Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Mediatek MT7530 DSA Switch driver
   4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
   5 */
   6#include <linux/etherdevice.h>
   7#include <linux/if_bridge.h>
   8#include <linux/iopoll.h>
   9#include <linux/mdio.h>
  10#include <linux/mfd/syscon.h>
  11#include <linux/module.h>
  12#include <linux/netdevice.h>
  13#include <linux/of_irq.h>
  14#include <linux/of_mdio.h>
  15#include <linux/of_net.h>
  16#include <linux/of_platform.h>
  17#include <linux/phylink.h>
  18#include <linux/regmap.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/reset.h>
  21#include <linux/gpio/consumer.h>
  22#include <linux/gpio/driver.h>
  23#include <net/dsa.h>
  24#include <net/pkt_cls.h>
  25
  26#include "mt7530.h"
  27
  28static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
  29{
  30	return container_of(pcs, struct mt753x_pcs, pcs);
  31}
  32
  33/* String, offset, and register size in bytes if different from 4 bytes */
  34static const struct mt7530_mib_desc mt7530_mib[] = {
  35	MIB_DESC(1, 0x00, "TxDrop"),
  36	MIB_DESC(1, 0x04, "TxCrcErr"),
  37	MIB_DESC(1, 0x08, "TxUnicast"),
  38	MIB_DESC(1, 0x0c, "TxMulticast"),
  39	MIB_DESC(1, 0x10, "TxBroadcast"),
  40	MIB_DESC(1, 0x14, "TxCollision"),
  41	MIB_DESC(1, 0x18, "TxSingleCollision"),
  42	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
  43	MIB_DESC(1, 0x20, "TxDeferred"),
  44	MIB_DESC(1, 0x24, "TxLateCollision"),
  45	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
  46	MIB_DESC(1, 0x2c, "TxPause"),
  47	MIB_DESC(1, 0x30, "TxPktSz64"),
  48	MIB_DESC(1, 0x34, "TxPktSz65To127"),
  49	MIB_DESC(1, 0x38, "TxPktSz128To255"),
  50	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
  51	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
  52	MIB_DESC(1, 0x44, "Tx1024ToMax"),
  53	MIB_DESC(2, 0x48, "TxBytes"),
  54	MIB_DESC(1, 0x60, "RxDrop"),
  55	MIB_DESC(1, 0x64, "RxFiltering"),
  56	MIB_DESC(1, 0x68, "RxUnicast"),
  57	MIB_DESC(1, 0x6c, "RxMulticast"),
  58	MIB_DESC(1, 0x70, "RxBroadcast"),
  59	MIB_DESC(1, 0x74, "RxAlignErr"),
  60	MIB_DESC(1, 0x78, "RxCrcErr"),
  61	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
  62	MIB_DESC(1, 0x80, "RxFragErr"),
  63	MIB_DESC(1, 0x84, "RxOverSzErr"),
  64	MIB_DESC(1, 0x88, "RxJabberErr"),
  65	MIB_DESC(1, 0x8c, "RxPause"),
  66	MIB_DESC(1, 0x90, "RxPktSz64"),
  67	MIB_DESC(1, 0x94, "RxPktSz65To127"),
  68	MIB_DESC(1, 0x98, "RxPktSz128To255"),
  69	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
  70	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
  71	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
  72	MIB_DESC(2, 0xa8, "RxBytes"),
  73	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
  74	MIB_DESC(1, 0xb4, "RxIngressDrop"),
  75	MIB_DESC(1, 0xb8, "RxArlDrop"),
  76};
  77
  78static void
  79mt7530_mutex_lock(struct mt7530_priv *priv)
  80{
  81	if (priv->bus)
  82		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
  83}
  84
  85static void
  86mt7530_mutex_unlock(struct mt7530_priv *priv)
  87{
  88	if (priv->bus)
  89		mutex_unlock(&priv->bus->mdio_lock);
  90}
  91
  92static void
  93core_write(struct mt7530_priv *priv, u32 reg, u32 val)
  94{
  95	struct mii_bus *bus = priv->bus;
  96	int ret;
  97
  98	mt7530_mutex_lock(priv);
  99
 100	/* Write the desired MMD Devad */
 101	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
 102			 MII_MMD_CTRL, MDIO_MMD_VEND2);
 103	if (ret < 0)
 104		goto err;
 105
 106	/* Write the desired MMD register address */
 107	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
 108			 MII_MMD_DATA, reg);
 109	if (ret < 0)
 110		goto err;
 111
 112	/* Select the Function : DATA with no post increment */
 113	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
 114			 MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR);
 115	if (ret < 0)
 116		goto err;
 117
 118	/* Write the data into MMD's selected register */
 119	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
 120			 MII_MMD_DATA, val);
 
 121err:
 122	if (ret < 0)
 123		dev_err(&bus->dev, "failed to write mmd register\n");
 124
 125	mt7530_mutex_unlock(priv);
 126}
 127
 128static void
 129core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
 
 130{
 131	struct mii_bus *bus = priv->bus;
 132	u32 val;
 133	int ret;
 134
 135	mt7530_mutex_lock(priv);
 136
 137	/* Write the desired MMD Devad */
 138	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
 139			 MII_MMD_CTRL, MDIO_MMD_VEND2);
 140	if (ret < 0)
 141		goto err;
 142
 143	/* Write the desired MMD register address */
 144	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
 145			 MII_MMD_DATA, reg);
 146	if (ret < 0)
 147		goto err;
 148
 149	/* Select the Function : DATA with no post increment */
 150	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
 151			 MII_MMD_CTRL, MDIO_MMD_VEND2 | MII_MMD_CTRL_NOINCR);
 152	if (ret < 0)
 153		goto err;
 154
 155	/* Read the content of the MMD's selected register */
 156	val = bus->read(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
 157			MII_MMD_DATA);
 158	val &= ~mask;
 159	val |= set;
 160	/* Write the data into MMD's selected register */
 161	ret = bus->write(bus, MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
 162			 MII_MMD_DATA, val);
 163err:
 164	if (ret < 0)
 165		dev_err(&bus->dev, "failed to write mmd register\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166
 167	mt7530_mutex_unlock(priv);
 168}
 169
 170static void
 171core_set(struct mt7530_priv *priv, u32 reg, u32 val)
 172{
 173	core_rmw(priv, reg, 0, val);
 174}
 175
 176static void
 177core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
 178{
 179	core_rmw(priv, reg, val, 0);
 180}
 181
 182static int
 183mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
 184{
 185	int ret;
 186
 187	ret = regmap_write(priv->regmap, reg, val);
 188
 189	if (ret < 0)
 190		dev_err(priv->dev,
 191			"failed to write mt7530 register\n");
 192
 193	return ret;
 194}
 195
 196static u32
 197mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
 198{
 199	int ret;
 200	u32 val;
 201
 202	ret = regmap_read(priv->regmap, reg, &val);
 203	if (ret) {
 204		WARN_ON_ONCE(1);
 205		dev_err(priv->dev,
 206			"failed to read mt7530 register\n");
 207		return 0;
 208	}
 209
 210	return val;
 211}
 212
 213static void
 214mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
 215{
 216	mt7530_mutex_lock(priv);
 217
 218	mt7530_mii_write(priv, reg, val);
 219
 220	mt7530_mutex_unlock(priv);
 221}
 222
 223static u32
 224_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
 225{
 226	return mt7530_mii_read(p->priv, p->reg);
 227}
 228
 229static u32
 230_mt7530_read(struct mt7530_dummy_poll *p)
 231{
 232	u32 val;
 233
 234	mt7530_mutex_lock(p->priv);
 235
 236	val = mt7530_mii_read(p->priv, p->reg);
 237
 238	mt7530_mutex_unlock(p->priv);
 239
 240	return val;
 241}
 242
 243static u32
 244mt7530_read(struct mt7530_priv *priv, u32 reg)
 245{
 246	struct mt7530_dummy_poll p;
 247
 248	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
 249	return _mt7530_read(&p);
 250}
 251
 252static void
 253mt7530_rmw(struct mt7530_priv *priv, u32 reg,
 254	   u32 mask, u32 set)
 255{
 256	mt7530_mutex_lock(priv);
 257
 258	regmap_update_bits(priv->regmap, reg, mask, set);
 259
 260	mt7530_mutex_unlock(priv);
 261}
 262
 263static void
 264mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
 265{
 266	mt7530_rmw(priv, reg, val, val);
 267}
 268
 269static void
 270mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
 271{
 272	mt7530_rmw(priv, reg, val, 0);
 273}
 274
 275static int
 276mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
 277{
 278	u32 val;
 279	int ret;
 280	struct mt7530_dummy_poll p;
 281
 282	/* Set the command operating upon the MAC address entries */
 283	val = ATC_BUSY | ATC_MAT(0) | cmd;
 284	mt7530_write(priv, MT7530_ATC, val);
 285
 286	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
 287	ret = readx_poll_timeout(_mt7530_read, &p, val,
 288				 !(val & ATC_BUSY), 20, 20000);
 289	if (ret < 0) {
 290		dev_err(priv->dev, "reset timeout\n");
 291		return ret;
 292	}
 293
 294	/* Additional sanity for read command if the specified
 295	 * entry is invalid
 296	 */
 297	val = mt7530_read(priv, MT7530_ATC);
 298	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
 299		return -EINVAL;
 300
 301	if (rsp)
 302		*rsp = val;
 303
 304	return 0;
 305}
 306
 307static void
 308mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
 309{
 310	u32 reg[3];
 311	int i;
 312
 313	/* Read from ARL table into an array */
 314	for (i = 0; i < 3; i++) {
 315		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
 316
 317		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
 318			__func__, __LINE__, i, reg[i]);
 319	}
 320
 321	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
 322	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
 323	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
 324	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
 325	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
 326	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
 327	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
 328	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
 329	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
 330	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
 331}
 332
 333static void
 334mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
 335		 u8 port_mask, const u8 *mac,
 336		 u8 aging, u8 type)
 337{
 338	u32 reg[3] = { 0 };
 339	int i;
 340
 341	reg[1] |= vid & CVID_MASK;
 342	reg[1] |= ATA2_IVL;
 343	reg[1] |= ATA2_FID(FID_BRIDGED);
 344	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
 345	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
 346	/* STATIC_ENT indicate that entry is static wouldn't
 347	 * be aged out and STATIC_EMP specified as erasing an
 348	 * entry
 349	 */
 350	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
 351	reg[1] |= mac[5] << MAC_BYTE_5;
 352	reg[1] |= mac[4] << MAC_BYTE_4;
 353	reg[0] |= mac[3] << MAC_BYTE_3;
 354	reg[0] |= mac[2] << MAC_BYTE_2;
 355	reg[0] |= mac[1] << MAC_BYTE_1;
 356	reg[0] |= mac[0] << MAC_BYTE_0;
 357
 358	/* Write array into the ARL table */
 359	for (i = 0; i < 3; i++)
 360		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
 361}
 362
 363/* Set up switch core clock for MT7530 */
 364static void mt7530_pll_setup(struct mt7530_priv *priv)
 365{
 366	/* Disable core clock */
 367	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
 368
 369	/* Disable PLL */
 370	core_write(priv, CORE_GSWPLL_GRP1, 0);
 371
 372	/* Set core clock into 500Mhz */
 373	core_write(priv, CORE_GSWPLL_GRP2,
 374		   RG_GSWPLL_POSDIV_500M(1) |
 375		   RG_GSWPLL_FBKDIV_500M(25));
 376
 377	/* Enable PLL */
 378	core_write(priv, CORE_GSWPLL_GRP1,
 379		   RG_GSWPLL_EN_PRE |
 380		   RG_GSWPLL_POSDIV_200M(2) |
 381		   RG_GSWPLL_FBKDIV_200M(32));
 382
 383	udelay(20);
 384
 385	/* Enable core clock */
 386	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
 387}
 388
 389/* If port 6 is available as a CPU port, always prefer that as the default,
 390 * otherwise don't care.
 391 */
 392static struct dsa_port *
 393mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
 394{
 395	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
 396
 397	if (dsa_port_is_cpu(cpu_dp))
 398		return cpu_dp;
 399
 400	return NULL;
 401}
 402
 403/* Setup port 6 interface mode and TRGMII TX circuit */
 404static void
 405mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
 406{
 407	struct mt7530_priv *priv = ds->priv;
 408	u32 ncpo1, ssc_delta, xtal;
 409
 410	/* Disable the MT7530 TRGMII clocks */
 411	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
 412
 413	if (interface == PHY_INTERFACE_MODE_RGMII) {
 414		mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
 415			   P6_INTF_MODE(0));
 416		return;
 417	}
 418
 419	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
 420
 421	xtal = mt7530_read(priv, MT753X_MTRAP) & MT7530_XTAL_MASK;
 422
 423	if (xtal == MT7530_XTAL_25MHZ)
 424		ssc_delta = 0x57;
 425	else
 426		ssc_delta = 0x87;
 427
 428	if (priv->id == ID_MT7621) {
 429		/* PLL frequency: 125MHz: 1.0GBit */
 430		if (xtal == MT7530_XTAL_40MHZ)
 431			ncpo1 = 0x0640;
 432		if (xtal == MT7530_XTAL_25MHZ)
 433			ncpo1 = 0x0a00;
 434	} else { /* PLL frequency: 250MHz: 2.0Gbit */
 435		if (xtal == MT7530_XTAL_40MHZ)
 436			ncpo1 = 0x0c80;
 437		if (xtal == MT7530_XTAL_25MHZ)
 438			ncpo1 = 0x1400;
 439	}
 440
 441	/* Setup the MT7530 TRGMII Tx Clock */
 442	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
 443	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
 444	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
 445	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
 446	core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
 447		   RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
 448	core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
 449		   RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
 450	core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
 451		   RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
 452
 453	/* Enable the MT7530 TRGMII clocks */
 454	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
 455}
 456
 457static void
 458mt7531_pll_setup(struct mt7530_priv *priv)
 459{
 460	enum mt7531_xtal_fsel xtal;
 461	u32 top_sig;
 462	u32 hwstrap;
 
 463	u32 val;
 464
 465	val = mt7530_read(priv, MT7531_CREV);
 466	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
 467	hwstrap = mt7530_read(priv, MT753X_TRAP);
 468	if ((val & CHIP_REV_M) > 0)
 469		xtal = (top_sig & PAD_MCM_SMI_EN) ? MT7531_XTAL_FSEL_40MHZ :
 470						    MT7531_XTAL_FSEL_25MHZ;
 471	else
 472		xtal = (hwstrap & MT7531_XTAL25) ? MT7531_XTAL_FSEL_25MHZ :
 473						   MT7531_XTAL_FSEL_40MHZ;
 474
 475	/* Step 1 : Disable MT7531 COREPLL */
 476	val = mt7530_read(priv, MT7531_PLLGP_EN);
 477	val &= ~EN_COREPLL;
 478	mt7530_write(priv, MT7531_PLLGP_EN, val);
 479
 480	/* Step 2: switch to XTAL output */
 481	val = mt7530_read(priv, MT7531_PLLGP_EN);
 482	val |= SW_CLKSW;
 483	mt7530_write(priv, MT7531_PLLGP_EN, val);
 484
 485	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 486	val &= ~RG_COREPLL_EN;
 487	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 488
 489	/* Step 3: disable PLLGP and enable program PLLGP */
 490	val = mt7530_read(priv, MT7531_PLLGP_EN);
 491	val |= SW_PLLGP;
 492	mt7530_write(priv, MT7531_PLLGP_EN, val);
 493
 494	/* Step 4: program COREPLL output frequency to 500MHz */
 495	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 496	val &= ~RG_COREPLL_POSDIV_M;
 497	val |= 2 << RG_COREPLL_POSDIV_S;
 498	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 499	usleep_range(25, 35);
 500
 501	switch (xtal) {
 502	case MT7531_XTAL_FSEL_25MHZ:
 503		val = mt7530_read(priv, MT7531_PLLGP_CR0);
 504		val &= ~RG_COREPLL_SDM_PCW_M;
 505		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
 506		mt7530_write(priv, MT7531_PLLGP_CR0, val);
 507		break;
 508	case MT7531_XTAL_FSEL_40MHZ:
 509		val = mt7530_read(priv, MT7531_PLLGP_CR0);
 510		val &= ~RG_COREPLL_SDM_PCW_M;
 511		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
 512		mt7530_write(priv, MT7531_PLLGP_CR0, val);
 513		break;
 514	}
 515
 516	/* Set feedback divide ratio update signal to high */
 517	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 518	val |= RG_COREPLL_SDM_PCW_CHG;
 519	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 520	/* Wait for at least 16 XTAL clocks */
 521	usleep_range(10, 20);
 522
 523	/* Step 5: set feedback divide ratio update signal to low */
 524	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 525	val &= ~RG_COREPLL_SDM_PCW_CHG;
 526	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 527
 528	/* Enable 325M clock for SGMII */
 529	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
 530
 531	/* Enable 250SSC clock for RGMII */
 532	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
 533
 534	/* Step 6: Enable MT7531 PLL */
 535	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 536	val |= RG_COREPLL_EN;
 537	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 538
 539	val = mt7530_read(priv, MT7531_PLLGP_EN);
 540	val |= EN_COREPLL;
 541	mt7530_write(priv, MT7531_PLLGP_EN, val);
 542	usleep_range(25, 35);
 543}
 544
 545static void
 546mt7530_mib_reset(struct dsa_switch *ds)
 547{
 548	struct mt7530_priv *priv = ds->priv;
 549
 550	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
 551	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
 552}
 553
 554static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
 555{
 556	return mdiobus_read_nested(priv->bus, port, regnum);
 557}
 558
 559static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
 560				u16 val)
 561{
 562	return mdiobus_write_nested(priv->bus, port, regnum, val);
 563}
 564
 565static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
 566			       int devad, int regnum)
 567{
 568	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
 569}
 570
 571static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
 572				int regnum, u16 val)
 573{
 574	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
 575}
 576
 577static int
 578mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
 579			int regnum)
 580{
 581	struct mt7530_dummy_poll p;
 582	u32 reg, val;
 583	int ret;
 584
 585	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
 586
 587	mt7530_mutex_lock(priv);
 588
 589	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 590				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 591	if (ret < 0) {
 592		dev_err(priv->dev, "poll timeout\n");
 593		goto out;
 594	}
 595
 596	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
 597	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
 598	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 599
 600	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 601				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 602	if (ret < 0) {
 603		dev_err(priv->dev, "poll timeout\n");
 604		goto out;
 605	}
 606
 607	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
 608	      MT7531_MDIO_DEV_ADDR(devad);
 609	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 610
 611	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 612				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 613	if (ret < 0) {
 614		dev_err(priv->dev, "poll timeout\n");
 615		goto out;
 616	}
 617
 618	ret = val & MT7531_MDIO_RW_DATA_MASK;
 619out:
 620	mt7530_mutex_unlock(priv);
 621
 622	return ret;
 623}
 624
 625static int
 626mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
 627			 int regnum, u16 data)
 628{
 629	struct mt7530_dummy_poll p;
 630	u32 val, reg;
 631	int ret;
 632
 633	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
 634
 635	mt7530_mutex_lock(priv);
 636
 637	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 638				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 639	if (ret < 0) {
 640		dev_err(priv->dev, "poll timeout\n");
 641		goto out;
 642	}
 643
 644	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
 645	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
 646	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 647
 648	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 649				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 650	if (ret < 0) {
 651		dev_err(priv->dev, "poll timeout\n");
 652		goto out;
 653	}
 654
 655	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
 656	      MT7531_MDIO_DEV_ADDR(devad) | data;
 657	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 658
 659	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 660				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 661	if (ret < 0) {
 662		dev_err(priv->dev, "poll timeout\n");
 663		goto out;
 664	}
 665
 666out:
 667	mt7530_mutex_unlock(priv);
 668
 669	return ret;
 670}
 671
 672static int
 673mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
 674{
 675	struct mt7530_dummy_poll p;
 676	int ret;
 677	u32 val;
 678
 679	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
 680
 681	mt7530_mutex_lock(priv);
 682
 683	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 684				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 685	if (ret < 0) {
 686		dev_err(priv->dev, "poll timeout\n");
 687		goto out;
 688	}
 689
 690	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
 691	      MT7531_MDIO_REG_ADDR(regnum);
 692
 693	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
 694
 695	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 696				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 697	if (ret < 0) {
 698		dev_err(priv->dev, "poll timeout\n");
 699		goto out;
 700	}
 701
 702	ret = val & MT7531_MDIO_RW_DATA_MASK;
 703out:
 704	mt7530_mutex_unlock(priv);
 705
 706	return ret;
 707}
 708
 709static int
 710mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
 711			 u16 data)
 712{
 713	struct mt7530_dummy_poll p;
 714	int ret;
 715	u32 reg;
 716
 717	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
 718
 719	mt7530_mutex_lock(priv);
 720
 721	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
 722				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
 723	if (ret < 0) {
 724		dev_err(priv->dev, "poll timeout\n");
 725		goto out;
 726	}
 727
 728	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
 729	      MT7531_MDIO_REG_ADDR(regnum) | data;
 730
 731	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 732
 733	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
 734				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
 735	if (ret < 0) {
 736		dev_err(priv->dev, "poll timeout\n");
 737		goto out;
 738	}
 739
 740out:
 741	mt7530_mutex_unlock(priv);
 742
 743	return ret;
 744}
 745
 746static int
 747mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
 748{
 749	struct mt7530_priv *priv = bus->priv;
 750
 751	return priv->info->phy_read_c22(priv, port, regnum);
 752}
 753
 754static int
 755mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
 756{
 757	struct mt7530_priv *priv = bus->priv;
 758
 759	return priv->info->phy_read_c45(priv, port, devad, regnum);
 760}
 761
 762static int
 763mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
 764{
 765	struct mt7530_priv *priv = bus->priv;
 766
 767	return priv->info->phy_write_c22(priv, port, regnum, val);
 768}
 769
 770static int
 771mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
 772		     u16 val)
 773{
 774	struct mt7530_priv *priv = bus->priv;
 775
 776	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
 777}
 778
 779static void
 780mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
 781		   uint8_t *data)
 782{
 783	int i;
 784
 785	if (stringset != ETH_SS_STATS)
 786		return;
 787
 788	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
 789		ethtool_puts(&data, mt7530_mib[i].name);
 790}
 791
 792static void
 793mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
 794			 uint64_t *data)
 795{
 796	struct mt7530_priv *priv = ds->priv;
 797	const struct mt7530_mib_desc *mib;
 798	u32 reg, i;
 799	u64 hi;
 800
 801	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
 802		mib = &mt7530_mib[i];
 803		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
 804
 805		data[i] = mt7530_read(priv, reg);
 806		if (mib->size == 2) {
 807			hi = mt7530_read(priv, reg + 4);
 808			data[i] |= hi << 32;
 809		}
 810	}
 811}
 812
 813static int
 814mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
 815{
 816	if (sset != ETH_SS_STATS)
 817		return 0;
 818
 819	return ARRAY_SIZE(mt7530_mib);
 820}
 821
 822static int
 823mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
 824{
 825	struct mt7530_priv *priv = ds->priv;
 826	unsigned int secs = msecs / 1000;
 827	unsigned int tmp_age_count;
 828	unsigned int error = -1;
 829	unsigned int age_count;
 830	unsigned int age_unit;
 831
 832	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
 833	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
 834		return -ERANGE;
 835
 836	/* iterate through all possible age_count to find the closest pair */
 837	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
 838		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
 839
 840		if (tmp_age_unit <= AGE_UNIT_MAX) {
 841			unsigned int tmp_error = secs -
 842				(tmp_age_count + 1) * (tmp_age_unit + 1);
 843
 844			/* found a closer pair */
 845			if (error > tmp_error) {
 846				error = tmp_error;
 847				age_count = tmp_age_count;
 848				age_unit = tmp_age_unit;
 849			}
 850
 851			/* found the exact match, so break the loop */
 852			if (!error)
 853				break;
 854		}
 855	}
 856
 857	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
 858
 859	return 0;
 860}
 861
 862static const char *mt7530_p5_mode_str(unsigned int mode)
 863{
 864	switch (mode) {
 865	case MUX_PHY_P0:
 866		return "MUX PHY P0";
 867	case MUX_PHY_P4:
 868		return "MUX PHY P4";
 869	default:
 
 
 870		return "GMAC5";
 
 
 871	}
 872}
 873
 874static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
 875{
 876	struct mt7530_priv *priv = ds->priv;
 877	u8 tx_delay = 0;
 878	int val;
 879
 880	mutex_lock(&priv->reg_mutex);
 881
 882	val = mt7530_read(priv, MT753X_MTRAP);
 883
 884	val &= ~MT7530_P5_PHY0_SEL & ~MT7530_P5_MAC_SEL & ~MT7530_P5_RGMII_MODE;
 
 885
 886	switch (priv->p5_mode) {
 887	/* MUX_PHY_P0: P0 -> P5 -> SoC MAC */
 888	case MUX_PHY_P0:
 889		val |= MT7530_P5_PHY0_SEL;
 890		fallthrough;
 
 
 
 891
 892	/* MUX_PHY_P4: P4 -> P5 -> SoC MAC */
 893	case MUX_PHY_P4:
 894		/* Setup the MAC by default for the cpu port */
 895		mt7530_write(priv, MT753X_PMCR_P(5), 0x56300);
 
 
 
 
 896		break;
 897
 898	/* GMAC5: P5 -> SoC MAC or external PHY */
 899	default:
 900		val |= MT7530_P5_MAC_SEL;
 901		break;
 902	}
 903
 904	/* Setup RGMII settings */
 905	if (phy_interface_mode_is_rgmii(interface)) {
 906		val |= MT7530_P5_RGMII_MODE;
 907
 908		/* P5 RGMII RX Clock Control: delay setting for 1000M */
 909		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
 910
 911		/* Don't set delay in DSA mode */
 912		if (!dsa_is_dsa_port(priv->ds, 5) &&
 913		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
 914		     interface == PHY_INTERFACE_MODE_RGMII_ID))
 915			tx_delay = 4; /* n * 0.5 ns */
 916
 917		/* P5 RGMII TX Clock Control: delay x */
 918		mt7530_write(priv, MT7530_P5RGMIITXCR,
 919			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
 920
 921		/* reduce P5 RGMII Tx driving, 8mA */
 922		mt7530_write(priv, MT7530_IO_DRV_CR,
 923			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
 924	}
 925
 926	mt7530_write(priv, MT753X_MTRAP, val);
 927
 928	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, mode=%s, phy-mode=%s\n", val,
 929		mt7530_p5_mode_str(priv->p5_mode), phy_modes(interface));
 930
 931	mutex_unlock(&priv->reg_mutex);
 932}
 933
 934/* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL)
 935 * of the Open Systems Interconnection basic reference model (OSI/RM) are
 936 * described; the medium access control (MAC) and logical link control (LLC)
 937 * sublayers. The MAC sublayer is the one facing the physical layer.
 938 *
 939 * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
 940 * Bridge component comprises a MAC Relay Entity for interconnecting the Ports
 941 * of the Bridge, at least two Ports, and higher layer entities with at least a
 942 * Spanning Tree Protocol Entity included.
 943 *
 944 * Each Bridge Port also functions as an end station and shall provide the MAC
 945 * Service to an LLC Entity. Each instance of the MAC Service is provided to a
 946 * distinct LLC Entity that supports protocol identification, multiplexing, and
 947 * demultiplexing, for protocol data unit (PDU) transmission and reception by
 948 * one or more higher layer entities.
 949 *
 950 * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
 951 * Entity associated with each Bridge Port is modeled as being directly
 952 * connected to the attached Local Area Network (LAN).
 953 *
 954 * On the switch with CPU port architecture, CPU port functions as Management
 955 * Port, and the Management Port functionality is provided by software which
 956 * functions as an end station. Software is connected to an IEEE 802 LAN that is
 957 * wholly contained within the system that incorporates the Bridge. Software
 958 * provides access to the LLC Entity associated with each Bridge Port by the
 959 * value of the source port field on the special tag on the frame received by
 960 * software.
 961 *
 962 * We call frames that carry control information to determine the active
 963 * topology and current extent of each Virtual Local Area Network (VLAN), i.e.,
 964 * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration
 965 * Protocol Data Units (MVRPDUs), and frames from other link constrained
 966 * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and
 967 * Link Layer Discovery Protocol (LLDP), link-local frames. They are not
 968 * forwarded by a Bridge. Permanently configured entries in the filtering
 969 * database (FDB) ensure that such frames are discarded by the Forwarding
 970 * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail:
 971 *
 972 * Each of the reserved MAC addresses specified in Table 8-1
 973 * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
 974 * permanently configured in the FDB in C-VLAN components and ERs.
 975 *
 976 * Each of the reserved MAC addresses specified in Table 8-2
 977 * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
 978 * configured in the FDB in S-VLAN components.
 979 *
 980 * Each of the reserved MAC addresses specified in Table 8-3
 981 * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in
 982 * TPMR components.
 983 *
 984 * The FDB entries for reserved MAC addresses shall specify filtering for all
 985 * Bridge Ports and all VIDs. Management shall not provide the capability to
 986 * modify or remove entries for reserved MAC addresses.
 987 *
 988 * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
 989 * propagation of PDUs within a Bridged Network, as follows:
 990 *
 991 *   The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no
 992 *   conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
 993 *   component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
 994 *   PDUs transmitted using this destination address, or any other addresses
 995 *   that appear in Table 8-1, Table 8-2, and Table 8-3
 996 *   (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
 997 *   therefore travel no further than those stations that can be reached via a
 998 *   single individual LAN from the originating station.
 999 *
1000 *   The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
1001 *   address that no conformant S-VLAN component, C-VLAN component, or MAC
1002 *   Bridge can forward; however, this address is relayed by a TPMR component.
1003 *   PDUs using this destination address, or any of the other addresses that
1004 *   appear in both Table 8-1 and Table 8-2 but not in Table 8-3
1005 *   (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by
1006 *   any TPMRs but will propagate no further than the nearest S-VLAN component,
1007 *   C-VLAN component, or MAC Bridge.
1008 *
1009 *   The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address
1010 *   that no conformant C-VLAN component, MAC Bridge can forward; however, it is
1011 *   relayed by TPMR components and S-VLAN components. PDUs using this
1012 *   destination address, or any of the other addresses that appear in Table 8-1
1013 *   but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]),
1014 *   will be relayed by TPMR components and S-VLAN components but will propagate
1015 *   no further than the nearest C-VLAN component or MAC Bridge.
1016 *
1017 * Because the LLC Entity associated with each Bridge Port is provided via CPU
1018 * port, we must not filter these frames but forward them to CPU port.
1019 *
1020 * In a Bridge, the transmission Port is majorly decided by ingress and egress
1021 * rules, FDB, and spanning tree Port State functions of the Forwarding Process.
1022 * For link-local frames, only CPU port should be designated as destination port
1023 * in the FDB, and the other functions of the Forwarding Process must not
1024 * interfere with the decision of the transmission Port. We call this process
1025 * trapping frames to CPU port.
1026 *
1027 * Therefore, on the switch with CPU port architecture, link-local frames must
1028 * be trapped to CPU port, and certain link-local frames received by a Port of a
1029 * Bridge comprising a TPMR component or an S-VLAN component must be excluded
1030 * from it.
1031 *
1032 * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port
1033 * MAC Relay (TPMR) component as a TPMR component supports only a subset of the
1034 * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port
1035 * doesn't count) of this architecture will either function as a standard MAC
1036 * Bridge or a standard VLAN Bridge.
1037 *
1038 * Therefore, a Bridge of this architecture can only comprise S-VLAN components,
1039 * C-VLAN components, or MAC Bridge components. Since there's no TPMR component,
1040 * we don't need to relay PDUs using the destination addresses specified on the
1041 * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge
1042 * section where they must be relayed by TPMR components.
1043 *
1044 * One option to trap link-local frames to CPU port is to add static FDB entries
1045 * with CPU port designated as destination port. However, because that
1046 * Independent VLAN Learning (IVL) is being used on every VID, each entry only
1047 * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
1048 * Bridge component or a C-VLAN component, there would have to be 16 times 4096
1049 * entries. This switch intellectual property can only hold a maximum of 2048
1050 * entries. Using this option, there also isn't a mechanism to prevent
1051 * link-local frames from being discarded when the spanning tree Port State of
1052 * the reception Port is discarding.
1053 *
1054 * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
1055 * registers. Whilst this applies to every VID, it doesn't contain all of the
1056 * reserved MAC addresses without affecting the remaining Standard Group MAC
1057 * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the
1058 * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
1059 * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
1060 * destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
1061 * The latter option provides better but not complete conformance.
1062 *
1063 * This switch intellectual property also does not provide a mechanism to trap
1064 * link-local frames with specific destination addresses to CPU port by Bridge,
1065 * to conform to the filtering rules for the distinct Bridge components.
1066 *
1067 * Therefore, regardless of the type of the Bridge component, link-local frames
1068 * with these destination addresses will be trapped to CPU port:
1069 *
1070 * 01-80-C2-00-00-[00,01,02,03,0E]
1071 *
1072 * In a Bridge comprising a MAC Bridge component or a C-VLAN component:
1073 *
1074 *   Link-local frames with these destination addresses won't be trapped to CPU
1075 *   port which won't conform to IEEE Std 802.1Q-2022:
1076 *
1077 *   01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
1078 *
1079 * In a Bridge comprising an S-VLAN component:
1080 *
1081 *   Link-local frames with these destination addresses will be trapped to CPU
1082 *   port which won't conform to IEEE Std 802.1Q-2022:
1083 *
1084 *   01-80-C2-00-00-00
1085 *
1086 *   Link-local frames with these destination addresses won't be trapped to CPU
1087 *   port which won't conform to IEEE Std 802.1Q-2022:
1088 *
1089 *   01-80-C2-00-00-[04,05,06,07,08,09,0A]
1090 *
1091 * To trap link-local frames to CPU port as conformant as this switch
1092 * intellectual property can allow, link-local frames are made to be regarded as
1093 * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual
1094 * property only lets the frames regarded as BPDUs bypass the spanning tree Port
1095 * State function of the Forwarding Process.
1096 *
1097 * The only remaining interference is the ingress rules. When the reception Port
1098 * has no PVID assigned on software, VLAN-untagged frames won't be allowed in.
1099 * There doesn't seem to be a mechanism on the switch intellectual property to
1100 * have link-local frames bypass this function of the Forwarding Process.
1101 */
1102static void
1103mt753x_trap_frames(struct mt7530_priv *priv)
1104{
1105	/* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1106	 * VLAN-untagged.
1107	 */
1108	mt7530_rmw(priv, MT753X_BPC,
1109		   PAE_BPDU_FR | PAE_EG_TAG_MASK | PAE_PORT_FW_MASK |
1110			   BPDU_EG_TAG_MASK | BPDU_PORT_FW_MASK,
1111		   PAE_BPDU_FR | PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1112			   PAE_PORT_FW(TO_CPU_FW_CPU_ONLY) |
1113			   BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1114			   TO_CPU_FW_CPU_ONLY);
 
 
1115
1116	/* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1117	 * them VLAN-untagged.
1118	 */
1119	mt7530_rmw(priv, MT753X_RGAC1,
1120		   R02_BPDU_FR | R02_EG_TAG_MASK | R02_PORT_FW_MASK |
1121			   R01_BPDU_FR | R01_EG_TAG_MASK | R01_PORT_FW_MASK,
1122		   R02_BPDU_FR | R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1123			   R02_PORT_FW(TO_CPU_FW_CPU_ONLY) | R01_BPDU_FR |
1124			   R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1125			   TO_CPU_FW_CPU_ONLY);
 
 
 
1126
1127	/* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1128	 * them VLAN-untagged.
1129	 */
1130	mt7530_rmw(priv, MT753X_RGAC2,
1131		   R0E_BPDU_FR | R0E_EG_TAG_MASK | R0E_PORT_FW_MASK |
1132			   R03_BPDU_FR | R03_EG_TAG_MASK | R03_PORT_FW_MASK,
1133		   R0E_BPDU_FR | R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1134			   R0E_PORT_FW(TO_CPU_FW_CPU_ONLY) | R03_BPDU_FR |
1135			   R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1136			   TO_CPU_FW_CPU_ONLY);
 
 
 
1137}
1138
1139static void
1140mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1141{
1142	struct mt7530_priv *priv = ds->priv;
1143
1144	/* Enable Mediatek header mode on the cpu port */
1145	mt7530_write(priv, MT7530_PVC_P(port),
1146		     PORT_SPEC_TAG);
1147
1148	/* Enable flooding on the CPU port */
1149	mt7530_set(priv, MT753X_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1150		   UNU_FFP(BIT(port)));
1151
1152	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1153	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1154	 * is affine to the inbound user port.
1155	 */
1156	if (priv->id == ID_MT7531 || priv->id == ID_MT7988 ||
1157	    priv->id == ID_EN7581)
1158		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1159
1160	/* CPU port gets connected to all user ports of
1161	 * the switch.
1162	 */
1163	mt7530_write(priv, MT7530_PCR_P(port),
1164		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1165
1166	/* Set to fallback mode for independent VLAN learning */
1167	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1168		   MT7530_PORT_FALLBACK_MODE);
1169}
1170
1171static int
1172mt7530_port_enable(struct dsa_switch *ds, int port,
1173		   struct phy_device *phy)
1174{
1175	struct dsa_port *dp = dsa_to_port(ds, port);
1176	struct mt7530_priv *priv = ds->priv;
1177
1178	mutex_lock(&priv->reg_mutex);
1179
1180	/* Allow the user port gets connected to the cpu port and also
1181	 * restore the port matrix if the port is the member of a certain
1182	 * bridge.
1183	 */
1184	if (dsa_port_is_user(dp)) {
1185		struct dsa_port *cpu_dp = dp->cpu_dp;
1186
1187		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1188	}
1189	priv->ports[port].enable = true;
1190	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1191		   priv->ports[port].pm);
1192
1193	mutex_unlock(&priv->reg_mutex);
1194
1195	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
1196		return 0;
1197
1198	if (port == 5)
1199		mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS);
1200	else if (port == 6)
1201		mt7530_clear(priv, MT753X_MTRAP, MT7530_P6_DIS);
1202
1203	return 0;
1204}
1205
1206static void
1207mt7530_port_disable(struct dsa_switch *ds, int port)
1208{
1209	struct mt7530_priv *priv = ds->priv;
1210
1211	mutex_lock(&priv->reg_mutex);
1212
1213	/* Clear up all port matrix which could be restored in the next
1214	 * enablement for the port.
1215	 */
1216	priv->ports[port].enable = false;
1217	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1218		   PCR_MATRIX_CLR);
1219
1220	mutex_unlock(&priv->reg_mutex);
1221
1222	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
1223		return;
1224
1225	/* Do not set MT7530_P5_DIS when port 5 is being used for PHY muxing. */
1226	if (port == 5 && priv->p5_mode == GMAC5)
1227		mt7530_set(priv, MT753X_MTRAP, MT7530_P5_DIS);
1228	else if (port == 6)
1229		mt7530_set(priv, MT753X_MTRAP, MT7530_P6_DIS);
1230}
1231
1232static int
1233mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1234{
1235	struct mt7530_priv *priv = ds->priv;
1236	int length;
1237	u32 val;
1238
1239	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1240	 * largest MTU of the user ports. Because the switch only has a global
1241	 * RX length register, only allowing CPU port here is enough.
1242	 */
1243	if (!dsa_is_cpu_port(ds, port))
1244		return 0;
1245
1246	mt7530_mutex_lock(priv);
1247
1248	val = mt7530_mii_read(priv, MT7530_GMACCR);
1249	val &= ~MAX_RX_PKT_LEN_MASK;
1250
1251	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1252	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1253	if (length <= 1522) {
1254		val |= MAX_RX_PKT_LEN_1522;
1255	} else if (length <= 1536) {
1256		val |= MAX_RX_PKT_LEN_1536;
1257	} else if (length <= 1552) {
1258		val |= MAX_RX_PKT_LEN_1552;
1259	} else {
1260		val &= ~MAX_RX_JUMBO_MASK;
1261		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1262		val |= MAX_RX_PKT_LEN_JUMBO;
1263	}
1264
1265	mt7530_mii_write(priv, MT7530_GMACCR, val);
1266
1267	mt7530_mutex_unlock(priv);
1268
1269	return 0;
1270}
1271
1272static int
1273mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1274{
1275	return MT7530_MAX_MTU;
1276}
1277
1278static void
1279mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1280{
1281	struct mt7530_priv *priv = ds->priv;
1282	u32 stp_state;
1283
1284	switch (state) {
1285	case BR_STATE_DISABLED:
1286		stp_state = MT7530_STP_DISABLED;
1287		break;
1288	case BR_STATE_BLOCKING:
1289		stp_state = MT7530_STP_BLOCKING;
1290		break;
1291	case BR_STATE_LISTENING:
1292		stp_state = MT7530_STP_LISTENING;
1293		break;
1294	case BR_STATE_LEARNING:
1295		stp_state = MT7530_STP_LEARNING;
1296		break;
1297	case BR_STATE_FORWARDING:
1298	default:
1299		stp_state = MT7530_STP_FORWARDING;
1300		break;
1301	}
1302
1303	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1304		   FID_PST(FID_BRIDGED, stp_state));
1305}
1306
1307static void mt7530_update_port_member(struct mt7530_priv *priv, int port,
1308				      const struct net_device *bridge_dev,
1309				      bool join) __must_hold(&priv->reg_mutex)
1310{
1311	struct dsa_port *dp = dsa_to_port(priv->ds, port), *other_dp;
1312	struct mt7530_port *p = &priv->ports[port], *other_p;
1313	struct dsa_port *cpu_dp = dp->cpu_dp;
1314	u32 port_bitmap = BIT(cpu_dp->index);
1315	int other_port;
1316	bool isolated;
1317
1318	dsa_switch_for_each_user_port(other_dp, priv->ds) {
1319		other_port = other_dp->index;
1320		other_p = &priv->ports[other_port];
1321
1322		if (dp == other_dp)
1323			continue;
1324
1325		/* Add/remove this port to/from the port matrix of the other
1326		 * ports in the same bridge. If the port is disabled, port
1327		 * matrix is kept and not being setup until the port becomes
1328		 * enabled.
1329		 */
1330		if (!dsa_port_offloads_bridge_dev(other_dp, bridge_dev))
1331			continue;
1332
1333		isolated = p->isolated && other_p->isolated;
1334
1335		if (join && !isolated) {
1336			other_p->pm |= PCR_MATRIX(BIT(port));
1337			port_bitmap |= BIT(other_port);
1338		} else {
1339			other_p->pm &= ~PCR_MATRIX(BIT(port));
1340		}
1341
1342		if (other_p->enable)
1343			mt7530_rmw(priv, MT7530_PCR_P(other_port),
1344				   PCR_MATRIX_MASK, other_p->pm);
1345	}
1346
1347	/* Add/remove the all other ports to this port matrix. For !join
1348	 * (leaving the bridge), only the CPU port will remain in the port matrix
1349	 * of this port.
1350	 */
1351	p->pm = PCR_MATRIX(port_bitmap);
1352	if (priv->ports[port].enable)
1353		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, p->pm);
1354}
1355
1356static int
1357mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1358			     struct switchdev_brport_flags flags,
1359			     struct netlink_ext_ack *extack)
1360{
1361	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1362			   BR_BCAST_FLOOD | BR_ISOLATED))
1363		return -EINVAL;
1364
1365	return 0;
1366}
1367
1368static int
1369mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1370			 struct switchdev_brport_flags flags,
1371			 struct netlink_ext_ack *extack)
1372{
1373	struct mt7530_priv *priv = ds->priv;
1374
1375	if (flags.mask & BR_LEARNING)
1376		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1377			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1378
1379	if (flags.mask & BR_FLOOD)
1380		mt7530_rmw(priv, MT753X_MFC, UNU_FFP(BIT(port)),
1381			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1382
1383	if (flags.mask & BR_MCAST_FLOOD)
1384		mt7530_rmw(priv, MT753X_MFC, UNM_FFP(BIT(port)),
1385			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1386
1387	if (flags.mask & BR_BCAST_FLOOD)
1388		mt7530_rmw(priv, MT753X_MFC, BC_FFP(BIT(port)),
1389			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1390
1391	if (flags.mask & BR_ISOLATED) {
1392		struct dsa_port *dp = dsa_to_port(ds, port);
1393		struct net_device *bridge_dev = dsa_port_bridge_dev_get(dp);
1394
1395		priv->ports[port].isolated = !!(flags.val & BR_ISOLATED);
1396
1397		mutex_lock(&priv->reg_mutex);
1398		mt7530_update_port_member(priv, port, bridge_dev, true);
1399		mutex_unlock(&priv->reg_mutex);
1400	}
1401
1402	return 0;
1403}
1404
1405static int
1406mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1407			struct dsa_bridge bridge, bool *tx_fwd_offload,
1408			struct netlink_ext_ack *extack)
1409{
 
 
 
1410	struct mt7530_priv *priv = ds->priv;
1411
1412	mutex_lock(&priv->reg_mutex);
1413
1414	mt7530_update_port_member(priv, port, bridge.dev, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415
1416	/* Set to fallback mode for independent VLAN learning */
1417	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1418		   MT7530_PORT_FALLBACK_MODE);
1419
1420	mutex_unlock(&priv->reg_mutex);
1421
1422	return 0;
1423}
1424
1425static void
1426mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1427{
1428	struct mt7530_priv *priv = ds->priv;
1429	bool all_user_ports_removed = true;
1430	int i;
1431
1432	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1433	 * bridge. Don't set standalone ports to fallback mode.
1434	 */
1435	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1436		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1437			   MT7530_PORT_FALLBACK_MODE);
1438
1439	mt7530_rmw(priv, MT7530_PVC_P(port),
1440		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1441		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1442		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1443		   MT7530_VLAN_ACC_ALL);
1444
1445	/* Set PVID to 0 */
1446	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1447		   G0_PORT_VID_DEF);
1448
1449	for (i = 0; i < priv->ds->num_ports; i++) {
1450		if (dsa_is_user_port(ds, i) &&
1451		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1452			all_user_ports_removed = false;
1453			break;
1454		}
1455	}
1456
1457	/* CPU port also does the same thing until all user ports belonging to
1458	 * the CPU port get out of VLAN filtering mode.
1459	 */
1460	if (all_user_ports_removed) {
1461		struct dsa_port *dp = dsa_to_port(ds, port);
1462		struct dsa_port *cpu_dp = dp->cpu_dp;
1463
1464		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1465			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1466		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1467			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1468	}
1469}
1470
1471static void
1472mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1473{
1474	struct mt7530_priv *priv = ds->priv;
1475
1476	/* Trapped into security mode allows packet forwarding through VLAN
1477	 * table lookup.
1478	 */
1479	if (dsa_is_user_port(ds, port)) {
1480		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1481			   MT7530_PORT_SECURITY_MODE);
1482		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1483			   G0_PORT_VID(priv->ports[port].pvid));
1484
1485		/* Only accept tagged frames if PVID is not set */
1486		if (!priv->ports[port].pvid)
1487			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1488				   MT7530_VLAN_ACC_TAGGED);
1489
1490		/* Set the port as a user port which is to be able to recognize
1491		 * VID from incoming packets before fetching entry within the
1492		 * VLAN table.
1493		 */
1494		mt7530_rmw(priv, MT7530_PVC_P(port),
1495			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1496			   VLAN_ATTR(MT7530_VLAN_USER) |
1497			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1498	} else {
1499		/* Also set CPU ports to the "user" VLAN port attribute, to
1500		 * allow VLAN classification, but keep the EG_TAG attribute as
1501		 * "consistent" (i.o.w. don't change its value) for packets
1502		 * received by the switch from the CPU, so that tagged packets
1503		 * are forwarded to user ports as tagged, and untagged as
1504		 * untagged.
1505		 */
1506		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1507			   VLAN_ATTR(MT7530_VLAN_USER));
1508	}
1509}
1510
1511static void
1512mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1513			 struct dsa_bridge bridge)
1514{
 
 
1515	struct mt7530_priv *priv = ds->priv;
1516
1517	mutex_lock(&priv->reg_mutex);
1518
1519	mt7530_update_port_member(priv, port, bridge.dev, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1520
1521	/* When a port is removed from the bridge, the port would be set up
1522	 * back to the default as is at initial boot which is a VLAN-unaware
1523	 * port.
1524	 */
1525	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1526		   MT7530_PORT_MATRIX_MODE);
1527
1528	mutex_unlock(&priv->reg_mutex);
1529}
1530
1531static int
1532mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1533		    const unsigned char *addr, u16 vid,
1534		    struct dsa_db db)
1535{
1536	struct mt7530_priv *priv = ds->priv;
1537	int ret;
1538	u8 port_mask = BIT(port);
1539
1540	mutex_lock(&priv->reg_mutex);
1541	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1542	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1543	mutex_unlock(&priv->reg_mutex);
1544
1545	return ret;
1546}
1547
1548static int
1549mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1550		    const unsigned char *addr, u16 vid,
1551		    struct dsa_db db)
1552{
1553	struct mt7530_priv *priv = ds->priv;
1554	int ret;
1555	u8 port_mask = BIT(port);
1556
1557	mutex_lock(&priv->reg_mutex);
1558	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1559	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1560	mutex_unlock(&priv->reg_mutex);
1561
1562	return ret;
1563}
1564
1565static int
1566mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1567		     dsa_fdb_dump_cb_t *cb, void *data)
1568{
1569	struct mt7530_priv *priv = ds->priv;
1570	struct mt7530_fdb _fdb = { 0 };
1571	int cnt = MT7530_NUM_FDB_RECORDS;
1572	int ret = 0;
1573	u32 rsp = 0;
1574
1575	mutex_lock(&priv->reg_mutex);
1576
1577	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1578	if (ret < 0)
1579		goto err;
1580
1581	do {
1582		if (rsp & ATC_SRCH_HIT) {
1583			mt7530_fdb_read(priv, &_fdb);
1584			if (_fdb.port_mask & BIT(port)) {
1585				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1586					 data);
1587				if (ret < 0)
1588					break;
1589			}
1590		}
1591	} while (--cnt &&
1592		 !(rsp & ATC_SRCH_END) &&
1593		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1594err:
1595	mutex_unlock(&priv->reg_mutex);
1596
1597	return 0;
1598}
1599
1600static int
1601mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1602		    const struct switchdev_obj_port_mdb *mdb,
1603		    struct dsa_db db)
1604{
1605	struct mt7530_priv *priv = ds->priv;
1606	const u8 *addr = mdb->addr;
1607	u16 vid = mdb->vid;
1608	u8 port_mask = 0;
1609	int ret;
1610
1611	mutex_lock(&priv->reg_mutex);
1612
1613	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1614	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1615		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1616			    & PORT_MAP_MASK;
1617
1618	port_mask |= BIT(port);
1619	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1620	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1621
1622	mutex_unlock(&priv->reg_mutex);
1623
1624	return ret;
1625}
1626
1627static int
1628mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1629		    const struct switchdev_obj_port_mdb *mdb,
1630		    struct dsa_db db)
1631{
1632	struct mt7530_priv *priv = ds->priv;
1633	const u8 *addr = mdb->addr;
1634	u16 vid = mdb->vid;
1635	u8 port_mask = 0;
1636	int ret;
1637
1638	mutex_lock(&priv->reg_mutex);
1639
1640	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1641	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1642		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1643			    & PORT_MAP_MASK;
1644
1645	port_mask &= ~BIT(port);
1646	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1647			 port_mask ? STATIC_ENT : STATIC_EMP);
1648	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1649
1650	mutex_unlock(&priv->reg_mutex);
1651
1652	return ret;
1653}
1654
1655static int
1656mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1657{
1658	struct mt7530_dummy_poll p;
1659	u32 val;
1660	int ret;
1661
1662	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1663	mt7530_write(priv, MT7530_VTCR, val);
1664
1665	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1666	ret = readx_poll_timeout(_mt7530_read, &p, val,
1667				 !(val & VTCR_BUSY), 20, 20000);
1668	if (ret < 0) {
1669		dev_err(priv->dev, "poll timeout\n");
1670		return ret;
1671	}
1672
1673	val = mt7530_read(priv, MT7530_VTCR);
1674	if (val & VTCR_INVALID) {
1675		dev_err(priv->dev, "read VTCR invalid\n");
1676		return -EINVAL;
1677	}
1678
1679	return 0;
1680}
1681
1682static int
1683mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1684			   struct netlink_ext_ack *extack)
1685{
1686	struct dsa_port *dp = dsa_to_port(ds, port);
1687	struct dsa_port *cpu_dp = dp->cpu_dp;
1688
1689	if (vlan_filtering) {
1690		/* The port is being kept as VLAN-unaware port when bridge is
1691		 * set up with vlan_filtering not being set, Otherwise, the
1692		 * port and the corresponding CPU port is required the setup
1693		 * for becoming a VLAN-aware port.
1694		 */
1695		mt7530_port_set_vlan_aware(ds, port);
1696		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1697	} else {
1698		mt7530_port_set_vlan_unaware(ds, port);
1699	}
1700
1701	return 0;
1702}
1703
1704static void
1705mt7530_hw_vlan_add(struct mt7530_priv *priv,
1706		   struct mt7530_hw_vlan_entry *entry)
1707{
1708	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1709	u8 new_members;
1710	u32 val;
1711
1712	new_members = entry->old_members | BIT(entry->port);
1713
1714	/* Validate the entry with independent learning, create egress tag per
1715	 * VLAN and joining the port as one of the port members.
1716	 */
1717	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1718	      VLAN_VALID;
1719	mt7530_write(priv, MT7530_VAWD1, val);
1720
1721	/* Decide whether adding tag or not for those outgoing packets from the
1722	 * port inside the VLAN.
1723	 * CPU port is always taken as a tagged port for serving more than one
1724	 * VLANs across and also being applied with egress type stack mode for
1725	 * that VLAN tags would be appended after hardware special tag used as
1726	 * DSA tag.
1727	 */
1728	if (dsa_port_is_cpu(dp))
1729		val = MT7530_VLAN_EGRESS_STACK;
1730	else if (entry->untagged)
1731		val = MT7530_VLAN_EGRESS_UNTAG;
1732	else
1733		val = MT7530_VLAN_EGRESS_TAG;
1734	mt7530_rmw(priv, MT7530_VAWD2,
1735		   ETAG_CTRL_P_MASK(entry->port),
1736		   ETAG_CTRL_P(entry->port, val));
1737}
1738
1739static void
1740mt7530_hw_vlan_del(struct mt7530_priv *priv,
1741		   struct mt7530_hw_vlan_entry *entry)
1742{
1743	u8 new_members;
1744	u32 val;
1745
1746	new_members = entry->old_members & ~BIT(entry->port);
1747
1748	val = mt7530_read(priv, MT7530_VAWD1);
1749	if (!(val & VLAN_VALID)) {
1750		dev_err(priv->dev,
1751			"Cannot be deleted due to invalid entry\n");
1752		return;
1753	}
1754
1755	if (new_members) {
1756		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1757		      VLAN_VALID;
1758		mt7530_write(priv, MT7530_VAWD1, val);
1759	} else {
1760		mt7530_write(priv, MT7530_VAWD1, 0);
1761		mt7530_write(priv, MT7530_VAWD2, 0);
1762	}
1763}
1764
1765static void
1766mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1767		      struct mt7530_hw_vlan_entry *entry,
1768		      mt7530_vlan_op vlan_op)
1769{
1770	u32 val;
1771
1772	/* Fetch entry */
1773	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1774
1775	val = mt7530_read(priv, MT7530_VAWD1);
1776
1777	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1778
1779	/* Manipulate entry */
1780	vlan_op(priv, entry);
1781
1782	/* Flush result to hardware */
1783	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1784}
1785
1786static int
1787mt7530_setup_vlan0(struct mt7530_priv *priv)
1788{
1789	u32 val;
1790
1791	/* Validate the entry with independent learning, keep the original
1792	 * ingress tag attribute.
1793	 */
1794	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1795	      VLAN_VALID;
1796	mt7530_write(priv, MT7530_VAWD1, val);
1797
1798	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1799}
1800
1801static int
1802mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1803		     const struct switchdev_obj_port_vlan *vlan,
1804		     struct netlink_ext_ack *extack)
1805{
1806	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1807	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1808	struct mt7530_hw_vlan_entry new_entry;
1809	struct mt7530_priv *priv = ds->priv;
1810
1811	mutex_lock(&priv->reg_mutex);
1812
1813	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1814	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1815
1816	if (pvid) {
1817		priv->ports[port].pvid = vlan->vid;
1818
1819		/* Accept all frames if PVID is set */
1820		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1821			   MT7530_VLAN_ACC_ALL);
1822
1823		/* Only configure PVID if VLAN filtering is enabled */
1824		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1825			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1826				   G0_PORT_VID_MASK,
1827				   G0_PORT_VID(vlan->vid));
1828	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1829		/* This VLAN is overwritten without PVID, so unset it */
1830		priv->ports[port].pvid = G0_PORT_VID_DEF;
1831
1832		/* Only accept tagged frames if the port is VLAN-aware */
1833		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1834			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1835				   MT7530_VLAN_ACC_TAGGED);
1836
1837		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1838			   G0_PORT_VID_DEF);
1839	}
1840
1841	mutex_unlock(&priv->reg_mutex);
1842
1843	return 0;
1844}
1845
1846static int
1847mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1848		     const struct switchdev_obj_port_vlan *vlan)
1849{
1850	struct mt7530_hw_vlan_entry target_entry;
1851	struct mt7530_priv *priv = ds->priv;
1852
1853	mutex_lock(&priv->reg_mutex);
1854
1855	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1856	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1857			      mt7530_hw_vlan_del);
1858
1859	/* PVID is being restored to the default whenever the PVID port
1860	 * is being removed from the VLAN.
1861	 */
1862	if (priv->ports[port].pvid == vlan->vid) {
1863		priv->ports[port].pvid = G0_PORT_VID_DEF;
1864
1865		/* Only accept tagged frames if the port is VLAN-aware */
1866		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1867			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1868				   MT7530_VLAN_ACC_TAGGED);
1869
1870		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1871			   G0_PORT_VID_DEF);
1872	}
1873
1874
1875	mutex_unlock(&priv->reg_mutex);
1876
1877	return 0;
1878}
1879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1881				  struct dsa_mall_mirror_tc_entry *mirror,
1882				  bool ingress, struct netlink_ext_ack *extack)
1883{
1884	struct mt7530_priv *priv = ds->priv;
1885	int monitor_port;
1886	u32 val;
1887
1888	/* Check for existent entry */
1889	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1890		return -EEXIST;
1891
1892	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1893
1894	/* MT7530 only supports one monitor port */
1895	monitor_port = MT753X_MIRROR_PORT_GET(priv->id, val);
1896	if (val & MT753X_MIRROR_EN(priv->id) &&
1897	    monitor_port != mirror->to_local_port)
1898		return -EEXIST;
1899
1900	val |= MT753X_MIRROR_EN(priv->id);
1901	val &= ~MT753X_MIRROR_PORT_MASK(priv->id);
1902	val |= MT753X_MIRROR_PORT_SET(priv->id, mirror->to_local_port);
1903	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1904
1905	val = mt7530_read(priv, MT7530_PCR_P(port));
1906	if (ingress) {
1907		val |= PORT_RX_MIR;
1908		priv->mirror_rx |= BIT(port);
1909	} else {
1910		val |= PORT_TX_MIR;
1911		priv->mirror_tx |= BIT(port);
1912	}
1913	mt7530_write(priv, MT7530_PCR_P(port), val);
1914
1915	return 0;
1916}
1917
1918static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1919				   struct dsa_mall_mirror_tc_entry *mirror)
1920{
1921	struct mt7530_priv *priv = ds->priv;
1922	u32 val;
1923
1924	val = mt7530_read(priv, MT7530_PCR_P(port));
1925	if (mirror->ingress) {
1926		val &= ~PORT_RX_MIR;
1927		priv->mirror_rx &= ~BIT(port);
1928	} else {
1929		val &= ~PORT_TX_MIR;
1930		priv->mirror_tx &= ~BIT(port);
1931	}
1932	mt7530_write(priv, MT7530_PCR_P(port), val);
1933
1934	if (!priv->mirror_rx && !priv->mirror_tx) {
1935		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1936		val &= ~MT753X_MIRROR_EN(priv->id);
1937		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1938	}
1939}
1940
1941static enum dsa_tag_protocol
1942mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1943		     enum dsa_tag_protocol mp)
1944{
1945	return DSA_TAG_PROTO_MTK;
1946}
1947
1948#ifdef CONFIG_GPIOLIB
1949static inline u32
1950mt7530_gpio_to_bit(unsigned int offset)
1951{
1952	/* Map GPIO offset to register bit
1953	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1954	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1955	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1956	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1957	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1958	 */
1959	return BIT(offset + offset / 3);
1960}
1961
1962static int
1963mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1964{
1965	struct mt7530_priv *priv = gpiochip_get_data(gc);
1966	u32 bit = mt7530_gpio_to_bit(offset);
1967
1968	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1969}
1970
1971static void
1972mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1973{
1974	struct mt7530_priv *priv = gpiochip_get_data(gc);
1975	u32 bit = mt7530_gpio_to_bit(offset);
1976
1977	if (value)
1978		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1979	else
1980		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1981}
1982
1983static int
1984mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1985{
1986	struct mt7530_priv *priv = gpiochip_get_data(gc);
1987	u32 bit = mt7530_gpio_to_bit(offset);
1988
1989	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1990		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1991}
1992
1993static int
1994mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1995{
1996	struct mt7530_priv *priv = gpiochip_get_data(gc);
1997	u32 bit = mt7530_gpio_to_bit(offset);
1998
1999	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
2000	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
2001
2002	return 0;
2003}
2004
2005static int
2006mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
2007{
2008	struct mt7530_priv *priv = gpiochip_get_data(gc);
2009	u32 bit = mt7530_gpio_to_bit(offset);
2010
2011	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
2012
2013	if (value)
2014		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2015	else
2016		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2017
2018	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
2019
2020	return 0;
2021}
2022
2023static int
2024mt7530_setup_gpio(struct mt7530_priv *priv)
2025{
2026	struct device *dev = priv->dev;
2027	struct gpio_chip *gc;
2028
2029	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
2030	if (!gc)
2031		return -ENOMEM;
2032
2033	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
2034	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
2035	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
2036
2037	gc->label = "mt7530";
2038	gc->parent = dev;
2039	gc->owner = THIS_MODULE;
2040	gc->get_direction = mt7530_gpio_get_direction;
2041	gc->direction_input = mt7530_gpio_direction_input;
2042	gc->direction_output = mt7530_gpio_direction_output;
2043	gc->get = mt7530_gpio_get;
2044	gc->set = mt7530_gpio_set;
2045	gc->base = -1;
2046	gc->ngpio = 15;
2047	gc->can_sleep = true;
2048
2049	return devm_gpiochip_add_data(dev, gc, priv);
2050}
2051#endif /* CONFIG_GPIOLIB */
2052
2053static irqreturn_t
2054mt7530_irq_thread_fn(int irq, void *dev_id)
2055{
2056	struct mt7530_priv *priv = dev_id;
2057	bool handled = false;
2058	u32 val;
2059	int p;
2060
2061	mt7530_mutex_lock(priv);
2062	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
2063	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
2064	mt7530_mutex_unlock(priv);
2065
2066	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2067		if (BIT(p) & val) {
2068			unsigned int irq;
2069
2070			irq = irq_find_mapping(priv->irq_domain, p);
2071			handle_nested_irq(irq);
2072			handled = true;
2073		}
2074	}
2075
2076	return IRQ_RETVAL(handled);
2077}
2078
2079static void
2080mt7530_irq_mask(struct irq_data *d)
2081{
2082	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2083
2084	priv->irq_enable &= ~BIT(d->hwirq);
2085}
2086
2087static void
2088mt7530_irq_unmask(struct irq_data *d)
2089{
2090	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2091
2092	priv->irq_enable |= BIT(d->hwirq);
2093}
2094
2095static void
2096mt7530_irq_bus_lock(struct irq_data *d)
2097{
2098	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2099
2100	mt7530_mutex_lock(priv);
2101}
2102
2103static void
2104mt7530_irq_bus_sync_unlock(struct irq_data *d)
2105{
2106	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2107
2108	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2109	mt7530_mutex_unlock(priv);
2110}
2111
2112static struct irq_chip mt7530_irq_chip = {
2113	.name = KBUILD_MODNAME,
2114	.irq_mask = mt7530_irq_mask,
2115	.irq_unmask = mt7530_irq_unmask,
2116	.irq_bus_lock = mt7530_irq_bus_lock,
2117	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2118};
2119
2120static int
2121mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2122	       irq_hw_number_t hwirq)
2123{
2124	irq_set_chip_data(irq, domain->host_data);
2125	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2126	irq_set_nested_thread(irq, true);
2127	irq_set_noprobe(irq);
2128
2129	return 0;
2130}
2131
2132static const struct irq_domain_ops mt7530_irq_domain_ops = {
2133	.map = mt7530_irq_map,
2134	.xlate = irq_domain_xlate_onecell,
2135};
2136
2137static void
2138mt7988_irq_mask(struct irq_data *d)
2139{
2140	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2141
2142	priv->irq_enable &= ~BIT(d->hwirq);
2143	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2144}
2145
2146static void
2147mt7988_irq_unmask(struct irq_data *d)
2148{
2149	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2150
2151	priv->irq_enable |= BIT(d->hwirq);
2152	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2153}
2154
2155static struct irq_chip mt7988_irq_chip = {
2156	.name = KBUILD_MODNAME,
2157	.irq_mask = mt7988_irq_mask,
2158	.irq_unmask = mt7988_irq_unmask,
2159};
2160
2161static int
2162mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2163	       irq_hw_number_t hwirq)
2164{
2165	irq_set_chip_data(irq, domain->host_data);
2166	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2167	irq_set_nested_thread(irq, true);
2168	irq_set_noprobe(irq);
2169
2170	return 0;
2171}
2172
2173static const struct irq_domain_ops mt7988_irq_domain_ops = {
2174	.map = mt7988_irq_map,
2175	.xlate = irq_domain_xlate_onecell,
2176};
2177
2178static void
2179mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2180{
2181	struct dsa_switch *ds = priv->ds;
2182	int p;
2183
2184	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2185		if (BIT(p) & ds->phys_mii_mask) {
2186			unsigned int irq;
2187
2188			irq = irq_create_mapping(priv->irq_domain, p);
2189			ds->user_mii_bus->irq[p] = irq;
2190		}
2191	}
2192}
2193
2194static int
2195mt7530_setup_irq(struct mt7530_priv *priv)
2196{
2197	struct device *dev = priv->dev;
2198	struct device_node *np = dev->of_node;
2199	int ret;
2200
2201	if (!of_property_read_bool(np, "interrupt-controller")) {
2202		dev_info(dev, "no interrupt support\n");
2203		return 0;
2204	}
2205
2206	priv->irq = of_irq_get(np, 0);
2207	if (priv->irq <= 0) {
2208		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2209		return priv->irq ? : -EINVAL;
2210	}
2211
2212	if (priv->id == ID_MT7988 || priv->id == ID_EN7581)
2213		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2214							 &mt7988_irq_domain_ops,
2215							 priv);
2216	else
2217		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2218							 &mt7530_irq_domain_ops,
2219							 priv);
2220
2221	if (!priv->irq_domain) {
2222		dev_err(dev, "failed to create IRQ domain\n");
2223		return -ENOMEM;
2224	}
2225
2226	/* This register must be set for MT7530 to properly fire interrupts */
2227	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
2228		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2229
2230	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2231				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2232	if (ret) {
2233		irq_domain_remove(priv->irq_domain);
2234		dev_err(dev, "failed to request IRQ: %d\n", ret);
2235		return ret;
2236	}
2237
2238	return 0;
2239}
2240
2241static void
2242mt7530_free_mdio_irq(struct mt7530_priv *priv)
2243{
2244	int p;
2245
2246	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2247		if (BIT(p) & priv->ds->phys_mii_mask) {
2248			unsigned int irq;
2249
2250			irq = irq_find_mapping(priv->irq_domain, p);
2251			irq_dispose_mapping(irq);
2252		}
2253	}
2254}
2255
2256static void
2257mt7530_free_irq_common(struct mt7530_priv *priv)
2258{
2259	free_irq(priv->irq, priv);
2260	irq_domain_remove(priv->irq_domain);
2261}
2262
2263static void
2264mt7530_free_irq(struct mt7530_priv *priv)
2265{
2266	struct device_node *mnp, *np = priv->dev->of_node;
2267
2268	mnp = of_get_child_by_name(np, "mdio");
2269	if (!mnp)
2270		mt7530_free_mdio_irq(priv);
2271	of_node_put(mnp);
2272
2273	mt7530_free_irq_common(priv);
2274}
2275
2276static int
2277mt7530_setup_mdio(struct mt7530_priv *priv)
2278{
2279	struct device_node *mnp, *np = priv->dev->of_node;
2280	struct dsa_switch *ds = priv->ds;
2281	struct device *dev = priv->dev;
2282	struct mii_bus *bus;
2283	static int idx;
2284	int ret = 0;
2285
2286	mnp = of_get_child_by_name(np, "mdio");
2287
2288	if (mnp && !of_device_is_available(mnp))
2289		goto out;
2290
2291	bus = devm_mdiobus_alloc(dev);
2292	if (!bus) {
2293		ret = -ENOMEM;
2294		goto out;
2295	}
2296
2297	if (!mnp)
2298		ds->user_mii_bus = bus;
2299
2300	bus->priv = priv;
2301	bus->name = KBUILD_MODNAME "-mii";
2302	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2303	bus->read = mt753x_phy_read_c22;
2304	bus->write = mt753x_phy_write_c22;
2305	bus->read_c45 = mt753x_phy_read_c45;
2306	bus->write_c45 = mt753x_phy_write_c45;
2307	bus->parent = dev;
2308	bus->phy_mask = ~ds->phys_mii_mask;
2309
2310	if (priv->irq && !mnp)
2311		mt7530_setup_mdio_irq(priv);
2312
2313	ret = devm_of_mdiobus_register(dev, bus, mnp);
2314	if (ret) {
2315		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2316		if (priv->irq && !mnp)
2317			mt7530_free_mdio_irq(priv);
2318	}
2319
2320out:
2321	of_node_put(mnp);
2322	return ret;
2323}
2324
2325static int
2326mt7530_setup(struct dsa_switch *ds)
2327{
2328	struct mt7530_priv *priv = ds->priv;
2329	struct device_node *dn = NULL;
2330	struct device_node *phy_node;
2331	struct device_node *mac_np;
2332	struct mt7530_dummy_poll p;
2333	phy_interface_t interface;
2334	struct dsa_port *cpu_dp;
2335	u32 id, val;
2336	int ret, i;
2337
2338	/* The parent node of conduit netdev which holds the common system
2339	 * controller also is the container for two GMACs nodes representing
2340	 * as two netdev instances.
2341	 */
2342	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2343		dn = cpu_dp->conduit->dev.of_node->parent;
2344		/* It doesn't matter which CPU port is found first,
2345		 * their conduits should share the same parent OF node
2346		 */
2347		break;
2348	}
2349
2350	if (!dn) {
2351		dev_err(ds->dev, "parent OF node of DSA conduit not found");
2352		return -EINVAL;
2353	}
2354
2355	ds->assisted_learning_on_cpu_port = true;
2356	ds->mtu_enforcement_ingress = true;
2357
2358	if (priv->id == ID_MT7530) {
2359		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2360		ret = regulator_enable(priv->core_pwr);
2361		if (ret < 0) {
2362			dev_err(priv->dev,
2363				"Failed to enable core power: %d\n", ret);
2364			return ret;
2365		}
2366
2367		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2368		ret = regulator_enable(priv->io_pwr);
2369		if (ret < 0) {
2370			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2371				ret);
2372			return ret;
2373		}
2374	}
2375
2376	/* Reset whole chip through gpio pin or memory-mapped registers for
2377	 * different type of hardware
2378	 */
2379	if (priv->mcm) {
2380		reset_control_assert(priv->rstc);
2381		usleep_range(5000, 5100);
2382		reset_control_deassert(priv->rstc);
2383	} else {
2384		gpiod_set_value_cansleep(priv->reset, 0);
2385		usleep_range(5000, 5100);
2386		gpiod_set_value_cansleep(priv->reset, 1);
2387	}
2388
2389	/* Waiting for MT7530 got to stable */
2390	INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP);
2391	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2392				 20, 1000000);
2393	if (ret < 0) {
2394		dev_err(priv->dev, "reset timeout\n");
2395		return ret;
2396	}
2397
2398	id = mt7530_read(priv, MT7530_CREV);
2399	id >>= CHIP_NAME_SHIFT;
2400	if (id != MT7530_ID) {
2401		dev_err(priv->dev, "chip %x can't be supported\n", id);
2402		return -ENODEV;
2403	}
2404
2405	if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_20MHZ) {
2406		dev_err(priv->dev,
2407			"MT7530 with a 20MHz XTAL is not supported!\n");
2408		return -EINVAL;
2409	}
2410
2411	/* Reset the switch through internal reset */
2412	mt7530_write(priv, MT7530_SYS_CTRL,
2413		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2414		     SYS_CTRL_REG_RST);
2415
2416	/* Lower Tx driving for TRGMII path */
2417	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2418		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2419			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2420
2421	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2422		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2423			   RD_TAP_MASK, RD_TAP(16));
2424
2425	/* Allow modifying the trap and directly access PHY registers via the
2426	 * MDIO bus the switch is on.
2427	 */
2428	mt7530_rmw(priv, MT753X_MTRAP, MT7530_CHG_TRAP |
2429		   MT7530_PHY_INDIRECT_ACCESS, MT7530_CHG_TRAP);
2430
2431	if ((val & MT7530_XTAL_MASK) == MT7530_XTAL_40MHZ)
2432		mt7530_pll_setup(priv);
2433
2434	mt753x_trap_frames(priv);
2435
2436	/* Enable and reset MIB counters */
2437	mt7530_mib_reset(ds);
2438
2439	for (i = 0; i < priv->ds->num_ports; i++) {
2440		/* Clear link settings and enable force mode to force link down
2441		 * on all ports until they're enabled later.
2442		 */
2443		mt7530_rmw(priv, MT753X_PMCR_P(i),
2444			   PMCR_LINK_SETTINGS_MASK |
2445			   MT753X_FORCE_MODE(priv->id),
2446			   MT753X_FORCE_MODE(priv->id));
2447
2448		/* Disable forwarding by default on all ports */
2449		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2450			   PCR_MATRIX_CLR);
2451
2452		/* Disable learning by default on all ports */
2453		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2454
2455		if (dsa_is_cpu_port(ds, i)) {
2456			mt753x_cpu_port_enable(ds, i);
2457		} else {
2458			mt7530_port_disable(ds, i);
2459
2460			/* Set default PVID to 0 on all user ports */
2461			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2462				   G0_PORT_VID_DEF);
2463		}
2464		/* Enable consistent egress tag */
2465		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2466			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2467	}
2468
2469	/* Allow mirroring frames received on the local port (monitor port). */
2470	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2471
2472	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2473	ret = mt7530_setup_vlan0(priv);
2474	if (ret)
2475		return ret;
2476
2477	/* Check for PHY muxing on port 5 */
2478	if (dsa_is_unused_port(ds, 5)) {
 
 
2479		/* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2480		 * Set priv->p5_mode to the appropriate value if PHY muxing is
2481		 * detected.
2482		 */
2483		for_each_child_of_node(dn, mac_np) {
2484			if (!of_device_is_compatible(mac_np,
2485						     "mediatek,eth-mac"))
2486				continue;
2487
2488			ret = of_property_read_u32(mac_np, "reg", &id);
2489			if (ret < 0 || id != 1)
2490				continue;
2491
2492			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2493			if (!phy_node)
2494				continue;
2495
2496			if (phy_node->parent == priv->dev->of_node->parent ||
2497			    phy_node->parent->parent == priv->dev->of_node) {
2498				ret = of_get_phy_mode(mac_np, &interface);
2499				if (ret && ret != -ENODEV) {
2500					of_node_put(mac_np);
2501					of_node_put(phy_node);
2502					return ret;
2503				}
2504				id = of_mdio_parse_addr(ds->dev, phy_node);
2505				if (id == 0)
2506					priv->p5_mode = MUX_PHY_P0;
2507				if (id == 4)
2508					priv->p5_mode = MUX_PHY_P4;
2509			}
2510			of_node_put(mac_np);
2511			of_node_put(phy_node);
2512			break;
2513		}
2514
2515		if (priv->p5_mode == MUX_PHY_P0 ||
2516		    priv->p5_mode == MUX_PHY_P4) {
2517			mt7530_clear(priv, MT753X_MTRAP, MT7530_P5_DIS);
2518			mt7530_setup_port5(ds, interface);
2519		}
2520	}
2521
2522#ifdef CONFIG_GPIOLIB
2523	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2524		ret = mt7530_setup_gpio(priv);
2525		if (ret)
2526			return ret;
2527	}
2528#endif /* CONFIG_GPIOLIB */
2529
2530	/* Flush the FDB table */
2531	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2532	if (ret < 0)
2533		return ret;
2534
2535	return 0;
2536}
2537
2538static int
2539mt7531_setup_common(struct dsa_switch *ds)
2540{
2541	struct mt7530_priv *priv = ds->priv;
2542	int ret, i;
2543
2544	mt753x_trap_frames(priv);
2545
2546	/* Enable and reset MIB counters */
2547	mt7530_mib_reset(ds);
2548
2549	/* Disable flooding on all ports */
2550	mt7530_clear(priv, MT753X_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2551		     UNU_FFP_MASK);
2552
2553	for (i = 0; i < priv->ds->num_ports; i++) {
2554		/* Clear link settings and enable force mode to force link down
2555		 * on all ports until they're enabled later.
2556		 */
2557		mt7530_rmw(priv, MT753X_PMCR_P(i),
2558			   PMCR_LINK_SETTINGS_MASK |
2559			   MT753X_FORCE_MODE(priv->id),
2560			   MT753X_FORCE_MODE(priv->id));
2561
2562		/* Disable forwarding by default on all ports */
2563		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2564			   PCR_MATRIX_CLR);
2565
2566		/* Disable learning by default on all ports */
2567		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2568
2569		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2570
2571		if (dsa_is_cpu_port(ds, i)) {
2572			mt753x_cpu_port_enable(ds, i);
2573		} else {
2574			mt7530_port_disable(ds, i);
2575
2576			/* Set default PVID to 0 on all user ports */
2577			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2578				   G0_PORT_VID_DEF);
2579		}
2580
2581		/* Enable consistent egress tag */
2582		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2583			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2584	}
2585
2586	/* Allow mirroring frames received on the local port (monitor port). */
2587	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2588
2589	/* Flush the FDB table */
2590	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2591	if (ret < 0)
2592		return ret;
2593
2594	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2595	return mt7530_setup_vlan0(priv);
2596}
2597
2598static int
2599mt7531_setup(struct dsa_switch *ds)
2600{
2601	struct mt7530_priv *priv = ds->priv;
2602	struct mt7530_dummy_poll p;
2603	u32 val, id;
2604	int ret, i;
2605
2606	/* Reset whole chip through gpio pin or memory-mapped registers for
2607	 * different type of hardware
2608	 */
2609	if (priv->mcm) {
2610		reset_control_assert(priv->rstc);
2611		usleep_range(5000, 5100);
2612		reset_control_deassert(priv->rstc);
2613	} else {
2614		gpiod_set_value_cansleep(priv->reset, 0);
2615		usleep_range(5000, 5100);
2616		gpiod_set_value_cansleep(priv->reset, 1);
2617	}
2618
2619	/* Waiting for MT7530 got to stable */
2620	INIT_MT7530_DUMMY_POLL(&p, priv, MT753X_TRAP);
2621	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2622				 20, 1000000);
2623	if (ret < 0) {
2624		dev_err(priv->dev, "reset timeout\n");
2625		return ret;
2626	}
2627
2628	id = mt7530_read(priv, MT7531_CREV);
2629	id >>= CHIP_NAME_SHIFT;
2630
2631	if (id != MT7531_ID) {
2632		dev_err(priv->dev, "chip %x can't be supported\n", id);
2633		return -ENODEV;
2634	}
2635
2636	/* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2637	 * MT7531BE has got only one SGMII unit which is for port 6.
2638	 */
2639	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2640	priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2641
2642	/* Force link down on all ports before internal reset */
2643	for (i = 0; i < priv->ds->num_ports; i++)
2644		mt7530_write(priv, MT753X_PMCR_P(i), MT7531_FORCE_MODE_LNK);
2645
2646	/* Reset the switch through internal reset */
2647	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
2648
2649	if (!priv->p5_sgmii) {
2650		mt7531_pll_setup(priv);
2651	} else {
2652		/* Unlike MT7531BE, the GPIO 6-12 pins are not used for RGMII on
2653		 * MT7531AE. Set the GPIO 11-12 pins to function as MDC and MDIO
2654		 * to expose the MDIO bus of the switch.
2655		 */
2656		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2657			   MT7531_EXT_P_MDC_11);
2658		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2659			   MT7531_EXT_P_MDIO_12);
2660	}
2661
 
 
 
2662	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2663		   MT7531_GPIO0_INTERRUPT);
2664
2665	/* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since
2666	 * phy_device has not yet been created provided for
2667	 * phy_[read,write]_mmd_indirect is called, we provide our own
2668	 * mt7531_ind_mmd_phy_[read,write] to complete this function.
2669	 */
2670	val = mt7531_ind_c45_phy_read(priv,
2671				      MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
2672				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2673	val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE;
2674	val &= ~MT7531_PHY_PLL_OFF;
2675	mt7531_ind_c45_phy_write(priv,
2676				 MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr),
2677				 MDIO_MMD_VEND2, CORE_PLL_GROUP4, val);
2678
2679	/* Disable EEE advertisement on the switch PHYs. */
2680	for (i = MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr);
2681	     i < MT753X_CTRL_PHY_ADDR(priv->mdiodev->addr) + MT7530_NUM_PHYS;
2682	     i++) {
2683		mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2684					 0);
2685	}
2686
2687	ret = mt7531_setup_common(ds);
 
 
 
2688	if (ret)
2689		return ret;
2690
2691	ds->assisted_learning_on_cpu_port = true;
2692	ds->mtu_enforcement_ingress = true;
2693
2694	return 0;
2695}
2696
2697static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2698				     struct phylink_config *config)
2699{
2700	config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2701
2702	switch (port) {
2703	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2704	case 0 ... 4:
2705		__set_bit(PHY_INTERFACE_MODE_GMII,
2706			  config->supported_interfaces);
2707		break;
2708
2709	/* Port 5 supports rgmii with delays, mii, and gmii. */
2710	case 5:
2711		phy_interface_set_rgmii(config->supported_interfaces);
2712		__set_bit(PHY_INTERFACE_MODE_MII,
2713			  config->supported_interfaces);
2714		__set_bit(PHY_INTERFACE_MODE_GMII,
2715			  config->supported_interfaces);
2716		break;
2717
2718	/* Port 6 supports rgmii and trgmii. */
2719	case 6:
2720		__set_bit(PHY_INTERFACE_MODE_RGMII,
2721			  config->supported_interfaces);
2722		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2723			  config->supported_interfaces);
2724		break;
2725	}
2726}
2727
2728static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2729				     struct phylink_config *config)
2730{
2731	struct mt7530_priv *priv = ds->priv;
2732
2733	config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2734
2735	switch (port) {
2736	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2737	case 0 ... 4:
2738		__set_bit(PHY_INTERFACE_MODE_GMII,
2739			  config->supported_interfaces);
2740		break;
2741
2742	/* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2743	 * MT7531AE.
2744	 */
2745	case 5:
2746		if (!priv->p5_sgmii) {
2747			phy_interface_set_rgmii(config->supported_interfaces);
2748			break;
2749		}
2750		fallthrough;
2751
2752	/* Port 6 supports sgmii/802.3z. */
2753	case 6:
2754		__set_bit(PHY_INTERFACE_MODE_SGMII,
2755			  config->supported_interfaces);
2756		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2757			  config->supported_interfaces);
2758		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2759			  config->supported_interfaces);
2760
2761		config->mac_capabilities |= MAC_2500FD;
2762		break;
2763	}
2764}
2765
2766static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2767				     struct phylink_config *config)
2768{
2769	switch (port) {
2770	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2771	case 0 ... 3:
2772		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2773			  config->supported_interfaces);
2774
2775		config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2776		break;
2777
2778	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2779	case 6:
2780		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2781			  config->supported_interfaces);
2782
2783		config->mac_capabilities |= MAC_10000FD;
2784		break;
2785	}
2786}
2787
2788static void en7581_mac_port_get_caps(struct dsa_switch *ds, int port,
2789				     struct phylink_config *config)
2790{
2791	switch (port) {
2792	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2793	case 0 ... 4:
2794		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2795			  config->supported_interfaces);
2796
2797		config->mac_capabilities |= MAC_10 | MAC_100 | MAC_1000FD;
2798		break;
2799
2800	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2801	case 6:
2802		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2803			  config->supported_interfaces);
2804
2805		config->mac_capabilities |= MAC_10000FD;
2806		break;
2807	}
2808}
2809
2810static void
2811mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2812		  phy_interface_t interface)
2813{
2814	struct mt7530_priv *priv = ds->priv;
2815
2816	if (port == 5)
2817		mt7530_setup_port5(priv->ds, interface);
2818	else if (port == 6)
2819		mt7530_setup_port6(priv->ds, interface);
2820}
2821
2822static void mt7531_rgmii_setup(struct mt7530_priv *priv,
2823			       phy_interface_t interface,
2824			       struct phy_device *phydev)
2825{
2826	u32 val;
2827
2828	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2829	val |= GP_CLK_EN;
2830	val &= ~GP_MODE_MASK;
2831	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2832	val &= ~CLK_SKEW_IN_MASK;
2833	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2834	val &= ~CLK_SKEW_OUT_MASK;
2835	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2836	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2837
2838	/* Do not adjust rgmii delay when vendor phy driver presents. */
2839	if (!phydev || phy_driver_is_genphy(phydev)) {
2840		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2841		switch (interface) {
2842		case PHY_INTERFACE_MODE_RGMII:
2843			val |= TXCLK_NO_REVERSE;
2844			val |= RXCLK_NO_DELAY;
2845			break;
2846		case PHY_INTERFACE_MODE_RGMII_RXID:
2847			val |= TXCLK_NO_REVERSE;
2848			break;
2849		case PHY_INTERFACE_MODE_RGMII_TXID:
2850			val |= RXCLK_NO_DELAY;
2851			break;
2852		case PHY_INTERFACE_MODE_RGMII_ID:
2853			break;
2854		default:
2855			break;
2856		}
2857	}
2858
2859	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2860}
2861
2862static void
2863mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2864		  phy_interface_t interface)
2865{
2866	struct mt7530_priv *priv = ds->priv;
2867	struct phy_device *phydev;
2868	struct dsa_port *dp;
2869
2870	if (phy_interface_mode_is_rgmii(interface)) {
2871		dp = dsa_to_port(ds, port);
2872		phydev = dp->user->phydev;
2873		mt7531_rgmii_setup(priv, interface, phydev);
2874	}
2875}
2876
2877static struct phylink_pcs *
2878mt753x_phylink_mac_select_pcs(struct phylink_config *config,
2879			      phy_interface_t interface)
2880{
2881	struct dsa_port *dp = dsa_phylink_to_port(config);
2882	struct mt7530_priv *priv = dp->ds->priv;
2883
2884	switch (interface) {
2885	case PHY_INTERFACE_MODE_TRGMII:
2886		return &priv->pcs[dp->index].pcs;
2887	case PHY_INTERFACE_MODE_SGMII:
2888	case PHY_INTERFACE_MODE_1000BASEX:
2889	case PHY_INTERFACE_MODE_2500BASEX:
2890		return priv->ports[dp->index].sgmii_pcs;
2891	default:
2892		return NULL;
2893	}
2894}
2895
2896static void
2897mt753x_phylink_mac_config(struct phylink_config *config, unsigned int mode,
2898			  const struct phylink_link_state *state)
2899{
2900	struct dsa_port *dp = dsa_phylink_to_port(config);
2901	struct dsa_switch *ds = dp->ds;
2902	struct mt7530_priv *priv;
2903	int port = dp->index;
2904
2905	priv = ds->priv;
2906
2907	if ((port == 5 || port == 6) && priv->info->mac_port_config)
2908		priv->info->mac_port_config(ds, port, mode, state->interface);
2909
2910	/* Are we connected to external phy */
2911	if (port == 5 && dsa_is_user_port(ds, 5))
2912		mt7530_set(priv, MT753X_PMCR_P(port), PMCR_EXT_PHY);
2913}
2914
2915static void mt753x_phylink_mac_link_down(struct phylink_config *config,
2916					 unsigned int mode,
2917					 phy_interface_t interface)
2918{
2919	struct dsa_port *dp = dsa_phylink_to_port(config);
2920	struct mt7530_priv *priv = dp->ds->priv;
2921
2922	mt7530_clear(priv, MT753X_PMCR_P(dp->index), PMCR_LINK_SETTINGS_MASK);
2923}
2924
2925static void mt753x_phylink_mac_link_up(struct phylink_config *config,
2926				       struct phy_device *phydev,
2927				       unsigned int mode,
2928				       phy_interface_t interface,
 
2929				       int speed, int duplex,
2930				       bool tx_pause, bool rx_pause)
2931{
2932	struct dsa_port *dp = dsa_phylink_to_port(config);
2933	struct mt7530_priv *priv = dp->ds->priv;
2934	u32 mcr;
2935
2936	mcr = PMCR_MAC_RX_EN | PMCR_MAC_TX_EN | PMCR_FORCE_LNK;
2937
2938	switch (speed) {
2939	case SPEED_1000:
2940	case SPEED_2500:
2941	case SPEED_10000:
2942		mcr |= PMCR_FORCE_SPEED_1000;
2943		break;
2944	case SPEED_100:
2945		mcr |= PMCR_FORCE_SPEED_100;
2946		break;
2947	}
2948	if (duplex == DUPLEX_FULL) {
2949		mcr |= PMCR_FORCE_FDX;
2950		if (tx_pause)
2951			mcr |= PMCR_FORCE_TX_FC_EN;
2952		if (rx_pause)
2953			mcr |= PMCR_FORCE_RX_FC_EN;
2954	}
2955
2956	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2957		switch (speed) {
2958		case SPEED_1000:
2959		case SPEED_2500:
2960			mcr |= PMCR_FORCE_EEE1G;
2961			break;
2962		case SPEED_100:
2963			mcr |= PMCR_FORCE_EEE100;
2964			break;
2965		}
2966	}
2967
2968	mt7530_set(priv, MT753X_PMCR_P(dp->index), mcr);
2969}
2970
2971static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2972				    struct phylink_config *config)
2973{
2974	struct mt7530_priv *priv = ds->priv;
2975
2976	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE;
 
 
2977
2978	priv->info->mac_port_get_caps(ds, port, config);
2979}
2980
2981static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2982			       unsigned long *supported,
2983			       const struct phylink_link_state *state)
2984{
2985	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2986	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2987	    phy_interface_mode_is_8023z(state->interface))
2988		phylink_clear(supported, Autoneg);
2989
2990	return 0;
2991}
2992
2993static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2994				 struct phylink_link_state *state)
2995{
2996	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2997	int port = pcs_to_mt753x_pcs(pcs)->port;
2998	u32 pmsr;
2999
3000	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
3001
3002	state->link = (pmsr & PMSR_LINK);
3003	state->an_complete = state->link;
3004	state->duplex = !!(pmsr & PMSR_DPX);
3005
3006	switch (pmsr & PMSR_SPEED_MASK) {
3007	case PMSR_SPEED_10:
3008		state->speed = SPEED_10;
3009		break;
3010	case PMSR_SPEED_100:
3011		state->speed = SPEED_100;
3012		break;
3013	case PMSR_SPEED_1000:
3014		state->speed = SPEED_1000;
3015		break;
3016	default:
3017		state->speed = SPEED_UNKNOWN;
3018		break;
3019	}
3020
3021	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
3022	if (pmsr & PMSR_RX_FC)
3023		state->pause |= MLO_PAUSE_RX;
3024	if (pmsr & PMSR_TX_FC)
3025		state->pause |= MLO_PAUSE_TX;
3026}
3027
3028static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3029			     phy_interface_t interface,
3030			     const unsigned long *advertising,
3031			     bool permit_pause_to_mac)
3032{
3033	return 0;
3034}
3035
3036static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3037{
3038}
3039
3040static const struct phylink_pcs_ops mt7530_pcs_ops = {
3041	.pcs_validate = mt753x_pcs_validate,
3042	.pcs_get_state = mt7530_pcs_get_state,
3043	.pcs_config = mt753x_pcs_config,
3044	.pcs_an_restart = mt7530_pcs_an_restart,
3045};
3046
3047static int
3048mt753x_setup(struct dsa_switch *ds)
3049{
3050	struct mt7530_priv *priv = ds->priv;
3051	int ret = priv->info->sw_setup(ds);
3052	int i;
3053
3054	if (ret)
3055		return ret;
3056
3057	ret = mt7530_setup_irq(priv);
3058	if (ret)
3059		return ret;
3060
3061	ret = mt7530_setup_mdio(priv);
3062	if (ret && priv->irq)
3063		mt7530_free_irq_common(priv);
3064	if (ret)
3065		return ret;
3066
3067	/* Initialise the PCS devices */
3068	for (i = 0; i < priv->ds->num_ports; i++) {
3069		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3070		priv->pcs[i].pcs.neg_mode = true;
3071		priv->pcs[i].priv = priv;
3072		priv->pcs[i].port = i;
3073	}
3074
3075	if (priv->create_sgmii) {
3076		ret = priv->create_sgmii(priv);
3077		if (ret && priv->irq)
3078			mt7530_free_irq(priv);
3079	}
3080
3081	return ret;
3082}
3083
3084static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3085			      struct ethtool_keee *e)
3086{
3087	struct mt7530_priv *priv = ds->priv;
3088	u32 eeecr = mt7530_read(priv, MT753X_PMEEECR_P(port));
3089
3090	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3091	e->tx_lpi_timer = LPI_THRESH_GET(eeecr);
3092
3093	return 0;
3094}
3095
3096static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3097			      struct ethtool_keee *e)
3098{
3099	struct mt7530_priv *priv = ds->priv;
3100	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3101
3102	if (e->tx_lpi_timer > 0xFFF)
3103		return -EINVAL;
3104
3105	set = LPI_THRESH_SET(e->tx_lpi_timer);
3106	if (!e->tx_lpi_enabled)
3107		/* Force LPI Mode without a delay */
3108		set |= LPI_MODE_EN;
3109	mt7530_rmw(priv, MT753X_PMEEECR_P(port), mask, set);
3110
3111	return 0;
3112}
3113
3114static void
3115mt753x_conduit_state_change(struct dsa_switch *ds,
3116			    const struct net_device *conduit,
3117			    bool operational)
3118{
3119	struct dsa_port *cpu_dp = conduit->dsa_ptr;
3120	struct mt7530_priv *priv = ds->priv;
3121	int val = 0;
3122	u8 mask;
3123
3124	/* Set the CPU port to trap frames to for MT7530. Trapped frames will be
3125	 * forwarded to the numerically smallest CPU port whose conduit
3126	 * interface is up.
3127	 */
3128	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
3129		return;
3130
3131	mask = BIT(cpu_dp->index);
3132
3133	if (operational)
3134		priv->active_cpu_ports |= mask;
3135	else
3136		priv->active_cpu_ports &= ~mask;
3137
3138	if (priv->active_cpu_ports) {
3139		val = MT7530_CPU_EN |
3140		      MT7530_CPU_PORT(__ffs(priv->active_cpu_ports));
3141	}
3142
3143	mt7530_rmw(priv, MT753X_MFC, MT7530_CPU_EN | MT7530_CPU_PORT_MASK, val);
3144}
3145
3146static int mt753x_tc_setup_qdisc_tbf(struct dsa_switch *ds, int port,
3147				     struct tc_tbf_qopt_offload *qopt)
3148{
3149	struct tc_tbf_qopt_offload_replace_params *p = &qopt->replace_params;
3150	struct mt7530_priv *priv = ds->priv;
3151	u32 rate = 0;
3152
3153	switch (qopt->command) {
3154	case TC_TBF_REPLACE:
3155		rate = div_u64(p->rate.rate_bytes_ps, 1000) << 3; /* kbps */
3156		fallthrough;
3157	case TC_TBF_DESTROY: {
3158		u32 val, tick;
3159
3160		mt7530_rmw(priv, MT753X_GERLCR, EGR_BC_MASK,
3161			   EGR_BC_CRC_IPG_PREAMBLE);
3162
3163		/* if rate is greater than 10Mbps tick is 1/32 ms,
3164		 * 1ms otherwise
3165		 */
3166		tick = rate > 10000 ? 2 : 7;
3167		val = FIELD_PREP(ERLCR_CIR_MASK, (rate >> 5)) |
3168		      FIELD_PREP(ERLCR_EN_MASK, !!rate) |
3169		      FIELD_PREP(ERLCR_EXP_MASK, tick) |
3170		      ERLCR_TBF_MODE_MASK |
3171		      FIELD_PREP(ERLCR_MANT_MASK, 0xf);
3172		mt7530_write(priv, MT753X_ERLCR_P(port), val);
3173		break;
3174	}
3175	default:
3176		return -EOPNOTSUPP;
3177	}
3178
3179	return 0;
3180}
3181
3182static int mt753x_setup_tc(struct dsa_switch *ds, int port,
3183			   enum tc_setup_type type, void *type_data)
3184{
3185	switch (type) {
3186	case TC_SETUP_QDISC_TBF:
3187		return mt753x_tc_setup_qdisc_tbf(ds, port, type_data);
3188	default:
3189		return -EOPNOTSUPP;
3190	}
3191}
3192
3193static int mt7988_setup(struct dsa_switch *ds)
3194{
3195	struct mt7530_priv *priv = ds->priv;
3196
3197	/* Reset the switch */
3198	reset_control_assert(priv->rstc);
3199	usleep_range(20, 50);
3200	reset_control_deassert(priv->rstc);
3201	usleep_range(20, 50);
3202
3203	/* Reset the switch PHYs */
3204	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3205
3206	return mt7531_setup_common(ds);
3207}
3208
3209const struct dsa_switch_ops mt7530_switch_ops = {
3210	.get_tag_protocol	= mtk_get_tag_protocol,
3211	.setup			= mt753x_setup,
3212	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3213	.get_strings		= mt7530_get_strings,
3214	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3215	.get_sset_count		= mt7530_get_sset_count,
3216	.set_ageing_time	= mt7530_set_ageing_time,
3217	.port_enable		= mt7530_port_enable,
3218	.port_disable		= mt7530_port_disable,
3219	.port_change_mtu	= mt7530_port_change_mtu,
3220	.port_max_mtu		= mt7530_port_max_mtu,
3221	.port_stp_state_set	= mt7530_stp_state_set,
3222	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3223	.port_bridge_flags	= mt7530_port_bridge_flags,
3224	.port_bridge_join	= mt7530_port_bridge_join,
3225	.port_bridge_leave	= mt7530_port_bridge_leave,
3226	.port_fdb_add		= mt7530_port_fdb_add,
3227	.port_fdb_del		= mt7530_port_fdb_del,
3228	.port_fdb_dump		= mt7530_port_fdb_dump,
3229	.port_mdb_add		= mt7530_port_mdb_add,
3230	.port_mdb_del		= mt7530_port_mdb_del,
3231	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3232	.port_vlan_add		= mt7530_port_vlan_add,
3233	.port_vlan_del		= mt7530_port_vlan_del,
3234	.port_mirror_add	= mt753x_port_mirror_add,
3235	.port_mirror_del	= mt753x_port_mirror_del,
3236	.phylink_get_caps	= mt753x_phylink_get_caps,
 
 
 
 
3237	.get_mac_eee		= mt753x_get_mac_eee,
3238	.set_mac_eee		= mt753x_set_mac_eee,
3239	.conduit_state_change	= mt753x_conduit_state_change,
3240	.port_setup_tc		= mt753x_setup_tc,
3241};
3242EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3243
3244static const struct phylink_mac_ops mt753x_phylink_mac_ops = {
3245	.mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3246	.mac_config	= mt753x_phylink_mac_config,
3247	.mac_link_down	= mt753x_phylink_mac_link_down,
3248	.mac_link_up	= mt753x_phylink_mac_link_up,
3249};
3250
3251const struct mt753x_info mt753x_table[] = {
3252	[ID_MT7621] = {
3253		.id = ID_MT7621,
3254		.pcs_ops = &mt7530_pcs_ops,
3255		.sw_setup = mt7530_setup,
3256		.phy_read_c22 = mt7530_phy_read_c22,
3257		.phy_write_c22 = mt7530_phy_write_c22,
3258		.phy_read_c45 = mt7530_phy_read_c45,
3259		.phy_write_c45 = mt7530_phy_write_c45,
3260		.mac_port_get_caps = mt7530_mac_port_get_caps,
3261		.mac_port_config = mt7530_mac_config,
3262	},
3263	[ID_MT7530] = {
3264		.id = ID_MT7530,
3265		.pcs_ops = &mt7530_pcs_ops,
3266		.sw_setup = mt7530_setup,
3267		.phy_read_c22 = mt7530_phy_read_c22,
3268		.phy_write_c22 = mt7530_phy_write_c22,
3269		.phy_read_c45 = mt7530_phy_read_c45,
3270		.phy_write_c45 = mt7530_phy_write_c45,
3271		.mac_port_get_caps = mt7530_mac_port_get_caps,
3272		.mac_port_config = mt7530_mac_config,
3273	},
3274	[ID_MT7531] = {
3275		.id = ID_MT7531,
3276		.pcs_ops = &mt7530_pcs_ops,
3277		.sw_setup = mt7531_setup,
3278		.phy_read_c22 = mt7531_ind_c22_phy_read,
3279		.phy_write_c22 = mt7531_ind_c22_phy_write,
3280		.phy_read_c45 = mt7531_ind_c45_phy_read,
3281		.phy_write_c45 = mt7531_ind_c45_phy_write,
3282		.mac_port_get_caps = mt7531_mac_port_get_caps,
3283		.mac_port_config = mt7531_mac_config,
3284	},
3285	[ID_MT7988] = {
3286		.id = ID_MT7988,
3287		.pcs_ops = &mt7530_pcs_ops,
3288		.sw_setup = mt7988_setup,
3289		.phy_read_c22 = mt7531_ind_c22_phy_read,
3290		.phy_write_c22 = mt7531_ind_c22_phy_write,
3291		.phy_read_c45 = mt7531_ind_c45_phy_read,
3292		.phy_write_c45 = mt7531_ind_c45_phy_write,
3293		.mac_port_get_caps = mt7988_mac_port_get_caps,
3294	},
3295	[ID_EN7581] = {
3296		.id = ID_EN7581,
3297		.pcs_ops = &mt7530_pcs_ops,
3298		.sw_setup = mt7988_setup,
3299		.phy_read_c22 = mt7531_ind_c22_phy_read,
3300		.phy_write_c22 = mt7531_ind_c22_phy_write,
3301		.phy_read_c45 = mt7531_ind_c45_phy_read,
3302		.phy_write_c45 = mt7531_ind_c45_phy_write,
3303		.mac_port_get_caps = en7581_mac_port_get_caps,
3304	},
3305};
3306EXPORT_SYMBOL_GPL(mt753x_table);
3307
3308int
3309mt7530_probe_common(struct mt7530_priv *priv)
3310{
3311	struct device *dev = priv->dev;
3312
3313	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3314	if (!priv->ds)
3315		return -ENOMEM;
3316
3317	priv->ds->dev = dev;
3318	priv->ds->num_ports = MT7530_NUM_PORTS;
3319
3320	/* Get the hardware identifier from the devicetree node.
3321	 * We will need it for some of the clock and regulator setup.
3322	 */
3323	priv->info = of_device_get_match_data(dev);
3324	if (!priv->info)
3325		return -EINVAL;
3326
 
 
 
 
 
 
 
3327	priv->id = priv->info->id;
3328	priv->dev = dev;
3329	priv->ds->priv = priv;
3330	priv->ds->ops = &mt7530_switch_ops;
3331	priv->ds->phylink_mac_ops = &mt753x_phylink_mac_ops;
3332	mutex_init(&priv->reg_mutex);
3333	dev_set_drvdata(dev, priv);
3334
3335	return 0;
3336}
3337EXPORT_SYMBOL_GPL(mt7530_probe_common);
3338
3339void
3340mt7530_remove_common(struct mt7530_priv *priv)
3341{
3342	if (priv->irq)
3343		mt7530_free_irq(priv);
3344
3345	dsa_unregister_switch(priv->ds);
3346
3347	mutex_destroy(&priv->reg_mutex);
3348}
3349EXPORT_SYMBOL_GPL(mt7530_remove_common);
3350
3351MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3352MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3353MODULE_LICENSE("GPL");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Mediatek MT7530 DSA Switch driver
   4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
   5 */
   6#include <linux/etherdevice.h>
   7#include <linux/if_bridge.h>
   8#include <linux/iopoll.h>
   9#include <linux/mdio.h>
  10#include <linux/mfd/syscon.h>
  11#include <linux/module.h>
  12#include <linux/netdevice.h>
  13#include <linux/of_irq.h>
  14#include <linux/of_mdio.h>
  15#include <linux/of_net.h>
  16#include <linux/of_platform.h>
  17#include <linux/phylink.h>
  18#include <linux/regmap.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/reset.h>
  21#include <linux/gpio/consumer.h>
  22#include <linux/gpio/driver.h>
  23#include <net/dsa.h>
 
  24
  25#include "mt7530.h"
  26
  27static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
  28{
  29	return container_of(pcs, struct mt753x_pcs, pcs);
  30}
  31
  32/* String, offset, and register size in bytes if different from 4 bytes */
  33static const struct mt7530_mib_desc mt7530_mib[] = {
  34	MIB_DESC(1, 0x00, "TxDrop"),
  35	MIB_DESC(1, 0x04, "TxCrcErr"),
  36	MIB_DESC(1, 0x08, "TxUnicast"),
  37	MIB_DESC(1, 0x0c, "TxMulticast"),
  38	MIB_DESC(1, 0x10, "TxBroadcast"),
  39	MIB_DESC(1, 0x14, "TxCollision"),
  40	MIB_DESC(1, 0x18, "TxSingleCollision"),
  41	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
  42	MIB_DESC(1, 0x20, "TxDeferred"),
  43	MIB_DESC(1, 0x24, "TxLateCollision"),
  44	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
  45	MIB_DESC(1, 0x2c, "TxPause"),
  46	MIB_DESC(1, 0x30, "TxPktSz64"),
  47	MIB_DESC(1, 0x34, "TxPktSz65To127"),
  48	MIB_DESC(1, 0x38, "TxPktSz128To255"),
  49	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
  50	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
  51	MIB_DESC(1, 0x44, "Tx1024ToMax"),
  52	MIB_DESC(2, 0x48, "TxBytes"),
  53	MIB_DESC(1, 0x60, "RxDrop"),
  54	MIB_DESC(1, 0x64, "RxFiltering"),
  55	MIB_DESC(1, 0x68, "RxUnicast"),
  56	MIB_DESC(1, 0x6c, "RxMulticast"),
  57	MIB_DESC(1, 0x70, "RxBroadcast"),
  58	MIB_DESC(1, 0x74, "RxAlignErr"),
  59	MIB_DESC(1, 0x78, "RxCrcErr"),
  60	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
  61	MIB_DESC(1, 0x80, "RxFragErr"),
  62	MIB_DESC(1, 0x84, "RxOverSzErr"),
  63	MIB_DESC(1, 0x88, "RxJabberErr"),
  64	MIB_DESC(1, 0x8c, "RxPause"),
  65	MIB_DESC(1, 0x90, "RxPktSz64"),
  66	MIB_DESC(1, 0x94, "RxPktSz65To127"),
  67	MIB_DESC(1, 0x98, "RxPktSz128To255"),
  68	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
  69	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
  70	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
  71	MIB_DESC(2, 0xa8, "RxBytes"),
  72	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
  73	MIB_DESC(1, 0xb4, "RxIngressDrop"),
  74	MIB_DESC(1, 0xb8, "RxArlDrop"),
  75};
  76
  77/* Since phy_device has not yet been created and
  78 * phy_{read,write}_mmd_indirect is not available, we provide our own
  79 * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
  80 * to complete this function.
  81 */
  82static int
  83core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
 
 
 
 
 
 
 
 
 
  84{
  85	struct mii_bus *bus = priv->bus;
  86	int value, ret;
 
 
  87
  88	/* Write the desired MMD Devad */
  89	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
 
  90	if (ret < 0)
  91		goto err;
  92
  93	/* Write the desired MMD register address */
  94	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
 
  95	if (ret < 0)
  96		goto err;
  97
  98	/* Select the Function : DATA with no post increment */
  99	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
 
 100	if (ret < 0)
 101		goto err;
 102
 103	/* Read the content of the MMD's selected register */
 104	value = bus->read(bus, 0, MII_MMD_DATA);
 105
 106	return value;
 107err:
 108	dev_err(&bus->dev,  "failed to read mmd register\n");
 
 109
 110	return ret;
 111}
 112
 113static int
 114core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
 115			int devad, u32 data)
 116{
 117	struct mii_bus *bus = priv->bus;
 
 118	int ret;
 119
 
 
 120	/* Write the desired MMD Devad */
 121	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
 
 122	if (ret < 0)
 123		goto err;
 124
 125	/* Write the desired MMD register address */
 126	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
 
 127	if (ret < 0)
 128		goto err;
 129
 130	/* Select the Function : DATA with no post increment */
 131	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
 
 132	if (ret < 0)
 133		goto err;
 134
 
 
 
 
 
 135	/* Write the data into MMD's selected register */
 136	ret = bus->write(bus, 0, MII_MMD_DATA, data);
 
 137err:
 138	if (ret < 0)
 139		dev_err(&bus->dev,
 140			"failed to write mmd register\n");
 141	return ret;
 142}
 143
 144static void
 145mt7530_mutex_lock(struct mt7530_priv *priv)
 146{
 147	if (priv->bus)
 148		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
 149}
 150
 151static void
 152mt7530_mutex_unlock(struct mt7530_priv *priv)
 153{
 154	if (priv->bus)
 155		mutex_unlock(&priv->bus->mdio_lock);
 156}
 157
 158static void
 159core_write(struct mt7530_priv *priv, u32 reg, u32 val)
 160{
 161	mt7530_mutex_lock(priv);
 162
 163	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
 164
 165	mt7530_mutex_unlock(priv);
 166}
 167
 168static void
 169core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
 170{
 171	u32 val;
 172
 173	mt7530_mutex_lock(priv);
 174
 175	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
 176	val &= ~mask;
 177	val |= set;
 178	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
 179
 180	mt7530_mutex_unlock(priv);
 181}
 182
 183static void
 184core_set(struct mt7530_priv *priv, u32 reg, u32 val)
 185{
 186	core_rmw(priv, reg, 0, val);
 187}
 188
 189static void
 190core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
 191{
 192	core_rmw(priv, reg, val, 0);
 193}
 194
 195static int
 196mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
 197{
 198	int ret;
 199
 200	ret = regmap_write(priv->regmap, reg, val);
 201
 202	if (ret < 0)
 203		dev_err(priv->dev,
 204			"failed to write mt7530 register\n");
 205
 206	return ret;
 207}
 208
 209static u32
 210mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
 211{
 212	int ret;
 213	u32 val;
 214
 215	ret = regmap_read(priv->regmap, reg, &val);
 216	if (ret) {
 217		WARN_ON_ONCE(1);
 218		dev_err(priv->dev,
 219			"failed to read mt7530 register\n");
 220		return 0;
 221	}
 222
 223	return val;
 224}
 225
 226static void
 227mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
 228{
 229	mt7530_mutex_lock(priv);
 230
 231	mt7530_mii_write(priv, reg, val);
 232
 233	mt7530_mutex_unlock(priv);
 234}
 235
 236static u32
 237_mt7530_unlocked_read(struct mt7530_dummy_poll *p)
 238{
 239	return mt7530_mii_read(p->priv, p->reg);
 240}
 241
 242static u32
 243_mt7530_read(struct mt7530_dummy_poll *p)
 244{
 245	u32 val;
 246
 247	mt7530_mutex_lock(p->priv);
 248
 249	val = mt7530_mii_read(p->priv, p->reg);
 250
 251	mt7530_mutex_unlock(p->priv);
 252
 253	return val;
 254}
 255
 256static u32
 257mt7530_read(struct mt7530_priv *priv, u32 reg)
 258{
 259	struct mt7530_dummy_poll p;
 260
 261	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
 262	return _mt7530_read(&p);
 263}
 264
 265static void
 266mt7530_rmw(struct mt7530_priv *priv, u32 reg,
 267	   u32 mask, u32 set)
 268{
 269	mt7530_mutex_lock(priv);
 270
 271	regmap_update_bits(priv->regmap, reg, mask, set);
 272
 273	mt7530_mutex_unlock(priv);
 274}
 275
 276static void
 277mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
 278{
 279	mt7530_rmw(priv, reg, val, val);
 280}
 281
 282static void
 283mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
 284{
 285	mt7530_rmw(priv, reg, val, 0);
 286}
 287
 288static int
 289mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
 290{
 291	u32 val;
 292	int ret;
 293	struct mt7530_dummy_poll p;
 294
 295	/* Set the command operating upon the MAC address entries */
 296	val = ATC_BUSY | ATC_MAT(0) | cmd;
 297	mt7530_write(priv, MT7530_ATC, val);
 298
 299	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
 300	ret = readx_poll_timeout(_mt7530_read, &p, val,
 301				 !(val & ATC_BUSY), 20, 20000);
 302	if (ret < 0) {
 303		dev_err(priv->dev, "reset timeout\n");
 304		return ret;
 305	}
 306
 307	/* Additional sanity for read command if the specified
 308	 * entry is invalid
 309	 */
 310	val = mt7530_read(priv, MT7530_ATC);
 311	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
 312		return -EINVAL;
 313
 314	if (rsp)
 315		*rsp = val;
 316
 317	return 0;
 318}
 319
 320static void
 321mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
 322{
 323	u32 reg[3];
 324	int i;
 325
 326	/* Read from ARL table into an array */
 327	for (i = 0; i < 3; i++) {
 328		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
 329
 330		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
 331			__func__, __LINE__, i, reg[i]);
 332	}
 333
 334	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
 335	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
 336	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
 337	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
 338	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
 339	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
 340	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
 341	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
 342	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
 343	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
 344}
 345
 346static void
 347mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
 348		 u8 port_mask, const u8 *mac,
 349		 u8 aging, u8 type)
 350{
 351	u32 reg[3] = { 0 };
 352	int i;
 353
 354	reg[1] |= vid & CVID_MASK;
 355	reg[1] |= ATA2_IVL;
 356	reg[1] |= ATA2_FID(FID_BRIDGED);
 357	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
 358	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
 359	/* STATIC_ENT indicate that entry is static wouldn't
 360	 * be aged out and STATIC_EMP specified as erasing an
 361	 * entry
 362	 */
 363	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
 364	reg[1] |= mac[5] << MAC_BYTE_5;
 365	reg[1] |= mac[4] << MAC_BYTE_4;
 366	reg[0] |= mac[3] << MAC_BYTE_3;
 367	reg[0] |= mac[2] << MAC_BYTE_2;
 368	reg[0] |= mac[1] << MAC_BYTE_1;
 369	reg[0] |= mac[0] << MAC_BYTE_0;
 370
 371	/* Write array into the ARL table */
 372	for (i = 0; i < 3; i++)
 373		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
 374}
 375
 376/* Set up switch core clock for MT7530 */
 377static void mt7530_pll_setup(struct mt7530_priv *priv)
 378{
 379	/* Disable core clock */
 380	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
 381
 382	/* Disable PLL */
 383	core_write(priv, CORE_GSWPLL_GRP1, 0);
 384
 385	/* Set core clock into 500Mhz */
 386	core_write(priv, CORE_GSWPLL_GRP2,
 387		   RG_GSWPLL_POSDIV_500M(1) |
 388		   RG_GSWPLL_FBKDIV_500M(25));
 389
 390	/* Enable PLL */
 391	core_write(priv, CORE_GSWPLL_GRP1,
 392		   RG_GSWPLL_EN_PRE |
 393		   RG_GSWPLL_POSDIV_200M(2) |
 394		   RG_GSWPLL_FBKDIV_200M(32));
 395
 396	udelay(20);
 397
 398	/* Enable core clock */
 399	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
 400}
 401
 402/* If port 6 is available as a CPU port, always prefer that as the default,
 403 * otherwise don't care.
 404 */
 405static struct dsa_port *
 406mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
 407{
 408	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
 409
 410	if (dsa_port_is_cpu(cpu_dp))
 411		return cpu_dp;
 412
 413	return NULL;
 414}
 415
 416/* Setup port 6 interface mode and TRGMII TX circuit */
 417static void
 418mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface)
 419{
 420	struct mt7530_priv *priv = ds->priv;
 421	u32 ncpo1, ssc_delta, xtal;
 422
 423	/* Disable the MT7530 TRGMII clocks */
 424	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
 425
 426	if (interface == PHY_INTERFACE_MODE_RGMII) {
 427		mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
 428			   P6_INTF_MODE(0));
 429		return;
 430	}
 431
 432	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1));
 433
 434	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
 435
 436	if (xtal == HWTRAP_XTAL_25MHZ)
 437		ssc_delta = 0x57;
 438	else
 439		ssc_delta = 0x87;
 440
 441	if (priv->id == ID_MT7621) {
 442		/* PLL frequency: 125MHz: 1.0GBit */
 443		if (xtal == HWTRAP_XTAL_40MHZ)
 444			ncpo1 = 0x0640;
 445		if (xtal == HWTRAP_XTAL_25MHZ)
 446			ncpo1 = 0x0a00;
 447	} else { /* PLL frequency: 250MHz: 2.0Gbit */
 448		if (xtal == HWTRAP_XTAL_40MHZ)
 449			ncpo1 = 0x0c80;
 450		if (xtal == HWTRAP_XTAL_25MHZ)
 451			ncpo1 = 0x1400;
 452	}
 453
 454	/* Setup the MT7530 TRGMII Tx Clock */
 455	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
 456	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
 457	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
 458	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
 459	core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
 460		   RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
 461	core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL |
 462		   RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1));
 463	core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG |
 464		   RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
 465
 466	/* Enable the MT7530 TRGMII clocks */
 467	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
 468}
 469
 470static void
 471mt7531_pll_setup(struct mt7530_priv *priv)
 472{
 
 473	u32 top_sig;
 474	u32 hwstrap;
 475	u32 xtal;
 476	u32 val;
 477
 478	val = mt7530_read(priv, MT7531_CREV);
 479	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
 480	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
 481	if ((val & CHIP_REV_M) > 0)
 482		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
 483						    HWTRAP_XTAL_FSEL_25MHZ;
 484	else
 485		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
 
 486
 487	/* Step 1 : Disable MT7531 COREPLL */
 488	val = mt7530_read(priv, MT7531_PLLGP_EN);
 489	val &= ~EN_COREPLL;
 490	mt7530_write(priv, MT7531_PLLGP_EN, val);
 491
 492	/* Step 2: switch to XTAL output */
 493	val = mt7530_read(priv, MT7531_PLLGP_EN);
 494	val |= SW_CLKSW;
 495	mt7530_write(priv, MT7531_PLLGP_EN, val);
 496
 497	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 498	val &= ~RG_COREPLL_EN;
 499	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 500
 501	/* Step 3: disable PLLGP and enable program PLLGP */
 502	val = mt7530_read(priv, MT7531_PLLGP_EN);
 503	val |= SW_PLLGP;
 504	mt7530_write(priv, MT7531_PLLGP_EN, val);
 505
 506	/* Step 4: program COREPLL output frequency to 500MHz */
 507	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 508	val &= ~RG_COREPLL_POSDIV_M;
 509	val |= 2 << RG_COREPLL_POSDIV_S;
 510	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 511	usleep_range(25, 35);
 512
 513	switch (xtal) {
 514	case HWTRAP_XTAL_FSEL_25MHZ:
 515		val = mt7530_read(priv, MT7531_PLLGP_CR0);
 516		val &= ~RG_COREPLL_SDM_PCW_M;
 517		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
 518		mt7530_write(priv, MT7531_PLLGP_CR0, val);
 519		break;
 520	case HWTRAP_XTAL_FSEL_40MHZ:
 521		val = mt7530_read(priv, MT7531_PLLGP_CR0);
 522		val &= ~RG_COREPLL_SDM_PCW_M;
 523		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
 524		mt7530_write(priv, MT7531_PLLGP_CR0, val);
 525		break;
 526	}
 527
 528	/* Set feedback divide ratio update signal to high */
 529	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 530	val |= RG_COREPLL_SDM_PCW_CHG;
 531	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 532	/* Wait for at least 16 XTAL clocks */
 533	usleep_range(10, 20);
 534
 535	/* Step 5: set feedback divide ratio update signal to low */
 536	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 537	val &= ~RG_COREPLL_SDM_PCW_CHG;
 538	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 539
 540	/* Enable 325M clock for SGMII */
 541	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
 542
 543	/* Enable 250SSC clock for RGMII */
 544	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
 545
 546	/* Step 6: Enable MT7531 PLL */
 547	val = mt7530_read(priv, MT7531_PLLGP_CR0);
 548	val |= RG_COREPLL_EN;
 549	mt7530_write(priv, MT7531_PLLGP_CR0, val);
 550
 551	val = mt7530_read(priv, MT7531_PLLGP_EN);
 552	val |= EN_COREPLL;
 553	mt7530_write(priv, MT7531_PLLGP_EN, val);
 554	usleep_range(25, 35);
 555}
 556
 557static void
 558mt7530_mib_reset(struct dsa_switch *ds)
 559{
 560	struct mt7530_priv *priv = ds->priv;
 561
 562	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
 563	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
 564}
 565
 566static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
 567{
 568	return mdiobus_read_nested(priv->bus, port, regnum);
 569}
 570
 571static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
 572				u16 val)
 573{
 574	return mdiobus_write_nested(priv->bus, port, regnum, val);
 575}
 576
 577static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
 578			       int devad, int regnum)
 579{
 580	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
 581}
 582
 583static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
 584				int regnum, u16 val)
 585{
 586	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
 587}
 588
 589static int
 590mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
 591			int regnum)
 592{
 593	struct mt7530_dummy_poll p;
 594	u32 reg, val;
 595	int ret;
 596
 597	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
 598
 599	mt7530_mutex_lock(priv);
 600
 601	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 602				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 603	if (ret < 0) {
 604		dev_err(priv->dev, "poll timeout\n");
 605		goto out;
 606	}
 607
 608	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
 609	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
 610	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 611
 612	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 613				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 614	if (ret < 0) {
 615		dev_err(priv->dev, "poll timeout\n");
 616		goto out;
 617	}
 618
 619	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
 620	      MT7531_MDIO_DEV_ADDR(devad);
 621	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 622
 623	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 624				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 625	if (ret < 0) {
 626		dev_err(priv->dev, "poll timeout\n");
 627		goto out;
 628	}
 629
 630	ret = val & MT7531_MDIO_RW_DATA_MASK;
 631out:
 632	mt7530_mutex_unlock(priv);
 633
 634	return ret;
 635}
 636
 637static int
 638mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
 639			 int regnum, u16 data)
 640{
 641	struct mt7530_dummy_poll p;
 642	u32 val, reg;
 643	int ret;
 644
 645	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
 646
 647	mt7530_mutex_lock(priv);
 648
 649	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 650				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 651	if (ret < 0) {
 652		dev_err(priv->dev, "poll timeout\n");
 653		goto out;
 654	}
 655
 656	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
 657	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
 658	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 659
 660	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 661				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 662	if (ret < 0) {
 663		dev_err(priv->dev, "poll timeout\n");
 664		goto out;
 665	}
 666
 667	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
 668	      MT7531_MDIO_DEV_ADDR(devad) | data;
 669	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 670
 671	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 672				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 673	if (ret < 0) {
 674		dev_err(priv->dev, "poll timeout\n");
 675		goto out;
 676	}
 677
 678out:
 679	mt7530_mutex_unlock(priv);
 680
 681	return ret;
 682}
 683
 684static int
 685mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
 686{
 687	struct mt7530_dummy_poll p;
 688	int ret;
 689	u32 val;
 690
 691	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
 692
 693	mt7530_mutex_lock(priv);
 694
 695	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 696				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 697	if (ret < 0) {
 698		dev_err(priv->dev, "poll timeout\n");
 699		goto out;
 700	}
 701
 702	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
 703	      MT7531_MDIO_REG_ADDR(regnum);
 704
 705	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
 706
 707	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
 708				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
 709	if (ret < 0) {
 710		dev_err(priv->dev, "poll timeout\n");
 711		goto out;
 712	}
 713
 714	ret = val & MT7531_MDIO_RW_DATA_MASK;
 715out:
 716	mt7530_mutex_unlock(priv);
 717
 718	return ret;
 719}
 720
 721static int
 722mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
 723			 u16 data)
 724{
 725	struct mt7530_dummy_poll p;
 726	int ret;
 727	u32 reg;
 728
 729	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
 730
 731	mt7530_mutex_lock(priv);
 732
 733	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
 734				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
 735	if (ret < 0) {
 736		dev_err(priv->dev, "poll timeout\n");
 737		goto out;
 738	}
 739
 740	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
 741	      MT7531_MDIO_REG_ADDR(regnum) | data;
 742
 743	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
 744
 745	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
 746				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
 747	if (ret < 0) {
 748		dev_err(priv->dev, "poll timeout\n");
 749		goto out;
 750	}
 751
 752out:
 753	mt7530_mutex_unlock(priv);
 754
 755	return ret;
 756}
 757
 758static int
 759mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
 760{
 761	struct mt7530_priv *priv = bus->priv;
 762
 763	return priv->info->phy_read_c22(priv, port, regnum);
 764}
 765
 766static int
 767mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
 768{
 769	struct mt7530_priv *priv = bus->priv;
 770
 771	return priv->info->phy_read_c45(priv, port, devad, regnum);
 772}
 773
 774static int
 775mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
 776{
 777	struct mt7530_priv *priv = bus->priv;
 778
 779	return priv->info->phy_write_c22(priv, port, regnum, val);
 780}
 781
 782static int
 783mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
 784		     u16 val)
 785{
 786	struct mt7530_priv *priv = bus->priv;
 787
 788	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
 789}
 790
 791static void
 792mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
 793		   uint8_t *data)
 794{
 795	int i;
 796
 797	if (stringset != ETH_SS_STATS)
 798		return;
 799
 800	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
 801		ethtool_puts(&data, mt7530_mib[i].name);
 802}
 803
 804static void
 805mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
 806			 uint64_t *data)
 807{
 808	struct mt7530_priv *priv = ds->priv;
 809	const struct mt7530_mib_desc *mib;
 810	u32 reg, i;
 811	u64 hi;
 812
 813	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
 814		mib = &mt7530_mib[i];
 815		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
 816
 817		data[i] = mt7530_read(priv, reg);
 818		if (mib->size == 2) {
 819			hi = mt7530_read(priv, reg + 4);
 820			data[i] |= hi << 32;
 821		}
 822	}
 823}
 824
 825static int
 826mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
 827{
 828	if (sset != ETH_SS_STATS)
 829		return 0;
 830
 831	return ARRAY_SIZE(mt7530_mib);
 832}
 833
 834static int
 835mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
 836{
 837	struct mt7530_priv *priv = ds->priv;
 838	unsigned int secs = msecs / 1000;
 839	unsigned int tmp_age_count;
 840	unsigned int error = -1;
 841	unsigned int age_count;
 842	unsigned int age_unit;
 843
 844	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
 845	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
 846		return -ERANGE;
 847
 848	/* iterate through all possible age_count to find the closest pair */
 849	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
 850		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
 851
 852		if (tmp_age_unit <= AGE_UNIT_MAX) {
 853			unsigned int tmp_error = secs -
 854				(tmp_age_count + 1) * (tmp_age_unit + 1);
 855
 856			/* found a closer pair */
 857			if (error > tmp_error) {
 858				error = tmp_error;
 859				age_count = tmp_age_count;
 860				age_unit = tmp_age_unit;
 861			}
 862
 863			/* found the exact match, so break the loop */
 864			if (!error)
 865				break;
 866		}
 867	}
 868
 869	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
 870
 871	return 0;
 872}
 873
 874static const char *p5_intf_modes(unsigned int p5_interface)
 875{
 876	switch (p5_interface) {
 877	case P5_DISABLED:
 878		return "DISABLED";
 879	case P5_INTF_SEL_PHY_P0:
 880		return "PHY P0";
 881	case P5_INTF_SEL_PHY_P4:
 882		return "PHY P4";
 883	case P5_INTF_SEL_GMAC5:
 884		return "GMAC5";
 885	default:
 886		return "unknown";
 887	}
 888}
 889
 890static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
 891{
 892	struct mt7530_priv *priv = ds->priv;
 893	u8 tx_delay = 0;
 894	int val;
 895
 896	mutex_lock(&priv->reg_mutex);
 897
 898	val = mt7530_read(priv, MT7530_MHWTRAP);
 899
 900	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
 901	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
 902
 903	switch (priv->p5_intf_sel) {
 904	case P5_INTF_SEL_PHY_P0:
 905		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
 906		val |= MHWTRAP_PHY0_SEL;
 907		fallthrough;
 908	case P5_INTF_SEL_PHY_P4:
 909		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
 910		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
 911
 
 
 912		/* Setup the MAC by default for the cpu port */
 913		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
 914		break;
 915	case P5_INTF_SEL_GMAC5:
 916		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
 917		val &= ~MHWTRAP_P5_DIS;
 918		break;
 
 
 919	default:
 
 920		break;
 921	}
 922
 923	/* Setup RGMII settings */
 924	if (phy_interface_mode_is_rgmii(interface)) {
 925		val |= MHWTRAP_P5_RGMII_MODE;
 926
 927		/* P5 RGMII RX Clock Control: delay setting for 1000M */
 928		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
 929
 930		/* Don't set delay in DSA mode */
 931		if (!dsa_is_dsa_port(priv->ds, 5) &&
 932		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
 933		     interface == PHY_INTERFACE_MODE_RGMII_ID))
 934			tx_delay = 4; /* n * 0.5 ns */
 935
 936		/* P5 RGMII TX Clock Control: delay x */
 937		mt7530_write(priv, MT7530_P5RGMIITXCR,
 938			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
 939
 940		/* reduce P5 RGMII Tx driving, 8mA */
 941		mt7530_write(priv, MT7530_IO_DRV_CR,
 942			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
 943	}
 944
 945	mt7530_write(priv, MT7530_MHWTRAP, val);
 946
 947	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
 948		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
 949
 950	mutex_unlock(&priv->reg_mutex);
 951}
 952
 953/* In Clause 5 of IEEE Std 802-2014, two sublayers of the data link layer (DLL)
 954 * of the Open Systems Interconnection basic reference model (OSI/RM) are
 955 * described; the medium access control (MAC) and logical link control (LLC)
 956 * sublayers. The MAC sublayer is the one facing the physical layer.
 957 *
 958 * In 8.2 of IEEE Std 802.1Q-2022, the Bridge architecture is described. A
 959 * Bridge component comprises a MAC Relay Entity for interconnecting the Ports
 960 * of the Bridge, at least two Ports, and higher layer entities with at least a
 961 * Spanning Tree Protocol Entity included.
 962 *
 963 * Each Bridge Port also functions as an end station and shall provide the MAC
 964 * Service to an LLC Entity. Each instance of the MAC Service is provided to a
 965 * distinct LLC Entity that supports protocol identification, multiplexing, and
 966 * demultiplexing, for protocol data unit (PDU) transmission and reception by
 967 * one or more higher layer entities.
 968 *
 969 * It is described in 8.13.9 of IEEE Std 802.1Q-2022 that in a Bridge, the LLC
 970 * Entity associated with each Bridge Port is modeled as being directly
 971 * connected to the attached Local Area Network (LAN).
 972 *
 973 * On the switch with CPU port architecture, CPU port functions as Management
 974 * Port, and the Management Port functionality is provided by software which
 975 * functions as an end station. Software is connected to an IEEE 802 LAN that is
 976 * wholly contained within the system that incorporates the Bridge. Software
 977 * provides access to the LLC Entity associated with each Bridge Port by the
 978 * value of the source port field on the special tag on the frame received by
 979 * software.
 980 *
 981 * We call frames that carry control information to determine the active
 982 * topology and current extent of each Virtual Local Area Network (VLAN), i.e.,
 983 * spanning tree or Shortest Path Bridging (SPB) and Multiple VLAN Registration
 984 * Protocol Data Units (MVRPDUs), and frames from other link constrained
 985 * protocols, such as Extensible Authentication Protocol over LAN (EAPOL) and
 986 * Link Layer Discovery Protocol (LLDP), link-local frames. They are not
 987 * forwarded by a Bridge. Permanently configured entries in the filtering
 988 * database (FDB) ensure that such frames are discarded by the Forwarding
 989 * Process. In 8.6.3 of IEEE Std 802.1Q-2022, this is described in detail:
 990 *
 991 * Each of the reserved MAC addresses specified in Table 8-1
 992 * (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]) shall be
 993 * permanently configured in the FDB in C-VLAN components and ERs.
 994 *
 995 * Each of the reserved MAC addresses specified in Table 8-2
 996 * (01-80-C2-00-00-[01,02,03,04,05,06,07,08,09,0A,0E]) shall be permanently
 997 * configured in the FDB in S-VLAN components.
 998 *
 999 * Each of the reserved MAC addresses specified in Table 8-3
1000 * (01-80-C2-00-00-[01,02,04,0E]) shall be permanently configured in the FDB in
1001 * TPMR components.
1002 *
1003 * The FDB entries for reserved MAC addresses shall specify filtering for all
1004 * Bridge Ports and all VIDs. Management shall not provide the capability to
1005 * modify or remove entries for reserved MAC addresses.
1006 *
1007 * The addresses in Table 8-1, Table 8-2, and Table 8-3 determine the scope of
1008 * propagation of PDUs within a Bridged Network, as follows:
1009 *
1010 *   The Nearest Bridge group address (01-80-C2-00-00-0E) is an address that no
1011 *   conformant Two-Port MAC Relay (TPMR) component, Service VLAN (S-VLAN)
1012 *   component, Customer VLAN (C-VLAN) component, or MAC Bridge can forward.
1013 *   PDUs transmitted using this destination address, or any other addresses
1014 *   that appear in Table 8-1, Table 8-2, and Table 8-3
1015 *   (01-80-C2-00-00-[00,01,02,03,04,05,06,07,08,09,0A,0B,0C,0D,0E,0F]), can
1016 *   therefore travel no further than those stations that can be reached via a
1017 *   single individual LAN from the originating station.
1018 *
1019 *   The Nearest non-TPMR Bridge group address (01-80-C2-00-00-03), is an
1020 *   address that no conformant S-VLAN component, C-VLAN component, or MAC
1021 *   Bridge can forward; however, this address is relayed by a TPMR component.
1022 *   PDUs using this destination address, or any of the other addresses that
1023 *   appear in both Table 8-1 and Table 8-2 but not in Table 8-3
1024 *   (01-80-C2-00-00-[00,03,05,06,07,08,09,0A,0B,0C,0D,0F]), will be relayed by
1025 *   any TPMRs but will propagate no further than the nearest S-VLAN component,
1026 *   C-VLAN component, or MAC Bridge.
1027 *
1028 *   The Nearest Customer Bridge group address (01-80-C2-00-00-00) is an address
1029 *   that no conformant C-VLAN component, MAC Bridge can forward; however, it is
1030 *   relayed by TPMR components and S-VLAN components. PDUs using this
1031 *   destination address, or any of the other addresses that appear in Table 8-1
1032 *   but not in either Table 8-2 or Table 8-3 (01-80-C2-00-00-[00,0B,0C,0D,0F]),
1033 *   will be relayed by TPMR components and S-VLAN components but will propagate
1034 *   no further than the nearest C-VLAN component or MAC Bridge.
1035 *
1036 * Because the LLC Entity associated with each Bridge Port is provided via CPU
1037 * port, we must not filter these frames but forward them to CPU port.
1038 *
1039 * In a Bridge, the transmission Port is majorly decided by ingress and egress
1040 * rules, FDB, and spanning tree Port State functions of the Forwarding Process.
1041 * For link-local frames, only CPU port should be designated as destination port
1042 * in the FDB, and the other functions of the Forwarding Process must not
1043 * interfere with the decision of the transmission Port. We call this process
1044 * trapping frames to CPU port.
1045 *
1046 * Therefore, on the switch with CPU port architecture, link-local frames must
1047 * be trapped to CPU port, and certain link-local frames received by a Port of a
1048 * Bridge comprising a TPMR component or an S-VLAN component must be excluded
1049 * from it.
1050 *
1051 * A Bridge of the switch with CPU port architecture cannot comprise a Two-Port
1052 * MAC Relay (TPMR) component as a TPMR component supports only a subset of the
1053 * functionality of a MAC Bridge. A Bridge comprising two Ports (Management Port
1054 * doesn't count) of this architecture will either function as a standard MAC
1055 * Bridge or a standard VLAN Bridge.
1056 *
1057 * Therefore, a Bridge of this architecture can only comprise S-VLAN components,
1058 * C-VLAN components, or MAC Bridge components. Since there's no TPMR component,
1059 * we don't need to relay PDUs using the destination addresses specified on the
1060 * Nearest non-TPMR section, and the proportion of the Nearest Customer Bridge
1061 * section where they must be relayed by TPMR components.
1062 *
1063 * One option to trap link-local frames to CPU port is to add static FDB entries
1064 * with CPU port designated as destination port. However, because that
1065 * Independent VLAN Learning (IVL) is being used on every VID, each entry only
1066 * applies to a single VLAN Identifier (VID). For a Bridge comprising a MAC
1067 * Bridge component or a C-VLAN component, there would have to be 16 times 4096
1068 * entries. This switch intellectual property can only hold a maximum of 2048
1069 * entries. Using this option, there also isn't a mechanism to prevent
1070 * link-local frames from being discarded when the spanning tree Port State of
1071 * the reception Port is discarding.
1072 *
1073 * The remaining option is to utilise the BPC, RGAC1, RGAC2, RGAC3, and RGAC4
1074 * registers. Whilst this applies to every VID, it doesn't contain all of the
1075 * reserved MAC addresses without affecting the remaining Standard Group MAC
1076 * Addresses. The REV_UN frame tag utilised using the RGAC4 register covers the
1077 * remaining 01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F] destination
1078 * addresses. It also includes the 01-80-C2-00-00-22 to 01-80-C2-00-00-FF
1079 * destination addresses which may be relayed by MAC Bridges or VLAN Bridges.
1080 * The latter option provides better but not complete conformance.
1081 *
1082 * This switch intellectual property also does not provide a mechanism to trap
1083 * link-local frames with specific destination addresses to CPU port by Bridge,
1084 * to conform to the filtering rules for the distinct Bridge components.
1085 *
1086 * Therefore, regardless of the type of the Bridge component, link-local frames
1087 * with these destination addresses will be trapped to CPU port:
1088 *
1089 * 01-80-C2-00-00-[00,01,02,03,0E]
1090 *
1091 * In a Bridge comprising a MAC Bridge component or a C-VLAN component:
1092 *
1093 *   Link-local frames with these destination addresses won't be trapped to CPU
1094 *   port which won't conform to IEEE Std 802.1Q-2022:
1095 *
1096 *   01-80-C2-00-00-[04,05,06,07,08,09,0A,0B,0C,0D,0F]
1097 *
1098 * In a Bridge comprising an S-VLAN component:
1099 *
1100 *   Link-local frames with these destination addresses will be trapped to CPU
1101 *   port which won't conform to IEEE Std 802.1Q-2022:
1102 *
1103 *   01-80-C2-00-00-00
1104 *
1105 *   Link-local frames with these destination addresses won't be trapped to CPU
1106 *   port which won't conform to IEEE Std 802.1Q-2022:
1107 *
1108 *   01-80-C2-00-00-[04,05,06,07,08,09,0A]
1109 *
1110 * To trap link-local frames to CPU port as conformant as this switch
1111 * intellectual property can allow, link-local frames are made to be regarded as
1112 * Bridge Protocol Data Units (BPDUs). This is because this switch intellectual
1113 * property only lets the frames regarded as BPDUs bypass the spanning tree Port
1114 * State function of the Forwarding Process.
1115 *
1116 * The only remaining interference is the ingress rules. When the reception Port
1117 * has no PVID assigned on software, VLAN-untagged frames won't be allowed in.
1118 * There doesn't seem to be a mechanism on the switch intellectual property to
1119 * have link-local frames bypass this function of the Forwarding Process.
1120 */
1121static void
1122mt753x_trap_frames(struct mt7530_priv *priv)
1123{
1124	/* Trap 802.1X PAE frames and BPDUs to the CPU port(s) and egress them
1125	 * VLAN-untagged.
1126	 */
1127	mt7530_rmw(priv, MT753X_BPC,
1128		   MT753X_PAE_BPDU_FR | MT753X_PAE_EG_TAG_MASK |
1129			   MT753X_PAE_PORT_FW_MASK | MT753X_BPDU_EG_TAG_MASK |
1130			   MT753X_BPDU_PORT_FW_MASK,
1131		   MT753X_PAE_BPDU_FR |
1132			   MT753X_PAE_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1133			   MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1134			   MT753X_BPDU_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1135			   MT753X_BPDU_CPU_ONLY);
1136
1137	/* Trap frames with :01 and :02 MAC DAs to the CPU port(s) and egress
1138	 * them VLAN-untagged.
1139	 */
1140	mt7530_rmw(priv, MT753X_RGAC1,
1141		   MT753X_R02_BPDU_FR | MT753X_R02_EG_TAG_MASK |
1142			   MT753X_R02_PORT_FW_MASK | MT753X_R01_BPDU_FR |
1143			   MT753X_R01_EG_TAG_MASK | MT753X_R01_PORT_FW_MASK,
1144		   MT753X_R02_BPDU_FR |
1145			   MT753X_R02_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1146			   MT753X_R02_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1147			   MT753X_R01_BPDU_FR |
1148			   MT753X_R01_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1149			   MT753X_BPDU_CPU_ONLY);
1150
1151	/* Trap frames with :03 and :0E MAC DAs to the CPU port(s) and egress
1152	 * them VLAN-untagged.
1153	 */
1154	mt7530_rmw(priv, MT753X_RGAC2,
1155		   MT753X_R0E_BPDU_FR | MT753X_R0E_EG_TAG_MASK |
1156			   MT753X_R0E_PORT_FW_MASK | MT753X_R03_BPDU_FR |
1157			   MT753X_R03_EG_TAG_MASK | MT753X_R03_PORT_FW_MASK,
1158		   MT753X_R0E_BPDU_FR |
1159			   MT753X_R0E_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1160			   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY) |
1161			   MT753X_R03_BPDU_FR |
1162			   MT753X_R03_EG_TAG(MT7530_VLAN_EG_UNTAGGED) |
1163			   MT753X_BPDU_CPU_ONLY);
1164}
1165
1166static void
1167mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1168{
1169	struct mt7530_priv *priv = ds->priv;
1170
1171	/* Enable Mediatek header mode on the cpu port */
1172	mt7530_write(priv, MT7530_PVC_P(port),
1173		     PORT_SPEC_TAG);
1174
1175	/* Enable flooding on the CPU port */
1176	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1177		   UNU_FFP(BIT(port)));
1178
1179	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1180	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1181	 * is affine to the inbound user port.
1182	 */
1183	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
 
1184		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1185
1186	/* CPU port gets connected to all user ports of
1187	 * the switch.
1188	 */
1189	mt7530_write(priv, MT7530_PCR_P(port),
1190		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1191
1192	/* Set to fallback mode for independent VLAN learning */
1193	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1194		   MT7530_PORT_FALLBACK_MODE);
1195}
1196
1197static int
1198mt7530_port_enable(struct dsa_switch *ds, int port,
1199		   struct phy_device *phy)
1200{
1201	struct dsa_port *dp = dsa_to_port(ds, port);
1202	struct mt7530_priv *priv = ds->priv;
1203
1204	mutex_lock(&priv->reg_mutex);
1205
1206	/* Allow the user port gets connected to the cpu port and also
1207	 * restore the port matrix if the port is the member of a certain
1208	 * bridge.
1209	 */
1210	if (dsa_port_is_user(dp)) {
1211		struct dsa_port *cpu_dp = dp->cpu_dp;
1212
1213		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1214	}
1215	priv->ports[port].enable = true;
1216	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1217		   priv->ports[port].pm);
1218
1219	mutex_unlock(&priv->reg_mutex);
1220
 
 
 
 
 
 
 
 
1221	return 0;
1222}
1223
1224static void
1225mt7530_port_disable(struct dsa_switch *ds, int port)
1226{
1227	struct mt7530_priv *priv = ds->priv;
1228
1229	mutex_lock(&priv->reg_mutex);
1230
1231	/* Clear up all port matrix which could be restored in the next
1232	 * enablement for the port.
1233	 */
1234	priv->ports[port].enable = false;
1235	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1236		   PCR_MATRIX_CLR);
1237
1238	mutex_unlock(&priv->reg_mutex);
 
 
 
 
 
 
 
 
 
1239}
1240
1241static int
1242mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1243{
1244	struct mt7530_priv *priv = ds->priv;
1245	int length;
1246	u32 val;
1247
1248	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1249	 * largest MTU of the user ports. Because the switch only has a global
1250	 * RX length register, only allowing CPU port here is enough.
1251	 */
1252	if (!dsa_is_cpu_port(ds, port))
1253		return 0;
1254
1255	mt7530_mutex_lock(priv);
1256
1257	val = mt7530_mii_read(priv, MT7530_GMACCR);
1258	val &= ~MAX_RX_PKT_LEN_MASK;
1259
1260	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1261	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1262	if (length <= 1522) {
1263		val |= MAX_RX_PKT_LEN_1522;
1264	} else if (length <= 1536) {
1265		val |= MAX_RX_PKT_LEN_1536;
1266	} else if (length <= 1552) {
1267		val |= MAX_RX_PKT_LEN_1552;
1268	} else {
1269		val &= ~MAX_RX_JUMBO_MASK;
1270		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1271		val |= MAX_RX_PKT_LEN_JUMBO;
1272	}
1273
1274	mt7530_mii_write(priv, MT7530_GMACCR, val);
1275
1276	mt7530_mutex_unlock(priv);
1277
1278	return 0;
1279}
1280
1281static int
1282mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1283{
1284	return MT7530_MAX_MTU;
1285}
1286
1287static void
1288mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1289{
1290	struct mt7530_priv *priv = ds->priv;
1291	u32 stp_state;
1292
1293	switch (state) {
1294	case BR_STATE_DISABLED:
1295		stp_state = MT7530_STP_DISABLED;
1296		break;
1297	case BR_STATE_BLOCKING:
1298		stp_state = MT7530_STP_BLOCKING;
1299		break;
1300	case BR_STATE_LISTENING:
1301		stp_state = MT7530_STP_LISTENING;
1302		break;
1303	case BR_STATE_LEARNING:
1304		stp_state = MT7530_STP_LEARNING;
1305		break;
1306	case BR_STATE_FORWARDING:
1307	default:
1308		stp_state = MT7530_STP_FORWARDING;
1309		break;
1310	}
1311
1312	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1313		   FID_PST(FID_BRIDGED, stp_state));
1314}
1315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316static int
1317mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1318			     struct switchdev_brport_flags flags,
1319			     struct netlink_ext_ack *extack)
1320{
1321	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1322			   BR_BCAST_FLOOD))
1323		return -EINVAL;
1324
1325	return 0;
1326}
1327
1328static int
1329mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1330			 struct switchdev_brport_flags flags,
1331			 struct netlink_ext_ack *extack)
1332{
1333	struct mt7530_priv *priv = ds->priv;
1334
1335	if (flags.mask & BR_LEARNING)
1336		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1337			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1338
1339	if (flags.mask & BR_FLOOD)
1340		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1341			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1342
1343	if (flags.mask & BR_MCAST_FLOOD)
1344		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1345			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1346
1347	if (flags.mask & BR_BCAST_FLOOD)
1348		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1349			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1350
 
 
 
 
 
 
 
 
 
 
 
1351	return 0;
1352}
1353
1354static int
1355mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1356			struct dsa_bridge bridge, bool *tx_fwd_offload,
1357			struct netlink_ext_ack *extack)
1358{
1359	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1360	struct dsa_port *cpu_dp = dp->cpu_dp;
1361	u32 port_bitmap = BIT(cpu_dp->index);
1362	struct mt7530_priv *priv = ds->priv;
1363
1364	mutex_lock(&priv->reg_mutex);
1365
1366	dsa_switch_for_each_user_port(other_dp, ds) {
1367		int other_port = other_dp->index;
1368
1369		if (dp == other_dp)
1370			continue;
1371
1372		/* Add this port to the port matrix of the other ports in the
1373		 * same bridge. If the port is disabled, port matrix is kept
1374		 * and not being setup until the port becomes enabled.
1375		 */
1376		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1377			continue;
1378
1379		if (priv->ports[other_port].enable)
1380			mt7530_set(priv, MT7530_PCR_P(other_port),
1381				   PCR_MATRIX(BIT(port)));
1382		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1383
1384		port_bitmap |= BIT(other_port);
1385	}
1386
1387	/* Add the all other ports to this port matrix. */
1388	if (priv->ports[port].enable)
1389		mt7530_rmw(priv, MT7530_PCR_P(port),
1390			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1391	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1392
1393	/* Set to fallback mode for independent VLAN learning */
1394	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1395		   MT7530_PORT_FALLBACK_MODE);
1396
1397	mutex_unlock(&priv->reg_mutex);
1398
1399	return 0;
1400}
1401
1402static void
1403mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1404{
1405	struct mt7530_priv *priv = ds->priv;
1406	bool all_user_ports_removed = true;
1407	int i;
1408
1409	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1410	 * bridge. Don't set standalone ports to fallback mode.
1411	 */
1412	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1413		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1414			   MT7530_PORT_FALLBACK_MODE);
1415
1416	mt7530_rmw(priv, MT7530_PVC_P(port),
1417		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1418		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1419		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1420		   MT7530_VLAN_ACC_ALL);
1421
1422	/* Set PVID to 0 */
1423	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1424		   G0_PORT_VID_DEF);
1425
1426	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1427		if (dsa_is_user_port(ds, i) &&
1428		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1429			all_user_ports_removed = false;
1430			break;
1431		}
1432	}
1433
1434	/* CPU port also does the same thing until all user ports belonging to
1435	 * the CPU port get out of VLAN filtering mode.
1436	 */
1437	if (all_user_ports_removed) {
1438		struct dsa_port *dp = dsa_to_port(ds, port);
1439		struct dsa_port *cpu_dp = dp->cpu_dp;
1440
1441		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1442			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1443		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1444			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1445	}
1446}
1447
1448static void
1449mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1450{
1451	struct mt7530_priv *priv = ds->priv;
1452
1453	/* Trapped into security mode allows packet forwarding through VLAN
1454	 * table lookup.
1455	 */
1456	if (dsa_is_user_port(ds, port)) {
1457		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1458			   MT7530_PORT_SECURITY_MODE);
1459		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1460			   G0_PORT_VID(priv->ports[port].pvid));
1461
1462		/* Only accept tagged frames if PVID is not set */
1463		if (!priv->ports[port].pvid)
1464			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1465				   MT7530_VLAN_ACC_TAGGED);
1466
1467		/* Set the port as a user port which is to be able to recognize
1468		 * VID from incoming packets before fetching entry within the
1469		 * VLAN table.
1470		 */
1471		mt7530_rmw(priv, MT7530_PVC_P(port),
1472			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1473			   VLAN_ATTR(MT7530_VLAN_USER) |
1474			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1475	} else {
1476		/* Also set CPU ports to the "user" VLAN port attribute, to
1477		 * allow VLAN classification, but keep the EG_TAG attribute as
1478		 * "consistent" (i.o.w. don't change its value) for packets
1479		 * received by the switch from the CPU, so that tagged packets
1480		 * are forwarded to user ports as tagged, and untagged as
1481		 * untagged.
1482		 */
1483		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1484			   VLAN_ATTR(MT7530_VLAN_USER));
1485	}
1486}
1487
1488static void
1489mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1490			 struct dsa_bridge bridge)
1491{
1492	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1493	struct dsa_port *cpu_dp = dp->cpu_dp;
1494	struct mt7530_priv *priv = ds->priv;
1495
1496	mutex_lock(&priv->reg_mutex);
1497
1498	dsa_switch_for_each_user_port(other_dp, ds) {
1499		int other_port = other_dp->index;
1500
1501		if (dp == other_dp)
1502			continue;
1503
1504		/* Remove this port from the port matrix of the other ports
1505		 * in the same bridge. If the port is disabled, port matrix
1506		 * is kept and not being setup until the port becomes enabled.
1507		 */
1508		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1509			continue;
1510
1511		if (priv->ports[other_port].enable)
1512			mt7530_clear(priv, MT7530_PCR_P(other_port),
1513				     PCR_MATRIX(BIT(port)));
1514		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1515	}
1516
1517	/* Set the cpu port to be the only one in the port matrix of
1518	 * this port.
1519	 */
1520	if (priv->ports[port].enable)
1521		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1522			   PCR_MATRIX(BIT(cpu_dp->index)));
1523	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1524
1525	/* When a port is removed from the bridge, the port would be set up
1526	 * back to the default as is at initial boot which is a VLAN-unaware
1527	 * port.
1528	 */
1529	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1530		   MT7530_PORT_MATRIX_MODE);
1531
1532	mutex_unlock(&priv->reg_mutex);
1533}
1534
1535static int
1536mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1537		    const unsigned char *addr, u16 vid,
1538		    struct dsa_db db)
1539{
1540	struct mt7530_priv *priv = ds->priv;
1541	int ret;
1542	u8 port_mask = BIT(port);
1543
1544	mutex_lock(&priv->reg_mutex);
1545	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1546	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1547	mutex_unlock(&priv->reg_mutex);
1548
1549	return ret;
1550}
1551
1552static int
1553mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1554		    const unsigned char *addr, u16 vid,
1555		    struct dsa_db db)
1556{
1557	struct mt7530_priv *priv = ds->priv;
1558	int ret;
1559	u8 port_mask = BIT(port);
1560
1561	mutex_lock(&priv->reg_mutex);
1562	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1563	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1564	mutex_unlock(&priv->reg_mutex);
1565
1566	return ret;
1567}
1568
1569static int
1570mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1571		     dsa_fdb_dump_cb_t *cb, void *data)
1572{
1573	struct mt7530_priv *priv = ds->priv;
1574	struct mt7530_fdb _fdb = { 0 };
1575	int cnt = MT7530_NUM_FDB_RECORDS;
1576	int ret = 0;
1577	u32 rsp = 0;
1578
1579	mutex_lock(&priv->reg_mutex);
1580
1581	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1582	if (ret < 0)
1583		goto err;
1584
1585	do {
1586		if (rsp & ATC_SRCH_HIT) {
1587			mt7530_fdb_read(priv, &_fdb);
1588			if (_fdb.port_mask & BIT(port)) {
1589				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1590					 data);
1591				if (ret < 0)
1592					break;
1593			}
1594		}
1595	} while (--cnt &&
1596		 !(rsp & ATC_SRCH_END) &&
1597		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1598err:
1599	mutex_unlock(&priv->reg_mutex);
1600
1601	return 0;
1602}
1603
1604static int
1605mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1606		    const struct switchdev_obj_port_mdb *mdb,
1607		    struct dsa_db db)
1608{
1609	struct mt7530_priv *priv = ds->priv;
1610	const u8 *addr = mdb->addr;
1611	u16 vid = mdb->vid;
1612	u8 port_mask = 0;
1613	int ret;
1614
1615	mutex_lock(&priv->reg_mutex);
1616
1617	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1618	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1619		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1620			    & PORT_MAP_MASK;
1621
1622	port_mask |= BIT(port);
1623	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1624	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1625
1626	mutex_unlock(&priv->reg_mutex);
1627
1628	return ret;
1629}
1630
1631static int
1632mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1633		    const struct switchdev_obj_port_mdb *mdb,
1634		    struct dsa_db db)
1635{
1636	struct mt7530_priv *priv = ds->priv;
1637	const u8 *addr = mdb->addr;
1638	u16 vid = mdb->vid;
1639	u8 port_mask = 0;
1640	int ret;
1641
1642	mutex_lock(&priv->reg_mutex);
1643
1644	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1645	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1646		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1647			    & PORT_MAP_MASK;
1648
1649	port_mask &= ~BIT(port);
1650	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1651			 port_mask ? STATIC_ENT : STATIC_EMP);
1652	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1653
1654	mutex_unlock(&priv->reg_mutex);
1655
1656	return ret;
1657}
1658
1659static int
1660mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1661{
1662	struct mt7530_dummy_poll p;
1663	u32 val;
1664	int ret;
1665
1666	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1667	mt7530_write(priv, MT7530_VTCR, val);
1668
1669	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1670	ret = readx_poll_timeout(_mt7530_read, &p, val,
1671				 !(val & VTCR_BUSY), 20, 20000);
1672	if (ret < 0) {
1673		dev_err(priv->dev, "poll timeout\n");
1674		return ret;
1675	}
1676
1677	val = mt7530_read(priv, MT7530_VTCR);
1678	if (val & VTCR_INVALID) {
1679		dev_err(priv->dev, "read VTCR invalid\n");
1680		return -EINVAL;
1681	}
1682
1683	return 0;
1684}
1685
1686static int
1687mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1688			   struct netlink_ext_ack *extack)
1689{
1690	struct dsa_port *dp = dsa_to_port(ds, port);
1691	struct dsa_port *cpu_dp = dp->cpu_dp;
1692
1693	if (vlan_filtering) {
1694		/* The port is being kept as VLAN-unaware port when bridge is
1695		 * set up with vlan_filtering not being set, Otherwise, the
1696		 * port and the corresponding CPU port is required the setup
1697		 * for becoming a VLAN-aware port.
1698		 */
1699		mt7530_port_set_vlan_aware(ds, port);
1700		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1701	} else {
1702		mt7530_port_set_vlan_unaware(ds, port);
1703	}
1704
1705	return 0;
1706}
1707
1708static void
1709mt7530_hw_vlan_add(struct mt7530_priv *priv,
1710		   struct mt7530_hw_vlan_entry *entry)
1711{
1712	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1713	u8 new_members;
1714	u32 val;
1715
1716	new_members = entry->old_members | BIT(entry->port);
1717
1718	/* Validate the entry with independent learning, create egress tag per
1719	 * VLAN and joining the port as one of the port members.
1720	 */
1721	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1722	      VLAN_VALID;
1723	mt7530_write(priv, MT7530_VAWD1, val);
1724
1725	/* Decide whether adding tag or not for those outgoing packets from the
1726	 * port inside the VLAN.
1727	 * CPU port is always taken as a tagged port for serving more than one
1728	 * VLANs across and also being applied with egress type stack mode for
1729	 * that VLAN tags would be appended after hardware special tag used as
1730	 * DSA tag.
1731	 */
1732	if (dsa_port_is_cpu(dp))
1733		val = MT7530_VLAN_EGRESS_STACK;
1734	else if (entry->untagged)
1735		val = MT7530_VLAN_EGRESS_UNTAG;
1736	else
1737		val = MT7530_VLAN_EGRESS_TAG;
1738	mt7530_rmw(priv, MT7530_VAWD2,
1739		   ETAG_CTRL_P_MASK(entry->port),
1740		   ETAG_CTRL_P(entry->port, val));
1741}
1742
1743static void
1744mt7530_hw_vlan_del(struct mt7530_priv *priv,
1745		   struct mt7530_hw_vlan_entry *entry)
1746{
1747	u8 new_members;
1748	u32 val;
1749
1750	new_members = entry->old_members & ~BIT(entry->port);
1751
1752	val = mt7530_read(priv, MT7530_VAWD1);
1753	if (!(val & VLAN_VALID)) {
1754		dev_err(priv->dev,
1755			"Cannot be deleted due to invalid entry\n");
1756		return;
1757	}
1758
1759	if (new_members) {
1760		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1761		      VLAN_VALID;
1762		mt7530_write(priv, MT7530_VAWD1, val);
1763	} else {
1764		mt7530_write(priv, MT7530_VAWD1, 0);
1765		mt7530_write(priv, MT7530_VAWD2, 0);
1766	}
1767}
1768
1769static void
1770mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1771		      struct mt7530_hw_vlan_entry *entry,
1772		      mt7530_vlan_op vlan_op)
1773{
1774	u32 val;
1775
1776	/* Fetch entry */
1777	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1778
1779	val = mt7530_read(priv, MT7530_VAWD1);
1780
1781	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1782
1783	/* Manipulate entry */
1784	vlan_op(priv, entry);
1785
1786	/* Flush result to hardware */
1787	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1788}
1789
1790static int
1791mt7530_setup_vlan0(struct mt7530_priv *priv)
1792{
1793	u32 val;
1794
1795	/* Validate the entry with independent learning, keep the original
1796	 * ingress tag attribute.
1797	 */
1798	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1799	      VLAN_VALID;
1800	mt7530_write(priv, MT7530_VAWD1, val);
1801
1802	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1803}
1804
1805static int
1806mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1807		     const struct switchdev_obj_port_vlan *vlan,
1808		     struct netlink_ext_ack *extack)
1809{
1810	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1811	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1812	struct mt7530_hw_vlan_entry new_entry;
1813	struct mt7530_priv *priv = ds->priv;
1814
1815	mutex_lock(&priv->reg_mutex);
1816
1817	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1818	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1819
1820	if (pvid) {
1821		priv->ports[port].pvid = vlan->vid;
1822
1823		/* Accept all frames if PVID is set */
1824		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1825			   MT7530_VLAN_ACC_ALL);
1826
1827		/* Only configure PVID if VLAN filtering is enabled */
1828		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1829			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1830				   G0_PORT_VID_MASK,
1831				   G0_PORT_VID(vlan->vid));
1832	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1833		/* This VLAN is overwritten without PVID, so unset it */
1834		priv->ports[port].pvid = G0_PORT_VID_DEF;
1835
1836		/* Only accept tagged frames if the port is VLAN-aware */
1837		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1838			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1839				   MT7530_VLAN_ACC_TAGGED);
1840
1841		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1842			   G0_PORT_VID_DEF);
1843	}
1844
1845	mutex_unlock(&priv->reg_mutex);
1846
1847	return 0;
1848}
1849
1850static int
1851mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1852		     const struct switchdev_obj_port_vlan *vlan)
1853{
1854	struct mt7530_hw_vlan_entry target_entry;
1855	struct mt7530_priv *priv = ds->priv;
1856
1857	mutex_lock(&priv->reg_mutex);
1858
1859	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1860	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1861			      mt7530_hw_vlan_del);
1862
1863	/* PVID is being restored to the default whenever the PVID port
1864	 * is being removed from the VLAN.
1865	 */
1866	if (priv->ports[port].pvid == vlan->vid) {
1867		priv->ports[port].pvid = G0_PORT_VID_DEF;
1868
1869		/* Only accept tagged frames if the port is VLAN-aware */
1870		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1871			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1872				   MT7530_VLAN_ACC_TAGGED);
1873
1874		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1875			   G0_PORT_VID_DEF);
1876	}
1877
1878
1879	mutex_unlock(&priv->reg_mutex);
1880
1881	return 0;
1882}
1883
1884static int mt753x_mirror_port_get(unsigned int id, u32 val)
1885{
1886	return (id == ID_MT7531 || id == ID_MT7988) ?
1887		       MT7531_MIRROR_PORT_GET(val) :
1888		       MIRROR_PORT(val);
1889}
1890
1891static int mt753x_mirror_port_set(unsigned int id, u32 val)
1892{
1893	return (id == ID_MT7531 || id == ID_MT7988) ?
1894		       MT7531_MIRROR_PORT_SET(val) :
1895		       MIRROR_PORT(val);
1896}
1897
1898static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1899				  struct dsa_mall_mirror_tc_entry *mirror,
1900				  bool ingress, struct netlink_ext_ack *extack)
1901{
1902	struct mt7530_priv *priv = ds->priv;
1903	int monitor_port;
1904	u32 val;
1905
1906	/* Check for existent entry */
1907	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1908		return -EEXIST;
1909
1910	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1911
1912	/* MT7530 only supports one monitor port */
1913	monitor_port = mt753x_mirror_port_get(priv->id, val);
1914	if (val & MT753X_MIRROR_EN(priv->id) &&
1915	    monitor_port != mirror->to_local_port)
1916		return -EEXIST;
1917
1918	val |= MT753X_MIRROR_EN(priv->id);
1919	val &= ~MT753X_MIRROR_MASK(priv->id);
1920	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1921	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1922
1923	val = mt7530_read(priv, MT7530_PCR_P(port));
1924	if (ingress) {
1925		val |= PORT_RX_MIR;
1926		priv->mirror_rx |= BIT(port);
1927	} else {
1928		val |= PORT_TX_MIR;
1929		priv->mirror_tx |= BIT(port);
1930	}
1931	mt7530_write(priv, MT7530_PCR_P(port), val);
1932
1933	return 0;
1934}
1935
1936static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1937				   struct dsa_mall_mirror_tc_entry *mirror)
1938{
1939	struct mt7530_priv *priv = ds->priv;
1940	u32 val;
1941
1942	val = mt7530_read(priv, MT7530_PCR_P(port));
1943	if (mirror->ingress) {
1944		val &= ~PORT_RX_MIR;
1945		priv->mirror_rx &= ~BIT(port);
1946	} else {
1947		val &= ~PORT_TX_MIR;
1948		priv->mirror_tx &= ~BIT(port);
1949	}
1950	mt7530_write(priv, MT7530_PCR_P(port), val);
1951
1952	if (!priv->mirror_rx && !priv->mirror_tx) {
1953		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1954		val &= ~MT753X_MIRROR_EN(priv->id);
1955		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1956	}
1957}
1958
1959static enum dsa_tag_protocol
1960mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1961		     enum dsa_tag_protocol mp)
1962{
1963	return DSA_TAG_PROTO_MTK;
1964}
1965
1966#ifdef CONFIG_GPIOLIB
1967static inline u32
1968mt7530_gpio_to_bit(unsigned int offset)
1969{
1970	/* Map GPIO offset to register bit
1971	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1972	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1973	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1974	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1975	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1976	 */
1977	return BIT(offset + offset / 3);
1978}
1979
1980static int
1981mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1982{
1983	struct mt7530_priv *priv = gpiochip_get_data(gc);
1984	u32 bit = mt7530_gpio_to_bit(offset);
1985
1986	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1987}
1988
1989static void
1990mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1991{
1992	struct mt7530_priv *priv = gpiochip_get_data(gc);
1993	u32 bit = mt7530_gpio_to_bit(offset);
1994
1995	if (value)
1996		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1997	else
1998		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1999}
2000
2001static int
2002mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
2003{
2004	struct mt7530_priv *priv = gpiochip_get_data(gc);
2005	u32 bit = mt7530_gpio_to_bit(offset);
2006
2007	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
2008		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
2009}
2010
2011static int
2012mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
2013{
2014	struct mt7530_priv *priv = gpiochip_get_data(gc);
2015	u32 bit = mt7530_gpio_to_bit(offset);
2016
2017	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
2018	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
2019
2020	return 0;
2021}
2022
2023static int
2024mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
2025{
2026	struct mt7530_priv *priv = gpiochip_get_data(gc);
2027	u32 bit = mt7530_gpio_to_bit(offset);
2028
2029	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
2030
2031	if (value)
2032		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
2033	else
2034		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
2035
2036	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
2037
2038	return 0;
2039}
2040
2041static int
2042mt7530_setup_gpio(struct mt7530_priv *priv)
2043{
2044	struct device *dev = priv->dev;
2045	struct gpio_chip *gc;
2046
2047	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
2048	if (!gc)
2049		return -ENOMEM;
2050
2051	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
2052	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
2053	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
2054
2055	gc->label = "mt7530";
2056	gc->parent = dev;
2057	gc->owner = THIS_MODULE;
2058	gc->get_direction = mt7530_gpio_get_direction;
2059	gc->direction_input = mt7530_gpio_direction_input;
2060	gc->direction_output = mt7530_gpio_direction_output;
2061	gc->get = mt7530_gpio_get;
2062	gc->set = mt7530_gpio_set;
2063	gc->base = -1;
2064	gc->ngpio = 15;
2065	gc->can_sleep = true;
2066
2067	return devm_gpiochip_add_data(dev, gc, priv);
2068}
2069#endif /* CONFIG_GPIOLIB */
2070
2071static irqreturn_t
2072mt7530_irq_thread_fn(int irq, void *dev_id)
2073{
2074	struct mt7530_priv *priv = dev_id;
2075	bool handled = false;
2076	u32 val;
2077	int p;
2078
2079	mt7530_mutex_lock(priv);
2080	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
2081	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
2082	mt7530_mutex_unlock(priv);
2083
2084	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2085		if (BIT(p) & val) {
2086			unsigned int irq;
2087
2088			irq = irq_find_mapping(priv->irq_domain, p);
2089			handle_nested_irq(irq);
2090			handled = true;
2091		}
2092	}
2093
2094	return IRQ_RETVAL(handled);
2095}
2096
2097static void
2098mt7530_irq_mask(struct irq_data *d)
2099{
2100	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2101
2102	priv->irq_enable &= ~BIT(d->hwirq);
2103}
2104
2105static void
2106mt7530_irq_unmask(struct irq_data *d)
2107{
2108	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2109
2110	priv->irq_enable |= BIT(d->hwirq);
2111}
2112
2113static void
2114mt7530_irq_bus_lock(struct irq_data *d)
2115{
2116	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2117
2118	mt7530_mutex_lock(priv);
2119}
2120
2121static void
2122mt7530_irq_bus_sync_unlock(struct irq_data *d)
2123{
2124	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2125
2126	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2127	mt7530_mutex_unlock(priv);
2128}
2129
2130static struct irq_chip mt7530_irq_chip = {
2131	.name = KBUILD_MODNAME,
2132	.irq_mask = mt7530_irq_mask,
2133	.irq_unmask = mt7530_irq_unmask,
2134	.irq_bus_lock = mt7530_irq_bus_lock,
2135	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
2136};
2137
2138static int
2139mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2140	       irq_hw_number_t hwirq)
2141{
2142	irq_set_chip_data(irq, domain->host_data);
2143	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2144	irq_set_nested_thread(irq, true);
2145	irq_set_noprobe(irq);
2146
2147	return 0;
2148}
2149
2150static const struct irq_domain_ops mt7530_irq_domain_ops = {
2151	.map = mt7530_irq_map,
2152	.xlate = irq_domain_xlate_onecell,
2153};
2154
2155static void
2156mt7988_irq_mask(struct irq_data *d)
2157{
2158	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2159
2160	priv->irq_enable &= ~BIT(d->hwirq);
2161	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2162}
2163
2164static void
2165mt7988_irq_unmask(struct irq_data *d)
2166{
2167	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2168
2169	priv->irq_enable |= BIT(d->hwirq);
2170	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2171}
2172
2173static struct irq_chip mt7988_irq_chip = {
2174	.name = KBUILD_MODNAME,
2175	.irq_mask = mt7988_irq_mask,
2176	.irq_unmask = mt7988_irq_unmask,
2177};
2178
2179static int
2180mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2181	       irq_hw_number_t hwirq)
2182{
2183	irq_set_chip_data(irq, domain->host_data);
2184	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2185	irq_set_nested_thread(irq, true);
2186	irq_set_noprobe(irq);
2187
2188	return 0;
2189}
2190
2191static const struct irq_domain_ops mt7988_irq_domain_ops = {
2192	.map = mt7988_irq_map,
2193	.xlate = irq_domain_xlate_onecell,
2194};
2195
2196static void
2197mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2198{
2199	struct dsa_switch *ds = priv->ds;
2200	int p;
2201
2202	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2203		if (BIT(p) & ds->phys_mii_mask) {
2204			unsigned int irq;
2205
2206			irq = irq_create_mapping(priv->irq_domain, p);
2207			ds->user_mii_bus->irq[p] = irq;
2208		}
2209	}
2210}
2211
2212static int
2213mt7530_setup_irq(struct mt7530_priv *priv)
2214{
2215	struct device *dev = priv->dev;
2216	struct device_node *np = dev->of_node;
2217	int ret;
2218
2219	if (!of_property_read_bool(np, "interrupt-controller")) {
2220		dev_info(dev, "no interrupt support\n");
2221		return 0;
2222	}
2223
2224	priv->irq = of_irq_get(np, 0);
2225	if (priv->irq <= 0) {
2226		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2227		return priv->irq ? : -EINVAL;
2228	}
2229
2230	if (priv->id == ID_MT7988)
2231		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2232							 &mt7988_irq_domain_ops,
2233							 priv);
2234	else
2235		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2236							 &mt7530_irq_domain_ops,
2237							 priv);
2238
2239	if (!priv->irq_domain) {
2240		dev_err(dev, "failed to create IRQ domain\n");
2241		return -ENOMEM;
2242	}
2243
2244	/* This register must be set for MT7530 to properly fire interrupts */
2245	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
2246		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2247
2248	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2249				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2250	if (ret) {
2251		irq_domain_remove(priv->irq_domain);
2252		dev_err(dev, "failed to request IRQ: %d\n", ret);
2253		return ret;
2254	}
2255
2256	return 0;
2257}
2258
2259static void
2260mt7530_free_mdio_irq(struct mt7530_priv *priv)
2261{
2262	int p;
2263
2264	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2265		if (BIT(p) & priv->ds->phys_mii_mask) {
2266			unsigned int irq;
2267
2268			irq = irq_find_mapping(priv->irq_domain, p);
2269			irq_dispose_mapping(irq);
2270		}
2271	}
2272}
2273
2274static void
2275mt7530_free_irq_common(struct mt7530_priv *priv)
2276{
2277	free_irq(priv->irq, priv);
2278	irq_domain_remove(priv->irq_domain);
2279}
2280
2281static void
2282mt7530_free_irq(struct mt7530_priv *priv)
2283{
2284	struct device_node *mnp, *np = priv->dev->of_node;
2285
2286	mnp = of_get_child_by_name(np, "mdio");
2287	if (!mnp)
2288		mt7530_free_mdio_irq(priv);
2289	of_node_put(mnp);
2290
2291	mt7530_free_irq_common(priv);
2292}
2293
2294static int
2295mt7530_setup_mdio(struct mt7530_priv *priv)
2296{
2297	struct device_node *mnp, *np = priv->dev->of_node;
2298	struct dsa_switch *ds = priv->ds;
2299	struct device *dev = priv->dev;
2300	struct mii_bus *bus;
2301	static int idx;
2302	int ret = 0;
2303
2304	mnp = of_get_child_by_name(np, "mdio");
2305
2306	if (mnp && !of_device_is_available(mnp))
2307		goto out;
2308
2309	bus = devm_mdiobus_alloc(dev);
2310	if (!bus) {
2311		ret = -ENOMEM;
2312		goto out;
2313	}
2314
2315	if (!mnp)
2316		ds->user_mii_bus = bus;
2317
2318	bus->priv = priv;
2319	bus->name = KBUILD_MODNAME "-mii";
2320	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2321	bus->read = mt753x_phy_read_c22;
2322	bus->write = mt753x_phy_write_c22;
2323	bus->read_c45 = mt753x_phy_read_c45;
2324	bus->write_c45 = mt753x_phy_write_c45;
2325	bus->parent = dev;
2326	bus->phy_mask = ~ds->phys_mii_mask;
2327
2328	if (priv->irq && !mnp)
2329		mt7530_setup_mdio_irq(priv);
2330
2331	ret = devm_of_mdiobus_register(dev, bus, mnp);
2332	if (ret) {
2333		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2334		if (priv->irq && !mnp)
2335			mt7530_free_mdio_irq(priv);
2336	}
2337
2338out:
2339	of_node_put(mnp);
2340	return ret;
2341}
2342
2343static int
2344mt7530_setup(struct dsa_switch *ds)
2345{
2346	struct mt7530_priv *priv = ds->priv;
2347	struct device_node *dn = NULL;
2348	struct device_node *phy_node;
2349	struct device_node *mac_np;
2350	struct mt7530_dummy_poll p;
2351	phy_interface_t interface;
2352	struct dsa_port *cpu_dp;
2353	u32 id, val;
2354	int ret, i;
2355
2356	/* The parent node of conduit netdev which holds the common system
2357	 * controller also is the container for two GMACs nodes representing
2358	 * as two netdev instances.
2359	 */
2360	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2361		dn = cpu_dp->conduit->dev.of_node->parent;
2362		/* It doesn't matter which CPU port is found first,
2363		 * their conduits should share the same parent OF node
2364		 */
2365		break;
2366	}
2367
2368	if (!dn) {
2369		dev_err(ds->dev, "parent OF node of DSA conduit not found");
2370		return -EINVAL;
2371	}
2372
2373	ds->assisted_learning_on_cpu_port = true;
2374	ds->mtu_enforcement_ingress = true;
2375
2376	if (priv->id == ID_MT7530) {
2377		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2378		ret = regulator_enable(priv->core_pwr);
2379		if (ret < 0) {
2380			dev_err(priv->dev,
2381				"Failed to enable core power: %d\n", ret);
2382			return ret;
2383		}
2384
2385		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2386		ret = regulator_enable(priv->io_pwr);
2387		if (ret < 0) {
2388			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2389				ret);
2390			return ret;
2391		}
2392	}
2393
2394	/* Reset whole chip through gpio pin or memory-mapped registers for
2395	 * different type of hardware
2396	 */
2397	if (priv->mcm) {
2398		reset_control_assert(priv->rstc);
2399		usleep_range(5000, 5100);
2400		reset_control_deassert(priv->rstc);
2401	} else {
2402		gpiod_set_value_cansleep(priv->reset, 0);
2403		usleep_range(5000, 5100);
2404		gpiod_set_value_cansleep(priv->reset, 1);
2405	}
2406
2407	/* Waiting for MT7530 got to stable */
2408	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2409	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2410				 20, 1000000);
2411	if (ret < 0) {
2412		dev_err(priv->dev, "reset timeout\n");
2413		return ret;
2414	}
2415
2416	id = mt7530_read(priv, MT7530_CREV);
2417	id >>= CHIP_NAME_SHIFT;
2418	if (id != MT7530_ID) {
2419		dev_err(priv->dev, "chip %x can't be supported\n", id);
2420		return -ENODEV;
2421	}
2422
2423	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_20MHZ) {
2424		dev_err(priv->dev,
2425			"MT7530 with a 20MHz XTAL is not supported!\n");
2426		return -EINVAL;
2427	}
2428
2429	/* Reset the switch through internal reset */
2430	mt7530_write(priv, MT7530_SYS_CTRL,
2431		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2432		     SYS_CTRL_REG_RST);
2433
2434	/* Lower Tx driving for TRGMII path */
2435	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2436		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2437			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2438
2439	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2440		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2441			   RD_TAP_MASK, RD_TAP(16));
2442
2443	/* Enable port 6 */
2444	val = mt7530_read(priv, MT7530_MHWTRAP);
2445	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2446	val |= MHWTRAP_MANUAL;
2447	mt7530_write(priv, MT7530_MHWTRAP, val);
2448
2449	if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_40MHZ)
2450		mt7530_pll_setup(priv);
2451
2452	mt753x_trap_frames(priv);
2453
2454	/* Enable and reset MIB counters */
2455	mt7530_mib_reset(ds);
2456
2457	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2458		/* Clear link settings and enable force mode to force link down
2459		 * on all ports until they're enabled later.
2460		 */
2461		mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2462			   PMCR_FORCE_MODE, PMCR_FORCE_MODE);
 
 
2463
2464		/* Disable forwarding by default on all ports */
2465		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2466			   PCR_MATRIX_CLR);
2467
2468		/* Disable learning by default on all ports */
2469		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2470
2471		if (dsa_is_cpu_port(ds, i)) {
2472			mt753x_cpu_port_enable(ds, i);
2473		} else {
2474			mt7530_port_disable(ds, i);
2475
2476			/* Set default PVID to 0 on all user ports */
2477			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2478				   G0_PORT_VID_DEF);
2479		}
2480		/* Enable consistent egress tag */
2481		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2482			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2483	}
2484
2485	/* Allow mirroring frames received on the local port (monitor port). */
2486	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2487
2488	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2489	ret = mt7530_setup_vlan0(priv);
2490	if (ret)
2491		return ret;
2492
2493	/* Setup port 5 */
2494	if (!dsa_is_unused_port(ds, 5)) {
2495		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2496	} else {
2497		/* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY.
2498		 * Set priv->p5_intf_sel to the appropriate value if PHY muxing
2499		 * is detected.
2500		 */
2501		for_each_child_of_node(dn, mac_np) {
2502			if (!of_device_is_compatible(mac_np,
2503						     "mediatek,eth-mac"))
2504				continue;
2505
2506			ret = of_property_read_u32(mac_np, "reg", &id);
2507			if (ret < 0 || id != 1)
2508				continue;
2509
2510			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2511			if (!phy_node)
2512				continue;
2513
2514			if (phy_node->parent == priv->dev->of_node->parent) {
 
2515				ret = of_get_phy_mode(mac_np, &interface);
2516				if (ret && ret != -ENODEV) {
2517					of_node_put(mac_np);
2518					of_node_put(phy_node);
2519					return ret;
2520				}
2521				id = of_mdio_parse_addr(ds->dev, phy_node);
2522				if (id == 0)
2523					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2524				if (id == 4)
2525					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2526			}
2527			of_node_put(mac_np);
2528			of_node_put(phy_node);
2529			break;
2530		}
2531
2532		if (priv->p5_intf_sel == P5_INTF_SEL_PHY_P0 ||
2533		    priv->p5_intf_sel == P5_INTF_SEL_PHY_P4)
 
2534			mt7530_setup_port5(ds, interface);
 
2535	}
2536
2537#ifdef CONFIG_GPIOLIB
2538	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2539		ret = mt7530_setup_gpio(priv);
2540		if (ret)
2541			return ret;
2542	}
2543#endif /* CONFIG_GPIOLIB */
2544
2545	/* Flush the FDB table */
2546	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2547	if (ret < 0)
2548		return ret;
2549
2550	return 0;
2551}
2552
2553static int
2554mt7531_setup_common(struct dsa_switch *ds)
2555{
2556	struct mt7530_priv *priv = ds->priv;
2557	int ret, i;
2558
2559	mt753x_trap_frames(priv);
2560
2561	/* Enable and reset MIB counters */
2562	mt7530_mib_reset(ds);
2563
2564	/* Disable flooding on all ports */
2565	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2566		     UNU_FFP_MASK);
2567
2568	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2569		/* Clear link settings and enable force mode to force link down
2570		 * on all ports until they're enabled later.
2571		 */
2572		mt7530_rmw(priv, MT7530_PMCR_P(i), PMCR_LINK_SETTINGS_MASK |
2573			   MT7531_FORCE_MODE, MT7531_FORCE_MODE);
 
 
2574
2575		/* Disable forwarding by default on all ports */
2576		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2577			   PCR_MATRIX_CLR);
2578
2579		/* Disable learning by default on all ports */
2580		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2581
2582		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2583
2584		if (dsa_is_cpu_port(ds, i)) {
2585			mt753x_cpu_port_enable(ds, i);
2586		} else {
2587			mt7530_port_disable(ds, i);
2588
2589			/* Set default PVID to 0 on all user ports */
2590			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2591				   G0_PORT_VID_DEF);
2592		}
2593
2594		/* Enable consistent egress tag */
2595		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2596			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2597	}
2598
2599	/* Allow mirroring frames received on the local port (monitor port). */
2600	mt7530_set(priv, MT753X_AGC, LOCAL_EN);
2601
2602	/* Flush the FDB table */
2603	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2604	if (ret < 0)
2605		return ret;
2606
2607	return 0;
 
2608}
2609
2610static int
2611mt7531_setup(struct dsa_switch *ds)
2612{
2613	struct mt7530_priv *priv = ds->priv;
2614	struct mt7530_dummy_poll p;
2615	u32 val, id;
2616	int ret, i;
2617
2618	/* Reset whole chip through gpio pin or memory-mapped registers for
2619	 * different type of hardware
2620	 */
2621	if (priv->mcm) {
2622		reset_control_assert(priv->rstc);
2623		usleep_range(5000, 5100);
2624		reset_control_deassert(priv->rstc);
2625	} else {
2626		gpiod_set_value_cansleep(priv->reset, 0);
2627		usleep_range(5000, 5100);
2628		gpiod_set_value_cansleep(priv->reset, 1);
2629	}
2630
2631	/* Waiting for MT7530 got to stable */
2632	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2633	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2634				 20, 1000000);
2635	if (ret < 0) {
2636		dev_err(priv->dev, "reset timeout\n");
2637		return ret;
2638	}
2639
2640	id = mt7530_read(priv, MT7531_CREV);
2641	id >>= CHIP_NAME_SHIFT;
2642
2643	if (id != MT7531_ID) {
2644		dev_err(priv->dev, "chip %x can't be supported\n", id);
2645		return -ENODEV;
2646	}
2647
2648	/* MT7531AE has got two SGMII units. One for port 5, one for port 6.
2649	 * MT7531BE has got only one SGMII unit which is for port 6.
2650	 */
2651	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
2652	priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
2653
2654	/* Force link down on all ports before internal reset */
2655	for (i = 0; i < MT7530_NUM_PORTS; i++)
2656		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2657
2658	/* Reset the switch through internal reset */
2659	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_SW_RST | SYS_CTRL_REG_RST);
2660
2661	if (!priv->p5_sgmii) {
2662		mt7531_pll_setup(priv);
2663	} else {
2664		/* Let ds->user_mii_bus be able to access external phy. */
 
 
 
2665		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2666			   MT7531_EXT_P_MDC_11);
2667		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2668			   MT7531_EXT_P_MDIO_12);
2669	}
2670
2671	if (!dsa_is_unused_port(ds, 5))
2672		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2673
2674	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2675		   MT7531_GPIO0_INTERRUPT);
2676
2677	/* Enable Energy-Efficient Ethernet (EEE) and PHY core PLL, since
2678	 * phy_device has not yet been created provided for
2679	 * phy_[read,write]_mmd_indirect is called, we provide our own
2680	 * mt7531_ind_mmd_phy_[read,write] to complete this function.
2681	 */
2682	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
 
2683				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2684	val |= MT7531_RG_SYSPLL_DMY2 | MT7531_PHY_PLL_BYPASS_MODE;
2685	val &= ~MT7531_PHY_PLL_OFF;
2686	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2687				 CORE_PLL_GROUP4, val);
 
2688
2689	/* Disable EEE advertisement on the switch PHYs. */
2690	for (i = MT753X_CTRL_PHY_ADDR;
2691	     i < MT753X_CTRL_PHY_ADDR + MT7530_NUM_PHYS; i++) {
 
2692		mt7531_ind_c45_phy_write(priv, i, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
2693					 0);
2694	}
2695
2696	mt7531_setup_common(ds);
2697
2698	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2699	ret = mt7530_setup_vlan0(priv);
2700	if (ret)
2701		return ret;
2702
2703	ds->assisted_learning_on_cpu_port = true;
2704	ds->mtu_enforcement_ingress = true;
2705
2706	return 0;
2707}
2708
2709static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2710				     struct phylink_config *config)
2711{
 
 
2712	switch (port) {
2713	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2714	case 0 ... 4:
2715		__set_bit(PHY_INTERFACE_MODE_GMII,
2716			  config->supported_interfaces);
2717		break;
2718
2719	/* Port 5 supports rgmii with delays, mii, and gmii. */
2720	case 5:
2721		phy_interface_set_rgmii(config->supported_interfaces);
2722		__set_bit(PHY_INTERFACE_MODE_MII,
2723			  config->supported_interfaces);
2724		__set_bit(PHY_INTERFACE_MODE_GMII,
2725			  config->supported_interfaces);
2726		break;
2727
2728	/* Port 6 supports rgmii and trgmii. */
2729	case 6:
2730		__set_bit(PHY_INTERFACE_MODE_RGMII,
2731			  config->supported_interfaces);
2732		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2733			  config->supported_interfaces);
2734		break;
2735	}
2736}
2737
2738static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2739				     struct phylink_config *config)
2740{
2741	struct mt7530_priv *priv = ds->priv;
2742
 
 
2743	switch (port) {
2744	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2745	case 0 ... 4:
2746		__set_bit(PHY_INTERFACE_MODE_GMII,
2747			  config->supported_interfaces);
2748		break;
2749
2750	/* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on
2751	 * MT7531AE.
2752	 */
2753	case 5:
2754		if (!priv->p5_sgmii) {
2755			phy_interface_set_rgmii(config->supported_interfaces);
2756			break;
2757		}
2758		fallthrough;
2759
2760	/* Port 6 supports sgmii/802.3z. */
2761	case 6:
2762		__set_bit(PHY_INTERFACE_MODE_SGMII,
2763			  config->supported_interfaces);
2764		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2765			  config->supported_interfaces);
2766		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2767			  config->supported_interfaces);
2768
2769		config->mac_capabilities |= MAC_2500FD;
2770		break;
2771	}
2772}
2773
2774static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2775				     struct phylink_config *config)
2776{
2777	switch (port) {
2778	/* Ports which are connected to switch PHYs. There is no MII pinout. */
2779	case 0 ... 3:
2780		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2781			  config->supported_interfaces);
 
 
2782		break;
2783
2784	/* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */
2785	case 6:
2786		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2787			  config->supported_interfaces);
2788		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2789					   MAC_10000FD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2790	}
2791}
2792
2793static void
2794mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2795		  phy_interface_t interface)
2796{
2797	struct mt7530_priv *priv = ds->priv;
2798
2799	if (port == 5)
2800		mt7530_setup_port5(priv->ds, interface);
2801	else if (port == 6)
2802		mt7530_setup_port6(priv->ds, interface);
2803}
2804
2805static void mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2806			       phy_interface_t interface,
2807			       struct phy_device *phydev)
2808{
2809	u32 val;
2810
2811	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2812	val |= GP_CLK_EN;
2813	val &= ~GP_MODE_MASK;
2814	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2815	val &= ~CLK_SKEW_IN_MASK;
2816	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2817	val &= ~CLK_SKEW_OUT_MASK;
2818	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2819	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2820
2821	/* Do not adjust rgmii delay when vendor phy driver presents. */
2822	if (!phydev || phy_driver_is_genphy(phydev)) {
2823		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2824		switch (interface) {
2825		case PHY_INTERFACE_MODE_RGMII:
2826			val |= TXCLK_NO_REVERSE;
2827			val |= RXCLK_NO_DELAY;
2828			break;
2829		case PHY_INTERFACE_MODE_RGMII_RXID:
2830			val |= TXCLK_NO_REVERSE;
2831			break;
2832		case PHY_INTERFACE_MODE_RGMII_TXID:
2833			val |= RXCLK_NO_DELAY;
2834			break;
2835		case PHY_INTERFACE_MODE_RGMII_ID:
2836			break;
2837		default:
2838			break;
2839		}
2840	}
2841
2842	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2843}
2844
2845static void
2846mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2847		  phy_interface_t interface)
2848{
2849	struct mt7530_priv *priv = ds->priv;
2850	struct phy_device *phydev;
2851	struct dsa_port *dp;
2852
2853	if (phy_interface_mode_is_rgmii(interface)) {
2854		dp = dsa_to_port(ds, port);
2855		phydev = dp->user->phydev;
2856		mt7531_rgmii_setup(priv, port, interface, phydev);
2857	}
2858}
2859
2860static struct phylink_pcs *
2861mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2862			      phy_interface_t interface)
2863{
2864	struct mt7530_priv *priv = ds->priv;
 
2865
2866	switch (interface) {
2867	case PHY_INTERFACE_MODE_TRGMII:
2868		return &priv->pcs[port].pcs;
2869	case PHY_INTERFACE_MODE_SGMII:
2870	case PHY_INTERFACE_MODE_1000BASEX:
2871	case PHY_INTERFACE_MODE_2500BASEX:
2872		return priv->ports[port].sgmii_pcs;
2873	default:
2874		return NULL;
2875	}
2876}
2877
2878static void
2879mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2880			  const struct phylink_link_state *state)
2881{
2882	struct mt7530_priv *priv = ds->priv;
 
 
 
 
 
2883
2884	if ((port == 5 || port == 6) && priv->info->mac_port_config)
2885		priv->info->mac_port_config(ds, port, mode, state->interface);
2886
2887	/* Are we connected to external phy */
2888	if (port == 5 && dsa_is_user_port(ds, 5))
2889		mt7530_set(priv, MT7530_PMCR_P(port), PMCR_EXT_PHY);
2890}
2891
2892static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2893					 unsigned int mode,
2894					 phy_interface_t interface)
2895{
2896	struct mt7530_priv *priv = ds->priv;
 
2897
2898	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2899}
2900
2901static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
 
2902				       unsigned int mode,
2903				       phy_interface_t interface,
2904				       struct phy_device *phydev,
2905				       int speed, int duplex,
2906				       bool tx_pause, bool rx_pause)
2907{
2908	struct mt7530_priv *priv = ds->priv;
 
2909	u32 mcr;
2910
2911	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2912
2913	switch (speed) {
2914	case SPEED_1000:
2915	case SPEED_2500:
2916	case SPEED_10000:
2917		mcr |= PMCR_FORCE_SPEED_1000;
2918		break;
2919	case SPEED_100:
2920		mcr |= PMCR_FORCE_SPEED_100;
2921		break;
2922	}
2923	if (duplex == DUPLEX_FULL) {
2924		mcr |= PMCR_FORCE_FDX;
2925		if (tx_pause)
2926			mcr |= PMCR_TX_FC_EN;
2927		if (rx_pause)
2928			mcr |= PMCR_RX_FC_EN;
2929	}
2930
2931	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2932		switch (speed) {
2933		case SPEED_1000:
2934		case SPEED_2500:
2935			mcr |= PMCR_FORCE_EEE1G;
2936			break;
2937		case SPEED_100:
2938			mcr |= PMCR_FORCE_EEE100;
2939			break;
2940		}
2941	}
2942
2943	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2944}
2945
2946static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2947				    struct phylink_config *config)
2948{
2949	struct mt7530_priv *priv = ds->priv;
2950
2951	/* This switch only supports full-duplex at 1Gbps */
2952	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2953				   MAC_10 | MAC_100 | MAC_1000FD;
2954
2955	priv->info->mac_port_get_caps(ds, port, config);
2956}
2957
2958static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2959			       unsigned long *supported,
2960			       const struct phylink_link_state *state)
2961{
2962	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2963	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2964	    phy_interface_mode_is_8023z(state->interface))
2965		phylink_clear(supported, Autoneg);
2966
2967	return 0;
2968}
2969
2970static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2971				 struct phylink_link_state *state)
2972{
2973	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2974	int port = pcs_to_mt753x_pcs(pcs)->port;
2975	u32 pmsr;
2976
2977	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2978
2979	state->link = (pmsr & PMSR_LINK);
2980	state->an_complete = state->link;
2981	state->duplex = !!(pmsr & PMSR_DPX);
2982
2983	switch (pmsr & PMSR_SPEED_MASK) {
2984	case PMSR_SPEED_10:
2985		state->speed = SPEED_10;
2986		break;
2987	case PMSR_SPEED_100:
2988		state->speed = SPEED_100;
2989		break;
2990	case PMSR_SPEED_1000:
2991		state->speed = SPEED_1000;
2992		break;
2993	default:
2994		state->speed = SPEED_UNKNOWN;
2995		break;
2996	}
2997
2998	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2999	if (pmsr & PMSR_RX_FC)
3000		state->pause |= MLO_PAUSE_RX;
3001	if (pmsr & PMSR_TX_FC)
3002		state->pause |= MLO_PAUSE_TX;
3003}
3004
3005static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3006			     phy_interface_t interface,
3007			     const unsigned long *advertising,
3008			     bool permit_pause_to_mac)
3009{
3010	return 0;
3011}
3012
3013static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3014{
3015}
3016
3017static const struct phylink_pcs_ops mt7530_pcs_ops = {
3018	.pcs_validate = mt753x_pcs_validate,
3019	.pcs_get_state = mt7530_pcs_get_state,
3020	.pcs_config = mt753x_pcs_config,
3021	.pcs_an_restart = mt7530_pcs_an_restart,
3022};
3023
3024static int
3025mt753x_setup(struct dsa_switch *ds)
3026{
3027	struct mt7530_priv *priv = ds->priv;
3028	int ret = priv->info->sw_setup(ds);
3029	int i;
3030
3031	if (ret)
3032		return ret;
3033
3034	ret = mt7530_setup_irq(priv);
3035	if (ret)
3036		return ret;
3037
3038	ret = mt7530_setup_mdio(priv);
3039	if (ret && priv->irq)
3040		mt7530_free_irq_common(priv);
 
 
3041
3042	/* Initialise the PCS devices */
3043	for (i = 0; i < priv->ds->num_ports; i++) {
3044		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3045		priv->pcs[i].pcs.neg_mode = true;
3046		priv->pcs[i].priv = priv;
3047		priv->pcs[i].port = i;
3048	}
3049
3050	if (priv->create_sgmii) {
3051		ret = priv->create_sgmii(priv);
3052		if (ret && priv->irq)
3053			mt7530_free_irq(priv);
3054	}
3055
3056	return ret;
3057}
3058
3059static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3060			      struct ethtool_keee *e)
3061{
3062	struct mt7530_priv *priv = ds->priv;
3063	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3064
3065	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3066	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3067
3068	return 0;
3069}
3070
3071static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3072			      struct ethtool_keee *e)
3073{
3074	struct mt7530_priv *priv = ds->priv;
3075	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3076
3077	if (e->tx_lpi_timer > 0xFFF)
3078		return -EINVAL;
3079
3080	set = SET_LPI_THRESH(e->tx_lpi_timer);
3081	if (!e->tx_lpi_enabled)
3082		/* Force LPI Mode without a delay */
3083		set |= LPI_MODE_EN;
3084	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3085
3086	return 0;
3087}
3088
3089static void
3090mt753x_conduit_state_change(struct dsa_switch *ds,
3091			    const struct net_device *conduit,
3092			    bool operational)
3093{
3094	struct dsa_port *cpu_dp = conduit->dsa_ptr;
3095	struct mt7530_priv *priv = ds->priv;
3096	int val = 0;
3097	u8 mask;
3098
3099	/* Set the CPU port to trap frames to for MT7530. Trapped frames will be
3100	 * forwarded to the numerically smallest CPU port whose conduit
3101	 * interface is up.
3102	 */
3103	if (priv->id != ID_MT7530 && priv->id != ID_MT7621)
3104		return;
3105
3106	mask = BIT(cpu_dp->index);
3107
3108	if (operational)
3109		priv->active_cpu_ports |= mask;
3110	else
3111		priv->active_cpu_ports &= ~mask;
3112
3113	if (priv->active_cpu_ports)
3114		val = CPU_EN | CPU_PORT(__ffs(priv->active_cpu_ports));
 
 
3115
3116	mt7530_rmw(priv, MT7530_MFC, CPU_EN | CPU_PORT_MASK, val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3117}
3118
3119static int mt7988_setup(struct dsa_switch *ds)
3120{
3121	struct mt7530_priv *priv = ds->priv;
3122
3123	/* Reset the switch */
3124	reset_control_assert(priv->rstc);
3125	usleep_range(20, 50);
3126	reset_control_deassert(priv->rstc);
3127	usleep_range(20, 50);
3128
3129	/* Reset the switch PHYs */
3130	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3131
3132	return mt7531_setup_common(ds);
3133}
3134
3135const struct dsa_switch_ops mt7530_switch_ops = {
3136	.get_tag_protocol	= mtk_get_tag_protocol,
3137	.setup			= mt753x_setup,
3138	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3139	.get_strings		= mt7530_get_strings,
3140	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3141	.get_sset_count		= mt7530_get_sset_count,
3142	.set_ageing_time	= mt7530_set_ageing_time,
3143	.port_enable		= mt7530_port_enable,
3144	.port_disable		= mt7530_port_disable,
3145	.port_change_mtu	= mt7530_port_change_mtu,
3146	.port_max_mtu		= mt7530_port_max_mtu,
3147	.port_stp_state_set	= mt7530_stp_state_set,
3148	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3149	.port_bridge_flags	= mt7530_port_bridge_flags,
3150	.port_bridge_join	= mt7530_port_bridge_join,
3151	.port_bridge_leave	= mt7530_port_bridge_leave,
3152	.port_fdb_add		= mt7530_port_fdb_add,
3153	.port_fdb_del		= mt7530_port_fdb_del,
3154	.port_fdb_dump		= mt7530_port_fdb_dump,
3155	.port_mdb_add		= mt7530_port_mdb_add,
3156	.port_mdb_del		= mt7530_port_mdb_del,
3157	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3158	.port_vlan_add		= mt7530_port_vlan_add,
3159	.port_vlan_del		= mt7530_port_vlan_del,
3160	.port_mirror_add	= mt753x_port_mirror_add,
3161	.port_mirror_del	= mt753x_port_mirror_del,
3162	.phylink_get_caps	= mt753x_phylink_get_caps,
3163	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3164	.phylink_mac_config	= mt753x_phylink_mac_config,
3165	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3166	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3167	.get_mac_eee		= mt753x_get_mac_eee,
3168	.set_mac_eee		= mt753x_set_mac_eee,
3169	.conduit_state_change	= mt753x_conduit_state_change,
 
3170};
3171EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3172
 
 
 
 
 
 
 
3173const struct mt753x_info mt753x_table[] = {
3174	[ID_MT7621] = {
3175		.id = ID_MT7621,
3176		.pcs_ops = &mt7530_pcs_ops,
3177		.sw_setup = mt7530_setup,
3178		.phy_read_c22 = mt7530_phy_read_c22,
3179		.phy_write_c22 = mt7530_phy_write_c22,
3180		.phy_read_c45 = mt7530_phy_read_c45,
3181		.phy_write_c45 = mt7530_phy_write_c45,
3182		.mac_port_get_caps = mt7530_mac_port_get_caps,
3183		.mac_port_config = mt7530_mac_config,
3184	},
3185	[ID_MT7530] = {
3186		.id = ID_MT7530,
3187		.pcs_ops = &mt7530_pcs_ops,
3188		.sw_setup = mt7530_setup,
3189		.phy_read_c22 = mt7530_phy_read_c22,
3190		.phy_write_c22 = mt7530_phy_write_c22,
3191		.phy_read_c45 = mt7530_phy_read_c45,
3192		.phy_write_c45 = mt7530_phy_write_c45,
3193		.mac_port_get_caps = mt7530_mac_port_get_caps,
3194		.mac_port_config = mt7530_mac_config,
3195	},
3196	[ID_MT7531] = {
3197		.id = ID_MT7531,
3198		.pcs_ops = &mt7530_pcs_ops,
3199		.sw_setup = mt7531_setup,
3200		.phy_read_c22 = mt7531_ind_c22_phy_read,
3201		.phy_write_c22 = mt7531_ind_c22_phy_write,
3202		.phy_read_c45 = mt7531_ind_c45_phy_read,
3203		.phy_write_c45 = mt7531_ind_c45_phy_write,
3204		.mac_port_get_caps = mt7531_mac_port_get_caps,
3205		.mac_port_config = mt7531_mac_config,
3206	},
3207	[ID_MT7988] = {
3208		.id = ID_MT7988,
3209		.pcs_ops = &mt7530_pcs_ops,
3210		.sw_setup = mt7988_setup,
3211		.phy_read_c22 = mt7531_ind_c22_phy_read,
3212		.phy_write_c22 = mt7531_ind_c22_phy_write,
3213		.phy_read_c45 = mt7531_ind_c45_phy_read,
3214		.phy_write_c45 = mt7531_ind_c45_phy_write,
3215		.mac_port_get_caps = mt7988_mac_port_get_caps,
3216	},
 
 
 
 
 
 
 
 
 
 
3217};
3218EXPORT_SYMBOL_GPL(mt753x_table);
3219
3220int
3221mt7530_probe_common(struct mt7530_priv *priv)
3222{
3223	struct device *dev = priv->dev;
3224
3225	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3226	if (!priv->ds)
3227		return -ENOMEM;
3228
3229	priv->ds->dev = dev;
3230	priv->ds->num_ports = MT7530_NUM_PORTS;
3231
3232	/* Get the hardware identifier from the devicetree node.
3233	 * We will need it for some of the clock and regulator setup.
3234	 */
3235	priv->info = of_device_get_match_data(dev);
3236	if (!priv->info)
3237		return -EINVAL;
3238
3239	/* Sanity check if these required device operations are filled
3240	 * properly.
3241	 */
3242	if (!priv->info->sw_setup || !priv->info->phy_read_c22 ||
3243	    !priv->info->phy_write_c22 || !priv->info->mac_port_get_caps)
3244		return -EINVAL;
3245
3246	priv->id = priv->info->id;
3247	priv->dev = dev;
3248	priv->ds->priv = priv;
3249	priv->ds->ops = &mt7530_switch_ops;
 
3250	mutex_init(&priv->reg_mutex);
3251	dev_set_drvdata(dev, priv);
3252
3253	return 0;
3254}
3255EXPORT_SYMBOL_GPL(mt7530_probe_common);
3256
3257void
3258mt7530_remove_common(struct mt7530_priv *priv)
3259{
3260	if (priv->irq)
3261		mt7530_free_irq(priv);
3262
3263	dsa_unregister_switch(priv->ds);
3264
3265	mutex_destroy(&priv->reg_mutex);
3266}
3267EXPORT_SYMBOL_GPL(mt7530_remove_common);
3268
3269MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3270MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3271MODULE_LICENSE("GPL");