Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (C) 2023 Intel Corporation */
   3
   4#include <net/libeth/rx.h>
   5
   6#include "idpf.h"
   7#include "idpf_virtchnl.h"
   8
   9#define IDPF_VC_XN_MIN_TIMEOUT_MSEC	2000
  10#define IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC	(60 * 1000)
  11#define IDPF_VC_XN_IDX_M		GENMASK(7, 0)
  12#define IDPF_VC_XN_SALT_M		GENMASK(15, 8)
  13#define IDPF_VC_XN_RING_LEN		U8_MAX
  14
  15/**
  16 * enum idpf_vc_xn_state - Virtchnl transaction status
  17 * @IDPF_VC_XN_IDLE: not expecting a reply, ready to be used
  18 * @IDPF_VC_XN_WAITING: expecting a reply, not yet received
  19 * @IDPF_VC_XN_COMPLETED_SUCCESS: a reply was expected and received,
  20 *				  buffer updated
  21 * @IDPF_VC_XN_COMPLETED_FAILED: a reply was expected and received, but there
  22 *				 was an error, buffer not updated
  23 * @IDPF_VC_XN_SHUTDOWN: transaction object cannot be used, VC torn down
  24 * @IDPF_VC_XN_ASYNC: transaction sent asynchronously and doesn't have the
  25 *		      return context; a callback may be provided to handle
  26 *		      return
  27 */
  28enum idpf_vc_xn_state {
  29	IDPF_VC_XN_IDLE = 1,
  30	IDPF_VC_XN_WAITING,
  31	IDPF_VC_XN_COMPLETED_SUCCESS,
  32	IDPF_VC_XN_COMPLETED_FAILED,
  33	IDPF_VC_XN_SHUTDOWN,
  34	IDPF_VC_XN_ASYNC,
  35};
  36
  37struct idpf_vc_xn;
  38/* Callback for asynchronous messages */
  39typedef int (*async_vc_cb) (struct idpf_adapter *, struct idpf_vc_xn *,
  40			    const struct idpf_ctlq_msg *);
  41
  42/**
  43 * struct idpf_vc_xn - Data structure representing virtchnl transactions
  44 * @completed: virtchnl event loop uses that to signal when a reply is
  45 *	       available, uses kernel completion API
  46 * @state: virtchnl event loop stores the data below, protected by the
  47 *	   completion's lock.
  48 * @reply_sz: Original size of reply, may be > reply_buf.iov_len; it will be
  49 *	      truncated on its way to the receiver thread according to
  50 *	      reply_buf.iov_len.
  51 * @reply: Reference to the buffer(s) where the reply data should be written
  52 *	   to. May be 0-length (then NULL address permitted) if the reply data
  53 *	   should be ignored.
  54 * @async_handler: if sent asynchronously, a callback can be provided to handle
  55 *		   the reply when it's received
  56 * @vc_op: corresponding opcode sent with this transaction
  57 * @idx: index used as retrieval on reply receive, used for cookie
  58 * @salt: changed every message to make unique, used for cookie
  59 */
  60struct idpf_vc_xn {
  61	struct completion completed;
  62	enum idpf_vc_xn_state state;
  63	size_t reply_sz;
  64	struct kvec reply;
  65	async_vc_cb async_handler;
  66	u32 vc_op;
  67	u8 idx;
  68	u8 salt;
  69};
  70
  71/**
  72 * struct idpf_vc_xn_params - Parameters for executing transaction
  73 * @send_buf: kvec for send buffer
  74 * @recv_buf: kvec for recv buffer, may be NULL, must then have zero length
  75 * @timeout_ms: timeout to wait for reply
  76 * @async: send message asynchronously, will not wait on completion
  77 * @async_handler: If sent asynchronously, optional callback handler. The user
  78 *		   must be careful when using async handlers as the memory for
  79 *		   the recv_buf _cannot_ be on stack if this is async.
  80 * @vc_op: virtchnl op to send
  81 */
  82struct idpf_vc_xn_params {
  83	struct kvec send_buf;
  84	struct kvec recv_buf;
  85	int timeout_ms;
  86	bool async;
  87	async_vc_cb async_handler;
  88	u32 vc_op;
  89};
  90
  91/**
  92 * struct idpf_vc_xn_manager - Manager for tracking transactions
  93 * @ring: backing and lookup for transactions
  94 * @free_xn_bm: bitmap for free transactions
  95 * @xn_bm_lock: make bitmap access synchronous where necessary
  96 * @salt: used to make cookie unique every message
  97 */
  98struct idpf_vc_xn_manager {
  99	struct idpf_vc_xn ring[IDPF_VC_XN_RING_LEN];
 100	DECLARE_BITMAP(free_xn_bm, IDPF_VC_XN_RING_LEN);
 101	spinlock_t xn_bm_lock;
 102	u8 salt;
 103};
 104
 105/**
 106 * idpf_vid_to_vport - Translate vport id to vport pointer
 107 * @adapter: private data struct
 108 * @v_id: vport id to translate
 109 *
 110 * Returns vport matching v_id, NULL if not found.
 111 */
 112static
 113struct idpf_vport *idpf_vid_to_vport(struct idpf_adapter *adapter, u32 v_id)
 114{
 115	u16 num_max_vports = idpf_get_max_vports(adapter);
 116	int i;
 117
 118	for (i = 0; i < num_max_vports; i++)
 119		if (adapter->vport_ids[i] == v_id)
 120			return adapter->vports[i];
 121
 122	return NULL;
 123}
 124
 125/**
 126 * idpf_handle_event_link - Handle link event message
 127 * @adapter: private data struct
 128 * @v2e: virtchnl event message
 129 */
 130static void idpf_handle_event_link(struct idpf_adapter *adapter,
 131				   const struct virtchnl2_event *v2e)
 132{
 133	struct idpf_netdev_priv *np;
 134	struct idpf_vport *vport;
 135
 136	vport = idpf_vid_to_vport(adapter, le32_to_cpu(v2e->vport_id));
 137	if (!vport) {
 138		dev_err_ratelimited(&adapter->pdev->dev, "Failed to find vport_id %d for link event\n",
 139				    v2e->vport_id);
 140		return;
 141	}
 142	np = netdev_priv(vport->netdev);
 143
 144	np->link_speed_mbps = le32_to_cpu(v2e->link_speed);
 145
 146	if (vport->link_up == v2e->link_status)
 147		return;
 148
 149	vport->link_up = v2e->link_status;
 150
 151	if (np->state != __IDPF_VPORT_UP)
 152		return;
 153
 154	if (vport->link_up) {
 155		netif_tx_start_all_queues(vport->netdev);
 156		netif_carrier_on(vport->netdev);
 157	} else {
 158		netif_tx_stop_all_queues(vport->netdev);
 159		netif_carrier_off(vport->netdev);
 160	}
 161}
 162
 163/**
 164 * idpf_recv_event_msg - Receive virtchnl event message
 165 * @adapter: Driver specific private structure
 166 * @ctlq_msg: message to copy from
 167 *
 168 * Receive virtchnl event message
 169 */
 170static void idpf_recv_event_msg(struct idpf_adapter *adapter,
 171				struct idpf_ctlq_msg *ctlq_msg)
 172{
 173	int payload_size = ctlq_msg->ctx.indirect.payload->size;
 174	struct virtchnl2_event *v2e;
 175	u32 event;
 176
 177	if (payload_size < sizeof(*v2e)) {
 178		dev_err_ratelimited(&adapter->pdev->dev, "Failed to receive valid payload for event msg (op %d len %d)\n",
 179				    ctlq_msg->cookie.mbx.chnl_opcode,
 180				    payload_size);
 181		return;
 182	}
 183
 184	v2e = (struct virtchnl2_event *)ctlq_msg->ctx.indirect.payload->va;
 185	event = le32_to_cpu(v2e->event);
 186
 187	switch (event) {
 188	case VIRTCHNL2_EVENT_LINK_CHANGE:
 189		idpf_handle_event_link(adapter, v2e);
 190		return;
 191	default:
 192		dev_err(&adapter->pdev->dev,
 193			"Unknown event %d from PF\n", event);
 194		break;
 195	}
 196}
 197
 198/**
 199 * idpf_mb_clean - Reclaim the send mailbox queue entries
 200 * @adapter: Driver specific private structure
 201 *
 202 * Reclaim the send mailbox queue entries to be used to send further messages
 203 *
 204 * Returns 0 on success, negative on failure
 205 */
 206static int idpf_mb_clean(struct idpf_adapter *adapter)
 207{
 208	u16 i, num_q_msg = IDPF_DFLT_MBX_Q_LEN;
 209	struct idpf_ctlq_msg **q_msg;
 210	struct idpf_dma_mem *dma_mem;
 211	int err;
 212
 213	q_msg = kcalloc(num_q_msg, sizeof(struct idpf_ctlq_msg *), GFP_ATOMIC);
 214	if (!q_msg)
 215		return -ENOMEM;
 216
 217	err = idpf_ctlq_clean_sq(adapter->hw.asq, &num_q_msg, q_msg);
 218	if (err)
 219		goto err_kfree;
 220
 221	for (i = 0; i < num_q_msg; i++) {
 222		if (!q_msg[i])
 223			continue;
 224		dma_mem = q_msg[i]->ctx.indirect.payload;
 225		if (dma_mem)
 226			dma_free_coherent(&adapter->pdev->dev, dma_mem->size,
 227					  dma_mem->va, dma_mem->pa);
 228		kfree(q_msg[i]);
 229		kfree(dma_mem);
 230	}
 231
 232err_kfree:
 233	kfree(q_msg);
 234
 235	return err;
 236}
 237
 238/**
 239 * idpf_send_mb_msg - Send message over mailbox
 240 * @adapter: Driver specific private structure
 241 * @op: virtchnl opcode
 242 * @msg_size: size of the payload
 243 * @msg: pointer to buffer holding the payload
 244 * @cookie: unique SW generated cookie per message
 245 *
 246 * Will prepare the control queue message and initiates the send api
 247 *
 248 * Returns 0 on success, negative on failure
 249 */
 250int idpf_send_mb_msg(struct idpf_adapter *adapter, u32 op,
 251		     u16 msg_size, u8 *msg, u16 cookie)
 252{
 253	struct idpf_ctlq_msg *ctlq_msg;
 254	struct idpf_dma_mem *dma_mem;
 255	int err;
 256
 257	/* If we are here and a reset is detected nothing much can be
 258	 * done. This thread should silently abort and expected to
 259	 * be corrected with a new run either by user or driver
 260	 * flows after reset
 261	 */
 262	if (idpf_is_reset_detected(adapter))
 263		return 0;
 264
 265	err = idpf_mb_clean(adapter);
 266	if (err)
 267		return err;
 268
 269	ctlq_msg = kzalloc(sizeof(*ctlq_msg), GFP_ATOMIC);
 270	if (!ctlq_msg)
 271		return -ENOMEM;
 272
 273	dma_mem = kzalloc(sizeof(*dma_mem), GFP_ATOMIC);
 274	if (!dma_mem) {
 275		err = -ENOMEM;
 276		goto dma_mem_error;
 277	}
 278
 279	ctlq_msg->opcode = idpf_mbq_opc_send_msg_to_cp;
 280	ctlq_msg->func_id = 0;
 281	ctlq_msg->data_len = msg_size;
 282	ctlq_msg->cookie.mbx.chnl_opcode = op;
 283	ctlq_msg->cookie.mbx.chnl_retval = 0;
 284	dma_mem->size = IDPF_CTLQ_MAX_BUF_LEN;
 285	dma_mem->va = dma_alloc_coherent(&adapter->pdev->dev, dma_mem->size,
 286					 &dma_mem->pa, GFP_ATOMIC);
 287	if (!dma_mem->va) {
 288		err = -ENOMEM;
 289		goto dma_alloc_error;
 290	}
 291
 292	/* It's possible we're just sending an opcode but no buffer */
 293	if (msg && msg_size)
 294		memcpy(dma_mem->va, msg, msg_size);
 295	ctlq_msg->ctx.indirect.payload = dma_mem;
 296	ctlq_msg->ctx.sw_cookie.data = cookie;
 297
 298	err = idpf_ctlq_send(&adapter->hw, adapter->hw.asq, 1, ctlq_msg);
 299	if (err)
 300		goto send_error;
 301
 302	return 0;
 303
 304send_error:
 305	dma_free_coherent(&adapter->pdev->dev, dma_mem->size, dma_mem->va,
 306			  dma_mem->pa);
 307dma_alloc_error:
 308	kfree(dma_mem);
 309dma_mem_error:
 310	kfree(ctlq_msg);
 311
 312	return err;
 313}
 314
 315/* API for virtchnl "transaction" support ("xn" for short).
 316 *
 317 * We are reusing the completion lock to serialize the accesses to the
 318 * transaction state for simplicity, but it could be its own separate synchro
 319 * as well. For now, this API is only used from within a workqueue context;
 320 * raw_spin_lock() is enough.
 321 */
 322/**
 323 * idpf_vc_xn_lock - Request exclusive access to vc transaction
 324 * @xn: struct idpf_vc_xn* to access
 325 */
 326#define idpf_vc_xn_lock(xn)			\
 327	raw_spin_lock(&(xn)->completed.wait.lock)
 328
 329/**
 330 * idpf_vc_xn_unlock - Release exclusive access to vc transaction
 331 * @xn: struct idpf_vc_xn* to access
 332 */
 333#define idpf_vc_xn_unlock(xn)		\
 334	raw_spin_unlock(&(xn)->completed.wait.lock)
 335
 336/**
 337 * idpf_vc_xn_release_bufs - Release reference to reply buffer(s) and
 338 * reset the transaction state.
 339 * @xn: struct idpf_vc_xn to update
 340 */
 341static void idpf_vc_xn_release_bufs(struct idpf_vc_xn *xn)
 342{
 343	xn->reply.iov_base = NULL;
 344	xn->reply.iov_len = 0;
 345
 346	if (xn->state != IDPF_VC_XN_SHUTDOWN)
 347		xn->state = IDPF_VC_XN_IDLE;
 348}
 349
 350/**
 351 * idpf_vc_xn_init - Initialize virtchnl transaction object
 352 * @vcxn_mngr: pointer to vc transaction manager struct
 353 */
 354static void idpf_vc_xn_init(struct idpf_vc_xn_manager *vcxn_mngr)
 355{
 356	int i;
 357
 358	spin_lock_init(&vcxn_mngr->xn_bm_lock);
 359
 360	for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
 361		struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
 362
 363		xn->state = IDPF_VC_XN_IDLE;
 364		xn->idx = i;
 365		idpf_vc_xn_release_bufs(xn);
 366		init_completion(&xn->completed);
 367	}
 368
 369	bitmap_fill(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
 370}
 371
 372/**
 373 * idpf_vc_xn_shutdown - Uninitialize virtchnl transaction object
 374 * @vcxn_mngr: pointer to vc transaction manager struct
 375 *
 376 * All waiting threads will be woken-up and their transaction aborted. Further
 377 * operations on that object will fail.
 378 */
 379static void idpf_vc_xn_shutdown(struct idpf_vc_xn_manager *vcxn_mngr)
 380{
 381	int i;
 382
 383	spin_lock_bh(&vcxn_mngr->xn_bm_lock);
 384	bitmap_zero(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
 385	spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
 386
 387	for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
 388		struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
 389
 390		idpf_vc_xn_lock(xn);
 391		xn->state = IDPF_VC_XN_SHUTDOWN;
 392		idpf_vc_xn_release_bufs(xn);
 393		idpf_vc_xn_unlock(xn);
 394		complete_all(&xn->completed);
 395	}
 396}
 397
 398/**
 399 * idpf_vc_xn_pop_free - Pop a free transaction from free list
 400 * @vcxn_mngr: transaction manager to pop from
 401 *
 402 * Returns NULL if no free transactions
 403 */
 404static
 405struct idpf_vc_xn *idpf_vc_xn_pop_free(struct idpf_vc_xn_manager *vcxn_mngr)
 406{
 407	struct idpf_vc_xn *xn = NULL;
 408	unsigned long free_idx;
 409
 410	spin_lock_bh(&vcxn_mngr->xn_bm_lock);
 411	free_idx = find_first_bit(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
 412	if (free_idx == IDPF_VC_XN_RING_LEN)
 413		goto do_unlock;
 414
 415	clear_bit(free_idx, vcxn_mngr->free_xn_bm);
 416	xn = &vcxn_mngr->ring[free_idx];
 417	xn->salt = vcxn_mngr->salt++;
 418
 419do_unlock:
 420	spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
 421
 422	return xn;
 423}
 424
 425/**
 426 * idpf_vc_xn_push_free - Push a free transaction to free list
 427 * @vcxn_mngr: transaction manager to push to
 428 * @xn: transaction to push
 429 */
 430static void idpf_vc_xn_push_free(struct idpf_vc_xn_manager *vcxn_mngr,
 431				 struct idpf_vc_xn *xn)
 432{
 433	idpf_vc_xn_release_bufs(xn);
 434	set_bit(xn->idx, vcxn_mngr->free_xn_bm);
 435}
 436
 437/**
 438 * idpf_vc_xn_exec - Perform a send/recv virtchnl transaction
 439 * @adapter: driver specific private structure with vcxn_mngr
 440 * @params: parameters for this particular transaction including
 441 *   -vc_op: virtchannel operation to send
 442 *   -send_buf: kvec iov for send buf and len
 443 *   -recv_buf: kvec iov for recv buf and len (ignored if NULL)
 444 *   -timeout_ms: timeout waiting for a reply (milliseconds)
 445 *   -async: don't wait for message reply, will lose caller context
 446 *   -async_handler: callback to handle async replies
 447 *
 448 * @returns >= 0 for success, the size of the initial reply (may or may not be
 449 * >= @recv_buf.iov_len, but we never overflow @@recv_buf_iov_base). < 0 for
 450 * error.
 451 */
 452static ssize_t idpf_vc_xn_exec(struct idpf_adapter *adapter,
 453			       const struct idpf_vc_xn_params *params)
 454{
 455	const struct kvec *send_buf = &params->send_buf;
 456	struct idpf_vc_xn *xn;
 457	ssize_t retval;
 458	u16 cookie;
 459
 460	xn = idpf_vc_xn_pop_free(adapter->vcxn_mngr);
 461	/* no free transactions available */
 462	if (!xn)
 463		return -ENOSPC;
 464
 465	idpf_vc_xn_lock(xn);
 466	if (xn->state == IDPF_VC_XN_SHUTDOWN) {
 467		retval = -ENXIO;
 468		goto only_unlock;
 469	} else if (xn->state != IDPF_VC_XN_IDLE) {
 470		/* We're just going to clobber this transaction even though
 471		 * it's not IDLE. If we don't reuse it we could theoretically
 472		 * eventually leak all the free transactions and not be able to
 473		 * send any messages. At least this way we make an attempt to
 474		 * remain functional even though something really bad is
 475		 * happening that's corrupting what was supposed to be free
 476		 * transactions.
 477		 */
 478		WARN_ONCE(1, "There should only be idle transactions in free list (idx %d op %d)\n",
 479			  xn->idx, xn->vc_op);
 480	}
 481
 482	xn->reply = params->recv_buf;
 483	xn->reply_sz = 0;
 484	xn->state = params->async ? IDPF_VC_XN_ASYNC : IDPF_VC_XN_WAITING;
 485	xn->vc_op = params->vc_op;
 486	xn->async_handler = params->async_handler;
 487	idpf_vc_xn_unlock(xn);
 488
 489	if (!params->async)
 490		reinit_completion(&xn->completed);
 491	cookie = FIELD_PREP(IDPF_VC_XN_SALT_M, xn->salt) |
 492		 FIELD_PREP(IDPF_VC_XN_IDX_M, xn->idx);
 493
 494	retval = idpf_send_mb_msg(adapter, params->vc_op,
 495				  send_buf->iov_len, send_buf->iov_base,
 496				  cookie);
 497	if (retval) {
 498		idpf_vc_xn_lock(xn);
 499		goto release_and_unlock;
 500	}
 501
 502	if (params->async)
 503		return 0;
 504
 505	wait_for_completion_timeout(&xn->completed,
 506				    msecs_to_jiffies(params->timeout_ms));
 507
 508	/* No need to check the return value; we check the final state of the
 509	 * transaction below. It's possible the transaction actually gets more
 510	 * timeout than specified if we get preempted here but after
 511	 * wait_for_completion_timeout returns. This should be non-issue
 512	 * however.
 513	 */
 514	idpf_vc_xn_lock(xn);
 515	switch (xn->state) {
 516	case IDPF_VC_XN_SHUTDOWN:
 517		retval = -ENXIO;
 518		goto only_unlock;
 519	case IDPF_VC_XN_WAITING:
 520		dev_notice_ratelimited(&adapter->pdev->dev, "Transaction timed-out (op %d, %dms)\n",
 521				       params->vc_op, params->timeout_ms);
 522		retval = -ETIME;
 523		break;
 524	case IDPF_VC_XN_COMPLETED_SUCCESS:
 525		retval = xn->reply_sz;
 526		break;
 527	case IDPF_VC_XN_COMPLETED_FAILED:
 528		dev_notice_ratelimited(&adapter->pdev->dev, "Transaction failed (op %d)\n",
 529				       params->vc_op);
 530		retval = -EIO;
 531		break;
 532	default:
 533		/* Invalid state. */
 534		WARN_ON_ONCE(1);
 535		retval = -EIO;
 536		break;
 537	}
 538
 539release_and_unlock:
 540	idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
 541	/* If we receive a VC reply after here, it will be dropped. */
 542only_unlock:
 543	idpf_vc_xn_unlock(xn);
 544
 545	return retval;
 546}
 547
 548/**
 549 * idpf_vc_xn_forward_async - Handle async reply receives
 550 * @adapter: private data struct
 551 * @xn: transaction to handle
 552 * @ctlq_msg: corresponding ctlq_msg
 553 *
 554 * For async sends we're going to lose the caller's context so, if an
 555 * async_handler was provided, it can deal with the reply, otherwise we'll just
 556 * check and report if there is an error.
 557 */
 558static int
 559idpf_vc_xn_forward_async(struct idpf_adapter *adapter, struct idpf_vc_xn *xn,
 560			 const struct idpf_ctlq_msg *ctlq_msg)
 561{
 562	int err = 0;
 563
 564	if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
 565		dev_err_ratelimited(&adapter->pdev->dev, "Async message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
 566				    ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
 567		xn->reply_sz = 0;
 568		err = -EINVAL;
 569		goto release_bufs;
 570	}
 571
 572	if (xn->async_handler) {
 573		err = xn->async_handler(adapter, xn, ctlq_msg);
 574		goto release_bufs;
 575	}
 576
 577	if (ctlq_msg->cookie.mbx.chnl_retval) {
 578		xn->reply_sz = 0;
 579		dev_err_ratelimited(&adapter->pdev->dev, "Async message failure (op %d)\n",
 580				    ctlq_msg->cookie.mbx.chnl_opcode);
 581		err = -EINVAL;
 582	}
 583
 584release_bufs:
 585	idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
 586
 587	return err;
 588}
 589
 590/**
 591 * idpf_vc_xn_forward_reply - copy a reply back to receiving thread
 592 * @adapter: driver specific private structure with vcxn_mngr
 593 * @ctlq_msg: controlq message to send back to receiving thread
 594 */
 595static int
 596idpf_vc_xn_forward_reply(struct idpf_adapter *adapter,
 597			 const struct idpf_ctlq_msg *ctlq_msg)
 598{
 599	const void *payload = NULL;
 600	size_t payload_size = 0;
 601	struct idpf_vc_xn *xn;
 602	u16 msg_info;
 603	int err = 0;
 604	u16 xn_idx;
 605	u16 salt;
 606
 607	msg_info = ctlq_msg->ctx.sw_cookie.data;
 608	xn_idx = FIELD_GET(IDPF_VC_XN_IDX_M, msg_info);
 609	if (xn_idx >= ARRAY_SIZE(adapter->vcxn_mngr->ring)) {
 610		dev_err_ratelimited(&adapter->pdev->dev, "Out of bounds cookie received: %02x\n",
 611				    xn_idx);
 612		return -EINVAL;
 613	}
 614	xn = &adapter->vcxn_mngr->ring[xn_idx];
 615	idpf_vc_xn_lock(xn);
 616	salt = FIELD_GET(IDPF_VC_XN_SALT_M, msg_info);
 617	if (xn->salt != salt) {
 618		dev_err_ratelimited(&adapter->pdev->dev, "Transaction salt does not match (%02x != %02x)\n",
 619				    xn->salt, salt);
 620		idpf_vc_xn_unlock(xn);
 621		return -EINVAL;
 622	}
 623
 
 624	switch (xn->state) {
 625	case IDPF_VC_XN_WAITING:
 626		/* success */
 627		break;
 628	case IDPF_VC_XN_IDLE:
 629		dev_err_ratelimited(&adapter->pdev->dev, "Unexpected or belated VC reply (op %d)\n",
 630				    ctlq_msg->cookie.mbx.chnl_opcode);
 631		err = -EINVAL;
 632		goto out_unlock;
 633	case IDPF_VC_XN_SHUTDOWN:
 634		/* ENXIO is a bit special here as the recv msg loop uses that
 635		 * know if it should stop trying to clean the ring if we lost
 636		 * the virtchnl. We need to stop playing with registers and
 637		 * yield.
 638		 */
 639		err = -ENXIO;
 640		goto out_unlock;
 641	case IDPF_VC_XN_ASYNC:
 642		err = idpf_vc_xn_forward_async(adapter, xn, ctlq_msg);
 643		idpf_vc_xn_unlock(xn);
 644		return err;
 645	default:
 646		dev_err_ratelimited(&adapter->pdev->dev, "Overwriting VC reply (op %d)\n",
 647				    ctlq_msg->cookie.mbx.chnl_opcode);
 648		err = -EBUSY;
 649		goto out_unlock;
 650	}
 651
 652	if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
 653		dev_err_ratelimited(&adapter->pdev->dev, "Message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
 654				    ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
 655		xn->reply_sz = 0;
 656		xn->state = IDPF_VC_XN_COMPLETED_FAILED;
 657		err = -EINVAL;
 658		goto out_unlock;
 659	}
 660
 661	if (ctlq_msg->cookie.mbx.chnl_retval) {
 662		xn->reply_sz = 0;
 663		xn->state = IDPF_VC_XN_COMPLETED_FAILED;
 664		err = -EINVAL;
 665		goto out_unlock;
 666	}
 667
 668	if (ctlq_msg->data_len) {
 669		payload = ctlq_msg->ctx.indirect.payload->va;
 670		payload_size = ctlq_msg->data_len;
 671	}
 672
 673	xn->reply_sz = payload_size;
 674	xn->state = IDPF_VC_XN_COMPLETED_SUCCESS;
 675
 676	if (xn->reply.iov_base && xn->reply.iov_len && payload_size)
 677		memcpy(xn->reply.iov_base, payload,
 678		       min_t(size_t, xn->reply.iov_len, payload_size));
 679
 680out_unlock:
 681	idpf_vc_xn_unlock(xn);
 682	/* we _cannot_ hold lock while calling complete */
 683	complete(&xn->completed);
 684
 685	return err;
 686}
 687
 688/**
 689 * idpf_recv_mb_msg - Receive message over mailbox
 690 * @adapter: Driver specific private structure
 691 *
 692 * Will receive control queue message and posts the receive buffer. Returns 0
 693 * on success and negative on failure.
 694 */
 695int idpf_recv_mb_msg(struct idpf_adapter *adapter)
 696{
 697	struct idpf_ctlq_msg ctlq_msg;
 698	struct idpf_dma_mem *dma_mem;
 699	int post_err, err;
 700	u16 num_recv;
 701
 702	while (1) {
 703		/* This will get <= num_recv messages and output how many
 704		 * actually received on num_recv.
 705		 */
 706		num_recv = 1;
 707		err = idpf_ctlq_recv(adapter->hw.arq, &num_recv, &ctlq_msg);
 708		if (err || !num_recv)
 709			break;
 710
 711		if (ctlq_msg.data_len) {
 712			dma_mem = ctlq_msg.ctx.indirect.payload;
 713		} else {
 714			dma_mem = NULL;
 715			num_recv = 0;
 716		}
 717
 718		if (ctlq_msg.cookie.mbx.chnl_opcode == VIRTCHNL2_OP_EVENT)
 719			idpf_recv_event_msg(adapter, &ctlq_msg);
 720		else
 721			err = idpf_vc_xn_forward_reply(adapter, &ctlq_msg);
 722
 723		post_err = idpf_ctlq_post_rx_buffs(&adapter->hw,
 724						   adapter->hw.arq,
 725						   &num_recv, &dma_mem);
 726
 727		/* If post failed clear the only buffer we supplied */
 728		if (post_err) {
 729			if (dma_mem)
 730				dmam_free_coherent(&adapter->pdev->dev,
 731						   dma_mem->size, dma_mem->va,
 732						   dma_mem->pa);
 733			break;
 734		}
 735
 736		/* virtchnl trying to shutdown, stop cleaning */
 737		if (err == -ENXIO)
 738			break;
 739	}
 740
 741	return err;
 742}
 743
 744/**
 745 * idpf_wait_for_marker_event - wait for software marker response
 746 * @vport: virtual port data structure
 747 *
 748 * Returns 0 success, negative on failure.
 749 **/
 750static int idpf_wait_for_marker_event(struct idpf_vport *vport)
 751{
 752	int event;
 753	int i;
 754
 755	for (i = 0; i < vport->num_txq; i++)
 756		idpf_queue_set(SW_MARKER, vport->txqs[i]);
 757
 758	event = wait_event_timeout(vport->sw_marker_wq,
 759				   test_and_clear_bit(IDPF_VPORT_SW_MARKER,
 760						      vport->flags),
 761				   msecs_to_jiffies(500));
 762
 763	for (i = 0; i < vport->num_txq; i++)
 764		idpf_queue_clear(POLL_MODE, vport->txqs[i]);
 765
 766	if (event)
 767		return 0;
 768
 769	dev_warn(&vport->adapter->pdev->dev, "Failed to receive marker packets\n");
 770
 771	return -ETIMEDOUT;
 772}
 773
 774/**
 775 * idpf_send_ver_msg - send virtchnl version message
 776 * @adapter: Driver specific private structure
 777 *
 778 * Send virtchnl version message.  Returns 0 on success, negative on failure.
 779 */
 780static int idpf_send_ver_msg(struct idpf_adapter *adapter)
 781{
 782	struct idpf_vc_xn_params xn_params = {};
 783	struct virtchnl2_version_info vvi;
 784	ssize_t reply_sz;
 785	u32 major, minor;
 786	int err = 0;
 787
 788	if (adapter->virt_ver_maj) {
 789		vvi.major = cpu_to_le32(adapter->virt_ver_maj);
 790		vvi.minor = cpu_to_le32(adapter->virt_ver_min);
 791	} else {
 792		vvi.major = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MAJOR);
 793		vvi.minor = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MINOR);
 794	}
 795
 796	xn_params.vc_op = VIRTCHNL2_OP_VERSION;
 797	xn_params.send_buf.iov_base = &vvi;
 798	xn_params.send_buf.iov_len = sizeof(vvi);
 799	xn_params.recv_buf = xn_params.send_buf;
 800	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
 801
 802	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
 803	if (reply_sz < 0)
 804		return reply_sz;
 805	if (reply_sz < sizeof(vvi))
 806		return -EIO;
 807
 808	major = le32_to_cpu(vvi.major);
 809	minor = le32_to_cpu(vvi.minor);
 810
 811	if (major > IDPF_VIRTCHNL_VERSION_MAJOR) {
 812		dev_warn(&adapter->pdev->dev, "Virtchnl major version greater than supported\n");
 813		return -EINVAL;
 814	}
 815
 816	if (major == IDPF_VIRTCHNL_VERSION_MAJOR &&
 817	    minor > IDPF_VIRTCHNL_VERSION_MINOR)
 818		dev_warn(&adapter->pdev->dev, "Virtchnl minor version didn't match\n");
 819
 820	/* If we have a mismatch, resend version to update receiver on what
 821	 * version we will use.
 822	 */
 823	if (!adapter->virt_ver_maj &&
 824	    major != IDPF_VIRTCHNL_VERSION_MAJOR &&
 825	    minor != IDPF_VIRTCHNL_VERSION_MINOR)
 826		err = -EAGAIN;
 827
 828	adapter->virt_ver_maj = major;
 829	adapter->virt_ver_min = minor;
 830
 831	return err;
 832}
 833
 834/**
 835 * idpf_send_get_caps_msg - Send virtchnl get capabilities message
 836 * @adapter: Driver specific private structure
 837 *
 838 * Send virtchl get capabilities message. Returns 0 on success, negative on
 839 * failure.
 840 */
 841static int idpf_send_get_caps_msg(struct idpf_adapter *adapter)
 842{
 843	struct virtchnl2_get_capabilities caps = {};
 844	struct idpf_vc_xn_params xn_params = {};
 845	ssize_t reply_sz;
 846
 847	caps.csum_caps =
 848		cpu_to_le32(VIRTCHNL2_CAP_TX_CSUM_L3_IPV4	|
 849			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_TCP	|
 850			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_UDP	|
 851			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_SCTP	|
 852			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_TCP	|
 853			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_UDP	|
 854			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_SCTP	|
 855			    VIRTCHNL2_CAP_RX_CSUM_L3_IPV4	|
 856			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_TCP	|
 857			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_UDP	|
 858			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_SCTP	|
 859			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_TCP	|
 860			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_UDP	|
 861			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_SCTP	|
 862			    VIRTCHNL2_CAP_TX_CSUM_L3_SINGLE_TUNNEL |
 863			    VIRTCHNL2_CAP_RX_CSUM_L3_SINGLE_TUNNEL |
 864			    VIRTCHNL2_CAP_TX_CSUM_L4_SINGLE_TUNNEL |
 865			    VIRTCHNL2_CAP_RX_CSUM_L4_SINGLE_TUNNEL |
 866			    VIRTCHNL2_CAP_RX_CSUM_GENERIC);
 867
 868	caps.seg_caps =
 869		cpu_to_le32(VIRTCHNL2_CAP_SEG_IPV4_TCP		|
 870			    VIRTCHNL2_CAP_SEG_IPV4_UDP		|
 871			    VIRTCHNL2_CAP_SEG_IPV4_SCTP		|
 872			    VIRTCHNL2_CAP_SEG_IPV6_TCP		|
 873			    VIRTCHNL2_CAP_SEG_IPV6_UDP		|
 874			    VIRTCHNL2_CAP_SEG_IPV6_SCTP		|
 875			    VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL);
 876
 877	caps.rss_caps =
 878		cpu_to_le64(VIRTCHNL2_CAP_RSS_IPV4_TCP		|
 879			    VIRTCHNL2_CAP_RSS_IPV4_UDP		|
 880			    VIRTCHNL2_CAP_RSS_IPV4_SCTP		|
 881			    VIRTCHNL2_CAP_RSS_IPV4_OTHER	|
 882			    VIRTCHNL2_CAP_RSS_IPV6_TCP		|
 883			    VIRTCHNL2_CAP_RSS_IPV6_UDP		|
 884			    VIRTCHNL2_CAP_RSS_IPV6_SCTP		|
 885			    VIRTCHNL2_CAP_RSS_IPV6_OTHER);
 886
 887	caps.hsplit_caps =
 888		cpu_to_le32(VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V4	|
 889			    VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V6);
 890
 891	caps.rsc_caps =
 892		cpu_to_le32(VIRTCHNL2_CAP_RSC_IPV4_TCP		|
 893			    VIRTCHNL2_CAP_RSC_IPV6_TCP);
 894
 895	caps.other_caps =
 896		cpu_to_le64(VIRTCHNL2_CAP_SRIOV			|
 897			    VIRTCHNL2_CAP_MACFILTER		|
 898			    VIRTCHNL2_CAP_SPLITQ_QSCHED		|
 899			    VIRTCHNL2_CAP_PROMISC		|
 900			    VIRTCHNL2_CAP_LOOPBACK);
 901
 902	xn_params.vc_op = VIRTCHNL2_OP_GET_CAPS;
 903	xn_params.send_buf.iov_base = &caps;
 904	xn_params.send_buf.iov_len = sizeof(caps);
 905	xn_params.recv_buf.iov_base = &adapter->caps;
 906	xn_params.recv_buf.iov_len = sizeof(adapter->caps);
 907	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
 908
 909	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
 910	if (reply_sz < 0)
 911		return reply_sz;
 912	if (reply_sz < sizeof(adapter->caps))
 913		return -EIO;
 914
 915	return 0;
 916}
 917
 918/**
 919 * idpf_vport_alloc_max_qs - Allocate max queues for a vport
 920 * @adapter: Driver specific private structure
 921 * @max_q: vport max queue structure
 922 */
 923int idpf_vport_alloc_max_qs(struct idpf_adapter *adapter,
 924			    struct idpf_vport_max_q *max_q)
 925{
 926	struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
 927	struct virtchnl2_get_capabilities *caps = &adapter->caps;
 928	u16 default_vports = idpf_get_default_vports(adapter);
 929	int max_rx_q, max_tx_q;
 930
 931	mutex_lock(&adapter->queue_lock);
 932
 933	max_rx_q = le16_to_cpu(caps->max_rx_q) / default_vports;
 934	max_tx_q = le16_to_cpu(caps->max_tx_q) / default_vports;
 935	if (adapter->num_alloc_vports < default_vports) {
 936		max_q->max_rxq = min_t(u16, max_rx_q, IDPF_MAX_Q);
 937		max_q->max_txq = min_t(u16, max_tx_q, IDPF_MAX_Q);
 938	} else {
 939		max_q->max_rxq = IDPF_MIN_Q;
 940		max_q->max_txq = IDPF_MIN_Q;
 941	}
 942	max_q->max_bufq = max_q->max_rxq * IDPF_MAX_BUFQS_PER_RXQ_GRP;
 943	max_q->max_complq = max_q->max_txq;
 944
 945	if (avail_queues->avail_rxq < max_q->max_rxq ||
 946	    avail_queues->avail_txq < max_q->max_txq ||
 947	    avail_queues->avail_bufq < max_q->max_bufq ||
 948	    avail_queues->avail_complq < max_q->max_complq) {
 949		mutex_unlock(&adapter->queue_lock);
 950
 951		return -EINVAL;
 952	}
 953
 954	avail_queues->avail_rxq -= max_q->max_rxq;
 955	avail_queues->avail_txq -= max_q->max_txq;
 956	avail_queues->avail_bufq -= max_q->max_bufq;
 957	avail_queues->avail_complq -= max_q->max_complq;
 958
 959	mutex_unlock(&adapter->queue_lock);
 960
 961	return 0;
 962}
 963
 964/**
 965 * idpf_vport_dealloc_max_qs - Deallocate max queues of a vport
 966 * @adapter: Driver specific private structure
 967 * @max_q: vport max queue structure
 968 */
 969void idpf_vport_dealloc_max_qs(struct idpf_adapter *adapter,
 970			       struct idpf_vport_max_q *max_q)
 971{
 972	struct idpf_avail_queue_info *avail_queues;
 973
 974	mutex_lock(&adapter->queue_lock);
 975	avail_queues = &adapter->avail_queues;
 976
 977	avail_queues->avail_rxq += max_q->max_rxq;
 978	avail_queues->avail_txq += max_q->max_txq;
 979	avail_queues->avail_bufq += max_q->max_bufq;
 980	avail_queues->avail_complq += max_q->max_complq;
 981
 982	mutex_unlock(&adapter->queue_lock);
 983}
 984
 985/**
 986 * idpf_init_avail_queues - Initialize available queues on the device
 987 * @adapter: Driver specific private structure
 988 */
 989static void idpf_init_avail_queues(struct idpf_adapter *adapter)
 990{
 991	struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
 992	struct virtchnl2_get_capabilities *caps = &adapter->caps;
 993
 994	avail_queues->avail_rxq = le16_to_cpu(caps->max_rx_q);
 995	avail_queues->avail_txq = le16_to_cpu(caps->max_tx_q);
 996	avail_queues->avail_bufq = le16_to_cpu(caps->max_rx_bufq);
 997	avail_queues->avail_complq = le16_to_cpu(caps->max_tx_complq);
 998}
 999
1000/**
1001 * idpf_get_reg_intr_vecs - Get vector queue register offset
1002 * @vport: virtual port structure
1003 * @reg_vals: Register offsets to store in
1004 *
1005 * Returns number of registers that got populated
1006 */
1007int idpf_get_reg_intr_vecs(struct idpf_vport *vport,
1008			   struct idpf_vec_regs *reg_vals)
1009{
1010	struct virtchnl2_vector_chunks *chunks;
1011	struct idpf_vec_regs reg_val;
1012	u16 num_vchunks, num_vec;
1013	int num_regs = 0, i, j;
1014
1015	chunks = &vport->adapter->req_vec_chunks->vchunks;
1016	num_vchunks = le16_to_cpu(chunks->num_vchunks);
1017
1018	for (j = 0; j < num_vchunks; j++) {
1019		struct virtchnl2_vector_chunk *chunk;
1020		u32 dynctl_reg_spacing;
1021		u32 itrn_reg_spacing;
1022
1023		chunk = &chunks->vchunks[j];
1024		num_vec = le16_to_cpu(chunk->num_vectors);
1025		reg_val.dyn_ctl_reg = le32_to_cpu(chunk->dynctl_reg_start);
1026		reg_val.itrn_reg = le32_to_cpu(chunk->itrn_reg_start);
1027		reg_val.itrn_index_spacing = le32_to_cpu(chunk->itrn_index_spacing);
1028
1029		dynctl_reg_spacing = le32_to_cpu(chunk->dynctl_reg_spacing);
1030		itrn_reg_spacing = le32_to_cpu(chunk->itrn_reg_spacing);
1031
1032		for (i = 0; i < num_vec; i++) {
1033			reg_vals[num_regs].dyn_ctl_reg = reg_val.dyn_ctl_reg;
1034			reg_vals[num_regs].itrn_reg = reg_val.itrn_reg;
1035			reg_vals[num_regs].itrn_index_spacing =
1036						reg_val.itrn_index_spacing;
1037
1038			reg_val.dyn_ctl_reg += dynctl_reg_spacing;
1039			reg_val.itrn_reg += itrn_reg_spacing;
1040			num_regs++;
1041		}
1042	}
1043
1044	return num_regs;
1045}
1046
1047/**
1048 * idpf_vport_get_q_reg - Get the queue registers for the vport
1049 * @reg_vals: register values needing to be set
1050 * @num_regs: amount we expect to fill
1051 * @q_type: queue model
1052 * @chunks: queue regs received over mailbox
1053 *
1054 * This function parses the queue register offsets from the queue register
1055 * chunk information, with a specific queue type and stores it into the array
1056 * passed as an argument. It returns the actual number of queue registers that
1057 * are filled.
1058 */
1059static int idpf_vport_get_q_reg(u32 *reg_vals, int num_regs, u32 q_type,
1060				struct virtchnl2_queue_reg_chunks *chunks)
1061{
1062	u16 num_chunks = le16_to_cpu(chunks->num_chunks);
1063	int reg_filled = 0, i;
1064	u32 reg_val;
1065
1066	while (num_chunks--) {
1067		struct virtchnl2_queue_reg_chunk *chunk;
1068		u16 num_q;
1069
1070		chunk = &chunks->chunks[num_chunks];
1071		if (le32_to_cpu(chunk->type) != q_type)
1072			continue;
1073
1074		num_q = le32_to_cpu(chunk->num_queues);
1075		reg_val = le64_to_cpu(chunk->qtail_reg_start);
1076		for (i = 0; i < num_q && reg_filled < num_regs ; i++) {
1077			reg_vals[reg_filled++] = reg_val;
1078			reg_val += le32_to_cpu(chunk->qtail_reg_spacing);
1079		}
1080	}
1081
1082	return reg_filled;
1083}
1084
1085/**
1086 * __idpf_queue_reg_init - initialize queue registers
1087 * @vport: virtual port structure
1088 * @reg_vals: registers we are initializing
1089 * @num_regs: how many registers there are in total
1090 * @q_type: queue model
1091 *
1092 * Return number of queues that are initialized
1093 */
1094static int __idpf_queue_reg_init(struct idpf_vport *vport, u32 *reg_vals,
1095				 int num_regs, u32 q_type)
1096{
1097	struct idpf_adapter *adapter = vport->adapter;
 
1098	int i, j, k = 0;
1099
1100	switch (q_type) {
1101	case VIRTCHNL2_QUEUE_TYPE_TX:
1102		for (i = 0; i < vport->num_txq_grp; i++) {
1103			struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1104
1105			for (j = 0; j < tx_qgrp->num_txq && k < num_regs; j++, k++)
1106				tx_qgrp->txqs[j]->tail =
1107					idpf_get_reg_addr(adapter, reg_vals[k]);
1108		}
1109		break;
1110	case VIRTCHNL2_QUEUE_TYPE_RX:
1111		for (i = 0; i < vport->num_rxq_grp; i++) {
1112			struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1113			u16 num_rxq = rx_qgrp->singleq.num_rxq;
1114
1115			for (j = 0; j < num_rxq && k < num_regs; j++, k++) {
1116				struct idpf_rx_queue *q;
1117
1118				q = rx_qgrp->singleq.rxqs[j];
1119				q->tail = idpf_get_reg_addr(adapter,
1120							    reg_vals[k]);
1121			}
1122		}
1123		break;
1124	case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
1125		for (i = 0; i < vport->num_rxq_grp; i++) {
1126			struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1127			u8 num_bufqs = vport->num_bufqs_per_qgrp;
1128
1129			for (j = 0; j < num_bufqs && k < num_regs; j++, k++) {
1130				struct idpf_buf_queue *q;
1131
1132				q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1133				q->tail = idpf_get_reg_addr(adapter,
1134							    reg_vals[k]);
1135			}
1136		}
1137		break;
1138	default:
1139		break;
1140	}
1141
1142	return k;
1143}
1144
1145/**
1146 * idpf_queue_reg_init - initialize queue registers
1147 * @vport: virtual port structure
1148 *
1149 * Return 0 on success, negative on failure
1150 */
1151int idpf_queue_reg_init(struct idpf_vport *vport)
1152{
1153	struct virtchnl2_create_vport *vport_params;
1154	struct virtchnl2_queue_reg_chunks *chunks;
1155	struct idpf_vport_config *vport_config;
1156	u16 vport_idx = vport->idx;
1157	int num_regs, ret = 0;
1158	u32 *reg_vals;
1159
1160	/* We may never deal with more than 256 same type of queues */
1161	reg_vals = kzalloc(sizeof(void *) * IDPF_LARGE_MAX_Q, GFP_KERNEL);
1162	if (!reg_vals)
1163		return -ENOMEM;
1164
1165	vport_config = vport->adapter->vport_config[vport_idx];
1166	if (vport_config->req_qs_chunks) {
1167		struct virtchnl2_add_queues *vc_aq =
1168		  (struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
1169		chunks = &vc_aq->chunks;
1170	} else {
1171		vport_params = vport->adapter->vport_params_recvd[vport_idx];
1172		chunks = &vport_params->chunks;
1173	}
1174
1175	/* Initialize Tx queue tail register address */
1176	num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1177					VIRTCHNL2_QUEUE_TYPE_TX,
1178					chunks);
1179	if (num_regs < vport->num_txq) {
1180		ret = -EINVAL;
1181		goto free_reg_vals;
1182	}
1183
1184	num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1185					 VIRTCHNL2_QUEUE_TYPE_TX);
1186	if (num_regs < vport->num_txq) {
1187		ret = -EINVAL;
1188		goto free_reg_vals;
1189	}
1190
1191	/* Initialize Rx/buffer queue tail register address based on Rx queue
1192	 * model
1193	 */
1194	if (idpf_is_queue_model_split(vport->rxq_model)) {
1195		num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1196						VIRTCHNL2_QUEUE_TYPE_RX_BUFFER,
1197						chunks);
1198		if (num_regs < vport->num_bufq) {
1199			ret = -EINVAL;
1200			goto free_reg_vals;
1201		}
1202
1203		num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1204						 VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1205		if (num_regs < vport->num_bufq) {
1206			ret = -EINVAL;
1207			goto free_reg_vals;
1208		}
1209	} else {
1210		num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1211						VIRTCHNL2_QUEUE_TYPE_RX,
1212						chunks);
1213		if (num_regs < vport->num_rxq) {
1214			ret = -EINVAL;
1215			goto free_reg_vals;
1216		}
1217
1218		num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1219						 VIRTCHNL2_QUEUE_TYPE_RX);
1220		if (num_regs < vport->num_rxq) {
1221			ret = -EINVAL;
1222			goto free_reg_vals;
1223		}
1224	}
1225
1226free_reg_vals:
1227	kfree(reg_vals);
1228
1229	return ret;
1230}
1231
1232/**
1233 * idpf_send_create_vport_msg - Send virtchnl create vport message
1234 * @adapter: Driver specific private structure
1235 * @max_q: vport max queue info
1236 *
1237 * send virtchnl creae vport message
1238 *
1239 * Returns 0 on success, negative on failure
1240 */
1241int idpf_send_create_vport_msg(struct idpf_adapter *adapter,
1242			       struct idpf_vport_max_q *max_q)
1243{
1244	struct virtchnl2_create_vport *vport_msg;
1245	struct idpf_vc_xn_params xn_params = {};
1246	u16 idx = adapter->next_vport;
1247	int err, buf_size;
1248	ssize_t reply_sz;
1249
1250	buf_size = sizeof(struct virtchnl2_create_vport);
1251	if (!adapter->vport_params_reqd[idx]) {
1252		adapter->vport_params_reqd[idx] = kzalloc(buf_size,
1253							  GFP_KERNEL);
1254		if (!adapter->vport_params_reqd[idx])
1255			return -ENOMEM;
1256	}
1257
1258	vport_msg = adapter->vport_params_reqd[idx];
1259	vport_msg->vport_type = cpu_to_le16(VIRTCHNL2_VPORT_TYPE_DEFAULT);
1260	vport_msg->vport_index = cpu_to_le16(idx);
1261
1262	if (adapter->req_tx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
1263		vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1264	else
1265		vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1266
1267	if (adapter->req_rx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
1268		vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1269	else
1270		vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1271
1272	err = idpf_vport_calc_total_qs(adapter, idx, vport_msg, max_q);
1273	if (err) {
1274		dev_err(&adapter->pdev->dev, "Enough queues are not available");
1275
1276		return err;
1277	}
1278
1279	if (!adapter->vport_params_recvd[idx]) {
1280		adapter->vport_params_recvd[idx] = kzalloc(IDPF_CTLQ_MAX_BUF_LEN,
1281							   GFP_KERNEL);
1282		if (!adapter->vport_params_recvd[idx]) {
1283			err = -ENOMEM;
1284			goto free_vport_params;
1285		}
1286	}
1287
1288	xn_params.vc_op = VIRTCHNL2_OP_CREATE_VPORT;
1289	xn_params.send_buf.iov_base = vport_msg;
1290	xn_params.send_buf.iov_len = buf_size;
1291	xn_params.recv_buf.iov_base = adapter->vport_params_recvd[idx];
1292	xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
1293	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1294	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
1295	if (reply_sz < 0) {
1296		err = reply_sz;
1297		goto free_vport_params;
1298	}
 
 
 
 
1299
1300	return 0;
1301
1302free_vport_params:
1303	kfree(adapter->vport_params_recvd[idx]);
1304	adapter->vport_params_recvd[idx] = NULL;
1305	kfree(adapter->vport_params_reqd[idx]);
1306	adapter->vport_params_reqd[idx] = NULL;
1307
1308	return err;
1309}
1310
1311/**
1312 * idpf_check_supported_desc_ids - Verify we have required descriptor support
1313 * @vport: virtual port structure
1314 *
1315 * Return 0 on success, error on failure
1316 */
1317int idpf_check_supported_desc_ids(struct idpf_vport *vport)
1318{
1319	struct idpf_adapter *adapter = vport->adapter;
1320	struct virtchnl2_create_vport *vport_msg;
1321	u64 rx_desc_ids, tx_desc_ids;
1322
1323	vport_msg = adapter->vport_params_recvd[vport->idx];
1324
1325	if (!IS_ENABLED(CONFIG_IDPF_SINGLEQ) &&
1326	    (vport_msg->rxq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE ||
1327	     vport_msg->txq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE)) {
1328		pci_err(adapter->pdev, "singleq mode requested, but not compiled-in\n");
1329		return -EOPNOTSUPP;
1330	}
1331
1332	rx_desc_ids = le64_to_cpu(vport_msg->rx_desc_ids);
1333	tx_desc_ids = le64_to_cpu(vport_msg->tx_desc_ids);
1334
1335	if (idpf_is_queue_model_split(vport->rxq_model)) {
1336		if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M)) {
1337			dev_info(&adapter->pdev->dev, "Minimum RX descriptor support not provided, using the default\n");
1338			vport_msg->rx_desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1339		}
1340	} else {
1341		if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SQ_NIC_M))
1342			vport->base_rxd = true;
1343	}
1344
1345	if (!idpf_is_queue_model_split(vport->txq_model))
1346		return 0;
1347
1348	if ((tx_desc_ids & MIN_SUPPORT_TXDID) != MIN_SUPPORT_TXDID) {
1349		dev_info(&adapter->pdev->dev, "Minimum TX descriptor support not provided, using the default\n");
1350		vport_msg->tx_desc_ids = cpu_to_le64(MIN_SUPPORT_TXDID);
1351	}
1352
1353	return 0;
1354}
1355
1356/**
1357 * idpf_send_destroy_vport_msg - Send virtchnl destroy vport message
1358 * @vport: virtual port data structure
1359 *
1360 * Send virtchnl destroy vport message.  Returns 0 on success, negative on
1361 * failure.
1362 */
1363int idpf_send_destroy_vport_msg(struct idpf_vport *vport)
1364{
1365	struct idpf_vc_xn_params xn_params = {};
1366	struct virtchnl2_vport v_id;
1367	ssize_t reply_sz;
1368
1369	v_id.vport_id = cpu_to_le32(vport->vport_id);
1370
1371	xn_params.vc_op = VIRTCHNL2_OP_DESTROY_VPORT;
1372	xn_params.send_buf.iov_base = &v_id;
1373	xn_params.send_buf.iov_len = sizeof(v_id);
1374	xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1375	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1376
1377	return reply_sz < 0 ? reply_sz : 0;
1378}
1379
1380/**
1381 * idpf_send_enable_vport_msg - Send virtchnl enable vport message
1382 * @vport: virtual port data structure
1383 *
1384 * Send enable vport virtchnl message.  Returns 0 on success, negative on
1385 * failure.
1386 */
1387int idpf_send_enable_vport_msg(struct idpf_vport *vport)
1388{
1389	struct idpf_vc_xn_params xn_params = {};
1390	struct virtchnl2_vport v_id;
1391	ssize_t reply_sz;
1392
1393	v_id.vport_id = cpu_to_le32(vport->vport_id);
1394
1395	xn_params.vc_op = VIRTCHNL2_OP_ENABLE_VPORT;
1396	xn_params.send_buf.iov_base = &v_id;
1397	xn_params.send_buf.iov_len = sizeof(v_id);
1398	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1399	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1400
1401	return reply_sz < 0 ? reply_sz : 0;
1402}
1403
1404/**
1405 * idpf_send_disable_vport_msg - Send virtchnl disable vport message
1406 * @vport: virtual port data structure
1407 *
1408 * Send disable vport virtchnl message.  Returns 0 on success, negative on
1409 * failure.
1410 */
1411int idpf_send_disable_vport_msg(struct idpf_vport *vport)
1412{
1413	struct idpf_vc_xn_params xn_params = {};
1414	struct virtchnl2_vport v_id;
1415	ssize_t reply_sz;
1416
1417	v_id.vport_id = cpu_to_le32(vport->vport_id);
1418
1419	xn_params.vc_op = VIRTCHNL2_OP_DISABLE_VPORT;
1420	xn_params.send_buf.iov_base = &v_id;
1421	xn_params.send_buf.iov_len = sizeof(v_id);
1422	xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1423	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1424
1425	return reply_sz < 0 ? reply_sz : 0;
1426}
1427
1428/**
1429 * idpf_send_config_tx_queues_msg - Send virtchnl config tx queues message
1430 * @vport: virtual port data structure
1431 *
1432 * Send config tx queues virtchnl message. Returns 0 on success, negative on
1433 * failure.
1434 */
1435static int idpf_send_config_tx_queues_msg(struct idpf_vport *vport)
1436{
1437	struct virtchnl2_config_tx_queues *ctq __free(kfree) = NULL;
1438	struct virtchnl2_txq_info *qi __free(kfree) = NULL;
1439	struct idpf_vc_xn_params xn_params = {};
1440	u32 config_sz, chunk_sz, buf_sz;
1441	int totqs, num_msgs, num_chunks;
1442	ssize_t reply_sz;
1443	int i, k = 0;
1444
1445	totqs = vport->num_txq + vport->num_complq;
1446	qi = kcalloc(totqs, sizeof(struct virtchnl2_txq_info), GFP_KERNEL);
1447	if (!qi)
1448		return -ENOMEM;
1449
1450	/* Populate the queue info buffer with all queue context info */
1451	for (i = 0; i < vport->num_txq_grp; i++) {
1452		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1453		int j, sched_mode;
1454
1455		for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1456			qi[k].queue_id =
1457				cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1458			qi[k].model =
1459				cpu_to_le16(vport->txq_model);
1460			qi[k].type =
1461				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1462			qi[k].ring_len =
1463				cpu_to_le16(tx_qgrp->txqs[j]->desc_count);
1464			qi[k].dma_ring_addr =
1465				cpu_to_le64(tx_qgrp->txqs[j]->dma);
1466			if (idpf_is_queue_model_split(vport->txq_model)) {
1467				struct idpf_tx_queue *q = tx_qgrp->txqs[j];
1468
1469				qi[k].tx_compl_queue_id =
1470					cpu_to_le16(tx_qgrp->complq->q_id);
1471				qi[k].relative_queue_id = cpu_to_le16(j);
1472
1473				if (idpf_queue_has(FLOW_SCH_EN, q))
1474					qi[k].sched_mode =
1475					cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_FLOW);
1476				else
1477					qi[k].sched_mode =
1478					cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
1479			} else {
1480				qi[k].sched_mode =
1481					cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
1482			}
1483		}
1484
1485		if (!idpf_is_queue_model_split(vport->txq_model))
1486			continue;
1487
1488		qi[k].queue_id = cpu_to_le32(tx_qgrp->complq->q_id);
1489		qi[k].model = cpu_to_le16(vport->txq_model);
1490		qi[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION);
1491		qi[k].ring_len = cpu_to_le16(tx_qgrp->complq->desc_count);
1492		qi[k].dma_ring_addr = cpu_to_le64(tx_qgrp->complq->dma);
1493
1494		if (idpf_queue_has(FLOW_SCH_EN, tx_qgrp->complq))
1495			sched_mode = VIRTCHNL2_TXQ_SCHED_MODE_FLOW;
1496		else
1497			sched_mode = VIRTCHNL2_TXQ_SCHED_MODE_QUEUE;
1498		qi[k].sched_mode = cpu_to_le16(sched_mode);
1499
1500		k++;
1501	}
1502
1503	/* Make sure accounting agrees */
1504	if (k != totqs)
1505		return -EINVAL;
1506
1507	/* Chunk up the queue contexts into multiple messages to avoid
1508	 * sending a control queue message buffer that is too large
1509	 */
1510	config_sz = sizeof(struct virtchnl2_config_tx_queues);
1511	chunk_sz = sizeof(struct virtchnl2_txq_info);
1512
1513	num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1514			   totqs);
1515	num_msgs = DIV_ROUND_UP(totqs, num_chunks);
1516
1517	buf_sz = struct_size(ctq, qinfo, num_chunks);
1518	ctq = kzalloc(buf_sz, GFP_KERNEL);
1519	if (!ctq)
1520		return -ENOMEM;
1521
1522	xn_params.vc_op = VIRTCHNL2_OP_CONFIG_TX_QUEUES;
1523	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1524
1525	for (i = 0, k = 0; i < num_msgs; i++) {
1526		memset(ctq, 0, buf_sz);
1527		ctq->vport_id = cpu_to_le32(vport->vport_id);
1528		ctq->num_qinfo = cpu_to_le16(num_chunks);
1529		memcpy(ctq->qinfo, &qi[k], chunk_sz * num_chunks);
1530
1531		xn_params.send_buf.iov_base = ctq;
1532		xn_params.send_buf.iov_len = buf_sz;
1533		reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1534		if (reply_sz < 0)
1535			return reply_sz;
1536
1537		k += num_chunks;
1538		totqs -= num_chunks;
1539		num_chunks = min(num_chunks, totqs);
1540		/* Recalculate buffer size */
1541		buf_sz = struct_size(ctq, qinfo, num_chunks);
1542	}
1543
1544	return 0;
1545}
1546
1547/**
1548 * idpf_send_config_rx_queues_msg - Send virtchnl config rx queues message
1549 * @vport: virtual port data structure
1550 *
1551 * Send config rx queues virtchnl message.  Returns 0 on success, negative on
1552 * failure.
1553 */
1554static int idpf_send_config_rx_queues_msg(struct idpf_vport *vport)
1555{
1556	struct virtchnl2_config_rx_queues *crq __free(kfree) = NULL;
1557	struct virtchnl2_rxq_info *qi __free(kfree) = NULL;
1558	struct idpf_vc_xn_params xn_params = {};
1559	u32 config_sz, chunk_sz, buf_sz;
1560	int totqs, num_msgs, num_chunks;
1561	ssize_t reply_sz;
1562	int i, k = 0;
1563
1564	totqs = vport->num_rxq + vport->num_bufq;
1565	qi = kcalloc(totqs, sizeof(struct virtchnl2_rxq_info), GFP_KERNEL);
1566	if (!qi)
1567		return -ENOMEM;
1568
1569	/* Populate the queue info buffer with all queue context info */
1570	for (i = 0; i < vport->num_rxq_grp; i++) {
1571		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1572		u16 num_rxq;
1573		int j;
1574
1575		if (!idpf_is_queue_model_split(vport->rxq_model))
1576			goto setup_rxqs;
1577
1578		for (j = 0; j < vport->num_bufqs_per_qgrp; j++, k++) {
1579			struct idpf_buf_queue *bufq =
1580				&rx_qgrp->splitq.bufq_sets[j].bufq;
1581
1582			qi[k].queue_id = cpu_to_le32(bufq->q_id);
1583			qi[k].model = cpu_to_le16(vport->rxq_model);
1584			qi[k].type =
1585				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1586			qi[k].desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1587			qi[k].ring_len = cpu_to_le16(bufq->desc_count);
1588			qi[k].dma_ring_addr = cpu_to_le64(bufq->dma);
1589			qi[k].data_buffer_size = cpu_to_le32(bufq->rx_buf_size);
1590			qi[k].buffer_notif_stride = IDPF_RX_BUF_STRIDE;
1591			qi[k].rx_buffer_low_watermark =
1592				cpu_to_le16(bufq->rx_buffer_low_watermark);
1593			if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1594				qi[k].qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1595		}
1596
1597setup_rxqs:
1598		if (idpf_is_queue_model_split(vport->rxq_model))
1599			num_rxq = rx_qgrp->splitq.num_rxq_sets;
1600		else
1601			num_rxq = rx_qgrp->singleq.num_rxq;
1602
1603		for (j = 0; j < num_rxq; j++, k++) {
1604			const struct idpf_bufq_set *sets;
1605			struct idpf_rx_queue *rxq;
1606
1607			if (!idpf_is_queue_model_split(vport->rxq_model)) {
1608				rxq = rx_qgrp->singleq.rxqs[j];
1609				goto common_qi_fields;
1610			}
1611
1612			rxq = &rx_qgrp->splitq.rxq_sets[j]->rxq;
1613			sets = rxq->bufq_sets;
1614
1615			/* In splitq mode, RXQ buffer size should be
1616			 * set to that of the first buffer queue
1617			 * associated with this RXQ.
1618			 */
1619			rxq->rx_buf_size = sets[0].bufq.rx_buf_size;
1620
1621			qi[k].rx_bufq1_id = cpu_to_le16(sets[0].bufq.q_id);
1622			if (vport->num_bufqs_per_qgrp > IDPF_SINGLE_BUFQ_PER_RXQ_GRP) {
1623				qi[k].bufq2_ena = IDPF_BUFQ2_ENA;
1624				qi[k].rx_bufq2_id =
1625					cpu_to_le16(sets[1].bufq.q_id);
1626			}
1627			qi[k].rx_buffer_low_watermark =
1628				cpu_to_le16(rxq->rx_buffer_low_watermark);
1629			if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1630				qi[k].qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1631
1632			rxq->rx_hbuf_size = sets[0].bufq.rx_hbuf_size;
1633
1634			if (idpf_queue_has(HSPLIT_EN, rxq)) {
1635				qi[k].qflags |=
1636					cpu_to_le16(VIRTCHNL2_RXQ_HDR_SPLIT);
1637				qi[k].hdr_buffer_size =
1638					cpu_to_le16(rxq->rx_hbuf_size);
1639			}
1640
1641common_qi_fields:
1642			qi[k].queue_id = cpu_to_le32(rxq->q_id);
1643			qi[k].model = cpu_to_le16(vport->rxq_model);
1644			qi[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1645			qi[k].ring_len = cpu_to_le16(rxq->desc_count);
1646			qi[k].dma_ring_addr = cpu_to_le64(rxq->dma);
1647			qi[k].max_pkt_size = cpu_to_le32(rxq->rx_max_pkt_size);
1648			qi[k].data_buffer_size = cpu_to_le32(rxq->rx_buf_size);
1649			qi[k].qflags |=
1650				cpu_to_le16(VIRTCHNL2_RX_DESC_SIZE_32BYTE);
1651			qi[k].desc_ids = cpu_to_le64(rxq->rxdids);
1652		}
1653	}
1654
1655	/* Make sure accounting agrees */
1656	if (k != totqs)
1657		return -EINVAL;
1658
1659	/* Chunk up the queue contexts into multiple messages to avoid
1660	 * sending a control queue message buffer that is too large
1661	 */
1662	config_sz = sizeof(struct virtchnl2_config_rx_queues);
1663	chunk_sz = sizeof(struct virtchnl2_rxq_info);
1664
1665	num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1666			   totqs);
1667	num_msgs = DIV_ROUND_UP(totqs, num_chunks);
1668
1669	buf_sz = struct_size(crq, qinfo, num_chunks);
1670	crq = kzalloc(buf_sz, GFP_KERNEL);
1671	if (!crq)
1672		return -ENOMEM;
1673
1674	xn_params.vc_op = VIRTCHNL2_OP_CONFIG_RX_QUEUES;
1675	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1676
1677	for (i = 0, k = 0; i < num_msgs; i++) {
1678		memset(crq, 0, buf_sz);
1679		crq->vport_id = cpu_to_le32(vport->vport_id);
1680		crq->num_qinfo = cpu_to_le16(num_chunks);
1681		memcpy(crq->qinfo, &qi[k], chunk_sz * num_chunks);
1682
1683		xn_params.send_buf.iov_base = crq;
1684		xn_params.send_buf.iov_len = buf_sz;
1685		reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1686		if (reply_sz < 0)
1687			return reply_sz;
1688
1689		k += num_chunks;
1690		totqs -= num_chunks;
1691		num_chunks = min(num_chunks, totqs);
1692		/* Recalculate buffer size */
1693		buf_sz = struct_size(crq, qinfo, num_chunks);
1694	}
1695
1696	return 0;
1697}
1698
1699/**
1700 * idpf_send_ena_dis_queues_msg - Send virtchnl enable or disable
1701 * queues message
1702 * @vport: virtual port data structure
1703 * @ena: if true enable, false disable
1704 *
1705 * Send enable or disable queues virtchnl message. Returns 0 on success,
1706 * negative on failure.
1707 */
1708static int idpf_send_ena_dis_queues_msg(struct idpf_vport *vport, bool ena)
1709{
1710	struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
1711	struct virtchnl2_queue_chunk *qc __free(kfree) = NULL;
1712	u32 num_msgs, num_chunks, num_txq, num_rxq, num_q;
1713	struct idpf_vc_xn_params xn_params = {};
1714	struct virtchnl2_queue_chunks *qcs;
1715	u32 config_sz, chunk_sz, buf_sz;
1716	ssize_t reply_sz;
1717	int i, j, k = 0;
1718
1719	num_txq = vport->num_txq + vport->num_complq;
1720	num_rxq = vport->num_rxq + vport->num_bufq;
1721	num_q = num_txq + num_rxq;
1722	buf_sz = sizeof(struct virtchnl2_queue_chunk) * num_q;
1723	qc = kzalloc(buf_sz, GFP_KERNEL);
1724	if (!qc)
1725		return -ENOMEM;
1726
1727	for (i = 0; i < vport->num_txq_grp; i++) {
1728		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1729
1730		for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1731			qc[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1732			qc[k].start_queue_id = cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1733			qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1734		}
1735	}
1736	if (vport->num_txq != k)
1737		return -EINVAL;
1738
1739	if (!idpf_is_queue_model_split(vport->txq_model))
1740		goto setup_rx;
1741
1742	for (i = 0; i < vport->num_txq_grp; i++, k++) {
1743		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1744
1745		qc[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION);
1746		qc[k].start_queue_id = cpu_to_le32(tx_qgrp->complq->q_id);
1747		qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1748	}
1749	if (vport->num_complq != (k - vport->num_txq))
1750		return -EINVAL;
1751
1752setup_rx:
1753	for (i = 0; i < vport->num_rxq_grp; i++) {
1754		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1755
1756		if (idpf_is_queue_model_split(vport->rxq_model))
1757			num_rxq = rx_qgrp->splitq.num_rxq_sets;
1758		else
1759			num_rxq = rx_qgrp->singleq.num_rxq;
1760
1761		for (j = 0; j < num_rxq; j++, k++) {
1762			if (idpf_is_queue_model_split(vport->rxq_model)) {
1763				qc[k].start_queue_id =
1764				cpu_to_le32(rx_qgrp->splitq.rxq_sets[j]->rxq.q_id);
1765				qc[k].type =
1766				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1767			} else {
1768				qc[k].start_queue_id =
1769				cpu_to_le32(rx_qgrp->singleq.rxqs[j]->q_id);
1770				qc[k].type =
1771				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1772			}
1773			qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1774		}
1775	}
1776	if (vport->num_rxq != k - (vport->num_txq + vport->num_complq))
1777		return -EINVAL;
1778
1779	if (!idpf_is_queue_model_split(vport->rxq_model))
1780		goto send_msg;
1781
1782	for (i = 0; i < vport->num_rxq_grp; i++) {
1783		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1784
1785		for (j = 0; j < vport->num_bufqs_per_qgrp; j++, k++) {
1786			const struct idpf_buf_queue *q;
1787
1788			q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1789			qc[k].type =
1790				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1791			qc[k].start_queue_id = cpu_to_le32(q->q_id);
1792			qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1793		}
1794	}
1795	if (vport->num_bufq != k - (vport->num_txq +
1796				    vport->num_complq +
1797				    vport->num_rxq))
1798		return -EINVAL;
1799
1800send_msg:
1801	/* Chunk up the queue info into multiple messages */
1802	config_sz = sizeof(struct virtchnl2_del_ena_dis_queues);
1803	chunk_sz = sizeof(struct virtchnl2_queue_chunk);
1804
1805	num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1806			   num_q);
1807	num_msgs = DIV_ROUND_UP(num_q, num_chunks);
1808
1809	buf_sz = struct_size(eq, chunks.chunks, num_chunks);
1810	eq = kzalloc(buf_sz, GFP_KERNEL);
1811	if (!eq)
1812		return -ENOMEM;
1813
1814	if (ena) {
1815		xn_params.vc_op = VIRTCHNL2_OP_ENABLE_QUEUES;
1816		xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1817	} else {
1818		xn_params.vc_op = VIRTCHNL2_OP_DISABLE_QUEUES;
1819		xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1820	}
1821
1822	for (i = 0, k = 0; i < num_msgs; i++) {
1823		memset(eq, 0, buf_sz);
1824		eq->vport_id = cpu_to_le32(vport->vport_id);
1825		eq->chunks.num_chunks = cpu_to_le16(num_chunks);
1826		qcs = &eq->chunks;
1827		memcpy(qcs->chunks, &qc[k], chunk_sz * num_chunks);
1828
1829		xn_params.send_buf.iov_base = eq;
1830		xn_params.send_buf.iov_len = buf_sz;
1831		reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1832		if (reply_sz < 0)
1833			return reply_sz;
1834
1835		k += num_chunks;
1836		num_q -= num_chunks;
1837		num_chunks = min(num_chunks, num_q);
1838		/* Recalculate buffer size */
1839		buf_sz = struct_size(eq, chunks.chunks, num_chunks);
1840	}
1841
1842	return 0;
1843}
1844
1845/**
1846 * idpf_send_map_unmap_queue_vector_msg - Send virtchnl map or unmap queue
1847 * vector message
1848 * @vport: virtual port data structure
1849 * @map: true for map and false for unmap
1850 *
1851 * Send map or unmap queue vector virtchnl message.  Returns 0 on success,
1852 * negative on failure.
1853 */
1854int idpf_send_map_unmap_queue_vector_msg(struct idpf_vport *vport, bool map)
1855{
1856	struct virtchnl2_queue_vector_maps *vqvm __free(kfree) = NULL;
1857	struct virtchnl2_queue_vector *vqv __free(kfree) = NULL;
1858	struct idpf_vc_xn_params xn_params = {};
1859	u32 config_sz, chunk_sz, buf_sz;
1860	u32 num_msgs, num_chunks, num_q;
1861	ssize_t reply_sz;
1862	int i, j, k = 0;
1863
1864	num_q = vport->num_txq + vport->num_rxq;
1865
1866	buf_sz = sizeof(struct virtchnl2_queue_vector) * num_q;
1867	vqv = kzalloc(buf_sz, GFP_KERNEL);
1868	if (!vqv)
1869		return -ENOMEM;
1870
1871	for (i = 0; i < vport->num_txq_grp; i++) {
1872		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1873
1874		for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1875			vqv[k].queue_type =
1876				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
1877			vqv[k].queue_id = cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1878
1879			if (idpf_is_queue_model_split(vport->txq_model)) {
1880				vqv[k].vector_id =
1881				cpu_to_le16(tx_qgrp->complq->q_vector->v_idx);
1882				vqv[k].itr_idx =
1883				cpu_to_le32(tx_qgrp->complq->q_vector->tx_itr_idx);
1884			} else {
1885				vqv[k].vector_id =
1886				cpu_to_le16(tx_qgrp->txqs[j]->q_vector->v_idx);
1887				vqv[k].itr_idx =
1888				cpu_to_le32(tx_qgrp->txqs[j]->q_vector->tx_itr_idx);
1889			}
1890		}
1891	}
1892
1893	if (vport->num_txq != k)
1894		return -EINVAL;
1895
1896	for (i = 0; i < vport->num_rxq_grp; i++) {
1897		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1898		u16 num_rxq;
1899
1900		if (idpf_is_queue_model_split(vport->rxq_model))
1901			num_rxq = rx_qgrp->splitq.num_rxq_sets;
1902		else
1903			num_rxq = rx_qgrp->singleq.num_rxq;
1904
1905		for (j = 0; j < num_rxq; j++, k++) {
1906			struct idpf_rx_queue *rxq;
1907
1908			if (idpf_is_queue_model_split(vport->rxq_model))
1909				rxq = &rx_qgrp->splitq.rxq_sets[j]->rxq;
1910			else
1911				rxq = rx_qgrp->singleq.rxqs[j];
1912
1913			vqv[k].queue_type =
1914				cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
1915			vqv[k].queue_id = cpu_to_le32(rxq->q_id);
1916			vqv[k].vector_id = cpu_to_le16(rxq->q_vector->v_idx);
1917			vqv[k].itr_idx = cpu_to_le32(rxq->q_vector->rx_itr_idx);
1918		}
1919	}
1920
1921	if (idpf_is_queue_model_split(vport->txq_model)) {
1922		if (vport->num_rxq != k - vport->num_complq)
1923			return -EINVAL;
1924	} else {
1925		if (vport->num_rxq != k - vport->num_txq)
1926			return -EINVAL;
1927	}
1928
1929	/* Chunk up the vector info into multiple messages */
1930	config_sz = sizeof(struct virtchnl2_queue_vector_maps);
1931	chunk_sz = sizeof(struct virtchnl2_queue_vector);
1932
1933	num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1934			   num_q);
1935	num_msgs = DIV_ROUND_UP(num_q, num_chunks);
1936
1937	buf_sz = struct_size(vqvm, qv_maps, num_chunks);
1938	vqvm = kzalloc(buf_sz, GFP_KERNEL);
1939	if (!vqvm)
1940		return -ENOMEM;
1941
1942	if (map) {
1943		xn_params.vc_op = VIRTCHNL2_OP_MAP_QUEUE_VECTOR;
1944		xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1945	} else {
1946		xn_params.vc_op = VIRTCHNL2_OP_UNMAP_QUEUE_VECTOR;
1947		xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1948	}
1949
1950	for (i = 0, k = 0; i < num_msgs; i++) {
1951		memset(vqvm, 0, buf_sz);
1952		xn_params.send_buf.iov_base = vqvm;
1953		xn_params.send_buf.iov_len = buf_sz;
1954		vqvm->vport_id = cpu_to_le32(vport->vport_id);
1955		vqvm->num_qv_maps = cpu_to_le16(num_chunks);
1956		memcpy(vqvm->qv_maps, &vqv[k], chunk_sz * num_chunks);
1957
1958		reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1959		if (reply_sz < 0)
1960			return reply_sz;
1961
1962		k += num_chunks;
1963		num_q -= num_chunks;
1964		num_chunks = min(num_chunks, num_q);
1965		/* Recalculate buffer size */
1966		buf_sz = struct_size(vqvm, qv_maps, num_chunks);
1967	}
1968
1969	return 0;
1970}
1971
1972/**
1973 * idpf_send_enable_queues_msg - send enable queues virtchnl message
1974 * @vport: Virtual port private data structure
1975 *
1976 * Will send enable queues virtchnl message.  Returns 0 on success, negative on
1977 * failure.
1978 */
1979int idpf_send_enable_queues_msg(struct idpf_vport *vport)
1980{
1981	return idpf_send_ena_dis_queues_msg(vport, true);
1982}
1983
1984/**
1985 * idpf_send_disable_queues_msg - send disable queues virtchnl message
1986 * @vport: Virtual port private data structure
1987 *
1988 * Will send disable queues virtchnl message.  Returns 0 on success, negative
1989 * on failure.
1990 */
1991int idpf_send_disable_queues_msg(struct idpf_vport *vport)
1992{
1993	int err, i;
1994
1995	err = idpf_send_ena_dis_queues_msg(vport, false);
1996	if (err)
1997		return err;
1998
1999	/* switch to poll mode as interrupts will be disabled after disable
2000	 * queues virtchnl message is sent
2001	 */
2002	for (i = 0; i < vport->num_txq; i++)
2003		idpf_queue_set(POLL_MODE, vport->txqs[i]);
2004
2005	/* schedule the napi to receive all the marker packets */
2006	local_bh_disable();
2007	for (i = 0; i < vport->num_q_vectors; i++)
2008		napi_schedule(&vport->q_vectors[i].napi);
2009	local_bh_enable();
2010
2011	return idpf_wait_for_marker_event(vport);
2012}
2013
2014/**
2015 * idpf_convert_reg_to_queue_chunks - Copy queue chunk information to the right
2016 * structure
2017 * @dchunks: Destination chunks to store data to
2018 * @schunks: Source chunks to copy data from
2019 * @num_chunks: number of chunks to copy
2020 */
2021static void idpf_convert_reg_to_queue_chunks(struct virtchnl2_queue_chunk *dchunks,
2022					     struct virtchnl2_queue_reg_chunk *schunks,
2023					     u16 num_chunks)
2024{
2025	u16 i;
2026
2027	for (i = 0; i < num_chunks; i++) {
2028		dchunks[i].type = schunks[i].type;
2029		dchunks[i].start_queue_id = schunks[i].start_queue_id;
2030		dchunks[i].num_queues = schunks[i].num_queues;
2031	}
2032}
2033
2034/**
2035 * idpf_send_delete_queues_msg - send delete queues virtchnl message
2036 * @vport: Virtual port private data structure
2037 *
2038 * Will send delete queues virtchnl message. Return 0 on success, negative on
2039 * failure.
2040 */
2041int idpf_send_delete_queues_msg(struct idpf_vport *vport)
2042{
2043	struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
2044	struct virtchnl2_create_vport *vport_params;
2045	struct virtchnl2_queue_reg_chunks *chunks;
2046	struct idpf_vc_xn_params xn_params = {};
2047	struct idpf_vport_config *vport_config;
2048	u16 vport_idx = vport->idx;
2049	ssize_t reply_sz;
2050	u16 num_chunks;
2051	int buf_size;
2052
2053	vport_config = vport->adapter->vport_config[vport_idx];
2054	if (vport_config->req_qs_chunks) {
2055		chunks = &vport_config->req_qs_chunks->chunks;
2056	} else {
2057		vport_params = vport->adapter->vport_params_recvd[vport_idx];
2058		chunks = &vport_params->chunks;
2059	}
2060
2061	num_chunks = le16_to_cpu(chunks->num_chunks);
2062	buf_size = struct_size(eq, chunks.chunks, num_chunks);
2063
2064	eq = kzalloc(buf_size, GFP_KERNEL);
2065	if (!eq)
2066		return -ENOMEM;
2067
2068	eq->vport_id = cpu_to_le32(vport->vport_id);
2069	eq->chunks.num_chunks = cpu_to_le16(num_chunks);
2070
2071	idpf_convert_reg_to_queue_chunks(eq->chunks.chunks, chunks->chunks,
2072					 num_chunks);
2073
2074	xn_params.vc_op = VIRTCHNL2_OP_DEL_QUEUES;
2075	xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
2076	xn_params.send_buf.iov_base = eq;
2077	xn_params.send_buf.iov_len = buf_size;
2078	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2079
2080	return reply_sz < 0 ? reply_sz : 0;
2081}
2082
2083/**
2084 * idpf_send_config_queues_msg - Send config queues virtchnl message
2085 * @vport: Virtual port private data structure
2086 *
2087 * Will send config queues virtchnl message. Returns 0 on success, negative on
2088 * failure.
2089 */
2090int idpf_send_config_queues_msg(struct idpf_vport *vport)
2091{
2092	int err;
2093
2094	err = idpf_send_config_tx_queues_msg(vport);
2095	if (err)
2096		return err;
2097
2098	return idpf_send_config_rx_queues_msg(vport);
2099}
2100
2101/**
2102 * idpf_send_add_queues_msg - Send virtchnl add queues message
2103 * @vport: Virtual port private data structure
2104 * @num_tx_q: number of transmit queues
2105 * @num_complq: number of transmit completion queues
2106 * @num_rx_q: number of receive queues
2107 * @num_rx_bufq: number of receive buffer queues
2108 *
2109 * Returns 0 on success, negative on failure. vport _MUST_ be const here as
2110 * we should not change any fields within vport itself in this function.
2111 */
2112int idpf_send_add_queues_msg(const struct idpf_vport *vport, u16 num_tx_q,
2113			     u16 num_complq, u16 num_rx_q, u16 num_rx_bufq)
2114{
2115	struct virtchnl2_add_queues *vc_msg __free(kfree) = NULL;
2116	struct idpf_vc_xn_params xn_params = {};
2117	struct idpf_vport_config *vport_config;
2118	struct virtchnl2_add_queues aq = {};
2119	u16 vport_idx = vport->idx;
2120	ssize_t reply_sz;
2121	int size;
2122
2123	vc_msg = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2124	if (!vc_msg)
2125		return -ENOMEM;
2126
2127	vport_config = vport->adapter->vport_config[vport_idx];
2128	kfree(vport_config->req_qs_chunks);
2129	vport_config->req_qs_chunks = NULL;
2130
2131	aq.vport_id = cpu_to_le32(vport->vport_id);
2132	aq.num_tx_q = cpu_to_le16(num_tx_q);
2133	aq.num_tx_complq = cpu_to_le16(num_complq);
2134	aq.num_rx_q = cpu_to_le16(num_rx_q);
2135	aq.num_rx_bufq = cpu_to_le16(num_rx_bufq);
2136
2137	xn_params.vc_op = VIRTCHNL2_OP_ADD_QUEUES;
2138	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2139	xn_params.send_buf.iov_base = &aq;
2140	xn_params.send_buf.iov_len = sizeof(aq);
2141	xn_params.recv_buf.iov_base = vc_msg;
2142	xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2143	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2144	if (reply_sz < 0)
2145		return reply_sz;
2146
2147	/* compare vc_msg num queues with vport num queues */
2148	if (le16_to_cpu(vc_msg->num_tx_q) != num_tx_q ||
2149	    le16_to_cpu(vc_msg->num_rx_q) != num_rx_q ||
2150	    le16_to_cpu(vc_msg->num_tx_complq) != num_complq ||
2151	    le16_to_cpu(vc_msg->num_rx_bufq) != num_rx_bufq)
2152		return -EINVAL;
2153
2154	size = struct_size(vc_msg, chunks.chunks,
2155			   le16_to_cpu(vc_msg->chunks.num_chunks));
2156	if (reply_sz < size)
2157		return -EIO;
2158
2159	vport_config->req_qs_chunks = kmemdup(vc_msg, size, GFP_KERNEL);
2160	if (!vport_config->req_qs_chunks)
2161		return -ENOMEM;
2162
2163	return 0;
2164}
2165
2166/**
2167 * idpf_send_alloc_vectors_msg - Send virtchnl alloc vectors message
2168 * @adapter: Driver specific private structure
2169 * @num_vectors: number of vectors to be allocated
2170 *
2171 * Returns 0 on success, negative on failure.
2172 */
2173int idpf_send_alloc_vectors_msg(struct idpf_adapter *adapter, u16 num_vectors)
2174{
2175	struct virtchnl2_alloc_vectors *rcvd_vec __free(kfree) = NULL;
2176	struct idpf_vc_xn_params xn_params = {};
2177	struct virtchnl2_alloc_vectors ac = {};
2178	ssize_t reply_sz;
2179	u16 num_vchunks;
2180	int size;
2181
2182	ac.num_vectors = cpu_to_le16(num_vectors);
2183
2184	rcvd_vec = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2185	if (!rcvd_vec)
2186		return -ENOMEM;
2187
2188	xn_params.vc_op = VIRTCHNL2_OP_ALLOC_VECTORS;
2189	xn_params.send_buf.iov_base = &ac;
2190	xn_params.send_buf.iov_len = sizeof(ac);
2191	xn_params.recv_buf.iov_base = rcvd_vec;
2192	xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2193	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2194	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2195	if (reply_sz < 0)
2196		return reply_sz;
2197
2198	num_vchunks = le16_to_cpu(rcvd_vec->vchunks.num_vchunks);
2199	size = struct_size(rcvd_vec, vchunks.vchunks, num_vchunks);
2200	if (reply_sz < size)
2201		return -EIO;
2202
2203	if (size > IDPF_CTLQ_MAX_BUF_LEN)
2204		return -EINVAL;
2205
2206	kfree(adapter->req_vec_chunks);
2207	adapter->req_vec_chunks = kmemdup(rcvd_vec, size, GFP_KERNEL);
2208	if (!adapter->req_vec_chunks)
2209		return -ENOMEM;
2210
2211	if (le16_to_cpu(adapter->req_vec_chunks->num_vectors) < num_vectors) {
2212		kfree(adapter->req_vec_chunks);
2213		adapter->req_vec_chunks = NULL;
2214		return -EINVAL;
2215	}
2216
2217	return 0;
2218}
2219
2220/**
2221 * idpf_send_dealloc_vectors_msg - Send virtchnl de allocate vectors message
2222 * @adapter: Driver specific private structure
2223 *
2224 * Returns 0 on success, negative on failure.
2225 */
2226int idpf_send_dealloc_vectors_msg(struct idpf_adapter *adapter)
2227{
2228	struct virtchnl2_alloc_vectors *ac = adapter->req_vec_chunks;
2229	struct virtchnl2_vector_chunks *vcs = &ac->vchunks;
2230	struct idpf_vc_xn_params xn_params = {};
2231	ssize_t reply_sz;
2232	int buf_size;
2233
2234	buf_size = struct_size(vcs, vchunks, le16_to_cpu(vcs->num_vchunks));
2235
2236	xn_params.vc_op = VIRTCHNL2_OP_DEALLOC_VECTORS;
2237	xn_params.send_buf.iov_base = vcs;
2238	xn_params.send_buf.iov_len = buf_size;
2239	xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
2240	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2241	if (reply_sz < 0)
2242		return reply_sz;
2243
2244	kfree(adapter->req_vec_chunks);
2245	adapter->req_vec_chunks = NULL;
2246
2247	return 0;
2248}
2249
2250/**
2251 * idpf_get_max_vfs - Get max number of vfs supported
2252 * @adapter: Driver specific private structure
2253 *
2254 * Returns max number of VFs
2255 */
2256static int idpf_get_max_vfs(struct idpf_adapter *adapter)
2257{
2258	return le16_to_cpu(adapter->caps.max_sriov_vfs);
2259}
2260
2261/**
2262 * idpf_send_set_sriov_vfs_msg - Send virtchnl set sriov vfs message
2263 * @adapter: Driver specific private structure
2264 * @num_vfs: number of virtual functions to be created
2265 *
2266 * Returns 0 on success, negative on failure.
2267 */
2268int idpf_send_set_sriov_vfs_msg(struct idpf_adapter *adapter, u16 num_vfs)
2269{
2270	struct virtchnl2_sriov_vfs_info svi = {};
2271	struct idpf_vc_xn_params xn_params = {};
2272	ssize_t reply_sz;
2273
2274	svi.num_vfs = cpu_to_le16(num_vfs);
2275	xn_params.vc_op = VIRTCHNL2_OP_SET_SRIOV_VFS;
2276	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2277	xn_params.send_buf.iov_base = &svi;
2278	xn_params.send_buf.iov_len = sizeof(svi);
2279	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2280
2281	return reply_sz < 0 ? reply_sz : 0;
2282}
2283
2284/**
2285 * idpf_send_get_stats_msg - Send virtchnl get statistics message
2286 * @vport: vport to get stats for
2287 *
2288 * Returns 0 on success, negative on failure.
2289 */
2290int idpf_send_get_stats_msg(struct idpf_vport *vport)
2291{
2292	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
2293	struct rtnl_link_stats64 *netstats = &np->netstats;
2294	struct virtchnl2_vport_stats stats_msg = {};
2295	struct idpf_vc_xn_params xn_params = {};
2296	ssize_t reply_sz;
2297
2298
2299	/* Don't send get_stats message if the link is down */
2300	if (np->state <= __IDPF_VPORT_DOWN)
2301		return 0;
2302
2303	stats_msg.vport_id = cpu_to_le32(vport->vport_id);
2304
2305	xn_params.vc_op = VIRTCHNL2_OP_GET_STATS;
2306	xn_params.send_buf.iov_base = &stats_msg;
2307	xn_params.send_buf.iov_len = sizeof(stats_msg);
2308	xn_params.recv_buf = xn_params.send_buf;
2309	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2310
2311	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2312	if (reply_sz < 0)
2313		return reply_sz;
2314	if (reply_sz < sizeof(stats_msg))
2315		return -EIO;
2316
2317	spin_lock_bh(&np->stats_lock);
2318
2319	netstats->rx_packets = le64_to_cpu(stats_msg.rx_unicast) +
2320			       le64_to_cpu(stats_msg.rx_multicast) +
2321			       le64_to_cpu(stats_msg.rx_broadcast);
2322	netstats->tx_packets = le64_to_cpu(stats_msg.tx_unicast) +
2323			       le64_to_cpu(stats_msg.tx_multicast) +
2324			       le64_to_cpu(stats_msg.tx_broadcast);
2325	netstats->rx_bytes = le64_to_cpu(stats_msg.rx_bytes);
2326	netstats->tx_bytes = le64_to_cpu(stats_msg.tx_bytes);
2327	netstats->rx_errors = le64_to_cpu(stats_msg.rx_errors);
2328	netstats->tx_errors = le64_to_cpu(stats_msg.tx_errors);
2329	netstats->rx_dropped = le64_to_cpu(stats_msg.rx_discards);
2330	netstats->tx_dropped = le64_to_cpu(stats_msg.tx_discards);
2331
2332	vport->port_stats.vport_stats = stats_msg;
2333
2334	spin_unlock_bh(&np->stats_lock);
2335
2336	return 0;
2337}
2338
2339/**
2340 * idpf_send_get_set_rss_lut_msg - Send virtchnl get or set rss lut message
2341 * @vport: virtual port data structure
2342 * @get: flag to set or get rss look up table
2343 *
2344 * Returns 0 on success, negative on failure.
2345 */
2346int idpf_send_get_set_rss_lut_msg(struct idpf_vport *vport, bool get)
2347{
2348	struct virtchnl2_rss_lut *recv_rl __free(kfree) = NULL;
2349	struct virtchnl2_rss_lut *rl __free(kfree) = NULL;
2350	struct idpf_vc_xn_params xn_params = {};
2351	struct idpf_rss_data *rss_data;
2352	int buf_size, lut_buf_size;
2353	ssize_t reply_sz;
2354	int i;
2355
2356	rss_data =
2357		&vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2358	buf_size = struct_size(rl, lut, rss_data->rss_lut_size);
2359	rl = kzalloc(buf_size, GFP_KERNEL);
2360	if (!rl)
2361		return -ENOMEM;
2362
2363	rl->vport_id = cpu_to_le32(vport->vport_id);
2364
2365	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2366	xn_params.send_buf.iov_base = rl;
2367	xn_params.send_buf.iov_len = buf_size;
2368
2369	if (get) {
2370		recv_rl = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2371		if (!recv_rl)
2372			return -ENOMEM;
2373		xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_LUT;
2374		xn_params.recv_buf.iov_base = recv_rl;
2375		xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2376	} else {
2377		rl->lut_entries = cpu_to_le16(rss_data->rss_lut_size);
2378		for (i = 0; i < rss_data->rss_lut_size; i++)
2379			rl->lut[i] = cpu_to_le32(rss_data->rss_lut[i]);
2380
2381		xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_LUT;
2382	}
2383	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2384	if (reply_sz < 0)
2385		return reply_sz;
2386	if (!get)
2387		return 0;
2388	if (reply_sz < sizeof(struct virtchnl2_rss_lut))
2389		return -EIO;
2390
2391	lut_buf_size = le16_to_cpu(recv_rl->lut_entries) * sizeof(u32);
2392	if (reply_sz < lut_buf_size)
2393		return -EIO;
2394
2395	/* size didn't change, we can reuse existing lut buf */
2396	if (rss_data->rss_lut_size == le16_to_cpu(recv_rl->lut_entries))
2397		goto do_memcpy;
2398
2399	rss_data->rss_lut_size = le16_to_cpu(recv_rl->lut_entries);
2400	kfree(rss_data->rss_lut);
2401
2402	rss_data->rss_lut = kzalloc(lut_buf_size, GFP_KERNEL);
2403	if (!rss_data->rss_lut) {
2404		rss_data->rss_lut_size = 0;
2405		return -ENOMEM;
2406	}
2407
2408do_memcpy:
2409	memcpy(rss_data->rss_lut, recv_rl->lut, rss_data->rss_lut_size);
2410
2411	return 0;
2412}
2413
2414/**
2415 * idpf_send_get_set_rss_key_msg - Send virtchnl get or set rss key message
2416 * @vport: virtual port data structure
2417 * @get: flag to set or get rss look up table
2418 *
2419 * Returns 0 on success, negative on failure
2420 */
2421int idpf_send_get_set_rss_key_msg(struct idpf_vport *vport, bool get)
2422{
2423	struct virtchnl2_rss_key *recv_rk __free(kfree) = NULL;
2424	struct virtchnl2_rss_key *rk __free(kfree) = NULL;
2425	struct idpf_vc_xn_params xn_params = {};
2426	struct idpf_rss_data *rss_data;
2427	ssize_t reply_sz;
2428	int i, buf_size;
2429	u16 key_size;
2430
2431	rss_data =
2432		&vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2433	buf_size = struct_size(rk, key_flex, rss_data->rss_key_size);
2434	rk = kzalloc(buf_size, GFP_KERNEL);
2435	if (!rk)
2436		return -ENOMEM;
2437
2438	rk->vport_id = cpu_to_le32(vport->vport_id);
2439	xn_params.send_buf.iov_base = rk;
2440	xn_params.send_buf.iov_len = buf_size;
2441	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2442	if (get) {
2443		recv_rk = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2444		if (!recv_rk)
2445			return -ENOMEM;
2446
2447		xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_KEY;
2448		xn_params.recv_buf.iov_base = recv_rk;
2449		xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2450	} else {
2451		rk->key_len = cpu_to_le16(rss_data->rss_key_size);
2452		for (i = 0; i < rss_data->rss_key_size; i++)
2453			rk->key_flex[i] = rss_data->rss_key[i];
2454
2455		xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_KEY;
2456	}
2457
2458	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2459	if (reply_sz < 0)
2460		return reply_sz;
2461	if (!get)
2462		return 0;
2463	if (reply_sz < sizeof(struct virtchnl2_rss_key))
2464		return -EIO;
2465
2466	key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
2467			 le16_to_cpu(recv_rk->key_len));
2468	if (reply_sz < key_size)
2469		return -EIO;
2470
2471	/* key len didn't change, reuse existing buf */
2472	if (rss_data->rss_key_size == key_size)
2473		goto do_memcpy;
2474
2475	rss_data->rss_key_size = key_size;
2476	kfree(rss_data->rss_key);
2477	rss_data->rss_key = kzalloc(key_size, GFP_KERNEL);
2478	if (!rss_data->rss_key) {
2479		rss_data->rss_key_size = 0;
2480		return -ENOMEM;
2481	}
2482
2483do_memcpy:
2484	memcpy(rss_data->rss_key, recv_rk->key_flex, rss_data->rss_key_size);
2485
2486	return 0;
2487}
2488
2489/**
2490 * idpf_fill_ptype_lookup - Fill L3 specific fields in ptype lookup table
2491 * @ptype: ptype lookup table
2492 * @pstate: state machine for ptype lookup table
2493 * @ipv4: ipv4 or ipv6
2494 * @frag: fragmentation allowed
2495 *
2496 */
2497static void idpf_fill_ptype_lookup(struct libeth_rx_pt *ptype,
2498				   struct idpf_ptype_state *pstate,
2499				   bool ipv4, bool frag)
2500{
2501	if (!pstate->outer_ip || !pstate->outer_frag) {
 
2502		pstate->outer_ip = true;
2503
2504		if (ipv4)
2505			ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV4;
2506		else
2507			ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV6;
2508
2509		if (frag) {
2510			ptype->outer_frag = LIBETH_RX_PT_FRAG;
2511			pstate->outer_frag = true;
2512		}
2513	} else {
2514		ptype->tunnel_type = LIBETH_RX_PT_TUNNEL_IP_IP;
2515		pstate->tunnel_state = IDPF_PTYPE_TUNNEL_IP;
2516
2517		if (ipv4)
2518			ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV4;
 
2519		else
2520			ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV6;
 
2521
2522		if (frag)
2523			ptype->tunnel_end_frag = LIBETH_RX_PT_FRAG;
2524	}
2525}
2526
2527static void idpf_finalize_ptype_lookup(struct libeth_rx_pt *ptype)
2528{
2529	if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
2530	    ptype->inner_prot)
2531		ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L4;
2532	else if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
2533		 ptype->outer_ip)
2534		ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L3;
2535	else if (ptype->outer_ip == LIBETH_RX_PT_OUTER_L2)
2536		ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L2;
2537	else
2538		ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_NONE;
2539
2540	libeth_rx_pt_gen_hash_type(ptype);
2541}
2542
2543/**
2544 * idpf_send_get_rx_ptype_msg - Send virtchnl for ptype info
2545 * @vport: virtual port data structure
2546 *
2547 * Returns 0 on success, negative on failure.
2548 */
2549int idpf_send_get_rx_ptype_msg(struct idpf_vport *vport)
2550{
2551	struct virtchnl2_get_ptype_info *get_ptype_info __free(kfree) = NULL;
2552	struct virtchnl2_get_ptype_info *ptype_info __free(kfree) = NULL;
2553	struct libeth_rx_pt *ptype_lkup __free(kfree) = NULL;
2554	int max_ptype, ptypes_recvd = 0, ptype_offset;
2555	struct idpf_adapter *adapter = vport->adapter;
2556	struct idpf_vc_xn_params xn_params = {};
2557	u16 next_ptype_id = 0;
2558	ssize_t reply_sz;
2559	int i, j, k;
2560
2561	if (vport->rx_ptype_lkup)
2562		return 0;
2563
2564	if (idpf_is_queue_model_split(vport->rxq_model))
2565		max_ptype = IDPF_RX_MAX_PTYPE;
2566	else
2567		max_ptype = IDPF_RX_MAX_BASE_PTYPE;
2568
2569	ptype_lkup = kcalloc(max_ptype, sizeof(*ptype_lkup), GFP_KERNEL);
2570	if (!ptype_lkup)
2571		return -ENOMEM;
2572
2573	get_ptype_info = kzalloc(sizeof(*get_ptype_info), GFP_KERNEL);
2574	if (!get_ptype_info)
2575		return -ENOMEM;
2576
2577	ptype_info = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2578	if (!ptype_info)
2579		return -ENOMEM;
2580
2581	xn_params.vc_op = VIRTCHNL2_OP_GET_PTYPE_INFO;
2582	xn_params.send_buf.iov_base = get_ptype_info;
2583	xn_params.send_buf.iov_len = sizeof(*get_ptype_info);
2584	xn_params.recv_buf.iov_base = ptype_info;
2585	xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2586	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2587
2588	while (next_ptype_id < max_ptype) {
2589		get_ptype_info->start_ptype_id = cpu_to_le16(next_ptype_id);
2590
2591		if ((next_ptype_id + IDPF_RX_MAX_PTYPES_PER_BUF) > max_ptype)
2592			get_ptype_info->num_ptypes =
2593				cpu_to_le16(max_ptype - next_ptype_id);
2594		else
2595			get_ptype_info->num_ptypes =
2596				cpu_to_le16(IDPF_RX_MAX_PTYPES_PER_BUF);
2597
2598		reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2599		if (reply_sz < 0)
2600			return reply_sz;
2601
 
 
 
2602		ptypes_recvd += le16_to_cpu(ptype_info->num_ptypes);
2603		if (ptypes_recvd > max_ptype)
2604			return -EINVAL;
2605
2606		next_ptype_id = le16_to_cpu(get_ptype_info->start_ptype_id) +
2607				le16_to_cpu(get_ptype_info->num_ptypes);
2608
2609		ptype_offset = IDPF_RX_PTYPE_HDR_SZ;
2610
2611		for (i = 0; i < le16_to_cpu(ptype_info->num_ptypes); i++) {
2612			struct idpf_ptype_state pstate = { };
2613			struct virtchnl2_ptype *ptype;
2614			u16 id;
2615
2616			ptype = (struct virtchnl2_ptype *)
2617					((u8 *)ptype_info + ptype_offset);
2618
2619			ptype_offset += IDPF_GET_PTYPE_SIZE(ptype);
2620			if (ptype_offset > IDPF_CTLQ_MAX_BUF_LEN)
2621				return -EINVAL;
2622
2623			/* 0xFFFF indicates end of ptypes */
2624			if (le16_to_cpu(ptype->ptype_id_10) ==
2625							IDPF_INVALID_PTYPE_ID)
2626				goto out;
2627
2628			if (idpf_is_queue_model_split(vport->rxq_model))
2629				k = le16_to_cpu(ptype->ptype_id_10);
2630			else
2631				k = ptype->ptype_id_8;
2632
 
 
 
2633			for (j = 0; j < ptype->proto_id_count; j++) {
2634				id = le16_to_cpu(ptype->proto_id[j]);
2635				switch (id) {
2636				case VIRTCHNL2_PROTO_HDR_GRE:
2637					if (pstate.tunnel_state ==
2638							IDPF_PTYPE_TUNNEL_IP) {
2639						ptype_lkup[k].tunnel_type =
2640						LIBETH_RX_PT_TUNNEL_IP_GRENAT;
2641						pstate.tunnel_state |=
2642						IDPF_PTYPE_TUNNEL_IP_GRENAT;
2643					}
2644					break;
2645				case VIRTCHNL2_PROTO_HDR_MAC:
2646					ptype_lkup[k].outer_ip =
2647						LIBETH_RX_PT_OUTER_L2;
2648					if (pstate.tunnel_state ==
2649							IDPF_TUN_IP_GRE) {
2650						ptype_lkup[k].tunnel_type =
2651						LIBETH_RX_PT_TUNNEL_IP_GRENAT_MAC;
2652						pstate.tunnel_state |=
2653						IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC;
2654					}
2655					break;
2656				case VIRTCHNL2_PROTO_HDR_IPV4:
2657					idpf_fill_ptype_lookup(&ptype_lkup[k],
2658							       &pstate, true,
2659							       false);
2660					break;
2661				case VIRTCHNL2_PROTO_HDR_IPV6:
2662					idpf_fill_ptype_lookup(&ptype_lkup[k],
2663							       &pstate, false,
2664							       false);
2665					break;
2666				case VIRTCHNL2_PROTO_HDR_IPV4_FRAG:
2667					idpf_fill_ptype_lookup(&ptype_lkup[k],
2668							       &pstate, true,
2669							       true);
2670					break;
2671				case VIRTCHNL2_PROTO_HDR_IPV6_FRAG:
2672					idpf_fill_ptype_lookup(&ptype_lkup[k],
2673							       &pstate, false,
2674							       true);
2675					break;
2676				case VIRTCHNL2_PROTO_HDR_UDP:
2677					ptype_lkup[k].inner_prot =
2678					LIBETH_RX_PT_INNER_UDP;
2679					break;
2680				case VIRTCHNL2_PROTO_HDR_TCP:
2681					ptype_lkup[k].inner_prot =
2682					LIBETH_RX_PT_INNER_TCP;
2683					break;
2684				case VIRTCHNL2_PROTO_HDR_SCTP:
2685					ptype_lkup[k].inner_prot =
2686					LIBETH_RX_PT_INNER_SCTP;
2687					break;
2688				case VIRTCHNL2_PROTO_HDR_ICMP:
2689					ptype_lkup[k].inner_prot =
2690					LIBETH_RX_PT_INNER_ICMP;
2691					break;
2692				case VIRTCHNL2_PROTO_HDR_PAY:
2693					ptype_lkup[k].payload_layer =
2694						LIBETH_RX_PT_PAYLOAD_L2;
2695					break;
2696				case VIRTCHNL2_PROTO_HDR_ICMPV6:
2697				case VIRTCHNL2_PROTO_HDR_IPV6_EH:
2698				case VIRTCHNL2_PROTO_HDR_PRE_MAC:
2699				case VIRTCHNL2_PROTO_HDR_POST_MAC:
2700				case VIRTCHNL2_PROTO_HDR_ETHERTYPE:
2701				case VIRTCHNL2_PROTO_HDR_SVLAN:
2702				case VIRTCHNL2_PROTO_HDR_CVLAN:
2703				case VIRTCHNL2_PROTO_HDR_MPLS:
2704				case VIRTCHNL2_PROTO_HDR_MMPLS:
2705				case VIRTCHNL2_PROTO_HDR_PTP:
2706				case VIRTCHNL2_PROTO_HDR_CTRL:
2707				case VIRTCHNL2_PROTO_HDR_LLDP:
2708				case VIRTCHNL2_PROTO_HDR_ARP:
2709				case VIRTCHNL2_PROTO_HDR_ECP:
2710				case VIRTCHNL2_PROTO_HDR_EAPOL:
2711				case VIRTCHNL2_PROTO_HDR_PPPOD:
2712				case VIRTCHNL2_PROTO_HDR_PPPOE:
2713				case VIRTCHNL2_PROTO_HDR_IGMP:
2714				case VIRTCHNL2_PROTO_HDR_AH:
2715				case VIRTCHNL2_PROTO_HDR_ESP:
2716				case VIRTCHNL2_PROTO_HDR_IKE:
2717				case VIRTCHNL2_PROTO_HDR_NATT_KEEP:
2718				case VIRTCHNL2_PROTO_HDR_L2TPV2:
2719				case VIRTCHNL2_PROTO_HDR_L2TPV2_CONTROL:
2720				case VIRTCHNL2_PROTO_HDR_L2TPV3:
2721				case VIRTCHNL2_PROTO_HDR_GTP:
2722				case VIRTCHNL2_PROTO_HDR_GTP_EH:
2723				case VIRTCHNL2_PROTO_HDR_GTPCV2:
2724				case VIRTCHNL2_PROTO_HDR_GTPC_TEID:
2725				case VIRTCHNL2_PROTO_HDR_GTPU:
2726				case VIRTCHNL2_PROTO_HDR_GTPU_UL:
2727				case VIRTCHNL2_PROTO_HDR_GTPU_DL:
2728				case VIRTCHNL2_PROTO_HDR_ECPRI:
2729				case VIRTCHNL2_PROTO_HDR_VRRP:
2730				case VIRTCHNL2_PROTO_HDR_OSPF:
2731				case VIRTCHNL2_PROTO_HDR_TUN:
2732				case VIRTCHNL2_PROTO_HDR_NVGRE:
2733				case VIRTCHNL2_PROTO_HDR_VXLAN:
2734				case VIRTCHNL2_PROTO_HDR_VXLAN_GPE:
2735				case VIRTCHNL2_PROTO_HDR_GENEVE:
2736				case VIRTCHNL2_PROTO_HDR_NSH:
2737				case VIRTCHNL2_PROTO_HDR_QUIC:
2738				case VIRTCHNL2_PROTO_HDR_PFCP:
2739				case VIRTCHNL2_PROTO_HDR_PFCP_NODE:
2740				case VIRTCHNL2_PROTO_HDR_PFCP_SESSION:
2741				case VIRTCHNL2_PROTO_HDR_RTP:
2742				case VIRTCHNL2_PROTO_HDR_NO_PROTO:
2743					break;
2744				default:
2745					break;
2746				}
2747			}
2748
2749			idpf_finalize_ptype_lookup(&ptype_lkup[k]);
2750		}
2751	}
2752
2753out:
2754	vport->rx_ptype_lkup = no_free_ptr(ptype_lkup);
2755
2756	return 0;
2757}
2758
2759/**
2760 * idpf_send_ena_dis_loopback_msg - Send virtchnl enable/disable loopback
2761 *				    message
2762 * @vport: virtual port data structure
2763 *
2764 * Returns 0 on success, negative on failure.
2765 */
2766int idpf_send_ena_dis_loopback_msg(struct idpf_vport *vport)
2767{
2768	struct idpf_vc_xn_params xn_params = {};
2769	struct virtchnl2_loopback loopback;
2770	ssize_t reply_sz;
2771
2772	loopback.vport_id = cpu_to_le32(vport->vport_id);
2773	loopback.enable = idpf_is_feature_ena(vport, NETIF_F_LOOPBACK);
2774
2775	xn_params.vc_op = VIRTCHNL2_OP_LOOPBACK;
2776	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2777	xn_params.send_buf.iov_base = &loopback;
2778	xn_params.send_buf.iov_len = sizeof(loopback);
2779	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2780
2781	return reply_sz < 0 ? reply_sz : 0;
2782}
2783
2784/**
2785 * idpf_find_ctlq - Given a type and id, find ctlq info
2786 * @hw: hardware struct
2787 * @type: type of ctrlq to find
2788 * @id: ctlq id to find
2789 *
2790 * Returns pointer to found ctlq info struct, NULL otherwise.
2791 */
2792static struct idpf_ctlq_info *idpf_find_ctlq(struct idpf_hw *hw,
2793					     enum idpf_ctlq_type type, int id)
2794{
2795	struct idpf_ctlq_info *cq, *tmp;
2796
2797	list_for_each_entry_safe(cq, tmp, &hw->cq_list_head, cq_list)
2798		if (cq->q_id == id && cq->cq_type == type)
2799			return cq;
2800
2801	return NULL;
2802}
2803
2804/**
2805 * idpf_init_dflt_mbx - Setup default mailbox parameters and make request
2806 * @adapter: adapter info struct
2807 *
2808 * Returns 0 on success, negative otherwise
2809 */
2810int idpf_init_dflt_mbx(struct idpf_adapter *adapter)
2811{
2812	struct idpf_ctlq_create_info ctlq_info[] = {
2813		{
2814			.type = IDPF_CTLQ_TYPE_MAILBOX_TX,
2815			.id = IDPF_DFLT_MBX_ID,
2816			.len = IDPF_DFLT_MBX_Q_LEN,
2817			.buf_size = IDPF_CTLQ_MAX_BUF_LEN
2818		},
2819		{
2820			.type = IDPF_CTLQ_TYPE_MAILBOX_RX,
2821			.id = IDPF_DFLT_MBX_ID,
2822			.len = IDPF_DFLT_MBX_Q_LEN,
2823			.buf_size = IDPF_CTLQ_MAX_BUF_LEN
2824		}
2825	};
2826	struct idpf_hw *hw = &adapter->hw;
2827	int err;
2828
2829	adapter->dev_ops.reg_ops.ctlq_reg_init(ctlq_info);
2830
2831	err = idpf_ctlq_init(hw, IDPF_NUM_DFLT_MBX_Q, ctlq_info);
2832	if (err)
2833		return err;
2834
2835	hw->asq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_TX,
2836				 IDPF_DFLT_MBX_ID);
2837	hw->arq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_RX,
2838				 IDPF_DFLT_MBX_ID);
2839
2840	if (!hw->asq || !hw->arq) {
2841		idpf_ctlq_deinit(hw);
2842
2843		return -ENOENT;
2844	}
2845
2846	adapter->state = __IDPF_VER_CHECK;
2847
2848	return 0;
2849}
2850
2851/**
2852 * idpf_deinit_dflt_mbx - Free up ctlqs setup
2853 * @adapter: Driver specific private data structure
2854 */
2855void idpf_deinit_dflt_mbx(struct idpf_adapter *adapter)
2856{
2857	if (adapter->hw.arq && adapter->hw.asq) {
2858		idpf_mb_clean(adapter);
2859		idpf_ctlq_deinit(&adapter->hw);
2860	}
2861	adapter->hw.arq = NULL;
2862	adapter->hw.asq = NULL;
2863}
2864
2865/**
2866 * idpf_vport_params_buf_rel - Release memory for MailBox resources
2867 * @adapter: Driver specific private data structure
2868 *
2869 * Will release memory to hold the vport parameters received on MailBox
2870 */
2871static void idpf_vport_params_buf_rel(struct idpf_adapter *adapter)
2872{
2873	kfree(adapter->vport_params_recvd);
2874	adapter->vport_params_recvd = NULL;
2875	kfree(adapter->vport_params_reqd);
2876	adapter->vport_params_reqd = NULL;
2877	kfree(adapter->vport_ids);
2878	adapter->vport_ids = NULL;
2879}
2880
2881/**
2882 * idpf_vport_params_buf_alloc - Allocate memory for MailBox resources
2883 * @adapter: Driver specific private data structure
2884 *
2885 * Will alloc memory to hold the vport parameters received on MailBox
2886 */
2887static int idpf_vport_params_buf_alloc(struct idpf_adapter *adapter)
2888{
2889	u16 num_max_vports = idpf_get_max_vports(adapter);
2890
2891	adapter->vport_params_reqd = kcalloc(num_max_vports,
2892					     sizeof(*adapter->vport_params_reqd),
2893					     GFP_KERNEL);
2894	if (!adapter->vport_params_reqd)
2895		return -ENOMEM;
2896
2897	adapter->vport_params_recvd = kcalloc(num_max_vports,
2898					      sizeof(*adapter->vport_params_recvd),
2899					      GFP_KERNEL);
2900	if (!adapter->vport_params_recvd)
2901		goto err_mem;
2902
2903	adapter->vport_ids = kcalloc(num_max_vports, sizeof(u32), GFP_KERNEL);
2904	if (!adapter->vport_ids)
2905		goto err_mem;
2906
2907	if (adapter->vport_config)
2908		return 0;
2909
2910	adapter->vport_config = kcalloc(num_max_vports,
2911					sizeof(*adapter->vport_config),
2912					GFP_KERNEL);
2913	if (!adapter->vport_config)
2914		goto err_mem;
2915
2916	return 0;
2917
2918err_mem:
2919	idpf_vport_params_buf_rel(adapter);
2920
2921	return -ENOMEM;
2922}
2923
2924/**
2925 * idpf_vc_core_init - Initialize state machine and get driver specific
2926 * resources
2927 * @adapter: Driver specific private structure
2928 *
2929 * This function will initialize the state machine and request all necessary
2930 * resources required by the device driver. Once the state machine is
2931 * initialized, allocate memory to store vport specific information and also
2932 * requests required interrupts.
2933 *
2934 * Returns 0 on success, -EAGAIN function will get called again,
2935 * otherwise negative on failure.
2936 */
2937int idpf_vc_core_init(struct idpf_adapter *adapter)
2938{
2939	int task_delay = 30;
2940	u16 num_max_vports;
2941	int err = 0;
2942
2943	if (!adapter->vcxn_mngr) {
2944		adapter->vcxn_mngr = kzalloc(sizeof(*adapter->vcxn_mngr), GFP_KERNEL);
2945		if (!adapter->vcxn_mngr) {
2946			err = -ENOMEM;
2947			goto init_failed;
2948		}
2949	}
2950	idpf_vc_xn_init(adapter->vcxn_mngr);
2951
2952	while (adapter->state != __IDPF_INIT_SW) {
2953		switch (adapter->state) {
2954		case __IDPF_VER_CHECK:
2955			err = idpf_send_ver_msg(adapter);
2956			switch (err) {
2957			case 0:
2958				/* success, move state machine forward */
2959				adapter->state = __IDPF_GET_CAPS;
2960				fallthrough;
2961			case -EAGAIN:
2962				goto restart;
2963			default:
2964				/* Something bad happened, try again but only a
2965				 * few times.
2966				 */
2967				goto init_failed;
2968			}
2969		case __IDPF_GET_CAPS:
2970			err = idpf_send_get_caps_msg(adapter);
2971			if (err)
2972				goto init_failed;
2973			adapter->state = __IDPF_INIT_SW;
2974			break;
2975		default:
2976			dev_err(&adapter->pdev->dev, "Device is in bad state: %d\n",
2977				adapter->state);
2978			err = -EINVAL;
2979			goto init_failed;
2980		}
2981		break;
2982restart:
2983		/* Give enough time before proceeding further with
2984		 * state machine
2985		 */
2986		msleep(task_delay);
2987	}
2988
2989	pci_sriov_set_totalvfs(adapter->pdev, idpf_get_max_vfs(adapter));
2990	num_max_vports = idpf_get_max_vports(adapter);
2991	adapter->max_vports = num_max_vports;
2992	adapter->vports = kcalloc(num_max_vports, sizeof(*adapter->vports),
2993				  GFP_KERNEL);
2994	if (!adapter->vports)
2995		return -ENOMEM;
2996
2997	if (!adapter->netdevs) {
2998		adapter->netdevs = kcalloc(num_max_vports,
2999					   sizeof(struct net_device *),
3000					   GFP_KERNEL);
3001		if (!adapter->netdevs) {
3002			err = -ENOMEM;
3003			goto err_netdev_alloc;
3004		}
3005	}
3006
3007	err = idpf_vport_params_buf_alloc(adapter);
3008	if (err) {
3009		dev_err(&adapter->pdev->dev, "Failed to alloc vport params buffer: %d\n",
3010			err);
3011		goto err_netdev_alloc;
3012	}
3013
3014	/* Start the mailbox task before requesting vectors. This will ensure
3015	 * vector information response from mailbox is handled
3016	 */
3017	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
3018
3019	queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
3020			   msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
3021
3022	err = idpf_intr_req(adapter);
3023	if (err) {
3024		dev_err(&adapter->pdev->dev, "failed to enable interrupt vectors: %d\n",
3025			err);
3026		goto err_intr_req;
3027	}
3028
3029	idpf_init_avail_queues(adapter);
3030
3031	/* Skew the delay for init tasks for each function based on fn number
3032	 * to prevent every function from making the same call simultaneously.
3033	 */
3034	queue_delayed_work(adapter->init_wq, &adapter->init_task,
3035			   msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
3036
3037	set_bit(IDPF_VC_CORE_INIT, adapter->flags);
3038
3039	return 0;
3040
3041err_intr_req:
3042	cancel_delayed_work_sync(&adapter->serv_task);
3043	cancel_delayed_work_sync(&adapter->mbx_task);
3044	idpf_vport_params_buf_rel(adapter);
3045err_netdev_alloc:
3046	kfree(adapter->vports);
3047	adapter->vports = NULL;
3048	return err;
3049
3050init_failed:
3051	/* Don't retry if we're trying to go down, just bail. */
3052	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
3053		return err;
3054
3055	if (++adapter->mb_wait_count > IDPF_MB_MAX_ERR) {
3056		dev_err(&adapter->pdev->dev, "Failed to establish mailbox communications with hardware\n");
3057
3058		return -EFAULT;
3059	}
3060	/* If it reached here, it is possible that mailbox queue initialization
3061	 * register writes might not have taken effect. Retry to initialize
3062	 * the mailbox again
3063	 */
3064	adapter->state = __IDPF_VER_CHECK;
3065	if (adapter->vcxn_mngr)
3066		idpf_vc_xn_shutdown(adapter->vcxn_mngr);
 
3067	set_bit(IDPF_HR_DRV_LOAD, adapter->flags);
3068	queue_delayed_work(adapter->vc_event_wq, &adapter->vc_event_task,
3069			   msecs_to_jiffies(task_delay));
3070
3071	return -EAGAIN;
3072}
3073
3074/**
3075 * idpf_vc_core_deinit - Device deinit routine
3076 * @adapter: Driver specific private structure
3077 *
3078 */
3079void idpf_vc_core_deinit(struct idpf_adapter *adapter)
3080{
3081	bool remove_in_prog;
3082
3083	if (!test_bit(IDPF_VC_CORE_INIT, adapter->flags))
3084		return;
3085
3086	/* Avoid transaction timeouts when called during reset */
3087	remove_in_prog = test_bit(IDPF_REMOVE_IN_PROG, adapter->flags);
3088	if (!remove_in_prog)
3089		idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3090
3091	idpf_deinit_task(adapter);
3092	idpf_intr_rel(adapter);
3093
3094	if (remove_in_prog)
3095		idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3096
3097	cancel_delayed_work_sync(&adapter->serv_task);
3098	cancel_delayed_work_sync(&adapter->mbx_task);
3099
3100	idpf_vport_params_buf_rel(adapter);
3101
3102	kfree(adapter->vports);
3103	adapter->vports = NULL;
3104
3105	clear_bit(IDPF_VC_CORE_INIT, adapter->flags);
3106}
3107
3108/**
3109 * idpf_vport_alloc_vec_indexes - Get relative vector indexes
3110 * @vport: virtual port data struct
3111 *
3112 * This function requests the vector information required for the vport and
3113 * stores the vector indexes received from the 'global vector distribution'
3114 * in the vport's queue vectors array.
3115 *
3116 * Return 0 on success, error on failure
3117 */
3118int idpf_vport_alloc_vec_indexes(struct idpf_vport *vport)
3119{
3120	struct idpf_vector_info vec_info;
3121	int num_alloc_vecs;
3122
3123	vec_info.num_curr_vecs = vport->num_q_vectors;
3124	vec_info.num_req_vecs = max(vport->num_txq, vport->num_rxq);
3125	vec_info.default_vport = vport->default_vport;
3126	vec_info.index = vport->idx;
3127
3128	num_alloc_vecs = idpf_req_rel_vector_indexes(vport->adapter,
3129						     vport->q_vector_idxs,
3130						     &vec_info);
3131	if (num_alloc_vecs <= 0) {
3132		dev_err(&vport->adapter->pdev->dev, "Vector distribution failed: %d\n",
3133			num_alloc_vecs);
3134		return -EINVAL;
3135	}
3136
3137	vport->num_q_vectors = num_alloc_vecs;
3138
3139	return 0;
3140}
3141
3142/**
3143 * idpf_vport_init - Initialize virtual port
3144 * @vport: virtual port to be initialized
3145 * @max_q: vport max queue info
3146 *
3147 * Will initialize vport with the info received through MB earlier
3148 */
3149void idpf_vport_init(struct idpf_vport *vport, struct idpf_vport_max_q *max_q)
3150{
3151	struct idpf_adapter *adapter = vport->adapter;
3152	struct virtchnl2_create_vport *vport_msg;
3153	struct idpf_vport_config *vport_config;
3154	u16 tx_itr[] = {2, 8, 64, 128, 256};
3155	u16 rx_itr[] = {2, 8, 32, 96, 128};
3156	struct idpf_rss_data *rss_data;
3157	u16 idx = vport->idx;
3158
3159	vport_config = adapter->vport_config[idx];
3160	rss_data = &vport_config->user_config.rss_data;
3161	vport_msg = adapter->vport_params_recvd[idx];
3162
3163	vport_config->max_q.max_txq = max_q->max_txq;
3164	vport_config->max_q.max_rxq = max_q->max_rxq;
3165	vport_config->max_q.max_complq = max_q->max_complq;
3166	vport_config->max_q.max_bufq = max_q->max_bufq;
3167
3168	vport->txq_model = le16_to_cpu(vport_msg->txq_model);
3169	vport->rxq_model = le16_to_cpu(vport_msg->rxq_model);
3170	vport->vport_type = le16_to_cpu(vport_msg->vport_type);
3171	vport->vport_id = le32_to_cpu(vport_msg->vport_id);
3172
3173	rss_data->rss_key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
3174				       le16_to_cpu(vport_msg->rss_key_size));
3175	rss_data->rss_lut_size = le16_to_cpu(vport_msg->rss_lut_size);
3176
3177	ether_addr_copy(vport->default_mac_addr, vport_msg->default_mac_addr);
3178	vport->max_mtu = le16_to_cpu(vport_msg->max_mtu) - LIBETH_RX_LL_LEN;
3179
3180	/* Initialize Tx and Rx profiles for Dynamic Interrupt Moderation */
3181	memcpy(vport->rx_itr_profile, rx_itr, IDPF_DIM_PROFILE_SLOTS);
3182	memcpy(vport->tx_itr_profile, tx_itr, IDPF_DIM_PROFILE_SLOTS);
3183
3184	idpf_vport_set_hsplit(vport, ETHTOOL_TCP_DATA_SPLIT_ENABLED);
3185
3186	idpf_vport_init_num_qs(vport, vport_msg);
3187	idpf_vport_calc_num_q_desc(vport);
3188	idpf_vport_calc_num_q_groups(vport);
3189	idpf_vport_alloc_vec_indexes(vport);
3190
3191	vport->crc_enable = adapter->crc_enable;
3192}
3193
3194/**
3195 * idpf_get_vec_ids - Initialize vector id from Mailbox parameters
3196 * @adapter: adapter structure to get the mailbox vector id
3197 * @vecids: Array of vector ids
3198 * @num_vecids: number of vector ids
3199 * @chunks: vector ids received over mailbox
3200 *
3201 * Will initialize the mailbox vector id which is received from the
3202 * get capabilities and data queue vector ids with ids received as
3203 * mailbox parameters.
3204 * Returns number of ids filled
3205 */
3206int idpf_get_vec_ids(struct idpf_adapter *adapter,
3207		     u16 *vecids, int num_vecids,
3208		     struct virtchnl2_vector_chunks *chunks)
3209{
3210	u16 num_chunks = le16_to_cpu(chunks->num_vchunks);
3211	int num_vecid_filled = 0;
3212	int i, j;
3213
3214	vecids[num_vecid_filled] = adapter->mb_vector.v_idx;
3215	num_vecid_filled++;
3216
3217	for (j = 0; j < num_chunks; j++) {
3218		struct virtchnl2_vector_chunk *chunk;
3219		u16 start_vecid, num_vec;
3220
3221		chunk = &chunks->vchunks[j];
3222		num_vec = le16_to_cpu(chunk->num_vectors);
3223		start_vecid = le16_to_cpu(chunk->start_vector_id);
3224
3225		for (i = 0; i < num_vec; i++) {
3226			if ((num_vecid_filled + i) < num_vecids) {
3227				vecids[num_vecid_filled + i] = start_vecid;
3228				start_vecid++;
3229			} else {
3230				break;
3231			}
3232		}
3233		num_vecid_filled = num_vecid_filled + i;
3234	}
3235
3236	return num_vecid_filled;
3237}
3238
3239/**
3240 * idpf_vport_get_queue_ids - Initialize queue id from Mailbox parameters
3241 * @qids: Array of queue ids
3242 * @num_qids: number of queue ids
3243 * @q_type: queue model
3244 * @chunks: queue ids received over mailbox
3245 *
3246 * Will initialize all queue ids with ids received as mailbox parameters
3247 * Returns number of ids filled
3248 */
3249static int idpf_vport_get_queue_ids(u32 *qids, int num_qids, u16 q_type,
3250				    struct virtchnl2_queue_reg_chunks *chunks)
3251{
3252	u16 num_chunks = le16_to_cpu(chunks->num_chunks);
3253	u32 num_q_id_filled = 0, i;
3254	u32 start_q_id, num_q;
3255
3256	while (num_chunks--) {
3257		struct virtchnl2_queue_reg_chunk *chunk;
3258
3259		chunk = &chunks->chunks[num_chunks];
3260		if (le32_to_cpu(chunk->type) != q_type)
3261			continue;
3262
3263		num_q = le32_to_cpu(chunk->num_queues);
3264		start_q_id = le32_to_cpu(chunk->start_queue_id);
3265
3266		for (i = 0; i < num_q; i++) {
3267			if ((num_q_id_filled + i) < num_qids) {
3268				qids[num_q_id_filled + i] = start_q_id;
3269				start_q_id++;
3270			} else {
3271				break;
3272			}
3273		}
3274		num_q_id_filled = num_q_id_filled + i;
3275	}
3276
3277	return num_q_id_filled;
3278}
3279
3280/**
3281 * __idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3282 * @vport: virtual port for which the queues ids are initialized
3283 * @qids: queue ids
3284 * @num_qids: number of queue ids
3285 * @q_type: type of queue
3286 *
3287 * Will initialize all queue ids with ids received as mailbox
3288 * parameters. Returns number of queue ids initialized.
3289 */
3290static int __idpf_vport_queue_ids_init(struct idpf_vport *vport,
3291				       const u32 *qids,
3292				       int num_qids,
3293				       u32 q_type)
3294{
 
3295	int i, j, k = 0;
3296
3297	switch (q_type) {
3298	case VIRTCHNL2_QUEUE_TYPE_TX:
3299		for (i = 0; i < vport->num_txq_grp; i++) {
3300			struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3301
3302			for (j = 0; j < tx_qgrp->num_txq && k < num_qids; j++, k++)
3303				tx_qgrp->txqs[j]->q_id = qids[k];
 
 
 
3304		}
3305		break;
3306	case VIRTCHNL2_QUEUE_TYPE_RX:
3307		for (i = 0; i < vport->num_rxq_grp; i++) {
3308			struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3309			u16 num_rxq;
3310
3311			if (idpf_is_queue_model_split(vport->rxq_model))
3312				num_rxq = rx_qgrp->splitq.num_rxq_sets;
3313			else
3314				num_rxq = rx_qgrp->singleq.num_rxq;
3315
3316			for (j = 0; j < num_rxq && k < num_qids; j++, k++) {
3317				struct idpf_rx_queue *q;
3318
3319				if (idpf_is_queue_model_split(vport->rxq_model))
3320					q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
3321				else
3322					q = rx_qgrp->singleq.rxqs[j];
3323				q->q_id = qids[k];
 
3324			}
3325		}
3326		break;
3327	case VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION:
3328		for (i = 0; i < vport->num_txq_grp && k < num_qids; i++, k++) {
3329			struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3330
3331			tx_qgrp->complq->q_id = qids[k];
 
 
3332		}
3333		break;
3334	case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
3335		for (i = 0; i < vport->num_rxq_grp; i++) {
3336			struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3337			u8 num_bufqs = vport->num_bufqs_per_qgrp;
3338
3339			for (j = 0; j < num_bufqs && k < num_qids; j++, k++) {
3340				struct idpf_buf_queue *q;
3341
3342				q = &rx_qgrp->splitq.bufq_sets[j].bufq;
3343				q->q_id = qids[k];
 
3344			}
3345		}
3346		break;
3347	default:
3348		break;
3349	}
3350
3351	return k;
3352}
3353
3354/**
3355 * idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3356 * @vport: virtual port for which the queues ids are initialized
3357 *
3358 * Will initialize all queue ids with ids received as mailbox parameters.
3359 * Returns 0 on success, negative if all the queues are not initialized.
3360 */
3361int idpf_vport_queue_ids_init(struct idpf_vport *vport)
3362{
3363	struct virtchnl2_create_vport *vport_params;
3364	struct virtchnl2_queue_reg_chunks *chunks;
3365	struct idpf_vport_config *vport_config;
3366	u16 vport_idx = vport->idx;
3367	int num_ids, err = 0;
3368	u16 q_type;
3369	u32 *qids;
3370
3371	vport_config = vport->adapter->vport_config[vport_idx];
3372	if (vport_config->req_qs_chunks) {
3373		struct virtchnl2_add_queues *vc_aq =
3374			(struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
3375		chunks = &vc_aq->chunks;
3376	} else {
3377		vport_params = vport->adapter->vport_params_recvd[vport_idx];
3378		chunks = &vport_params->chunks;
3379	}
3380
3381	qids = kcalloc(IDPF_MAX_QIDS, sizeof(u32), GFP_KERNEL);
3382	if (!qids)
3383		return -ENOMEM;
3384
3385	num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3386					   VIRTCHNL2_QUEUE_TYPE_TX,
3387					   chunks);
3388	if (num_ids < vport->num_txq) {
3389		err = -EINVAL;
3390		goto mem_rel;
3391	}
3392	num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3393					      VIRTCHNL2_QUEUE_TYPE_TX);
3394	if (num_ids < vport->num_txq) {
3395		err = -EINVAL;
3396		goto mem_rel;
3397	}
3398
3399	num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3400					   VIRTCHNL2_QUEUE_TYPE_RX,
3401					   chunks);
3402	if (num_ids < vport->num_rxq) {
3403		err = -EINVAL;
3404		goto mem_rel;
3405	}
3406	num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3407					      VIRTCHNL2_QUEUE_TYPE_RX);
3408	if (num_ids < vport->num_rxq) {
3409		err = -EINVAL;
3410		goto mem_rel;
3411	}
3412
3413	if (!idpf_is_queue_model_split(vport->txq_model))
3414		goto check_rxq;
3415
3416	q_type = VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
3417	num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3418	if (num_ids < vport->num_complq) {
3419		err = -EINVAL;
3420		goto mem_rel;
3421	}
3422	num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3423	if (num_ids < vport->num_complq) {
3424		err = -EINVAL;
3425		goto mem_rel;
3426	}
3427
3428check_rxq:
3429	if (!idpf_is_queue_model_split(vport->rxq_model))
3430		goto mem_rel;
3431
3432	q_type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
3433	num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3434	if (num_ids < vport->num_bufq) {
3435		err = -EINVAL;
3436		goto mem_rel;
3437	}
3438	num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3439	if (num_ids < vport->num_bufq)
3440		err = -EINVAL;
3441
3442mem_rel:
3443	kfree(qids);
3444
3445	return err;
3446}
3447
3448/**
3449 * idpf_vport_adjust_qs - Adjust to new requested queues
3450 * @vport: virtual port data struct
3451 *
3452 * Renegotiate queues.  Returns 0 on success, negative on failure.
3453 */
3454int idpf_vport_adjust_qs(struct idpf_vport *vport)
3455{
3456	struct virtchnl2_create_vport vport_msg;
3457	int err;
3458
3459	vport_msg.txq_model = cpu_to_le16(vport->txq_model);
3460	vport_msg.rxq_model = cpu_to_le16(vport->rxq_model);
3461	err = idpf_vport_calc_total_qs(vport->adapter, vport->idx, &vport_msg,
3462				       NULL);
3463	if (err)
3464		return err;
3465
3466	idpf_vport_init_num_qs(vport, &vport_msg);
3467	idpf_vport_calc_num_q_groups(vport);
3468
3469	return 0;
3470}
3471
3472/**
3473 * idpf_is_capability_ena - Default implementation of capability checking
3474 * @adapter: Private data struct
3475 * @all: all or one flag
3476 * @field: caps field to check for flags
3477 * @flag: flag to check
3478 *
3479 * Return true if all capabilities are supported, false otherwise
3480 */
3481bool idpf_is_capability_ena(struct idpf_adapter *adapter, bool all,
3482			    enum idpf_cap_field field, u64 flag)
3483{
3484	u8 *caps = (u8 *)&adapter->caps;
3485	u32 *cap_field;
3486
3487	if (!caps)
3488		return false;
3489
3490	if (field == IDPF_BASE_CAPS)
3491		return false;
3492
3493	cap_field = (u32 *)(caps + field);
3494
3495	if (all)
3496		return (*cap_field & flag) == flag;
3497	else
3498		return !!(*cap_field & flag);
3499}
3500
3501/**
3502 * idpf_get_vport_id: Get vport id
3503 * @vport: virtual port structure
3504 *
3505 * Return vport id from the adapter persistent data
3506 */
3507u32 idpf_get_vport_id(struct idpf_vport *vport)
3508{
3509	struct virtchnl2_create_vport *vport_msg;
3510
3511	vport_msg = vport->adapter->vport_params_recvd[vport->idx];
3512
3513	return le32_to_cpu(vport_msg->vport_id);
3514}
3515
3516/**
3517 * idpf_mac_filter_async_handler - Async callback for mac filters
3518 * @adapter: private data struct
3519 * @xn: transaction for message
3520 * @ctlq_msg: received message
3521 *
3522 * In some scenarios driver can't sleep and wait for a reply (e.g.: stack is
3523 * holding rtnl_lock) when adding a new mac filter. It puts us in a difficult
3524 * situation to deal with errors returned on the reply. The best we can
3525 * ultimately do is remove it from our list of mac filters and report the
3526 * error.
3527 */
3528static int idpf_mac_filter_async_handler(struct idpf_adapter *adapter,
3529					 struct idpf_vc_xn *xn,
3530					 const struct idpf_ctlq_msg *ctlq_msg)
3531{
3532	struct virtchnl2_mac_addr_list *ma_list;
3533	struct idpf_vport_config *vport_config;
3534	struct virtchnl2_mac_addr *mac_addr;
3535	struct idpf_mac_filter *f, *tmp;
3536	struct list_head *ma_list_head;
3537	struct idpf_vport *vport;
3538	u16 num_entries;
3539	int i;
3540
3541	/* if success we're done, we're only here if something bad happened */
3542	if (!ctlq_msg->cookie.mbx.chnl_retval)
3543		return 0;
3544
3545	/* make sure at least struct is there */
3546	if (xn->reply_sz < sizeof(*ma_list))
3547		goto invalid_payload;
3548
3549	ma_list = ctlq_msg->ctx.indirect.payload->va;
3550	mac_addr = ma_list->mac_addr_list;
3551	num_entries = le16_to_cpu(ma_list->num_mac_addr);
3552	/* we should have received a buffer at least this big */
3553	if (xn->reply_sz < struct_size(ma_list, mac_addr_list, num_entries))
3554		goto invalid_payload;
3555
3556	vport = idpf_vid_to_vport(adapter, le32_to_cpu(ma_list->vport_id));
3557	if (!vport)
3558		goto invalid_payload;
3559
3560	vport_config = adapter->vport_config[le32_to_cpu(ma_list->vport_id)];
3561	ma_list_head = &vport_config->user_config.mac_filter_list;
3562
3563	/* We can't do much to reconcile bad filters at this point, however we
3564	 * should at least remove them from our list one way or the other so we
3565	 * have some idea what good filters we have.
3566	 */
3567	spin_lock_bh(&vport_config->mac_filter_list_lock);
3568	list_for_each_entry_safe(f, tmp, ma_list_head, list)
3569		for (i = 0; i < num_entries; i++)
3570			if (ether_addr_equal(mac_addr[i].addr, f->macaddr))
3571				list_del(&f->list);
3572	spin_unlock_bh(&vport_config->mac_filter_list_lock);
3573	dev_err_ratelimited(&adapter->pdev->dev, "Received error sending MAC filter request (op %d)\n",
3574			    xn->vc_op);
3575
3576	return 0;
3577
3578invalid_payload:
3579	dev_err_ratelimited(&adapter->pdev->dev, "Received invalid MAC filter payload (op %d) (len %zd)\n",
3580			    xn->vc_op, xn->reply_sz);
3581
3582	return -EINVAL;
3583}
3584
3585/**
3586 * idpf_add_del_mac_filters - Add/del mac filters
3587 * @vport: Virtual port data structure
3588 * @np: Netdev private structure
3589 * @add: Add or delete flag
3590 * @async: Don't wait for return message
3591 *
3592 * Returns 0 on success, error on failure.
3593 **/
3594int idpf_add_del_mac_filters(struct idpf_vport *vport,
3595			     struct idpf_netdev_priv *np,
3596			     bool add, bool async)
3597{
3598	struct virtchnl2_mac_addr_list *ma_list __free(kfree) = NULL;
3599	struct virtchnl2_mac_addr *mac_addr __free(kfree) = NULL;
3600	struct idpf_adapter *adapter = np->adapter;
3601	struct idpf_vc_xn_params xn_params = {};
3602	struct idpf_vport_config *vport_config;
3603	u32 num_msgs, total_filters = 0;
3604	struct idpf_mac_filter *f;
3605	ssize_t reply_sz;
3606	int i = 0, k;
3607
3608	xn_params.vc_op = add ? VIRTCHNL2_OP_ADD_MAC_ADDR :
3609				VIRTCHNL2_OP_DEL_MAC_ADDR;
3610	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3611	xn_params.async = async;
3612	xn_params.async_handler = idpf_mac_filter_async_handler;
3613
3614	vport_config = adapter->vport_config[np->vport_idx];
3615	spin_lock_bh(&vport_config->mac_filter_list_lock);
3616
3617	/* Find the number of newly added filters */
3618	list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
3619			    list) {
3620		if (add && f->add)
3621			total_filters++;
3622		else if (!add && f->remove)
3623			total_filters++;
3624	}
3625
3626	if (!total_filters) {
3627		spin_unlock_bh(&vport_config->mac_filter_list_lock);
3628
3629		return 0;
3630	}
3631
3632	/* Fill all the new filters into virtchannel message */
3633	mac_addr = kcalloc(total_filters, sizeof(struct virtchnl2_mac_addr),
3634			   GFP_ATOMIC);
3635	if (!mac_addr) {
3636		spin_unlock_bh(&vport_config->mac_filter_list_lock);
3637
3638		return -ENOMEM;
3639	}
3640
3641	list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
3642			    list) {
3643		if (add && f->add) {
3644			ether_addr_copy(mac_addr[i].addr, f->macaddr);
3645			i++;
3646			f->add = false;
3647			if (i == total_filters)
3648				break;
3649		}
3650		if (!add && f->remove) {
3651			ether_addr_copy(mac_addr[i].addr, f->macaddr);
3652			i++;
3653			f->remove = false;
3654			if (i == total_filters)
3655				break;
3656		}
3657	}
3658
3659	spin_unlock_bh(&vport_config->mac_filter_list_lock);
3660
3661	/* Chunk up the filters into multiple messages to avoid
3662	 * sending a control queue message buffer that is too large
3663	 */
3664	num_msgs = DIV_ROUND_UP(total_filters, IDPF_NUM_FILTERS_PER_MSG);
3665
3666	for (i = 0, k = 0; i < num_msgs; i++) {
3667		u32 entries_size, buf_size, num_entries;
3668
3669		num_entries = min_t(u32, total_filters,
3670				    IDPF_NUM_FILTERS_PER_MSG);
3671		entries_size = sizeof(struct virtchnl2_mac_addr) * num_entries;
3672		buf_size = struct_size(ma_list, mac_addr_list, num_entries);
3673
3674		if (!ma_list || num_entries != IDPF_NUM_FILTERS_PER_MSG) {
3675			kfree(ma_list);
3676			ma_list = kzalloc(buf_size, GFP_ATOMIC);
3677			if (!ma_list)
3678				return -ENOMEM;
3679		} else {
3680			memset(ma_list, 0, buf_size);
3681		}
3682
3683		ma_list->vport_id = cpu_to_le32(np->vport_id);
3684		ma_list->num_mac_addr = cpu_to_le16(num_entries);
3685		memcpy(ma_list->mac_addr_list, &mac_addr[k], entries_size);
3686
3687		xn_params.send_buf.iov_base = ma_list;
3688		xn_params.send_buf.iov_len = buf_size;
3689		reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
3690		if (reply_sz < 0)
3691			return reply_sz;
3692
3693		k += num_entries;
3694		total_filters -= num_entries;
3695	}
3696
3697	return 0;
3698}
3699
3700/**
3701 * idpf_set_promiscuous - set promiscuous and send message to mailbox
3702 * @adapter: Driver specific private structure
3703 * @config_data: Vport specific config data
3704 * @vport_id: Vport identifier
3705 *
3706 * Request to enable promiscuous mode for the vport. Message is sent
3707 * asynchronously and won't wait for response.  Returns 0 on success, negative
3708 * on failure;
3709 */
3710int idpf_set_promiscuous(struct idpf_adapter *adapter,
3711			 struct idpf_vport_user_config_data *config_data,
3712			 u32 vport_id)
3713{
3714	struct idpf_vc_xn_params xn_params = {};
3715	struct virtchnl2_promisc_info vpi;
3716	ssize_t reply_sz;
3717	u16 flags = 0;
3718
3719	if (test_bit(__IDPF_PROMISC_UC, config_data->user_flags))
3720		flags |= VIRTCHNL2_UNICAST_PROMISC;
3721	if (test_bit(__IDPF_PROMISC_MC, config_data->user_flags))
3722		flags |= VIRTCHNL2_MULTICAST_PROMISC;
3723
3724	vpi.vport_id = cpu_to_le32(vport_id);
3725	vpi.flags = cpu_to_le16(flags);
3726
3727	xn_params.vc_op = VIRTCHNL2_OP_CONFIG_PROMISCUOUS_MODE;
3728	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3729	xn_params.send_buf.iov_base = &vpi;
3730	xn_params.send_buf.iov_len = sizeof(vpi);
3731	/* setting promiscuous is only ever done asynchronously */
3732	xn_params.async = true;
3733	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
3734
3735	return reply_sz < 0 ? reply_sz : 0;
3736}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (C) 2023 Intel Corporation */
   3
 
 
   4#include "idpf.h"
   5#include "idpf_virtchnl.h"
   6
   7#define IDPF_VC_XN_MIN_TIMEOUT_MSEC	2000
   8#define IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC	(60 * 1000)
   9#define IDPF_VC_XN_IDX_M		GENMASK(7, 0)
  10#define IDPF_VC_XN_SALT_M		GENMASK(15, 8)
  11#define IDPF_VC_XN_RING_LEN		U8_MAX
  12
  13/**
  14 * enum idpf_vc_xn_state - Virtchnl transaction status
  15 * @IDPF_VC_XN_IDLE: not expecting a reply, ready to be used
  16 * @IDPF_VC_XN_WAITING: expecting a reply, not yet received
  17 * @IDPF_VC_XN_COMPLETED_SUCCESS: a reply was expected and received,
  18 *				  buffer updated
  19 * @IDPF_VC_XN_COMPLETED_FAILED: a reply was expected and received, but there
  20 *				 was an error, buffer not updated
  21 * @IDPF_VC_XN_SHUTDOWN: transaction object cannot be used, VC torn down
  22 * @IDPF_VC_XN_ASYNC: transaction sent asynchronously and doesn't have the
  23 *		      return context; a callback may be provided to handle
  24 *		      return
  25 */
  26enum idpf_vc_xn_state {
  27	IDPF_VC_XN_IDLE = 1,
  28	IDPF_VC_XN_WAITING,
  29	IDPF_VC_XN_COMPLETED_SUCCESS,
  30	IDPF_VC_XN_COMPLETED_FAILED,
  31	IDPF_VC_XN_SHUTDOWN,
  32	IDPF_VC_XN_ASYNC,
  33};
  34
  35struct idpf_vc_xn;
  36/* Callback for asynchronous messages */
  37typedef int (*async_vc_cb) (struct idpf_adapter *, struct idpf_vc_xn *,
  38			    const struct idpf_ctlq_msg *);
  39
  40/**
  41 * struct idpf_vc_xn - Data structure representing virtchnl transactions
  42 * @completed: virtchnl event loop uses that to signal when a reply is
  43 *	       available, uses kernel completion API
  44 * @state: virtchnl event loop stores the data below, protected by the
  45 *	   completion's lock.
  46 * @reply_sz: Original size of reply, may be > reply_buf.iov_len; it will be
  47 *	      truncated on its way to the receiver thread according to
  48 *	      reply_buf.iov_len.
  49 * @reply: Reference to the buffer(s) where the reply data should be written
  50 *	   to. May be 0-length (then NULL address permitted) if the reply data
  51 *	   should be ignored.
  52 * @async_handler: if sent asynchronously, a callback can be provided to handle
  53 *		   the reply when it's received
  54 * @vc_op: corresponding opcode sent with this transaction
  55 * @idx: index used as retrieval on reply receive, used for cookie
  56 * @salt: changed every message to make unique, used for cookie
  57 */
  58struct idpf_vc_xn {
  59	struct completion completed;
  60	enum idpf_vc_xn_state state;
  61	size_t reply_sz;
  62	struct kvec reply;
  63	async_vc_cb async_handler;
  64	u32 vc_op;
  65	u8 idx;
  66	u8 salt;
  67};
  68
  69/**
  70 * struct idpf_vc_xn_params - Parameters for executing transaction
  71 * @send_buf: kvec for send buffer
  72 * @recv_buf: kvec for recv buffer, may be NULL, must then have zero length
  73 * @timeout_ms: timeout to wait for reply
  74 * @async: send message asynchronously, will not wait on completion
  75 * @async_handler: If sent asynchronously, optional callback handler. The user
  76 *		   must be careful when using async handlers as the memory for
  77 *		   the recv_buf _cannot_ be on stack if this is async.
  78 * @vc_op: virtchnl op to send
  79 */
  80struct idpf_vc_xn_params {
  81	struct kvec send_buf;
  82	struct kvec recv_buf;
  83	int timeout_ms;
  84	bool async;
  85	async_vc_cb async_handler;
  86	u32 vc_op;
  87};
  88
  89/**
  90 * struct idpf_vc_xn_manager - Manager for tracking transactions
  91 * @ring: backing and lookup for transactions
  92 * @free_xn_bm: bitmap for free transactions
  93 * @xn_bm_lock: make bitmap access synchronous where necessary
  94 * @salt: used to make cookie unique every message
  95 */
  96struct idpf_vc_xn_manager {
  97	struct idpf_vc_xn ring[IDPF_VC_XN_RING_LEN];
  98	DECLARE_BITMAP(free_xn_bm, IDPF_VC_XN_RING_LEN);
  99	spinlock_t xn_bm_lock;
 100	u8 salt;
 101};
 102
 103/**
 104 * idpf_vid_to_vport - Translate vport id to vport pointer
 105 * @adapter: private data struct
 106 * @v_id: vport id to translate
 107 *
 108 * Returns vport matching v_id, NULL if not found.
 109 */
 110static
 111struct idpf_vport *idpf_vid_to_vport(struct idpf_adapter *adapter, u32 v_id)
 112{
 113	u16 num_max_vports = idpf_get_max_vports(adapter);
 114	int i;
 115
 116	for (i = 0; i < num_max_vports; i++)
 117		if (adapter->vport_ids[i] == v_id)
 118			return adapter->vports[i];
 119
 120	return NULL;
 121}
 122
 123/**
 124 * idpf_handle_event_link - Handle link event message
 125 * @adapter: private data struct
 126 * @v2e: virtchnl event message
 127 */
 128static void idpf_handle_event_link(struct idpf_adapter *adapter,
 129				   const struct virtchnl2_event *v2e)
 130{
 131	struct idpf_netdev_priv *np;
 132	struct idpf_vport *vport;
 133
 134	vport = idpf_vid_to_vport(adapter, le32_to_cpu(v2e->vport_id));
 135	if (!vport) {
 136		dev_err_ratelimited(&adapter->pdev->dev, "Failed to find vport_id %d for link event\n",
 137				    v2e->vport_id);
 138		return;
 139	}
 140	np = netdev_priv(vport->netdev);
 141
 142	vport->link_speed_mbps = le32_to_cpu(v2e->link_speed);
 143
 144	if (vport->link_up == v2e->link_status)
 145		return;
 146
 147	vport->link_up = v2e->link_status;
 148
 149	if (np->state != __IDPF_VPORT_UP)
 150		return;
 151
 152	if (vport->link_up) {
 153		netif_tx_start_all_queues(vport->netdev);
 154		netif_carrier_on(vport->netdev);
 155	} else {
 156		netif_tx_stop_all_queues(vport->netdev);
 157		netif_carrier_off(vport->netdev);
 158	}
 159}
 160
 161/**
 162 * idpf_recv_event_msg - Receive virtchnl event message
 163 * @adapter: Driver specific private structure
 164 * @ctlq_msg: message to copy from
 165 *
 166 * Receive virtchnl event message
 167 */
 168static void idpf_recv_event_msg(struct idpf_adapter *adapter,
 169				struct idpf_ctlq_msg *ctlq_msg)
 170{
 171	int payload_size = ctlq_msg->ctx.indirect.payload->size;
 172	struct virtchnl2_event *v2e;
 173	u32 event;
 174
 175	if (payload_size < sizeof(*v2e)) {
 176		dev_err_ratelimited(&adapter->pdev->dev, "Failed to receive valid payload for event msg (op %d len %d)\n",
 177				    ctlq_msg->cookie.mbx.chnl_opcode,
 178				    payload_size);
 179		return;
 180	}
 181
 182	v2e = (struct virtchnl2_event *)ctlq_msg->ctx.indirect.payload->va;
 183	event = le32_to_cpu(v2e->event);
 184
 185	switch (event) {
 186	case VIRTCHNL2_EVENT_LINK_CHANGE:
 187		idpf_handle_event_link(adapter, v2e);
 188		return;
 189	default:
 190		dev_err(&adapter->pdev->dev,
 191			"Unknown event %d from PF\n", event);
 192		break;
 193	}
 194}
 195
 196/**
 197 * idpf_mb_clean - Reclaim the send mailbox queue entries
 198 * @adapter: Driver specific private structure
 199 *
 200 * Reclaim the send mailbox queue entries to be used to send further messages
 201 *
 202 * Returns 0 on success, negative on failure
 203 */
 204static int idpf_mb_clean(struct idpf_adapter *adapter)
 205{
 206	u16 i, num_q_msg = IDPF_DFLT_MBX_Q_LEN;
 207	struct idpf_ctlq_msg **q_msg;
 208	struct idpf_dma_mem *dma_mem;
 209	int err;
 210
 211	q_msg = kcalloc(num_q_msg, sizeof(struct idpf_ctlq_msg *), GFP_ATOMIC);
 212	if (!q_msg)
 213		return -ENOMEM;
 214
 215	err = idpf_ctlq_clean_sq(adapter->hw.asq, &num_q_msg, q_msg);
 216	if (err)
 217		goto err_kfree;
 218
 219	for (i = 0; i < num_q_msg; i++) {
 220		if (!q_msg[i])
 221			continue;
 222		dma_mem = q_msg[i]->ctx.indirect.payload;
 223		if (dma_mem)
 224			dma_free_coherent(&adapter->pdev->dev, dma_mem->size,
 225					  dma_mem->va, dma_mem->pa);
 226		kfree(q_msg[i]);
 227		kfree(dma_mem);
 228	}
 229
 230err_kfree:
 231	kfree(q_msg);
 232
 233	return err;
 234}
 235
 236/**
 237 * idpf_send_mb_msg - Send message over mailbox
 238 * @adapter: Driver specific private structure
 239 * @op: virtchnl opcode
 240 * @msg_size: size of the payload
 241 * @msg: pointer to buffer holding the payload
 242 * @cookie: unique SW generated cookie per message
 243 *
 244 * Will prepare the control queue message and initiates the send api
 245 *
 246 * Returns 0 on success, negative on failure
 247 */
 248int idpf_send_mb_msg(struct idpf_adapter *adapter, u32 op,
 249		     u16 msg_size, u8 *msg, u16 cookie)
 250{
 251	struct idpf_ctlq_msg *ctlq_msg;
 252	struct idpf_dma_mem *dma_mem;
 253	int err;
 254
 255	/* If we are here and a reset is detected nothing much can be
 256	 * done. This thread should silently abort and expected to
 257	 * be corrected with a new run either by user or driver
 258	 * flows after reset
 259	 */
 260	if (idpf_is_reset_detected(adapter))
 261		return 0;
 262
 263	err = idpf_mb_clean(adapter);
 264	if (err)
 265		return err;
 266
 267	ctlq_msg = kzalloc(sizeof(*ctlq_msg), GFP_ATOMIC);
 268	if (!ctlq_msg)
 269		return -ENOMEM;
 270
 271	dma_mem = kzalloc(sizeof(*dma_mem), GFP_ATOMIC);
 272	if (!dma_mem) {
 273		err = -ENOMEM;
 274		goto dma_mem_error;
 275	}
 276
 277	ctlq_msg->opcode = idpf_mbq_opc_send_msg_to_cp;
 278	ctlq_msg->func_id = 0;
 279	ctlq_msg->data_len = msg_size;
 280	ctlq_msg->cookie.mbx.chnl_opcode = op;
 281	ctlq_msg->cookie.mbx.chnl_retval = 0;
 282	dma_mem->size = IDPF_CTLQ_MAX_BUF_LEN;
 283	dma_mem->va = dma_alloc_coherent(&adapter->pdev->dev, dma_mem->size,
 284					 &dma_mem->pa, GFP_ATOMIC);
 285	if (!dma_mem->va) {
 286		err = -ENOMEM;
 287		goto dma_alloc_error;
 288	}
 289
 290	/* It's possible we're just sending an opcode but no buffer */
 291	if (msg && msg_size)
 292		memcpy(dma_mem->va, msg, msg_size);
 293	ctlq_msg->ctx.indirect.payload = dma_mem;
 294	ctlq_msg->ctx.sw_cookie.data = cookie;
 295
 296	err = idpf_ctlq_send(&adapter->hw, adapter->hw.asq, 1, ctlq_msg);
 297	if (err)
 298		goto send_error;
 299
 300	return 0;
 301
 302send_error:
 303	dma_free_coherent(&adapter->pdev->dev, dma_mem->size, dma_mem->va,
 304			  dma_mem->pa);
 305dma_alloc_error:
 306	kfree(dma_mem);
 307dma_mem_error:
 308	kfree(ctlq_msg);
 309
 310	return err;
 311}
 312
 313/* API for virtchnl "transaction" support ("xn" for short).
 314 *
 315 * We are reusing the completion lock to serialize the accesses to the
 316 * transaction state for simplicity, but it could be its own separate synchro
 317 * as well. For now, this API is only used from within a workqueue context;
 318 * raw_spin_lock() is enough.
 319 */
 320/**
 321 * idpf_vc_xn_lock - Request exclusive access to vc transaction
 322 * @xn: struct idpf_vc_xn* to access
 323 */
 324#define idpf_vc_xn_lock(xn)			\
 325	raw_spin_lock(&(xn)->completed.wait.lock)
 326
 327/**
 328 * idpf_vc_xn_unlock - Release exclusive access to vc transaction
 329 * @xn: struct idpf_vc_xn* to access
 330 */
 331#define idpf_vc_xn_unlock(xn)		\
 332	raw_spin_unlock(&(xn)->completed.wait.lock)
 333
 334/**
 335 * idpf_vc_xn_release_bufs - Release reference to reply buffer(s) and
 336 * reset the transaction state.
 337 * @xn: struct idpf_vc_xn to update
 338 */
 339static void idpf_vc_xn_release_bufs(struct idpf_vc_xn *xn)
 340{
 341	xn->reply.iov_base = NULL;
 342	xn->reply.iov_len = 0;
 343
 344	if (xn->state != IDPF_VC_XN_SHUTDOWN)
 345		xn->state = IDPF_VC_XN_IDLE;
 346}
 347
 348/**
 349 * idpf_vc_xn_init - Initialize virtchnl transaction object
 350 * @vcxn_mngr: pointer to vc transaction manager struct
 351 */
 352static void idpf_vc_xn_init(struct idpf_vc_xn_manager *vcxn_mngr)
 353{
 354	int i;
 355
 356	spin_lock_init(&vcxn_mngr->xn_bm_lock);
 357
 358	for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
 359		struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
 360
 361		xn->state = IDPF_VC_XN_IDLE;
 362		xn->idx = i;
 363		idpf_vc_xn_release_bufs(xn);
 364		init_completion(&xn->completed);
 365	}
 366
 367	bitmap_fill(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
 368}
 369
 370/**
 371 * idpf_vc_xn_shutdown - Uninitialize virtchnl transaction object
 372 * @vcxn_mngr: pointer to vc transaction manager struct
 373 *
 374 * All waiting threads will be woken-up and their transaction aborted. Further
 375 * operations on that object will fail.
 376 */
 377static void idpf_vc_xn_shutdown(struct idpf_vc_xn_manager *vcxn_mngr)
 378{
 379	int i;
 380
 381	spin_lock_bh(&vcxn_mngr->xn_bm_lock);
 382	bitmap_zero(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
 383	spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
 384
 385	for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
 386		struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
 387
 388		idpf_vc_xn_lock(xn);
 389		xn->state = IDPF_VC_XN_SHUTDOWN;
 390		idpf_vc_xn_release_bufs(xn);
 391		idpf_vc_xn_unlock(xn);
 392		complete_all(&xn->completed);
 393	}
 394}
 395
 396/**
 397 * idpf_vc_xn_pop_free - Pop a free transaction from free list
 398 * @vcxn_mngr: transaction manager to pop from
 399 *
 400 * Returns NULL if no free transactions
 401 */
 402static
 403struct idpf_vc_xn *idpf_vc_xn_pop_free(struct idpf_vc_xn_manager *vcxn_mngr)
 404{
 405	struct idpf_vc_xn *xn = NULL;
 406	unsigned long free_idx;
 407
 408	spin_lock_bh(&vcxn_mngr->xn_bm_lock);
 409	free_idx = find_first_bit(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
 410	if (free_idx == IDPF_VC_XN_RING_LEN)
 411		goto do_unlock;
 412
 413	clear_bit(free_idx, vcxn_mngr->free_xn_bm);
 414	xn = &vcxn_mngr->ring[free_idx];
 415	xn->salt = vcxn_mngr->salt++;
 416
 417do_unlock:
 418	spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
 419
 420	return xn;
 421}
 422
 423/**
 424 * idpf_vc_xn_push_free - Push a free transaction to free list
 425 * @vcxn_mngr: transaction manager to push to
 426 * @xn: transaction to push
 427 */
 428static void idpf_vc_xn_push_free(struct idpf_vc_xn_manager *vcxn_mngr,
 429				 struct idpf_vc_xn *xn)
 430{
 431	idpf_vc_xn_release_bufs(xn);
 432	set_bit(xn->idx, vcxn_mngr->free_xn_bm);
 433}
 434
 435/**
 436 * idpf_vc_xn_exec - Perform a send/recv virtchnl transaction
 437 * @adapter: driver specific private structure with vcxn_mngr
 438 * @params: parameters for this particular transaction including
 439 *   -vc_op: virtchannel operation to send
 440 *   -send_buf: kvec iov for send buf and len
 441 *   -recv_buf: kvec iov for recv buf and len (ignored if NULL)
 442 *   -timeout_ms: timeout waiting for a reply (milliseconds)
 443 *   -async: don't wait for message reply, will lose caller context
 444 *   -async_handler: callback to handle async replies
 445 *
 446 * @returns >= 0 for success, the size of the initial reply (may or may not be
 447 * >= @recv_buf.iov_len, but we never overflow @@recv_buf_iov_base). < 0 for
 448 * error.
 449 */
 450static ssize_t idpf_vc_xn_exec(struct idpf_adapter *adapter,
 451			       const struct idpf_vc_xn_params *params)
 452{
 453	const struct kvec *send_buf = &params->send_buf;
 454	struct idpf_vc_xn *xn;
 455	ssize_t retval;
 456	u16 cookie;
 457
 458	xn = idpf_vc_xn_pop_free(adapter->vcxn_mngr);
 459	/* no free transactions available */
 460	if (!xn)
 461		return -ENOSPC;
 462
 463	idpf_vc_xn_lock(xn);
 464	if (xn->state == IDPF_VC_XN_SHUTDOWN) {
 465		retval = -ENXIO;
 466		goto only_unlock;
 467	} else if (xn->state != IDPF_VC_XN_IDLE) {
 468		/* We're just going to clobber this transaction even though
 469		 * it's not IDLE. If we don't reuse it we could theoretically
 470		 * eventually leak all the free transactions and not be able to
 471		 * send any messages. At least this way we make an attempt to
 472		 * remain functional even though something really bad is
 473		 * happening that's corrupting what was supposed to be free
 474		 * transactions.
 475		 */
 476		WARN_ONCE(1, "There should only be idle transactions in free list (idx %d op %d)\n",
 477			  xn->idx, xn->vc_op);
 478	}
 479
 480	xn->reply = params->recv_buf;
 481	xn->reply_sz = 0;
 482	xn->state = params->async ? IDPF_VC_XN_ASYNC : IDPF_VC_XN_WAITING;
 483	xn->vc_op = params->vc_op;
 484	xn->async_handler = params->async_handler;
 485	idpf_vc_xn_unlock(xn);
 486
 487	if (!params->async)
 488		reinit_completion(&xn->completed);
 489	cookie = FIELD_PREP(IDPF_VC_XN_SALT_M, xn->salt) |
 490		 FIELD_PREP(IDPF_VC_XN_IDX_M, xn->idx);
 491
 492	retval = idpf_send_mb_msg(adapter, params->vc_op,
 493				  send_buf->iov_len, send_buf->iov_base,
 494				  cookie);
 495	if (retval) {
 496		idpf_vc_xn_lock(xn);
 497		goto release_and_unlock;
 498	}
 499
 500	if (params->async)
 501		return 0;
 502
 503	wait_for_completion_timeout(&xn->completed,
 504				    msecs_to_jiffies(params->timeout_ms));
 505
 506	/* No need to check the return value; we check the final state of the
 507	 * transaction below. It's possible the transaction actually gets more
 508	 * timeout than specified if we get preempted here but after
 509	 * wait_for_completion_timeout returns. This should be non-issue
 510	 * however.
 511	 */
 512	idpf_vc_xn_lock(xn);
 513	switch (xn->state) {
 514	case IDPF_VC_XN_SHUTDOWN:
 515		retval = -ENXIO;
 516		goto only_unlock;
 517	case IDPF_VC_XN_WAITING:
 518		dev_notice_ratelimited(&adapter->pdev->dev, "Transaction timed-out (op %d, %dms)\n",
 519				       params->vc_op, params->timeout_ms);
 520		retval = -ETIME;
 521		break;
 522	case IDPF_VC_XN_COMPLETED_SUCCESS:
 523		retval = xn->reply_sz;
 524		break;
 525	case IDPF_VC_XN_COMPLETED_FAILED:
 526		dev_notice_ratelimited(&adapter->pdev->dev, "Transaction failed (op %d)\n",
 527				       params->vc_op);
 528		retval = -EIO;
 529		break;
 530	default:
 531		/* Invalid state. */
 532		WARN_ON_ONCE(1);
 533		retval = -EIO;
 534		break;
 535	}
 536
 537release_and_unlock:
 538	idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
 539	/* If we receive a VC reply after here, it will be dropped. */
 540only_unlock:
 541	idpf_vc_xn_unlock(xn);
 542
 543	return retval;
 544}
 545
 546/**
 547 * idpf_vc_xn_forward_async - Handle async reply receives
 548 * @adapter: private data struct
 549 * @xn: transaction to handle
 550 * @ctlq_msg: corresponding ctlq_msg
 551 *
 552 * For async sends we're going to lose the caller's context so, if an
 553 * async_handler was provided, it can deal with the reply, otherwise we'll just
 554 * check and report if there is an error.
 555 */
 556static int
 557idpf_vc_xn_forward_async(struct idpf_adapter *adapter, struct idpf_vc_xn *xn,
 558			 const struct idpf_ctlq_msg *ctlq_msg)
 559{
 560	int err = 0;
 561
 562	if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
 563		dev_err_ratelimited(&adapter->pdev->dev, "Async message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
 564				    ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
 565		xn->reply_sz = 0;
 566		err = -EINVAL;
 567		goto release_bufs;
 568	}
 569
 570	if (xn->async_handler) {
 571		err = xn->async_handler(adapter, xn, ctlq_msg);
 572		goto release_bufs;
 573	}
 574
 575	if (ctlq_msg->cookie.mbx.chnl_retval) {
 576		xn->reply_sz = 0;
 577		dev_err_ratelimited(&adapter->pdev->dev, "Async message failure (op %d)\n",
 578				    ctlq_msg->cookie.mbx.chnl_opcode);
 579		err = -EINVAL;
 580	}
 581
 582release_bufs:
 583	idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
 584
 585	return err;
 586}
 587
 588/**
 589 * idpf_vc_xn_forward_reply - copy a reply back to receiving thread
 590 * @adapter: driver specific private structure with vcxn_mngr
 591 * @ctlq_msg: controlq message to send back to receiving thread
 592 */
 593static int
 594idpf_vc_xn_forward_reply(struct idpf_adapter *adapter,
 595			 const struct idpf_ctlq_msg *ctlq_msg)
 596{
 597	const void *payload = NULL;
 598	size_t payload_size = 0;
 599	struct idpf_vc_xn *xn;
 600	u16 msg_info;
 601	int err = 0;
 602	u16 xn_idx;
 603	u16 salt;
 604
 605	msg_info = ctlq_msg->ctx.sw_cookie.data;
 606	xn_idx = FIELD_GET(IDPF_VC_XN_IDX_M, msg_info);
 607	if (xn_idx >= ARRAY_SIZE(adapter->vcxn_mngr->ring)) {
 608		dev_err_ratelimited(&adapter->pdev->dev, "Out of bounds cookie received: %02x\n",
 609				    xn_idx);
 610		return -EINVAL;
 611	}
 612	xn = &adapter->vcxn_mngr->ring[xn_idx];
 
 613	salt = FIELD_GET(IDPF_VC_XN_SALT_M, msg_info);
 614	if (xn->salt != salt) {
 615		dev_err_ratelimited(&adapter->pdev->dev, "Transaction salt does not match (%02x != %02x)\n",
 616				    xn->salt, salt);
 
 617		return -EINVAL;
 618	}
 619
 620	idpf_vc_xn_lock(xn);
 621	switch (xn->state) {
 622	case IDPF_VC_XN_WAITING:
 623		/* success */
 624		break;
 625	case IDPF_VC_XN_IDLE:
 626		dev_err_ratelimited(&adapter->pdev->dev, "Unexpected or belated VC reply (op %d)\n",
 627				    ctlq_msg->cookie.mbx.chnl_opcode);
 628		err = -EINVAL;
 629		goto out_unlock;
 630	case IDPF_VC_XN_SHUTDOWN:
 631		/* ENXIO is a bit special here as the recv msg loop uses that
 632		 * know if it should stop trying to clean the ring if we lost
 633		 * the virtchnl. We need to stop playing with registers and
 634		 * yield.
 635		 */
 636		err = -ENXIO;
 637		goto out_unlock;
 638	case IDPF_VC_XN_ASYNC:
 639		err = idpf_vc_xn_forward_async(adapter, xn, ctlq_msg);
 640		idpf_vc_xn_unlock(xn);
 641		return err;
 642	default:
 643		dev_err_ratelimited(&adapter->pdev->dev, "Overwriting VC reply (op %d)\n",
 644				    ctlq_msg->cookie.mbx.chnl_opcode);
 645		err = -EBUSY;
 646		goto out_unlock;
 647	}
 648
 649	if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
 650		dev_err_ratelimited(&adapter->pdev->dev, "Message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
 651				    ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
 652		xn->reply_sz = 0;
 653		xn->state = IDPF_VC_XN_COMPLETED_FAILED;
 654		err = -EINVAL;
 655		goto out_unlock;
 656	}
 657
 658	if (ctlq_msg->cookie.mbx.chnl_retval) {
 659		xn->reply_sz = 0;
 660		xn->state = IDPF_VC_XN_COMPLETED_FAILED;
 661		err = -EINVAL;
 662		goto out_unlock;
 663	}
 664
 665	if (ctlq_msg->data_len) {
 666		payload = ctlq_msg->ctx.indirect.payload->va;
 667		payload_size = ctlq_msg->ctx.indirect.payload->size;
 668	}
 669
 670	xn->reply_sz = payload_size;
 671	xn->state = IDPF_VC_XN_COMPLETED_SUCCESS;
 672
 673	if (xn->reply.iov_base && xn->reply.iov_len && payload_size)
 674		memcpy(xn->reply.iov_base, payload,
 675		       min_t(size_t, xn->reply.iov_len, payload_size));
 676
 677out_unlock:
 678	idpf_vc_xn_unlock(xn);
 679	/* we _cannot_ hold lock while calling complete */
 680	complete(&xn->completed);
 681
 682	return err;
 683}
 684
 685/**
 686 * idpf_recv_mb_msg - Receive message over mailbox
 687 * @adapter: Driver specific private structure
 688 *
 689 * Will receive control queue message and posts the receive buffer. Returns 0
 690 * on success and negative on failure.
 691 */
 692int idpf_recv_mb_msg(struct idpf_adapter *adapter)
 693{
 694	struct idpf_ctlq_msg ctlq_msg;
 695	struct idpf_dma_mem *dma_mem;
 696	int post_err, err;
 697	u16 num_recv;
 698
 699	while (1) {
 700		/* This will get <= num_recv messages and output how many
 701		 * actually received on num_recv.
 702		 */
 703		num_recv = 1;
 704		err = idpf_ctlq_recv(adapter->hw.arq, &num_recv, &ctlq_msg);
 705		if (err || !num_recv)
 706			break;
 707
 708		if (ctlq_msg.data_len) {
 709			dma_mem = ctlq_msg.ctx.indirect.payload;
 710		} else {
 711			dma_mem = NULL;
 712			num_recv = 0;
 713		}
 714
 715		if (ctlq_msg.cookie.mbx.chnl_opcode == VIRTCHNL2_OP_EVENT)
 716			idpf_recv_event_msg(adapter, &ctlq_msg);
 717		else
 718			err = idpf_vc_xn_forward_reply(adapter, &ctlq_msg);
 719
 720		post_err = idpf_ctlq_post_rx_buffs(&adapter->hw,
 721						   adapter->hw.arq,
 722						   &num_recv, &dma_mem);
 723
 724		/* If post failed clear the only buffer we supplied */
 725		if (post_err) {
 726			if (dma_mem)
 727				dmam_free_coherent(&adapter->pdev->dev,
 728						   dma_mem->size, dma_mem->va,
 729						   dma_mem->pa);
 730			break;
 731		}
 732
 733		/* virtchnl trying to shutdown, stop cleaning */
 734		if (err == -ENXIO)
 735			break;
 736	}
 737
 738	return err;
 739}
 740
 741/**
 742 * idpf_wait_for_marker_event - wait for software marker response
 743 * @vport: virtual port data structure
 744 *
 745 * Returns 0 success, negative on failure.
 746 **/
 747static int idpf_wait_for_marker_event(struct idpf_vport *vport)
 748{
 749	int event;
 750	int i;
 751
 752	for (i = 0; i < vport->num_txq; i++)
 753		set_bit(__IDPF_Q_SW_MARKER, vport->txqs[i]->flags);
 754
 755	event = wait_event_timeout(vport->sw_marker_wq,
 756				   test_and_clear_bit(IDPF_VPORT_SW_MARKER,
 757						      vport->flags),
 758				   msecs_to_jiffies(500));
 759
 760	for (i = 0; i < vport->num_txq; i++)
 761		clear_bit(__IDPF_Q_POLL_MODE, vport->txqs[i]->flags);
 762
 763	if (event)
 764		return 0;
 765
 766	dev_warn(&vport->adapter->pdev->dev, "Failed to receive marker packets\n");
 767
 768	return -ETIMEDOUT;
 769}
 770
 771/**
 772 * idpf_send_ver_msg - send virtchnl version message
 773 * @adapter: Driver specific private structure
 774 *
 775 * Send virtchnl version message.  Returns 0 on success, negative on failure.
 776 */
 777static int idpf_send_ver_msg(struct idpf_adapter *adapter)
 778{
 779	struct idpf_vc_xn_params xn_params = {};
 780	struct virtchnl2_version_info vvi;
 781	ssize_t reply_sz;
 782	u32 major, minor;
 783	int err = 0;
 784
 785	if (adapter->virt_ver_maj) {
 786		vvi.major = cpu_to_le32(adapter->virt_ver_maj);
 787		vvi.minor = cpu_to_le32(adapter->virt_ver_min);
 788	} else {
 789		vvi.major = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MAJOR);
 790		vvi.minor = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MINOR);
 791	}
 792
 793	xn_params.vc_op = VIRTCHNL2_OP_VERSION;
 794	xn_params.send_buf.iov_base = &vvi;
 795	xn_params.send_buf.iov_len = sizeof(vvi);
 796	xn_params.recv_buf = xn_params.send_buf;
 797	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
 798
 799	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
 800	if (reply_sz < 0)
 801		return reply_sz;
 802	if (reply_sz < sizeof(vvi))
 803		return -EIO;
 804
 805	major = le32_to_cpu(vvi.major);
 806	minor = le32_to_cpu(vvi.minor);
 807
 808	if (major > IDPF_VIRTCHNL_VERSION_MAJOR) {
 809		dev_warn(&adapter->pdev->dev, "Virtchnl major version greater than supported\n");
 810		return -EINVAL;
 811	}
 812
 813	if (major == IDPF_VIRTCHNL_VERSION_MAJOR &&
 814	    minor > IDPF_VIRTCHNL_VERSION_MINOR)
 815		dev_warn(&adapter->pdev->dev, "Virtchnl minor version didn't match\n");
 816
 817	/* If we have a mismatch, resend version to update receiver on what
 818	 * version we will use.
 819	 */
 820	if (!adapter->virt_ver_maj &&
 821	    major != IDPF_VIRTCHNL_VERSION_MAJOR &&
 822	    minor != IDPF_VIRTCHNL_VERSION_MINOR)
 823		err = -EAGAIN;
 824
 825	adapter->virt_ver_maj = major;
 826	adapter->virt_ver_min = minor;
 827
 828	return err;
 829}
 830
 831/**
 832 * idpf_send_get_caps_msg - Send virtchnl get capabilities message
 833 * @adapter: Driver specific private structure
 834 *
 835 * Send virtchl get capabilities message. Returns 0 on success, negative on
 836 * failure.
 837 */
 838static int idpf_send_get_caps_msg(struct idpf_adapter *adapter)
 839{
 840	struct virtchnl2_get_capabilities caps = {};
 841	struct idpf_vc_xn_params xn_params = {};
 842	ssize_t reply_sz;
 843
 844	caps.csum_caps =
 845		cpu_to_le32(VIRTCHNL2_CAP_TX_CSUM_L3_IPV4	|
 846			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_TCP	|
 847			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_UDP	|
 848			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_SCTP	|
 849			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_TCP	|
 850			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_UDP	|
 851			    VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_SCTP	|
 852			    VIRTCHNL2_CAP_RX_CSUM_L3_IPV4	|
 853			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_TCP	|
 854			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_UDP	|
 855			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_SCTP	|
 856			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_TCP	|
 857			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_UDP	|
 858			    VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_SCTP	|
 859			    VIRTCHNL2_CAP_TX_CSUM_L3_SINGLE_TUNNEL |
 860			    VIRTCHNL2_CAP_RX_CSUM_L3_SINGLE_TUNNEL |
 861			    VIRTCHNL2_CAP_TX_CSUM_L4_SINGLE_TUNNEL |
 862			    VIRTCHNL2_CAP_RX_CSUM_L4_SINGLE_TUNNEL |
 863			    VIRTCHNL2_CAP_RX_CSUM_GENERIC);
 864
 865	caps.seg_caps =
 866		cpu_to_le32(VIRTCHNL2_CAP_SEG_IPV4_TCP		|
 867			    VIRTCHNL2_CAP_SEG_IPV4_UDP		|
 868			    VIRTCHNL2_CAP_SEG_IPV4_SCTP		|
 869			    VIRTCHNL2_CAP_SEG_IPV6_TCP		|
 870			    VIRTCHNL2_CAP_SEG_IPV6_UDP		|
 871			    VIRTCHNL2_CAP_SEG_IPV6_SCTP		|
 872			    VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL);
 873
 874	caps.rss_caps =
 875		cpu_to_le64(VIRTCHNL2_CAP_RSS_IPV4_TCP		|
 876			    VIRTCHNL2_CAP_RSS_IPV4_UDP		|
 877			    VIRTCHNL2_CAP_RSS_IPV4_SCTP		|
 878			    VIRTCHNL2_CAP_RSS_IPV4_OTHER	|
 879			    VIRTCHNL2_CAP_RSS_IPV6_TCP		|
 880			    VIRTCHNL2_CAP_RSS_IPV6_UDP		|
 881			    VIRTCHNL2_CAP_RSS_IPV6_SCTP		|
 882			    VIRTCHNL2_CAP_RSS_IPV6_OTHER);
 883
 884	caps.hsplit_caps =
 885		cpu_to_le32(VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V4	|
 886			    VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V6);
 887
 888	caps.rsc_caps =
 889		cpu_to_le32(VIRTCHNL2_CAP_RSC_IPV4_TCP		|
 890			    VIRTCHNL2_CAP_RSC_IPV6_TCP);
 891
 892	caps.other_caps =
 893		cpu_to_le64(VIRTCHNL2_CAP_SRIOV			|
 894			    VIRTCHNL2_CAP_MACFILTER		|
 895			    VIRTCHNL2_CAP_SPLITQ_QSCHED		|
 896			    VIRTCHNL2_CAP_PROMISC		|
 897			    VIRTCHNL2_CAP_LOOPBACK);
 898
 899	xn_params.vc_op = VIRTCHNL2_OP_GET_CAPS;
 900	xn_params.send_buf.iov_base = &caps;
 901	xn_params.send_buf.iov_len = sizeof(caps);
 902	xn_params.recv_buf.iov_base = &adapter->caps;
 903	xn_params.recv_buf.iov_len = sizeof(adapter->caps);
 904	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
 905
 906	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
 907	if (reply_sz < 0)
 908		return reply_sz;
 909	if (reply_sz < sizeof(adapter->caps))
 910		return -EIO;
 911
 912	return 0;
 913}
 914
 915/**
 916 * idpf_vport_alloc_max_qs - Allocate max queues for a vport
 917 * @adapter: Driver specific private structure
 918 * @max_q: vport max queue structure
 919 */
 920int idpf_vport_alloc_max_qs(struct idpf_adapter *adapter,
 921			    struct idpf_vport_max_q *max_q)
 922{
 923	struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
 924	struct virtchnl2_get_capabilities *caps = &adapter->caps;
 925	u16 default_vports = idpf_get_default_vports(adapter);
 926	int max_rx_q, max_tx_q;
 927
 928	mutex_lock(&adapter->queue_lock);
 929
 930	max_rx_q = le16_to_cpu(caps->max_rx_q) / default_vports;
 931	max_tx_q = le16_to_cpu(caps->max_tx_q) / default_vports;
 932	if (adapter->num_alloc_vports < default_vports) {
 933		max_q->max_rxq = min_t(u16, max_rx_q, IDPF_MAX_Q);
 934		max_q->max_txq = min_t(u16, max_tx_q, IDPF_MAX_Q);
 935	} else {
 936		max_q->max_rxq = IDPF_MIN_Q;
 937		max_q->max_txq = IDPF_MIN_Q;
 938	}
 939	max_q->max_bufq = max_q->max_rxq * IDPF_MAX_BUFQS_PER_RXQ_GRP;
 940	max_q->max_complq = max_q->max_txq;
 941
 942	if (avail_queues->avail_rxq < max_q->max_rxq ||
 943	    avail_queues->avail_txq < max_q->max_txq ||
 944	    avail_queues->avail_bufq < max_q->max_bufq ||
 945	    avail_queues->avail_complq < max_q->max_complq) {
 946		mutex_unlock(&adapter->queue_lock);
 947
 948		return -EINVAL;
 949	}
 950
 951	avail_queues->avail_rxq -= max_q->max_rxq;
 952	avail_queues->avail_txq -= max_q->max_txq;
 953	avail_queues->avail_bufq -= max_q->max_bufq;
 954	avail_queues->avail_complq -= max_q->max_complq;
 955
 956	mutex_unlock(&adapter->queue_lock);
 957
 958	return 0;
 959}
 960
 961/**
 962 * idpf_vport_dealloc_max_qs - Deallocate max queues of a vport
 963 * @adapter: Driver specific private structure
 964 * @max_q: vport max queue structure
 965 */
 966void idpf_vport_dealloc_max_qs(struct idpf_adapter *adapter,
 967			       struct idpf_vport_max_q *max_q)
 968{
 969	struct idpf_avail_queue_info *avail_queues;
 970
 971	mutex_lock(&adapter->queue_lock);
 972	avail_queues = &adapter->avail_queues;
 973
 974	avail_queues->avail_rxq += max_q->max_rxq;
 975	avail_queues->avail_txq += max_q->max_txq;
 976	avail_queues->avail_bufq += max_q->max_bufq;
 977	avail_queues->avail_complq += max_q->max_complq;
 978
 979	mutex_unlock(&adapter->queue_lock);
 980}
 981
 982/**
 983 * idpf_init_avail_queues - Initialize available queues on the device
 984 * @adapter: Driver specific private structure
 985 */
 986static void idpf_init_avail_queues(struct idpf_adapter *adapter)
 987{
 988	struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
 989	struct virtchnl2_get_capabilities *caps = &adapter->caps;
 990
 991	avail_queues->avail_rxq = le16_to_cpu(caps->max_rx_q);
 992	avail_queues->avail_txq = le16_to_cpu(caps->max_tx_q);
 993	avail_queues->avail_bufq = le16_to_cpu(caps->max_rx_bufq);
 994	avail_queues->avail_complq = le16_to_cpu(caps->max_tx_complq);
 995}
 996
 997/**
 998 * idpf_get_reg_intr_vecs - Get vector queue register offset
 999 * @vport: virtual port structure
1000 * @reg_vals: Register offsets to store in
1001 *
1002 * Returns number of registers that got populated
1003 */
1004int idpf_get_reg_intr_vecs(struct idpf_vport *vport,
1005			   struct idpf_vec_regs *reg_vals)
1006{
1007	struct virtchnl2_vector_chunks *chunks;
1008	struct idpf_vec_regs reg_val;
1009	u16 num_vchunks, num_vec;
1010	int num_regs = 0, i, j;
1011
1012	chunks = &vport->adapter->req_vec_chunks->vchunks;
1013	num_vchunks = le16_to_cpu(chunks->num_vchunks);
1014
1015	for (j = 0; j < num_vchunks; j++) {
1016		struct virtchnl2_vector_chunk *chunk;
1017		u32 dynctl_reg_spacing;
1018		u32 itrn_reg_spacing;
1019
1020		chunk = &chunks->vchunks[j];
1021		num_vec = le16_to_cpu(chunk->num_vectors);
1022		reg_val.dyn_ctl_reg = le32_to_cpu(chunk->dynctl_reg_start);
1023		reg_val.itrn_reg = le32_to_cpu(chunk->itrn_reg_start);
1024		reg_val.itrn_index_spacing = le32_to_cpu(chunk->itrn_index_spacing);
1025
1026		dynctl_reg_spacing = le32_to_cpu(chunk->dynctl_reg_spacing);
1027		itrn_reg_spacing = le32_to_cpu(chunk->itrn_reg_spacing);
1028
1029		for (i = 0; i < num_vec; i++) {
1030			reg_vals[num_regs].dyn_ctl_reg = reg_val.dyn_ctl_reg;
1031			reg_vals[num_regs].itrn_reg = reg_val.itrn_reg;
1032			reg_vals[num_regs].itrn_index_spacing =
1033						reg_val.itrn_index_spacing;
1034
1035			reg_val.dyn_ctl_reg += dynctl_reg_spacing;
1036			reg_val.itrn_reg += itrn_reg_spacing;
1037			num_regs++;
1038		}
1039	}
1040
1041	return num_regs;
1042}
1043
1044/**
1045 * idpf_vport_get_q_reg - Get the queue registers for the vport
1046 * @reg_vals: register values needing to be set
1047 * @num_regs: amount we expect to fill
1048 * @q_type: queue model
1049 * @chunks: queue regs received over mailbox
1050 *
1051 * This function parses the queue register offsets from the queue register
1052 * chunk information, with a specific queue type and stores it into the array
1053 * passed as an argument. It returns the actual number of queue registers that
1054 * are filled.
1055 */
1056static int idpf_vport_get_q_reg(u32 *reg_vals, int num_regs, u32 q_type,
1057				struct virtchnl2_queue_reg_chunks *chunks)
1058{
1059	u16 num_chunks = le16_to_cpu(chunks->num_chunks);
1060	int reg_filled = 0, i;
1061	u32 reg_val;
1062
1063	while (num_chunks--) {
1064		struct virtchnl2_queue_reg_chunk *chunk;
1065		u16 num_q;
1066
1067		chunk = &chunks->chunks[num_chunks];
1068		if (le32_to_cpu(chunk->type) != q_type)
1069			continue;
1070
1071		num_q = le32_to_cpu(chunk->num_queues);
1072		reg_val = le64_to_cpu(chunk->qtail_reg_start);
1073		for (i = 0; i < num_q && reg_filled < num_regs ; i++) {
1074			reg_vals[reg_filled++] = reg_val;
1075			reg_val += le32_to_cpu(chunk->qtail_reg_spacing);
1076		}
1077	}
1078
1079	return reg_filled;
1080}
1081
1082/**
1083 * __idpf_queue_reg_init - initialize queue registers
1084 * @vport: virtual port structure
1085 * @reg_vals: registers we are initializing
1086 * @num_regs: how many registers there are in total
1087 * @q_type: queue model
1088 *
1089 * Return number of queues that are initialized
1090 */
1091static int __idpf_queue_reg_init(struct idpf_vport *vport, u32 *reg_vals,
1092				 int num_regs, u32 q_type)
1093{
1094	struct idpf_adapter *adapter = vport->adapter;
1095	struct idpf_queue *q;
1096	int i, j, k = 0;
1097
1098	switch (q_type) {
1099	case VIRTCHNL2_QUEUE_TYPE_TX:
1100		for (i = 0; i < vport->num_txq_grp; i++) {
1101			struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1102
1103			for (j = 0; j < tx_qgrp->num_txq && k < num_regs; j++, k++)
1104				tx_qgrp->txqs[j]->tail =
1105					idpf_get_reg_addr(adapter, reg_vals[k]);
1106		}
1107		break;
1108	case VIRTCHNL2_QUEUE_TYPE_RX:
1109		for (i = 0; i < vport->num_rxq_grp; i++) {
1110			struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1111			u16 num_rxq = rx_qgrp->singleq.num_rxq;
1112
1113			for (j = 0; j < num_rxq && k < num_regs; j++, k++) {
 
 
1114				q = rx_qgrp->singleq.rxqs[j];
1115				q->tail = idpf_get_reg_addr(adapter,
1116							    reg_vals[k]);
1117			}
1118		}
1119		break;
1120	case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
1121		for (i = 0; i < vport->num_rxq_grp; i++) {
1122			struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1123			u8 num_bufqs = vport->num_bufqs_per_qgrp;
1124
1125			for (j = 0; j < num_bufqs && k < num_regs; j++, k++) {
 
 
1126				q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1127				q->tail = idpf_get_reg_addr(adapter,
1128							    reg_vals[k]);
1129			}
1130		}
1131		break;
1132	default:
1133		break;
1134	}
1135
1136	return k;
1137}
1138
1139/**
1140 * idpf_queue_reg_init - initialize queue registers
1141 * @vport: virtual port structure
1142 *
1143 * Return 0 on success, negative on failure
1144 */
1145int idpf_queue_reg_init(struct idpf_vport *vport)
1146{
1147	struct virtchnl2_create_vport *vport_params;
1148	struct virtchnl2_queue_reg_chunks *chunks;
1149	struct idpf_vport_config *vport_config;
1150	u16 vport_idx = vport->idx;
1151	int num_regs, ret = 0;
1152	u32 *reg_vals;
1153
1154	/* We may never deal with more than 256 same type of queues */
1155	reg_vals = kzalloc(sizeof(void *) * IDPF_LARGE_MAX_Q, GFP_KERNEL);
1156	if (!reg_vals)
1157		return -ENOMEM;
1158
1159	vport_config = vport->adapter->vport_config[vport_idx];
1160	if (vport_config->req_qs_chunks) {
1161		struct virtchnl2_add_queues *vc_aq =
1162		  (struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
1163		chunks = &vc_aq->chunks;
1164	} else {
1165		vport_params = vport->adapter->vport_params_recvd[vport_idx];
1166		chunks = &vport_params->chunks;
1167	}
1168
1169	/* Initialize Tx queue tail register address */
1170	num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1171					VIRTCHNL2_QUEUE_TYPE_TX,
1172					chunks);
1173	if (num_regs < vport->num_txq) {
1174		ret = -EINVAL;
1175		goto free_reg_vals;
1176	}
1177
1178	num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1179					 VIRTCHNL2_QUEUE_TYPE_TX);
1180	if (num_regs < vport->num_txq) {
1181		ret = -EINVAL;
1182		goto free_reg_vals;
1183	}
1184
1185	/* Initialize Rx/buffer queue tail register address based on Rx queue
1186	 * model
1187	 */
1188	if (idpf_is_queue_model_split(vport->rxq_model)) {
1189		num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1190						VIRTCHNL2_QUEUE_TYPE_RX_BUFFER,
1191						chunks);
1192		if (num_regs < vport->num_bufq) {
1193			ret = -EINVAL;
1194			goto free_reg_vals;
1195		}
1196
1197		num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1198						 VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
1199		if (num_regs < vport->num_bufq) {
1200			ret = -EINVAL;
1201			goto free_reg_vals;
1202		}
1203	} else {
1204		num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
1205						VIRTCHNL2_QUEUE_TYPE_RX,
1206						chunks);
1207		if (num_regs < vport->num_rxq) {
1208			ret = -EINVAL;
1209			goto free_reg_vals;
1210		}
1211
1212		num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
1213						 VIRTCHNL2_QUEUE_TYPE_RX);
1214		if (num_regs < vport->num_rxq) {
1215			ret = -EINVAL;
1216			goto free_reg_vals;
1217		}
1218	}
1219
1220free_reg_vals:
1221	kfree(reg_vals);
1222
1223	return ret;
1224}
1225
1226/**
1227 * idpf_send_create_vport_msg - Send virtchnl create vport message
1228 * @adapter: Driver specific private structure
1229 * @max_q: vport max queue info
1230 *
1231 * send virtchnl creae vport message
1232 *
1233 * Returns 0 on success, negative on failure
1234 */
1235int idpf_send_create_vport_msg(struct idpf_adapter *adapter,
1236			       struct idpf_vport_max_q *max_q)
1237{
1238	struct virtchnl2_create_vport *vport_msg;
1239	struct idpf_vc_xn_params xn_params = {};
1240	u16 idx = adapter->next_vport;
1241	int err, buf_size;
1242	ssize_t reply_sz;
1243
1244	buf_size = sizeof(struct virtchnl2_create_vport);
1245	if (!adapter->vport_params_reqd[idx]) {
1246		adapter->vport_params_reqd[idx] = kzalloc(buf_size,
1247							  GFP_KERNEL);
1248		if (!adapter->vport_params_reqd[idx])
1249			return -ENOMEM;
1250	}
1251
1252	vport_msg = adapter->vport_params_reqd[idx];
1253	vport_msg->vport_type = cpu_to_le16(VIRTCHNL2_VPORT_TYPE_DEFAULT);
1254	vport_msg->vport_index = cpu_to_le16(idx);
1255
1256	if (adapter->req_tx_splitq)
1257		vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1258	else
1259		vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1260
1261	if (adapter->req_rx_splitq)
1262		vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
1263	else
1264		vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
1265
1266	err = idpf_vport_calc_total_qs(adapter, idx, vport_msg, max_q);
1267	if (err) {
1268		dev_err(&adapter->pdev->dev, "Enough queues are not available");
1269
1270		return err;
1271	}
1272
1273	if (!adapter->vport_params_recvd[idx]) {
1274		adapter->vport_params_recvd[idx] = kzalloc(IDPF_CTLQ_MAX_BUF_LEN,
1275							   GFP_KERNEL);
1276		if (!adapter->vport_params_recvd[idx]) {
1277			err = -ENOMEM;
1278			goto free_vport_params;
1279		}
1280	}
1281
1282	xn_params.vc_op = VIRTCHNL2_OP_CREATE_VPORT;
1283	xn_params.send_buf.iov_base = vport_msg;
1284	xn_params.send_buf.iov_len = buf_size;
1285	xn_params.recv_buf.iov_base = adapter->vport_params_recvd[idx];
1286	xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
1287	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1288	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
1289	if (reply_sz < 0) {
1290		err = reply_sz;
1291		goto free_vport_params;
1292	}
1293	if (reply_sz < IDPF_CTLQ_MAX_BUF_LEN) {
1294		err = -EIO;
1295		goto free_vport_params;
1296	}
1297
1298	return 0;
1299
1300free_vport_params:
1301	kfree(adapter->vport_params_recvd[idx]);
1302	adapter->vport_params_recvd[idx] = NULL;
1303	kfree(adapter->vport_params_reqd[idx]);
1304	adapter->vport_params_reqd[idx] = NULL;
1305
1306	return err;
1307}
1308
1309/**
1310 * idpf_check_supported_desc_ids - Verify we have required descriptor support
1311 * @vport: virtual port structure
1312 *
1313 * Return 0 on success, error on failure
1314 */
1315int idpf_check_supported_desc_ids(struct idpf_vport *vport)
1316{
1317	struct idpf_adapter *adapter = vport->adapter;
1318	struct virtchnl2_create_vport *vport_msg;
1319	u64 rx_desc_ids, tx_desc_ids;
1320
1321	vport_msg = adapter->vport_params_recvd[vport->idx];
1322
 
 
 
 
 
 
 
1323	rx_desc_ids = le64_to_cpu(vport_msg->rx_desc_ids);
1324	tx_desc_ids = le64_to_cpu(vport_msg->tx_desc_ids);
1325
1326	if (vport->rxq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT) {
1327		if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M)) {
1328			dev_info(&adapter->pdev->dev, "Minimum RX descriptor support not provided, using the default\n");
1329			vport_msg->rx_desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1330		}
1331	} else {
1332		if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SQ_NIC_M))
1333			vport->base_rxd = true;
1334	}
1335
1336	if (vport->txq_model != VIRTCHNL2_QUEUE_MODEL_SPLIT)
1337		return 0;
1338
1339	if ((tx_desc_ids & MIN_SUPPORT_TXDID) != MIN_SUPPORT_TXDID) {
1340		dev_info(&adapter->pdev->dev, "Minimum TX descriptor support not provided, using the default\n");
1341		vport_msg->tx_desc_ids = cpu_to_le64(MIN_SUPPORT_TXDID);
1342	}
1343
1344	return 0;
1345}
1346
1347/**
1348 * idpf_send_destroy_vport_msg - Send virtchnl destroy vport message
1349 * @vport: virtual port data structure
1350 *
1351 * Send virtchnl destroy vport message.  Returns 0 on success, negative on
1352 * failure.
1353 */
1354int idpf_send_destroy_vport_msg(struct idpf_vport *vport)
1355{
1356	struct idpf_vc_xn_params xn_params = {};
1357	struct virtchnl2_vport v_id;
1358	ssize_t reply_sz;
1359
1360	v_id.vport_id = cpu_to_le32(vport->vport_id);
1361
1362	xn_params.vc_op = VIRTCHNL2_OP_DESTROY_VPORT;
1363	xn_params.send_buf.iov_base = &v_id;
1364	xn_params.send_buf.iov_len = sizeof(v_id);
1365	xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1366	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1367
1368	return reply_sz < 0 ? reply_sz : 0;
1369}
1370
1371/**
1372 * idpf_send_enable_vport_msg - Send virtchnl enable vport message
1373 * @vport: virtual port data structure
1374 *
1375 * Send enable vport virtchnl message.  Returns 0 on success, negative on
1376 * failure.
1377 */
1378int idpf_send_enable_vport_msg(struct idpf_vport *vport)
1379{
1380	struct idpf_vc_xn_params xn_params = {};
1381	struct virtchnl2_vport v_id;
1382	ssize_t reply_sz;
1383
1384	v_id.vport_id = cpu_to_le32(vport->vport_id);
1385
1386	xn_params.vc_op = VIRTCHNL2_OP_ENABLE_VPORT;
1387	xn_params.send_buf.iov_base = &v_id;
1388	xn_params.send_buf.iov_len = sizeof(v_id);
1389	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1390	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1391
1392	return reply_sz < 0 ? reply_sz : 0;
1393}
1394
1395/**
1396 * idpf_send_disable_vport_msg - Send virtchnl disable vport message
1397 * @vport: virtual port data structure
1398 *
1399 * Send disable vport virtchnl message.  Returns 0 on success, negative on
1400 * failure.
1401 */
1402int idpf_send_disable_vport_msg(struct idpf_vport *vport)
1403{
1404	struct idpf_vc_xn_params xn_params = {};
1405	struct virtchnl2_vport v_id;
1406	ssize_t reply_sz;
1407
1408	v_id.vport_id = cpu_to_le32(vport->vport_id);
1409
1410	xn_params.vc_op = VIRTCHNL2_OP_DISABLE_VPORT;
1411	xn_params.send_buf.iov_base = &v_id;
1412	xn_params.send_buf.iov_len = sizeof(v_id);
1413	xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1414	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1415
1416	return reply_sz < 0 ? reply_sz : 0;
1417}
1418
1419/**
1420 * idpf_send_config_tx_queues_msg - Send virtchnl config tx queues message
1421 * @vport: virtual port data structure
1422 *
1423 * Send config tx queues virtchnl message. Returns 0 on success, negative on
1424 * failure.
1425 */
1426static int idpf_send_config_tx_queues_msg(struct idpf_vport *vport)
1427{
1428	struct virtchnl2_config_tx_queues *ctq __free(kfree) = NULL;
1429	struct virtchnl2_txq_info *qi __free(kfree) = NULL;
1430	struct idpf_vc_xn_params xn_params = {};
1431	u32 config_sz, chunk_sz, buf_sz;
1432	int totqs, num_msgs, num_chunks;
1433	ssize_t reply_sz;
1434	int i, k = 0;
1435
1436	totqs = vport->num_txq + vport->num_complq;
1437	qi = kcalloc(totqs, sizeof(struct virtchnl2_txq_info), GFP_KERNEL);
1438	if (!qi)
1439		return -ENOMEM;
1440
1441	/* Populate the queue info buffer with all queue context info */
1442	for (i = 0; i < vport->num_txq_grp; i++) {
1443		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1444		int j, sched_mode;
1445
1446		for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1447			qi[k].queue_id =
1448				cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1449			qi[k].model =
1450				cpu_to_le16(vport->txq_model);
1451			qi[k].type =
1452				cpu_to_le32(tx_qgrp->txqs[j]->q_type);
1453			qi[k].ring_len =
1454				cpu_to_le16(tx_qgrp->txqs[j]->desc_count);
1455			qi[k].dma_ring_addr =
1456				cpu_to_le64(tx_qgrp->txqs[j]->dma);
1457			if (idpf_is_queue_model_split(vport->txq_model)) {
1458				struct idpf_queue *q = tx_qgrp->txqs[j];
1459
1460				qi[k].tx_compl_queue_id =
1461					cpu_to_le16(tx_qgrp->complq->q_id);
1462				qi[k].relative_queue_id = cpu_to_le16(j);
1463
1464				if (test_bit(__IDPF_Q_FLOW_SCH_EN, q->flags))
1465					qi[k].sched_mode =
1466					cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_FLOW);
1467				else
1468					qi[k].sched_mode =
1469					cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
1470			} else {
1471				qi[k].sched_mode =
1472					cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
1473			}
1474		}
1475
1476		if (!idpf_is_queue_model_split(vport->txq_model))
1477			continue;
1478
1479		qi[k].queue_id = cpu_to_le32(tx_qgrp->complq->q_id);
1480		qi[k].model = cpu_to_le16(vport->txq_model);
1481		qi[k].type = cpu_to_le32(tx_qgrp->complq->q_type);
1482		qi[k].ring_len = cpu_to_le16(tx_qgrp->complq->desc_count);
1483		qi[k].dma_ring_addr = cpu_to_le64(tx_qgrp->complq->dma);
1484
1485		if (test_bit(__IDPF_Q_FLOW_SCH_EN, tx_qgrp->complq->flags))
1486			sched_mode = VIRTCHNL2_TXQ_SCHED_MODE_FLOW;
1487		else
1488			sched_mode = VIRTCHNL2_TXQ_SCHED_MODE_QUEUE;
1489		qi[k].sched_mode = cpu_to_le16(sched_mode);
1490
1491		k++;
1492	}
1493
1494	/* Make sure accounting agrees */
1495	if (k != totqs)
1496		return -EINVAL;
1497
1498	/* Chunk up the queue contexts into multiple messages to avoid
1499	 * sending a control queue message buffer that is too large
1500	 */
1501	config_sz = sizeof(struct virtchnl2_config_tx_queues);
1502	chunk_sz = sizeof(struct virtchnl2_txq_info);
1503
1504	num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1505			   totqs);
1506	num_msgs = DIV_ROUND_UP(totqs, num_chunks);
1507
1508	buf_sz = struct_size(ctq, qinfo, num_chunks);
1509	ctq = kzalloc(buf_sz, GFP_KERNEL);
1510	if (!ctq)
1511		return -ENOMEM;
1512
1513	xn_params.vc_op = VIRTCHNL2_OP_CONFIG_TX_QUEUES;
1514	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1515
1516	for (i = 0, k = 0; i < num_msgs; i++) {
1517		memset(ctq, 0, buf_sz);
1518		ctq->vport_id = cpu_to_le32(vport->vport_id);
1519		ctq->num_qinfo = cpu_to_le16(num_chunks);
1520		memcpy(ctq->qinfo, &qi[k], chunk_sz * num_chunks);
1521
1522		xn_params.send_buf.iov_base = ctq;
1523		xn_params.send_buf.iov_len = buf_sz;
1524		reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1525		if (reply_sz < 0)
1526			return reply_sz;
1527
1528		k += num_chunks;
1529		totqs -= num_chunks;
1530		num_chunks = min(num_chunks, totqs);
1531		/* Recalculate buffer size */
1532		buf_sz = struct_size(ctq, qinfo, num_chunks);
1533	}
1534
1535	return 0;
1536}
1537
1538/**
1539 * idpf_send_config_rx_queues_msg - Send virtchnl config rx queues message
1540 * @vport: virtual port data structure
1541 *
1542 * Send config rx queues virtchnl message.  Returns 0 on success, negative on
1543 * failure.
1544 */
1545static int idpf_send_config_rx_queues_msg(struct idpf_vport *vport)
1546{
1547	struct virtchnl2_config_rx_queues *crq __free(kfree) = NULL;
1548	struct virtchnl2_rxq_info *qi __free(kfree) = NULL;
1549	struct idpf_vc_xn_params xn_params = {};
1550	u32 config_sz, chunk_sz, buf_sz;
1551	int totqs, num_msgs, num_chunks;
1552	ssize_t reply_sz;
1553	int i, k = 0;
1554
1555	totqs = vport->num_rxq + vport->num_bufq;
1556	qi = kcalloc(totqs, sizeof(struct virtchnl2_rxq_info), GFP_KERNEL);
1557	if (!qi)
1558		return -ENOMEM;
1559
1560	/* Populate the queue info buffer with all queue context info */
1561	for (i = 0; i < vport->num_rxq_grp; i++) {
1562		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1563		u16 num_rxq;
1564		int j;
1565
1566		if (!idpf_is_queue_model_split(vport->rxq_model))
1567			goto setup_rxqs;
1568
1569		for (j = 0; j < vport->num_bufqs_per_qgrp; j++, k++) {
1570			struct idpf_queue *bufq =
1571				&rx_qgrp->splitq.bufq_sets[j].bufq;
1572
1573			qi[k].queue_id = cpu_to_le32(bufq->q_id);
1574			qi[k].model = cpu_to_le16(vport->rxq_model);
1575			qi[k].type = cpu_to_le32(bufq->q_type);
 
1576			qi[k].desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
1577			qi[k].ring_len = cpu_to_le16(bufq->desc_count);
1578			qi[k].dma_ring_addr = cpu_to_le64(bufq->dma);
1579			qi[k].data_buffer_size = cpu_to_le32(bufq->rx_buf_size);
1580			qi[k].buffer_notif_stride = bufq->rx_buf_stride;
1581			qi[k].rx_buffer_low_watermark =
1582				cpu_to_le16(bufq->rx_buffer_low_watermark);
1583			if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1584				qi[k].qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1585		}
1586
1587setup_rxqs:
1588		if (idpf_is_queue_model_split(vport->rxq_model))
1589			num_rxq = rx_qgrp->splitq.num_rxq_sets;
1590		else
1591			num_rxq = rx_qgrp->singleq.num_rxq;
1592
1593		for (j = 0; j < num_rxq; j++, k++) {
1594			struct idpf_queue *rxq;
 
1595
1596			if (!idpf_is_queue_model_split(vport->rxq_model)) {
1597				rxq = rx_qgrp->singleq.rxqs[j];
1598				goto common_qi_fields;
1599			}
 
1600			rxq = &rx_qgrp->splitq.rxq_sets[j]->rxq;
1601			qi[k].rx_bufq1_id =
1602			  cpu_to_le16(rxq->rxq_grp->splitq.bufq_sets[0].bufq.q_id);
 
 
 
 
 
 
 
1603			if (vport->num_bufqs_per_qgrp > IDPF_SINGLE_BUFQ_PER_RXQ_GRP) {
1604				qi[k].bufq2_ena = IDPF_BUFQ2_ENA;
1605				qi[k].rx_bufq2_id =
1606				  cpu_to_le16(rxq->rxq_grp->splitq.bufq_sets[1].bufq.q_id);
1607			}
1608			qi[k].rx_buffer_low_watermark =
1609				cpu_to_le16(rxq->rx_buffer_low_watermark);
1610			if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
1611				qi[k].qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
1612
1613common_qi_fields:
1614			if (rxq->rx_hsplit_en) {
 
1615				qi[k].qflags |=
1616					cpu_to_le16(VIRTCHNL2_RXQ_HDR_SPLIT);
1617				qi[k].hdr_buffer_size =
1618					cpu_to_le16(rxq->rx_hbuf_size);
1619			}
 
 
1620			qi[k].queue_id = cpu_to_le32(rxq->q_id);
1621			qi[k].model = cpu_to_le16(vport->rxq_model);
1622			qi[k].type = cpu_to_le32(rxq->q_type);
1623			qi[k].ring_len = cpu_to_le16(rxq->desc_count);
1624			qi[k].dma_ring_addr = cpu_to_le64(rxq->dma);
1625			qi[k].max_pkt_size = cpu_to_le32(rxq->rx_max_pkt_size);
1626			qi[k].data_buffer_size = cpu_to_le32(rxq->rx_buf_size);
1627			qi[k].qflags |=
1628				cpu_to_le16(VIRTCHNL2_RX_DESC_SIZE_32BYTE);
1629			qi[k].desc_ids = cpu_to_le64(rxq->rxdids);
1630		}
1631	}
1632
1633	/* Make sure accounting agrees */
1634	if (k != totqs)
1635		return -EINVAL;
1636
1637	/* Chunk up the queue contexts into multiple messages to avoid
1638	 * sending a control queue message buffer that is too large
1639	 */
1640	config_sz = sizeof(struct virtchnl2_config_rx_queues);
1641	chunk_sz = sizeof(struct virtchnl2_rxq_info);
1642
1643	num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1644			   totqs);
1645	num_msgs = DIV_ROUND_UP(totqs, num_chunks);
1646
1647	buf_sz = struct_size(crq, qinfo, num_chunks);
1648	crq = kzalloc(buf_sz, GFP_KERNEL);
1649	if (!crq)
1650		return -ENOMEM;
1651
1652	xn_params.vc_op = VIRTCHNL2_OP_CONFIG_RX_QUEUES;
1653	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1654
1655	for (i = 0, k = 0; i < num_msgs; i++) {
1656		memset(crq, 0, buf_sz);
1657		crq->vport_id = cpu_to_le32(vport->vport_id);
1658		crq->num_qinfo = cpu_to_le16(num_chunks);
1659		memcpy(crq->qinfo, &qi[k], chunk_sz * num_chunks);
1660
1661		xn_params.send_buf.iov_base = crq;
1662		xn_params.send_buf.iov_len = buf_sz;
1663		reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1664		if (reply_sz < 0)
1665			return reply_sz;
1666
1667		k += num_chunks;
1668		totqs -= num_chunks;
1669		num_chunks = min(num_chunks, totqs);
1670		/* Recalculate buffer size */
1671		buf_sz = struct_size(crq, qinfo, num_chunks);
1672	}
1673
1674	return 0;
1675}
1676
1677/**
1678 * idpf_send_ena_dis_queues_msg - Send virtchnl enable or disable
1679 * queues message
1680 * @vport: virtual port data structure
1681 * @ena: if true enable, false disable
1682 *
1683 * Send enable or disable queues virtchnl message. Returns 0 on success,
1684 * negative on failure.
1685 */
1686static int idpf_send_ena_dis_queues_msg(struct idpf_vport *vport, bool ena)
1687{
1688	struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
1689	struct virtchnl2_queue_chunk *qc __free(kfree) = NULL;
1690	u32 num_msgs, num_chunks, num_txq, num_rxq, num_q;
1691	struct idpf_vc_xn_params xn_params = {};
1692	struct virtchnl2_queue_chunks *qcs;
1693	u32 config_sz, chunk_sz, buf_sz;
1694	ssize_t reply_sz;
1695	int i, j, k = 0;
1696
1697	num_txq = vport->num_txq + vport->num_complq;
1698	num_rxq = vport->num_rxq + vport->num_bufq;
1699	num_q = num_txq + num_rxq;
1700	buf_sz = sizeof(struct virtchnl2_queue_chunk) * num_q;
1701	qc = kzalloc(buf_sz, GFP_KERNEL);
1702	if (!qc)
1703		return -ENOMEM;
1704
1705	for (i = 0; i < vport->num_txq_grp; i++) {
1706		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1707
1708		for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1709			qc[k].type = cpu_to_le32(tx_qgrp->txqs[j]->q_type);
1710			qc[k].start_queue_id = cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1711			qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1712		}
1713	}
1714	if (vport->num_txq != k)
1715		return -EINVAL;
1716
1717	if (!idpf_is_queue_model_split(vport->txq_model))
1718		goto setup_rx;
1719
1720	for (i = 0; i < vport->num_txq_grp; i++, k++) {
1721		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1722
1723		qc[k].type = cpu_to_le32(tx_qgrp->complq->q_type);
1724		qc[k].start_queue_id = cpu_to_le32(tx_qgrp->complq->q_id);
1725		qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1726	}
1727	if (vport->num_complq != (k - vport->num_txq))
1728		return -EINVAL;
1729
1730setup_rx:
1731	for (i = 0; i < vport->num_rxq_grp; i++) {
1732		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1733
1734		if (idpf_is_queue_model_split(vport->rxq_model))
1735			num_rxq = rx_qgrp->splitq.num_rxq_sets;
1736		else
1737			num_rxq = rx_qgrp->singleq.num_rxq;
1738
1739		for (j = 0; j < num_rxq; j++, k++) {
1740			if (idpf_is_queue_model_split(vport->rxq_model)) {
1741				qc[k].start_queue_id =
1742				cpu_to_le32(rx_qgrp->splitq.rxq_sets[j]->rxq.q_id);
1743				qc[k].type =
1744				cpu_to_le32(rx_qgrp->splitq.rxq_sets[j]->rxq.q_type);
1745			} else {
1746				qc[k].start_queue_id =
1747				cpu_to_le32(rx_qgrp->singleq.rxqs[j]->q_id);
1748				qc[k].type =
1749				cpu_to_le32(rx_qgrp->singleq.rxqs[j]->q_type);
1750			}
1751			qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1752		}
1753	}
1754	if (vport->num_rxq != k - (vport->num_txq + vport->num_complq))
1755		return -EINVAL;
1756
1757	if (!idpf_is_queue_model_split(vport->rxq_model))
1758		goto send_msg;
1759
1760	for (i = 0; i < vport->num_rxq_grp; i++) {
1761		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1762
1763		for (j = 0; j < vport->num_bufqs_per_qgrp; j++, k++) {
1764			struct idpf_queue *q;
1765
1766			q = &rx_qgrp->splitq.bufq_sets[j].bufq;
1767			qc[k].type = cpu_to_le32(q->q_type);
 
1768			qc[k].start_queue_id = cpu_to_le32(q->q_id);
1769			qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
1770		}
1771	}
1772	if (vport->num_bufq != k - (vport->num_txq +
1773				    vport->num_complq +
1774				    vport->num_rxq))
1775		return -EINVAL;
1776
1777send_msg:
1778	/* Chunk up the queue info into multiple messages */
1779	config_sz = sizeof(struct virtchnl2_del_ena_dis_queues);
1780	chunk_sz = sizeof(struct virtchnl2_queue_chunk);
1781
1782	num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1783			   num_q);
1784	num_msgs = DIV_ROUND_UP(num_q, num_chunks);
1785
1786	buf_sz = struct_size(eq, chunks.chunks, num_chunks);
1787	eq = kzalloc(buf_sz, GFP_KERNEL);
1788	if (!eq)
1789		return -ENOMEM;
1790
1791	if (ena) {
1792		xn_params.vc_op = VIRTCHNL2_OP_ENABLE_QUEUES;
1793		xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1794	} else {
1795		xn_params.vc_op = VIRTCHNL2_OP_DISABLE_QUEUES;
1796		xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1797	}
1798
1799	for (i = 0, k = 0; i < num_msgs; i++) {
1800		memset(eq, 0, buf_sz);
1801		eq->vport_id = cpu_to_le32(vport->vport_id);
1802		eq->chunks.num_chunks = cpu_to_le16(num_chunks);
1803		qcs = &eq->chunks;
1804		memcpy(qcs->chunks, &qc[k], chunk_sz * num_chunks);
1805
1806		xn_params.send_buf.iov_base = eq;
1807		xn_params.send_buf.iov_len = buf_sz;
1808		reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1809		if (reply_sz < 0)
1810			return reply_sz;
1811
1812		k += num_chunks;
1813		num_q -= num_chunks;
1814		num_chunks = min(num_chunks, num_q);
1815		/* Recalculate buffer size */
1816		buf_sz = struct_size(eq, chunks.chunks, num_chunks);
1817	}
1818
1819	return 0;
1820}
1821
1822/**
1823 * idpf_send_map_unmap_queue_vector_msg - Send virtchnl map or unmap queue
1824 * vector message
1825 * @vport: virtual port data structure
1826 * @map: true for map and false for unmap
1827 *
1828 * Send map or unmap queue vector virtchnl message.  Returns 0 on success,
1829 * negative on failure.
1830 */
1831int idpf_send_map_unmap_queue_vector_msg(struct idpf_vport *vport, bool map)
1832{
1833	struct virtchnl2_queue_vector_maps *vqvm __free(kfree) = NULL;
1834	struct virtchnl2_queue_vector *vqv __free(kfree) = NULL;
1835	struct idpf_vc_xn_params xn_params = {};
1836	u32 config_sz, chunk_sz, buf_sz;
1837	u32 num_msgs, num_chunks, num_q;
1838	ssize_t reply_sz;
1839	int i, j, k = 0;
1840
1841	num_q = vport->num_txq + vport->num_rxq;
1842
1843	buf_sz = sizeof(struct virtchnl2_queue_vector) * num_q;
1844	vqv = kzalloc(buf_sz, GFP_KERNEL);
1845	if (!vqv)
1846		return -ENOMEM;
1847
1848	for (i = 0; i < vport->num_txq_grp; i++) {
1849		struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
1850
1851		for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
1852			vqv[k].queue_type = cpu_to_le32(tx_qgrp->txqs[j]->q_type);
 
1853			vqv[k].queue_id = cpu_to_le32(tx_qgrp->txqs[j]->q_id);
1854
1855			if (idpf_is_queue_model_split(vport->txq_model)) {
1856				vqv[k].vector_id =
1857				cpu_to_le16(tx_qgrp->complq->q_vector->v_idx);
1858				vqv[k].itr_idx =
1859				cpu_to_le32(tx_qgrp->complq->q_vector->tx_itr_idx);
1860			} else {
1861				vqv[k].vector_id =
1862				cpu_to_le16(tx_qgrp->txqs[j]->q_vector->v_idx);
1863				vqv[k].itr_idx =
1864				cpu_to_le32(tx_qgrp->txqs[j]->q_vector->tx_itr_idx);
1865			}
1866		}
1867	}
1868
1869	if (vport->num_txq != k)
1870		return -EINVAL;
1871
1872	for (i = 0; i < vport->num_rxq_grp; i++) {
1873		struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
1874		u16 num_rxq;
1875
1876		if (idpf_is_queue_model_split(vport->rxq_model))
1877			num_rxq = rx_qgrp->splitq.num_rxq_sets;
1878		else
1879			num_rxq = rx_qgrp->singleq.num_rxq;
1880
1881		for (j = 0; j < num_rxq; j++, k++) {
1882			struct idpf_queue *rxq;
1883
1884			if (idpf_is_queue_model_split(vport->rxq_model))
1885				rxq = &rx_qgrp->splitq.rxq_sets[j]->rxq;
1886			else
1887				rxq = rx_qgrp->singleq.rxqs[j];
1888
1889			vqv[k].queue_type = cpu_to_le32(rxq->q_type);
 
1890			vqv[k].queue_id = cpu_to_le32(rxq->q_id);
1891			vqv[k].vector_id = cpu_to_le16(rxq->q_vector->v_idx);
1892			vqv[k].itr_idx = cpu_to_le32(rxq->q_vector->rx_itr_idx);
1893		}
1894	}
1895
1896	if (idpf_is_queue_model_split(vport->txq_model)) {
1897		if (vport->num_rxq != k - vport->num_complq)
1898			return -EINVAL;
1899	} else {
1900		if (vport->num_rxq != k - vport->num_txq)
1901			return -EINVAL;
1902	}
1903
1904	/* Chunk up the vector info into multiple messages */
1905	config_sz = sizeof(struct virtchnl2_queue_vector_maps);
1906	chunk_sz = sizeof(struct virtchnl2_queue_vector);
1907
1908	num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
1909			   num_q);
1910	num_msgs = DIV_ROUND_UP(num_q, num_chunks);
1911
1912	buf_sz = struct_size(vqvm, qv_maps, num_chunks);
1913	vqvm = kzalloc(buf_sz, GFP_KERNEL);
1914	if (!vqvm)
1915		return -ENOMEM;
1916
1917	if (map) {
1918		xn_params.vc_op = VIRTCHNL2_OP_MAP_QUEUE_VECTOR;
1919		xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
1920	} else {
1921		xn_params.vc_op = VIRTCHNL2_OP_UNMAP_QUEUE_VECTOR;
1922		xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
1923	}
1924
1925	for (i = 0, k = 0; i < num_msgs; i++) {
1926		memset(vqvm, 0, buf_sz);
1927		xn_params.send_buf.iov_base = vqvm;
1928		xn_params.send_buf.iov_len = buf_sz;
1929		vqvm->vport_id = cpu_to_le32(vport->vport_id);
1930		vqvm->num_qv_maps = cpu_to_le16(num_chunks);
1931		memcpy(vqvm->qv_maps, &vqv[k], chunk_sz * num_chunks);
1932
1933		reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
1934		if (reply_sz < 0)
1935			return reply_sz;
1936
1937		k += num_chunks;
1938		num_q -= num_chunks;
1939		num_chunks = min(num_chunks, num_q);
1940		/* Recalculate buffer size */
1941		buf_sz = struct_size(vqvm, qv_maps, num_chunks);
1942	}
1943
1944	return 0;
1945}
1946
1947/**
1948 * idpf_send_enable_queues_msg - send enable queues virtchnl message
1949 * @vport: Virtual port private data structure
1950 *
1951 * Will send enable queues virtchnl message.  Returns 0 on success, negative on
1952 * failure.
1953 */
1954int idpf_send_enable_queues_msg(struct idpf_vport *vport)
1955{
1956	return idpf_send_ena_dis_queues_msg(vport, true);
1957}
1958
1959/**
1960 * idpf_send_disable_queues_msg - send disable queues virtchnl message
1961 * @vport: Virtual port private data structure
1962 *
1963 * Will send disable queues virtchnl message.  Returns 0 on success, negative
1964 * on failure.
1965 */
1966int idpf_send_disable_queues_msg(struct idpf_vport *vport)
1967{
1968	int err, i;
1969
1970	err = idpf_send_ena_dis_queues_msg(vport, false);
1971	if (err)
1972		return err;
1973
1974	/* switch to poll mode as interrupts will be disabled after disable
1975	 * queues virtchnl message is sent
1976	 */
1977	for (i = 0; i < vport->num_txq; i++)
1978		set_bit(__IDPF_Q_POLL_MODE, vport->txqs[i]->flags);
1979
1980	/* schedule the napi to receive all the marker packets */
1981	local_bh_disable();
1982	for (i = 0; i < vport->num_q_vectors; i++)
1983		napi_schedule(&vport->q_vectors[i].napi);
1984	local_bh_enable();
1985
1986	return idpf_wait_for_marker_event(vport);
1987}
1988
1989/**
1990 * idpf_convert_reg_to_queue_chunks - Copy queue chunk information to the right
1991 * structure
1992 * @dchunks: Destination chunks to store data to
1993 * @schunks: Source chunks to copy data from
1994 * @num_chunks: number of chunks to copy
1995 */
1996static void idpf_convert_reg_to_queue_chunks(struct virtchnl2_queue_chunk *dchunks,
1997					     struct virtchnl2_queue_reg_chunk *schunks,
1998					     u16 num_chunks)
1999{
2000	u16 i;
2001
2002	for (i = 0; i < num_chunks; i++) {
2003		dchunks[i].type = schunks[i].type;
2004		dchunks[i].start_queue_id = schunks[i].start_queue_id;
2005		dchunks[i].num_queues = schunks[i].num_queues;
2006	}
2007}
2008
2009/**
2010 * idpf_send_delete_queues_msg - send delete queues virtchnl message
2011 * @vport: Virtual port private data structure
2012 *
2013 * Will send delete queues virtchnl message. Return 0 on success, negative on
2014 * failure.
2015 */
2016int idpf_send_delete_queues_msg(struct idpf_vport *vport)
2017{
2018	struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
2019	struct virtchnl2_create_vport *vport_params;
2020	struct virtchnl2_queue_reg_chunks *chunks;
2021	struct idpf_vc_xn_params xn_params = {};
2022	struct idpf_vport_config *vport_config;
2023	u16 vport_idx = vport->idx;
2024	ssize_t reply_sz;
2025	u16 num_chunks;
2026	int buf_size;
2027
2028	vport_config = vport->adapter->vport_config[vport_idx];
2029	if (vport_config->req_qs_chunks) {
2030		chunks = &vport_config->req_qs_chunks->chunks;
2031	} else {
2032		vport_params = vport->adapter->vport_params_recvd[vport_idx];
2033		chunks = &vport_params->chunks;
2034	}
2035
2036	num_chunks = le16_to_cpu(chunks->num_chunks);
2037	buf_size = struct_size(eq, chunks.chunks, num_chunks);
2038
2039	eq = kzalloc(buf_size, GFP_KERNEL);
2040	if (!eq)
2041		return -ENOMEM;
2042
2043	eq->vport_id = cpu_to_le32(vport->vport_id);
2044	eq->chunks.num_chunks = cpu_to_le16(num_chunks);
2045
2046	idpf_convert_reg_to_queue_chunks(eq->chunks.chunks, chunks->chunks,
2047					 num_chunks);
2048
2049	xn_params.vc_op = VIRTCHNL2_OP_DEL_QUEUES;
2050	xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
2051	xn_params.send_buf.iov_base = eq;
2052	xn_params.send_buf.iov_len = buf_size;
2053	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2054
2055	return reply_sz < 0 ? reply_sz : 0;
2056}
2057
2058/**
2059 * idpf_send_config_queues_msg - Send config queues virtchnl message
2060 * @vport: Virtual port private data structure
2061 *
2062 * Will send config queues virtchnl message. Returns 0 on success, negative on
2063 * failure.
2064 */
2065int idpf_send_config_queues_msg(struct idpf_vport *vport)
2066{
2067	int err;
2068
2069	err = idpf_send_config_tx_queues_msg(vport);
2070	if (err)
2071		return err;
2072
2073	return idpf_send_config_rx_queues_msg(vport);
2074}
2075
2076/**
2077 * idpf_send_add_queues_msg - Send virtchnl add queues message
2078 * @vport: Virtual port private data structure
2079 * @num_tx_q: number of transmit queues
2080 * @num_complq: number of transmit completion queues
2081 * @num_rx_q: number of receive queues
2082 * @num_rx_bufq: number of receive buffer queues
2083 *
2084 * Returns 0 on success, negative on failure. vport _MUST_ be const here as
2085 * we should not change any fields within vport itself in this function.
2086 */
2087int idpf_send_add_queues_msg(const struct idpf_vport *vport, u16 num_tx_q,
2088			     u16 num_complq, u16 num_rx_q, u16 num_rx_bufq)
2089{
2090	struct virtchnl2_add_queues *vc_msg __free(kfree) = NULL;
2091	struct idpf_vc_xn_params xn_params = {};
2092	struct idpf_vport_config *vport_config;
2093	struct virtchnl2_add_queues aq = {};
2094	u16 vport_idx = vport->idx;
2095	ssize_t reply_sz;
2096	int size;
2097
2098	vc_msg = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2099	if (!vc_msg)
2100		return -ENOMEM;
2101
2102	vport_config = vport->adapter->vport_config[vport_idx];
2103	kfree(vport_config->req_qs_chunks);
2104	vport_config->req_qs_chunks = NULL;
2105
2106	aq.vport_id = cpu_to_le32(vport->vport_id);
2107	aq.num_tx_q = cpu_to_le16(num_tx_q);
2108	aq.num_tx_complq = cpu_to_le16(num_complq);
2109	aq.num_rx_q = cpu_to_le16(num_rx_q);
2110	aq.num_rx_bufq = cpu_to_le16(num_rx_bufq);
2111
2112	xn_params.vc_op = VIRTCHNL2_OP_ADD_QUEUES;
2113	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2114	xn_params.send_buf.iov_base = &aq;
2115	xn_params.send_buf.iov_len = sizeof(aq);
2116	xn_params.recv_buf.iov_base = vc_msg;
2117	xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2118	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2119	if (reply_sz < 0)
2120		return reply_sz;
2121
2122	/* compare vc_msg num queues with vport num queues */
2123	if (le16_to_cpu(vc_msg->num_tx_q) != num_tx_q ||
2124	    le16_to_cpu(vc_msg->num_rx_q) != num_rx_q ||
2125	    le16_to_cpu(vc_msg->num_tx_complq) != num_complq ||
2126	    le16_to_cpu(vc_msg->num_rx_bufq) != num_rx_bufq)
2127		return -EINVAL;
2128
2129	size = struct_size(vc_msg, chunks.chunks,
2130			   le16_to_cpu(vc_msg->chunks.num_chunks));
2131	if (reply_sz < size)
2132		return -EIO;
2133
2134	vport_config->req_qs_chunks = kmemdup(vc_msg, size, GFP_KERNEL);
2135	if (!vport_config->req_qs_chunks)
2136		return -ENOMEM;
2137
2138	return 0;
2139}
2140
2141/**
2142 * idpf_send_alloc_vectors_msg - Send virtchnl alloc vectors message
2143 * @adapter: Driver specific private structure
2144 * @num_vectors: number of vectors to be allocated
2145 *
2146 * Returns 0 on success, negative on failure.
2147 */
2148int idpf_send_alloc_vectors_msg(struct idpf_adapter *adapter, u16 num_vectors)
2149{
2150	struct virtchnl2_alloc_vectors *rcvd_vec __free(kfree) = NULL;
2151	struct idpf_vc_xn_params xn_params = {};
2152	struct virtchnl2_alloc_vectors ac = {};
2153	ssize_t reply_sz;
2154	u16 num_vchunks;
2155	int size;
2156
2157	ac.num_vectors = cpu_to_le16(num_vectors);
2158
2159	rcvd_vec = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2160	if (!rcvd_vec)
2161		return -ENOMEM;
2162
2163	xn_params.vc_op = VIRTCHNL2_OP_ALLOC_VECTORS;
2164	xn_params.send_buf.iov_base = &ac;
2165	xn_params.send_buf.iov_len = sizeof(ac);
2166	xn_params.recv_buf.iov_base = rcvd_vec;
2167	xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2168	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2169	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2170	if (reply_sz < 0)
2171		return reply_sz;
2172
2173	num_vchunks = le16_to_cpu(rcvd_vec->vchunks.num_vchunks);
2174	size = struct_size(rcvd_vec, vchunks.vchunks, num_vchunks);
2175	if (reply_sz < size)
2176		return -EIO;
2177
2178	if (size > IDPF_CTLQ_MAX_BUF_LEN)
2179		return -EINVAL;
2180
2181	kfree(adapter->req_vec_chunks);
2182	adapter->req_vec_chunks = kmemdup(rcvd_vec, size, GFP_KERNEL);
2183	if (!adapter->req_vec_chunks)
2184		return -ENOMEM;
2185
2186	if (le16_to_cpu(adapter->req_vec_chunks->num_vectors) < num_vectors) {
2187		kfree(adapter->req_vec_chunks);
2188		adapter->req_vec_chunks = NULL;
2189		return -EINVAL;
2190	}
2191
2192	return 0;
2193}
2194
2195/**
2196 * idpf_send_dealloc_vectors_msg - Send virtchnl de allocate vectors message
2197 * @adapter: Driver specific private structure
2198 *
2199 * Returns 0 on success, negative on failure.
2200 */
2201int idpf_send_dealloc_vectors_msg(struct idpf_adapter *adapter)
2202{
2203	struct virtchnl2_alloc_vectors *ac = adapter->req_vec_chunks;
2204	struct virtchnl2_vector_chunks *vcs = &ac->vchunks;
2205	struct idpf_vc_xn_params xn_params = {};
2206	ssize_t reply_sz;
2207	int buf_size;
2208
2209	buf_size = struct_size(vcs, vchunks, le16_to_cpu(vcs->num_vchunks));
2210
2211	xn_params.vc_op = VIRTCHNL2_OP_DEALLOC_VECTORS;
2212	xn_params.send_buf.iov_base = vcs;
2213	xn_params.send_buf.iov_len = buf_size;
2214	xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
2215	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2216	if (reply_sz < 0)
2217		return reply_sz;
2218
2219	kfree(adapter->req_vec_chunks);
2220	adapter->req_vec_chunks = NULL;
2221
2222	return 0;
2223}
2224
2225/**
2226 * idpf_get_max_vfs - Get max number of vfs supported
2227 * @adapter: Driver specific private structure
2228 *
2229 * Returns max number of VFs
2230 */
2231static int idpf_get_max_vfs(struct idpf_adapter *adapter)
2232{
2233	return le16_to_cpu(adapter->caps.max_sriov_vfs);
2234}
2235
2236/**
2237 * idpf_send_set_sriov_vfs_msg - Send virtchnl set sriov vfs message
2238 * @adapter: Driver specific private structure
2239 * @num_vfs: number of virtual functions to be created
2240 *
2241 * Returns 0 on success, negative on failure.
2242 */
2243int idpf_send_set_sriov_vfs_msg(struct idpf_adapter *adapter, u16 num_vfs)
2244{
2245	struct virtchnl2_sriov_vfs_info svi = {};
2246	struct idpf_vc_xn_params xn_params = {};
2247	ssize_t reply_sz;
2248
2249	svi.num_vfs = cpu_to_le16(num_vfs);
2250	xn_params.vc_op = VIRTCHNL2_OP_SET_SRIOV_VFS;
2251	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2252	xn_params.send_buf.iov_base = &svi;
2253	xn_params.send_buf.iov_len = sizeof(svi);
2254	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2255
2256	return reply_sz < 0 ? reply_sz : 0;
2257}
2258
2259/**
2260 * idpf_send_get_stats_msg - Send virtchnl get statistics message
2261 * @vport: vport to get stats for
2262 *
2263 * Returns 0 on success, negative on failure.
2264 */
2265int idpf_send_get_stats_msg(struct idpf_vport *vport)
2266{
2267	struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
2268	struct rtnl_link_stats64 *netstats = &np->netstats;
2269	struct virtchnl2_vport_stats stats_msg = {};
2270	struct idpf_vc_xn_params xn_params = {};
2271	ssize_t reply_sz;
2272
2273
2274	/* Don't send get_stats message if the link is down */
2275	if (np->state <= __IDPF_VPORT_DOWN)
2276		return 0;
2277
2278	stats_msg.vport_id = cpu_to_le32(vport->vport_id);
2279
2280	xn_params.vc_op = VIRTCHNL2_OP_GET_STATS;
2281	xn_params.send_buf.iov_base = &stats_msg;
2282	xn_params.send_buf.iov_len = sizeof(stats_msg);
2283	xn_params.recv_buf = xn_params.send_buf;
2284	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2285
2286	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2287	if (reply_sz < 0)
2288		return reply_sz;
2289	if (reply_sz < sizeof(stats_msg))
2290		return -EIO;
2291
2292	spin_lock_bh(&np->stats_lock);
2293
2294	netstats->rx_packets = le64_to_cpu(stats_msg.rx_unicast) +
2295			       le64_to_cpu(stats_msg.rx_multicast) +
2296			       le64_to_cpu(stats_msg.rx_broadcast);
2297	netstats->tx_packets = le64_to_cpu(stats_msg.tx_unicast) +
2298			       le64_to_cpu(stats_msg.tx_multicast) +
2299			       le64_to_cpu(stats_msg.tx_broadcast);
2300	netstats->rx_bytes = le64_to_cpu(stats_msg.rx_bytes);
2301	netstats->tx_bytes = le64_to_cpu(stats_msg.tx_bytes);
2302	netstats->rx_errors = le64_to_cpu(stats_msg.rx_errors);
2303	netstats->tx_errors = le64_to_cpu(stats_msg.tx_errors);
2304	netstats->rx_dropped = le64_to_cpu(stats_msg.rx_discards);
2305	netstats->tx_dropped = le64_to_cpu(stats_msg.tx_discards);
2306
2307	vport->port_stats.vport_stats = stats_msg;
2308
2309	spin_unlock_bh(&np->stats_lock);
2310
2311	return 0;
2312}
2313
2314/**
2315 * idpf_send_get_set_rss_lut_msg - Send virtchnl get or set rss lut message
2316 * @vport: virtual port data structure
2317 * @get: flag to set or get rss look up table
2318 *
2319 * Returns 0 on success, negative on failure.
2320 */
2321int idpf_send_get_set_rss_lut_msg(struct idpf_vport *vport, bool get)
2322{
2323	struct virtchnl2_rss_lut *recv_rl __free(kfree) = NULL;
2324	struct virtchnl2_rss_lut *rl __free(kfree) = NULL;
2325	struct idpf_vc_xn_params xn_params = {};
2326	struct idpf_rss_data *rss_data;
2327	int buf_size, lut_buf_size;
2328	ssize_t reply_sz;
2329	int i;
2330
2331	rss_data =
2332		&vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2333	buf_size = struct_size(rl, lut, rss_data->rss_lut_size);
2334	rl = kzalloc(buf_size, GFP_KERNEL);
2335	if (!rl)
2336		return -ENOMEM;
2337
2338	rl->vport_id = cpu_to_le32(vport->vport_id);
2339
2340	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2341	xn_params.send_buf.iov_base = rl;
2342	xn_params.send_buf.iov_len = buf_size;
2343
2344	if (get) {
2345		recv_rl = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2346		if (!recv_rl)
2347			return -ENOMEM;
2348		xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_LUT;
2349		xn_params.recv_buf.iov_base = recv_rl;
2350		xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2351	} else {
2352		rl->lut_entries = cpu_to_le16(rss_data->rss_lut_size);
2353		for (i = 0; i < rss_data->rss_lut_size; i++)
2354			rl->lut[i] = cpu_to_le32(rss_data->rss_lut[i]);
2355
2356		xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_LUT;
2357	}
2358	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2359	if (reply_sz < 0)
2360		return reply_sz;
2361	if (!get)
2362		return 0;
2363	if (reply_sz < sizeof(struct virtchnl2_rss_lut))
2364		return -EIO;
2365
2366	lut_buf_size = le16_to_cpu(recv_rl->lut_entries) * sizeof(u32);
2367	if (reply_sz < lut_buf_size)
2368		return -EIO;
2369
2370	/* size didn't change, we can reuse existing lut buf */
2371	if (rss_data->rss_lut_size == le16_to_cpu(recv_rl->lut_entries))
2372		goto do_memcpy;
2373
2374	rss_data->rss_lut_size = le16_to_cpu(recv_rl->lut_entries);
2375	kfree(rss_data->rss_lut);
2376
2377	rss_data->rss_lut = kzalloc(lut_buf_size, GFP_KERNEL);
2378	if (!rss_data->rss_lut) {
2379		rss_data->rss_lut_size = 0;
2380		return -ENOMEM;
2381	}
2382
2383do_memcpy:
2384	memcpy(rss_data->rss_lut, recv_rl->lut, rss_data->rss_lut_size);
2385
2386	return 0;
2387}
2388
2389/**
2390 * idpf_send_get_set_rss_key_msg - Send virtchnl get or set rss key message
2391 * @vport: virtual port data structure
2392 * @get: flag to set or get rss look up table
2393 *
2394 * Returns 0 on success, negative on failure
2395 */
2396int idpf_send_get_set_rss_key_msg(struct idpf_vport *vport, bool get)
2397{
2398	struct virtchnl2_rss_key *recv_rk __free(kfree) = NULL;
2399	struct virtchnl2_rss_key *rk __free(kfree) = NULL;
2400	struct idpf_vc_xn_params xn_params = {};
2401	struct idpf_rss_data *rss_data;
2402	ssize_t reply_sz;
2403	int i, buf_size;
2404	u16 key_size;
2405
2406	rss_data =
2407		&vport->adapter->vport_config[vport->idx]->user_config.rss_data;
2408	buf_size = struct_size(rk, key_flex, rss_data->rss_key_size);
2409	rk = kzalloc(buf_size, GFP_KERNEL);
2410	if (!rk)
2411		return -ENOMEM;
2412
2413	rk->vport_id = cpu_to_le32(vport->vport_id);
2414	xn_params.send_buf.iov_base = rk;
2415	xn_params.send_buf.iov_len = buf_size;
2416	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2417	if (get) {
2418		recv_rk = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2419		if (!recv_rk)
2420			return -ENOMEM;
2421
2422		xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_KEY;
2423		xn_params.recv_buf.iov_base = recv_rk;
2424		xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2425	} else {
2426		rk->key_len = cpu_to_le16(rss_data->rss_key_size);
2427		for (i = 0; i < rss_data->rss_key_size; i++)
2428			rk->key_flex[i] = rss_data->rss_key[i];
2429
2430		xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_KEY;
2431	}
2432
2433	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2434	if (reply_sz < 0)
2435		return reply_sz;
2436	if (!get)
2437		return 0;
2438	if (reply_sz < sizeof(struct virtchnl2_rss_key))
2439		return -EIO;
2440
2441	key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
2442			 le16_to_cpu(recv_rk->key_len));
2443	if (reply_sz < key_size)
2444		return -EIO;
2445
2446	/* key len didn't change, reuse existing buf */
2447	if (rss_data->rss_key_size == key_size)
2448		goto do_memcpy;
2449
2450	rss_data->rss_key_size = key_size;
2451	kfree(rss_data->rss_key);
2452	rss_data->rss_key = kzalloc(key_size, GFP_KERNEL);
2453	if (!rss_data->rss_key) {
2454		rss_data->rss_key_size = 0;
2455		return -ENOMEM;
2456	}
2457
2458do_memcpy:
2459	memcpy(rss_data->rss_key, recv_rk->key_flex, rss_data->rss_key_size);
2460
2461	return 0;
2462}
2463
2464/**
2465 * idpf_fill_ptype_lookup - Fill L3 specific fields in ptype lookup table
2466 * @ptype: ptype lookup table
2467 * @pstate: state machine for ptype lookup table
2468 * @ipv4: ipv4 or ipv6
2469 * @frag: fragmentation allowed
2470 *
2471 */
2472static void idpf_fill_ptype_lookup(struct idpf_rx_ptype_decoded *ptype,
2473				   struct idpf_ptype_state *pstate,
2474				   bool ipv4, bool frag)
2475{
2476	if (!pstate->outer_ip || !pstate->outer_frag) {
2477		ptype->outer_ip = IDPF_RX_PTYPE_OUTER_IP;
2478		pstate->outer_ip = true;
2479
2480		if (ipv4)
2481			ptype->outer_ip_ver = IDPF_RX_PTYPE_OUTER_IPV4;
2482		else
2483			ptype->outer_ip_ver = IDPF_RX_PTYPE_OUTER_IPV6;
2484
2485		if (frag) {
2486			ptype->outer_frag = IDPF_RX_PTYPE_FRAG;
2487			pstate->outer_frag = true;
2488		}
2489	} else {
2490		ptype->tunnel_type = IDPF_RX_PTYPE_TUNNEL_IP_IP;
2491		pstate->tunnel_state = IDPF_PTYPE_TUNNEL_IP;
2492
2493		if (ipv4)
2494			ptype->tunnel_end_prot =
2495					IDPF_RX_PTYPE_TUNNEL_END_IPV4;
2496		else
2497			ptype->tunnel_end_prot =
2498					IDPF_RX_PTYPE_TUNNEL_END_IPV6;
2499
2500		if (frag)
2501			ptype->tunnel_end_frag = IDPF_RX_PTYPE_FRAG;
2502	}
2503}
2504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2505/**
2506 * idpf_send_get_rx_ptype_msg - Send virtchnl for ptype info
2507 * @vport: virtual port data structure
2508 *
2509 * Returns 0 on success, negative on failure.
2510 */
2511int idpf_send_get_rx_ptype_msg(struct idpf_vport *vport)
2512{
2513	struct virtchnl2_get_ptype_info *get_ptype_info __free(kfree) = NULL;
2514	struct virtchnl2_get_ptype_info *ptype_info __free(kfree) = NULL;
2515	struct idpf_rx_ptype_decoded *ptype_lkup = vport->rx_ptype_lkup;
2516	int max_ptype, ptypes_recvd = 0, ptype_offset;
2517	struct idpf_adapter *adapter = vport->adapter;
2518	struct idpf_vc_xn_params xn_params = {};
2519	u16 next_ptype_id = 0;
2520	ssize_t reply_sz;
2521	int i, j, k;
2522
 
 
 
2523	if (idpf_is_queue_model_split(vport->rxq_model))
2524		max_ptype = IDPF_RX_MAX_PTYPE;
2525	else
2526		max_ptype = IDPF_RX_MAX_BASE_PTYPE;
2527
2528	memset(vport->rx_ptype_lkup, 0, sizeof(vport->rx_ptype_lkup));
 
 
2529
2530	get_ptype_info = kzalloc(sizeof(*get_ptype_info), GFP_KERNEL);
2531	if (!get_ptype_info)
2532		return -ENOMEM;
2533
2534	ptype_info = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
2535	if (!ptype_info)
2536		return -ENOMEM;
2537
2538	xn_params.vc_op = VIRTCHNL2_OP_GET_PTYPE_INFO;
2539	xn_params.send_buf.iov_base = get_ptype_info;
2540	xn_params.send_buf.iov_len = sizeof(*get_ptype_info);
2541	xn_params.recv_buf.iov_base = ptype_info;
2542	xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
2543	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2544
2545	while (next_ptype_id < max_ptype) {
2546		get_ptype_info->start_ptype_id = cpu_to_le16(next_ptype_id);
2547
2548		if ((next_ptype_id + IDPF_RX_MAX_PTYPES_PER_BUF) > max_ptype)
2549			get_ptype_info->num_ptypes =
2550				cpu_to_le16(max_ptype - next_ptype_id);
2551		else
2552			get_ptype_info->num_ptypes =
2553				cpu_to_le16(IDPF_RX_MAX_PTYPES_PER_BUF);
2554
2555		reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
2556		if (reply_sz < 0)
2557			return reply_sz;
2558
2559		if (reply_sz < IDPF_CTLQ_MAX_BUF_LEN)
2560			return -EIO;
2561
2562		ptypes_recvd += le16_to_cpu(ptype_info->num_ptypes);
2563		if (ptypes_recvd > max_ptype)
2564			return -EINVAL;
2565
2566		next_ptype_id = le16_to_cpu(get_ptype_info->start_ptype_id) +
2567				le16_to_cpu(get_ptype_info->num_ptypes);
2568
2569		ptype_offset = IDPF_RX_PTYPE_HDR_SZ;
2570
2571		for (i = 0; i < le16_to_cpu(ptype_info->num_ptypes); i++) {
2572			struct idpf_ptype_state pstate = { };
2573			struct virtchnl2_ptype *ptype;
2574			u16 id;
2575
2576			ptype = (struct virtchnl2_ptype *)
2577					((u8 *)ptype_info + ptype_offset);
2578
2579			ptype_offset += IDPF_GET_PTYPE_SIZE(ptype);
2580			if (ptype_offset > IDPF_CTLQ_MAX_BUF_LEN)
2581				return -EINVAL;
2582
2583			/* 0xFFFF indicates end of ptypes */
2584			if (le16_to_cpu(ptype->ptype_id_10) ==
2585							IDPF_INVALID_PTYPE_ID)
2586				return 0;
2587
2588			if (idpf_is_queue_model_split(vport->rxq_model))
2589				k = le16_to_cpu(ptype->ptype_id_10);
2590			else
2591				k = ptype->ptype_id_8;
2592
2593			if (ptype->proto_id_count)
2594				ptype_lkup[k].known = 1;
2595
2596			for (j = 0; j < ptype->proto_id_count; j++) {
2597				id = le16_to_cpu(ptype->proto_id[j]);
2598				switch (id) {
2599				case VIRTCHNL2_PROTO_HDR_GRE:
2600					if (pstate.tunnel_state ==
2601							IDPF_PTYPE_TUNNEL_IP) {
2602						ptype_lkup[k].tunnel_type =
2603						IDPF_RX_PTYPE_TUNNEL_IP_GRENAT;
2604						pstate.tunnel_state |=
2605						IDPF_PTYPE_TUNNEL_IP_GRENAT;
2606					}
2607					break;
2608				case VIRTCHNL2_PROTO_HDR_MAC:
2609					ptype_lkup[k].outer_ip =
2610						IDPF_RX_PTYPE_OUTER_L2;
2611					if (pstate.tunnel_state ==
2612							IDPF_TUN_IP_GRE) {
2613						ptype_lkup[k].tunnel_type =
2614						IDPF_RX_PTYPE_TUNNEL_IP_GRENAT_MAC;
2615						pstate.tunnel_state |=
2616						IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC;
2617					}
2618					break;
2619				case VIRTCHNL2_PROTO_HDR_IPV4:
2620					idpf_fill_ptype_lookup(&ptype_lkup[k],
2621							       &pstate, true,
2622							       false);
2623					break;
2624				case VIRTCHNL2_PROTO_HDR_IPV6:
2625					idpf_fill_ptype_lookup(&ptype_lkup[k],
2626							       &pstate, false,
2627							       false);
2628					break;
2629				case VIRTCHNL2_PROTO_HDR_IPV4_FRAG:
2630					idpf_fill_ptype_lookup(&ptype_lkup[k],
2631							       &pstate, true,
2632							       true);
2633					break;
2634				case VIRTCHNL2_PROTO_HDR_IPV6_FRAG:
2635					idpf_fill_ptype_lookup(&ptype_lkup[k],
2636							       &pstate, false,
2637							       true);
2638					break;
2639				case VIRTCHNL2_PROTO_HDR_UDP:
2640					ptype_lkup[k].inner_prot =
2641					IDPF_RX_PTYPE_INNER_PROT_UDP;
2642					break;
2643				case VIRTCHNL2_PROTO_HDR_TCP:
2644					ptype_lkup[k].inner_prot =
2645					IDPF_RX_PTYPE_INNER_PROT_TCP;
2646					break;
2647				case VIRTCHNL2_PROTO_HDR_SCTP:
2648					ptype_lkup[k].inner_prot =
2649					IDPF_RX_PTYPE_INNER_PROT_SCTP;
2650					break;
2651				case VIRTCHNL2_PROTO_HDR_ICMP:
2652					ptype_lkup[k].inner_prot =
2653					IDPF_RX_PTYPE_INNER_PROT_ICMP;
2654					break;
2655				case VIRTCHNL2_PROTO_HDR_PAY:
2656					ptype_lkup[k].payload_layer =
2657						IDPF_RX_PTYPE_PAYLOAD_LAYER_PAY2;
2658					break;
2659				case VIRTCHNL2_PROTO_HDR_ICMPV6:
2660				case VIRTCHNL2_PROTO_HDR_IPV6_EH:
2661				case VIRTCHNL2_PROTO_HDR_PRE_MAC:
2662				case VIRTCHNL2_PROTO_HDR_POST_MAC:
2663				case VIRTCHNL2_PROTO_HDR_ETHERTYPE:
2664				case VIRTCHNL2_PROTO_HDR_SVLAN:
2665				case VIRTCHNL2_PROTO_HDR_CVLAN:
2666				case VIRTCHNL2_PROTO_HDR_MPLS:
2667				case VIRTCHNL2_PROTO_HDR_MMPLS:
2668				case VIRTCHNL2_PROTO_HDR_PTP:
2669				case VIRTCHNL2_PROTO_HDR_CTRL:
2670				case VIRTCHNL2_PROTO_HDR_LLDP:
2671				case VIRTCHNL2_PROTO_HDR_ARP:
2672				case VIRTCHNL2_PROTO_HDR_ECP:
2673				case VIRTCHNL2_PROTO_HDR_EAPOL:
2674				case VIRTCHNL2_PROTO_HDR_PPPOD:
2675				case VIRTCHNL2_PROTO_HDR_PPPOE:
2676				case VIRTCHNL2_PROTO_HDR_IGMP:
2677				case VIRTCHNL2_PROTO_HDR_AH:
2678				case VIRTCHNL2_PROTO_HDR_ESP:
2679				case VIRTCHNL2_PROTO_HDR_IKE:
2680				case VIRTCHNL2_PROTO_HDR_NATT_KEEP:
2681				case VIRTCHNL2_PROTO_HDR_L2TPV2:
2682				case VIRTCHNL2_PROTO_HDR_L2TPV2_CONTROL:
2683				case VIRTCHNL2_PROTO_HDR_L2TPV3:
2684				case VIRTCHNL2_PROTO_HDR_GTP:
2685				case VIRTCHNL2_PROTO_HDR_GTP_EH:
2686				case VIRTCHNL2_PROTO_HDR_GTPCV2:
2687				case VIRTCHNL2_PROTO_HDR_GTPC_TEID:
2688				case VIRTCHNL2_PROTO_HDR_GTPU:
2689				case VIRTCHNL2_PROTO_HDR_GTPU_UL:
2690				case VIRTCHNL2_PROTO_HDR_GTPU_DL:
2691				case VIRTCHNL2_PROTO_HDR_ECPRI:
2692				case VIRTCHNL2_PROTO_HDR_VRRP:
2693				case VIRTCHNL2_PROTO_HDR_OSPF:
2694				case VIRTCHNL2_PROTO_HDR_TUN:
2695				case VIRTCHNL2_PROTO_HDR_NVGRE:
2696				case VIRTCHNL2_PROTO_HDR_VXLAN:
2697				case VIRTCHNL2_PROTO_HDR_VXLAN_GPE:
2698				case VIRTCHNL2_PROTO_HDR_GENEVE:
2699				case VIRTCHNL2_PROTO_HDR_NSH:
2700				case VIRTCHNL2_PROTO_HDR_QUIC:
2701				case VIRTCHNL2_PROTO_HDR_PFCP:
2702				case VIRTCHNL2_PROTO_HDR_PFCP_NODE:
2703				case VIRTCHNL2_PROTO_HDR_PFCP_SESSION:
2704				case VIRTCHNL2_PROTO_HDR_RTP:
2705				case VIRTCHNL2_PROTO_HDR_NO_PROTO:
2706					break;
2707				default:
2708					break;
2709				}
2710			}
 
 
2711		}
2712	}
2713
 
 
 
2714	return 0;
2715}
2716
2717/**
2718 * idpf_send_ena_dis_loopback_msg - Send virtchnl enable/disable loopback
2719 *				    message
2720 * @vport: virtual port data structure
2721 *
2722 * Returns 0 on success, negative on failure.
2723 */
2724int idpf_send_ena_dis_loopback_msg(struct idpf_vport *vport)
2725{
2726	struct idpf_vc_xn_params xn_params = {};
2727	struct virtchnl2_loopback loopback;
2728	ssize_t reply_sz;
2729
2730	loopback.vport_id = cpu_to_le32(vport->vport_id);
2731	loopback.enable = idpf_is_feature_ena(vport, NETIF_F_LOOPBACK);
2732
2733	xn_params.vc_op = VIRTCHNL2_OP_LOOPBACK;
2734	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
2735	xn_params.send_buf.iov_base = &loopback;
2736	xn_params.send_buf.iov_len = sizeof(loopback);
2737	reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
2738
2739	return reply_sz < 0 ? reply_sz : 0;
2740}
2741
2742/**
2743 * idpf_find_ctlq - Given a type and id, find ctlq info
2744 * @hw: hardware struct
2745 * @type: type of ctrlq to find
2746 * @id: ctlq id to find
2747 *
2748 * Returns pointer to found ctlq info struct, NULL otherwise.
2749 */
2750static struct idpf_ctlq_info *idpf_find_ctlq(struct idpf_hw *hw,
2751					     enum idpf_ctlq_type type, int id)
2752{
2753	struct idpf_ctlq_info *cq, *tmp;
2754
2755	list_for_each_entry_safe(cq, tmp, &hw->cq_list_head, cq_list)
2756		if (cq->q_id == id && cq->cq_type == type)
2757			return cq;
2758
2759	return NULL;
2760}
2761
2762/**
2763 * idpf_init_dflt_mbx - Setup default mailbox parameters and make request
2764 * @adapter: adapter info struct
2765 *
2766 * Returns 0 on success, negative otherwise
2767 */
2768int idpf_init_dflt_mbx(struct idpf_adapter *adapter)
2769{
2770	struct idpf_ctlq_create_info ctlq_info[] = {
2771		{
2772			.type = IDPF_CTLQ_TYPE_MAILBOX_TX,
2773			.id = IDPF_DFLT_MBX_ID,
2774			.len = IDPF_DFLT_MBX_Q_LEN,
2775			.buf_size = IDPF_CTLQ_MAX_BUF_LEN
2776		},
2777		{
2778			.type = IDPF_CTLQ_TYPE_MAILBOX_RX,
2779			.id = IDPF_DFLT_MBX_ID,
2780			.len = IDPF_DFLT_MBX_Q_LEN,
2781			.buf_size = IDPF_CTLQ_MAX_BUF_LEN
2782		}
2783	};
2784	struct idpf_hw *hw = &adapter->hw;
2785	int err;
2786
2787	adapter->dev_ops.reg_ops.ctlq_reg_init(ctlq_info);
2788
2789	err = idpf_ctlq_init(hw, IDPF_NUM_DFLT_MBX_Q, ctlq_info);
2790	if (err)
2791		return err;
2792
2793	hw->asq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_TX,
2794				 IDPF_DFLT_MBX_ID);
2795	hw->arq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_RX,
2796				 IDPF_DFLT_MBX_ID);
2797
2798	if (!hw->asq || !hw->arq) {
2799		idpf_ctlq_deinit(hw);
2800
2801		return -ENOENT;
2802	}
2803
2804	adapter->state = __IDPF_VER_CHECK;
2805
2806	return 0;
2807}
2808
2809/**
2810 * idpf_deinit_dflt_mbx - Free up ctlqs setup
2811 * @adapter: Driver specific private data structure
2812 */
2813void idpf_deinit_dflt_mbx(struct idpf_adapter *adapter)
2814{
2815	if (adapter->hw.arq && adapter->hw.asq) {
2816		idpf_mb_clean(adapter);
2817		idpf_ctlq_deinit(&adapter->hw);
2818	}
2819	adapter->hw.arq = NULL;
2820	adapter->hw.asq = NULL;
2821}
2822
2823/**
2824 * idpf_vport_params_buf_rel - Release memory for MailBox resources
2825 * @adapter: Driver specific private data structure
2826 *
2827 * Will release memory to hold the vport parameters received on MailBox
2828 */
2829static void idpf_vport_params_buf_rel(struct idpf_adapter *adapter)
2830{
2831	kfree(adapter->vport_params_recvd);
2832	adapter->vport_params_recvd = NULL;
2833	kfree(adapter->vport_params_reqd);
2834	adapter->vport_params_reqd = NULL;
2835	kfree(adapter->vport_ids);
2836	adapter->vport_ids = NULL;
2837}
2838
2839/**
2840 * idpf_vport_params_buf_alloc - Allocate memory for MailBox resources
2841 * @adapter: Driver specific private data structure
2842 *
2843 * Will alloc memory to hold the vport parameters received on MailBox
2844 */
2845static int idpf_vport_params_buf_alloc(struct idpf_adapter *adapter)
2846{
2847	u16 num_max_vports = idpf_get_max_vports(adapter);
2848
2849	adapter->vport_params_reqd = kcalloc(num_max_vports,
2850					     sizeof(*adapter->vport_params_reqd),
2851					     GFP_KERNEL);
2852	if (!adapter->vport_params_reqd)
2853		return -ENOMEM;
2854
2855	adapter->vport_params_recvd = kcalloc(num_max_vports,
2856					      sizeof(*adapter->vport_params_recvd),
2857					      GFP_KERNEL);
2858	if (!adapter->vport_params_recvd)
2859		goto err_mem;
2860
2861	adapter->vport_ids = kcalloc(num_max_vports, sizeof(u32), GFP_KERNEL);
2862	if (!adapter->vport_ids)
2863		goto err_mem;
2864
2865	if (adapter->vport_config)
2866		return 0;
2867
2868	adapter->vport_config = kcalloc(num_max_vports,
2869					sizeof(*adapter->vport_config),
2870					GFP_KERNEL);
2871	if (!adapter->vport_config)
2872		goto err_mem;
2873
2874	return 0;
2875
2876err_mem:
2877	idpf_vport_params_buf_rel(adapter);
2878
2879	return -ENOMEM;
2880}
2881
2882/**
2883 * idpf_vc_core_init - Initialize state machine and get driver specific
2884 * resources
2885 * @adapter: Driver specific private structure
2886 *
2887 * This function will initialize the state machine and request all necessary
2888 * resources required by the device driver. Once the state machine is
2889 * initialized, allocate memory to store vport specific information and also
2890 * requests required interrupts.
2891 *
2892 * Returns 0 on success, -EAGAIN function will get called again,
2893 * otherwise negative on failure.
2894 */
2895int idpf_vc_core_init(struct idpf_adapter *adapter)
2896{
2897	int task_delay = 30;
2898	u16 num_max_vports;
2899	int err = 0;
2900
2901	if (!adapter->vcxn_mngr) {
2902		adapter->vcxn_mngr = kzalloc(sizeof(*adapter->vcxn_mngr), GFP_KERNEL);
2903		if (!adapter->vcxn_mngr) {
2904			err = -ENOMEM;
2905			goto init_failed;
2906		}
2907	}
2908	idpf_vc_xn_init(adapter->vcxn_mngr);
2909
2910	while (adapter->state != __IDPF_INIT_SW) {
2911		switch (adapter->state) {
2912		case __IDPF_VER_CHECK:
2913			err = idpf_send_ver_msg(adapter);
2914			switch (err) {
2915			case 0:
2916				/* success, move state machine forward */
2917				adapter->state = __IDPF_GET_CAPS;
2918				fallthrough;
2919			case -EAGAIN:
2920				goto restart;
2921			default:
2922				/* Something bad happened, try again but only a
2923				 * few times.
2924				 */
2925				goto init_failed;
2926			}
2927		case __IDPF_GET_CAPS:
2928			err = idpf_send_get_caps_msg(adapter);
2929			if (err)
2930				goto init_failed;
2931			adapter->state = __IDPF_INIT_SW;
2932			break;
2933		default:
2934			dev_err(&adapter->pdev->dev, "Device is in bad state: %d\n",
2935				adapter->state);
2936			err = -EINVAL;
2937			goto init_failed;
2938		}
2939		break;
2940restart:
2941		/* Give enough time before proceeding further with
2942		 * state machine
2943		 */
2944		msleep(task_delay);
2945	}
2946
2947	pci_sriov_set_totalvfs(adapter->pdev, idpf_get_max_vfs(adapter));
2948	num_max_vports = idpf_get_max_vports(adapter);
2949	adapter->max_vports = num_max_vports;
2950	adapter->vports = kcalloc(num_max_vports, sizeof(*adapter->vports),
2951				  GFP_KERNEL);
2952	if (!adapter->vports)
2953		return -ENOMEM;
2954
2955	if (!adapter->netdevs) {
2956		adapter->netdevs = kcalloc(num_max_vports,
2957					   sizeof(struct net_device *),
2958					   GFP_KERNEL);
2959		if (!adapter->netdevs) {
2960			err = -ENOMEM;
2961			goto err_netdev_alloc;
2962		}
2963	}
2964
2965	err = idpf_vport_params_buf_alloc(adapter);
2966	if (err) {
2967		dev_err(&adapter->pdev->dev, "Failed to alloc vport params buffer: %d\n",
2968			err);
2969		goto err_netdev_alloc;
2970	}
2971
2972	/* Start the mailbox task before requesting vectors. This will ensure
2973	 * vector information response from mailbox is handled
2974	 */
2975	queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
2976
2977	queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
2978			   msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
2979
2980	err = idpf_intr_req(adapter);
2981	if (err) {
2982		dev_err(&adapter->pdev->dev, "failed to enable interrupt vectors: %d\n",
2983			err);
2984		goto err_intr_req;
2985	}
2986
2987	idpf_init_avail_queues(adapter);
2988
2989	/* Skew the delay for init tasks for each function based on fn number
2990	 * to prevent every function from making the same call simultaneously.
2991	 */
2992	queue_delayed_work(adapter->init_wq, &adapter->init_task,
2993			   msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
2994
2995	set_bit(IDPF_VC_CORE_INIT, adapter->flags);
2996
2997	return 0;
2998
2999err_intr_req:
3000	cancel_delayed_work_sync(&adapter->serv_task);
3001	cancel_delayed_work_sync(&adapter->mbx_task);
3002	idpf_vport_params_buf_rel(adapter);
3003err_netdev_alloc:
3004	kfree(adapter->vports);
3005	adapter->vports = NULL;
3006	return err;
3007
3008init_failed:
3009	/* Don't retry if we're trying to go down, just bail. */
3010	if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
3011		return err;
3012
3013	if (++adapter->mb_wait_count > IDPF_MB_MAX_ERR) {
3014		dev_err(&adapter->pdev->dev, "Failed to establish mailbox communications with hardware\n");
3015
3016		return -EFAULT;
3017	}
3018	/* If it reached here, it is possible that mailbox queue initialization
3019	 * register writes might not have taken effect. Retry to initialize
3020	 * the mailbox again
3021	 */
3022	adapter->state = __IDPF_VER_CHECK;
3023	if (adapter->vcxn_mngr)
3024		idpf_vc_xn_shutdown(adapter->vcxn_mngr);
3025	idpf_deinit_dflt_mbx(adapter);
3026	set_bit(IDPF_HR_DRV_LOAD, adapter->flags);
3027	queue_delayed_work(adapter->vc_event_wq, &adapter->vc_event_task,
3028			   msecs_to_jiffies(task_delay));
3029
3030	return -EAGAIN;
3031}
3032
3033/**
3034 * idpf_vc_core_deinit - Device deinit routine
3035 * @adapter: Driver specific private structure
3036 *
3037 */
3038void idpf_vc_core_deinit(struct idpf_adapter *adapter)
3039{
 
 
3040	if (!test_bit(IDPF_VC_CORE_INIT, adapter->flags))
3041		return;
3042
3043	idpf_vc_xn_shutdown(adapter->vcxn_mngr);
 
 
 
 
3044	idpf_deinit_task(adapter);
3045	idpf_intr_rel(adapter);
3046
 
 
 
3047	cancel_delayed_work_sync(&adapter->serv_task);
3048	cancel_delayed_work_sync(&adapter->mbx_task);
3049
3050	idpf_vport_params_buf_rel(adapter);
3051
3052	kfree(adapter->vports);
3053	adapter->vports = NULL;
3054
3055	clear_bit(IDPF_VC_CORE_INIT, adapter->flags);
3056}
3057
3058/**
3059 * idpf_vport_alloc_vec_indexes - Get relative vector indexes
3060 * @vport: virtual port data struct
3061 *
3062 * This function requests the vector information required for the vport and
3063 * stores the vector indexes received from the 'global vector distribution'
3064 * in the vport's queue vectors array.
3065 *
3066 * Return 0 on success, error on failure
3067 */
3068int idpf_vport_alloc_vec_indexes(struct idpf_vport *vport)
3069{
3070	struct idpf_vector_info vec_info;
3071	int num_alloc_vecs;
3072
3073	vec_info.num_curr_vecs = vport->num_q_vectors;
3074	vec_info.num_req_vecs = max(vport->num_txq, vport->num_rxq);
3075	vec_info.default_vport = vport->default_vport;
3076	vec_info.index = vport->idx;
3077
3078	num_alloc_vecs = idpf_req_rel_vector_indexes(vport->adapter,
3079						     vport->q_vector_idxs,
3080						     &vec_info);
3081	if (num_alloc_vecs <= 0) {
3082		dev_err(&vport->adapter->pdev->dev, "Vector distribution failed: %d\n",
3083			num_alloc_vecs);
3084		return -EINVAL;
3085	}
3086
3087	vport->num_q_vectors = num_alloc_vecs;
3088
3089	return 0;
3090}
3091
3092/**
3093 * idpf_vport_init - Initialize virtual port
3094 * @vport: virtual port to be initialized
3095 * @max_q: vport max queue info
3096 *
3097 * Will initialize vport with the info received through MB earlier
3098 */
3099void idpf_vport_init(struct idpf_vport *vport, struct idpf_vport_max_q *max_q)
3100{
3101	struct idpf_adapter *adapter = vport->adapter;
3102	struct virtchnl2_create_vport *vport_msg;
3103	struct idpf_vport_config *vport_config;
3104	u16 tx_itr[] = {2, 8, 64, 128, 256};
3105	u16 rx_itr[] = {2, 8, 32, 96, 128};
3106	struct idpf_rss_data *rss_data;
3107	u16 idx = vport->idx;
3108
3109	vport_config = adapter->vport_config[idx];
3110	rss_data = &vport_config->user_config.rss_data;
3111	vport_msg = adapter->vport_params_recvd[idx];
3112
3113	vport_config->max_q.max_txq = max_q->max_txq;
3114	vport_config->max_q.max_rxq = max_q->max_rxq;
3115	vport_config->max_q.max_complq = max_q->max_complq;
3116	vport_config->max_q.max_bufq = max_q->max_bufq;
3117
3118	vport->txq_model = le16_to_cpu(vport_msg->txq_model);
3119	vport->rxq_model = le16_to_cpu(vport_msg->rxq_model);
3120	vport->vport_type = le16_to_cpu(vport_msg->vport_type);
3121	vport->vport_id = le32_to_cpu(vport_msg->vport_id);
3122
3123	rss_data->rss_key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
3124				       le16_to_cpu(vport_msg->rss_key_size));
3125	rss_data->rss_lut_size = le16_to_cpu(vport_msg->rss_lut_size);
3126
3127	ether_addr_copy(vport->default_mac_addr, vport_msg->default_mac_addr);
3128	vport->max_mtu = le16_to_cpu(vport_msg->max_mtu) - IDPF_PACKET_HDR_PAD;
3129
3130	/* Initialize Tx and Rx profiles for Dynamic Interrupt Moderation */
3131	memcpy(vport->rx_itr_profile, rx_itr, IDPF_DIM_PROFILE_SLOTS);
3132	memcpy(vport->tx_itr_profile, tx_itr, IDPF_DIM_PROFILE_SLOTS);
3133
3134	idpf_vport_set_hsplit(vport, ETHTOOL_TCP_DATA_SPLIT_ENABLED);
3135
3136	idpf_vport_init_num_qs(vport, vport_msg);
3137	idpf_vport_calc_num_q_desc(vport);
3138	idpf_vport_calc_num_q_groups(vport);
3139	idpf_vport_alloc_vec_indexes(vport);
3140
3141	vport->crc_enable = adapter->crc_enable;
3142}
3143
3144/**
3145 * idpf_get_vec_ids - Initialize vector id from Mailbox parameters
3146 * @adapter: adapter structure to get the mailbox vector id
3147 * @vecids: Array of vector ids
3148 * @num_vecids: number of vector ids
3149 * @chunks: vector ids received over mailbox
3150 *
3151 * Will initialize the mailbox vector id which is received from the
3152 * get capabilities and data queue vector ids with ids received as
3153 * mailbox parameters.
3154 * Returns number of ids filled
3155 */
3156int idpf_get_vec_ids(struct idpf_adapter *adapter,
3157		     u16 *vecids, int num_vecids,
3158		     struct virtchnl2_vector_chunks *chunks)
3159{
3160	u16 num_chunks = le16_to_cpu(chunks->num_vchunks);
3161	int num_vecid_filled = 0;
3162	int i, j;
3163
3164	vecids[num_vecid_filled] = adapter->mb_vector.v_idx;
3165	num_vecid_filled++;
3166
3167	for (j = 0; j < num_chunks; j++) {
3168		struct virtchnl2_vector_chunk *chunk;
3169		u16 start_vecid, num_vec;
3170
3171		chunk = &chunks->vchunks[j];
3172		num_vec = le16_to_cpu(chunk->num_vectors);
3173		start_vecid = le16_to_cpu(chunk->start_vector_id);
3174
3175		for (i = 0; i < num_vec; i++) {
3176			if ((num_vecid_filled + i) < num_vecids) {
3177				vecids[num_vecid_filled + i] = start_vecid;
3178				start_vecid++;
3179			} else {
3180				break;
3181			}
3182		}
3183		num_vecid_filled = num_vecid_filled + i;
3184	}
3185
3186	return num_vecid_filled;
3187}
3188
3189/**
3190 * idpf_vport_get_queue_ids - Initialize queue id from Mailbox parameters
3191 * @qids: Array of queue ids
3192 * @num_qids: number of queue ids
3193 * @q_type: queue model
3194 * @chunks: queue ids received over mailbox
3195 *
3196 * Will initialize all queue ids with ids received as mailbox parameters
3197 * Returns number of ids filled
3198 */
3199static int idpf_vport_get_queue_ids(u32 *qids, int num_qids, u16 q_type,
3200				    struct virtchnl2_queue_reg_chunks *chunks)
3201{
3202	u16 num_chunks = le16_to_cpu(chunks->num_chunks);
3203	u32 num_q_id_filled = 0, i;
3204	u32 start_q_id, num_q;
3205
3206	while (num_chunks--) {
3207		struct virtchnl2_queue_reg_chunk *chunk;
3208
3209		chunk = &chunks->chunks[num_chunks];
3210		if (le32_to_cpu(chunk->type) != q_type)
3211			continue;
3212
3213		num_q = le32_to_cpu(chunk->num_queues);
3214		start_q_id = le32_to_cpu(chunk->start_queue_id);
3215
3216		for (i = 0; i < num_q; i++) {
3217			if ((num_q_id_filled + i) < num_qids) {
3218				qids[num_q_id_filled + i] = start_q_id;
3219				start_q_id++;
3220			} else {
3221				break;
3222			}
3223		}
3224		num_q_id_filled = num_q_id_filled + i;
3225	}
3226
3227	return num_q_id_filled;
3228}
3229
3230/**
3231 * __idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3232 * @vport: virtual port for which the queues ids are initialized
3233 * @qids: queue ids
3234 * @num_qids: number of queue ids
3235 * @q_type: type of queue
3236 *
3237 * Will initialize all queue ids with ids received as mailbox
3238 * parameters. Returns number of queue ids initialized.
3239 */
3240static int __idpf_vport_queue_ids_init(struct idpf_vport *vport,
3241				       const u32 *qids,
3242				       int num_qids,
3243				       u32 q_type)
3244{
3245	struct idpf_queue *q;
3246	int i, j, k = 0;
3247
3248	switch (q_type) {
3249	case VIRTCHNL2_QUEUE_TYPE_TX:
3250		for (i = 0; i < vport->num_txq_grp; i++) {
3251			struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3252
3253			for (j = 0; j < tx_qgrp->num_txq && k < num_qids; j++, k++) {
3254				tx_qgrp->txqs[j]->q_id = qids[k];
3255				tx_qgrp->txqs[j]->q_type =
3256					VIRTCHNL2_QUEUE_TYPE_TX;
3257			}
3258		}
3259		break;
3260	case VIRTCHNL2_QUEUE_TYPE_RX:
3261		for (i = 0; i < vport->num_rxq_grp; i++) {
3262			struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3263			u16 num_rxq;
3264
3265			if (idpf_is_queue_model_split(vport->rxq_model))
3266				num_rxq = rx_qgrp->splitq.num_rxq_sets;
3267			else
3268				num_rxq = rx_qgrp->singleq.num_rxq;
3269
3270			for (j = 0; j < num_rxq && k < num_qids; j++, k++) {
 
 
3271				if (idpf_is_queue_model_split(vport->rxq_model))
3272					q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
3273				else
3274					q = rx_qgrp->singleq.rxqs[j];
3275				q->q_id = qids[k];
3276				q->q_type = VIRTCHNL2_QUEUE_TYPE_RX;
3277			}
3278		}
3279		break;
3280	case VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION:
3281		for (i = 0; i < vport->num_txq_grp && k < num_qids; i++, k++) {
3282			struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
3283
3284			tx_qgrp->complq->q_id = qids[k];
3285			tx_qgrp->complq->q_type =
3286				VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
3287		}
3288		break;
3289	case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
3290		for (i = 0; i < vport->num_rxq_grp; i++) {
3291			struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
3292			u8 num_bufqs = vport->num_bufqs_per_qgrp;
3293
3294			for (j = 0; j < num_bufqs && k < num_qids; j++, k++) {
 
 
3295				q = &rx_qgrp->splitq.bufq_sets[j].bufq;
3296				q->q_id = qids[k];
3297				q->q_type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
3298			}
3299		}
3300		break;
3301	default:
3302		break;
3303	}
3304
3305	return k;
3306}
3307
3308/**
3309 * idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
3310 * @vport: virtual port for which the queues ids are initialized
3311 *
3312 * Will initialize all queue ids with ids received as mailbox parameters.
3313 * Returns 0 on success, negative if all the queues are not initialized.
3314 */
3315int idpf_vport_queue_ids_init(struct idpf_vport *vport)
3316{
3317	struct virtchnl2_create_vport *vport_params;
3318	struct virtchnl2_queue_reg_chunks *chunks;
3319	struct idpf_vport_config *vport_config;
3320	u16 vport_idx = vport->idx;
3321	int num_ids, err = 0;
3322	u16 q_type;
3323	u32 *qids;
3324
3325	vport_config = vport->adapter->vport_config[vport_idx];
3326	if (vport_config->req_qs_chunks) {
3327		struct virtchnl2_add_queues *vc_aq =
3328			(struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
3329		chunks = &vc_aq->chunks;
3330	} else {
3331		vport_params = vport->adapter->vport_params_recvd[vport_idx];
3332		chunks = &vport_params->chunks;
3333	}
3334
3335	qids = kcalloc(IDPF_MAX_QIDS, sizeof(u32), GFP_KERNEL);
3336	if (!qids)
3337		return -ENOMEM;
3338
3339	num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3340					   VIRTCHNL2_QUEUE_TYPE_TX,
3341					   chunks);
3342	if (num_ids < vport->num_txq) {
3343		err = -EINVAL;
3344		goto mem_rel;
3345	}
3346	num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3347					      VIRTCHNL2_QUEUE_TYPE_TX);
3348	if (num_ids < vport->num_txq) {
3349		err = -EINVAL;
3350		goto mem_rel;
3351	}
3352
3353	num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
3354					   VIRTCHNL2_QUEUE_TYPE_RX,
3355					   chunks);
3356	if (num_ids < vport->num_rxq) {
3357		err = -EINVAL;
3358		goto mem_rel;
3359	}
3360	num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
3361					      VIRTCHNL2_QUEUE_TYPE_RX);
3362	if (num_ids < vport->num_rxq) {
3363		err = -EINVAL;
3364		goto mem_rel;
3365	}
3366
3367	if (!idpf_is_queue_model_split(vport->txq_model))
3368		goto check_rxq;
3369
3370	q_type = VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
3371	num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3372	if (num_ids < vport->num_complq) {
3373		err = -EINVAL;
3374		goto mem_rel;
3375	}
3376	num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3377	if (num_ids < vport->num_complq) {
3378		err = -EINVAL;
3379		goto mem_rel;
3380	}
3381
3382check_rxq:
3383	if (!idpf_is_queue_model_split(vport->rxq_model))
3384		goto mem_rel;
3385
3386	q_type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
3387	num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
3388	if (num_ids < vport->num_bufq) {
3389		err = -EINVAL;
3390		goto mem_rel;
3391	}
3392	num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
3393	if (num_ids < vport->num_bufq)
3394		err = -EINVAL;
3395
3396mem_rel:
3397	kfree(qids);
3398
3399	return err;
3400}
3401
3402/**
3403 * idpf_vport_adjust_qs - Adjust to new requested queues
3404 * @vport: virtual port data struct
3405 *
3406 * Renegotiate queues.  Returns 0 on success, negative on failure.
3407 */
3408int idpf_vport_adjust_qs(struct idpf_vport *vport)
3409{
3410	struct virtchnl2_create_vport vport_msg;
3411	int err;
3412
3413	vport_msg.txq_model = cpu_to_le16(vport->txq_model);
3414	vport_msg.rxq_model = cpu_to_le16(vport->rxq_model);
3415	err = idpf_vport_calc_total_qs(vport->adapter, vport->idx, &vport_msg,
3416				       NULL);
3417	if (err)
3418		return err;
3419
3420	idpf_vport_init_num_qs(vport, &vport_msg);
3421	idpf_vport_calc_num_q_groups(vport);
3422
3423	return 0;
3424}
3425
3426/**
3427 * idpf_is_capability_ena - Default implementation of capability checking
3428 * @adapter: Private data struct
3429 * @all: all or one flag
3430 * @field: caps field to check for flags
3431 * @flag: flag to check
3432 *
3433 * Return true if all capabilities are supported, false otherwise
3434 */
3435bool idpf_is_capability_ena(struct idpf_adapter *adapter, bool all,
3436			    enum idpf_cap_field field, u64 flag)
3437{
3438	u8 *caps = (u8 *)&adapter->caps;
3439	u32 *cap_field;
3440
3441	if (!caps)
3442		return false;
3443
3444	if (field == IDPF_BASE_CAPS)
3445		return false;
3446
3447	cap_field = (u32 *)(caps + field);
3448
3449	if (all)
3450		return (*cap_field & flag) == flag;
3451	else
3452		return !!(*cap_field & flag);
3453}
3454
3455/**
3456 * idpf_get_vport_id: Get vport id
3457 * @vport: virtual port structure
3458 *
3459 * Return vport id from the adapter persistent data
3460 */
3461u32 idpf_get_vport_id(struct idpf_vport *vport)
3462{
3463	struct virtchnl2_create_vport *vport_msg;
3464
3465	vport_msg = vport->adapter->vport_params_recvd[vport->idx];
3466
3467	return le32_to_cpu(vport_msg->vport_id);
3468}
3469
3470/**
3471 * idpf_mac_filter_async_handler - Async callback for mac filters
3472 * @adapter: private data struct
3473 * @xn: transaction for message
3474 * @ctlq_msg: received message
3475 *
3476 * In some scenarios driver can't sleep and wait for a reply (e.g.: stack is
3477 * holding rtnl_lock) when adding a new mac filter. It puts us in a difficult
3478 * situation to deal with errors returned on the reply. The best we can
3479 * ultimately do is remove it from our list of mac filters and report the
3480 * error.
3481 */
3482static int idpf_mac_filter_async_handler(struct idpf_adapter *adapter,
3483					 struct idpf_vc_xn *xn,
3484					 const struct idpf_ctlq_msg *ctlq_msg)
3485{
3486	struct virtchnl2_mac_addr_list *ma_list;
3487	struct idpf_vport_config *vport_config;
3488	struct virtchnl2_mac_addr *mac_addr;
3489	struct idpf_mac_filter *f, *tmp;
3490	struct list_head *ma_list_head;
3491	struct idpf_vport *vport;
3492	u16 num_entries;
3493	int i;
3494
3495	/* if success we're done, we're only here if something bad happened */
3496	if (!ctlq_msg->cookie.mbx.chnl_retval)
3497		return 0;
3498
3499	/* make sure at least struct is there */
3500	if (xn->reply_sz < sizeof(*ma_list))
3501		goto invalid_payload;
3502
3503	ma_list = ctlq_msg->ctx.indirect.payload->va;
3504	mac_addr = ma_list->mac_addr_list;
3505	num_entries = le16_to_cpu(ma_list->num_mac_addr);
3506	/* we should have received a buffer at least this big */
3507	if (xn->reply_sz < struct_size(ma_list, mac_addr_list, num_entries))
3508		goto invalid_payload;
3509
3510	vport = idpf_vid_to_vport(adapter, le32_to_cpu(ma_list->vport_id));
3511	if (!vport)
3512		goto invalid_payload;
3513
3514	vport_config = adapter->vport_config[le32_to_cpu(ma_list->vport_id)];
3515	ma_list_head = &vport_config->user_config.mac_filter_list;
3516
3517	/* We can't do much to reconcile bad filters at this point, however we
3518	 * should at least remove them from our list one way or the other so we
3519	 * have some idea what good filters we have.
3520	 */
3521	spin_lock_bh(&vport_config->mac_filter_list_lock);
3522	list_for_each_entry_safe(f, tmp, ma_list_head, list)
3523		for (i = 0; i < num_entries; i++)
3524			if (ether_addr_equal(mac_addr[i].addr, f->macaddr))
3525				list_del(&f->list);
3526	spin_unlock_bh(&vport_config->mac_filter_list_lock);
3527	dev_err_ratelimited(&adapter->pdev->dev, "Received error sending MAC filter request (op %d)\n",
3528			    xn->vc_op);
3529
3530	return 0;
3531
3532invalid_payload:
3533	dev_err_ratelimited(&adapter->pdev->dev, "Received invalid MAC filter payload (op %d) (len %zd)\n",
3534			    xn->vc_op, xn->reply_sz);
3535
3536	return -EINVAL;
3537}
3538
3539/**
3540 * idpf_add_del_mac_filters - Add/del mac filters
3541 * @vport: Virtual port data structure
3542 * @np: Netdev private structure
3543 * @add: Add or delete flag
3544 * @async: Don't wait for return message
3545 *
3546 * Returns 0 on success, error on failure.
3547 **/
3548int idpf_add_del_mac_filters(struct idpf_vport *vport,
3549			     struct idpf_netdev_priv *np,
3550			     bool add, bool async)
3551{
3552	struct virtchnl2_mac_addr_list *ma_list __free(kfree) = NULL;
3553	struct virtchnl2_mac_addr *mac_addr __free(kfree) = NULL;
3554	struct idpf_adapter *adapter = np->adapter;
3555	struct idpf_vc_xn_params xn_params = {};
3556	struct idpf_vport_config *vport_config;
3557	u32 num_msgs, total_filters = 0;
3558	struct idpf_mac_filter *f;
3559	ssize_t reply_sz;
3560	int i = 0, k;
3561
3562	xn_params.vc_op = add ? VIRTCHNL2_OP_ADD_MAC_ADDR :
3563				VIRTCHNL2_OP_DEL_MAC_ADDR;
3564	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3565	xn_params.async = async;
3566	xn_params.async_handler = idpf_mac_filter_async_handler;
3567
3568	vport_config = adapter->vport_config[np->vport_idx];
3569	spin_lock_bh(&vport_config->mac_filter_list_lock);
3570
3571	/* Find the number of newly added filters */
3572	list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
3573			    list) {
3574		if (add && f->add)
3575			total_filters++;
3576		else if (!add && f->remove)
3577			total_filters++;
3578	}
3579
3580	if (!total_filters) {
3581		spin_unlock_bh(&vport_config->mac_filter_list_lock);
3582
3583		return 0;
3584	}
3585
3586	/* Fill all the new filters into virtchannel message */
3587	mac_addr = kcalloc(total_filters, sizeof(struct virtchnl2_mac_addr),
3588			   GFP_ATOMIC);
3589	if (!mac_addr) {
3590		spin_unlock_bh(&vport_config->mac_filter_list_lock);
3591
3592		return -ENOMEM;
3593	}
3594
3595	list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
3596			    list) {
3597		if (add && f->add) {
3598			ether_addr_copy(mac_addr[i].addr, f->macaddr);
3599			i++;
3600			f->add = false;
3601			if (i == total_filters)
3602				break;
3603		}
3604		if (!add && f->remove) {
3605			ether_addr_copy(mac_addr[i].addr, f->macaddr);
3606			i++;
3607			f->remove = false;
3608			if (i == total_filters)
3609				break;
3610		}
3611	}
3612
3613	spin_unlock_bh(&vport_config->mac_filter_list_lock);
3614
3615	/* Chunk up the filters into multiple messages to avoid
3616	 * sending a control queue message buffer that is too large
3617	 */
3618	num_msgs = DIV_ROUND_UP(total_filters, IDPF_NUM_FILTERS_PER_MSG);
3619
3620	for (i = 0, k = 0; i < num_msgs; i++) {
3621		u32 entries_size, buf_size, num_entries;
3622
3623		num_entries = min_t(u32, total_filters,
3624				    IDPF_NUM_FILTERS_PER_MSG);
3625		entries_size = sizeof(struct virtchnl2_mac_addr) * num_entries;
3626		buf_size = struct_size(ma_list, mac_addr_list, num_entries);
3627
3628		if (!ma_list || num_entries != IDPF_NUM_FILTERS_PER_MSG) {
3629			kfree(ma_list);
3630			ma_list = kzalloc(buf_size, GFP_ATOMIC);
3631			if (!ma_list)
3632				return -ENOMEM;
3633		} else {
3634			memset(ma_list, 0, buf_size);
3635		}
3636
3637		ma_list->vport_id = cpu_to_le32(np->vport_id);
3638		ma_list->num_mac_addr = cpu_to_le16(num_entries);
3639		memcpy(ma_list->mac_addr_list, &mac_addr[k], entries_size);
3640
3641		xn_params.send_buf.iov_base = ma_list;
3642		xn_params.send_buf.iov_len = buf_size;
3643		reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
3644		if (reply_sz < 0)
3645			return reply_sz;
3646
3647		k += num_entries;
3648		total_filters -= num_entries;
3649	}
3650
3651	return 0;
3652}
3653
3654/**
3655 * idpf_set_promiscuous - set promiscuous and send message to mailbox
3656 * @adapter: Driver specific private structure
3657 * @config_data: Vport specific config data
3658 * @vport_id: Vport identifier
3659 *
3660 * Request to enable promiscuous mode for the vport. Message is sent
3661 * asynchronously and won't wait for response.  Returns 0 on success, negative
3662 * on failure;
3663 */
3664int idpf_set_promiscuous(struct idpf_adapter *adapter,
3665			 struct idpf_vport_user_config_data *config_data,
3666			 u32 vport_id)
3667{
3668	struct idpf_vc_xn_params xn_params = {};
3669	struct virtchnl2_promisc_info vpi;
3670	ssize_t reply_sz;
3671	u16 flags = 0;
3672
3673	if (test_bit(__IDPF_PROMISC_UC, config_data->user_flags))
3674		flags |= VIRTCHNL2_UNICAST_PROMISC;
3675	if (test_bit(__IDPF_PROMISC_MC, config_data->user_flags))
3676		flags |= VIRTCHNL2_MULTICAST_PROMISC;
3677
3678	vpi.vport_id = cpu_to_le32(vport_id);
3679	vpi.flags = cpu_to_le16(flags);
3680
3681	xn_params.vc_op = VIRTCHNL2_OP_CONFIG_PROMISCUOUS_MODE;
3682	xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
3683	xn_params.send_buf.iov_base = &vpi;
3684	xn_params.send_buf.iov_len = sizeof(vpi);
3685	/* setting promiscuous is only ever done asynchronously */
3686	xn_params.async = true;
3687	reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
3688
3689	return reply_sz < 0 ? reply_sz : 0;
3690}