4
 247#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
 248#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
 249
 250#define CQSPI_REG_POLLING_STATUS		0xB0
 251#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
 252
 253#define CQSPI_REG_OP_EXT_LOWER			0xE0
 254#define CQSPI_REG_OP_EXT_READ_LSB		24
 255#define CQSPI_REG_OP_EXT_WRITE_LSB		16
 256#define CQSPI_REG_OP_EXT_STIG_LSB		0
 257
 258#define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
 259
 260#define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
 261#define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
 262
 263#define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
 264
 265#define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
 266#define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
 267#define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
 268#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
 269
 270#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
 271
 272#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
 273#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
 274
 275/* Interrupt status bits */
 276#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
 277#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
 278#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
 279#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
 280#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
 281#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
 282#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
 283#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
 284
 285#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
 286					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
 287					 CQSPI_REG_IRQ_IND_COMP)
 288
 289#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
 290					 CQSPI_REG_IRQ_WATERMARK	| \
 291					 CQSPI_REG_IRQ_UNDERFLOW)
 292
 293#define CQSPI_IRQ_STATUS_MASK		0x1FFFF
 294#define CQSPI_DMA_UNALIGN		0x3
 295
 296#define CQSPI_REG_VERSAL_DMA_VAL		0x602
 297
 298static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
 
 
 299{
 
 300	u32 val;
 301
 
 
 
 
 
 
 
 
 
 
 
 302	return readl_relaxed_poll_timeout(reg, val,
 303					  (((clr ? ~val : val) & mask) == mask),
 304					  10, CQSPI_TIMEOUT_MS * 1000);
 305}
 306
 307static bool cqspi_is_idle(struct cqspi_st *cqspi)
 308{
 309	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 310
 311	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
 312}
 313
 314static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
 315{
 316	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
 317
 318	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
 319	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
 320}
 321
 322static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
 323{
 324	u32 dma_status;
 325
 326	dma_status = readl(cqspi->iobase +
 327					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
 328	writel(dma_status, cqspi->iobase +
 329		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
 330
 331	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
 332}
 333
 334static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
 335{
 336	struct cqspi_st *cqspi = dev;
 
 337	unsigned int irq_status;
 338	struct device *device = &cqspi->pdev->dev;
 339	const struct cqspi_driver_platdata *ddata;
 340
 341	ddata = of_device_get_match_data(device);
 342
 343	/* Read interrupt status */
 344	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
 345
 346	/* Clear interrupt */
 347	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
 348
 349	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
 350		if (ddata->get_dma_status(cqspi)) {
 351			complete(&cqspi->transfer_complete);
 352			return IRQ_HANDLED;
 353		}
 354	}
 355
 356	else if (!cqspi->slow_sram)
 357		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
 358	else
 359		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
 360
 361	if (irq_status)
 362		complete(&cqspi->transfer_complete);
 363
 364	return IRQ_HANDLED;
 365}
 366
 367static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
 368{
 369	u32 rdreg = 0;
 370
 371	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
 372	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
 373	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
 374
 375	return rdreg;
 376}
 377
 378static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
 379{
 380	unsigned int dummy_clk;
 381
 382	if (!op->dummy.nbytes)
 383		return 0;
 384
 385	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
 386	if (op->cmd.dtr)
 387		dummy_clk /= 2;
 388
 389	return dummy_clk;
 390}
 391
 392static int cqspi_wait_idle(struct cqspi_st *cqspi)
 393{
 394	const unsigned int poll_idle_retry = 3;
 395	unsigned int count = 0;
 396	unsigned long timeout;
 397
 398	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
 399	while (1) {
 400		/*
 401		 * Read few times in succession to ensure the controller
 402		 * is indeed idle, that is, the bit does not transition
 403		 * low again.
 404		 */
 405		if (cqspi_is_idle(cqspi))
 406			count++;
 407		else
 408			count = 0;
 409
 410		if (count >= poll_idle_retry)
 411			return 0;
 412
 413		if (time_after(jiffies, timeout)) {
 414			/* Timeout, in busy mode. */
 415			dev_err(&cqspi->pdev->dev,
 416				"QSPI is still busy after %dms timeout.\n",
 417				CQSPI_TIMEOUT_MS);
 418			return -ETIMEDOUT;
 419		}
 420
 421		cpu_relax();
 422	}
 423}
 424
 425static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
 426{
 427	void __iomem *reg_base = cqspi->iobase;
 428	int ret;
 429
 430	/* Write the CMDCTRL without start execution. */
 431	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 432	/* Start execute */
 433	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
 434	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 435
 436	/* Polling for completion. */
 437	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
 438				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
 439	if (ret) {
 440		dev_err(&cqspi->pdev->dev,
 441			"Flash command execution timed out.\n");
 442		return ret;
 443	}
 444
 445	/* Polling QSPI idle status. */
 446	return cqspi_wait_idle(cqspi);
 447}
 448
 449static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
 450				  const struct spi_mem_op *op,
 451				  unsigned int shift)
 452{
 453	struct cqspi_st *cqspi = f_pdata->cqspi;
 454	void __iomem *reg_base = cqspi->iobase;
 455	unsigned int reg;
 456	u8 ext;
 457
 458	if (op->cmd.nbytes != 2)
 459		return -EINVAL;
 460
 461	/* Opcode extension is the LSB. */
 462	ext = op->cmd.opcode & 0xff;
 463
 464	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
 465	reg &= ~(0xff << shift);
 466	reg |= ext << shift;
 467	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
 468
 469	return 0;
 470}
 471
 472static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
 473			    const struct spi_mem_op *op, unsigned int shift)
 474{
 475	struct cqspi_st *cqspi = f_pdata->cqspi;
 476	void __iomem *reg_base = cqspi->iobase;
 477	unsigned int reg;
 478	int ret;
 479
 480	reg = readl(reg_base + CQSPI_REG_CONFIG);
 481
 482	/*
 483	 * We enable dual byte opcode here. The callers have to set up the
 484	 * extension opcode based on which type of operation it is.
 485	 */
 486	if (op->cmd.dtr) {
 487		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
 488		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
 489
 490		/* Set up command opcode extension. */
 491		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
 492		if (ret)
 493			return ret;
 494	} else {
 495		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
 496		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
 
 
 
 497	}
 498
 499	writel(reg, reg_base + CQSPI_REG_CONFIG);
 500
 501	return cqspi_wait_idle(cqspi);
 502}
 503
 504static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
 505			      const struct spi_mem_op *op)
 506{
 507	struct cqspi_st *cqspi = f_pdata->cqspi;
 508	void __iomem *reg_base = cqspi->iobase;
 509	u8 *rxbuf = op->data.buf.in;
 510	u8 opcode;
 511	size_t n_rx = op->data.nbytes;
 512	unsigned int rdreg;
 513	unsigned int reg;
 514	unsigned int dummy_clk;
 515	size_t read_len;
 516	int status;
 517
 518	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
 519	if (status)
 520		return status;
 521
 522	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
 523		dev_err(&cqspi->pdev->dev,
 524			"Invalid input argument, len %zu rxbuf 0x%p\n",
 525			n_rx, rxbuf);
 526		return -EINVAL;
 527	}
 528
 529	if (op->cmd.dtr)
 530		opcode = op->cmd.opcode >> 8;
 531	else
 532		opcode = op->cmd.opcode;
 533
 534	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 535
 536	rdreg = cqspi_calc_rdreg(op);
 537	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
 538
 539	dummy_clk = cqspi_calc_dummy(op);
 540	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
 541		return -EOPNOTSUPP;
 542
 543	if (dummy_clk)
 544		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
 545		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
 546
 547	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
 548
 549	/* 0 means 1 byte. */
 550	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
 551		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
 552
 553	/* setup ADDR BIT field */
 554	if (op->addr.nbytes) {
 555		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
 556		reg |= ((op->addr.nbytes - 1) &
 557			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
 558			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
 559
 560		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
 561	}
 562
 563	status = cqspi_exec_flash_cmd(cqspi, reg);
 564	if (status)
 565		return status;
 566
 567	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
 568
 569	/* Put the read value into rx_buf */
 570	read_len = (n_rx > 4) ? 4 : n_rx;
 571	memcpy(rxbuf, &reg, read_len);
 572	rxbuf += read_len;
 573
 574	if (n_rx > 4) {
 575		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
 576
 577		read_len = n_rx - read_len;
 578		memcpy(rxbuf, &reg, read_len);
 579	}
 580
 581	/* Reset CMD_CTRL Reg once command read completes */
 582	writel(0, reg_base + CQSPI_REG_CMDCTRL);
 583
 584	return 0;
 585}
 586
 587static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
 588			       const struct spi_mem_op *op)
 589{
 590	struct cqspi_st *cqspi = f_pdata->cqspi;
 591	void __iomem *reg_base = cqspi->iobase;
 592	u8 opcode;
 593	const u8 *txbuf = op->data.buf.out;
 594	size_t n_tx = op->data.nbytes;
 595	unsigned int reg;
 596	unsigned int data;
 597	size_t write_len;
 598	int ret;
 599
 600	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
 601	if (ret)
 602		return ret;
 603
 604	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
 605		dev_err(&cqspi->pdev->dev,
 606			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
 607			n_tx, txbuf);
 608		return -EINVAL;
 609	}
 610
 611	reg = cqspi_calc_rdreg(op);
 612	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 613
 614	if (op->cmd.dtr)
 615		opcode = op->cmd.opcode >> 8;
 616	else
 617		opcode = op->cmd.opcode;
 618
 619	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 620
 621	if (op->addr.nbytes) {
 622		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
 623		reg |= ((op->addr.nbytes - 1) &
 624			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
 625			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
 626
 627		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
 628	}
 629
 630	if (n_tx) {
 631		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
 632		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
 633			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
 634		data = 0;
 635		write_len = (n_tx > 4) ? 4 : n_tx;
 636		memcpy(&data, txbuf, write_len);
 637		txbuf += write_len;
 638		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
 639
 640		if (n_tx > 4) {
 641			data = 0;
 642			write_len = n_tx - 4;
 643			memcpy(&data, txbuf, write_len);
 644			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
 645		}
 646	}
 647
 648	ret = cqspi_exec_flash_cmd(cqspi, reg);
 649
 650	/* Reset CMD_CTRL Reg once command write completes */
 651	writel(0, reg_base + CQSPI_REG_CMDCTRL);
 652
 653	return ret;
 654}
 655
 656static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
 657			    const struct spi_mem_op *op)
 658{
 659	struct cqspi_st *cqspi = f_pdata->cqspi;
 660	void __iomem *reg_base = cqspi->iobase;
 661	unsigned int dummy_clk = 0;
 662	unsigned int reg;
 663	int ret;
 664	u8 opcode;
 665
 666	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
 667	if (ret)
 668		return ret;
 669
 670	if (op->cmd.dtr)
 671		opcode = op->cmd.opcode >> 8;
 672	else
 673		opcode = op->cmd.opcode;
 674
 675	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
 676	reg |= cqspi_calc_rdreg(op);
 677
 678	/* Setup dummy clock cycles */
 679	dummy_clk = cqspi_calc_dummy(op);
 680
 681	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
 682		return -EOPNOTSUPP;
 683
 684	if (dummy_clk)
 685		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
 686		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
 687
 688	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 689
 690	/* Set address width */
 691	reg = readl(reg_base + CQSPI_REG_SIZE);
 692	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
 693	reg |= (op->addr.nbytes - 1);
 694	writel(reg, reg_base + CQSPI_REG_SIZE);
 695	return 0;
 696}
 697
 698static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
 699				       u8 *rxbuf, loff_t from_addr,
 700				       const size_t n_rx)
 701{
 702	struct cqspi_st *cqspi = f_pdata->cqspi;
 
 703	struct device *dev = &cqspi->pdev->dev;
 704	void __iomem *reg_base = cqspi->iobase;
 705	void __iomem *ahb_base = cqspi->ahb_base;
 706	unsigned int remaining = n_rx;
 707	unsigned int mod_bytes = n_rx % 4;
 708	unsigned int bytes_to_read = 0;
 709	u8 *rxbuf_end = rxbuf + n_rx;
 710	int ret = 0;
 711
 712	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
 713	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
 714
 715	/* Clear all interrupts. */
 716	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 717
 718	/*
 719	 * On SoCFPGA platform reading the SRAM is slow due to
 720	 * hardware limitation and causing read interrupt storm to CPU,
 721	 * so enabling only watermark interrupt to disable all read
 722	 * interrupts later as we want to run "bytes to read" loop with
 723	 * all the read interrupts disabled for max performance.
 724	 */
 725
 726	if (!cqspi->slow_sram)
 
 
 727		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
 728	else
 729		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
 730
 731	reinit_completion(&cqspi->transfer_complete);
 732	writel(CQSPI_REG_INDIRECTRD_START_MASK,
 733	       reg_base + CQSPI_REG_INDIRECTRD);
 734
 735	while (remaining > 0) {
 736		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 
 737						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
 738			ret = -ETIMEDOUT;
 739
 740		/*
 741		 * Disable all read interrupts until
 742		 * we are out of "bytes to read"
 743		 */
 744		if (cqspi->slow_sram)
 745			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
 746
 747		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 748
 749		if (ret && bytes_to_read == 0) {
 750			dev_err(dev, "Indirect read timeout, no bytes\n");
 751			goto failrd;
 752		}
 753
 754		while (bytes_to_read != 0) {
 755			unsigned int word_remain = round_down(remaining, 4);
 756
 757			bytes_to_read *= cqspi->fifo_width;
 758			bytes_to_read = bytes_to_read > remaining ?
 759					remaining : bytes_to_read;
 760			bytes_to_read = round_down(bytes_to_read, 4);
 761			/* Read 4 byte word chunks then single bytes */
 762			if (bytes_to_read) {
 763				ioread32_rep(ahb_base, rxbuf,
 764					     (bytes_to_read / 4));
 765			} else if (!word_remain && mod_bytes) {
 766				unsigned int temp = ioread32(ahb_base);
 767
 768				bytes_to_read = mod_bytes;
 769				memcpy(rxbuf, &temp, min((unsigned int)
 770							 (rxbuf_end - rxbuf),
 771							 bytes_to_read));
 772			}
 773			rxbuf += bytes_to_read;
 774			remaining -= bytes_to_read;
 775			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 776		}
 777
 778		if (remaining > 0) {
 779			reinit_completion(&cqspi->transfer_complete);
 780			if (cqspi->slow_sram)
 781				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
 782		}
 783	}
 784
 785	/* Check indirect done status */
 786	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
 787				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
 788	if (ret) {
 789		dev_err(dev, "Indirect read completion error (%i)\n", ret);
 790		goto failrd;
 791	}
 792
 793	/* Disable interrupt */
 794	writel(0, reg_base + CQSPI_REG_IRQMASK);
 795
 796	/* Clear indirect completion status */
 797	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
 798
 799	return 0;
 800
 801failrd:
 802	/* Disable interrupt */
 803	writel(0, reg_base + CQSPI_REG_IRQMASK);
 804
 805	/* Cancel the indirect read */
 806	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
 807	       reg_base + CQSPI_REG_INDIRECTRD);
 808	return ret;
 809}
 810
 811static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
 812{
 813	void __iomem *reg_base = cqspi->iobase;
 814	unsigned int reg;
 815
 816	reg = readl(reg_base + CQSPI_REG_CONFIG);
 817
 818	if (enable)
 819		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
 820	else
 821		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
 822
 823	writel(reg, reg_base + CQSPI_REG_CONFIG);
 824}
 825
 826static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
 827					  u_char *rxbuf, loff_t from_addr,
 828					  size_t n_rx)
 829{
 830	struct cqspi_st *cqspi = f_pdata->cqspi;
 831	struct device *dev = &cqspi->pdev->dev;
 832	void __iomem *reg_base = cqspi->iobase;
 833	u32 reg, bytes_to_dma;
 834	loff_t addr = from_addr;
 835	void *buf = rxbuf;
 836	dma_addr_t dma_addr;
 837	u8 bytes_rem;
 838	int ret = 0;
 839
 840	bytes_rem = n_rx % 4;
 841	bytes_to_dma = (n_rx - bytes_rem);
 842
 843	if (!bytes_to_dma)
 844		goto nondmard;
 845
 846	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
 847	if (ret)
 848		return ret;
 849
 850	cqspi_controller_enable(cqspi, 0);
 851
 852	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 853	reg |= CQSPI_REG_CONFIG_DMA_MASK;
 854	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 855
 856	cqspi_controller_enable(cqspi, 1);
 857
 858	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
 859	if (dma_mapping_error(dev, dma_addr)) {
 860		dev_err(dev, "dma mapping failed\n");
 861		return -ENOMEM;
 862	}
 863
 864	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
 865	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
 866	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
 867	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
 868
 869	/* Clear all interrupts. */
 870	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 871
 872	/* Enable DMA done interrupt */
 873	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
 874	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
 875
 876	/* Default DMA periph configuration */
 877	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
 878
 879	/* Configure DMA Dst address */
 880	writel(lower_32_bits(dma_addr),
 881	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
 882	writel(upper_32_bits(dma_addr),
 883	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
 884
 885	/* Configure DMA Src address */
 886	writel(cqspi->trigger_address, reg_base +
 887	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
 888
 889	/* Set DMA destination size */
 890	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
 891
 892	/* Set DMA destination control */
 893	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
 894	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
 895
 896	writel(CQSPI_REG_INDIRECTRD_START_MASK,
 897	       reg_base + CQSPI_REG_INDIRECTRD);
 898
 899	reinit_completion(&cqspi->transfer_complete);
 900
 901	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 902					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
 903		ret = -ETIMEDOUT;
 904		goto failrd;
 905	}
 906
 907	/* Disable DMA interrupt */
 908	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
 909
 910	/* Clear indirect completion status */
 911	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
 912	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
 913	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
 914
 915	cqspi_controller_enable(cqspi, 0);
 916
 917	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 918	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
 919	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 920
 921	cqspi_controller_enable(cqspi, 1);
 922
 923	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
 924					PM_OSPI_MUX_SEL_LINEAR);
 925	if (ret)
 926		return ret;
 927
 928nondmard:
 929	if (bytes_rem) {
 930		addr += bytes_to_dma;
 931		buf += bytes_to_dma;
 932		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
 933						  bytes_rem);
 934		if (ret)
 935			return ret;
 936	}
 937
 938	return 0;
 939
 940failrd:
 941	/* Disable DMA interrupt */
 942	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
 943
 944	/* Cancel the indirect read */
 945	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
 946	       reg_base + CQSPI_REG_INDIRECTRD);
 947
 948	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
 949
 950	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 951	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
 952	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 953
 954	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
 955
 956	return ret;
 957}
 958
 959static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
 960			     const struct spi_mem_op *op)
 961{
 962	unsigned int reg;
 963	int ret;
 964	struct cqspi_st *cqspi = f_pdata->cqspi;
 965	void __iomem *reg_base = cqspi->iobase;
 966	u8 opcode;
 967
 968	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
 969	if (ret)
 970		return ret;
 971
 972	if (op->cmd.dtr)
 973		opcode = op->cmd.opcode >> 8;
 974	else
 975		opcode = op->cmd.opcode;
 976
 977	/* Set opcode. */
 978	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
 979	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
 980	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
 981	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
 982	reg = cqspi_calc_rdreg(op);
 983	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 984
 985	/*
 986	 * SPI NAND flashes require the address of the status register to be
 987	 * passed in the Read SR command. Also, some SPI NOR flashes like the
 988	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
 989	 * command in DTR mode.
 990	 *
 991	 * But this controller does not support address phase in the Read SR
 992	 * command when doing auto-HW polling. So, disable write completion
 993	 * polling on the controller's side. spinand and spi-nor will take
 994	 * care of polling the status register.
 995	 */
 996	if (cqspi->wr_completion) {
 997		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
 998		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
 999		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1000		/*
1001		 * DAC mode require auto polling as flash needs to be polled
1002		 * for write completion in case of bubble in SPI transaction
1003		 * due to slow CPU/DMA master.
1004		 */
1005		cqspi->use_direct_mode_wr = false;
1006	}
1007
1008	reg = readl(reg_base + CQSPI_REG_SIZE);
1009	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1010	reg |= (op->addr.nbytes - 1);
1011	writel(reg, reg_base + CQSPI_REG_SIZE);
1012	return 0;
1013}
1014
1015static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1016					loff_t to_addr, const u8 *txbuf,
1017					const size_t n_tx)
1018{
1019	struct cqspi_st *cqspi = f_pdata->cqspi;
1020	struct device *dev = &cqspi->pdev->dev;
1021	void __iomem *reg_base = cqspi->iobase;
1022	unsigned int remaining = n_tx;
1023	unsigned int write_bytes;
1024	int ret;
1025
1026	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1027	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1028
1029	/* Clear all interrupts. */
1030	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1031
1032	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1033
1034	reinit_completion(&cqspi->transfer_complete);
1035	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1036	       reg_base + CQSPI_REG_INDIRECTWR);
1037	/*
1038	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1039	 * Controller programming sequence, couple of cycles of
1040	 * QSPI_REF_CLK delay is required for the above bit to
1041	 * be internally synchronized by the QSPI module. Provide 5
1042	 * cycles of delay.
1043	 */
1044	if (cqspi->wr_delay)
1045		ndelay(cqspi->wr_delay);
1046
1047	/*
1048	 * If a hazard exists between the APB and AHB interfaces, perform a
1049	 * dummy readback from the controller to ensure synchronization.
1050	 */
1051	if (cqspi->apb_ahb_hazard)
1052		readl(reg_base + CQSPI_REG_INDIRECTWR);
1053
1054	while (remaining > 0) {
1055		size_t write_words, mod_bytes;
1056
1057		write_bytes = remaining;
1058		write_words = write_bytes / 4;
1059		mod_bytes = write_bytes % 4;
1060		/* Write 4 bytes at a time then single bytes. */
1061		if (write_words) {
1062			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1063			txbuf += (write_words * 4);
1064		}
1065		if (mod_bytes) {
1066			unsigned int temp = 0xFFFFFFFF;
1067
1068			memcpy(&temp, txbuf, mod_bytes);
1069			iowrite32(temp, cqspi->ahb_base);
1070			txbuf += mod_bytes;
1071		}
1072
1073		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1074						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1075			dev_err(dev, "Indirect write timeout\n");
1076			ret = -ETIMEDOUT;
1077			goto failwr;
1078		}
1079
1080		remaining -= write_bytes;
1081
1082		if (remaining > 0)
1083			reinit_completion(&cqspi->transfer_complete);
1084	}
1085
1086	/* Check indirect done status */
1087	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1088				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1089	if (ret) {
1090		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1091		goto failwr;
1092	}
1093
1094	/* Disable interrupt. */
1095	writel(0, reg_base + CQSPI_REG_IRQMASK);
1096
1097	/* Clear indirect completion status */
1098	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1099
1100	cqspi_wait_idle(cqspi);
1101
1102	return 0;
1103
1104failwr:
1105	/* Disable interrupt. */
1106	writel(0, reg_base + CQSPI_REG_IRQMASK);
1107
1108	/* Cancel the indirect write */
1109	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1110	       reg_base + CQSPI_REG_INDIRECTWR);
1111	return ret;
1112}
1113
1114static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1115{
1116	struct cqspi_st *cqspi = f_pdata->cqspi;
1117	void __iomem *reg_base = cqspi->iobase;
1118	unsigned int chip_select = f_pdata->cs;
1119	unsigned int reg;
1120
1121	reg = readl(reg_base + CQSPI_REG_CONFIG);
1122	if (cqspi->is_decoded_cs) {
1123		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1124	} else {
1125		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1126
1127		/* Convert CS if without decoder.
1128		 * CS0 to 4b'1110
1129		 * CS1 to 4b'1101
1130		 * CS2 to 4b'1011
1131		 * CS3 to 4b'0111
1132		 */
1133		chip_select = 0xF & ~(1 << chip_select);
1134	}
1135
1136	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1137		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1138	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1139	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1140	writel(reg, reg_base + CQSPI_REG_CONFIG);
1141}
1142
1143static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1144					   const unsigned int ns_val)
1145{
1146	unsigned int ticks;
1147
1148	ticks = ref_clk_hz / 1000;	/* kHz */
1149	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1150
1151	return ticks;
1152}
1153
1154static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1155{
1156	struct cqspi_st *cqspi = f_pdata->cqspi;
1157	void __iomem *iobase = cqspi->iobase;
1158	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1159	unsigned int tshsl, tchsh, tslch, tsd2d;
1160	unsigned int reg;
1161	unsigned int tsclk;
1162
1163	/* calculate the number of ref ticks for one sclk tick */
1164	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1165
1166	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1167	/* this particular value must be at least one sclk */
1168	if (tshsl < tsclk)
1169		tshsl = tsclk;
1170
1171	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1172	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1173	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1174
1175	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1176	       << CQSPI_REG_DELAY_TSHSL_LSB;
1177	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1178		<< CQSPI_REG_DELAY_TCHSH_LSB;
1179	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1180		<< CQSPI_REG_DELAY_TSLCH_LSB;
1181	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1182		<< CQSPI_REG_DELAY_TSD2D_LSB;
1183	writel(reg, iobase + CQSPI_REG_DELAY);
1184}
1185
1186static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1187{
1188	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1189	void __iomem *reg_base = cqspi->iobase;
1190	u32 reg, div;
1191
1192	/* Recalculate the baudrate divisor based on QSPI specification. */
1193	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1194
1195	/* Maximum baud divisor */
1196	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1197		div = CQSPI_REG_CONFIG_BAUD_MASK;
1198		dev_warn(&cqspi->pdev->dev,
1199			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1200			cqspi->sclk, ref_clk_hz/((div+1)*2));
1201	}
1202
1203	reg = readl(reg_base + CQSPI_REG_CONFIG);
1204	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1205	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1206	writel(reg, reg_base + CQSPI_REG_CONFIG);
1207}
1208
1209static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1210				   const bool bypass,
1211				   const unsigned int delay)
1212{
1213	void __iomem *reg_base = cqspi->iobase;
1214	unsigned int reg;
1215
1216	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1217
1218	if (bypass)
1219		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1220	else
1221		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1222
1223	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1224		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1225
1226	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1227		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1228
1229	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1230}
1231
1232static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1233			    unsigned long sclk)
1234{
1235	struct cqspi_st *cqspi = f_pdata->cqspi;
1236	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1237	int switch_ck = (cqspi->sclk != sclk);
1238
1239	if (switch_cs || switch_ck)
1240		cqspi_controller_enable(cqspi, 0);
1241
1242	/* Switch chip select. */
1243	if (switch_cs) {
1244		cqspi->current_cs = f_pdata->cs;
1245		cqspi_chipselect(f_pdata);
1246	}
1247
1248	/* Setup baudrate divisor and delays */
1249	if (switch_ck) {
1250		cqspi->sclk = sclk;
1251		cqspi_config_baudrate_div(cqspi);
1252		cqspi_delay(f_pdata);
1253		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1254				       f_pdata->read_delay);
1255	}
1256
1257	if (switch_cs || switch_ck)
1258		cqspi_controller_enable(cqspi, 1);
1259}
1260
1261static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1262			   const struct spi_mem_op *op)
1263{
1264	struct cqspi_st *cqspi = f_pdata->cqspi;
1265	loff_t to = op->addr.val;
1266	size_t len = op->data.nbytes;
1267	const u_char *buf = op->data.buf.out;
1268	int ret;
1269
1270	ret = cqspi_write_setup(f_pdata, op);
1271	if (ret)
1272		return ret;
1273
1274	/*
1275	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1276	 * address (all 0s) with the read status register command in DTR mode.
1277	 * But this controller does not support sending dummy address bytes to
1278	 * the flash when it is polling the write completion register in DTR
1279	 * mode. So, we can not use direct mode when in DTR mode for writing
1280	 * data.
1281	 */
1282	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1283	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1284		memcpy_toio(cqspi->ahb_base + to, buf, len);
1285		return cqspi_wait_idle(cqspi);
1286	}
1287
1288	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1289}
1290
1291static void cqspi_rx_dma_callback(void *param)
1292{
1293	struct cqspi_st *cqspi = param;
1294
1295	complete(&cqspi->rx_dma_complete);
1296}
1297
1298static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1299				     u_char *buf, loff_t from, size_t len)
1300{
1301	struct cqspi_st *cqspi = f_pdata->cqspi;
1302	struct device *dev = &cqspi->pdev->dev;
1303	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1304	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1305	int ret = 0;
1306	struct dma_async_tx_descriptor *tx;
1307	dma_cookie_t cookie;
1308	dma_addr_t dma_dst;
1309	struct device *ddev;
1310
1311	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1312		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1313		return 0;
1314	}
1315
1316	ddev = cqspi->rx_chan->device->dev;
1317	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1318	if (dma_mapping_error(ddev, dma_dst)) {
1319		dev_err(dev, "dma mapping failed\n");
1320		return -ENOMEM;
1321	}
1322	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1323				       len, flags);
1324	if (!tx) {
1325		dev_err(dev, "device_prep_dma_memcpy error\n");
1326		ret = -EIO;
1327		goto err_unmap;
1328	}
1329
1330	tx->callback = cqspi_rx_dma_callback;
1331	tx->callback_param = cqspi;
1332	cookie = tx->tx_submit(tx);
1333	reinit_completion(&cqspi->rx_dma_complete);
1334
1335	ret = dma_submit_error(cookie);
1336	if (ret) {
1337		dev_err(dev, "dma_submit_error %d\n", cookie);
1338		ret = -EIO;
1339		goto err_unmap;
1340	}
1341
1342	dma_async_issue_pending(cqspi->rx_chan);
1343	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1344					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1345		dmaengine_terminate_sync(cqspi->rx_chan);
1346		dev_err(dev, "DMA wait_for_completion_timeout\n");
1347		ret = -ETIMEDOUT;
1348		goto err_unmap;
1349	}
1350
1351err_unmap:
1352	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1353
1354	return ret;
1355}
1356
1357static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1358			  const struct spi_mem_op *op)
1359{
1360	struct cqspi_st *cqspi = f_pdata->cqspi;
1361	struct device *dev = &cqspi->pdev->dev;
1362	const struct cqspi_driver_platdata *ddata;
1363	loff_t from = op->addr.val;
1364	size_t len = op->data.nbytes;
1365	u_char *buf = op->data.buf.in;
1366	u64 dma_align = (u64)(uintptr_t)buf;
1367	int ret;
1368
1369	ddata = of_device_get_match_data(dev);
1370
1371	ret = cqspi_read_setup(f_pdata, op);
1372	if (ret)
1373		return ret;
1374
1375	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1376		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1377
1378	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1379	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1380		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1381
1382	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1383}
1384
1385static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1386{
1387	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1388	struct cqspi_flash_pdata *f_pdata;
1389
1390	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1391	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1392
1393	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1394	/*
1395	 * Performing reads in DAC mode forces to read minimum 4 bytes
1396	 * which is unsupported on some flash devices during register
1397	 * reads, prefer STIG mode for such small reads.
1398	 */
1399		if (!op->addr.nbytes ||
1400		    op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
 
1401			return cqspi_command_read(f_pdata, op);
1402
1403		return cqspi_read(f_pdata, op);
1404	}
1405
1406	if (!op->addr.nbytes || !op->data.buf.out)
1407		return cqspi_command_write(f_pdata, op);
1408
1409	return cqspi_write(f_pdata, op);
1410}
1411
1412static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1413{
1414	int ret;
1415	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1416	struct device *dev = &cqspi->pdev->dev;
1417
1418	ret = pm_runtime_resume_and_get(dev);
1419	if (ret) {
1420		dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1421		return ret;
1422	}
1423
1424	ret = cqspi_mem_process(mem, op);
1425
1426	pm_runtime_mark_last_busy(dev);
1427	pm_runtime_put_autosuspend(dev);
1428
1429	if (ret)
1430		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1431
1432	return ret;
1433}
1434
1435static bool cqspi_supports_mem_op(struct spi_mem *mem,
1436				  const struct spi_mem_op *op)
1437{
1438	bool all_true, all_false;
1439
1440	/*
1441	 * op->dummy.dtr is required for converting nbytes into ncycles.
1442	 * Also, don't check the dtr field of the op phase having zero nbytes.
1443	 */
1444	all_true = op->cmd.dtr &&
1445		   (!op->addr.nbytes || op->addr.dtr) &&
1446		   (!op->dummy.nbytes || op->dummy.dtr) &&
1447		   (!op->data.nbytes || op->data.dtr);
1448
1449	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1450		    !op->data.dtr;
1451
1452	if (all_true) {
1453		/* Right now we only support 8-8-8 DTR mode. */
1454		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1455			return false;
1456		if (op->addr.nbytes && op->addr.buswidth != 8)
1457			return false;
1458		if (op->data.nbytes && op->data.buswidth != 8)
1459			return false;
1460	} else if (!all_false) {
1461		/* Mixed DTR modes are not supported. */
1462		return false;
1463	}
1464
1465	return spi_mem_default_supports_op(mem, op);
1466}
1467
1468static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1469				    struct cqspi_flash_pdata *f_pdata,
1470				    struct device_node *np)
1471{
1472	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1473		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1474		return -ENXIO;
1475	}
1476
1477	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1478		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1479		return -ENXIO;
1480	}
1481
1482	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1483		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1484		return -ENXIO;
1485	}
1486
1487	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1488		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1489		return -ENXIO;
1490	}
1491
1492	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1493		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1494		return -ENXIO;
1495	}
1496
1497	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1498		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1499		return -ENXIO;
1500	}
1501
1502	return 0;
1503}
1504
1505static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1506{
1507	struct device *dev = &cqspi->pdev->dev;
1508	struct device_node *np = dev->of_node;
1509	u32 id[2];
1510
1511	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1512
1513	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1514		dev_err(dev, "couldn't determine fifo-depth\n");
1515		return -ENXIO;
1516	}
1517
1518	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1519		dev_err(dev, "couldn't determine fifo-width\n");
1520		return -ENXIO;
1521	}
1522
1523	if (of_property_read_u32(np, "cdns,trigger-address",
1524				 &cqspi->trigger_address)) {
1525		dev_err(dev, "couldn't determine trigger-address\n");
1526		return -ENXIO;
1527	}
1528
1529	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1530		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1531
1532	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1533
1534	if (!of_property_read_u32_array(np, "power-domains", id,
1535					ARRAY_SIZE(id)))
1536		cqspi->pd_dev_id = id[1];
1537
1538	return 0;
1539}
1540
1541static void cqspi_controller_init(struct cqspi_st *cqspi)
1542{
1543	u32 reg;
1544
1545	cqspi_controller_enable(cqspi, 0);
1546
1547	/* Configure the remap address register, no remap */
1548	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1549
1550	/* Disable all interrupts. */
1551	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1552
1553	/* Configure the SRAM split to 1:1 . */
1554	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1555
1556	/* Load indirect trigger address. */
1557	writel(cqspi->trigger_address,
1558	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1559
1560	/* Program read watermark -- 1/2 of the FIFO. */
1561	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1562	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1563	/* Program write watermark -- 1/8 of the FIFO. */
1564	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1565	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1566
1567	/* Disable direct access controller */
1568	if (!cqspi->use_direct_mode) {
1569		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1570		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1571		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1572	}
1573
1574	/* Enable DMA interface */
1575	if (cqspi->use_dma_read) {
1576		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1577		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1578		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1579	}
 
 
 
 
 
 
1580
1581	cqspi_controller_enable(cqspi, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1582}
1583
1584static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1585{
1586	dma_cap_mask_t mask;
1587
1588	dma_cap_zero(mask);
1589	dma_cap_set(DMA_MEMCPY, mask);
1590
1591	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1592	if (IS_ERR(cqspi->rx_chan)) {
1593		int ret = PTR_ERR(cqspi->rx_chan);
1594
1595		cqspi->rx_chan = NULL;
1596		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1597	}
1598	init_completion(&cqspi->rx_dma_complete);
1599
1600	return 0;
1601}
1602
1603static const char *cqspi_get_name(struct spi_mem *mem)
1604{
1605	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1606	struct device *dev = &cqspi->pdev->dev;
1607
1608	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1609			      spi_get_chipselect(mem->spi, 0));
1610}
1611
1612static const struct spi_controller_mem_ops cqspi_mem_ops = {
1613	.exec_op = cqspi_exec_mem_op,
1614	.get_name = cqspi_get_name,
1615	.supports_op = cqspi_supports_mem_op,
1616};
1617
1618static const struct spi_controller_mem_caps cqspi_mem_caps = {
1619	.dtr = true,
1620};
1621
1622static int cqspi_setup_flash(struct cqspi_st *cqspi)
1623{
1624	unsigned int max_cs = cqspi->num_chipselect - 1;
1625	struct platform_device *pdev = cqspi->pdev;
1626	struct device *dev = &pdev->dev;
1627	struct device_node *np = dev->of_node;
1628	struct cqspi_flash_pdata *f_pdata;
1629	unsigned int cs;
1630	int ret;
1631
1632	/* Get flash device data */
1633	for_each_available_child_of_node(dev->of_node, np) {
1634		ret = of_property_read_u32(np, "reg", &cs);
1635		if (ret) {
1636			dev_err(dev, "Couldn't determine chip select.\n");
1637			of_node_put(np);
1638			return ret;
1639		}
1640
1641		if (cs >= cqspi->num_chipselect) {
1642			dev_err(dev, "Chip select %d out of range.\n", cs);
1643			of_node_put(np);
1644			return -EINVAL;
1645		} else if (cs < max_cs) {
1646			max_cs = cs;
1647		}
1648
1649		f_pdata = &cqspi->f_pdata[cs];
1650		f_pdata->cqspi = cqspi;
1651		f_pdata->cs = cs;
1652
1653		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1654		if (ret) {
1655			of_node_put(np);
1656			return ret;
1657		}
1658	}
1659
1660	cqspi->num_chipselect = max_cs + 1;
1661	return 0;
1662}
1663
1664static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1665{
1666	static struct clk_bulk_data qspiclk[] = {
1667		{ .id = "apb" },
1668		{ .id = "ahb" },
1669	};
1670
1671	int ret = 0;
1672
1673	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1674	if (ret) {
1675		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1676		return ret;
1677	}
1678
1679	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1680	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1681
1682	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1683	if (ret) {
1684		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1685		return ret;
1686	}
1687
1688	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1689	if (ret) {
1690		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1691		goto disable_apb_clk;
1692	}
1693
1694	cqspi->is_jh7110 = true;
1695
1696	return 0;
1697
1698disable_apb_clk:
1699	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1700
1701	return ret;
1702}
1703
1704static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1705{
1706	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1707	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1708}
1709static int cqspi_probe(struct platform_device *pdev)
1710{
1711	const struct cqspi_driver_platdata *ddata;
1712	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1713	struct device *dev = &pdev->dev;
1714	struct spi_controller *host;
1715	struct resource *res_ahb;
1716	struct cqspi_st *cqspi;
1717	int ret;
1718	int irq;
1719
1720	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1721	if (!host)
1722		return -ENOMEM;
1723
1724	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1725	host->mem_ops = &cqspi_mem_ops;
1726	host->mem_caps = &cqspi_mem_caps;
1727	host->dev.of_node = pdev->dev.of_node;
1728
1729	cqspi = spi_controller_get_devdata(host);
1730
1731	cqspi->pdev = pdev;
1732	cqspi->host = host;
1733	cqspi->is_jh7110 = false;
 
1734	platform_set_drvdata(pdev, cqspi);
1735
1736	/* Obtain configuration from OF. */
1737	ret = cqspi_of_get_pdata(cqspi);
1738	if (ret) {
1739		dev_err(dev, "Cannot get mandatory OF data.\n");
1740		return -ENODEV;
1741	}
1742
1743	/* Obtain QSPI clock. */
1744	cqspi->clk = devm_clk_get(dev, NULL);
1745	if (IS_ERR(cqspi->clk)) {
1746		dev_err(dev, "Cannot claim QSPI clock.\n");
1747		ret = PTR_ERR(cqspi->clk);
1748		return ret;
1749	}
1750
1751	/* Obtain and remap controller address. */
1752	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1753	if (IS_ERR(cqspi->iobase)) {
1754		dev_err(dev, "Cannot remap controller address.\n");
1755		ret = PTR_ERR(cqspi->iobase);
1756		return ret;
1757	}
1758
1759	/* Obtain and remap AHB address. */
1760	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1761	if (IS_ERR(cqspi->ahb_base)) {
1762		dev_err(dev, "Cannot remap AHB address.\n");
1763		ret = PTR_ERR(cqspi->ahb_base);
1764		return ret;
1765	}
1766	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1767	cqspi->ahb_size = resource_size(res_ahb);
1768
1769	init_completion(&cqspi->transfer_complete);
1770
1771	/* Obtain IRQ line. */
1772	irq = platform_get_irq(pdev, 0);
1773	if (irq < 0)
1774		return -ENXIO;
1775
1776	ret = pm_runtime_set_active(dev);
1777	if (ret)
1778		return ret;
1779
1780
1781	ret = clk_prepare_enable(cqspi->clk);
1782	if (ret) {
1783		dev_err(dev, "Cannot enable QSPI clock.\n");
1784		goto probe_clk_failed;
1785	}
1786
1787	/* Obtain QSPI reset control */
1788	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1789	if (IS_ERR(rstc)) {
1790		ret = PTR_ERR(rstc);
1791		dev_err(dev, "Cannot get QSPI reset.\n");
1792		goto probe_reset_failed;
1793	}
1794
1795	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1796	if (IS_ERR(rstc_ocp)) {
1797		ret = PTR_ERR(rstc_ocp);
1798		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1799		goto probe_reset_failed;
1800	}
1801
1802	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1803		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1804		if (IS_ERR(rstc_ref)) {
1805			ret = PTR_ERR(rstc_ref);
1806			dev_err(dev, "Cannot get QSPI REF reset.\n");
1807			goto probe_reset_failed;
1808		}
1809		reset_control_assert(rstc_ref);
1810		reset_control_deassert(rstc_ref);
1811	}
1812
1813	reset_control_assert(rstc);
1814	reset_control_deassert(rstc);
1815
1816	reset_control_assert(rstc_ocp);
1817	reset_control_deassert(rstc_ocp);
1818
1819	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1820	host->max_speed_hz = cqspi->master_ref_clk_hz;
1821
1822	/* write completion is supported by default */
1823	cqspi->wr_completion = true;
1824
1825	ddata  = of_device_get_match_data(dev);
1826	if (ddata) {
1827		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1828			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1829						cqspi->master_ref_clk_hz);
1830		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1831			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1832		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1833			cqspi->use_direct_mode = true;
1834			cqspi->use_direct_mode_wr = true;
1835		}
1836		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1837			cqspi->use_dma_read = true;
1838		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1839			cqspi->wr_completion = false;
1840		if (ddata->quirks & CQSPI_SLOW_SRAM)
1841			cqspi->slow_sram = true;
1842		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1843			cqspi->apb_ahb_hazard = true;
1844
1845		if (ddata->jh7110_clk_init) {
1846			ret = cqspi_jh7110_clk_init(pdev, cqspi);
1847			if (ret)
1848				goto probe_reset_failed;
1849		}
 
 
1850
1851		if (of_device_is_compatible(pdev->dev.of_node,
1852					    "xlnx,versal-ospi-1.0")) {
1853			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1854			if (ret)
1855				goto probe_reset_failed;
1856		}
1857	}
1858
1859	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1860			       pdev->name, cqspi);
1861	if (ret) {
1862		dev_err(dev, "Cannot request IRQ.\n");
1863		goto probe_reset_failed;
1864	}
1865
1866	cqspi_wait_idle(cqspi);
 
 
1867	cqspi_controller_init(cqspi);
 
1868	cqspi->current_cs = -1;
1869	cqspi->sclk = 0;
1870
1871	ret = cqspi_setup_flash(cqspi);
1872	if (ret) {
1873		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1874		goto probe_setup_failed;
1875	}
1876
1877	host->num_chipselect = cqspi->num_chipselect;
1878
1879	if (cqspi->use_direct_mode) {
1880		ret = cqspi_request_mmap_dma(cqspi);
1881		if (ret == -EPROBE_DEFER)
1882			goto probe_setup_failed;
1883	}
1884
1885	ret = devm_pm_runtime_enable(dev);
1886	if (ret) {
1887		if (cqspi->rx_chan)
1888			dma_release_channel(cqspi->rx_chan);
1889		goto probe_setup_failed;
1890	}
1891
1892	pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1893	pm_runtime_use_autosuspend(dev);
1894	pm_runtime_get_noresume(dev);
1895
1896	ret = spi_register_controller(host);
1897	if (ret) {
1898		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1899		goto probe_setup_failed;
1900	}
1901
1902	pm_runtime_mark_last_busy(dev);
1903	pm_runtime_put_autosuspend(dev);
1904
1905	return 0;
1906probe_setup_failed:
1907	cqspi_controller_enable(cqspi, 0);
1908probe_reset_failed:
1909	if (cqspi->is_jh7110)
1910		cqspi_jh7110_disable_clk(pdev, cqspi);
1911	clk_disable_unprepare(cqspi->clk);
1912probe_clk_failed:
1913	return ret;
1914}
1915
1916static void cqspi_remove(struct platform_device *pdev)
1917{
1918	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1919
1920	spi_unregister_controller(cqspi->host);
1921	cqspi_controller_enable(cqspi, 0);
1922
1923	if (cqspi->rx_chan)
1924		dma_release_channel(cqspi->rx_chan);
1925
1926	clk_disable_unprepare(cqspi->clk);
1927
1928	if (cqspi->is_jh7110)
1929		cqspi_jh7110_disable_clk(pdev, cqspi);
1930
1931	pm_runtime_put_sync(&pdev->dev);
1932	pm_runtime_disable(&pdev->dev);
1933}
1934
1935static int cqspi_runtime_suspend(struct device *dev)
1936{
1937	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1938
1939	cqspi_controller_enable(cqspi, 0);
1940	clk_disable_unprepare(cqspi->clk);
1941	return 0;
1942}
1943
1944static int cqspi_runtime_resume(struct device *dev)
1945{
1946	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1947
1948	clk_prepare_enable(cqspi->clk);
1949	cqspi_wait_idle(cqspi);
 
1950	cqspi_controller_init(cqspi);
 
1951
1952	cqspi->current_cs = -1;
1953	cqspi->sclk = 0;
1954	return 0;
1955}
1956
1957static int cqspi_suspend(struct device *dev)
1958{
1959	struct cqspi_st *cqspi = dev_get_drvdata(dev);
 
 
 
 
 
1960
1961	return spi_controller_suspend(cqspi->host);
1962}
1963
1964static int cqspi_resume(struct device *dev)
1965{
1966	struct cqspi_st *cqspi = dev_get_drvdata(dev);
 
 
 
 
 
 
 
1967
1968	return spi_controller_resume(cqspi->host);
1969}
1970
1971static const struct dev_pm_ops cqspi_dev_pm_ops = {
1972	RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
1973	SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
1974};
1975
1976static const struct cqspi_driver_platdata cdns_qspi = {
1977	.quirks = CQSPI_DISABLE_DAC_MODE,
1978};
1979
1980static const struct cqspi_driver_platdata k2g_qspi = {
1981	.quirks = CQSPI_NEEDS_WR_DELAY,
1982};
1983
1984static const struct cqspi_driver_platdata am654_ospi = {
1985	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1986	.quirks = CQSPI_NEEDS_WR_DELAY,
1987};
1988
1989static const struct cqspi_driver_platdata intel_lgm_qspi = {
1990	.quirks = CQSPI_DISABLE_DAC_MODE,
1991};
1992
1993static const struct cqspi_driver_platdata socfpga_qspi = {
1994	.quirks = CQSPI_DISABLE_DAC_MODE
1995			| CQSPI_NO_SUPPORT_WR_COMPLETION
1996			| CQSPI_SLOW_SRAM,
 
1997};
1998
1999static const struct cqspi_driver_platdata versal_ospi = {
2000	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2001	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
2002	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2003	.get_dma_status = cqspi_get_versal_dma_status,
2004};
2005
2006static const struct cqspi_driver_platdata jh7110_qspi = {
2007	.quirks = CQSPI_DISABLE_DAC_MODE,
2008	.jh7110_clk_init = cqspi_jh7110_clk_init,
2009};
2010
2011static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2012	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2013};
2014
 
 
 
 
 
 
2015static const struct of_device_id cqspi_dt_ids[] = {
2016	{
2017		.compatible = "cdns,qspi-nor",
2018		.data = &cdns_qspi,
2019	},
2020	{
2021		.compatible = "ti,k2g-qspi",
2022		.data = &k2g_qspi,
2023	},
2024	{
2025		.compatible = "ti,am654-ospi",
2026		.data = &am654_ospi,
2027	},
2028	{
2029		.compatible = "intel,lgm-qspi",
2030		.data = &intel_lgm_qspi,
2031	},
2032	{
2033		.compatible = "xlnx,versal-ospi-1.0",
2034		.data = &versal_ospi,
2035	},
2036	{
2037		.compatible = "intel,socfpga-qspi",
2038		.data = &socfpga_qspi,
2039	},
2040	{
2041		.compatible = "starfive,jh7110-qspi",
2042		.data = &jh7110_qspi,
2043	},
2044	{
2045		.compatible = "amd,pensando-elba-qspi",
2046		.data = &pensando_cdns_qspi,
2047	},
 
 
 
 
2048	{ /* end of table */ }
2049};
2050
2051MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2052
2053static struct platform_driver cqspi_platform_driver = {
2054	.probe = cqspi_probe,
2055	.remove_new = cqspi_remove,
2056	.driver = {
2057		.name = CQSPI_NAME,
2058		.pm = pm_ptr(&cqspi_dev_pm_ops),
2059		.of_match_table = cqspi_dt_ids,
2060	},
2061};
2062
2063module_platform_driver(cqspi_platform_driver);
2064
2065MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2066MODULE_LICENSE("GPL v2");
2067MODULE_ALIAS("platform:" CQSPI_NAME);
2068MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2069MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2070MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2071MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2072MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");